Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Воздушный трансформатор: принцип работы и применение

Воздушный трансформатор представляет собой прибор для преобразования параметров электрического тока при отсутствии непосредственного контакта между составными частями. Другими словами, передача энергии производится беспроводным способом, через воздух.

Принцип действия

Поскольку воздушная среда при обычных условиях (нормальная влажность, отсутствие разнозаряженных ионов) – плохой проводник тока, то использование воздушных трансформаторов в качестве источников повышенного тока или напряжения малоэффективно. Иное дело – преобразование частоты переменного тока, где не требуются значительные энергетические затраты. Поэтому рассматриваемые устройства предназначаются для передачи токов разной частоты во время трансляции радиосигналов.

По схеме действия воздушный трансформатор – это устройство с условным воздушным «сердечником» – зазором, который разделяет первичную и вторичную обмотки. Для стабильности такого зазора проволочные обмотки наматываются на прямоугольную основу из конденсаторного картона или другого изолятора, ввиду чего основной токопроводящей средой является воздух.

Классификация разновидностей

Все виды воздушных трансформаторов сводятся к двум группам:

  • Импедансные, используемые для согласования значений падения напряжения у источника и потребителя нагрузки с целью обеспечения наиболее эффективной передачи энергии;
  • Изолирующие, которые применяются по соображениям безопасности для изоляции части оборудования от источника энергии.

В воздушных трансформаторах все токи считаются возбуждающими. Они индуцируют вторичное напряжение, значение которого сравнимо с общей индуктивностью электрической системы. Поэтому материал основы сердечника отличается наивысшими показателями магнитной проницаемости. К таким материалам относят также стекло, фарфор, слюда, некоторые виды пластмассы.

Однако только электроизоляционный картон ГОСТ 2824-86 отличается благоприятным сочетанием показателей прочности (электрической и механической), плотности и стойкости к перепадам влажности окружающей среды.

Устройство

В трансформаторах сердечник используется с целью ограничения магнитного потока и усиления связи между первичной и вторичной обмотками. Во всех конструкциях воздушных трансформаторов применение диамагнитных материалов обеспечивает отсутствие гистерезисных и вихревых потерь и искажений электромагнитного поля, поскольку это приводит к ухудшению качества радиосигнала.

В дополнение к бесшумной работе беспроводные трансформаторы отличаются ещё и малым весом. Именно поэтому этот тип трансформатора подходит для портативных, легких электронных и высокочастотных устройств.

По исполнению сердечника воздушные трансформаторы подразделяют на цилиндрические и тороидальные. Правильный выбор материала сердечника обеспечивает изделиям:

  1. Усиление магнитного поля.
  2. Высокий КПД устройства.
  3. Отсутствие потерь мощности при трансформации.
  4. Стабильность соотношения первичного напряжения ко вторичному.

Как изготовить и собрать воздушный трансформатор

Предварительно определяются с материалом сердечника. Используя электротехнический картон, необходимо, чтобы его рабочие характеристики соответствовали следующим нормам ГОСТ 2824-86:

  • Толщине, мм, не менее – 2,0…2,5.
  • Плотности, г/см3, не менее – 1,0…1,15.
  • Пределу прочности на растяжение, МПа, не менее – 105…110.
  • Пределу прочности на изгиб, МПа, не менее – 35…40.
  • Электрической прочности, кВ/мм, не менее – 11…12.
  • Относительной влажности, % – 8±2.

В случае использования других материалов их физико-механические характеристики должны быть не ниже перечисленных выше.

Катушки изолированной медной проволоки наматываются на пластиковую трубку или полый тор. Для принятой конфигурации сердечника его момент сопротивления принимают наибольшим при заданном внешнем размере поперечного сечения: это обеспечивает обмотке необходимую механическую поддержку.  Медная обмотка вокруг тора или цилиндра может, при необходимости, выноситься на разные точки, откуда и снимается вторичное напряжение.

Иногда, с целью поддержания в схеме настройки постоянного резонанса, к обмотке дополнительно подключается конденсатор.  Магнитный поток протекает через воздух, окружающий обмотку, и воздух, имеющийся внутри полого сердечника.

Для правильного согласования значений падения напряжения поверх основной медной обмотки наматывается еще и защитная обмотка. Ее соединяют с антенными приемниками и должным образом заземляют.

Тороидальные сердечники имеют преимущество перед цилиндрическими, поскольку влияние блуждающей связи здесь минимально. Воздушные трансформаторы такого исполнения используются в особо высокочастотных приложениях.

otransformatore.ru

8.4. Воздушный трансформатор

Основные понятия и определения

Трансформатор представляет собой устройство для преобразования величин переменных напряжений и токов Он состоит из двух или нескольких индуктивно связанных и, как правило, электрически изолированных друг от друга обмоток, находящихся на общем сердечнике. Если сердечник ферромагнитный, то свойства трансформатора будут нелинейными. Для простоты ограничимся рассмотрением двухобмоточного трансформатора без ферромагнитного сердечника (рис. 8.13).

Включение обмоток (на рис. 8.13 – согласное) принципиального значения не имеет. Такой трансформатор носит название воздушного или линейного, так как его характеристики линейны.

Обмотка, к которой подведено преобразуемое переменное напряжение, носит название первичной. Обмотка, к которой подключена нагрузка называйся вторичной. Соответственно все цепи, куда входят первичная и вторичная обмотки трансформатора, напряжения и токи, относящиеся к этим обмоткам, названы первичными и вторичными. С первичной стороны трансформатор функционирует как приемник, а с вторичной – как генератор.

Уравнение воздушного трансформатора. Векторная диаграмма

При синусоидальном изменении входного напряжения u1 токи i1, i2 и напряжение u

2 также будут синусоидальными, и уравнения по второму закону Кирхгофа для первичной и вторичной цепей трансформатора можно записать в комплексной форме.

Предполагается, что нагрузка имеет индуктивный характер.

На рис. 8.14 приведена векторная диаграмма токов и напряжений воздушного трансформатора. Построение диаграммы осуществлено сначала для вторичной цепи. По полученному вектору определено положение вектора , отстающего от него на 90°. Последовательность построения векторов обозначена цифрами.

Входное сопротивление трансформатора. Схема замещения

Введём обозначения

Тогда уравнения трансформатора примут вид

Выразив из второго уравнения ток и подставив его в первое, получим

откуда комплексное входное сопротивление трансформатора

где носят название вносимых (из вторичной цепи в первичную) активного и реактивного сопротивлений. Из анализа выражения для входного сопротивления следует, что с первичной стороны трансформатор может рассматриваться как двухполюсник, схема которого приведена на рис. 8.15.

Вносимое активное сопротивление всегда больше нуля. В нём происходит поглощение энергии, передаваемой во вторичную цепь. Характер вносимого реактивного сопротивления противоположен характеру x2. Представим рассмотренные уравнения трансформатора в следующем виде:

Написанная система уравнений справедлива для схемы, представленной на рис. 8.16.

Так как токи ии напряженияите же самые, что и в трансформаторе, эта схема является эквивалентной схемой замещения последнего. При равных значенияхL1 и L2 разности L1М и L2 – М всегда положительны, так как k < 1. Если значения L1 и L2 различны, одна из этих разностей может оказаться отрицательной, и схема замещения может быть реализована лишь на фиксированной частоте, на которой отрицательная индуктивность реализуется ёмкостью.

Идеальный трансформатор

Рассмотрим никоторые особенности трансформатора в идеализированных случаях. Трансформатор, у которого отсутствуют потери энергии и при любой нагрузке отношения первичного и вторичного напряжении и вторичного и первичного токов одинаковы и определяются коэффициентом тpaнсформации , называется идеальным.

Реально такого трансформатора не существует. На практике же к нему приближается трансформатор, у которого r1 = r2 = 0, и k = 1. Именно таким образом следует выбирать параметры реального трансформатора, чтобы его свойства были близки к свойствам идеального. Помимо способности изменять токи и напряжения в определенное число раз независимо от величины сопротивления нагрузки с помощью идеального трансформатора можно изменять в определённое число раз и величину этого сопротивления

Таким образом, если необходимо изменить сопротивление какой-либо нагрузки без изменения самой нагрузки, необходимо использовать промежуточный трансформатор, близкий по своим свойствам к идеальному.

studfile.net

Воздушный трансформатор


Всем привет!
Сегодня мы рассмотрим один интересный,но достаточно просто способ передачи электрической энергии,а именно мы будем делать-маломощный, воздушный трансформатор!

Нам понадобится:
1. Световой диод
2. Медная проволока (~ 0.2мм )
3. Транзистор ( 2N3904 или KT315 )
4. Источник питания (Батарейка или Блок питания)

Это всё что нам понадобится!


Кстати я буду использовать транзистор 2N3904.


А вот и сама схема…

Давайте начинать! Проволоку необходимо намотать на окружность, радиусом примерно 4 см, необходимо намотать 90 витков, эта катушка для светодиода, просто подсоединяем первый провод катушки к плюсу, а второй провод к минусу, полярность здесь не важна!

Теперь наматываем основную катушку, с тем же диаметром! Вначале наматываем 60 витков, а потом 30 витков, как показанно на схеме!

Дальше паяем всё по схеме, и вот что получилось…



ВНИМАНИЕ!!!
Для того чтобы схема заработала,необходимо докаснуться металическим предметом,до среднего контакта,это если у вас транзистор как у меня,если вы используете КТ315,то докаснитесь базы транзистора (воспользуйтесь документацией).

Вот такая интересная штуковина получилась, если по эксперементировать с количеством витков и их радиусом, то скорей всего можно добиться большей дальности, т.к этот вариант передаёт энергию примерно на 10 см.

Я надеюсь вам понравилось, Спасибо за внимание!

( jake ~ ).

Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

Масляные трансформаторы – что это такое, устройство и принцип работы

Масляный трансформатор – электрический агрегат, состоящий из двух или более обмоток. Основная задача этого устройства – преобразование электрического тока. Предельная частота в этом случае не изменяется. Процесс преобразования происходит электромагнитной индукцией.

Трансформаторы – вторичный источник питания. Они обеспечивают подачу энергии от электросети. Масляный тип трансформатора имеет ряд отличий. Их выпускают различных размеров, что делает возможным их размещение в любом помещении и на открытом пространстве. Корпус имеет защиту от негативного влияния внешней среды.

В статье мы рассмотрим, как сделать статичный повышающий трансформатор своими руками для монтажа в бытовую электросеть. В качестве бонуса читатель найдет интересный видеоматериал и обучающее пособие Л.С. Герасимова, А.И. Майорец “Обмотки и изоляция силовых масляных трансформаторов”.

Масляный трансформатор.

Принцип работы

Силовой трансформатор с заливкой масла в своей работе использует маслорасширитель, который компенсирует нагревание масла в процессе эксплуатации. Самой главной частью является воздухоочиститель, который способствует защите от попадания инородных тел в бачок с маслом. Также такой тип трансформатора обязательно должен иметь термометр, определяющий уровень нагрева жидкости. Эти устройства имеют отличные показатели надёжности, что является главным свойством в энергосети.

Принцип работы масляного трансформатора.

Преимуществом масляных трансформаторов перед сухими, является высокая степень защиты внешней обмотки, так же они имеют меньшее реактивное сопротивление.

Эти и многие другие свойства, обеспечивают высокие показатели надёжности, так же они позволяют существенно уменьшить надзор за ними. При хороших условиях трансформаторы такого типа могут прослужить порядка двадцати лет и не разу не требовать технического обслуживания, что безусловно является существенным плюсом в решение о покупке.

По статистике самой часто встречаемой поломкой трансформатора силового масляного типа является перегрев бочка с жидкостью, что вызывает разгерметизацию корпуса трансформатора. Но стоит заметить, что по сравнению с сухими трансформаторами, эту поломку будет не так уж и сложно устранить в сервисном центре.

Силовые трансформаторы масляного типа пользуются огромной популярностью во всём мире. Связано это с их не очень сложным устройством, а чем проще устройство, тем сложнее сломаться. Так же высокая износоустойчивость достигается благодаря погружению обмотки в техническое масло, это обеспечивает высокую степень защиты от внешних факторов.

Критерии выбора оборудования

Существует множество различных аспектов, которые должны быть учтены при использовании силового оборудования. Так на выбор модели трансформатора влияют условия его потенциальной эксплуатации и в частности:

  • сфера применения;
  • место установки;
  • суммарная мощность потребителей.

Рассмотрим специфику выбора с учетом каждого из них. Одним из главных параметров является сфера применения. Ориентируясь на нее нужно определиться с такими характеристиками, как:

  • мощность, она должна соответствовать предполагаемым нагрузкам и позволять агрегату справляться с перегрузками;
  • возможность эксплуатации прибора при росте нагрузки;
  • стоимость и срок службы.

Однако выбирая трансформатор нужно уметь правильно определять его основные параметры:

  • первичное и вторичное напряжение;
  • частоту тока;
  • фазность;
  • нагрузку;
  • способ расположения;
  • особенности размещения.

Промышленный масляный трансформатор.

Но кроме всех, перечисленных характеристик должны учитываться и функционал агрегата, а также его непосредственное назначение. Если предполагается подключение трансформатора к цепи измерительных приборов, то используют соответствующий вид устройства.

Для защиты от скачков в сети выбирают агрегат, не отличающийся высокой точностью, но обладающий необходимыми функциями. Наибольшей популярностью в последнее время пользуются сухие трансформаторы, они часто используются вместо масляных и имеют большое количество плюсов.

Интересно почитать: как собрать катушку тесла самостоятельно.

Конструкция устройства

Силовые трансформаторы предназначены для преобразования (трансформирования) переменного тока одного напряжения в переменный ток другого напряжения — более низкого или более высокого. Трансформаторы, понижающие напряжение, называют понижающими, а повышающие напряжение — повышающими.

Трансформаторы изготовляют двухобмоточные и трехобмоточные. Последние кроме обмотки НН и ВН имеют обмотку СН (среднего напряжения). Трехобмоточный силовой трансформатор позволяет снабжать потребителей электроэнергией разных напряжений.

Схема устройства масляного трансформатора.

Обмотка, включенная в сеть источника электроэнергии, называется первичной, а обмотка, к которой присоединены электроприемники,— вторичной. В рассматриваемых распределительных устройствах и подстанциях промышленных предприятий применяют трехфазные двухобмоточные понижающие трансформаторы, преобразующие напряжение 6 и 10 кВ в 0,23 и 0,4 кВ.

В зависимости от изолирующей и охлаждающей среды различают трансформаторы масляные ТМ и сухие ТС. В масляных основной изолирующей и охлаждающей средой являются трансформаторные масла, в сухих — воздух или твердый диэлектрик.

В специальных случаях применяют трансформаторы с заполнением баков негорючей жидкостью — совтолом. Основой конструкции трансформатора служит активная часть, состоящая из магнитопровода с расположенными на нем обмотками низшего напряжения 3 и высшего напряжения 2 отводов и переключающего устройства.

Магнитопровод, набранный из отдельных тонких листов специальной трансформаторной стали, изолированных друг от друга покрытием, состоит из стержней, верхнего и нижнего ярма. Такая конструкция способствует уменьшению потерь на нагрев от перемагничивания (гистерезис) и вихревых токов.

Соединительные провода, идущие от концов обмоток и их ответвлений, предназначенные для регулирования напряжения, называют отводами, которые изготовляют из неизолированных медных проводов или проводов, изолированных кабельной бумагой либо гетинаксовой трубкой.

Интересный материал для ознакомления: полезная информация о трансформаторах тока.

Переключающие устройства

Служат для ступенчатого изменения напряжения в определенных пределах, поддерживания номинального напряжения на зажимах вторичной обмотки при изменении напряжения на первичной или вторичной обмотке. С этой целью обмотки ВН трансформаторов снабжают регулировочными ответвлениями, которые подсоединяют к переключателям.

Необходимость регулирования вызвана тем, что в электросистемах возможны различные отклонения от нормального режима электроснабжения, приводящие к неэкономичной работе приемников, преждевременному износу и сокращению сроков их службы.

Особенно чувствительны к повышению напряжения электролампы, радиолампы и лампы телевизоров: срок их службы резко сокращается при систематическом увеличении напряжения. В трансформаторах могут быть два вида переключений ответвлений: под нагрузкой — РПН (регулирование под нагрузкой) и без нагрузки после отключения трансформатора — ПБВ (переключение без возбуждения). С помощью ПБВ и РПН можно поддерживать напряжение, близким к номинальному во вторичных обмотках трансформаторов.

Переключение осуществляют изменением числа витков с помощью регулировочных ответвлений обмоток, т. е. изменением коэффициента трансформации, который показывает, во сколько раз напряжение обмотки ВН больше напряжения обмотки НН или во сколько раз число витков обмотки ВН больше числа витков обмотки НН. Пределы регулирования вторичных напряжений для разных трансформаторов различны: на ±10% 12 ступенями по 1,67% или 16 ступенями по 1,25% с помощью РПН; на ±5% четырьмя ступенями по 2,5% с помощью ПБВ.

Устройство и назначение бака 

В  него  погружена активная часть, представляет собой стальной резервуар овальной формы, заполненный трансформаторным маслом. Масло, являясь охлаждающей средой, отводит теплоту, выделяющуюся в обмотках и магнитопроводе, и отдает ее в окружающую среду через стенки и крышку бака. Кроме охлаждения активной части трансформатора масло повышает степень изоляции между токоведущими частями и заземленным баком.

Для увеличения поверхности охлаждения трансформатора баки изготовляют ребристыми, вваривают в них трубы или снабжают съемными радиаторами (только у трансформаторов мощностью до 25 кВ-А стенки бака гладкие). Радиаторы присоединяют к стенкам бака патрубками со специальными радиаторными кранами. У верхнего торца бака к его стенкам приваривают раму из угловой или полосовой стали, к которой крепят крышку на прокладках из маслоупорной резины.

В нижней части бака всех типов трансформаторов имеется кран для взятия пробы и слива масла, а в его днище (в трансформаторах мощностью выше 100 кВ-А) — пробка для спуска осадков после слива масла через кран. Второй кран устанавливают на крышке бака, через который заливают в него масло. Оба крана служат одновременно для присоединения к ним маслоочистительных аппаратов.

К дну баков трансформаторов массой выше 800 кг приваривают тележку с поворотными катками, конструкция крепления которых позволяет изменять направление передвижения трансформаторов с поперечного на продольное. Для подъема трансформатора на баке имеется четыре кольца-рыма.

Активная часть поднимается за скобы в верхних консолях магнитопровода. На крышке бака размещены вводы, расширитель и защитные устройства (выхлопная предохранительная труба, реле давления, газовое реле, пробивной предохранитель). К стенкам бака приваривают подъемные крюки, прикрепляют манометрический сигнализатор (у трансформаторов мощностью свыше 1000 кВ- А) и устанавливают фильтры.

Схема работы трансформатора.

Расширитель

Расширитель имеет цилиндрическую форму, закрепляется на кронштейне, установленном на крышке 6 трансформатора, и сообщается с баком трансформатора трубопроводом, не выступающим ниже внутренней поверхности крышки трансформатора и заканчивающимся внутри расширителя выше его дна во избежание попадания осадков масла в бак 1. Внутренняя поверхность расширителя имеет защитное покрытие, предохраняющее масло от соприкосновения с металлической поверхностью и расширитель от коррозии. В нижней части расширителя имеется пробка для слива масла из него.

Объем расширителя определяют так, чтобы уровень масла оставался в его пределах как летом при 35 °С и полной нагрузке трансформатора, так и зимой при минимальной температуре масла и отключенном трансформаторе. Обычно объем расширителя составляет 11 —12% объема масла в баке трансформатора.

Для наблюдения за уровнем масла на боковой стенке расширителя устанавливают маслоуказатель, выполненный в виде стеклянной трубки в металлической оправе. Емкость расширителя должна обеспечивать постоянное наличие в нем масла при всех режимах работы трансформатора от отключенного состояния до номинальной нагрузки и при колебаниях температуры окружающего воздуха, причем при допустимых перегрузках масло не должно выливаться.

Масляный трансформатор.

В герметичных масляных трансформаторах и трансформаторах с жидким негорючим диэлектриком поверхность масла защищают сухим азотом, а в заполненных совтолом -10 — сухим воздухом. Негерметичные масляные трансформаторы мощностью 160 кВ- А и более, в которых масло в расширителе соприкасается с окружающим воздухом, имеют термосифонный или адсорбционный фильтр, а трансформаторы мощностью 1 мВ • А и более с естественным масляным охлаждением и азотной подушкой — термосифонный фильтр (кроме трансформаторов с жидким негорючим диэлектриком).

Масляные трансформаторы мощностью 1 мВ * А и более с расширителем снабжают защитным устройством, предупреждающим повреждение бака при внезапном повышении внутреннего давления более 50 к Па. К защитным устройствам относят выхлопную трубу со стеклянной диафрагмой и реле давления. Масляные трансформаторы и трансформаторы с жидким диэлектриком с азотной подушкой без расширителя имеют реле давления, срабатывающее при повышении внутреннего давления более 75 кПа.

Нижний конец выхлопной трубы соединяют с крышкой бака, а на верхний ее конец устанавливают тонкую стеклянную мембрану (от 2,5 до 4 мм) диаметром 150, 200 и 250 мм, которая разрушается при определенном давлении и дает выход газу и маслу наружу раньше, чем произойдет деформация бака.

Реле давления размещают на внутренней стороне крышки трансформатора. Основными его элементами являются ударный механизм и стеклянная диафрагма. При достижении определенного давления в баке механизм срабатывает, разбивает диафрагму и обеспечивает свободный выход газам.

Трансформаторы мощностью 1 мВ * А и более, имеющие расширитель, снабжают газовым реле, которое реагирует на повреждения внутри бака трансформатора (электрический пробой изоляции, витковое замыкание, местный нагрев магнитопровода), сопровождающиеся выделением газа или резким увеличением скорости перетекания масла из бака в расширитель. Основные характеристики силовых масляных трансформаторов представлены в таблице ниже.

Основные характеристики силовых масляных трансформаторов.

Выделение газообразных продуктов происходит в результате разложения масла и других изоляционных материалов под действием высокой температуры, возникающей в месте повреждения. На этом явлении основана работа газовой защиты трансформатора от внутренних повреждений, сопровождающихся выделением газов при их утечке, утечке масла и попадании воздуха в бак.

Основной элемент этой защиты — газовое реле, устанавливаемое обычно на трубопроводе, который соединяет расширитель с баком, имеющим наклон к горизонтали от 2 до 4 В газовом реле имеются две пары контактов для работы на сигнал или отключение.

Здесь можно почитать об устройстве силового трансформатора и сфере его применения.

Защита трансформатора

Пробивные предохранители служат для защиты от пробоя обмоток ВН на обмотки НН. Устанавливают их на крышке бака и подсоединяют к нулевому вводу НН, а при напряжении 690 В — к линейному вводу. При пробое изоляции между обмотками ВН и НН промежуток между контактами, в котором проложены тонкие слюдяные пластины с отверстиями, пробивается и вторичная обмотка оказывается соединенной с землей.

Заземление масляного трансформатора.

Для заземления трансформаторов служит специальный заземляющий контакт с резьбой не менее Ml2, расположенный в доступном месте нижней части бака со стороны НН и обозначенный четкой несмывающейся надписью «Земля» или знаком заземления.

Поверхность заземляющего контакта должна быть гладкой и зачищенной; заземление осуществляют подсоединением стальной шины сечением не менее 40><4 мм.

Для измерения температуры масла на трансформаторах монтируют ртутные термометры со шкалой от 0 до 150° С или термометрические сигнализаторы ТС со шкалой от 0 до 100° С. Последние снабжены двумя передвижными контактами, которые можно установить на любую температуру в пределах шкалы.

Первый контакт, будучи включенным в сигнальную цепь, при определенной температуре масла дает сигнал; в случае дальнейшего повышения температуры масла второй контакт, соединенный с реле, отключает трансформатор. На трансформаторах мощностью 6300 кВ * А и выше установлены термометры сопротивления.

Для сушки и очистки увлажненного и загрязненного воздуха, поступающего в расширитель при температурных колебаниях масла, все трансформаторы снабжены воздухоочистительным фильтром — воздухоосушителем, который представляет собой цилиндр, заполненный силикагелем и размещенный на дыхательной трубке расширителя.

Заключение

В данной статье были рассмотрены основные функции масляных  трансформаторов и их устройство. Больше информации о них можно узнать в учебном пособии Л.С. Герасимова, А.И._Майорец “Обмотки и изоляция силовых масляных трансформаторов”.

Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов. Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vк.coм/еlеctroinfonеt. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

 

electroinfo.net

Почему воздушные зазоры в трансформаторе делают минимальными

Технические условия некоторых типов трансформаторов предусматривают наличие в сердечнике немагнитного зазора. Каково значение этого пространства и почему воздушные зазоры в трансформаторе делают минимальными?

Прежде чем перейти к главному вопросу, проведем краткий экскурс по описанию, характеристикам, видам и предназначению рассматриваемого прибора.

Описание и предназначение трансформатора

Итак, трансформатор – это замкнутый магнитопровод, в составе которого две или более электрически автономные обмотки. Самые распространенные – однофазные модели с двумя обмотками. В основе действия прибора стоит эффект электромагнитной индукции.

Чтобы снизить потери на магнитный гистерезис, магнитопровод делают из трансформаторной стали(с узкой петлей магнитности).  Снижение вихревых потерь достигается за счет примеси кремния в составе и конструкции из раздельных пластов.

Первичной обмоткой считается та, на которую идет подача энергии. Другие – вторичны. При подключении источника первичная обмотка производит переменный магнитный ток. Магнитопровод переносит нагрузку на слои следующей обмотки, и в цепи появляется электричество.

Высокочастотные устройства с малой мощностью могут в качестве магнитопровода использовать воздушную среду.

Предназначение, применение

Трансформаторы служат преобразователями электрической энергии, меняя показатели переменного напряжения. Они могут работать как автономные аппараты или состоять частью электротехнического оборудования.

Очень часто замкнутая электромагнитная установка применяется для передачи электроэнергии на большие дистанции, для повышения напряжения, идущего от источников переменного тока.Сама электростанция производит напряжение от 220 до 660V. Магнитопровод способен преобразовать его до тысяч киловольт. Когда напряжение высокое, потери по проводам гораздо ниже, и можно передавать энергию через ЛЭП меньшего сечения. Это приводит к существенной экономии ресурса.

Виды трансформаторов

В основе строения любого аппарата находится сердечник. Он может состоять из пластин или из лент (разъемный или неразъемный). Устройство же сердечника может различаться.

Виды охлаждения

Любое электротехническое оборудование предусматривает систему охлаждения. В трансформаторах эта функция бывает следующих типов:

  • Естественное масляное охлаждение;
  • Масляное плюс воздушное;
  • Масляное с силовой циркуляцией;
  • Чисто воздушное.

Масляный вид охлаждения – самый экономичный и оптимальный для наружного монтажа. Правда, использование такого оборудования требует наличие маслоприемников.

Иногда в качестве охлаждающей жидкости используют негорючие материалы (диэлектрики). Такие аппараты защищены от воспламенения, но при этом очень токсичны.

В общественных зданиях устанавливают пожаробезопасные  и нетоксичные сухие трансформаторы. Единственный минус этого вида – шумная работа, поэтому их ставят в изолированных помещениях.

Решающим фактором для выбора метода охлаждения является номинальная мощность оборудования. Чем выше этот параметр, тем интенсивнее его необходимо охлаждать

Классификация по применению

Разные типы трансформаторов могут иметь различное применение. Так, низкочастотные силовые аппараты работают на снижение напряжения до стандартного. Их используют в сетях предприятий и населенных пунктов.

Строение автотрансформаторов отлично тем, что обмотки имеют электрическое сообщение друг с другом. За счет этой связи производятся  разные величины напряжения. Применяют такую схему в автоматике блоков управления, в высоковольтных коммуникациях.

Если прибор уменьшает значение тока, его называют трансформатором тока. В них вторичные обмотки подсоединяются к измерительным или защитным приборам.

В высокочастотных импульсных трансформаторах сердечник изготовлен из феррита. Компактные габариты и эффективность обеспечили широкую сферу применения – от лампочек до мощных инверторов.

Конструктивные особенности разных типов трансформаторов

Конструкции замкнутых магнитопроводных приборов бывают трех видов:

  • Броневые. Эта схема строения подходит для крупного и высоковольтного оборудования. Минимальная мощность – 0,5ВА. Конструкция броневого трансформатора представляет собой ярмо, которое обеспечивает защиту стержня.
  • Стержневые. Здесь катушки насажены на сердечник в виде стрежня. Сфера применения данной конструкции – небольшие трансформаторы сухого типа, так как обмотки плохо защищены от коротких замыканий.
  • Тороидальные. Сердечник в форме кольца и ленточная неразъемная намотка дают снижение сопротивления при росте КПД. Удобное в монтаже устройство применяется гораздо шире других видов.

Считается, что тороидальный тип гораздо лучше в работе. В действительности, гораздо важнее качество производства оборудования.

Для чего в сердечнике нужен воздушный зазор?

Когда по первичной обмотке низкочастотного прибора проходит не только переменный, но и постоянный ток, это уменьшает показатель индуктивности катушки. Для предотвращения таких изменений делается воздушный зазор в трансформаторе.

Величина зазора зависит от следующих показателей:

  • Габариты сердечника;
  • Индуктивность обмотки;
  • Сила постоянного тока, идущего по катушке.

Бывает, что зазор создается ненамеренно во время сборки магнитопроводов трансформатора. Но в некоторых механизмах он требуется по принципу действия.

Применение воздушного зазора несущественно влияет на индуктивность. Немагнитные промежутки на сердечнике увеличивают магнитное сопротивление. При этом амплитудное значение магнитного тока постоянно (если не меняется амплитуда напряжения).

Есть устройства, в принципе не подразумевающие зазоров. Такая технология применяется в ленточных неразъемных сердечниках. Примером служит тороидальный трансформатор. Причина, почему в них не делают промежутков, связана со строением сердечника.

Форма тора минимизирует размер магнитной цепи, а обмотка имеет сравнительно немного витков и малое сопротивление. Как результат, тороидальное оборудование имеет малые потоки рассеяния и устойчиво к перегрузкам. Зато устройство подвержено негативному влиянию высокого напряжения и подмагничиванию постоянным током. А причина как раз в отсутствии воздушного зазора в магнитопроводе трансформатора.

Величина зазора в магнитопроводе

Параметры работы катушки зависимы  от длины немагнитного промежутка в обмотке. Как именно?

Известно, что длина зазора не влияет на показатели магнитного потока. Однако удлинение немагнитного промежутка вызывает рост магнитного сопротивления. А поскольку магнитный поток имеет постоянное значение, происходит увеличение тока.

Итак, можно сделать вывод, что разные размеры зазора в сердечнике вызывают протекание токов различной величины. А магнитный поток при этом не изменяется.

Вот почему воздушные зазоры в трансформаторе делают минимальными.  Чтобы уменьшить величину тока в обмотке, нужно уменьшать длину немагнитного промежутка.

Если в техусловиях оборудования не указана определенная величина, зазору придают минимальное значение. Таким методом снижают показатели намагничивающуюся составляющую тока холостого хода.

otransformatore.ru

Трансформатор воздушный – Энциклопедия по машиностроению XXL

Охлаждение трансформатора. …….. Воздушное  [c.170]

Охлаждение выпрямительного блока, собранного из кремниевых вентилей по трехфазной мостовой схеме, и понижающего трансформатора — воздушное, принудительное.  [c.116]

Все генераторы выполняются с самовозбуждением. Большинство имеет двухконтурную схему, что обеспечивает стабильность выходной частоты и хорошие регулировочные возможности. В состав генератора входит повышающий анодный трансформатор, блок выпрямителя, генераторный блок II блок контуров. Выходной воздушный трансформатор встраивается в корпус генератора или выносится из него. Генераторы имеют системы охлаждения, защиты II управления.  [c.170]


При частотах f 66 кГц используются ламповые генераторы и воздушные трансформаторы, имеющие более низкий КПД. Поэтому при закалке на глубину >2 мм безусловно следует использовать средние частоты.  [c.176]

Сварка с контактным подводом. Контактный подвод тока осуществляется с помощью скользящих контактов с бронзовыми или вольфрамовыми наконечниками или же вращающихся роликов (дисков), прижимаемых с усилием 1000—10000 Н к кромкам заготовки. По мере износа контактные наконечники заменяются, а ролики перетачиваются. Подвод тока к роликам осуществляется через специальный воздушный трансформатор с вращающейся вторичной обмоткой. Скользящие контакты могут устанавливаться в любом положении по отношению друг к другу, что делает этот вид токоподвода основным при спиральной сварке труб, сварке несимметричных профилей и т. д. Роликовый подвод обладает большим сроком службы и используется для труб диаметром 159— 219 мм.  [c.215]

При закалке горизонтально расположенных поверхностей для предупреждения попадания отраженных струи воды в зону нагрева параллельно с индуктирующим проводом на некотором расстоянии от магнитопровода устанавливается трубка воздушного дутья. Чтобы индуктор мог свободно опираться роликами на закаливаемую поверхность, он соединяется с понижающим трансформатором гибкими шинами. Гибкие шины представляют собой плоский набор круглых многожильных медных проводников диаметром 6—8 мм длиной 100—200 мм. Концы этих проводников припаиваются к медным контактным колодкам, одна из которых присоединяется к индуктору, вторая — к вторичной обмотке трансформатора. Для охлаждения эти проводники или заключаются в резиновые шланги, или просто поливаются водой. Вода должна отводиться в сторону, чтобы она не попала на нагреваемую поверхность. Иногда, чтобы избежать гибких шин, в которых теряется значительная доля мощности, индуктор прямо подсоединяют к трансформатору. При этом трансформатор не имеет отдельного крепления к конструкции. Он как бы едет по закаливаемой поверхности на индукторе.  [c.131]

Анодная проволока была закреплена иа опорах при помощи обычных изоляторов из небьющегося стекла, которые применяются при сооружении воздушных линий электропередач. Анодный кабель был пропущен через изолирующие проводки в крыше, смонтированные в муфтах, и подведен к защитной установке. На торцовой стороне немного выше днища через такие же муфты были введены электроды сравнения. В качестве защитной установки был использован преобразователь, бесступенчато регулируемый при помощи установочного трансформатора (О—12 В, О—2,5 А) с подключенным за ним фильтром для сглаживания тока. Минусовой полюс защитной установки был подсоединен к резервуару снаружи при помощи приваренной планки.  [c.386]


Грозовые разряды, вызывающие атмосферные перенапряжения, являются сложными электрическими процессами, развивающимися в облаках, насыщенных водяными парами. Наиболее уязвимы к воздействию разрядов молнии протяженные высоковольтные воздушные линии напряжением 6 и 10 кв, работающие в режиме с изолированной нейтралью, питающие станции катодной защиты через понижающие трансформаторы типов ОМ, ОМС и др.  [c.190]

Если от линейного трансформатора типа ОМ и ОМС подается питание к станции катодной защиты посредством воздушной линии, то в воздушную силовую цепь напряжением 110, 127 или 220 в должны быть включены низковольтные вентильные разрядники типа РВН-250 (табл. 100) и дополнительный предохранитель или автоматический выключатель многократного действия тина АВМ. При этом сумма номинальных токов плавких вставок предохранителей (или выключателей) в обеих силовых цепях должна быть равна номинальному току силового трансформатора (рис. 52, а, б).  [c.192]

Заслуживают внимания и небесные ветроэлектрические станции. В одном из советских проектов так называемой эоловой электростанции (т. е. приводимой в действие атмосферными течениями), которую предлагается построить на высоте 8—10 км (как установлено, здесь существуют непрерывные воздушные потоки со скоростью 20—30 м/с), расчетная мощность составляет 1,5—2 МВт. Согласно проекту, ветродвигатели и генераторы закрепляются на привязном аэростате, имеющем форму обтекаемого цилиндра длиной 225 м, диаметром 50 м и грузоподъемностью 30 т. Оболочка аэростата состоит из трех слоев стеклопластика, а пространство между ними заполнено пенопластом. Такая конструкция достаточно прочна и способна противостоять солнечному излучению и атмосферным воздействиям. Аэростат связан с поверхностью Земли несколькими прочными кабелями, которые одновременно служат для отбора тока высокого напряжения. На наземной станции находятся трансформатор, распределительная и прочая аппаратура, в том числе для управления аэростатом. Одновременно аэростат можно использовать как метеостанцию, а также ра-дио- и телевизионный ретранслятор. Стоимость такой станции, согласно оценкам, составит лишь пятую часть тех затрат, которые требуются для электроснабжения районов с малой плотностью населения от обычных электростанций.  [c.21]

В индуктивном преобразователе (рис. 36, б) движение иглы 2 по неровностям, ее подъем на выступы и опускание во впадины вызывают соответствующее перемещение якоря 6 в индуктивной ощупывающей головке, а вместе с тем изменение воздушных зазоров между якорем 6 и двумя расположенными по обеим сторонам оси его качания катушками 4. К одной из катушек якорь приближается, что увеличивает ее индуктивность, а от другой он в то же время удаляется, что уменьшает ее индуктивность. Катушки и две половины первичной обмотки дифференциального входного трансформатора образуют мост, питание которого осуществляется от генератора 8 звуковой частоты ( 5 кГц). Одновременное, но противоположное изменение индуктивностей катушек соответственно изменяет напряжение в измерительной диагонали моста, которое связано с величиной перемещения h ощупывающей иглы при ее механических колебаниях соотношением  [c.130]

В наиболее распространенном индуктивном приборе преобразователь является параметрическим механические колебания иглы вызывают изменение индуктивного сопротивления катушек. Преобразование осуществляется следующим образом. Колебания иглы 1 (см. рис. 36, 6) приводят в колебательное движение якорь 6, в результате чего изменяется воздушный зазор между якорем и Ш-образным сердечником 7, на котором имеются две катушки индуктивности 4. Катушки и две половины первичной обмотки дифференциального входного трансформатора образуют измерительный мост. Механические колебания иглы вызывают изменение напряжения на вторичной обмотке дифференциального трансформатора. Питание моста осуществляется от генератора ГЧН (см. рис. 37) звуковой несущей частоты ( 5 кГц).  [c.132]

Для осуществления указанных мероприятий, по данным ряда организаций, потребуется в ближайшие 5—7 лет увеличить установленную мощность батарей конденсаторов на 8—10 млн. квар, реконструировать 35—40 /о воздушных сетей и 3—5% кабельных линий, а также провести замену трансформаторов общей мощностью около  [c.195]

В среднем положении якоря напряжение на первичной обмотке трансформатора управления равно нулю. При перемещении пальца 5 вверх или вниз изменяется воздушный зазор между якорем и сердечниками катушек, а вместе с этим меняется и индуктивное сопротивление сердечников 3 w 4. На обмотке трансформатора управления возникает напряжение, пропорциональное величине перемещения якоря, а фаза определяется направлением смещения якоря от среднего положения. Сигнал со вторичной обмотки управляющего трансформатора подается на вход электронного анализатора, соединенного с фазочувствительными двухтактными электронными усилителями. От электронных усилителей сигналы поступают к электромагнитным усилителям, а оттуда к электродвигателям следящей и задающей подач. Схемы усилителей обеспечивают регулирование скоростей подач.  [c.308]

На рис. 39 показана схема работы индуктивного измерительного прибора, основанного на изменении индуктивности, вызываемого изменением воздушного зазора между катушками и якорем. Прибор состоит из отсчетного устройства I и выносного преобразователя 6. Якорь 8 подвешен на плоской пружине между полюсами магнитов 5 и 7. Катушки электромагнитов включены в мост, питаемый переменным током через трансформатор 3 и стабилизатор напряжения 2. Перемещение якоря под действием измерительного стержня 4 вызывает изменение зазоров, а следовательно, и индуктивности катушек.  [c.93]

Трансформатор, входящий в состав сварочного аппарата типа СТЭ, представляет собой однофазный понижающий трансформатор с постоянным напряжением на вторичной обмотке, с естественным воздушным охлаждением (фиг. 27).  [c.286]

Но хотя преимущества централизованной выработки электроэнергии стали очевидными еще в конце XIX в,, укрупнение электростанций было процессом постепенным. Наряду с мощными фабриками электричества долгое время продолжали существовать многочисленные мелкие электростанции. Они отпускали энергию потребителям через кабельные и воздушные сети на генераторном напряжении. Например, многие гидроэлектростанции Швеции и Норвегии, снабжавшие энергией близлежащие (на расстоянии не более 4—5 км) электрохимические и электрометаллургические заводы, не имели повысительных трансформаторов и работали при напряжении от 3 тыс. до И тыс. В [15, с. 89]. Перед первой мировой войной Лондон, например, получал электроэнергию от многих десятков электростанций [16].  [c.73]

Над мостами часто висят дорожные знаки с надписями не свыше стольких-то тонн. Ибо каждый мост рассчитан на какую-то предельную нагрузку. Причем эта нагрузка считается сосредоточенной вся она обычно передается на мост через несколько точек, соответствующих числу колес прицепа или грузовика. Если же нагрузку распределить равномерно, мост выдержит гораздо больше. Этим обстоятельством воспользовались английские инженеры-энергетики. Им потребовалось привезти в район энергетического строительства тяжелые трансформаторы, вышки электропередач и другое оборудование, вес которого существенно превышал грузоподъемность старых английских мостов. Был построен специальный колесный транспортер на воздушной подушке, представляющий собой платформу длиной 11 метров с расположенным под нею мощным воздушным вентилятором. Обычно транспортер движется на колесах со скоростью 30 километров в час, но, въезжая на мост, он при-  [c.183]

Трансформаторы небольших мощностей выполняются также сухими, т. е. с естественным воздушным охлаждением.  [c.393]

Трансформаторы ТБ и ТПБ применяются для освещения и сигнализации. Исполнение сухое, с естественным воздушным охлаждением. Технические данные приведены в табл. 6.  [c.482]

Сварочные выпрямители для многопостового питания обладают предельно жесткой характеристикой. Трансформатор выпрямителя — трехфаапьпг, с нормальныдг рассеянием. Выпрямительные блоки собирают из кремниевых вентилей с принудительным воздушным охлаждением.  [c.134]

При работе трансформатора основной магнитный поток Фо, создаваемый первичной и вторичной обмотками, замыкается через магннтопровод 3. Часть магнитного потока ответвляется и замыкается вокруг обмоток через воздушное пространство, образуя потоки рассеяния и s2- Потоки рассеяния индуктируют в обмотках электродвижущую силу, противоположную основному напряжению. С увеличением сварочного тока увеличиваются потоки рассеяния и, следовательно, возрастает индуктивное сопротивление вторичной обмотки, что и создает внешнюю падающую характеристику трансформатора.  [c.189]

Идеальным трансформатором называется воздушный трансформатор, которому приписываются следующие свойства при любых условиях отношение первая ного напряокения к вторичному на зажимах разно отношению вторичного тока к первичному и определяется коэффициентом трансформации идеальный трансформатор не имеет потерь энергии и при разомкнутой вторичной обмотке через его первичную обмотку ток не проходит.  [c.213]

Емкость образца изоляционного материала должна находиться в пределах 40 пФ — 0,02 мкФ, причем может быть измерен тангенс угла потерь от 10 до 1. Питание моста должно производиться от источника синусоидального напряжения частотой 50 Гц. Установка рассчитана для эксплуатации при температуре воздуха 10—30 °С и влажности до 80%. Основная погрешность в условиях нормальной температуры при измерении емкости не превосходит 0,5% (но не менее 5 пФ), а при измерении tg б — не более 0,015 tg б при напряжении 3—10 кВ. Чувствительность вибрационного гальванометра с усилителем, используемым для уравновешивания моста, составляет 5-10 В/мм. При необходимости рабочее напряжение может быть повышено до 35 кВ. В этом случае эталонный воздушный конденсатор и повышающий трансформатор должны быть заменены другими, рассчитанными на это иаиряжение (конденсатором Р-55 и трансформатором НОМ-35).  [c.56]

На радиочастотах используются воздушные трансфюрматоры, имеющие одновитковую вторичную обмотку из медного листа, а внутри нее — много-витковую первичную спираль. Трансфюрматоры просты по конструкции и поставляются сов.честно с генератором. Регулирование тр че предусмотрено (только смена обмотки), КПД зависит от сопротивления и коэффициента мощности нагрузки и при os (pj— 0,05 составляет 75—85%. Основной недостаток воздушных трансформаторов — большая собственная реактивная. мощность. Отношение реактивных мощностей на входе и в нагрузке равно 3—5, что приводит к завышению мощности конденсаторной батареи и к добавочным потеря.м в контурах. В. мощных установках высокочастотной сварки используются трансформаторы с неза.мкнутым магнитопроводом из ферритовых стержней [42]. Трансформаторы с ферритовым магнитопроводом более чувствительны к изменению сопротивления нагрузки и дают наилучший эффект при работе на примерно постоянную нагрузку, что и имеет место в установках непрерывной сварки.  [c.171]

На передней панели нагрузочного блока расположены выводные шины воздушного понизительного (закалочного) трансформатора, к которым подключается закалочный индуктор. Коэффициент трансформации воздушного трансформатора постоянный. Генератор, построенный по двухконтурнон схеме с плавно-регулируемой связью между контура.ми, позволяет регулировать мощность, передаваемую в деталь.  [c.36]

Из полистирола могут -быть изготовлены ламповые панели, каркасы катушек, основания для воздушных конденсаторов, изоляционные детали переключателей диапазона, работающих на высокой частоте, проходные и опорные изоляторы антенны, пропиточные н покровные компаунды для дросселей и трансформаторов, катушек нн-дуК тивностн коптуров высокой и промежуточной частоты. Полистирол применяется для изоляции высокочастотных кабелей, где требуется малая емкость и малый коэффициент затухания. Из пленки изготовляются ВЧ контурные конденсаторы.  [c.74]

Картон в основном отличается от бумаги болыней толщиной. Электроизоляционные картоны изготовляются двух типов воздушные более твердые и упругие, предназначенные для рабопы на воздухе (прокладки для пазов электрических машин, каркасы катушек, шайбы), и масляные — более рыхлой структуры и более мягкие, предназначаемые в основном для работы в трансформаторном масле (например, в изоляции маслонаполненных трансформаторов). Лксляные картоны хорошо пропитываются маслом и в пропитанном виде имеют высокую электрическую прочность. В рулонах выпускаются только наиболее тонкие электроизоляционные картоны. Обычно же картоны (употребительные толщины — до 3 мм, в отдельных случаях выше) выпускаются в листах. Электроизоляционные картоны изготовляются из древесной или хлопковой целлюлозы.  [c.144]

В послевоенные годы развертывается дальнейшая автоматизация энергосистем. Автоматические устройства для включения резервных трансформаторов и линий передач (АВР), применявшиеся в отдельных] случаях еще до войны, находят широкое распространение. С 1945г. стало обязательным трехфазное автоматическое повторное включение (АПВ) для всех воздушных линий напряжением 35 кв и выше, в некоторых случаях стали применять их пофазное отключение и повторное включение. С 1950 г. началось массовое внедрение самосинхронизации генераторов при включении. Значительный размах получили комплексная автоматизация и телемеханизация гидростанций (на каскаде гидростанций Узбек-энерго осуществлено к 1949 г., на Широковской гидростанции — в 1950 г., на Храмской — в 1951 г.). Управление работой этих станций стало осуществляться с центрального диспетчерского пункта [14, 31].  [c.26]

Работа приборов бесконтактного типа основана на изменении индуктивного сопротивления катушек дифференциального трансформатора при изменении зазора между сердечниками катушек и якорем. В них якорь I, соединенный с рычагом 2, располагается между сердечниками 3 м. 4 дифференциального трансформатора. Величина воздушного зазора регулируется в пределах от О до 2 мм. Первичные обмотки и намотаны на средних стержнях и включены последовательно во вторичную обмотку питающего трансформатора ПТ. Вторичные обмотки З Л 4 дифференциального трансформатора последовательно соединены с первичной обмоткой трансформатора управления ТрУ1. Вторичные обмотки ТрУ2 и ТрУЗ включены после-  [c.308]

Электрическая часть прибора состоит из преобразователя с алмазной иглой I, электронного блока 5 с показывающим 6 и записывающим 7 приборами. Магнитная система преобразователя состоит из сдвоенного Ш-образного сердечника 9 с двумя катушками 2. Катушки преобразователя и две половины первичной обмотки дифференциального трансформатора 4 образуют балансный мост, питание которого осуществляется от генератора звуковой частоты 3. При перемещении преобразователя относительно контролируемой поверхности (осуществляемого с помощью привода, состоящего из электродвигателя и коробки передач) алмазная игла, ощупывая неровности контролируемой поверхности, совёршает колебания и приводит в колебательное движение якорь 10. Колебание якоря (относительно неподвижной призмы 8) меняет воздушные зазоры между якорем и сердечником, вследствие чего изменяется индуктивность катушек 2, нарушается равновесие моста и во вторичной обмотке  [c.125]

Трансформатор СТХ, предложенный проф. К. К. Хреновым, выполнен по схеме СТН с согласным включением обмоток, (фиг. 34). Отличается по конструкции от СТН наличием воздушных промежутков в среднем ярме, усиливающих действие реактора. Регулирование тока— поворотом подвижного пакета верхнего ярма при повороте пакета из горизонтального в вертикальное положение ток меняется от минимального до м ак симального значения. Грубая регулировка тока производится путём переключения катушек реактора. Трансформатор СТХ даёт экономию в меди по сравнению с трансформатором той же мощности типа СТЭ на ЗОфо, а в железе — на 20,5 фо-  [c.288]

Тепло выделяется в канале и благодаря интенсивной циркуляции металла передаётся в шахту. Первичная обмотка трансформатора и сердечник охлаждаются воздушным дутьём. Подовый камень, изготовляемый из специальной массы, обладает очень высокой стойкостью (до 2000—3000 плавок). Шахта футеруется шамотным кирпичом. Печь-накло-  [c.164]

Трансформаторы выполняются с большим числом выводов от вторичной обмотки для пуска и регулирования скорости двигателей. Преимущественно применяются трансформаторы броневого типа с циркуляционным масляным охлаждением и с интенсивным воздушным охлаждением масла в отдельных или пристроенных к трансформатору трубчатых охладителях. Применяются также безмасляныс трансформаторы с непосредственным принудительным воздушным охлаждением обмоток.  [c.422]

Эти вредные колебания могут быть устранены применением стабилизирующих трансформаторов, которые являются дифференциаторами электрического напряжения, подаваемого на первичную обмотку. Со вторичной обмотки снимается выходное наприжение, пропорциональное первой производной от входного напряжения. Однако, чтобы вторичное напряжение его было пропорционально производной первичного напряжения, необходимо выполнить магнитопровод с боль-Ц им воздушным зазором й в качестве  [c.491]

Магнитная схема датчика (фиг. 58) состоит из сдвоенного П-образного сердечника 1 с двумя катушками 2. Катушки датчика и две половины первичной обмотки дифференциального трансформатора 3 образуют мост. Питание моста осуществляется от звукового генератора 4. Магнитная цепь сердечника 1 замыкается якорем 5, который может совершать колебательное движение на призме 6. С якорем 5 жестко связана игла 7, ощупывающая измеряемую поверхность. В нейтральном положении якоря, при равенстве воздушных зазоров обеих магнитных систем, напряжение на вторичной обмотке трансформатора 3 равно нулю. При отклонении якоря от нейтрали на вторичной обмотке трансформатора появ-  [c.153]


mash-xxl.info

Воздушный трансформатор – Большая Энциклопедия Нефти и Газа, статья, страница 3

Воздушный трансформатор

Cтраница 3

Магнитопровод отсутствует лишь в воздушных трансформаторах, которые применяются при частотах примерно свыше 20 кГц, когда магнитопровод все равно практически не намагничивается из-за значительного увеличения вихревых токов.  [31]

Благодаря более низкой начальной стоимости воздушные трансформаторы, устанавливаемые на столбах, и другие подобные конструкции часто используются в подвалах зданий или в других аналогичных местах, не подвергающихся затоплению, и в наружных установках.  [33]

Примером индуктивно связанной цепи служит воздушный трансформатор ( без стального сердечника), состоящий из двух катушек, расположенных одна на другой.  [34]

Четырехполюсником можно назвать и рассмотренный выше воздушный трансформатор, на два входных зажима которого подается напряжение источника питания, а к двум выходным зажимам присоединяется потребитель.  [35]

На рис. 4.10 изображена схема простейшего воздушного трансформатора с потерями в первичной У.  [36]

По принципу действия индуктосин является воздушным трансформатором, вследствие чего коэффициент взаимоиндукции обмоток имеет небольшое значение.  [37]

Схема Компенсатора переменного тока с воздушным трансформатором положена в основу многих современных компенсаторов переменного тока.  [39]

В радиотехнике при высоких частотах применяются воздушные трансформаторы без стального сердечника.  [40]

Из уравнения (16.5) видно, что воздушный трансформатор со стороны первичной обмотки может рассматриваться как двухполюсник с сопротивлениями Ri Rm и Хц.  [41]

Вторая рабочая цепь образована вторичной обмоткой воздушного трансформатора, реостатом г % и калиброванной проволокой вг.  [42]

По принципу действия индукционная печь подобна воздушному трансформатору без магнитопровода, у которого первичной обмоткой служит катушка в виде индуктора, а вторичной – тигель и шихта, если они электропроводны.  [43]

В качестве примера индуктивно-связанных катушек можно рассматривать воздушный трансформатор, где передача энергии из первичной цепи во вторичную происходит путем использования явления взаимоиндукции.  [45]

Страницы:      1    2    3    4

www.ngpedia.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *