Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Пример выбора плавких предохранителей

В предыдущей статье мы рассмотрели условия выбора плавких предохранителей. В этой же статье, речь пойдет непосредственно о примере выбора плавких предохранителей для асинхронных двигателей и распределительного щита ЩР1, согласно схеме рис.1 (схема дана в однолинейном изображении). Самозапуск двигателей исключен. Условия пуска легкие. Технические характеристики двигателей приведены в таблице 1.

Рис. 1 – Схема защиты плавкими предохранителями группы короткозамкнутых асинхронных двигателей

Таблица 1 – Технические характеристики двигателей 4АМ

Обозначение на схемеТип двигателяНоминальная мощность Р, кВтКПД η,%Коэффициент мощности, cos φIп/Iн
4АМ112М27,587,50,887,5
4АМ100L25,587,50,917,5
4АМ160S215880,917,5
4АМ90L2384,50,886,5
4АМ180S215880,917,5

Расчет

1. Определяем номинальный ток для двигателя 1Д:

2. Определяем пусковой ток для двигателя 1Д:

3. Определяем номинальный ток плавкой вставки предохранителя FU2:

Iн.вс. > Iпуск.дв/k = 111,15/2,5 = 44,46 А;

где:
k =2,5 — коэффициент, учитывающий условия пуска двигателя, в моем случаем пуск двигателей легкий. Подробно выбор коэффициента, учитывающий условие пуска двигателя рассмотрен в статье: «Условия выбора плавких предохранителей».

Выбираем плавкую вставку предохранителя FU2 на ближайший больший стандартный номинальный ток 50 А, по каталогу на предохранители NV-NH фирмы ETI, согласно таблицы 2.

Номинальный ток отключения для предохранителей NV/NH с характеристикой АМ составляет 100 кА. По этому условие Iном.откл > Iмакс.кз., будет всегда выполнятся.

Таблица 2

Аналогично рассчитываем номинальный ток плавкой вставки для двигателей 2Д-5Д и заносим результаты расчетов в таблицу 3.

Обозначение на схемеТип двигателяНом.ток, АПусковой ток, АНоминальный ток плавкой вставки, АНом. ток предохранит., А
РасчетныйВыбранный
4АМ112М214,82111,1544,465050
4АМ100L210,578,831,524040
4АМ160S228,5213,785,48100100
4АМ90L26,1439,915,962020
4АМ180S228,5213,785,48100100

4. Выбираем плавкую вставку предохранителя FU1.

4.1 Определяем наибольший номинальный длительный ток с учетом, что у нас включены все двигатели:

4.2 Определяем наибольший ток, учитывая что наиболее тяжелым режимом для предохранителя FU1, будет пуск наиболее мощного двигателя 5Д при находящихся в работе двигателях 1Д, 2Д, 3Д, 4Д.

Выбираем плавкую вставку предохранителя FU1 на номинальный ток 125 А.

Теперь нам нужно проверить выбранные плавкие вставки на

отключающую способность короткого замыкания для отходящих линий в соответствии с ПУЭ раздел 1.7.79, время отключения не должно превышать 5 сек. Для проверки берется ток однофазного замыкания на землю в сети с глухозаземленной нейтралью.

Значения токов короткого замыкания для проверки отключающей способности предохранителей берем из статьи: «Пример приближенного расчета токов короткого замыкания в сети 0,4 кв».

Проверим выбранную плавкую вставку предохранителя FU2 на отключающую способность.

Двигатель 1Д защищен плавкой вставкой на 50 А, ток однофазного КЗ составляет 326 А, максимальный ток отключения плавкой вставки при времени 5 сек составляет 281 А согласно таблицы 2, Iк.з.(1) = 326A > Iк.з.max=281A (условие выполняется). Аналогично проверяем и остальные предохранители, результаты расчетов заносим в таблицу 4.

Проверим на отключающую способность предохранитель FU1, учитывая, что ток трехфазного короткого замыкания в месте установки предохранителя Iк.з(3) = 2468 А.

Предельно допустимый ток отключения для предохранителя FU1 с плавкой вставкой на 125 А составляет 100 кА > 2468 A (условие выполняется).

Таблица 4 – Результаты расчетов

Обозначение на схемеНоминальный ток плавкой вставки, АIк.з.(3), АIк.з.(1), АМаксимальный ток отключения плавкой вставки при времени 5 сек. Iк.з.max, AПримечание
FU11252468 
FU250326281Условие выполняется
FU340222195Условие выполняется
FU4100 (80)429595 (432)Условие не выполняется
FU52012286Условие выполняется
FU6100 (80)429595 (432)Условие не выполняется

Как видно из результатов расчета для предохранителей FU4 и FU6 чувствительности к токам КЗ не достаточно. Чтобы увеличить чувствительность к токам КЗ, можно увеличить сечение кабеля, в данном случае увеличение сечение кабеля, является не целесообразным.

Либо уменьшить номинальный ток плавкой вставки для предохранителей FU4 и FU6, отстраиваясь от пусковых токов и учитывая, что условия пуска двигателя легкие (время пуска 5 сек.).

Как показывает опыт эксплуатации, для надежной работы вставок пусковой ток не должен превышать половины тока, который может расплавить вставку за время пуска.

Исходя из этого, выбираем ток плавкой вставки для предохранителей FU4 и FU6 на 80 А, где: Iк.з.max = 432 А при времени 5 сек., пусковой ток равен 213,7 А (условие выполняется).

Поделиться в социальных сетях

Плавкие предохранители. Выбор, расчет предохранителя.

Плавкие предохранители

Назначение

При возникновении эксплуатационных (технологических) перегрузок и аварийных режимов, являющихся следствием нарушений работы схемы, по электрическим цепям аварийного контура протекают токи, превосходящие номинальные значения, на которые рассчитано электрооборудование.

В результате воздействия аварийных токов и перегрева токопроводов нарушается электрическая изоляция, обгорают и плавятся контактные поверхности соединительных шин и электрических аппаратов. Электродинамические удары при переходных процессах вызывают повреждение шин, изоляторов и обмоток реакторов.

Для ограничения амплитуды аварийных токов и длительности их протекания применяются специальные устройства и системы защиты электрооборудования.

Примечание. Устройства защиты должны отключить аварийную цепь раньше, чем могут выйти из строя отдельные ее элементы.

При больших перегрузках или коротких замыканиях устройства защиты должны сразу отключить всю электроустановку или часть ее с максимальным быстродействием для обеспечения дальнейшей работоспособности или, если авария является следствием выхода из строя одного из элементов цепи, предотвратить выход из строя другого электрооборудования.

В случае небольших перегрузок, не опасных для оборудования в течение определенного времени, система защиты может воздействовать на предупреждающую сигнализацию для сведения обслуживающего персонала или на систему автоматического регулирования для снижения тока.

Виды защиты и требования к ней

Поскольку основным фактором, приводящим к выходу из строя электрооборудования, является тепловое действие аварийного тока, то по принципу построения защитные устройства делятся на

токовые и тепловые.

Токовые защитные устройства контролируют значения или отношения значений протекающих через оборудование токов.

Независимо от параметров установки и типа применяемых защитных аппаратов и систем выделяют следующие общие требования к защите.

Быстродействие — обеспечение минимально возможного времени срабатывания защиты, не превышающего допустимого.

Селективность. Аварийное отключение должно производиться только в той цепи, где возникла причина аварии. А другие участки силовой цепи должны оставаться в работе.

Электродинамическая стойкость. Максимальный ток, ограниченный защитными устройствами, не должен превышать допустимого для данной электроустановки значения по электродинамической стойкости.

Уровень перенапряжений. Отключение аварийного тока не должно вызывать перенапряжений, опасных для полупроводниковых приборов.

Надежность. Устройства защиты не должны выходить из строя при отключении аварийных токов. Они обеспечивают возможность быстрого

восстановления электрической цепи при устранении неисправности.

Помехоустойчивость. При появлении помех в сети и в цепях управления устройства защиты не должно ложно срабатывать.

Чувствительность. Защита должна срабатывать при всех повреждениях и токах, опасных для элеменов схемы, независимо от места и характера аварии.

Плавкие предохранители

Определение. Плавкие предохранители — это аппараты, защищающие установки от перегрузок и токов короткого замыкания.

Основными элементами предохранителя являются плавкая вставка, включаемая в рассечку защищаемой цепи, и дугогасительное устройство (это не обязательный атрибут, а вспомогательный, без него предохранитель все равно работать будет), гасящее дугу, возникающую после плавления вставки.

К предохранителям предъявляются следующие требования:

– времятоковая характеристика предохранителя должна проходить ниже, но возможно ближе к времятоковой характеристике защищаемого объекта;

– время срабатывания предохранителя при коротком замыкании должно быть минимальным, особенно при защите полупроводниковых приборов;

– характеристики предохранителя должны быть стабильными;

– в связи с возросшей мощностью установок предохранители должны иметь высокую отключающую способность;

– замена сгоревшего предохранителя или плавкой вставки не должна занимать много времени.

Выбор предохранителей

для защиты асинхронных электродвигателей

Основным условием, определяющим выбор плавких предохранителей для защиты асинхронных двигателей с короткозамкнутым ротором, является отстройка от пускового тока.

Отстройка плавких вставок от пусковых токов выполняется по времени: пуск электродвигателя должен полностью закончиться раньше, чем вставка расплавится под действием пускового тока.

Правило. Опытом эксплуатации установлено правило: для надежной работы вставок пусковой ток не должен превышать половины тока, который может расплавить вставку за время пуска.

Все электродвигатели разбиты на две группы: по времени; по частоте пуска.

Двигателями с легким пуском считаются двигатели вентиляторов, насосов, металлорежущих станков и т. п., пуск которых заканчивается за 3–5 с, пускаются эти двигатели редко, менее 15 раз в 1 ч.

К двигателям с тяжелым пуском относятся двигатели подъемных кранов, центрифуг, шаровых мельниц, пуск которых продолжается более 10 с, а также двигатели, которые пускаются очень часто — более 15 раз в 1 ч.

Выбор номинального тока плавкой вставки для отстройки от пускового тока производится по формуле:

IвсIпд/К,

где Iпд — пусковой ток двигателя; К — коэффициент, определяемый условиями пуска и равный для двигателей с легким пуском 2,5, а для двигателей с тяжелым пуском 1,6–2.

Примечание. Поскольку вставка при пуске двигателя нагревается и окисляется, уменьшается сечение вставки, ухудшается состояние контактов, она со временем может перегореть и при нормальной работе двигателя.

Вставка, выбранная в соответствии с приведенной выше формулой, может сгореть также при затянувшемся по сравнению с расчетным временем пуске или самозапуске двигателя. Поэтому во всех случаях целесообразно измерить напряжение на вводах двигателя в момент пуска и определить время пуска.

Сгорание вставок при пуске может повлечь работу двигателя на двух фазах и его повреждение.

Примечание. Каждый двигатель должен защищаться своим отдельным аппаратом защиты. Общий аппарат допускается для защиты нескольких маломощных двигателей только в том случае, если будет обеспечена термическая устойчивость пусковых аппаратов и аппаратов защиты от перегрузки, установленных в цепи питания каждого двигателя.

Выбор предохранителей для защиты магистралей, питающих несколько асинхронных электродвигателей

Защита магистралей, питающих несколько двигателей, должна обеспечивать и пуск двигателя с наибольшим пусковым током, и самозапуск двигателей. Если он допустим по условиям техники безопасности, технологического процесса и т. п.

При расчете уровня защиты необходимо точно определить, какие двигатели:

– отключаются при понижении или полном исчезновении напряжения;

– остаются включенными;

– повторно включаются при появлении напряжения.

Для уменьшения нарушений технологического процесса применяют специальные схемы включения удерживающего электромагнита пускателя, обеспечивающего немедленное включение в сеть двигателя при восстановлении напряжения. Поэтому в общем случае номинальный ток плавкой вставки, через которую питается несколько самозапускающихся двигателей, выбирается по формуле:

Iвс ≥ ∑Iпд/К,

где ∑Iпд — сумма пусковых токов самозапускающихся электродвигателей.

Выбор предохранителей для защиты магистралей при отсутствии самозапускающихся электродвигателей

Плавкие вставки предохранителей выбираются по следующему соотношению:

Iном. вст.Iкр/К,

где Iкр = Iпуск + Iдлит — максимальный кратковременный ток линии; Iпускпусковой ток электродвигателя или группы одновременно включаемых электродвигателей, при пуске которых кратковременный ток линии достигает наибольшего значения; Iдлитдлительный расчетный ток линии до момента пуска электродвигателя (или группы электродвигателей) — это суммарный ток, который потребляется всеми элементами, подключенными через плавкий предохранитель, определяемый без учета рабочего тока пускаемого электродвигателя (или группы двигателей).

Выбор предохранителей для защиты асинхронных электродвигателей от перегрузки

Поскольку пусковой ток в 5–7 раз превышает номинальный ток двигателя, плавкая вставка, выбранная по выражению IвсIпд/К будет иметь номинальный ток в 2–3 раза больше номинального тока двигателя. Выдерживая этот ток неограниченное время, она не может защитить двигатель от перегрузки.

Для защиты двигателей от перегрузки обычно применяют тепловые реле, встраиваемые в магнитные пускатели или в автоматические выключатели.

Примечание. Если для защиты двигателя от перегрузки и управления им применяется магнитный пускатель, то при выборе плавких вставок приходится учитывать также возможность повреждения контактов пускателя.

Дело в том, что при коротких замыканиях в двигателе снижается напряжение на удерживающем электромагните пускателя. Он разрывает ток короткого замыкания своими контактами, которые, как правило, разрушаются. Для предотвращения короткого замыкания двигатели должны отключаться предохранителем раньше, чем разомкнутся контакты пускателя.

Это условие обеспечивается, если время отключения тока короткого замыкания предохранителем не превышает 0,15–0,2 с. Для этого ток короткого замыкания должен быть в 10–15 раз больше номинального тока вставки предохранителя, защищающего электродвигатель.

Обеспечение селективности срабатывания плавких предохранителей

Избирательность (селективность) защиты плавкими предохранителями обеспечивается подбором плавких вставок таким образом, чтобы при возникновении короткого замыкания, например, на ответвлении к электроприемнику, срабатывал ближайший плавкий предохранитель, защищающий этот электроприемник, но не срабатывал предохранитель, защищающий головной участок сети.

Выбор плавких предохранителей по условию селективности следует производить, пользуясь типовыми время-токовыми характеристиками t=f(I) предохранителей с учетом возможного разброса реальных характеристик по данным завода-изготовителя.

При защите сетей предохранителями типов ПН, НПН и НПР с типовыми характеристиками (рис. 20 и рис. 21) селективность действия защиты будет выполняться, если между номинальным током плавкой вставки, защищающей головной участок сети Iг, и номинальным током плавкой вставки на ответвлении к потребителю Io выдерживаются определенные соотношения.

Например, при небольших токах перегрузки плавкой вставки (около 180–250 %) селективность будет выдерживаться, если Iг больше Io хотя бы на одну ступень стандартной шкалы номинальных токов плавких вставок.

Рис. 20. Защитные (времятоковые) характеристики плавких предохранителей типа ПН-2


Рис. 21. Защитные (времятоковые) характеристики плавких предохранителей типа НПР и НПН

При коротком замыкании селективность защиты предохранителями типа НПН будет обеспечиваться, если будут выдерживаться следующие соотношения:

где Iк — ток короткого замыкания ответвления, А; Iг — номинальный ток плавкой вставки плавкого предохранителя головного участка сети, А; Iо — номинальный ток плавкой вставки на ответвлении, А.

Соотношения между номинальными токами плавких вставок Iг и Iо для предохранителей типа ПН2, обеспечивающие надежную селективность, приведены в табл. 2.

Таблица 2 Номинальные токи последовательно включенных плавких вставок предохранителей ПН2, обеспечивающих надежную селективность


Номинальный ток меньшей плавкой вставки , а

Номинальный ток большей плавкой вставки , а, при отношении /Io

10

20

50

100 и более

30

40

50

80

120

40

50

60

100

120

50

60

80

120

120

60

80

100

120

120

80

100

120

120

150

100

120

120

150

150

120

150

150

250

250

150

200

200

250

250

200

250

250

300

300

250

300

300

400

более 600

300

400

400

более 600

400

500

более 600

Примечание. — ток короткого замыкания в начале защищаемого участка сети.

Для выбора плавких предохранителей по условию селективности можно использовать метод согласования характеристик предохранителей, в основу которого положен принцип сопоставления сечений плавких вставок по формуле:

,

где а — коэфициент селективности; F1 — сечение плавкой вставки, расположенной ближе к источнику питания; F2 — сечение плавкой вставки, расположенной дальше от источника питания, т. е. ближе к нагрузке.

Полученное значение а сравнивают с данными табл. 3, где приведены наименьшие значения а, при которых обеспечивается селективность. Селективность защиты будет обеспечена, если расчетное значение а равно табличному или больше него.

Наименьшие значения а, при которых обеспечивается селективность защиты Таблица 3


Металл плавкой вставки предохранителя, расположенного ближе к источнику питания (для любого типа предохранителя)

отношение а сечений плавких вставок смежных предохранителей, если предохранитель, расположенный ближе к нагрузке, изготовлен

с заполнителем при плавкой вставке из

без заполнителя при плавкой вставке из

меди

серебра

цинка

свинца

меди

серебра

цинка

свинца

Медь

1,55

1,33

0,55

0,2

1,15

1,03

0,4

0,15

Серебро

1,72

1,55

0,62

0,23

1,33

1,15

0,46

0,17

Цинк

4,5

3,95

1,65

0,6

3,5

3,06

1,2

0,44

Свинец

12,4

10,8

4,5

1,65

9,5

8,4

3,3

1,2

Выбор плавких предохранителей для защиты цепей управления

Выбор плавких вставок для цепи управления с напряжением Uн можно произвести по формуле

Iн.вст. ≥ (∑Pр + 0,1∑Pв)/Uн,

где ∑Pр — наибольшая суммарная мощность, потребляемая катушками электрических аппаратов (электромагнитными пускателями, промежуточными реле, реле времени, исполнительными электромагнитами) и сигнальными лампами и т. д. при одновременной работе, ВА или Вт;

Pв — наибольшая суммарная мощность, потребляемая при включении катушек одновременно включаемых аппаратов (пусковая мощность), ВА или Вт.

Если известны не мощности, а токи, то это формула может быть записана в виде

Iн.вст. ≥ ∑Iр + 0,1∑Iв

Условия выбора плавких предохранителей

В наше время все большей популярностью пользуются автоматические выключатели (АВ) как иностранных так и отечественных производителей, это в первую очередь связано с тем, что у АВ отсутствуют недостатки предохранителей. Но не смотря на все свои недостатки, предохранители все еще активно используются, так как это наиболее дешевый вариант защиты присоединения.

Например у нас на предприятии, если заказчик не возражает, для защиты двигателей мощностью до 100 кВт, применяются разъединитель-предохранитель, учитывая что короткое замыкание не такое частое явление, предохранитель – это очень хорошее решения для защиты присоединения.

В связи с этим, в этой статье я расскажу как нужно правильно выбирать предохранители с плавкими вставками в соответствии с ПУЭ и другой справочной литературой, чтобы Ваши предохранители срабатывали только при ненормальных режимах работы электроприемников.

При выборе предохранителя, должны выполняться условия:

  • номинальное напряжение предохранителя должно соответствовать напряжению сети:

Uном = Uном.сети (1)

  • номинальный ток отключения предохранителя должен быть не меньше максимального тока к.з. в месте установки:

Iном.откл > Iмакс.кз (2)

Условия выбора плавких вставок:

  • ток плавкой вставки должен быть больше максимального тока защищаемого присоединения:

Iн.вс. > Iраб.макс. (3)

  • при защите одиночного асинхронного двигателя, выбирается ток плавкой вставки с учетом пуска двигателя:

Iн.вс. > Iпуск.дв/k (4)

где:

k – коэффициент, принимается равным 2,5 согласно [Л1. с. 124,125], что соответствует ПУЭ пункт 5.3.56, для электродвигателей с короткозамкнутым ротором при небольшой частоте включений и легких условиях пуска (tп=2-2,5 сек.).

Обычно данный коэффициент принимается для двигателей вентиляторов, насосов, главных приводов металлорежущих станков и механизмов с аналогичным режимом работы.

Для двигателей с тяжелыми условия пуска (tп > 10-20 сек.), например для двигателей мешалок, дробилок, центрифуг, шаровых мельниц и т.п. А также для двигателей с большой частотой включений, т.е. для двигателей кранов и других механизмов повторно-кратковременного режима, коэффициент k принимается равным 1,6 – 2.

Для двигателей с фазным ротором коэффициент k принимается равным 0,8 – 1.

При выборе тока плавкой вставке по условию (4), следует учитывать, что с течением времени защитные свойства вставки ухудшаются, из-за этого есть вероятность ложных сгораний плавкой вставке при пусках двигателей. В результате двигатель может вообще не запуститься, либо работать на 2-х фазах, что приводит к перегреву двигателя.

И если не предусмотрена защита от перегрузки, двигатель может выйти из строя.

Решением данной проблемы, является выбор большего тока плавкой вставки, чем по условию (4), если это допустимо по чувствительности к токам КЗ.

При защите сборки, ток плавкой вставки выбирают по трем условиям:

  • по наибольшему длительному току:
  • при полной нагрузке сборки и пуске наиболее мощного двигателя:
  • при самозапуске двигателей:

где:
k – коэффициент, учитывающий условия пуска двигателя;

— сумма пусковых токов самозапускающих двигателей;

— сумма максимальных рабочих токов электроприемников, кроме двигателя с наибольшим пусковым током Iпуск.макс.;

Для проверки надежного срабатывания предохранителя в конце защищаемой линии, нужно выполнить на кратность тока кз и учитывать время отключения.

В справочной литературе, Вы можете встретить такое утверждение, что для надежного и быстрого перегорания плавкой вставки, требуется чтобы при КЗ в конце защищаемой линии обеспечивалась необходимая кратность тока короткого замыкания, т.е отношение тока короткого замыкания Iкз к номинальному току плавкой вставки Iн.вс.

Данное условие было взято, еще со старого ПУЭ образца 1986 г пункт 1.7.79 ( для невзрывоопасной среды: kкз = Iкз/Iн.вс (kкз >3), данный пункт в ПУЭ 7-издания был изменен, и теперь нужно учитывать время отключения в системе TN, согласно таблицы 1.7.1.

Для взрывоопасной среды, согласно ПУЭ 7-издание пункт 7.3.139, должно выполнятся условие кратности тока кз: kкз = Iкз/Iн.вс (kкз >4). Данный пункт остался без изменения, если сравнивать с ПУЭ 1986 г, что весьма странно, если учитывать что изменился пункт 1.7.79.

Если Вам неизвестны значения пусковых токов двигателя, то в порядке исключений, можно выбрать номинальные токи плавких вставок для двигателей мощность до 100 кВт и частотой пусков не более 10-15 в час следующим образом [Л2. с. 15]:

  • при Uн.сети = 500 В Iн.вс = 4,5*Рн;
  • при Uн.сети = 380 В Iн.вс = 6*Рн;
  • при Uн.сети = 220 В Iн.вс = 10,5*Рн.

После того как Вы выбрали предохранитель, нужно выполнить проверку селективности (избирательности) последовательно включенных между собой предохранителей с учетом защитных характеристик.

Это означает, что при коротком замыкании должна перегореть только та плавка вставка и того предохранителя, который находиться ближе всего к месту повреждения. Как показывает практика, для обеспечения селективности между двумя последовательно включенными предохранителями. Нужно чтобы предохранители между собой отличались на две ступени по шкале номинальных токов. При этом вставки, должны иметь одинаковые защитные характеристики, поэтому нужно выбирать предохранители одного типа.

Вот в принципе и все, что Вам нужно знать про выбор плавких предохранителей, если данной информации Вам не достаточно, рекомендую ознакомится с литературой, которую я использовал при написании данной статьи. В следующей статье, я приведу примеры выбора плавких предохранителей для различных электроприемников.

Литература:

1. А.В. Беляев. Выбор аппаратуры, защит и кабелей в сетях 0,4 кВ. Энергоатомиздат, Ленинградское отделение, 1988 г. Выпуск 617.
2. Е.Н. Зимин. Защита асинхронных двигателей до 500 В. 1967 г.
3. Правила устройства электроустановок (ПУЭ). Седьмое издание. 2008г.

Выбор плавких предохранителей | Проектирование электроснабжения

В наше время предохранители с плавкими вставками уходят уже в прошлое. В новых проектах предохранители практически не применяют, по крайней мере я не применяю)))  Сегодня речь пойдет о том, на что следует обращать внимание при выборе  плавкой вставки предохранителя.

Для защиты электрических сетей  и электродвигателей могут быть использованы автоматические выключатели либо плавкие предохранители. О достоинствах и недостатках этих двух аппаратов я расскажу в другой раз.

Я не сторонник применения плавких предохранителей, но бывают ситуации, когда нужно выбрать плавкую вставку для предохранителя. В большинстве случаях трудностей возникнуть не должно. Основное условие это то, чтобы номинальный ток плавкой вставки был выше номинального тока защищаемой цепи и напряжение предохранителя совпадало с напряжением сети. Но что делать, если нам необходимо подобрать плавкую вставку предохранителя для защиты двигателя до 1кВ?

Как известно, у двигателей при пуске возникают большие пусковые токи. Если этим пренебречь, то наш предохранитель при пуске сразу перегорит. А этого не должно происходить!

В этом случае нужно руководствоваться п.5.3.56 ПУЭ.

Для электродвигателей с легкими условиями пуска отношение пускового тока электродвигателя к номинальному току плавкой вставки должно быть не более 2,5, а для электродвигателей с тяжелыми условиями пуска (большая длительность разгона, частые пуски и т.п.) это отношение должно быть равным 2,0-1,6.

Например, подберем предохранитель для двигателя (АИР100L2), который нарисован в шапке моего блога. Потребляемый ток 10,8А, Iп/Iн=7,5. Если бы не учитывали пусковой ток, то выбрали бы, например, ППН-33 с плавкой вставкой на 16А. Будем считать, что данный двигатель установлен на системе вентиляции и пуск у данного двигателя будет легким. Поэтому 10,8*7,5=81А – пусковой ток двигателя.

Iп/Iпл.вс.<=2,5

Iпл.вс.=81/2,5=>32,4А

Отсюда следует, чтобы плавкая вставка не перегорела при пуске данного двигателя, номинальный ток предохранителя должен быть более 32,4А, т.е. ППН-33 с плавкой вставкой на 36А.

Ниже представлена таблица рекомендуемых значений номинальных токов плавких предохранителей для защиты силовых трансформаторов 6/0,4 и 10/0,4кВ.

Sт.ном. защищаемого тр-ра, кВАIном, А
трансформатора на сторонепредохранителя на стороне
0,4кВ6кВ10кВ0,4кВ6кВ10кВ
25362,41,444085
40583,832,360108
63916,053,641001610
1001459,65,81502016
16023115,49,2525031,520
2503602414,44005040 (31,5)
40058038,323,16008050
63091060,536,4100016080

Для любителей жучков привожу таблицу соответствия диаметра медной проволоки и номинального тока плавкой вставки. Здесь вам понадобится штангельциркуль для измерения диаметра проволоки.

Номинальный ток вставки, АЧисло проволокДиаметр медной проволоки, мм
210,12
310,16
610,25
1010,33
1510,45
2010,5
2510,6
3510,75
4010,8
4020,5
5010,9
7011,1
7020,75
8011,2
8020,8
10011,35
10020,9

 А вы часто применяете предохранители?

Советую почитать:
Плавкие вставки. Как выбрать и расчет тока. Работа и применение

Плавкие вставки – электротехнические элементы для защиты аппаратуры от короткого замыкания и перенапряжения посредством отключения электроэнергии при превышении предельных значений токовых нагрузок. Размыкание цепи происходит вследствие расплавления предохранительной проволоки определенной толщины. Промышленности известны несколько типов данных устройств. Все они различаются внутренними и внешними конструктивными особенностями, а функционируют по единому принципу.

Сейчас с целью защиты квартирного электрооборудования используют более практичные многоразовые автоматы, однако до сих пор встречаются одноразовые плавкие вставки в пробках. Особенно они актуальны для помещений временных и старых построек, где установка эффективных современных щитков экономически неоправданна. В бытовых приборах же альтернативы классическому предохранителю по-прежнему нет.

Плавкие вставки активно используются и в промышленности. От них может зависеть работоспособность целого завода или инженерной сети. Промышленные предохранители лучше не покупать с рук, на рынке или в непроверенных организациях. Мудрое решение — обратиться к профессионалам в области электроники, например, в интернет-магазин Conrad.ru. В подобных вопросах скупой платит не дважды, а трижды

На принципиальных электросхемах графический символ вставки сродни символу резистора, но со сплошной линией, идущей посредине прямоугольника. Обозначается преимущественно как F либо Пр. За литерой обычно идет показатель величины тока защиты. Допустим, F1A указывает, что в схему вмонтирован предохранитель, рассчитанный на допустимую силу тока в 1 ампер. В некоторых случаях делают международное обозначение «fuse» («thermal fuse»).

Повторно использовать плавкие вставки можно, но осторожно…

Плавкие вставки имеют естественное свойство перегорать, и считается, что подобная продукция не ремонтируется. Это не так: если к делу подойти творчески, то потенциально каждая деталь успешно восстанавливается с последующим вторичным применением.

Дело в том, что корпус вставки не повреждается, в негодность приходит лишь калиброванный металлический волосок внутри него. Таким образом, если отслуживший свой срок волосок заменить, предохранитель вновь готов к употреблению. Однако такой вариант годится в крайнем случае, когда, например, запасного предохранителя в наличии не имеется, магазин закрыт, а музыкальное оформление торжества находится под угрозой.

В нормальной же ситуации надлежит использовать только заводское изделие. То есть рациональное решение состоит в том, чтобы временно восстановить вставку до замены новым аналогом, сохранив защитные функции. Акцентируем на этом внимание потому что, увы, нередко сограждане просто замыкают контакты первой попавшейся под руку проволокой, или того хуже, вставляют в пробку вместо предохранителя стальной штырек. Такого рода «изобретение» – вопиющее нарушение техники безопасности, способствующее перегреву контактов и возгоранию.

Поистине универсальное приспособление

Предохранитель приходит в негодность по 2 причинам: из-за колебаний сетевых параметров или неисправностей в самих электроприборах. Бывают технологические отказы и вследствие неудовлетворительного качества той или иной партии продукции. Причем величина напряжения питающей сети, в которой находятся плавкие вставки, принципиально роли не играет. Так, допускается устанавливать образец номиналом 1A и в панели предохранителей автомашины, и в переносной светильник, и в распредустройство на 380V.

Как правило, в процессе эксплуатации волосок, соединяющий противоположные концы корпуса предохранителя, может греться до t ~ +70˚С, и это нормальное явление. Однако если токовая нагрузка увеличивается, t соответственно также растет. При достижении точки плавления материала, из которого проводник выполнен, происходит его мгновенное перегорание, цепь надежно размыкается и электропитание прекращается.

Совершенно ясно, что, скажем, при возникновении КЗ металл плавится, а не горит. Поэтому предохранитель и назвали плавким элементом, а если в обиходе говорят «лампочка перегорела», это вовсе не значит, что вольфрамовую нить накаливания уничтожил огонь – просто она расплавилась, не выдержав скачка электричества при включении. То же происходит и с предохранителем.

Как правильно выбрать предохранитель

Самый распространенный на рынке – трубчатый предохранитель. Он изготавливается в виде полого керамического либо стеклянного цилиндра, с торцов заглушенного металлическими крышками, соединенными между собой волоском, расположенным внутри корпуса. В плавкие вставки для сверхбольших токов в полость цилиндра помещают наполнитель, в основном, кварцевый песок.

Если потребляемая мощность известна, номинальный ток предохранителя легко вычисляется по следующей формуле:
Inom = Pmax / U
Где:
  • I nom – номинальный ток защиты, A.
  • P max – максимальная мощность, W.
  • U – напряжение питания, V.

Хотя лучше пользоваться специально созданными для этой цели таблицами.

Приведем некоторые данные из них:
  • Максимальной потребляемой мощности в 10W соответствует номинал стандартного напряжения в 0,1A.
  • 50W – 0,25A.
  • 100W – 0,5A.
  • 150W – 1A.
  • 250W – 2A.
  • 500W – 3A.
  • 800W – 4A.
  • 1kW – 5A.
  • 1,2kW – 6A.
  • 1,6kW – 8A.
  • 2kW – 10A.
  • 2,5kW – 12A.
  • 3kW – 15A.
  • 4kW – 20A.
  • 6kW – 30A.
  • 8kW – 40A.
  • 10kW – 50A.

Рассмотрим ситуацию, при которой телевизор после грозы перестал включаться. Оказалось, перегорела вставка неопределенного номинала. Мощность телевизора – 120W. По справочнику находим: для аппаратуры с данной установленной мощностью ближайшее значение 150W, которому соответствует изделие, рассчитанное на 1A.

Если предохранитель всякий раз после очередной замены выходит из строя, то причина неисправности кроется не в нем, а в аппаратуре, нуждающейся в ремонте. Использование предохранителя, рассчитанного на больший ток, лишь усугубит положение вплоть до ее ремонтонепригодности.

Кулибиным на заметку

При выпуске предохранителей в зависимости от быстродействия и силы тока применяется калиброванная нить из алюминиевых, медных, нихромовых, оловянных, серебряных, свинцовых сплавов. Чтобы изготовить плавкие вставки в кустарных условиях доступны лишь медь да алюминий, но и этого вполне достаточно.

Создатели деталей электротехнической защиты руководствуются хорошо известным правилом: значение тока разрабатываемого устройства должно быть выше потребляемого оборудованием. Грубо говоря, если усилитель работает на 5A, то ток защиты предохранителя определяется в 10A. На колпачке или теле предохранителя выбивается маркировка, являющаяся его технической характеристикой. Наряду с этим, функциональные электрические показатели наносят и на крышку электроприбора возле точки монтажа предохранителя.

Толщину проволоки определяют микрометром. Если он отсутствует, подойдет и ученическая линейка. Сделайте 10-20 сплошных витков на линейку (чем больше намотаете – тем точнее окажется результат), поделите число закрытых миллиметровых делений на число витков и узнаете искомую толщину. Намотаем 10 витков, покрывших 6,5 мм. Расстояние поделим на количество и получим диаметр провода – 0,65 мм, из которых приблизительно 0,05 мм занимает электроизоляционный лак. В итоге истинный диаметр равен 0,6 мм.

Обратимся к справочнику:
  • Току защиты предохранителя в 1A подходит соответственно толщина медного провода – 0,05 мм и алюминиевого – 0,07 мм.
  • 2A – 0,09 мм – 0,10 мм.
  • 3A – 0,11 мм – 0,14 мм.
  • 5A – 0,16 мм – 0,19 мм.
  • 7A – 0,20 мм – 0,25 мм.
  • 10A – 0,25 мм – 0,30 мм.
  • 15A – 0,33 мм – 0,40 мм.
  • 20A – 0,40 мм – 0,48 мм.
  • 25A – 0,46 мм – 0,56 мм.
  • 30A – 0,52 мм – 0,64 мм.
  • 35A – 0,58 мм – 0,70 мм.
  • 40A – 0.63 мм – 0,77 мм.
  • 45A – 0,68 мм – 0,83 мм.
  • 50A – 0,73 мм – 0,89 мм.

Таким образом, данная проволока сгодится для предохранителя на 30A.

Имеется 3 способа ремонта трубчатого предохранителя:
  1. Провод зачищается и завязывается на обоих колпачках на ряд витков. Указанный способ довольно рискованный, и прибегнуть к нему можно исключительно в качестве временной меры.
  2. Пайка также не требуется. Колпачки по очереди прогреваются на открытом огне, после чего снимаются и зачищаются ради хорошего контакта. Очищенный провод пропускается через цилиндр, концы загибаются на кромках, после чего колпачки надеваются на место. Но все равно это такой же «жучок», как и в первом случае, только менее примитивный.
  3. Напоминает оба предыдущих, и радикально отличается от них. Отремонтированный в результате предохранитель фактически невозможно отличить от нового, ибо восстанавливается он согласно заводской технологии, с пайкой.

Описанную технологию можно успешно использовать для ремонта любых типов вставок.

Похожие темы:
Расчет плавких вставкок для предохранителей – Avislab

Плавкие вставки для предохранителей всегда перегорают в неподходящий момент. И что мы делаем? Конечно! Делаем из него “жука”. Если это сделать неправильно, можно навлечь на себя беду. Для того, чтобы правильно и безопасно восстановить плавкую вставку нужно всего лишь выбрать правильный диаметр используемой проволоки. Ниже приведен расчет диаметра провода для плавких вставок предохранителей по таблице.

Ток плавле- ния, АДиаметр, мм
МедьАлюминийНикелинЖелезоОловоСвинец
0,50,030,040,050,060,110.13
10,050,070,080,120,180,21
20,090,10,130,190,290,33
30,110,140,180,250,380,43
40,140,170,220,30,460,52
50,160,190,250,350,530,6
60,180,220,280,40,60,68
70,20,250,320,450,660,75
80,220,270,340,480,730,82
90,240,290,370,520,790,89
100,250,310,390,550,850,95
150,320,40,520,721,121,25
200,390,480,620,871,351,52
250,460,560,7311,561,75
300,520,640,811,151,771,98
350,580,70,911,261,952,2
400,630,770,991,382,142,44
450,680,831,081,52,32,65
500,730,891,151,62,452,78
600,8211,31,82,803,15
700,911,11,4323,13,5
8011,221,572,23,43,8
901,081,321,692,383,644,1
1001,151,421,822,553,94,4
1201,311,62,052,854,455
1401,451,782,283,184,925,5
1601,591,942,483,465,386
1801,722,102,693,755,826,5
2001,842,252,894,056,27
2251,992,453,154,46,757,6
2502,142,63,354,77,258,1
2752,22,83,5557,78,7
3002,42,953,785,38,29,2
Диаметр плавкой вставки предохранителя выбирают в зависимости от тока плавления. За ток плавления обычно принимают значение тока в два раза превышающий номинальный ток. Т.е. если Ваше устройство потребляет ток 1А, ток плавления принимаем 2А. И согласно нему выбираем диаметр проволоки. В данном случае медь 0,09мм или алюминий 0,1мм.

Плавкая вставка не перегорает мгновенно, для этого требуется некоторое время, пусть даже очень малое. Поэтому, кратковременные перегрузки (например, пусковые токи) не вызывают разрушения плавкой вставки.

Плавкая вставка, даже небольшого диаметра, толщиной всего 0,2мм, при перегорании может разлетаться на мелкие части. Часть металла испаряется, часть разбрызгивается расплавленными каплями. Разлетающиеся части плавкой вставки имеют температуру близкую к температуре плавления материала, из которого они сделаны и могут нанести вред оборудованию или находящимся рядом людям. Поэтому, плавкая вставка обязательно должна быть в корпусе, который сможет противостоять воздействиям при разрушении плавкой вставки. В зависимости от номинала плавких вставок, корпуса изготавливают из пластмассы, стекла, керамики.

Плавкие вставки можно так же рассчитать по предложенной ниже методике.

Расчёт проводников для плавких предохранителей

Ток плавления проводника для применения в плавкой вставке (предохранителе) можно рассчитать по формулам:

где: d – диаметр проводника, мм; k – коэффициент, зависящий от материала проводника согласно таблице.

где: m – коэффициент, зависящий от материала проводника согласно таблице.

Формула (1) применяется для малых токов (тонкие проводники d=(0,02 – 0,2) мм), а формула (2) для больших токов (толстые проводники). Таблица коэффициентов.

Диаметр проводника для использования в плавком предохранителе рассчитывается по формулам: Для малых токов (тонкие проводники диаметром от 0,02 до 0,2 мм):

Для больших токов (толстые проводники):

Количество теплоты выделяемое на плавкой вставке рассчитывается по формуле:

где: I – ток, текущий через проводник; R – сопротивление проводника; t – время нахождения плавкой вставки под током I.

Сопротивление плавкой вставки рассчитывается по формуле:

где: p– удельное сопротивление материала проводника; l – длина проводника; s – площадь сечения проводника.

Для упрощения расчетов сопротивление принимается постоянным. Рост сопротивления плавкой вставки вследствие повышения температуры не учитываем.

Зная количество теплоты, необходимое для расплавления плавкой вставки, можно рассчитать время расплавления по формуле:

где: W – количество теплоты, необходимое для расплавления плавкой вставки; I – ток плавления; R – сопротивление плавкой вставки.

Количество теплоты, необходимое для расплавления плавкой вставки рассчитывается по формуле:

где: лямбда 🙂 – удельная теплота плавления материала из которого сделана плавкая вставка; m – масса плавкой вставки.

Масса плавкой вставки круглого сечения рассчитывается по формуле:

где: d – диаметр плавкой вставки; l – длина плавкой вставки; p – плотность материала плавкой вставки.

Я для себя сделал небольшую html страничку – памятку с автоматизированным расчетом диаметра плавкой вставки.

Удачи.

Как Подобрать Диаметр Провода Предохранителя: Инструкция Выбираем диаметр провода, который необходим для замены плавкой вставки предохранителя

Выбираем диаметр провода, который необходим для замены плавкой вставки предохранителя

Самодельный предохранитель из медной проволоки может стать отличным временным способом заменить перегоревший предохранитель. Но если вы решились на такое, то крайне важно правильно подобрать сечение того самого проводника, который вы будете использовать. Почему это важно, каковы причины перегорания предохранителей и способы временного устранения этого неудобства мы и рассмотрим в нашей статье.

Причины перегорания предохранителей

Начнем с самого важного — с причин перегорания предохранителей. Ведь просто так нечего не происходит и прежде чем ставить «жучек», необходимо определиться с причинами поломки предохранителя.

Их может быть несколько:

Перегорание предохранителя от короткого замыкания

Перегорание предохранителя от короткого замыкания

Самая банальная и распространенная причина перегорания предохранителя – это короткое замыкание. В результате данного события ток резко возрастает, на что и реагирует плавкая вставка в предохранителе, перегорая.
Перегруз так же ведет к перегоранию предохранителя

Перегруз так же ведет к перегоранию предохранителя

Так же достаточно частым явлением является перегорание проводника при заклинивании приводного механизма питающей цепи. В этом случае предохранитель действует как защита от перегрузки.
Зависимость силы тока от напряжения

Зависимость силы тока от напряжения

Следующей возможной причиной того что вам потребуется искать провод для предохранителя может быть скачек напряжения. При резком и главное длительном снижении напряжения, ток, согласно закону Ома, пропорционально возрастает. Это может привести к перегоранию предохранителя. При непродолжительных по времени скачках такое происходит крайне редко.
Работа предохранителя на грани срабатывания

Работа предохранителя на грани срабатывания

Еще один возможный вариант, это частая работа предохранителя на грани срабатывания. Когда ток, протекающий через него, близок к номинальному, проволока для предохранителей сильно нагревается. Затем остывает, и опять нагревается. Такой режим изменяет структуру металла, из-за чего предохранитель может перегореть при значительно более низких значениях тока.
Наиболее частые причины перегорания предохранителей в процентном соотношении

Наиболее частые причины перегорания предохранителей в процентном соотношении

Именно для исключения таких случаев качественные предохранители выпускают из максимально чистых металлов. У них изменение структуры при частых перепадах температур минимизировано.

Выбор диаметра проволоки и ремонт предохранителя

Ну, а теперь давайте перейдет к основному вопросу нашей статьи – выбору диаметра и непосредственно ремонту. Начнем с первого.

Выбор диаметра проводника

Диаметр проводника в предохранителях четко рассчитан. Если вы выполняете замену, то должны установить проводник такого же диаметра. Иначе ваш предохранитель не будет выполнять свою функцию по защите электрической сети.

Диаметр провода в зависимости от номинального тока предохранителя

Диаметр провода в зависимости от номинального тока предохранителя

  • Сделать это можно несколькими способами. Наиболее простой взять сечение провода для предохранителя, и таблица стандартных значений позволит осуществить вам выбор. Для этого достаточно измерить диаметр провода.
Измерение диаметра провода

Измерение диаметра провода

  • Диаметр провода можно измерить с помощью штангенциркуля или даже обычной линейки. Если диаметр проволоки для предохранителя слишком мал, то измерения можно произвести следующим образом. Проволоку наматываем на любой небольшой предмет – зажигалку, карандаш, ручку.
Измерение диаметра проволоки при помощи линейки или штангенциркуля

Измерение диаметра проволоки при помощи линейки или штангенциркуля

  • Желательно сделать 10-20 витков, для большей точности измерения. Витки делаем максимально плотными, для исключения пространства межу ними. Затем измеряем диаметр всех витков. Полученное значение делим на количество витков. Вот вам и диаметр провода для предохранителя.

Обратите внимание! При данном способе измерения диаметра у вас наверняка будет небольшая погрешность, связанная с недостаточной плотностью витков. Поэтому полученное число округляем для ближайшего меньшего.

  • Расчет предохранителя из медной проволоки можно произвести и для значений, не указанных в таблице. Для этого нам необходимо знать требуемый ток плавкой вставки и материал проволоки.
  • Для того чтобы вычислить диаметр медной проволоки для предохранителя до 7А, нам следует воспользоваться приведенной ниже формулой. В этой формуле d – рассчитываемый диаметр, Iпл – требуемый ток плавкой вставки, k – коэффициент учитывающий материал проволоки. Для меди он составляет 0,034.
На фото формула расчета диаметра провода

На фото формула расчета диаметра провода

  • Если вы хотите своими руками вычислить диаметр проволоки для вставки на номинал выше 7А, то вам следует воспользоваться формулой, приведенной ниже. В этой формуле m – коэффициент учитывающий материал проволоки. Для меди он равен 80.
Формула расчета диаметра провода

Формула расчета диаметра провода

  • Если толщина провода для предохранителя в результате расчета или выбора по таблице получилась таковой, какой нет в наличии. То можно добиться требуемого диаметра за счет соединения нескольких проволок разного сечения. Хотя этот вариант и несколько хуже.
Поправочные коэффициенты для формул в зависимости от материала провода

Поправочные коэффициенты для формул в зависимости от материала провода

Ремонт предохранителей

Установка вместо калиброванной плавкой вставки в предохранитель проволоки в простонародье называется установкой «жучка». Любой «жучек», согласно нормам ПУЭ, недопустим, так как не всегда способен качественно защитить электроустановку.

Тем не менее к такому способу ремонта предохранителей прибегают достаточно часто. Особенно когда под рукой нет запасного предохранителя.

  • Установка «жучка» вместо предохранителя зависит от его типа. Если это трубчатый предохранитель на большой номинальный ток, то такие изделия обычно имеют разборную конструкцию как на видео.
Съёмные плавкие вставки

Съёмные плавкие вставки

  • То есть, предохранитель можно раскрутить. Изъять перегоревшую плавкую вставку и вместо нее установить предохранитель из медного провода.
  • С изделиями меньших номиналов все немного сложнее. Обычно они изготавливаются неразборными, в связи с чем придётся повозиться.
Ремонт трубчатого предохранителя

Ремонт трубчатого предохранителя

  • Если перед вами трубчатый предохранитель стеклянного или керамического типа, то они обычно имеют металлические оконцовки. Для установки «жучка» их необходимо просверлить с двух сторон и в полученную полость вставить наш проводник. Отверстие вместе с проводником желательно затем запаять.
  • С ножевыми предохранителями выполнить ремонт своими руками несколько сложнее. Тут просверлить отверстие не получится, так как крепить провод необходимо к ножам, которые скрыты под корпусом. В этом случае сечение провода предохранителя на 10 А или другого номинала крепят непосредственно на ножи перед корпусом. А затем устанавливают предохранитель.
«Жучок» на ножевой предохранитель

«Жучок» на ножевой предохранитель

Обратите внимание! Такой способ намного опаснее. Так как при перегорании провода возможно его разбрызгивание по соседнему оборудованию. К пожару это может и не привести, но повредить оборудование может.

Расплавленные брызги металла на корпусе предохранителя

Расплавленные брызги металла на корпусе предохранителя

  • Именно, исходя из этих причин, наша инструкция не советует наматывать проволоку непосредственно на контакты-держатели предохранителей. Это же касается намотки провода поверху корпуса трубчатого предохранителя.
Установка «жучка» поверх предохранителя

Установка «жучка» поверх предохранителя

  • Отдельный вопрос — предохранители с наполнителем. Наполнитель необходим для более быстрого погасания электрической дуги. Обычно такие изделия имеют разборную конструкцию и для них необходима такая же толщина проволоки для предохранителя, как и для других трубчатых изделий. Песок же, который находится внутри изделия, сначала ссыпаем, а затем опять засыпаем в предохранитель.

Вывод

Диаметр провода для предохранителей зависит от номинального тока изделия и от материала используемого провода. Подобрать или рассчитать этот диаметр не так уж сложно. Но такая починка является лишь временной мерой.

ПУЭ не зря требует использования лишь калиброванных вставок, а что касается неразборных предохранителей с небольшим номинальным током, то их цена не столь высока, чтобы рисковать дорогостоящим оборудованием. Поэтому при первой возможности обязательно замените «жучок» на нормальный предохранитель или калиброванную вставку.

Класс выбора – Документация по предохранителям

  • Начало работы
  • Документация
  • Форумы
  • Примеры
  • Витрины
  • Интеграции
  • взрыватель
    • Основы предохранителей
      • Поддерживаемые платформы
      • Установка и быстрый запуск
      • Введение в Предохранитель
      • Предварительный просмотр и экспорт
      • компонентизация
      • Адаптивный макет
      • Безопасная планировка
      • Декларативная анимация
      • Предохранитель для дизайнеров
      • Структурирование ресурсов приложения
      • Обзор возможностей
      • Вопросы-Ответы
      • Пакеты сообщества
    • Учебник (Использование API моделей)
      • 1.Изменить вид похода
      • 2. Несколько походов
      • 3. Разделение компонентов
      • 4. Навигация и маршрутизация
      • 5. Издеваться над нашим бэкэндом
      • 6. Настройка внешнего вида
      • 7. Заставка
      • 8. Заключительные мысли
    • Учебник (Использование Observables API)
      • 1. Изменить вид похода
      • 2.Несколько походов
      • 3. Разделение компонентов
      • 4. Навигация и маршрутизация
      • 5. Издеваться над нашим бэкэндом
      • 6. Настройка внешнего вида
      • 7. Заставка
      • 8. Заключительные мысли
    • Fuse Studio
    • Ссылка на проект (.unoproj)
    • Ресурсы
      • шрифты
      • Источники изображений
      • Связанные файлы
      • Импорт из эскиза
      • Эскиз символы (бета)
      • Импорт значков шрифтов
    • API моделей (новый)
    • API Observables
      • Полная ссылка на API
      • Узоры
    • API-интерфейсы FuseJS (JavaScript)
      • Polyfills
      • EventEmitter
      • Файловая система
      • Место хранения
      • Bundle
      • Жизненный цикл
      • InterApp
      • доля
      • HTTP
        • Работа с REST API
      • Окружающая среда
      • Телефон
      • камера
      • Фотопленка
      • вибрация
      • GeoLocation
      • Всплывающее уведомление
      • Локальные уведомления
      • датчиков
      • Base64
      • таймер
      • ImageTools
      • Сторонние модули
    • Сценарии и данные
      • JavaScript
      • Отладка
      • DataBinding
      • каждый
      • С участием
      • Соответствие
        • случай
    • UX разметка
      • литералы
      • Выражения
      • Имена (ux: Имя)
      • Классы (ux: класс)
      • Зависимости (ux: Зависимость)
      • Свойства (ux: Property)
      • Ресурсы (ux: Key)
      • Глобалы (ux: Global)
      • Шаблоны (UX: Шаблон)
      • Связывание (UX: Binding & UX: AutoBind)
      • Тестирование (ux: Test)
      • Полный UX Class Reference
    • Примитивы
      • Текст
      • Прямоугольник
      • Круг
      • кривая
        • CurvePoint
      • Дорожка
      • Образ
      • видео
      • Звук
    • раскладка
      • Элемент
      • панель
      • StackPanel
      • DockPanel
      • сетка
      • WrapPanel
      • ColumnLayout
      • CircleLayout
      • ScrollView
    • навигация
      • страница
      • PageControl
      • маршрутизатор
      • навигатор
      • Переходы
    • управления
      • кнопка
      • Ввод текста
      • TextView
      • ползунок
      • переключатель
      • CameraView
      • MapView
      • WebView
      • NativeViewHost
      • GraphicsView
    • Триггеры и анимация
      • Трансформации
      • жесты
      • Аниматоры
      • Лента новостей
      • действия
.

% PDF-1.4 % 1808 0 объектов > endobj Xref 1808 473 0000000016 00000 n 0000009816 00000 n 0000009986 00000 n 0000017841 00000 n 0000018088 00000 n 0000018175 00000 n 0000018266 00000 n 0000018383 00000 n 0000018488 00000 n 0000018546 00000 n 0000018662 00000 n 0000018720 00000 n 0000018908 00000 n 0000018966 00000 n 0000019069 00000 n 0000019173 00000 n 0000019339 00000 n 0000019397 00000 n 0000019454 00000 n 0000019628 00000 n 0000019757 00000 n 0000019871 00000 n 0000019929 00000 n 0000020049 00000 n 0000020107 00000 n 0000020242 00000 n 0000020300 00000 n 0000020438 00000 n 0000020496 00000 n 0000020620 00000 n 0000020678 00000 n 0000020802 00000 n 0000020860 00000 n 0000020993 00000 n 0000021051 00000 n 0000021212 00000 n 0000021288 00000 n 0000021346 00000 n 0000021481 00000 n 0000021539 00000 n 0000021674 00000 n 0000021732 00000 n 0000021847 00000 n 0000021905 00000 n 0000022044 00000 n 0000022102 00000 n 0000022246 00000 n 0000022303 00000 n 0000022432 00000 n 0000022489 00000 n 0000022624 00000 n 0000022681 00000 n 0000022818 00000 n 0000022875 00000 n 0000023003 00000 n 0000023060 00000 n 0000023181 00000 n 0000023238 00000 n 0000023367 00000 n 0000023424 00000 n 0000023548 00000 n 0000023605 00000 n 0000023729 00000 n 0000023786 00000 n 0000023925 00000 n 0000023982 00000 n 0000024162 00000 n 0000024259 00000 n 0000024352 00000 n 0000024409 00000 n 0000024466 00000 n 0000024523 00000 n 0000024581 00000 n 0000024638 00000 n 0000024695 00000 n 0000024868 00000 n 0000025011 00000 n 0000025131 00000 n 0000025188 00000 n 0000025318 00000 n 0000025375 00000 n 0000025519 00000 n 0000025576 00000 n 0000025719 00000 n 0000025776 00000 n 0000025982 00000 n 0000026076 00000 n 0000026170 00000 n 0000026227 00000 n 0000026418 00000 n 0000026517 00000 n 0000026574 00000 n 0000026689 00000 n 0000026746 00000 n 0000026883 00000 n 0000026940 00000 n 0000027118 00000 n 0000027246 00000 n 0000027384 00000 n 0000027441 00000 n 0000027607 00000 n 0000027759 00000 n 0000027859 00000 n 0000027916 00000 n 0000028093 00000 n 0000028189 00000 n 0000028246 00000 n 0000028415 00000 n 0000028511 00000 n 0000028568 00000 n 0000028625 00000 n 0000028682 00000 n 0000028739 00000 n 0000028796 00000 n 0000028853 00000 n 0000028986 00000 n 0000029043 00000 n 0000029100 00000 n 0000029157 00000 n 0000029214 00000 n 0000029323 00000 n 0000029380 00000 n 0000029534 00000 n 0000029591 00000 n 0000029694 00000 n 0000029751 00000 n 0000029808 00000 n 0000029949 00000 n 0000030006 00000 n 0000030063 00000 n 0000030201 00000 n 0000030360 00000 n 0000030528 00000 n 0000030585 00000 n 0000030642 00000 n 0000030783 00000 n 0000030908 00000 n 0000031091 00000 n 0000031182 00000 n 0000031274 00000 n 0000031433 00000 n 0000031490 00000 n 0000031547 00000 n 0000031687 00000 n 0000031799 00000 n 0000031976 00000 n 0000032031 00000 n 0000032160 00000 n 0000032338 00000 n 0000032428 00000 n 0000032485 00000 n 0000032623 00000 n 0000032680 00000 n 0000032835 00000 n 0000032892 00000 n 0000033042 00000 n 0000033099 00000 n 0000033225 00000 n 0000033282 00000 n 0000033428 00000 n 0000033485 00000 n 0000033625 00000 n 0000033682 00000 n 0000033837 00000 n 0000033894 00000 n 0000034035 00000 n 0000034092 00000 n 0000034259 00000 n 0000034316 00000 n 0000034481 00000 n 0000034538 00000 n 0000034703 00000 n 0000034760 00000 n 0000034953 00000 n 0000035010 00000 n 0000035140 00000 n 0000035197 00000 n 0000035340 00000 n 0000035397 00000 n 0000035531 00000 n 0000035588 00000 n 0000035728 00000 n 0000035785 00000 n 0000035920 00000 n 0000035977 00000 n 0000036112 00000 n 0000036169 00000 n 0000036307 00000 n 0000036364 00000 n 0000036493 00000 n 0000036550 00000 n 0000036665 00000 n 0000036722 00000 n 0000036850 00000 n 0000036907 00000 n 0000037033 00000 n 0000037089 00000 n 0000037229 00000 n 0000037285 00000 n 0000037425 00000 n 0000037481 00000 n 0000037621 00000 n 0000037677 00000 n 0000037817 00000 n 0000037873 00000 n 0000038014 00000 n 0000038070 00000 n 0000038220 00000 n 0000038276 00000 n 0000038396 00000 n 0000038452 00000 n 0000038571 00000 n 0000038627 00000 n 0000038746 00000 n 0000038802 00000 n 0000038921 00000 n 0000038977 00000 n 0000039097 00000 n 0000039153 00000 n 0000039282 00000 n 0000039338 00000 n 0000039482 00000 n 0000039538 00000 n 0000039595 00000 n 0000039650 00000 n 0000039707 00000 n 0000039822 00000 n 0000039879 00000 n 0000040069 00000 n 0000040175 00000 n 0000040283 00000 n 0000040340 00000 n 0000040397 00000 n 0000040525 00000 n 0000040582 00000 n 0000040706 00000 n 0000040763 00000 n 0000040887 00000 n 0000040944 00000 n 0000041074 00000 n 0000041131 00000 n 0000041261 00000 n 0000041318 00000 n 0000041450 00000 n 0000041507 00000 n 0000041637 00000 n 0000041694 00000 n 0000041823 00000 n 0000041880 00000 n 0000042002 00000 n 0000042059 00000 n 0000042181 00000 n 0000042238 00000 n 0000042361 00000 n 0000042418 00000 n 0000042540 00000 n 0000042597 00000 n 0000042720 00000 n 0000042777 00000 n 0000042899 00000 n 0000042956 00000 n 0000043079 00000 n 0000043136 00000 n 0000043193 00000 n 0000043295 00000 n 0000043403 00000 n 0000043460 00000 n 0000043517 00000 n 0000043628 00000 n 0000043685 00000 n 0000043798 00000 n 0000043855 00000 n 0000043975 00000 n 0000044032 00000 n 0000044176 00000 n 0000044233 00000 n 0000044343 00000 n 0000044400 00000 n 0000044518 00000 n 0000044575 00000 n 0000044632 00000 n 0000044689 00000 n 0000044796 00000 n 0000044853 00000 n 0000044960 00000 n 0000045017 00000 n 0000045124 00000 n 0000045181 00000 n 0000045288 00000 n 0000045345 00000 n 0000045452 00000 n 0000045509 00000 n 0000045566 00000 n 0000045623 00000 n 0000045732 00000 n 0000045789 00000 n 0000045905 00000 n 0000045962 00000 n 0000046103 00000 n 0000046160 00000 n 0000046356 00000 n 0000046487 00000 n 0000046544 00000 n 0000046736 00000 n 0000046860 00000 n 0000046917 00000 n 0000047091 00000 n 0000047251 00000 n 0000047397 00000 n 0000047454 00000 n 0000047511 00000 n 0000047568 00000 n 0000047625 00000 n 0000047682 00000 n 0000047824 00000 n 0000047966 00000 n 0000048023 00000 n 0000048080 00000 n 0000048237 00000 n 0000048294 00000 n 0000048351 00000 n 0000048408 00000 n 0000048558 00000 n 0000048615 00000 n 0000048755 00000 n 0000048812 00000 n 0000048957 00000 n 0000049014 00000 n 0000049144 00000 n 0000049201 00000 n 0000049336 00000 n 0000049393 00000 n 0000049527 00000 n 0000049584 00000 n 0000049716 00000 n 0000049773 00000 n 0000049907 00000 n 0000049964 00000 n 0000050094 00000 n 0000050151 00000 n 0000050303 00000 n 0000050360 00000 n 0000050417 00000 n 0000050475 00000 n 0000050602 00000 n 0000050660 00000 n 0000050783 00000 n 0000050841 00000 n 0000050967 00000 n 0000051025 00000 n 0000051154 00000 n 0000051212 00000 n 0000051341 00000 n 0000051399 00000 n 0000051528 00000 n 0000051586 00000 n 0000051715 00000 n 0000051773 00000 n 0000051903 00000 n 0000051961 00000 n 0000052091 00000 n 0000052149 00000 n 0000052268 00000 n 0000052326 00000 n 0000052454 00000 n 0000052512 00000 n 0000052639 00000 n 0000052697 00000 n 0000052823 00000 n 0000052881 00000 n 0000052997 00000 n 0000053055 00000 n 0000053171 00000 n 0000053229 00000 n 0000053345 00000 n 0000053403 00000 n 0000053522 00000 n 0000053580 00000 n 0000053699 00000 n 0000053757 00000 n 0000053873 00000 n 0000053931 00000 n 0000054059 00000 n 0000054117 00000 n 0000054241 00000 n 0000054299 00000 n 0000054423 00000 n 0000054481 00000 n 0000054605 00000 n 0000054663 00000 n 0000054788 00000 n 0000054846 00000 n 0000054980 00000 n 0000055038 00000 n 0000055165 00000 n 0000055223 00000 n 0000055350 00000 n 0000055408 00000 n 0000055535 00000 n 0000055593 00000 n 0000055717 00000 n 0000055775 00000 n 0000055900 00000 n 0000055958 00000 n 0000056092 00000 n 0000056150 00000 n 0000056277 00000 n 0000056335 00000 n 0000056462 00000 n 0000056520 00000 n 0000056647 00000 n 0000056705 00000 n 0000056833 00000 n 0000056891 00000 n 0000057018 00000 n 0000057076 00000 n 0000057203 00000 n 0000057261 00000 n 0000057388 00000 n 0000057446 00000 n 0000057573 00000 n 0000057631 00000 n 0000057759 00000 n 0000057817 00000 n 0000057954 00000 n 0000058012 00000 n 0000058140 00000 n 0000058198 00000 n 0000058325 00000 n 0000058383 00000 n 0000058511 00000 n 0000058569 00000 n 0000058696 00000 n 0000058754 00000 n 0000058882 00000 n 0000058940 00000 n 0000059077 00000 n 0000059135 00000 n 0000059254 00000 n 0000059312 00000 n 0000059434 00000 n 0000059492 00000 n 0000059611 00000 n 0000059669 00000 n 0000059727 00000 n 0000059782 00000 n 0000059990 00000 n 0000060069 00000 n 0000060251 00000 n 0000060274 00000 n 0000061295 00000 n 0000061318 00000 n 0000062286 00000 n 0000062309 00000 n 0000063239 00000 n 0000063262 00000 n 0000064189 00000 n 0000064212 00000 n 0000065266 00000 n 0000065554 00000 n 0000066356 00000 n 0000066379 00000 n 0000067317 00000 n 0000067340 00000 n 0000068218 00000 n 0000068241 00000 n 0000069064 00000 n 0000070173 00000 n 0000070253 00000 n 0000070332 00000 n 0000070983 00000 n 0000010044 00000 n 0000017817 00000 n прицеп ] >> startxref 0 %% EOF 1809 0 объектов > endobj 1810 0 объектов > endobj 2279 0 объектов > поток HU PgL A: ڡ + Z% @ P, “PAU \ &! @ JVV $ ȎtE9v-kр # Z! R? 8d & _} @ A (, @ $ h! AX

.

c – Как сделать символические ссылки в FUSE?

Переполнение стека
  1. Товары
  2. Клиенты
  3. Случаи использования
  1. Переполнение стека Публичные вопросы и ответы
  2. Команды Частные вопросы и ответы для вашей команды
  3. предприятие Частные вопросы и ответы для вашего предприятия
  4. работы Программирование и связанные с ним технические возможности карьерного роста
  5. Талант Нанимать технический талант
.
Метод выбора предохранителей Модуль 2. Дата презентации

Конкурентные преимущества ABB Fuses

ABB Fuses Competitive Advantages GPMM Tomasz Komalski 2009 Предохранители ABB Конкурентные преимущества 14 мая 2009 г. Слайд 1 Основные комментарии ABB является мировым производителем предохранителей с ограничением тока и вытяжкой (без ограничения тока) для среды

Дополнительная информация

Защита от короткого замыкания

Protection from Short-circuit Защита от короткого замыкания Резервный предохранитель с ÜLA (контролируемое рассеяние мощности) Испытательное устройство для устройства отключения Специальная версия с угрозой Высоковольтный предохранитель для трансформаторов напряжения (HSW)

Дополнительная информация

Продукты среднего напряжения.Плавкие предохранители

Medium voltage products. Fuses Продукты среднего напряжения Предохранители Указатель Введение … 3 Основные определения … 4 Предохранители ABB HV с блоком контроля температуры … 5 Общие принципы выбора предохранителей … 6 CEF … 8 CEF-S … 16 CEF -VT …

Дополнительная информация

Быстродействующие предохранители. Высокоскоростные предохранители

High Speed Fuses. High Speed Fuses Содержание раздела Страница Общие области применения ……………………………………………………………………………………………………………………………………………………………………………………………………. 9-95 предохранители и аксессуары для Северной Америки………… 9-113 DFJ – высокоскоростной предохранитель класса J ………………. 97 предохранители и аксессуары квадратного корпуса …. ……..

Дополнительная информация

R.C.C.B. S двухполюсный LEXIC

R.C.C.B. s two-pole LEXIC 87045 LIMOGES Cedex Телефон: (+33) 05 55 06 87 87 Факс: (+ 33) 05 55 06 88 88 R.C.C.B. s двухполюсный LEXIC 089 06/09/10/11/12/15/16/17/18 / 27/28/29/30/35, СОДЕРЖАНИЕ СТРАНИЦЫ 1. Электрические и механические характеристики …

Дополнительная информация

Каталог компаний Nexans 2014

a Nexans company Catalogue 2014 Каталог компаний Nexans 2014 Nexans Network Solutions Div.Euromold ПРЕЗЕНТАЦИЯ КОМПАНИИ EUROMOLD Euromold – ведущий европейский специализированный дизайнер, производитель и дистрибьютор сборных

Дополнительная информация

Обратные клапаны и приводные клапаны

Check Valves & Actuated Valves heck Valves & ctuated Valves & Поршневые обратные клапаны серии U с номиналом 6000 фунтов на квадратный дюйм и 10000 фунт / кв.дюйм. Обратные обратные клапаны серии X с номинальным давлением 20000 фунтов на квадратный дюйм Пневматические приводы Клапаны с пневматическим приводом Электрический

Дополнительная информация

Гибкие кабели Flygt

Flygt flexible cables Гибкие кабели Flygt Содержание Стандарты Общие положения SUBCAB 4 Экранированный SUBCAB 6 Тип резинового кабеля: NSSHÖU-J 7 Тип экранированного резинового кабеля: NSSHÖU../E + ST 8 FGB экранированный резиновый кабель 9 PUR кабель управления 0 HCR

Дополнительная информация

Британский BS 88 Предохранители. Введение

British BS 88 Fuses. Introduction British BS 88 Введение British BS 88 Содержание Предохранитель Вольт Диапазон усилителей Страница 0-900 188-190 90-791-19 Принадлежности Индикаторная система и основания предохранителей 195 British BS 88 Диапазоны предохранителей Amps Vac Vdc -900 0 150-710 90

Дополнительная информация

Реле для печатных плат Twin Relays

PCB Relays Twin Relays Системы силовых агрегатов Системы шасси Безопасность Корпус безопасности Информация для водителя Удобство Описание Характеристики – Две отдельные системы – Применение ламп – Чрезвычайно компактное двойное реле Типичные области применения

Дополнительная информация

Комплект для испытательных проводов модели 1756

Model 1756 Test Lead Kit Keithley Instruments 28775 Аврора Роуд Кливленд, Огайо 44139 1-888-KEITHLEY http: // www.keithley.com Модель 1756 Комплект измерительных выводов Gerneral Цель Тестовый вывод Информация Описание Эти измерительные провода позволяют вам

Дополнительная информация

7. Реактивная компенсация энергии

7. Reactive energy compensation 593 7. Компенсация реактивной энергии 594 7. КОМПЕНСАЦИЯ РЕАКТИВНОЙ ЭНЕРГИИ Компенсация реактивной энергии является важным элементом для уменьшения счета за электроэнергию и улучшения качества электричества

Дополнительная информация

Joslyn Clark Controls, Inc.

Joslyn Clark Controls, Inc. Joslyn Clark Controls, Inc. ПЕРЕКЛЮЧЕНИЕ КОНТАКТОРОВ ВАКУУМНОГО КОНТАКТОРА И КОНТРАКТОРОВ ВОЗДУШНОГО РАЗРЫВА МЕРЫ ПРЕДОСТОРОЖНОСТИ И РАСЧЕТЫ ДЛЯ ОГРАНИЧЕНИЯ ВЫСОКОЙ ЧАСТОТЫ И ВЫСОКОГО ТОКА 2 ВОПРОС: ПОЧЕМУ ВАКУУМНЫЙ КОНТАКТОР

Дополнительная информация

ХАРАКТЕРНЫЕ ЗАЩИТНЫЕ УСТРОЙСТВА

SURGE PROTECTIVE DEVICES УСТРОЙСТВА ДЛЯ ЗАЩИТЫ ОТ НАПРЯЖЕНИЙ 1. ВВЕДЕНИЕ В целях обеспечения безопасности людей, защиты оборудования и, в определенной степени, бесперебойности снабжения координация изоляции направлена ​​на уменьшение вероятности

Дополнительная информация

Трехфазное реле контроля CM-PFE

Three-phase monitoring relay CM-PFE Техническое описание Трехфазное реле контроля CM-PFE CM-PFE – это трехфазное реле контроля, которое контролирует последовательность фаз фазового параметра и обрыв фазы в трехфазной сети.2CDC 251 005 S0012 Характеристики

Дополнительная информация

Предохранители IEC и британского стандарта

IEC and British Standard Fuses Раздел предохранителей IEC и британского стандарта Содержание Стр. Данные по применению … 7-8 Предохранители CSA типа P и типа D (CDS, CDN и PON) ……………….. …….. 9 Предохранители Tron HRC, форма II, класс C (CGL, форма II, класс C) …………………….

Дополнительная информация

ЧТО ТАКОЕ ИНФРАКРАСНАЯ (ИК) ТЕРМОГРАФИЯ

WHAT IS INFRARED (IR) THERMOGRAPHY ЧТО ТАКОЕ ИНФРАКРАСНАЯ (ИК) ТЕРМОГРАФИЯ? ИК-термография – это метод получения изображений, вызванных невидимым тепловым излучением, которое излучают объекты.Это бесконтактное средство идентификации электрических

Дополнительная информация

Втулки трансформатора для ГИС

Transformer Bushings for GIS Втулки трансформатора для ГИС-масла и элегазовых соединений GARIP RTKG 725-55 кВ Сертифицировано SQS ISO 91 / ISO 141 Втулки RIP – Технология для элегаза / масла – Втулки В современном распределительном устройстве с металлическим корпусом SF6 -газ составляет

Дополнительная информация ,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *