Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Типы и виды электродвигателей — переменного и постоянного тока, коллекторные, асинхронные, прямого привода

электрика, сигнализация, видеонаблюдение, контроль доступа (СКУД), инженерно технические системы (ИТС)

Одним из основных стимулов к широкой электрификации, начавшейся в XX веке, стала возможность легкого преобразования энергии электрического тока в механическую — к тому времени уже был известен коллекторный электродвигатель, изобретенный Якоби еще в первой половине XIX века.

Изобретение асинхронного двигателя переменного тока стало еще большим шагом вперед.

Электромотор лишился механически трущихся и искрящих узлов (щеток и коллектора), превзойдя по бесшумности и ресурсу любой другой существовавший в то время тип привода.

Независимо от конструкции, любой электродвигатель устроен одинаково: внутри цилиндрической проточки в неподвижной обмотке (статоре) вращается ротор, в котором возбуждается магнитное поле, приводящее к отталкиванию его полюсов от статора.

Поддержание постоянного отталкивания требует:

  • перекоммутации обмоток ротора, как это делается на коллекторных электродвигателях;
  • создания вращающегося магнитного поля в самом статоре (классический пример – асинхронный трехфазный двигатель).

Достоинства электродвигателей переоценить трудно. Это:

Крайняя простота.
Электродвигатель состоит из минимального количества узлов, поэтому ломаться в нем практически нечему.
Самостоятельный запуск.
Электродвигателю не нужен пусковой импульс, он начинает вращаться сам при включении питания (исключение – однофазные электродвигатели с пусковой обмоткой, но они практически вышли из употребления). Это позволяет отказаться от холостого хода, включая электромотор только при необходимости.
Отсутствие вибраций.
Так как в электродвигателях энергия магнитного поля непосредственно преобразуется во вращение, при должной балансировке ротора они полностью бесшумны и не создают вибрации.
Легкость управления оборотами и крутящим моментом.
Несмотря на то, что на разных типах электродвигателей это достигается разными способами, управление ими в любом случае достаточно просто и надежно.
Возможность реверса.
На коллекторном двигателе достаточно поменять местами полюса якоря, на трехфазном электромоторе – изменить порядок включения фаз.
Обратимость.
Коллекторные электродвигатели при внешнем приводе начинают работать как электрогенераторы, что позволяет использовать их для рекуперации энергии при торможении электротранспорта.

ЭЛЕКТРОДВИГАТЕЛИ ПЕРЕМЕННОГО ТОКА

Благодаря удобству передачи на большие расстояния и легкости преобразования переменный ток успешно стал стандартом электроснабжения.

В сфере же производства электродвигателей его способность возбуждать переменное магнитное поле в статоре и соответственно индуцировать ток в короткозамкнутой обмотке ротора позволила создать асинхронные электродвигатели.

В этом типе двигателей единственным испытывающим трение узлом остаются коренные подшипники якоря.

Ротор такого электродвигателя – это металлический цилиндр, в пазы которого под углом к оси вращения запрессованы или залиты токопроводящие жилы, на торцах ротора объединенные кольцами в одно целое. Переменное магнитное поле статора возбуждает в роторе, напоминающем беличье колесо, противоток и, соответственно, отталкивающее его от статора магнитное поле.

В зависимости от числа обмоток статора асинхронный двигатель может быть:

Однофазным – в этом случае главным недостатком двигателя становится невозможность самостоятельного запуска, так как вектор силы отталкивания проходит строго через ось вращения.

Для начала работы двигателю необходим или стартовый толчок, или включение отдельной пусковой обмотки, создающей дополнительный момент силы, смещающий их суммарный вектор относительно оси якоря.

Двухфазный электродвигатель имеет две обмотки, в которых фазы смещены на угол, соответствующий геометрическому углу между обмотками. В этом случае в электродвигателе создается так называемое вращающееся магнитное поле (спад напряженности поля в полюсах одной обмотки происходит синхронно с нарастанием его в другой).

Такой двигатель становится способным к самостоятельному запуску, однако имеет трудности с реверсом. Поскольку в современном электроснабжении не используются двухфазные сети, фактически электродвигатели этого рода применяются в однофазных сетях с включением второй фазы через фазовращающий элемент (обычно – конденсатор).

Трехфазный асинхронный электродвигатель – наиболее совершенный тип асинхронного мотора, так как в нем появляется возможность легкого реверса – изменение порядка включения фазных обмоток изменяет направление вращения магнитного поля, а соответственно и ротора.

Коллекторные двигатели переменного тока используются в тех случаях, когда требуется получение высоких частот вращения (асинхронные электродвигатели не могут превышать скорость вращения магнитного потока в статоре – для промышленной сети 50 Гц это 3000 об/мин).

Кроме того, они выигрывают в пусковом крутящем моменте (здесь он пропорционален току, а не оборотам) и имеют меньший пусковой ток, меньше перегружая электросеть при запуске. Также они позволяют легко управлять своими оборотами.

Обратной стороной этих достоинств становится дороговизна (требуется изготовление ротора с наборным сердечником, несколькими обмотками и коллектором, который к тому же сложнее балансировать) и меньший ресурс. Помимо необходимости в регулярной замене стирающихся щеток, со временем изнашивается и сам коллектор.

Синхронный электродвигатель имеет ту особенность, что магнитное поле ротора индуцируется не магнитным полем статора, а собственной намоткой, подключенной к отдельному источнику постоянного тока.

Благодаря этому частота его вращения равна частоте вращения магнитного поля статора, откуда и происходит сам термин «синхронный».

Как и двигатель постоянного тока, синхронный двигатель переменного тока является обратимым:

  • при подаче напряжения на статор он работает как электродвигатель;
  • при вращении от внешнего источника он сам начинает возбуждать в фазных обмотках переменный ток.

Основная область использования синхронных электродвигателей – высокомощные приводы. Здесь увеличение КПД относительно асинхронных электромоторов означает значительное снижение потерь электроэнергии.

Также синхронные двигатели используются в электротранспорте. Однако, для управления скоростью в этом случае требуются мощные частотные преобразователи, зато при торможении возможен возврат энергии в сеть.

ЭЛЕКТРОДВИГАТЕЛИ ПОСТОЯННОГО ТОКА

Так как постоянный ток не способен создать изменяющееся магнитное поле, обеспечение непрерывного вращения ротора требует принудительной перекоммутации обмоток, или дискретного изменения направления магнитного поля.

Старейший из известных способов – это использование электромеханического коллектора. В этом случае якорь электродвигателя имеет несколько разнонаправленных обмоток, соединенных с находящимися в соответствующем положении относительно щеток ламелями коллектора.

В момент включения питания возникает импульс в обмотке, соединенной со щетками, после чего ротор проворачивается, и в том же месте относительно полюсов статора включается новая обмотка.

Так как намагниченность статора во время работы коллекторного электродвигателя постоянного тока не изменяется, вместо сердечника с обмотками могут использоваться мощные постоянные магниты, что сделает мотор компактнее и легче.

Коллекторный двигатель не лишен ряда недостатков. Это:

  • высокий уровень помех, как передаваемых в питающую сеть при переключении обмоток якоря, так и возбуждаемых искрением щеток;
  • неизбежный износ коллектора и щеток;
  • повышенная шумность при работе.

Современная силовая электроника позволила избавиться от этих недостатков, применяя так называемый шаговый двигатель – в нем ротор имеет постоянную намагниченность, а внешнее устройство последовательно меняет направление тока в нескольких обмотках статора.

Фактически за единичный импульс тока ротор проворачивается на фиксированный угол (шаг), откуда и пошло название электромоторов такого типа.

Шаговые электродвигатели бесшумны, а также позволяют в широчайших пределах регулировать как крутящий момент (амплитудой импульсов), так и обороты (частотой), а также легко реверсируются изменением порядка следования сигналов.

По этой причине они широко используются в сервоприводах и автоматике, однако их максимальная мощность определяется возможностями силовой управляющей схемы, без которой шаговые двигатели неработоспособны.

© 2012-2022 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов


Виды и типы электродвигателей | Публикации

Электрический двигатель

Электродвигатель представляет собой электрическую машину, которая преобразовывает электроэнергию в энергию вращения вала с незначительными тепловыми потерями. Главный принцип работы любого электродвигателя заключается в использовании электромагнитной индукции в качестве основной движущей силы. Для этого конструкция электродвигателя включает:

  • Неподвижную часть (статор или индуктор).
  • Подвижную часть (ротор или якорь).

В зависимости от предназначения, применяемого рода тока и конструктивных особенностей электрические двигатели имеют большое количество разновидностей.

Двигатели постоянного тока

Электродвигатели постоянного тока объединяют широкий ассортимент устройств, обеспечивающих высокий КПД при трансформации электрической энергии в механическую. Для надежного соединения электрической цепи подвижной и неподвижной части электропривода постоянного тока используют щеточно-коллекторный узел. В зависимости от конструктивных особенностей щеточно-коллекторного узла, все электрические машины постоянного тока подразделяют на следующие группы:

  • Коллекторные.
  • Бесколлекторные.

В свою очередь коллекторные электродвигатели условно разделяют на следующие виды:

  • Самовозбуждающиеся.
  • С возбуждением от электромагнитов постоянного действия.

Устройства с независимым возбуждением характеризуются низкой мощностью, поэтому данные электроприводы используют для не ответственных операций с низкой нагрузкой. Машины с самовозбуждением подразделяют на:

  • Устройства с последовательным возбуждением, где якорь подключается последовательно обмотке возбуждения.
  • Электродвигатели с параллельным возбуждением, где якорь включается параллельно обмотке возбуждения.
  • Электропривод смешанного возбуждения, который характеризуется наличием параллельных и последовательных соединений.

Двигатели переменного тока

Электродвигатели переменного тока представлены широкой номенклатурой устройств, которые различают по многочисленным конструктивным и эксплуатационным характеристикам. В зависимости от скорости вращения ротора выделяют электрические машины синхронного и асинхронного типа.

Синхронные двигатели характеризуются одинаковой скоростью вращения ротора и магнитного поля питающего напряжения. Подобный тип электрических двигателей используют для изготовления устройств с высокой мощностью. Кроме этого существует еще одна разновидность синхронного привода — шаговые двигатели. Они имеют строго заданное в пространстве положение ротора, которое фиксируется подачей питания на обмотку статора. При этом переход из одного положения в другое осуществляется посредством подачи напряжения на требуемую обмотку.

Асинхронный электрический двигатель имеет частоту вращения ротора отличную от частоты вращения магнитного поля питающего напряжения. В настоящее время этот тип электродвигателей получил самое широкое распространение как на производстве, так и в быту.

В зависимости от количества фаз питающего напряжения электропривод принадлежит к одной из групп:

  • 1-нофазные;
  • 2-хфазные;
  • 3-хфазные;
  • многофазные.

Категория размещения и климатическое исполнение

Все электродвигатели производят с учетом воздействия во время эксплуатации определенных факторов окружающей среды. По этой причине все электрические машины подразделяют на следующие категории размещения:

  • Для помещений с высоким уровнем влажности.
  • Для помещений закрытого типа с вентиляцией естественного типа без искусственного регулирования климатических параметров. При этом ограничено воздействие пыли, влаги и УФ- излучения.
  • В условиях открытого пространства.
  • Для помещений закрытого типа с искусственным регулированием климатических параметров. При этом ограничено воздействие пыли, влаги и УФ-излучения.
  • Для помещений с изменением влажности и температуры, которые не отличаются от изменений на улице.

В зависимости от климатического исполнения в соответствии с требованиями ГОСТ 15150 — 69 все электрические двигатели подразделяют на следующие типы исполнения:

  • Все возможные макроклиматические районы (В).
  • Холодный (ХЛ).
  • Все морские районы (ОМ).
  • Сухой тропический (ТС).
  • Общий (О).
  • Умеренный (У).
  • Умеренный морской (М).
  • Влажный тропический (ТВ).

Категория размещения и климатическое исполнение указывают в условном обозначении электродвигателя на его бирке и в паспорте.

Степень защиты корпуса

Для условного обозначения степени защиты корпуса электрической машины от воздействия вредных факторов окружающей среды используют аббревиатуру IP. При этом на корпусе электропривода указывают следующую информацию:

  • Высокий уровень защиты от пыли — IP65, IP66.
  • Защищенные — не ниже IP21, IP22.
  • С защитой от влаги — IP55, IP5.
  • С защитой от брызг и капель — IP23, IP24.
  • Закрытое исполнение — IP44 — IP54.
  • Герметичные — IP67, IP68.

При подборе электрического двигателя для эксплуатации в условиях воздействия определенных вредных факторов, необходимо тщательно подходить к выбору степени защиты его корпуса.

Общие требования безопасности при монтаже и эксплуатации

При монтаже электрического двигателя необходимо придерживаться следующих требований:

  • Перед подключением проверить соответствие частоты и напряжения питающей сети с информацией на паспорте электрического двигателя.
  • Перед установкой электрической машины обязательно проводят измерение сопротивления электрической изоляции обмотки статора относительно корпуса. При неудовлетворительных значениях проводят просушивание изоляции до достижения требуемого значения.
  • При сопряжении валов необходимо точно соблюдать соосность с допустимым отклонением не более 0,2 мм.
  • Для заземления корпуса электродвигателя используют только специальные заземляющие устройства, предусмотренные инструкцией завода производителя.
  • Строго запрещен монтаж электропривода под напряжением.

В процессе эксплуатации электрических машин следует придерживаться следующих основных правил:

  • Регулярный осмотр состояния электродвигателя является залогом своевременного определения неисправностей.
  • Регулярно на протяжении всего срока эксплуатации проводят проверку исправности токовой и тепловой защиты, чистку и смазку, проверку контактных соединений и надежности заземления.
  • При наличии повышенного шума или стука, проводят вибродиагностику с целью определения состояния подшипников и других вращающихся деталей.
  • Следует исключить длительную работу однофазного электродвигателя в режиме холостого хода, что негативно влияет на срок его службы.
  • Запрещается эксплуатация электрического двигателя с неисправной защитой от перегрева, перегрузки или завышенным значением сопротивления контура заземления.

Крановые электродвигатели

Крановые электродвигатели представляют собой асинхронные устройства переменного тока или двигатели постоянного тока с параллельным или последовательным возбуждением.

В отличие от других категорий электродвигателей, крановые электроприводы имеют следующие особенности:

  • Большинство крановых электрических двигателей имеет закрытое исполнение корпуса.
  • Момент инерции на роторе составляет минимально возможное значение, что обеспечивает минимальные потери энергии во время переходных процессов.
  • Кратковременная перегрузка по моменту для крановых двигателей постоянного тока составляет 2,0 — 5,0, а для электромоторов переменного тока 2,3 — 3,5.
  • Класс нагревостойкости изоляционных материалов не менее F.
  • У кранового электропривода переменного тока в номинальном режиме ПВ составляет не менее 80 минут.
  • С целью получения большой перегрузочной способности по моменту добиваются высоких значений магнитного потока.
  • Отношение максимально допустимой частоты вращения к номинальному значению для электродвигателей постоянного тока составляет 3,5 — 4,9, а для машин переменного тока 2,5.

Эксплуатация кранового привода характеризуется следующими условиями эксплуатации:

  • Частые пуски, реверсы и торможения.
  • Регулирование частоты вращения в широком диапазоне значений.
  • Повышенная вибрация и тряски.
  • Повторно-кратковременный режим работы.
  • Воздействие высокой температуры, газа, пыли и пара.
  • Значительная перегрузка во время работы.

Общепромышленные электрические двигатели

Электродвигатели общепромышленного исполнения применяют для привода механизмов, которые не предъявляют особых требований к показателям КПД, энергосбережения, скольжению и пусковым характеристикам. Они характеризуются повторно-кратковременным режимом работы и изоляцией с классом нагревостойкости класса F. Наиболее популярными в этой категории являются асинхронные электрические двигатели марки АИР с короткозамкнутым ротором. Благодаря многочисленным достоинствам, этот тип электропривода с успехом применяется на всех производственных предприятиях. От продукции других торговых марок его отличает:

  • Простая конструкция с отсутствием подвижных контактов.
  • Низкая стоимость в сравнении с электрическими машинами других типов.
  • Высокая ремонтопригодность всех главных узлов и рабочих элементов.
  • Использование напряжения сети 380 В без дополнительных регуляторов или фильтров.
  • Монтаж двигателя осуществляется на лапах или фланцах, поэтому происходит в минимально короткий срок.

Электрические машины общепромышленного исполнения находят применение в сферах деятельности, где нет необходимости в высоких эксплуатационных параметрах: вентиляционные системы, насосные станции, станочное оборудование, компрессорные установки и др. Эксплуатация общепромышленных электродвигателей осуществляется в двух основных режимах: генераторный и двигательный. При этом в генераторном режиме электрические двигатели являются источником электроэнергии за счет преобразования механической энергии вращения вала. В двигательном режиме привод общепромышленного исполнения потребляет электроэнергию и превращает её в механическую энергию вращения вала.

Электрические двигатели с электромагнитным тормозом

Электрический привод с электромагнитным тормозом предназначен для эксплуатации в повторно-кратковременном или кратковременном режиме. Он разработан специально для механизмов, которые требуют форсированной остановки в строго регламентированное время. К таким механизмам относят: электрические тали, автоматизированные складские системы, обрабатывающие станки и др. Тормозной механизм, как правило, располагают со стороны противоположной валу двигателя. Он обеспечивает быстрое торможение электрического привода при отключении питания, а при повторной подаче напряжения растормаживает его.

Электрические машины со встроенным электромагнитным тормозом работают по следующему принципу:

  1. Электромагнитную катушку тормоза подключают последовательно к одной из фазных обмоток электродвигателя.
  2. Катушка получает постоянное напряжение посредством выпрямляющего устройства, которое располагают возле коробки с выводами или переменное напряжение непосредственно с обмотки электродвигателя.
  3. При отсутствии фазного напряжения катушка обесточивается, и якорь прочно зажимает блокировочный механизм.
  4. После восстановления электрического питания катушка подтягивает якорь, что позволяет валу двигателя свободно перемещаться.

В зависимости от способа монтажа электромоторы со встроенным электромагнитным тормозом изготавливают в следующих исполнениях:

  • С горизонтальным валом.
  • С вертикальным валом.

Благодаря своим преимуществам по времени остановки вала электродвигателя, этот тип электропривода обеспечивает надежную и безопасную эксплуатацию устройств с высокими требованиями к позиционированию или аварийной остановке.

Типы электродвигателей и их применение

Электричество и магнетизм

Электродвигатель представляет собой электромеханическое устройство, преобразующее электрическую энергию в механическую. В основном существует три типа электродвигателей: двигатели переменного тока (синхронные и асинхронные двигатели), двигатели постоянного тока (щеточные и бесщеточные) и двигатели специального назначения.

Каков принцип работы электродвигателя?

  • Когда проводник с током находится во внешнем магнитном поле перпендикулярно проводнику, на проводник действует сила, перпендикулярная ему самому и внешнему магнитному полю.
  • Правило правой руки   для силы, действующей на проводник, можно использовать для определения направления силы, действующей на проводник: если большой палец правой руки указывает в направлении тока в проводнике, а пальцы силы на проводник направлен наружу от ладони правой руки.
  • Аналоговые электрические счетчики (например, гальванометр, амперметр, вольтметр) работают по принципу двигателя. Электродвигатели являются важным применением принципа двигателя.

Конструкция

Электродвигатель состоит из постоянного внешнего магнита (статора) и проводящего амперметра (ротора), который может свободно вращаться внутри магнита возбуждения. Щетки и коммутатор (устроенный иначе, если на якорь подается переменный или постоянный ток) подключают якорь к внешнему источнику напряжения. Скорость вращения двигателя зависит от величины протекающего через него тока, числа витков на якоре, силы магнитного поля, магнитной проницаемости якоря и механической нагрузки, присоединенной к валу.

Типы электродвигателей

Обычно электродвигатели подразделяются на два типа (двигатели переменного тока и двигатели постоянного тока).
Сейчас!
Подробно узнаем о подтипах двигателей переменного тока и двигателей постоянного тока.

Типы двигателей переменного тока

Синхронные двигатели

Существует два типа синхронных двигателей.

  1. Обычный
  2. Супер

Асинхронные двигатели

  • Асинхронные двигатели
    • Беличья клетка
    • Slip-Ring
  • Commutator Motors
    • Series
    • Compensated
    • Shunt
    • Repulsion
    • Repulsion-start induction
    • Repulsion induction

Classification Based On Type of Current

  • Однофазный
  • Трехфазный

Классификация по скорости работы

  • Постоянная скорость.
  • Переменная скорость.
  • Регулируемая скорость.

Classification Based On Structural Features

  • Open
  • Enclosed
  • Semi-enclosed
  • Ventilated
  • Pipe-ventilated
  • Riveted frame-eye etc

Types of DC Motors

Most common DC motor типы:

  • Двигатели с постоянными магнитами
  • Коллекторный двигатель постоянного тока
  • Двигатель постоянного тока с параллельным возбуждением
  • Двигатель постоянного тока с последовательным возбуждением
  • DC compound motor
  • Cumulative compound
  • Differentially compound
  • Permanent magnet DC motor
  • Separately excited
  • Brushless DC Motor
  • Coreless or ironless DC motors
  • Printed armature or pancake DC motors
  • Universal motors

Двигатель постоянного тока

В общем, двигатели постоянного тока наиболее желательны в двух случаях. Во-первых, когда единственной доступной энергией является постоянный ток, что происходит в автомобилях и небольших устройствах с батарейным питанием. Другой случай, когда необходимо тщательно подкорректировать кривую крутящий момент-скорость. По мере развития технологий и манипуляций с двигателями переменного тока этот аспект становится менее важным, но исторически двигатель постоянного тока было легко настроить, что делает его подходящим для сервоприводов и тяговых приложений. С относительной скоростью высокого тока и низкого напряжения. Вариантами стандартного двигателя постоянного тока являются мощность и бесщеточный двигатель постоянного тока, который представляет собой очень сложное устройство по сравнению со стандартным двигателем. Двигатели постоянного тока используются в приложениях, требующих управления скоростью или положением, а также когда необходим высокий пусковой момент, поскольку двигатели переменного тока имеют трудности в этой области.

Смотрите также:

Двигатели с постоянными магнитами (ПМ)

  • Двигатели с постоянными магнитами (ПМ) отличаются от двигателей постоянного тока с возбуждением в одном отношении: двигатель с постоянными магнитами получает свое поле от постоянного магнита, тогда как в двигателе постоянного тока с возбуждением поле создается, когда ток возбуждения протекает через катушки возбуждения.
  • В двигателе с возбуждением поток остается постоянным только до тех пор, пока сохраняется постоянный ток возбуждения. Но, напротив, в двигателе с постоянными магнитами поток всегда постоянен.
  • Мощность любого двигателя определяется по формуле:

Где P ° = выходная мощность (в л.с.)

T = крутящий момент (в фунтах – футах) об/мин)

  • Таким образом, выходная мощность пропорциональна произведению крутящего момента и скорости.

Двигатели с постоянными магнитами можно разделить на 3 типа:

  1. Обычный двигатель с постоянными магнитами
  2. Двигатель с подвижной катушкой
  3. Бесщеточный двигатель постоянного тока

Обычный двигатель с постоянными магнитами

Обычные электродвигатели с постоянными магнитами включают узел ротора с полюсными постоянными магнитами, прикрепленными к втулке ротора и помещенными в немагнитную металлическую втулку. Традиционные узлы ротора содержат немагнитный материал, например, пластик, между каждым из постоянных магнитов для сохранения требуемой ориентации постоянных магнитов на втулке ротора. Посадка с натягом между металлической втулкой и постоянными магнитами плотно прилегает к ротору.

Ротор с подвижной катушкой

Двигатель с подвижной катушкой (MCM), хотя и является двигателем с постоянными магнитами, отличается от обычного двигателя с постоянными магнитами первичным якорем. MCM является результатом инженерного требования, согласно которому двигатели должны иметь высокий крутящий момент, малую инерцию ротора и малую электрическую постоянную времени. Эти требования выполняются в MCM.

Моментный двигатель

Можно предположить, что все двигатели создавали крутящий момент. Таким образом, все двигатели можно назвать моментными. Однако моментный двигатель отличается от большинства других двигателей постоянного тока тем, что он должен работать в течение длительного времени в остановленном или низкоскоростном состоянии. Не все двигатели постоянного тока предназначены для этой операции. Низкая ЭДС означает, что будет протекать большой ток якоря. Большинство обычных двигателей постоянного тока не предназначены для рассеивания тепла, создаваемого этим большим током. Но моментные двигатели предназначены для работы на низкой скорости или в остановленном состоянии в течение длительных периодов времени и используются в таких приложениях, как намотка или ленточные накопители. При намотке натяжение часто контролируется моментным двигателем.

Шаговый двигатель

  • Шаговый двигатель — это полностью цифровой двигатель.
  • После того, как ротор сделает шаг, он остановится до получения импульса.
  • Шаговый двигатель представляет собой электромеханическое устройство, которое преобразует электрические импульсы в дискретные механические движения.
  • Вал или шпиндель шагового двигателя вращается с дискретным приращением шага, когда на него подаются электрические импульсы управления в правильной последовательности.
  • Вращение двигателя имеет несколько прямых связей с этими приложенными входными импульсами.
  • Последовательность подаваемых импульсов напрямую связана с направлением вращения вала двигателя. Скорость вращения валов двигателя зависит от частоты входных импульсов, а длина вращения напрямую зависит от количества подаваемых входных импульсов.

Похожие темы

  • Разница между двигателем переменного тока и двигателем постоянного тока

Похожие статьи

Проверьте также

Закрыть

Электродвигатели: Руководство | Типы двигателей и соображения по выбору

При выборе двигателя необходимо учитывать множество факторов. Как крупнейший независимый дистрибьютор двигателей в штате Джорджия, компания Gainesville Industrial Electric (GIE) обладает знаниями и опытом, чтобы помочь вашей компании выбрать оптимальный промышленный электродвигатель для вашего уникального применения.

Чтобы облегчить процесс принятия решений, мы составили следующее руководство, в котором описывается, как работают двигатели, доступные типы, типичные промышленные применения и соображения по выбору.

Электродвигатели — все, что вам нужно знать

Электродвигатели — это электромеханические устройства, которые преобразуют электрическую энергию в механическую для питания оборудования. Эти устройства, работающие от накопленной электрической энергии или прямого электрического соединения, создают вращающиеся магнитные поля для создания вращающей силы. Затем сила используется для привода вала, который, в свою очередь, приводит в движение оборудование.

Различные типы электродвигателей

Хотя электродвигатели доступны в широком диапазоне конструкций с различными эксплуатационными характеристиками и функциями безопасности, их можно разделить на две большие категории: переменного тока (AC) и постоянного тока (DC).

В то время как источник питания является наиболее существенным различием между двумя типами двигателей, каждый из них также предлагает различные функциональные возможности и идеальное применение.

Двигатели переменного тока могут приводить в действие сложное и более хрупкое оборудование, тогда как двигатели постоянного тока обычно приводят в действие более тяжелое оборудование, которое требует более простого обслуживания и управления эксплуатацией. Двигатели переменного тока также могут обеспечивать более высокий крутящий момент, поэтому многие профессионалы отрасли считают их более мощными, чем двигатели постоянного тока.

Промышленное применение электродвигателей

Электродвигатели находят применение в различном промышленном оборудовании. Общие промышленные применения включают:

  • Компрессоры
  • Вентиляторы и воздуходувки
  • Тяжелое оборудование
  • Системы ОВКВ
  • Дробилки
  • Насосы
  • Токарные станки

Выбор электродвигателя, подходящего для ваших нужд

Выбор типа электродвигателя зависит от используемого оборудования. Например, двигатель должен быть выбран в соответствии с уровнями пусковой мощности подключенной машины и требованиями к рабочей выходной мощности. Неправильно подобранный двигатель может привести к значительному повреждению машины или к остановке и выходу из строя. Доступны многофазные двигатели и двигатели с различными уровнями напряжения, поэтому специалисты по двигателям могут легко подобрать промышленное оборудование с соответствующим двигателем. Нажмите здесь, чтобы получить предложение 

Типы электродвигателей

В Gainesville Industrial Electric мы предлагаем широкий выбор электродвигателей от Marathon, Teco-Westinghouse, Leeson, Lincoln, Century, GE, Baldor и Worldwide Electric. Каждый двигатель имеет уникальные функции, атрибуты и рекомендуемые области применения. Наш ассортимент продукции варьируется от дробных однофазных и трехфазных двигателей до больших двигателей среднего и высокого напряжения.


Однофазные двигатели общего назначения

Наш выбор однофазных двигателей общего назначения включает:

  • Двигатели с защитой от брызг
  • Полностью закрытые двигатели
  • Опасные условия, раздел 1, взрывозащищенные двигатели

Трехфазные электродвигатели общего назначения

Трехфазные электродвигатели имеют напряжение 208, 230, 460 или 575 В. Мы предлагаем следующие трехфазные электродвигатели общего назначения :

  • Двигатели с защитой от капель
  • Полностью закрытые двигатели
  • Двигатели для тяжелых условий эксплуатации

Трехфазные двигатели для опасных условий эксплуатации

Трехфазные двигатели для опасных условий эксплуатации спроектированы и изготовлены для работы в более тяжелых условиях, чем двигатели общего назначения. В то время как все эти двигатели подходят для зон категории 1, отдельные модели подходят для зон класса I и/или класса II с опасными материалами групп C, D, E, F и/или G.


Двигатели, предназначенные для промывки, окрашенные и из нержавеющей стали

Двигатели, предназначенные для мытья, окрашенные и из нержавеющей стали, предназначены для тяжелых и сложных условий, таких как пищевая промышленность, химическая промышленность и автомойки. Доступны однофазные и трехфазные модели мощностью до 20 л. с. Доступны модели с защитой от непогоды, с воздушным охлаждением и полностью закрытые модели. Дополнительные функции включают комплекты для переоборудования роликовых подшипников, комплекты WPII и энергосберегающие конструкции.


Электродвигатели насосов

Электродвигатели насосов имеют достаточную мощность для привода насоса без перегрузки. Они имеют специальные валы для использования с механическими уплотнениями (рамка JM) или набивкой (рамка JP). Области применения этих двигателей включают использование в центробежных или моноблочных насосах, струйных насосах и насосах для бассейнов.


Двигатели с инверторным и векторным режимом работы

Когда преобразователи частоты (VFD) управляют двигателями, они вызывают большие скачки напряжения. Двигатели с инверторным и векторным режимами работы могут выдерживать эти всплески и работать без перегрева.


Двигатели постоянного тока с постоянными магнитами

Двигатели постоянного тока используются для немедленного запуска и приложений, где быстрые изменения более важны, чем постепенные или плавные изменения. Двигатели постоянного тока с постоянными магнитами облегчают эти более простые операции запуска.


Двигатели воздушных компрессоров

Двигатели воздушных компрессоров генерируют мощность и высокий крутящий момент, необходимые для привода переносных и стационарных воздушных компрессоров, используемых в автомастерских и на производственных предприятиях.


Двигатели с тормозом

Двигатели с тормозом обычно представляют собой однодисковые двигатели переменного или постоянного тока, которые могут быстро останавливать приводное движение. Они спроектированы так, чтобы делать это безопасно, не вызывая сотрясений и не сокращая срок службы оборудования.


Двигатели градирен

Эти двигатели обеспечивают питание градирен. Они предназначены для работы в жарких и влажных суровых условиях, типичных для градирен. Доступны корпуса TEAO и TEFC, а также одно- и двухскоростные двигатели.


Сельскохозяйственные двигатели

Эти двигатели соответствуют требованиям по высокому крутящему моменту для сельскохозяйственного оборудования, такого как приводы шнеков и машины для перемешивания зерна.


Двигатели HVAC

Эти двигатели приводят в действие ряд оборудования HVAC, например:

  • Воздуходувки
  • Вентиляторы
  • Масляные горелки
  • Насосы
  • Вентиляторы

. Двигатели мгновенного реверсирования

Эти двигатели подходят для приложений, требующих мгновенного реверсирования движения, например, для открытия, закрытия и подъема шлагбаумов.

. Двигатели для дробилок

Эти двигатели для тяжелых условий эксплуатации имеют высокий пусковой и опрокидывающий крутящий момент. Измельчители и дробилки обычно выигрывают от этих специальных двигателей благодаря их прочной конструкции и высокопрочным компонентам.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *