Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Втулка генератор для велосипеда – Велобаджо

Давно собирался написать технический пост про устройство моего велосипеда, на котором в 2014 году я совершил 6000 км велопробег за 50 дней «Вятка — Гибралтар». И вот предлагаю вашему вниманию ознакомиться поподробнее с моим «дальнобойным» железным конём. Сразу предупреждаю, будет много запчастей, непонятных названий. Поэтому для тех, кто не увлекается данной велотемой, чтение может показаться непонятным и скучным)

Без сумок с разных ракурсов

Все сумки на велосипеде.

Наверное эти снимки можно воспринимать как фото шоссейного велосипеда в горах на грунтовой дороге). Однако, немного забегая вперед, скажу, что при создании велосипеда (а он был собран практически с нуля из отельных частей) в его характеристики было заложено свойство удовлетворительной проходимости по грунтовым, немного песчаным дорогам и по плотной травяной поверхности, читай твердому сухому ровному полю с невысокой травой.

Первый мой большой велопробег на дальнее расстояние был совершен в 2011 году по маршруту Киров — Тверская обл., фестиваль «Нашествие». 1100 км я преодолел за неделю, по ощущениям это было тогда на пределе моих физических возможностей. Велосипед у меня в то время был один, обычный горный (MTB), который я оборудовал двумя багажниками, передним и задним. Вот так он выглядел.

Произошла эта поломка в дождь, на лесной песчаной дороге в горку. Песком забросало ролики и переключатель заклинило в тот момент, когда я активно вкручивал в гору, в итоге одно из моих усилий приложилось к нему и цепью переключатель завернуло и обломило с петухом.

Сломанный петух.

И всё таки этот небольшой успех окрылил меня настолько, что на следующее лето я решил так же отправиться куда-нибудь далеко, например на юг. На море. Потому что до этого как ни странно, я ни разу не был на море. Потом случилось так, что наметился большой музыкальный фестиваль в Крыму «Соседний мир», где планировали выступить мои друзья-музыканты из Питера — группа «Торба-на-Круче». и так всё совпало, что решение ехать на велосипеде на юг было принято окончательно и бесповоротно.

После переваривания информации из всех источников я понял, что тот велосипед, который мне нужен, в готовом виде какой-то модели, представленной на мировом рынке попросту не существует. И я начал грызть интернет-гранит науки, как этот велосипед можно собрать из отдельных комплектующих частей.

Несмотря на то что передняя вилка по канонам асфальтового (а именно такой стиль я «исповедую») велотуризма должна быть жёсткой (ригидной, от англ. rigid — жёсткий, неподвижный), на комфортности езды по ровному асфальту это никак не отражается, наоборот, жёсткая вилка увеличивает свободный накат велосипеда и позволяет сэкономить силы велосипедиста. К тому же её вес в 2-3 раза меньше амортизационной вилки.

Видеоролик, показывающий устройство планетарных втулок Shimano Alfine:

Я заказал руль фирмы Titec.

Надо сказать, что покупки комплектующих велосипеда совершались мной на разных интернет площадках, в том числе были заказы из США, Англии, Германии, Китая, но примерно 50% частей было куплено в немецком популярном интернет магазине bike-components.de

В итоге очертания завершенного велосипеда в полном снаряжении приняли такой вид.

По итогам всех мероприятий, моё велопутешествие летом 2012 года состоялось по маршруту Киров — Керчь. Путь в 2500 км занял 21 день. И потом еще до Анапы накрутил по Кубани около 300. Новый велосипед оправдал себя на все 100%.

При подготовке к велопробегу на 6000 км в 2014 году я уже еще в 2013 году начал серьезно заботиться о физической составляющей. Как говорится «тяжело в учении, легко в бою». Я начал принимать участия в марафонах-бреветах кирово-чепецкого велоклуба «Велосотня». Начиная со 100 км, потом прошел несколько 200-км марафонов. И, наконец, покорилась мне и дистанция 300 км.

Результатом модификации стал обновленный велосипед, который я готовил к велопробегу «Вятка — Гибралтар». Во-первых я поменял раму On One на аналогичную хромолевую Chaka Pele, но размером побольше. Выбрал благодаря теме, которую создал на форуме Велопитер Раму заказал на сайте Gigabike.de через фирму-посредника по доставке, так как данный интернет веломагазин не отправлял посылки в Россию (по крайней мере в 2012 году)

На левой части руля я закрепил пульсометр, так как хотел вести статистику среднего и максимального пульса за все 50 дней велопробега.Маленькое зеркало широкого обзора (нижнее) прожило недолго. Его крепление в торце руля сказалось на том, что при случайных прислонениях велосипеда рулем на что-либо, зеркало постоянно сбивалось и в конце концов хлипкий поворотный шарнир из пластмассы не выдержал, и зеркальце отвалилось где-то еще в начале пути на первых 500 км.

Широкое седло BBB BSD-23 BodyShape, достаточно упругое и жёсткое, но при этом широкое и с прорезью посередине оправдало себя полностью еще в велопробеге Киров — Керчь. И менять его я не собирался. Многие прожженые велотуристы наверняка воскликнут: «А как же Brooks!!!?») Ну, вот так, не срослось у меня с ним, с бруксом). Помимо заднего фонаря, встроенного в багажник Tourit Shine, который работал от динамо-втулки, так же был установлен широкий пятидиодный фонарь Sigma Tailguard.

Передняя динамовтулка. Хорошо видны два провода, которые легко отсоединяются при надобности снять колесо.

Задняя 11-скоростная планетарная втулка Alfine 11, она же SG-S700. Made in Japan. Так же хорошо видны дисковые тормоза Avid BB7.

Шатуны Shimano XTR сочетают в себе все необходимые качества — жёсткость, прочность и лёгкость. В кареточном узле использовалась система «внутренний картридж». Её плюс для туризма в том, что промподшипники находятся внутри кареточной трубы в картридже и надёжнее защищены от дождя и грязи, чем системы с внешними подшипниками (так называемые системы с интегрированной полой осью). К тому же картриджные каретки позволяют уменьшить Q-фактор — поперечное расстояние между ступнями при педалировании, что благотворно влияет на самочуствие ног, коленных суставов на протяжении длительного путешествия.

Это действительно удобнее, чем привязывать велорюкзак тесёмочками. К тому же велорюкзаки — промокаемы и требуют дополнительных дождевых чехлов сверху, которые некоторое время сдерживают воду, но все равно влага проникает. А водонепроницаемые сумки типа Ortlieb абсолютно герметичны. В настоящее время, я слышал, что существуют аналоги таких сумок.

Узел крепления двух рулей — два выноса. Нижний KCNC Fly Ride рассчитан на шоссейный руль диаметром 31,8 мм, а верхний вынос KCNC Fly Ride на МТБ-руль диаметром 25,4 мм.

1) 26 колёса легче 28х, что в целом снижает массу всего велосипеда (не намного, грамм на 500, но всё же)

3) Велосипед с 26-ми колёсами компактнее в упакованном виде, что является плюсом в авиа и жд перевозках.

5) 26-е колеса дают чуть больше пространства в конструкции велосипеда, как то, например, расстояние от верха переднего колеса (или крыла) до передней сумки или пространство для насоса за подседельной трубой.

Источник

velobajo.ru

Тестирование эффективности динамо-втулок для велосипеда

Динамо-втулки стали популярны в 1940-х годах. Стандартные бутылочные генераторы, работающие от соприкосновения с протектором шины или ободом, страдают от значительных потерь энергии из-за трения между динамо-машиной и колесом. Кроме того они ненадёжны в сырую погоду, так как бутылочная динамо-машина постоянно соскальзывает с колеса. Динамо-втулка предлагает простой и надёжный способ генерировать энергию для фонарей велосипеда.

Динамо-втулка SON-XS.

Но только в последние годы стали доступны эффективные динамо-втулки. В настоящее время самые популярные динамо-втулки изготавливаются в Германии фирмой Schmidt Maschinenbau и в Сингапуре фирмой Shimano. В то же время вместе с усовершенствованием динамо-втулок благодаря современным технологиям снизились потери бутылочных динамо-машин. Сообщалось, что бутылочная динамо-машина Lightspin более эффективна за динамо-втулки, также учитывая, что в выключенном состоянии отсутствует сопротивление. Тем не менее, осталась проблема соскальзывания роликов с мокрых покрышек.

Методика тестирования динамо-втулок.

Для тестирования мы выбрали наиболее популярные модели динамо-втулок и бутылочный генератор Lightspin, которые были протестированы в Тюбингене в Германии на тестовом оборудовании фирмы Schmidt Maschinenbau.

Для испытаний были взяты три совершенно новых генератора из стандартного производственного цикла, которые тестировались в течение 15 минут. Затем был произведён замер их сопротивления без нагрузки и с фарой модели E6 фирмы Schmidt (лампочка Philips HPR64 на 3 Вт 6 В). После этих предварительных тестов, лампочки той же модели с более высокой эффективностью/потерями не принимались во внимание как не подходящие, а «лампочки со средними показателями» были протестированы более детально.

Протестированные модели динамо-втулок и бутылочных динамо-машин.

Dynosys Lightspin (модель 2004 года, снята с производства): бутылочная динамо-машина; стоимость 120,7 долларов; вес 280 г.

Shimano HB-NX32 (2004): динамо-втулка; стоимость 50 долларов; вес 729 г.

Shimano DH-3N30 (2004): динамо-втулка; стоимость приблизительно 60 долларов; вес 872 г.

Shimano DH-3N70 (2004): динамо-втулка; стоимость 100 долларов; вес 667 г (заменена моделью DH-3N71).

Shimano DH-3N71 (2005): динамо-втулка, стоимость 90 долларов; вес 675 г.

Schmidt Maschinenbau SON28 (2005): динамо-втулка; стоимость 209 долларов; вес 575 г.

Schmidt Maschinenbau SON20 (2005): динамо-втулка, предназначена для велосипедов с маленькими колёсами, но в тесте используется с колёсами 700C; стоимость 209 долларов; вес 575 г.

Мощность динамо-втулок и бутылочной динамо-машины.

Аппаратура для тестирования динамо-втулок и бутылочных динамо-машин в Schmidt Maschinenbau.

Напряжение отличается только на низких скоростях. Максимальное напряжение на фонарике E6 составляет 6,2 В на Lightspin и 6,8 В на других втулках.

Все протестированные генераторы, кроме SON20, обеспечивали практически полную силу света на скорости 10 км/ч. На низкой скорости модель динамо-втулки Shimano Dh4N71 стала победителем, так как производила больше мощности, а значит и более яркий свет. Модель SON20, которую использовали с колесом 700C, для которого она не была сконструирована, вырабатывала наименьшее количество энергии на низкой скорости. На скорости в 20 км/ч все протестированные генераторы выдавали напряжение по крайней мере в 6 вольт, которые требуется для стандартной велофары на её полной яркости.

Потери мощности на динамо-втулках при включенной фаре.

Сопротивление ночью (свет включен). Наиболее эффективна динамо-втулка SON20.

При включённом свете сопротивление большинства генераторов возрастает — за исключением модели Shimano HB-NX32, сопротивление которой становится меньше на высокой скорости при включенном свете.

Модель Shimano DH-3N30 имеет лучшие показатели по сравнению с моделью HBNX32/ Сопротивление меньше при любой скорости — фактически оно даже меньше, чем у более дорогой модели DH-3N71. Модель DH-3N71 не дожила до своей рекламы, так как фирма Shimano заявила о повышении эффективности на 30% и больше (и снижении сопротивления на 70%, при выключенном свете) по сравнению с её предшественницей, которая могла бы с этой втулкой оторваться далеко вперед от модели SON. В противоположность этому новая модель динамо-втулки DH-3N71 имеет немного большее сопротивление при любой скорости, чем её предшественница — модель DH-3N70.

В целом модель SON28 все ещё является самой эффективной динамо-втулкой, но модель динамо-втулки Shimano DH-3N30 не намного отстаёт от неё. На очень высокой скорости она требует меньше энергии. Самое большое преимущество модели SON20 над моделью SON28 проявляется на средней и большой скорости.

Сопротивление динамо-втулок на холостом ходу.

Сопротивление днём (свет выключен) определённо зависит от модели динамо-втулки. Сопротивление Lightspin такое же, как и у обычной передней втулки.

При выключенном свете минимальные потери показала модель Lightspin: когда генератор не соприкасается с колесом, сопротивление создает только передняя втулка. Модель Shimano HB-NX32 создает значительное сопротивление, особенно на высокой скорости, и действительно не подходит для гоночных велосипедов. С другой стороны у модели динамо-втулки DH-3N30 значительное улучшено сопротивление и она может составить конкуренцию более дорогим динамо-втулкам.

Новая модель Shimano DH-3N71 имеет немного более высокое сопротивление, чем её предшественница — модель DH-3N70. На холостом ходу модель SON28 по прежнему создаёт значительно меньшее сопротивление, чем другие динамо-втулки. Как и ожидалось, потери модели SON20 с колесом 700C даже ниже, но ценой более слабого света ночью на низкой скорости.

Подключать к динамо-втулке одну или две фары?

На скорости выше 25 км для питания двух последовательно подключённых фар можно использовать любые динамо-втулки. Многие велосипедисты, любящие велопробеги на длинные дистанции, используют две фары. Если двумя фарами можно обеспечить хорошее освещение, то дополнительный вес и сопротивление не столь важны. Одиночная фара E6 обеспечивала достаточное освещение даже на тандеме во время веломарафона Париж-Брест-Париж на скорости 70 км/ч на незнакомых, требующих напряжения дорогах. Те, кто всё же решил установить две фары, могут извлечь небольшую выгоду от использования динамо-втулки модели SON20, обладающей более низким сопротивлением.

Использование динамо-втулок для колёс малого диаметра с большими колёсами.

Большинство фар велосипеда спроектированы в соответствии с законами Германии, которые требуют обеспечения мощности велофары 0,75 ватт на скорости 5 км/ч и 2,7 ватт на скорости 15 км/ч. Эти законы разработаны для немецких велосипедистов путешествующих на короткие дистанции с низкой скоростью, а не для заядлых гонщиков. Многие велосипедисты редко путешествуют со скоростью ниже, чем 15 км/ч, так что они могут решить, что им не нужно полное освещение на скорости ниже 15 км/час.

При использовании модели SON20 с колесами 700C или 650B вместо колес 20″, для которых она была разработана, уменьшается выходная мощность, но также уменьшается сопротивление. Большое колесо вращается медленнее, чем колесо 20″, для которого и был создан генератор.

Результаты испытаний показали, что таким образом можно сэкономить драгоценную энергию. В течение четырёх лет я использовал модель динамо-втулки SON20 с колёсами 700C и 650B. На очень крутых подъемах свет начинал дрожать. Но на низкой скорости, мне не нужно было так много света, чтобы видеть дорогу. Для тех, кто ездит в черте города на оживлённых дорогах, модель SON28 может быть предпочтительна, так как даже на низкой скорости велосипед остаётся видимым для другого транспорта.

Начиная с конца 2005 года специализированная модель SON-XS (для складных велосипедов с узкими вилками) доступна для стандартного дропаута 100 мм. Хотя эффективность этой модели ниже примерно на 2%, чем у модели SON20, она весит на 179 грамм меньше за SON20, имеющую вес 398 грамм. Тем не менее более узкий фланцевый промежуток (40 мм, вместо 58 у стандартной SON) и ось из алюминиевого сплава (вместо нержавеющей стали) в итоге ослабляют переднее колесо и делают непригодным для жёсткой езды.

Итоги тестирования динамо-втулок и бутылочной динамо-машины.

Вырабатываемый динамо-втулками свет — это надежный источник энергии в большинстве случаев. Дополнительное сопротивление было нами измерено и несомненно его важность переоценена. Оно имеет самое большое значение (в процентном отношении выходной мощности) на низкой скорости. На высокой скорости и на подъемах дополнительное сопротивление по сравнению с общей мощностью требуемой для движения велосипеда становится незначительным.

Если вы не ограничены в деньгах, то модель динамо-втулки SON28 является лучшим выбором для большинства велосипедистов. Она совмещает высокую эффективность и качественную конструкцию. С 2002 года модели динамо-втулок SON содержат уплотнитель компенсации давления, который препятствует появлению проблем с велосипедом в дождливую холодную погоду. Без специального уплотнителя при охлаждении относительно большой внутренний объем воздуха динамо-втулки сжимается и тем самым способствует проникновению влаги.

Динамо-втулка Shimano DH-3N71 неплохой выбор, но по сравнению с её предшественницей DH-3N70 у неё немного хуже производительность. Обе модели значительно тяжелее и менее эффективны, чем динамо-втулки SON. Более дешёвая модель DH-3N30 предлагает лучшую производительность, но весит на 200 грамм больше, потому что имеет подшипники и уплотнитель более низкого качества, так что более высокая цена динамо-втулки фирмы Shimano вполне оправдана. Ожидаемый срок службы конусов подшипника в недорогих динамо-втулках фирмы Shimano моделей (HB-NX32, DH-3N30) равен примерно 5000 км. Это говорит, что модель DH-3N30 предлагает удивительно хорошую производительность за свою цену.

Если бы не проблемы проскальзывания в сырую погоду, Lightspin могла бы послужить хорошей альтернативой динамо-втулкам. Её небольшой вес (даже включая вес крепления на передней втулке) и отсутствие сопротивления в дневное время привлекают велосипедистов, редко совершающих поездки в тёмное время суток. Когда включается свет на велосипеде, то сопротивление Lightspin возрастает до значения, превышающее значение у модели SON28 и современных динамо-втулок фирмы Shimano. Сложно добиться и поддерживать правильное крепление бутылочных генераторов, так что при её эксплуатации сопротивление может очень сильно варьировать.

Для велосипедистов, участвующих в различного рода соревнованиях, использование модели SON20 или удивительно легкой SON-XS с ободом больших размеров уменьшает сопротивление как в дневное, так и в ночное время. Особенно на скоростях от 25 до 35 км/ч. К их недостаткам можно отнести уменьшение светового потока на низкой скорости.

Скорость Полная мощность, развиваемая велосипедистом Стандартная герметичная передняя втулка SON28 (свет выключен) Снижение скорости (свет выключен) SON28 (свет включен) Снижение скорости (свет включен)
10 км/час 15 Вт 0,1 Вт +0,2 Вт (+1,3%) -0,1 км/час +3,3 Вт (+22%) -1,6 км/час
20 км/час 50 Вт 0,2 Вт +0,7 Вт (+1,4%) -0,1 км/час +5,3 Вт (+12%) -1,1 км/час
30 км/час 130 Вт 0,3 Вт +1,3 Вт (+1,0%) -0,1 км/час +6,7 Вт (+5,2%) -0,7 км/час
50 км/час 500 Вт 0,5 Вт +2,7 Вт (+0,5%) -0,1 км/час +9,0 Вт (+1,8%) -0,36 км/час

Насколько сложнее крутить педали на велосипеде с динамо-втулкой? В сравнении с велосипедом без динамо-втулки, таблица показывает требуемую дополнительную мощность поддержания той же скорости, а также снижение скорости при той же мощности — на ровной дороге. Только включение ночного сопротивления (свет включён) на низкой и средней скоростях замедлит велосипедиста значительно. На высоких скоростях, добавленное сопротивление (свет включен) менее значимо. На подъёмах, сопротивление динамо-втулки в процентном отношении от общего сопротивления даже меньше. Например, подъём на 5% склон на 10 км/час требует около 140 Вт. В этом случае 3,3 Вт потребляемые SON28 (свет включен) замедляет велосипедиста всего на 0,2 км/час.

velofun.ru

2 Типа Машин, Конструкция и Установка Динамо Втулки

Одним из популярных технических приспособлений является динамо на велосипед. Именно о том, какие существуют типы этого устройства, для чего используется и их особенностях.

Типы динамомашин для велосипеда

Динамо для велосипеда – это электрический генератор, который вырабатывает энергию для питания электроприборов установленных на велосипеде, например фар или блока питания для навигатора.

На сегодняшний день широкое распространение получили два вида динамомашин для велосипеда, а именно: бутылочная динамка и динамо втулка.

Вне зависимости от типа, оба они генерируют электрическую энергию за счет вращения магнита внутри катушки. Таким образом, в велосипедных динамо машинах якорь является неподвижным элементом, а статор вращается.

Бутылочная динамо машина

Этот вид получил свое название за внешнее сходство с обычной бутылкой. Бутылочная динамо машина для велосипеда была наиболее распространена у нас в стране во времена советского союза. Она имеет неоспоримые достоинства, в число которых входит:

  • Простота установки и демонтажа;
  • Возможность отключения;
  • Невысокая цена.

В то же время, для бутылочного типа свойственны недостатки, которые в некоторых случаях делают ее установку нежелательной или вообще невозможной. К ним необходимо отнести:

  • Установка влечет появление ассиметричной массы на вилке;
  • Повышенная шумность при работе;
  • Относительно малая выходная мощность;
  • Сопротивление движению;
  • Снижение эффективности при неблагоприятных погодных условиях;
  • Повышение износа покрышки.

Все перечисленные недостатки предопределенны конструктивными особенностями, и без фундаментальных изменений устранить их невозможно.

Динамо втулка

Второй вид, популярность которого неизменно растет — так называемая, динамо втулка.

В данном случае, динамомашина для велосипеда конструктивно выполнена как колесная втулка. Выходное напряжение таких генераторов составляет порядка шести вольт при мощности до двух, а иногда, трех ватт.

Все преимущества такой динамо-машины для велосипеда, определяются ее конструктивной особенностью. К числу «плюсов» необходимо отнести:

  • Абсолютная бесшумность. Это достигается за счет конструктивного выполнения в виде втулки для колеса;
  • Динамо работает без использования эффекта трения, а потому не влияет на износ покрышки и иных деталей;
  • Полностью сбалансированная конструкция исключает дисбаланс на вилке;
  • Высокая эффективность. Поскольку нет трущихся поверхностей, проскальзывания не будет при любых погодных условиях;
  • Полная изоляция от стальной конструкции велосипеда электрической цепи проводки.

При всем том, динамо втулка не может быть отключена, при движении она работает постоянно. Некоторые специалисты считают этот момент недостатком, однако объективно, при отключенной нагрузке, динамо не будет влиять на свободу вращения колеса, а потому считать невозможность отключения за недостаток будет в корне неверно. Еще один момент – высокая масса, хотя при идеальной балансировке, это не влияет на ходовые качества велосипеда в той степени, в какой станет ощутимо на практике. Единственный серьезный недостаток – цена и сложность конструкции, а также то, что для установки такого генератора необходимо перебирать все колесо, а это, несомненно, требует определенных умений и подготовки.

Итак, выбирая, динамо для своего двухколесного друга, помните о безопасности, надежности и ориентируйтесь на ваши финансовые возможности. Какая будет динамка для велосипеда, решать, безусловно, вам и никому другому.

Конструктивные особенности динамо втулки

Поскольку этот тип генератора набирает популярность, остановимся на некоторых его особенностях, которые необходимо знать и понимать.

Прежде всего, если бутылочный генератор вырабатывает постоянный электрический ток, то динамо втулка для велосипеда генерирует переменное напряжение. В чем разница? Попробуем разобраться, не углубляясь излишне в электродинамику.

Постоянный ток имеет полюса: «плюс» и «минус». Такой ток всегда течет в одном направлении от плюса к минусу. Переменное напряжение не имеет полярности. Для того, чтобы горела обычная лампа накаливания, не имеет значения то, какой будет ток, постоянный или переменный. Но для светодиодной фары все обстоит иначе: светодиоды будут работать только при постоянном токе и правильном подключении. Если устанавливается динамо втулка на велосипед, то подключать светодиодную фару необходимо через специальный выпрямительный мост. Это будет актуально для любых потребителей энергии, рассчитанных на питание от источника постоянного тока.

Установка динамо втулки

При установке бутылочного генератора трудностей не возникает, а вот втулка генератор для велосипеда, заставит вас поработать.

Прежде всего, поскольку сама конструкция такого генератора предусматривает установку в качестве несущей втулки, колесо придется снять и полностью разобрать. Предварительно позаботьтесь о комплекте укороченных спиц. После полной разборки, укрепите короткими спицами обод на втулке. Старайтесь ровно и равномерно установить, постепенно натягивая спицы, а после, подтягивая, укрепить обод окончательно. Затем необходимо сделать балансировку и проверить на биение и дисбаланс.

Внимание! В генераторе бутылочного типа, на корпусе идет минус питания. Динамо втулка не имеет электрического контакта с корпусом, а потому вы можете сделать электропроводку полностью изолированную или использовать в качестве одного из проводников металлическую раму. Если устанавливается выпрямительный мост, то раму нужно присоединять после него.

provelik.ru

Get in woods!: Динамо-втулка для велосипеда: принцип действия, конструкция, характеристики.

Принцип действия

Работа динамо-втулки объясняется законом электромагнитной индукции Фарадея. Сводится он к следующему: у вас должно быть (а) магнитное поле и (б) рамка из провода в этом магнитном поле. Теперь, если двигать поле или саму рамку, то в проводе, из которого сделана рамка, наводится электродвижущая сила. Если к проводу теперь подключить нагрузку: резистор, лампочку, фару, конвертер, то потечёт ток, и всё начнёт светиться и работать.


Для иллюстрации закона электромагнитной индукции я взял готовый рисунок. Он не про динамо-втулку, а про другой генератор. Но для понимания принципа действия подходит хорошо. Здесь есть постоянный магнит с двумя полюсами N и S. Между полюсами проходят невидимые линии магнитного поля. И прямо в эти линии поля запихали прямоугольную рамку “Armature” из электрического провода. На концах рамки приделаны два металлических кольца “Slip ring”. Графитовые щётки “Brush” скользят по кольцам, когда рамку начинают вращать в магнитном поле. Щётки и кольца обеспечивают протекание тока через рамку и резистор нагрузки “Load”.
Со стороны магнитного полюса рамка будет выглядеть неодинаково, как будто у неё меняется площадь, если её вращать. Эта переменная площадь называется “площадь проекции контура рамки на поверхность, перпендикулярную линиям магнитного поля”. Ну, или просто “площадь проекции”. Во время вращения рамка будет подставляться линиям магнитного поля разными сторонами. От площади проекции зависит величина тока. От того, какой стороной повернётся рамка, зависит направление тока.

Если сделать много оборотов рамки в магнитном поле, потечёт переменный ток. Переменный – это не просто больше или меньше, а ещё и меняющий направление. И магическим образом все эти изменения описываются формулой синуса. Ток оказывается синусоидальным.


Линии магнитного поля направлены от одного полюса к другому. Вращаем рамку. Если мы посмотрим на рамку когда она перпендикулярна линиям магнитного поля, площадь рамки будет максимальна, ток тоже. Вращаем дальше, площадь проекции становится меньше, ток меньше. В момент, когда рамка параллельна линиям магнитного поля ток в ней нулевой. Вращаем дальше – ток меняет направление. Вращаем дальше площадь проекции увеличивается, увеличивается величина тока. И так далее.

Лучше один раз увидеть. 🙂


Некоторые из вас помнят, что у переменного тока есть такой параметр, как частота. Это как часто ток меняет своё направление. Сколько раз в секунду. Измеряется эта частота в Герцах.

В рассмотренном случае у нас два полюса магнита и за один оборот рамки на 360 градусов ток сменит направление один раз. Если мы провернём рамку на 360 градусов за 1 с, получим частоту нашего тока 1 Гц. Если за 1 секунду сделаем 2 полных оборота на 360 градусов, то получим 2 Гц. Если сделаем 10 оборотов, то 10 Гц. И так далее. Чем быстрее крутим рамку, тем выше частота. Это один из ключевых моментов работы динамо-втулки. Частота переменного тока, который она выдаёт, будет зависеть от вашей скорости и от того, сколько оборотов колесо делает в секунду.

Если у вас низкая скорость и всего пара магнитных полюсов, может получиться очень низкая частота. Настолько низкая, что электроника откажется нормально работать. Фара будет мерзко мерцать, а конвертер перестанет заряжать смартфон.

Поэтому в велосипедных генераторных втулках стремятся увеличить количество полюсов. Если добавить к нашему примеру ещё одну пару полюсов, частота увеличится в два раза.

Увеличение пар полюсов позволяет решить ещё одну проблему. При вращении в магнитном поле по проводнику протекает ток. Этот ток создаёт вокруг себя ещё одно магнитное поле. Это появившееся магнитное поле по правилу Ленца препятствует вращению, которое его вызывает. Ну, нет ничего бесплатного. Возникающий ток и магнитное поле вокруг провода вас постараются притормозить. Если пара полюсов только одна, то это препятствие вращению будет проявляться в виде рывка и будет проявляться вибрациями втулки при езде. Поэтому полюсов делают много, вращение более равномерное, вибраций нет. К тому же, много пар позволяет расположить магниты ближе, плотность магнитного поля будет выше, можно получить больше мощность втулки.

Конструкция

В реальных динамо-втулках пар полюсов просто дофига. Вот, например одна из топовых втулок компании Schmidt Maschinenbau.
И все эти магниты со своими полюсами расположены на корпусе втулки. Проводник, через который проходят линии магнитного поля, расположен на оси. Ось втулки неподвижна  и закреплена в велосипедной вилке. Соответственно, неподвижна и рамка электрического проводника. А вращается в этой системе только корпус втулки, к которому через фланцы и спицы приделан обод с покрышкой. Вот, собственно, основное отличие от рассмотренного выше принципа электромагнитной индукции. Там вращали проводник, а тут вращают магнитное поле. Результат одинаковый. Зато неподвижный проводник на оси втулки позволяет получить более простую и надёжную конструкцию втулки, которая не требует обслуживания и замены щёток.

На слайде заметны треугольные блестящие фиговины, а рамку проводника не видно. Чо за дела?

А это потому, что в своей конструкции немцы использовали когтеобразный магнитопровод. Зачем он вообще нужен и почему напоминает когти?

Магнитопровод, как можно догадаться из названия, проводит магнитное поле. И делает он это гораздо лучше, чем воздух. Магниты расположены на корпусе втулки, а рамка проводника – это медный провод, намотанный на бобину. Как катушка ниток. И сидит она на оси втулки. На слайде изображена половина этой катушки и магниты. Линии магнитного поля проходят от одного полюса к другому, и нужно их как-то пропустить через центр катушки. А до него далеко. Магнитопровод как раз позволяет сконцентрировать и замкнуть через себя линии магнитного поля, и пропустить их вдоль оси втулки через катушку с обмоткой. За счёт множества когтей делается это для всех пар полюсов одновременно. И ещё такая форма должна снижать рывки и вибрации при вращении, насколько я понимаю.

Другая топовая втулка немного отличается конструкцией, её выпускает тайваньская компания Shutter Precision.


Здесь магнитопровод напоминает цветочек. Обмотка проглядывает, и не нужно никаких чертежей, чтобы её найти. Но я рекомендую таки на чертёж взглянуть. Его можно найти в патенте на втулку. Номер патента указан на слайде.

Основное конструктивное отличие: магниты собраны в магнитный диск “32”, а не закреплены по отдельности, как у немцев. Магнитный диск тоже состоит из множества пар полюсов и механически связан с корпусом втулки. Т.е. тут тоже вращается магнитное поле, а не проводник. Проводник в виде катушки “31” сидит неподвижно на оси “21”.

Любопытно, что в патенте описана конструкция динамо-втулки с выключателем, которую одно время продавала контора Velo Orange. На корпусе этой втулки был сделан механический переключатель. Во включенном положении магнитный диск прижимался к корпусу втулки, и магнитное поле вращалось, ток генерировался. В выключенном положении, магнитный диск не прижимался к корпусу втулки и не вращался, ничего не генерировалось. Втулка становилась самой обыкновенной. Зачем это сделали? Видимо, чтобы по максимуму снизить потери во втулке, если она не используется. Потому что, даже если вы не питаете от динамо-втулки фару или конвертер, на её вращение потребуется потратить мощности чуть больше, чем на вращение обычной втулки.


На этом слайде видно, как расположены магнитные полюса на диске и как магнитопровод помогает линиям магнитного поля замкнуться через обмотку катушки на оси втулки.
Куча “лепестков” магнитопровода позволяет замкнуть линии магнитного поля всех пар полюсов одновременно. Так же, как и во втулке SON, при вращении к одним и тем же лепесткам магнитопровода будут подходить соседние пары полюсов – то N-S, то S-N. При этом будет меняться направление протекания тока. Частота тут тоже будет высокая.

Характеристики

Конструкции динамо-втулок других производителей плюс-минус одинаковы. Поэтому можно спокойно переходить к характеристикам динамо-втулок. И начать стоит с затрат мощности.
На эту тему есть две толковых публикаци:
Если не открываются, заходите под европейским впном.
На скорости 20 км/ч сферическая передняя втулка в вакууме требует приложить 0.5 Вт мощности. При этом динамо-втулка, к которой ничего не подключено потребует уже 1-2 Вт. А уж если вы к ней подключите фару, то с учётом механических и прочих потерь, вам понадобится прикладывать уже 7 Вт мощности.

Много это или мало, и как повлияет на время вашего движения, можно прикинуть следующим образом.


Если ехать летом, то светло будет часов этак 19.5, а темно только 4.5. Свет вам нужен только в тёмное время, поэтому, если размазать увеличенные затраты мощности в темноте на все сутки, то получим среднее значение 2.5 Вт. Ездок на длинные дистанции, который крутит целые сутки, производит стабильно 100 Вт мощности. При этом 2.5 Вт затрат из 100 Вт выделяемой мощности, это 2.5 %. Один процент от часа – это 36 секунд. Со средними затратами в 2.5 % он сам себе привезёт 1 минуту 30 секунд на час. Или 36 минут за сутки.

Если вы адовый гонщик и можете целые сутки выдавать 200 Вт, влияние втулки на время будет меньше. Потому что затраты мощности будут уже не 2.5%, а 1.25%, и за сутки набежит 18 минут.

Вы можете сказать: “Да ты офигел! Тридцать шесть минут за сутки это очень много!”. Оке, не ставьте тогда динамо-втулку. Но сравните затраты мощности на неё с другими затратами у велосипедиста.

Вот, есть источники, в которых утверждают, что замена заводской смазки цепи на смазку неправильного типа может повысить потери аж на 5 Вт. А если брать фиговую цепь с фиговой смазкой, то потери могут быть на 10 Вт больше, чем у самой лучшей цепи на самой хорошей смазке. А в другом источнике утверждают, что уже на скорости 20 км/ч разница потерь на сопротивление покрышек Continental GP3000 и Vittoria Open Corsa, составляет 20 Вт. Ну и, наконец, положение тела и аэродинамическая позиция ездока могут повлиять на потери радикальным образом. Вот, к примеру, измерение потерь на шоссейном велосипеде и на лигераде, из которого следует, что при равной скорости велосипедов 30 км/ч, человек на лигераде тратит на 100 Вт меньше.

И хотя 2 Вт потерь на фоне 10, 20 и 100 Вт выглядят несерьёзно, многие велосипедисты по-прежнему считают, что динамо-втулка будет их адово тормозить. 


Следующим пунктом надо рассмотреть электрические характеристики динамо-втулок. Они зависят от двух параметров: скорости вращения колеса и типа нагрузки, которую вы подсоединяете к втулке. Зависимости эти достаточно сложные для понимания. Поэтому более детально их рассмотрим в статье про конвертеры. Тут и так сложновато. Рассмотрим только особенности динамо-втулок, которые следуют из характеристик.


А для тех, кто всё-таки хочет копнуть поглубже уже сейчас, я предлагаю почитать следующие материалы:
  • The Bicycle-Powered Smartphone Charger (магистерская диссертация с матмоделями, опытным образцом, и остальными прелестями)
  • Dynamo-Powered LED Light Circuits for Bicycles (развернутая статья по схемам питания светодиодов от втулок и их влиянию на характеристики втулки)
  • Neue und exotische Nabendynamos im Test (сравнение втулок разных производителей)
  • SON 28 (характеристики немецкой втулки, в том числе и вольт-амперные)
Из этого последнего материала я взял для слайда выходное напряжение втулки в виде семейства характеристик. На нём видно, что втулка является источником тока. Это значит, что напряжение втулке определяется сопротивлением нагрузки, которую вы подключите.

Чем больше сопротивление и чем меньше вы потребляете тока от втулки, тем выше будет на ней напряжение. В худшем случае, если вы не подключили ни фару, ни конвертер, втулка работает на холостой ход (open circuit). Можно сказать, что к разъёму питания на втулке подключён только воздух. А его сопротивление огромно – Мега Омы. И при протекании даже небольшого тока напряжение становится  большим.

Мало того, что оно большое, так с увеличением скорости оно будет расти дальше. На 15 км/ч напряжение будет уже 22 В. А если разогнаться под полтинник, то напряжение улетит за 100 В.

Даже если у вас к втулке что-то подключено, но вы разогнались на спуске, напряжение тоже может выскочить в район 20 В. При том, что должно быть в разы ниже.


Чем это чревато, и почему я про это рассказываю?
Чревато выходом из строя электроники. Фара или конвертер должны иметь встроенную защиту от повышенного напряжения. Чтобы на больших скоростях не пострадать. Бывает, что некоторые производители такую защиту встраивают уже в саму втулку.

Все ваши электрические соединения должны быть надёжными, и контакт не должен отваливаться. Потому что, как только он это сделает – появится повышенное напряжение. А если потом контакт снова появится, это повышенное напряжение приложится к вашей электронике. Её спасёт защита, но всё равно такой режим работы с дребезгом контакта не очень полезен.

Раз втулка – источник тока, то неё можно запитать не один светодиод в фаре, а штук 6. И соединить светодиоды последовательно, и получить большую мощность. И использовать для этого простенькую схему, без импульсных преобразователей.



И получается довольно круто. Вы можете раскочегарить вашу фару из 6 светодиодов на 12 Вт. Но за это придётся заплатить. Все эти 12 Вт будете обеспечивать вы своими мышцами. Плюс ещё набегут потери. И придётся по факту прикладывать где-нибудь Ватт 18-20.

Ещё момент, что чем больше светодиодов вы соединяете последовательно, тем большую скорость надо развить, для того чтобы их все запитать на полную мощность. Из 6 светодиодов выжать 11 Вт получится только на скорости 30 км/ч. В то время, как из двух выжать 3.5 Вт можно уже на 12 км/ч.


Пожалуй, пора закругляться. Но в конце хотелось бы рассмотреть наиболее интересные и эффективные втулки. И продемонстрировать разброс цен в зависимости от стандарта оси. Цены я брал из интернет-магазина bike-components.de по курсу переводил через гугл, и было это до скачка валют. Поэтому они скорее для примера и сравнения, а не как ценник из магазина. Точную стоимость уточняйте.
Тайваньская контора. Делает хорошие втулки, с вполне доступными ценами. Особенно, если брать на квикрелизах и 9х100 оси. Ещё и на скидку попасть можно. Такая же втулка, но уже со сквозной осью 15х100 будет стоить в 2 раза дороже. А если моднейший буст стандарт с осью 15х110, то и в три раза дороже. 🙂
Немецкая контора Schmidt Maschinenbau делает судя по тестам, самые эффективные втулки. По сравнению с обычной передней втулкой, у SON 28 затраты мощности почти не отличаются. Если вы не питаете ничего от втулки, она почти не будет вас тормозить.

Но и ценник у неё будь здоров. Особенно на модели втулок со сквозными осями 15 мм.

Особняком стоят втулки для фэтбайков. И ценник на них тоже кусается. Особенно, на немецкие.

На этом закончу. В следующей статье можно прочитать про светотехнику: “Светотехника, фары для динамовтулки.”

skjegg.blogspot.com

Бортовая сеть велосипеда / МАСТЕР КИТ corporate blog / Habr

Велосезон уже начался, и многих велосипедистов стали посещать мысли о создании бортовой сети для велосипеда. Что бы на велосипедной прогулке можно было использовать фонарь, сигналы поворота, стоп сигналы или музыкальную систему и не только во время движения. А кроме того, нелишней была бы возможность зарядки телефона, смартфона или фотоаппарата. Вот одно из таких писем: «Здравствуйте. Предлагаю вам идею продукта для раздела авто-мото-вело (хотя он четко для вело, конечно). Это некое универсальное зарядное устройство для подзарядки аккумуляторов и питания световых элементов на велосипедах с электрогенераторами. Проблема в том, что во время стоянки весь свет гаснет, т.к. нет аккума. Данное устройство должно подключаться к динамке, уметь подзаряжать небольшой аккумулятор, отображать уровень его заряда, ну и конечно запитывать при движении световые приборы.»

Готового устройства у нас нет, но в этой статье мы расскажем, как на базе модулей Мастер Кит можно создать бортовую сеть для велосипеда.



В качестве источника берем обычный велосипедный генератор «бутылочного» типа, например, такой, как более универсальный:

Для минимальной бортовой сети нам понадобится три модуля. Это BM037, PW810 и NT800.

BM037 представляет из себя импульсный понижающий DC/DC преобразователь. В схеме он будет использоваться в качестве выпрямителя для преобразования переменного напряжения простого велосипедного генератора, «бутылочного» типа, в постоянное напряжение. При необходимости, вместо данного модуля можно использовать диодный выпрямитель с электролитическим конденсатором большой емкости.

PW810 представляет из себя импульсный универсальный DC/DC преобразователь. Модуль способен как уменьшать, так и повышать входное напряжение. Так как генератор при движении имеет нестабильное выходное напряжение, оно сильно зависит от скорости движения, с помощью этого преобразователя мы получим стабильное напряжение бортовой сети.

При использовании двух этих устройств мы сможем получить стабильное выходное напряжение от 5В до 12В. Необходимое напряжение устанавливается с помощью регулятора на модуле PW810. Но при таком включении при остановки в бортовой сети будет пропадать вырабатываемое напряжение генератором. Что бы этого не происходило необходимо дополнить схему аккумулятором NT800. Такое включение позволит пользовать бортовой сетью при остановках и увеличит мощность системы, что позволит подключать большее количество устройств. А в процессе движения на велосипеде будет происходить процесс зарядки аккумулятора.

Кроме того, в статье написано: Вместо NT800 можно использовать любой имеющийся у вас под рукой аккумулятор с рабочим напряжением 3,7В, 6В или 12В.

Схему подключения модулей можно увидеть на рисунке:

Она получилась не сложной. Ее сможет повторить любой человек, даже незнакомый с электроникой. Настройка схемы тоже не вызывает ни какой сложности. Подключите лабораторный источник питания вместо генератора или раскрутите колесо, на котором установлен генератор. Теперь, с помощью регулятора напряжения на модуле BM037 необходимо ограничить максимальное выходное напряжение до 26В. С помощью регулятора напряжения на модуле PW810 необходимо выставить выходное напряжение используемого аккумулятора, в нашем случае 13,8В. Теперь выведите кабель с аккумулятора на необходимые розетки, например типа автомобильного прикуривателя, и используйте любые любимые гаджеты не переживая, что они разрядятся в самый неподходящий момент.

Если вам необходимо иметь в бортовой сети не стандартное напряжение, ниже 12В, например 5В или 2,4В. Для этого можно подключить к клеммам аккумулятора понижающий DC/DC преобразователь PW841:

Данный преобразователь оснащен двумя дисплеями верхний для отображения выходного напряжения, нижний для отображения потребляемого тока. Это позволит вам контролировать состояние и потребляемый ток подключенных устройств.

При желании, аккумулятор можно оснастить модулем контроля заряда MP606:

Модуль подключается параллельно клеммам аккумулятора. Несмотря на то, что модуль имеет очень низкое энергопотребление, всего 10 мА, при длительных стоянках рекомендуется предусмотреть его отключение. Данный модуль так же может пригодиться в любой другой технике, где используется аккумулятор, например скутер, автомобиль и т.п.

Тогда финальный вариант будет выглядеть согласно схеме:

habr.com

Виды генераторов электрического тока на велосипед: плюсы и минусы конструкций

Велогенератор для зарядки телефона и поддержания работы фар — это портативное устройство, позволяющее вырабатывать энергию путем вращения педалей.

Что такое велогенераторы и зачем нужны

Электрогенератор, устанавливаемый на велосипед, — это удобное портативное устройство, которое дает возможность самостоятельно вырабатывать электрический ток для поддержания работы фар или других электроприборов. Например, с его помощью получится на ходу бесплатно заряжать телефон или GPS-навигатор.

Принцип работы заключается в генерации переменного тока, который преобразуется в постоянный за счет диодного моста. Факты о велогенераторах:

  • в зависимости от навыков и скорости езды велосипедист производит 0,15-0,25 КВт в час;
  • рекордный показатель, достигнутый за 24 часа, составил 12 КВт;
  • чем выше частота вращения педалей, тем больше генерируется электроэнергии. Подобная закономерность характерна как для покупных, так и самодельных генераторов электричества на велосипед;
  • педальные генераторы бывают стационарными: приспособление получится изготовить самостоятельно, используя старый и ненужный велосипед.

В промышленных масштабах использование педальных генераторов теряет смысл, так как на выработку 1 КВт энергии уходит около 10 часов, но для личного использования такой прибор — хороший выбор. Ведь главные преимущества: возможность бесплатно добывать ток и днем, и ночью, дешевизна оборудования и простота обслуживания. Еще больше снизить стоимость получится, если сделать велогенератор своими руками.

Стационарный педальный генератор также выступает альтернативой солнечной черепице или батареям, которые не всегда получается использовать из-за климатических условий. Приспособление никак не зависит от солнца, ветра и легко размещается в доме или квартире.

Виды конструкций для велосипедистов

Выделяют следующие типы велогенераторов:

  • бутылочная динамо-машина;
  • динамо-втулка;
  • бесконтактный генератор.

Каждая из конструкций обладает рядом преимуществ и недостатков, поэтому велосипедисту следует заранее определить приоритеты: играет ли решающую роль стоимость, удобство обслуживания, уровень воспроизводимого шума или другие характеристики.

Бутылочная динамо-машина

Приспособление по форме напоминает бутылку. По сути, это небольшой электрический генератор, который крепится на боковую стенку велосипедной шины. Принцип работы: когда велосипедист движется, покрышка прокручивает ролик динамо-генератора.

В таблице рассмотрены преимущества и недостатки такого типа конструкций:

ПлюсыМинусы
Если выключить бутылочный генератор для велосипеда или заряжаемые устройства, фары, то прибор не будет создавать дополнительное сопротивление во время езды.Устройство плохо переносит влажную погоду и начинает вырабатывать меньше энергии.
Приспособление устанавливается практически на любую шину.Создание шума во время езды.
В среднем бутылочные приборы дешевле, чем конструкции других типов, но есть и исключения.Во включенном режиме бутылочные динамо-машины сильнее затрудняют передвижение велосипедиста, чем динамо-втулки и бесконтактные велогенераторы.
Динамо-машину сложно правильно установить неспециалисту: важную роль играет, под каким углом, на какой высоте идет соприкосновение с боковой стенкой шины.
Приспособление необходимо перемещать и включать вручную. Автоматический режим не предусмотрен.

Важно: если велогенератор такого типа неправильно отрегулирован, то во время поездки он может зацепиться за спицы. Но в некоторых моделях предусмотрены дополнительные петли для предотвращения подобных ситуаций.

Велосипедисту следует знать: падение на землю способно существенно повредить велогенератор. Перед каждой поездкой рекомендуется проверять, не ослаблены ли крепежные винты.

Динамо-втулка

Динамо-втулки — это подвид динамо-машин, которые размещаются не на покрышке, а в ступице велосипедного колеса. Генератор создала английская производственная компания Sturmey-Archer, затем подобные приспособления стали выпускать производители Shimano и Schmidt.

В основе работы лежит многополюсный магнит, который располагается в ступице велошины и вращается вокруг неподвижной катушки, закрепленной на оси. Мощность для разных моделей разнится от 1,8 до 3 Вт.

Перед покупкой лучше ознакомиться с главными преимуществами и недостатками динамо-втулок:

ПлюсыМинусы
Полная бесшумность, достигаемая за счет отсутствия движущихся и, как следствие, соприкасающихся деталей.Большой вес, но проблема решается благодаря использованию оболочек из алюминия и редкоземельных магнитов.
Минимальное сопротивление при езде.Высокая стоимость.
Низкие требования к обслуживанию.Иногда требуется сборка отдельного динамо-колеса.
Эффективная работа при любых климатических условиях.
Не изнашивает покрышку велосипеда.
Автоматическое включение.

В комплекте со многими туристическими велосипедами идут именно динамо-втулки. Стоит отметить, что такой велогенератор своими руками в домашних условиях смастерить возможно.

Бесконтактный велосипедный генератор

В бесконтактном типе электрогенератора велосипедная шина выступает ротором: на ней фиксируется специальный обод с закрепленными 28 магнитами с чередующимися разными полюсами. Статор в этой системе — индукционная катушка, вырабатывающая ток. Фары уже встроены в электрогенератор, поэтому электричество поступает напрямую.

Плюсы и минусы приспособления подробно представлены в таблице:

ПреимуществаНедостатки
Отсутствие проводов и кабелей.Небольшая электроемкость аккумуляторов, но можно вручную установить более мощную батарею.
Легкость генератора: вес не превышает 60 г.Высокая стоимость.
Применение в дальних поездках.Небольшой выбор производителей. Однако, учитывая растущий интерес к альтернативным источникам энергии и высокой перспективности их применения, можно ожидать скоро появления новых интересных моделей.
Полное отсутствие сопротивления при езде, поэтому велосипедисту не нужно прилагать дополнительных усилий.
Использование света даже во время стоянки за счет встроенного конденсатора, выполняющего функцию батареи.
Полная бесшумность.

В целом велосипедисты отмечают, что яркость свечения фар на бесконтактных моделях примерно такая же, как у обычных аккумуляторных ламп. Тот, кто желает сэкономить, может собрать бесконтактный генератор для велосипеда своими руками.

Портативные электрогенераторы — это девайс, который пригодится каждому велосипедисту. Лучше остановить свой выбор на бесконтактных приборах или динамо-втулках, но при ограниченном бюджете удастся найти интересные и не очень шумные бутылочные модели. ТОП-производителей, на которых стоит обратить внимание: Shimano, CadenceX, Sturmey-Archer, Schmidt.

altenergiya.ru

Велосипедные динамо-втулки

Динамо-втулка — это электрический генератор для велосипеда, встроенный в специальную втулку. Динамо-втулки разработала компания Sturmey-Archer в Англии. В 2010 году в Тайване ими была представлена новая версия динамо-втулки в комбинации с барабанным тормозом. В настоящее время динамо-втулки также производятся компаниями Schmidt и Shimano, которые строго говоря не являются «динамо-втулками», потому что «динамо-втулка» это торговая марка Sturmey-Archer. Купить динамо-втулку Shimano можно и за 50 долларов, но к примеру цена динамо-втулок Supernova может доходить и до 300 долларов.

Мощность классических динамо-втулок составляет 1.8 Вт при напряжении 6 В, тогда как другие велосипедные динамо-машины включая новые динамо-втулки производят 2.4 Вт или 3 Вт. Фары, продававшиеся с классической динамо-втулкой, были точно рассчитаны на эффективное использование низкой мощности. Фара на 2.4 Вт от других динамо-машин в комбинации с задним фонарём на 0.6 Вт, установленная на велосипед с классической динамо-втулкой, будет светить тускло.

Благодаря усовершенствованию технологии магнитов динамо-втулки стали меньше, легче, мощнее. Также намного более эффективными стали источники света — галогеновые лампы или светодиоды, так что теперь современные динамо-машины могут производить в несколько раз больше света, чем классические динамо-втулки.

Динамо-втулки довольно тяжёлые (новые в меньшей степени из-за использования редкоземельных магнитов и алюминиевых оболочек), совершенно бесшумные, У них отсуствуют движущиеся части, вследствии чего практически нет механического трения. Они работают за счёт кольцевидного многополюсного магнита, расположенного внутри корпуса втулки увеличенного размера, вращающегося вокруг прикреплённого к оси неподвижного якоря (катушки). Динамо-втулка имеет очень низкое сопротивление вращению.

Питание фар от динамо-втулок.

Динамо-втулки являются генераторами переменного тока. Как и другие велосипедные генераторы, на высоких скоростях они могут сжечь лампы — за исключением ламп современных фар, в которых установлен полупроводниковый регулятор напряжения. В сравнении с бутылочными динамо-машинами динамо-втулки производят больше света на низких скоростях за счёт того, что у них частота переменного тока ниже. У лампы больше времени на разогрев на каждой амплитуде импульса тока. На низких скоростях фара с питанием от динамо-втулки заметно пульсирует, а фара питаемая бутылочной динамо-машиной только тускло светит.

С возрастанием скорости велосипедного генератора возрастает и частота тока. Это очень полезная закономерность, так как с ростом частоты индуктивность обмотки якоря генератора пропускает переменный ток менее эффективно, что в значительной степени противодействует возрастанию напряжения с ростом скорости. Этот эффект индуктивности позволяет использовать генератор в более широком спектре скоростей. Всё же гонщики должны позаботится о питания ламп или же использовать современную систему освещения с регулятором напряжения.

На сайте Шелдона Брауна можно найти схему простого регулятор напряжения. Если ты хочешь её собрать, то обрати внимание, что с целью предотвращения чрезмерной зарядки при токе ниже 0.3 А нужен установленный в «дневную» позицию никель-кадмиевый или никель-металл-гидридный аккумулятор ёмкостью от 10 ампер-часов (например типичный комплект из пяти высокоёмких никель-металл-гидридных D элементов).

Никель-кадмиевый или никель-металгидридный аккумулятор также может чрезмерно разрядится или получить необратимое повреждениев том случае, если более сильные элементы будут прогонять мощность в обратном направлении через более слабые элементы («изменение полярности»). «Интеллектуальная» система в этом случае отключает зарядку и останавливает разрядку на безопасном уровне. Современные динамо-машины, работающие во время остановки («стояночный свет»), комплектуются светодиодной фарой, а для накопления энергии конденсатором. На случай выхода из строя генератора как запасной вариант можно установить на велосипед передние и боковые дорожные отражатели, практически бесполезные во время движения, но эффективные при остановке.

Когда раньше у меня на тандеме стояла динамо-втулка, лампочка потребляла слишком много энергии. Я решил эту проблему (и некоторые другие) с помощью двухполупериодного мостового выпрямителя, подав выпрямленный постоянный ток параллельно к 6 вольтному (5 элементов по 1.2 В) никель-кадмиевому аккумулятору. Данная схема не только даёт свет во время остановок, а также позволяет динамо-машине подзарядить никель-кадмиевый аккумулятор и на высоких скоростях, когда напряжение на клемах превышает 6 В, никель-кадмиевый аккумулятор благодаря низкому внутреннему сопротивлению отсасывает избыток энергии, что даёт небольшой дополнительный заряд и обергает лампу от перегорания.

Динамо-втулка, нахоядщаяся по под постоянным напряжением, всегда подсоединена к фаре и во время движения невохможно выключить свет. Конечно можно было для этой цели просто снабдить схему переключателем, но в этом нет никакой необходимости.

Есть три режима работы этой схемы питания аккумуляторной батареи и фар. В «ночном» положении никель-кадмиевые аккумуляторы подключены параллельно с выпрямленным током динамо-втулки, как было описано выше. В «дневном» положении никель-кадмиевые аккумуляторы подключены к фарам и динамо-машине через диод (выпрямитель). Это позволяет динамо-втулке заряжать батарею, когда она крутится достаточно быстро, но не подавать электричество в обратном направлении, чтобы аккумулятор не разряжался от фары.

В позиции «парковка» аккумулятор полностью отключён из-за того, что диоды не идеальны и они создают небольшую утечку тока, разряжающую никель-кадмиевые аккумуляторы.

Динамо-втулки в отличие от большинства велосипедных динамо-машин не используют велосипедную раму как землю и могут быть использованы с приведённой выше схемой. В двухполупериодном выпрямителе цепь переменного тока должна быть отделена от цепи постоянного тока. Поэтому чтобы использовать двух-полупериодное выпрямление, динамо-машина или лампы нужно изолировать от рамы. Динамо-втулки всегда изолированы от рамы, поэтому у них две клеммы и двойной провод.

Выпрямитель для динамо-втулок.

«Выпрямитель» — это устройство, преобразующее переменный ток в постоянный. Самым простым видом выпрямителя яляется «диод», представляющий собой однонаправленный клапан в электричестве. Диод, подключенный последовательно с источником переменного тока, пропускает ток только половину времени, когда переменный ток течёт в совместимом направлении. При использовании одного диода не используется половина электричества, что приводит к пульсирующему постоянному току.

Существует простая схема выпрямителя с использованием четырёх диодов, которая называется «мостовой выпрямитель». Она эффективно переключает полярность во время каждого цикла и преобразует переменный ток в постоянный с незначительными потерями. Можно спаять четыре диода вместе в правильной конфигурации, но сейчас проще купить «двухполупериодный мостовой выпрямитель». Учитывая, что динамо-втулка работает на низких напряжениях, при использовании кремниевых диодов возникают значительные потери — 1.4 В. При использовании германиевых диодов они составляют только 0.4 В. Наша более продвинутая схема питания от динамо позволяет значительно уменьшить потери, но она достаточно сложна и под силу только электронным хакерам.

velofun.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *