Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Однофазный асинхронный электродвигатель

Дмитрий Левкин

Однофазный асинхронный электродвигатель — это асинхронный электродвигатель, который работает от электрической сети однофазного переменного тока без использования частотного преобразователя и который в основном режиме работы (после пуска) использует только одну обмотку (фазу) статора.

Конструкция однофазного двигателя с вспомогательной или пусковой обмоткой

Основными компонентами любого электродвигателя являются ротор и статор. Ротор – вращающаяся часть электродвигателя, статор – неподвижная часть электродвигателя, с помощью которого создается магнитное поле для вращения ротора.

Основные части однофазного двигателя: ротор и статор

Статор имеет две обмотки, расположенные под углом 90° относительно друг друга. Основная обмотка называется главной (рабочей) и обычно занимает 2/3 пазов сердечника статора, другая обмотка называется вспомогательной (пусковой) и обычно занимает 1/3 пазов статора.

Двигатель фактически является двухфазным, но так как рабочей является только одна обмотка, электродвигатель называют однофазным.

Ротор обычно представляет из себя короткозамкнутую обмотку, также из-за схожести называемой “беличьей клеткой”. Медные или алюминиевые стержни которого с торцов замкнуты кольцами, а пространство между стержнями чаще всего заливается сплавом алюминия. Так же ротор однофазного двигателя может быть выполнен в виде полого немагнитного или полого ферромагнитного цилиндра.

Однофазный двигатель с вспомогательной обмоткой имеет 2 обмотки расположенные перпендикулярно относительно друг друга

Принцип работы однофазного асинхронного двигателя

Для того чтобы лучше понять работу однофазного асинхронного двигателя, давайте рассмотрим его только с одним витком в главной и вспомогательной обмотки.

Проанализируем случай с двумя обмотками имеющими по оному витку

Рассмотрим случай когда в вспомогательной обмотки не течет ток. При включении главной обмотки статора в сеть, переменный ток, проходя по обмотке, создает пульсирующее магнитное поле, неподвижное в пространстве, но изменяющееся от +Фmах до -Фmах.

Запустить

Остановить

Пульсирующее магнитное поле

Если поместить ротор, имеющий начальное вращение, в пульсирующее магнитное поле, то он будет продолжать вращаться в том же направлении.

Чтобы понять принцип действия однофазного асинхронного двигателя разложим пульсирующее магнитное поле на два одинаковых круговых поля, имеющих амплитуду равную Фmах/2 и вращающихся в противоположные стороны с одинаковой частотой:

,

  • где n
    пр
    – частота вращения магнитного поля в прямом направлении, об/мин,
  • nобр – частота вращения магнитного поля в обратном направлении, об/мин,
  • f1 – частота тока статора, Гц,
  • p – количество пар полюсов,
  • n1 – скорость вращения магнитного потока, об/мин

Запустить

Остановить

Разложение пульсирующего магнитного потока на два вращающихся

Действие пульсирующего поля на вращающийся ротор

Рассмотрим случай когда ротор, находящийся в пульсирующем магнитном потоке, имеет начальное вращение. Например, мы вручную раскрутили вал однофазного двигателя, одна обмотка которого подключена к сети переменного тока. В этом случае при определенных условиях двигатель будет продолжать развивать вращающий момент, так как

скольжение его ротора относительно прямого и обратного магнитного потока будет неодинаковым.

Будем считать, что прямой магнитный поток Фпр, вращается в направлении вращения ротора, а обратный магнитный поток Фобр – в противоположном направлении. Так как, частота вращения ротора n2 меньше частоты вращения магнитного потока n1, скольжение ротора относительно потока Фпр будет:

,

  • где sпр – скольжение ротора относительно прямого магнитного потока,
  • n2 – частота вращения ротора, об/мин,
  • s – скольжение асинхронного двигателя

Прямой и обратный вращающиеся магнитные потоки вместо пульсирующего магнитного потока

Магнитный поток Фобр вращается встречно ротору, частота вращения ротора n2 относительно этого потока отрицательна, а скольжение ротора относительно Ф

обр

,

  • где sобр – скольжение ротора относительно обратного магнитного потока

Запустить

Остановить

Вращающееся магнитное поле пронизывающее ротор

Ток индуцируемый в роторе переменным магнитным полем

Согласно закону электромагнитной индукции прямой Фпр и обратный Фобр магнитные потоки, создаваемые обмоткой статора, наводят в обмотке ротора ЭДС, которые соответственно создают в короткозамкнутом роторе токи I2пр и I2обр. При этом частота тока в роторе пропорциональна скольжению, следовательно:

,

  • где f2пр – частота тока I2пр наводимого прямым магнитным потоком, Гц

,

  • где f2обр – частота тока I2обр наводимого обратным магнитным потоком, Гц

Таким образом, при вращающемся роторе, электрический ток I2обр, наводимый обратным магнитным полем в обмотке ротора, имеет частоту f2обр, намного превышающую частоту f2пр тока ротора I2пр, наведенного прямым полем.

Пример: для однофазного асинхронного двигателя, работающего от сети с частотой f1 = 50 Гц при n1 = 1500 и n2 = 1440 об/мин,

скольжение ротора относительно прямого магнитного потока sпр = 0,04;
частота тока наводимого прямым магнитным потоком f2пр = 2 Гц;
скольжение ротора относительно обратного магнитного потока sобр = 1,96;
частота тока наводимого обратным магнитным потоком f

2обр = 98 Гц

Согласно закону Ампера, в результате взаимодействия электрического тока I2пр с магнитным полем Фпр возникает вращающий момент

,

  • где Mпр – магнитный момент создаваемый прямым магнитным потоком, Н∙м,
  • сM — постоянный коэффициент, определяемый конструкцией двигателя

Электрический ток I2обр, взаимодействуя с магнитным полем Фобр, создает тормозящий момент Мобр, направленный против вращения ротора, то есть встречно моменту Мпр:

,

  • где Mобр – магнитный момент создаваемый обратным магнитным потоком, Н∙м

Результирующий вращающий момент, действующий на ротор однофазного асинхронного двигателя,

,

Справка: В следствие того, что во вращающемся роторе прямым и обратным магнитным полем будет наводиться ток разной частоты, моменты сил действующие на ротор в разных направлениях будут не равны.

Поэтому ротор будет продолжать вращаться в пульсирующем магнитном поле в том направлении в котором он имел начальное вращение.

Тормозящее действие обратного поля

При работе однофазного двигателя в пределах номинальной нагрузки, то есть при небольших значениях скольжения s = sпр, крутящий момент создается в основном за счет момента Мпр. Тормозящее действие момента обратного поля Мобр — незначительно. Это связано с тем, что частота f2обр много больше частоты f2пр, следовательно, индуктивное сопротивление рассеяния обмотки ротора х2обр = x2sобр току I2обр намного больше его активного сопротивления. Поэтому ток I2обр, имеющий большую индуктивную составляющую, оказывает сильное размагничивающее действие на обратный магнитный поток Ф

обр, значительно ослабляя его.

,

  • где r2 – активное сопротивление стержней ротора, Ом,
  • x2обр – реактивное сопротивление стержней ротора, Ом.

Если учесть, что коэффициент мощности невелик, то станет, ясно, почему Мобр в режиме нагрузки двигателя не оказывает значительного тормозящего действия на ротор однофазного двигателя.

С помощью одной фазы нельзя запустить ротор

Ротор имеющий начальное вращение будет продолжать вращаться в поле создаваемом однофазным статором

Действие пульсирующего поля на неподвижный ротор

При неподвижном роторе (n2 = 0) скольжение sпр = sобр

= 1 и Мпр = Мобр, поэтому начальный пусковой момент однофазного асинхронного двигателя Мп = 0. Для создания пускового момента необходимо привести ротор во вращение в ту или иную сторону. Тогда s ≠ 1, нарушается равенство моментов Мпр и Мобр и результирующий электромагнитный момент приобретает некоторое значение .

Пуск однофазного двигателя. Как создать начальное вращение?

Одним из способов создания пускового момента в однофазном асинхронном двигателе, является расположение вспомогательной (пусковой) обмотки B, смещенной в пространстве относительно главной (рабочей) обмотки A на угол 90 электрических градусов. Чтобы обмотки статора создавали вращающееся магнитное поле токи IA и IB в обмотках должны быть сдвинуты по фазе относительно друг друга. Для получения фазового сдвига между токами IA и IB в цепь вспомогательной (пусковой) обмотки В включают фазосмещающий элемент, в качестве которого используют активное сопротивление (резистор), индуктивность (дроссель) или емкость (конденсатор) [1].

После того как ротор двигателя разгонится до частоты вращения, близкой к установившейся, пусковую обмотку В отключают. Отключение вспомогательной обмотки происходит либо автоматически с помощью центробежного выключателя, реле времени, токового или дифференциального реле, или же вручную с помощью кнопки.

Таким образом, во время пуска двигатель работает как двухфазный, а по окончании пуска — как однофазный.

Подключение однофазного двигателя

С пусковым сопротивлением

Двигатель с расщепленной фазой – однофазный асинхронный двигатель, имеющий на статоре вспомогательную первичную обмотку, смещенную относительно основной, и короткозамкнутый ротор [2].

Однофазный асинхронный двигатель с пусковым сопротивлением – двигатель с расщепленной фазой, у которого цепь вспомогательной обмотки отличается повышенным активным сопротивлением.

Омический сдвиг фаз, биффилярный способ намотки пусковой обмотки

Разное сопротивление и индуктивность обмоток

Для запуска однофазного двигателя можно использовать пусковой резистор, который последовательно подключается к пусковой обмотки. В этом случае можно добиться сдвига фаз в 30° между токами главной и вспомогательной обмотки, которого вполне достаточно для пуска двигателя. В двигателе с пусковым сопротивлением разность фаз объясняется разным комплексным сопротивлением цепей.

Также сдвиг фаз можно создать за счет использования пусковой обмотки с меньшей индуктивностью и более высоким сопротивлением. Для этого пусковая обмотка делается с меньшим количеством витков и с использованием более тонкого провода чем в главной обмотке.

Отечественной промышленностью изготавливается серия однофазных асинхронных электродвигателей с активным сопротивлением в качестве фазосдвигающего элемента серии АОЛБ мощностью от 18 до 600 Вт при синхронной частоте вращения 3000 и 1500 об/мин, предназначенных для включения в сеть напряжением 127, 220 или 380 В, частотой 50 Гц.

С конденсаторным пуском

Двигатель с конденсаторным пуском – двигатель с расщепленной фазой, у которого цепь вспомогательной обмотки с конденсатором включается только на время пуска.

Ёмкостной сдвиг фаз с пусковым конденсатором

Чтобы достичь максимального пускового момента требуется создать круговое вращающееся магнитное поле, для этого требуется чтобы токи в главной и вспомогательной обмотках были сдвинуты друг относительно друга на 90°. Использование в качестве фазосдвигающего элемента резистора или дросселя не позволяет обеспечить требуемый сдвиг фаз. Лишь включение конденсатора определенной емкости позволяет обеспечить фазовый сдвиг 90°.

Среди фазосдвигающих элементов, только конденсатор позволяет добиться наилучших пусковых свойств однофазного асинхронного электродвигателя.

Двигатели в цепь которых постоянно включен конденсатор используют для работы две фазы и называются – конденсаторными. Принцип действия этих двигателей основан на использовании вращающегося магнитного поля.

Двигатель с экранированными полюсами – двигатель с расщепленной фазой, у которого вспомогательная обмотка короткозамкнута.

Статор однофазного асинхронного двигателя с экранированными полюсами обычно имеет явно выраженные полюса. На явно выраженных полюсах статора намотаны катушки однофазной обмотки возбуждения. Каждый полюс статора разделен на две неравные части аксиальным пазом. Меньшую часть полюса охватывает короткозамкнутый виток. Ротор однофазного двигателя с экранированными полюсами – короткозамкнутый в виде “беличьей” клетки.

При включении однофазной обмотки статора в сеть в магнитопроводе двигателя создается пульсирующий магнитный поток. Одна часть которого проходит по неэкранированной Ф’, а другая Ф” – по экранированной части полюса. Поток Ф” наводит в короткозамкнутом витке ЭДС Ek, в результате чего возникает ток Ik отстающий от Ek по фазе из-за индуктивности витка. Ток Ik создает магнитный поток Фk, направленный встречно Ф”, создавая результирующий поток в экранированной части полюса Фэ=Ф”+Фk. Таким образом, в двигателе потоки экранированной и неэкранированной частей полюса сдвинуты во времени на некоторый угол.

Пространственный и временной углы сдвига между потоками Фэ и Ф’ создают условия для возникновения в двигателе вращающегося эллиптического магнитного поля, так как Фэ ≠ Ф’.

Пусковые и рабочие свойства рассматриваемого двигателя невысоки. КПД намного ниже, чем у конденсаторных двигателей такой же мощности, что связано со значительными электрическими потерями в короткозамкнутом витке.

Статор такого однофазного двигателя выполняется с ярко выраженными полюсами на не симметричном шихтованном сердечнике. Ротор – короткозамкнутый типа “беличья клетка”.

Данный электродвигатель для работы не требует использования фазосдвигающих элементов. Недостатком данного двигателя является низкий КПД.


Однофазный асинхронный двигатель: 6 схем работы

Изготовление самодельных станков и механизмов требует наличия источника крутящего момента, способного развивать высокую механическую мощность на валу привода при питании от сети 220 вольт.

Для этих целей подходит электродвигатель от бетономешалки, стиральной машины, другого оборудования или просто приобретенный в продаже.

В статье я рассказываю все про однофазный асинхронный двигатель, схема подключения которого зависит от внутренней конструкции и может быть выполнена с пусковой обмоткой или конденсаторным запуском.

Содержание статьи

С чего обязательно следует начинать подключение двигателя: 2 важных момента, проверенные временем

Перед первым включением любого электродвигателя необходимо уточнить его устройство: конструкцию статора и ротора, состояние подшипников.

На собственном и чужом опыте могу заверить, что проще раскрутить несколько гаек, осмотреть внутреннюю конструкцию, выявить дефекты на начальном этапе и устранить их, чем после запуска в непродолжительную работу заниматься сложным ремонтом, который можно было предотвратить.

Важное предупреждение

Начинающие электрики довольно часто сами создают неисправности двигателя, нарушая технологию его разборки, работая обычным молотком: разбивают грани вала.

Для сохранения структуры деталей без их повреждения необходимо использовать специальный съемник подшипников электродвигателя.

В самом крайнем случае, когда его нет, удары молотком наносят через толстые пластины из мягкого металла (медь, алюминий) или плотную сухую древесину (яблоня, груша, дуб).

Как состояние подшипников влияет на работу двигателя

Любой асинхронный электродвигатель (АД) имеет ротор с короткозамкнутыми обмотками. В них наводится ток, создающий магнитный поток, взаимодействующий с вращающимся магнитным полем статора, которое и является его источником движения.

Ротор внутри корпуса крепится на подшипниках. Их состояние сильно влияет на качество вращения. Они призваны обеспечить легкое скольжение вала без люфтов и биений. Любые нарушения недопустимы.

Дело в том, что обмотку статора можно рассматривать как обыкновенный электромагнит. Если у ротора разбиты подшипники, то он под действием магнитного поля станет притягиваться, приближаясь к статорной обмотке.

Зазор между вращающейся и стационарной частями очень маленький. Поэтому касания или биения ротора могут задевать, царапать, деформировать статорные обмотки, безвозвратно повреждая их. Ремонт потребует полной перемотки статора, а это весьма сложная работа.

Обязательно разбирайте электродвигатель перед его подключением, тщательно осматривайте всю его внутреннюю конструкцию.

Обращайте особое внимание на состояние подшипников, выполнение нормативов по допускам и посадкам, качество смазки. Сухую и старую смазку обязательно необходимо заменять свежей.

Что надо учитывать в конструкции статорных обмоток и как их подготовить

Домашнему мастеру чаще всего попадают электродвигатели, которые уже где-то поработали, а, возможно, и прошли реконструкцию или перемотку. Никто об этом обычно не заявляет, на шильдиках и бирках информацию не меняют, оставляют прежней. Поэтому рекомендую визуально осмотреть их внутренности.

Статорные катушки у асинхронных двигателей для питания от однофазной и трехфазной сети отличаются количеством обмоток и конструкцией.

Трехфазный электродвигатель имеет три абсолютно одинаковые обмотки, разнесенные по направлению вращения ротора на 120 угловых градусов. Они выполнены из одного провода с одинаковым числом витков.

Все они имеют равное активное и индуктивное сопротивление, занимают одинаковое число пазов внутри статора.

Это позволяет первоначально оценивать их состояние обычным цифровым мультиметром в режиме омметра при отключенном напряжении.

Однофазный асинхронный двигатель имеет две разные обмотки на статоре, разнесенные на 90 угловых градусов. Одна из них создана для длительного прохождения тока в номинальном режиме работы и поэтому называется основной, главной либо рабочей.

Для уменьшения нагрева ее делают более толстым проводом, обладающим меньшим электрическим сопротивлением.

Перпендикулярно ей смонтирована вторая обмотка большего сопротивления и меньшего диаметра, что позволяет различать ее визуально. Она создана для кратковременного протекания пусковых токов и отключается сразу при наборе ротором номинального числа оборотов.

Пусковая или вспомогательная обмотка занимает примерно 1/3 пазов статора, а остальная часть отведена рабочим виткам.

Однако, приведенное правило имеет исключения: на практике встречаются однофазные электродвигатели с двумя одинаковыми обмотками.

Для подключения статора к питающей сети концы обмоток выводят наружу проводами. С учетом того, что одна обмотка имеет два конца, то у трехфазного электродвигателя может быть, как правило, шесть выводов, а у однофазного — четыре.

Но из этого простого правила встречаются исключения, связанные с внутренней коммутацией выводов для упрощения монтажа на специальном оборудовании:

  • у трехфазных двигателей из статора могут выводиться:
    • три жилы при внутренней сборке схемы треугольника;
    • или четыре — для звезды;
  • однофазный электродвигатель может иметь:
    • три вывода при внутреннем объединении одного конца пусковой и рабочей обмоток;
    • или шесть концов для конструкции с пусковой обмоткой и встроенным контактом ее отключения от центробежного регулятора.

Как видите, судить о конструкции асинхронного двигателя по количеству выведенных проводов на клеммнике от обмоток статора можно, но вероятность ошибки довольно высока. Нужен более тщательный анализ его устройства.

Техническое состояние изоляции обмоток

Где и в каких условиях хранился статор не всегда известно. Если он находился без защиты от атмосферных осадков или внутри влажных помещений, то его изоляция требует сушки.

В домашней обстановке разобранный статор можно поместить в сухую комнату для просушки. Ускорить процесс допустимо обдувом вентилятора или нагревом обычными лампами накаливания.

Обращайте внимание, чтобы разогретое стекло лампы не касалось провода обмоток, обеспечивайте воздушный зазор. Окончание процесса сушки связано с восстановлением свойств изоляции. Этот процесс необходимо контролировать замерами мегаомметром.

Как отличить конструкцию однофазного асинхронного электродвигателя и определить его тип по статистической таблице

Привожу выдержку из книги Алиева И И про асинхронные двигатели, вернее таблицу основных электрических характеристик.

Как видите, промышленностью массово выпущены модели с:

  • повышенным сопротивлением пусковой обмотки;
  • пусковым конденсатором;
  • рабочим конденсатором;
  • пусковым и рабочим конденсатором;
  • экранированными полюсами.

А еще здесь не указаны более новые разработки, называемые АЭД — асинхронные энергосберегающие двигатели, обеспечивающие:

  • значительное снижение реактивной мощности;
  • повышение КПД;
  • уменьшение потребления полной мощности при той же нагрузке на вал, что и у обычных моделей.

Их конструкторское отличие: внутри зубцов сердечника статора выполнены углубления. В них жестко вставлены постоянные магниты, взаимодействующие с вращающимся магнитным полем.

Во всем этом многообразии вам предстоит разбираться самостоятельно с неизвестной конструкцией. Здесь большую помощь может оказать техническое описание или шильдик на корпусе.

Я же дальше рассматриваю только две наиболее распространенные схемы запуска АД в работу.

Схема подключения асинхронного двигателя с пусковой обмоткой: последовательность сборки

Например, мы определили, что из статора выходят четыре или три провода. Вызваниваем между ними активное сопротивление омметром и определяем пусковую и рабочую обмотку.

Допустим, что у четырех проводов между собой вызваниваются две пары с сопротивлением 6 и 12 Ом. Скрутим произвольно по одному проводу от каждой обмотки, обозначим это место, как «общий провод» и получим между тремя выводами замер 6, 12, 18 Ом.

Точками на этой схеме я обозначил начала обмоток. Пока на этот вопрос не обращайте внимание. Но, к нему потребуется вернуться дальше, когда возникнет необходимость выполнять реверс.

Цепочка между общим выводом и меньшим сопротивлением 6Ω будет главной, а большим 12Ω — вспомогательной, пусковой обмоткой. Последовательное их соединение покажет суммарный результат 18 Ом.

Помечаем эти 3 конца уже понятной нам маркировкой:

  • О — общий;
  • П — пусковой;
  • Р — рабочий.

Дальше нам понадобиться кнопка ПНВС, специально созданная для запуска однофазных асинхронных двигателей. Ее электрическая схема представлена тремя замыкающими контактами.

Но, она имеет важное отличие от кнопки запуска трехфазных электродвигателей ПНВ: ее средний контакт выполнен с самовозвратом, а не фиксацией при нажатии.

Это означает, что при нажатии кнопки все три контакта замыкаются и удерживаются в этом положении. Но, при отпускании руки два крайних контакта остаются замкнутыми, а средний возвращается под действием пружины в разомкнутое состояние.

Эту кнопку и клеммы вывода обмоток статора из электродвигателя соединяем трехжильным кабелем так, чтобы на средний контакт ПНВС выходил контакт пусковой обмотки. Выводы П и Р подключаем на ее крайние контакты и помечаем.

С обратной стороны кнопки между контактами пусковой и рабочей обмоток жестко монтируем перемычку. На нее и второй крайний контакт подключаем кабель питания бытовой сети 220 вольт с вилкой для установки в розетку.

При включении этой кнопки под напряжение все три контакта замкнутся, а рабочая и пусковая обмотка станут работать. Буквально через пару секунд двигатель закончит набирать обороты, выйдет на номинальный режим.

Тогда кнопку запуска отпускают:

  • пусковая обмотка отключается самовозвратом среднего контакта;
  • главная обмотка двигателя продолжает раскручивать ротор от сети 220 В.

Это самая доступная схема подключения асинхронного двигателя с пусковой обмоткой для домашнего мастера. Однако, она требует наличия кнопки ПНВС.

Если ее нет, а электродвигатель требуется срочно запустить, то ее допустимо заменить комбинацией из двухполюсного автоматического выключателя и обычной электрической кнопки соответствующей мощности с самовозвратом.

Придется включать их одновременно, а кнопку отпускать после раскрутки электродвигателя.

Все запуски электродвигателей и любого электрического оборудования всегда выполняйте с защитой этих цепей автоматическими выключателями. Они предотвратят развитие аварийных ситуаций при возникновении любых случайных ошибок.

С целью закрепления материала по этой теме рекомендую посмотреть видеоролик владельца Oleg pl. Он как раз показывает конструкцию встроенного центробежного регулятора, предназначенного для автоматического отключения вспомогательной обмотки.

Схема подключения асинхронного двигателя с конденсаторным запуском: 3 технологии

Статор с обмотками для запуска от конденсаторов имеет примерно такую же конструкцию, что и рассмотренная выше. Отличить по внешнему виду и простыми замерами мультиметром его сложно, хотя обмотки могут иметь равное сопротивление.

Ориентируйтесь по заводскому шильдику и таблице из книги Алиева. Такой электродвигатель можно попробовать подключить по схеме с кнопкой ПНВС, но он не станет раскручиваться.

Ему не хватит пускового момента от вспомогательной обмотки. Он будет гудеть, дергаться, но на режим вращения так и не выйдет. Здесь нужно собирать иную схему конденсаторного запуска.

2 конца разных обмоток подключают с общим выводом О. На него и второй конец рабочей обмотки подают через коммутационный аппарат АВ напряжение бытовой сети 220 вольт.

Конденсатор подключают к выводам пусковой и рабочей обмоток.

В качестве коммутационного аппарата можно использовать сдвоенный автоматический выключатель, рубильник, кнопки типа ПНВ или ПНВС.

Здесь получается, что:

  • главная обмотка работает напрямую от 220 В;
  • вспомогательная — только через емкость конденсатора.

Эта схема используется для легкого запуска конденсаторных электродвигателей, включаемых в работу без тяжелой нагрузки на привод, например, вентиляторы, наждаки.

Если же в момент запуска необходимо одновременно раскручивать ременную передачу, шестеренчатый механизм редуктора или другой тяжелый привод, то в схему добавляют пусковой конденсатор, увеличивающий пусковой момент.

Принцип работы такой схемы удобно приводить с помощью все той же кнопки ПНВС.

Ее контакт с самовозвратом подключается на вспомогательную обмотку через дополнительный пусковой конденсатор Сп. Второй конец его обкладки соединяется с выводом П и рабочей емкостью Ср.

Дополнительный конденсатор в момент запуска электродвигателя с тяжелым приводом помогает ему быстро выйти на номинальные обороты вращения, а затем просто отключается, чтобы не создавать перегрев статора.

Эта схема таит в себе одну опасность, связанную с длительным хранением емкостного заряда пусковым конденсатором после снятия питания 220 при отключении электродвигателя.

При неаккуратном обращении или потере внимательности работником ток разряда может пройти через тело человека. Поэтому заряженную емкость требуется разряжать.

В рассматриваемой схеме после снятия напряжения и выдергивания вилки со шнуром питания из розетки это можно делать кратковременным включением кнопки ПНВС. Тогда емкость Сп станет разряжаться через пусковую обмотку двигателя.

Однако не все люди так поступают по разным причинам. Поэтому рекомендуется в цепочку пуска монтировать два дополнительных резистора.

Сопротивление Rр выбирается номиналом около 300÷500 Ом нескольких ватт. Его задача — после снятия напряжения питания осуществить разряд вспомогательной емкости Сп.

Резистор Rо низкоомный и мощный выполняет роль токоограничивающего сопротивления.

Добавление резисторов в схему пуска электродвигателя повышает безопасность его эксплуатации, автоматически ограничивает протекание емкостного тока разряда заряженного конденсатора через тело человека.

Где взять номиналы главного и вспомогательного конденсаторов?

Дело в том, что величину пусковой и рабочей емкости для конденсаторного запуска однофазного АД завод определяет индивидуально для каждой модели и указывает это значение в паспорте.

Отдельных формул для расчета, как это делается для конденсаторного запуска трехфазного двигателя в однофазную сеть по схемам звезды или треугольника просто нет.

Вам потребуется искать заводские рекомендации или экспериментировать в процессе наладки с разными емкостями, выбирая наиболее оптимальный вариант.

Владелец
видеоролика “I V Мне интересно” показывает способы оптимальной настройки параметров схемы запуска конденсаторных двигателей.

Как поменять направление вращения однофазного асинхронного двигателя: 2 схемы

Высока вероятность того, что АД запустили по одному из вышеперечисленных принципов, а он крутится не в ту сторону, что требуется для привода.

Другой вариант: на станке необходимо обязательно выполнять реверс для обработки деталей. Оба эти случаи поможет реализовать очередная разработка.

Возвращаю вас к начальной схеме, когда мы случайным образом объединяли концы главной и вспомогательной обмоток. Теперь нам надо сменить последовательность включения одной из них. Показываю на примере смены полярности пусковой обмотки.

В принципе так можно поступить и с главной. Тогда ток по этой последовательно собранной цепочке изменит направление одного из магнитных потоков и направление вращения ротора.

Для одноразового реверса этого переключения вполне достаточно. Но для станка с необходимостью периодической смены направления движения привода предлагается схема реверса с управлением тумблером.

Этот переключатель можно выбрать с двумя или тремя фиксированными положениями и шестью выводами. Подбирать его конструкцию необходимо по току нагрузки и допустимому напряжению.

Схема реверса однофазного АД с пусковой обмоткой через тумблер имеет такой вид.

Пускать токи через тумблер лучше от вспомогательной обмотки, ибо она работает кратковременно. Это позволит продлить ресурс ее контактов.

Реверс АД с конденсаторным запуском удобно выполнить по следующей схеме.

Для условий тяжелого запуска параллельно основному конденсатору через средний контакт с самовозвратом кнопки ПНВС подключают дополнительный конденсатор. Эту схему не рисую, она показана раньше.

Переключать положение тумблера реверса необходимо исключительно при остановленном роторе, а не во время его вращения. Случайная смена направления работы двигателя под напряжением связана с большими бросками токов, что ограничивает его ресурс.

Поэтому место расположения тумблера реверса на станке необходимо выбирать так, чтобы исключить случайное оперирование им во время работы. Устанавливайте его в углублениях конструкции.

Если у вас еще остались неясные моменты про однофазный асинхронный двигатель и схему подключения, то задавайте их в комментариях. Обязательно обсудим.

Подключение однофазного двигателя через конденсатор — 3 схемы

На промышленных объектах особых проблем, как подключить электродвигатель, не испытывают, там подводится трехфазная сеть. Работают асинхронные электродвигатели с тремя подключенными обмотками, расположенными по периметру цилиндрического статора. На каждую обмотку подсоединяемого двигателя производятся включения отдельной фазы, схема подключения электродвигателя обеспечивает сдвиг фаз переменного тока, создает крутящий момент, и моторы успешно вращаются.

В случае с бытовыми условиями на жилых объектах в частных домах и квартирах трехфазных электрических линий нет, прокладываются однофазные сети, где напряжение 220 вольт. Поэтому однофазный асинхронный двигатель подключается по другой схеме, требуется устройство с пусковой обмоткой.

Конструкция и принцип работы

Подключают электродвигатель через конденсатор по причине, что одна обмотка на статоре электродвигателя на 220 В с переменным током создает магнитное поле, которое компенсирует свои импульсы за счет смены полярности с частотой 50 Гц. В этом случае движок гудит, ротор остается на месте. Для создания крутящего момента делают дополнительные подсоединения пусковых обмоток, где электрический сдвиг по фазе будет 90° по отношению к рабочей обмотке.

Конструкция асинхронного однофазного электродвигателя

Не путайте геометрические понятия угла расположения с электрическим сдвигом фаз. В геометрическом измерении обмотки в статоре размещаются друг напротив друга.

Чтобы осуществить это технически, конструкция электромотора предусматривает большое количество механических деталей и составляющих электрической схемы:

  • статор с основной и дополнительной обмоткой пуска;
  • короткозамкнутый ротор;
  • борно с группой контактов на панели;
  • конденсаторы;
  • центробежный выключатель и многие другие элементы, показанные выше на рисунке.

Рассмотрим, как подключить однофазный двигатель. С целью смещения фаз последовательно в пусковую обмотку включается конденсатор, при подключении однофазного асинхронного электродвигателя круговое магнитное поле наводит в роторе токи. Совокупность силы полей и токов создают вращающий импульс, прилагаемый к ротору, он начинает вращаться.

Схемы подключения

 Варианты подключения двигателя через конденсатор:

  • схема подключения однофазного двигателя с использованием пускового конденсатора;
  • подключение электродвигателя с использованием конденсатора в рабочем режиме;
  • подключение однофазного электродвигателя с пусковым и рабочим конденсаторами.

Все эти схемы успешно применяются при эксплуатации асинхронных однофазных двигателей. В каждом случае есть свои достоинства и недостатки, рассмотрим каждый вариант более подробно.

Схема с пусковым конденсатором

Идея заключается в том, что конденсатор включается в цепь только при пуске, используется пусковая кнопка, которая размыкает контакты после раскрутки ротора, по инерции он начинает вращаться. Магнитное поле основной обмотки поддерживает вращение длительное время. В качестве кратковременного переключателя ставят кнопки с группой контактов или реле.

Схема подключения пускового конденсатора

Поскольку схема кратковременного подключения однофазного двигателя через конденсатор предусматривает кнопку на пружине, которая при отпускании размыкает контакты, это дает возможность экономить, провода пусковой обмотки делают тоньше. Чтобы исключить межвитковое короткое замыкание, используют термореле, которое при достижении критической температуры отключает дополнительную обмотку. В некоторых конструкциях ставят центробежный выключатель, который при достижении определенной скорости вращения размыкает контакты.

Соединения, центробежный выключатель на валу ротора

Схемы и конструкции регулировки скорости вращения и предотвращения перегрузок электродвигателя на автомате могут быть различны. Иногда центробежный выключатель устанавливается на валу ротора или на других элементах, вращающихся от него с прямым соединением, или через редуктор.

Некоторые элементы

Под действием центробежных сил груз оттягивает пружины с контактной пластиной, при достижении установленной скорости вращения замыкает контакты, переключатель реле обесточивает двигатель или подает сигнал на другой механизм управления.

Бывают варианты, когда тепловое реле и центробежный выключатель устанавливаются в одной конструкции. В этом случае тепловое реле отключает двигатель при воздействии критической температуры или усилиями раздвигающегося груза центробежного выключателя.

Варианты схемы подключения конденсаторов

В связи с особенностями характеристик асинхронного двигателя конденсатор в цепи дополнительной катушки искажает линии магнитного поля, от круглой формы до эллиптической, в результате этого потери мощности увеличиваются, снижается КПД. Пусковые характеристики остаются хорошие.

Схема с рабочим конденсатором

Отличие этой схемы в том, что конденсатор после пуска не отключается, и вторичная обмотка на протяжении всей работы импульсами своего магнитного поля раскручивает ротор. Мощность электродвигателя в этом случае значительно увеличивается, форму электромагнитного поля можно попытаться приблизить от эллиптической формы к круглой подбором емкости конденсатора. Но в этом случае момент пуска более продолжительный по времени, и пусковые токи больше. Сложность схемы заключается в том, что емкость конденсатора для выравнивания магнитного поля подбирается с учетом токовых нагрузок. Если они будут меняться, то и все параметры будут не постоянными, для стабильности формы линий магнитного поля можно установить несколько конденсаторов с различными емкостями. Если при изменении нагрузки включать соответствующую емкость, это улучшит рабочие характеристики, но существенно усложняет схему и процесс эксплуатации.

Комбинированная схема с двумя конденсаторами

Оптимальным вариантом для усреднения рабочих характеристик является схема с двумя конденсаторами — пусковым и рабочим.

Рабочий конденсатор подключен постоянно в цепи обмоток, пусковой через выключатель запуска замыкается кратковременно

Установка и подбор компонентов

Конденсаторы имеют немалые габариты, поэтому не всегда помещаются во внутреннюю часть борно (распределительная коробка на корпусе электродвигателя).

Пример размещения конденсатора на внешней стороне корпуса электродвигателя

В зависимости от места установки и других условий эксплуатации конденсаторы могут располагаться на внешней стороне двигателя рядом с коробкой расключения. В некоторых случаях конденсаторы выносят в отдельный корпус, расположенный недалеко от электродвигателя.

Величину емкости конденсаторов в идеальном случае с постоянной токовой нагрузкой можно рассчитать, но в большинстве случаев нагрузка нестабильна, и методика расчетов сложная. Поэтому опытные электрики руководствуются статистикой и практическим опытом:

  • для конденсаторов рабочей схемы емкость выбирается 0,75 мкФ на 1 кВт мощности;
  • для пусковых конденсаторов 1,8–2 мкФ на кВт мощности, при этом надо учитывать скачки напряжения в период пуска и остановки — они колеблются в пределах 300–600 В. Поэтому по напряжению конденсатор должен быть как минимум 400 В.
Конденсаторы для подключения однофазного двигателя

Вообще при выборе схемы и конденсаторов на однофазный двигатель надо руководствоваться назначением двигателя и условиями эксплуатации. Когда нужно быстро раскрутить двигатель, используется схема с пусковым конденсатором. При необходимости иметь в процессе эксплуатации большую мощность и КПД применяют схему с рабочим конденсатором — обычно в однофазном конденсаторном двигателе для бытовых нужд небольшой мощности, в пределах 1 кВт.

Похожие статьи:

Как подключить однофазный электродвигатель через конденсатор

В технике нередко используются двигатели асинхронного типа. Такие агрегаты отличаются простотой, хорошими характеристиками, малым уровнем шума, легкостью эксплуатации. Для того, чтобы асинхронный двигатель вращался, необходимо наличие вращающегося магнитного поля.

Такое поле легко создается при наличии трехфазной сети. В этом случае в статоре двигателя достаточно расположить три обмотки, размещенные под углом 120 градусов друг от друга и подключить к ним соответствующее напряжение. И круговое вращающееся поле начнет вращать статор.

Однако бытовые приборы обычно используются в домах, в которых чаще всего имеется только однофазная электрическая сеть. В этом случае обычно применяются однофазные двигатели асинхронного типа.

Почему применяют запуск однофазного двигателя через конденсатор?

Если на статоре двигателя поместить одну обмотку, то при протекании переменного синусоидального тока в ней образуется пульсирующее магнитное поле. Но это поле не сможет заставить ротор вращаться. Чтобы запустить двигатель надо:

  • на статоре разместить дополнительную обмотку под углом около 90° относительно рабочей обмотки;
  • последовательно с дополнительной обмоткой включить фазосдвигающий элемент, например, конденсатор.
В этом случае в двигателе возникнет круговое магнитное поле, а в короткозамкнутом роторе возникнут токи.
Взаимодействие токов и поля статора приведет к вращению ротора. Стоит напомнить, что для регулировки пусковых токов — контроль и ограничение их величины — используют частотный преобразователь для асинхронных двигателей.

Варианты схем включения — какой метод выбрать?

В зависимости от способа подключения конденсатора к двигателю различают такие схемы с:

  • пусковым,
  • рабочим,
  • пусковым и рабочим конденсаторами.

Наиболее распространенной методом является схема с пусковым конденсатором.

В этом случае конденсатор и пусковая обмотка включаются только на момент старта двигателя. Это связано со свойством продолжения агрегатом своего вращения даже после отключения дополнительной обмотки. Для такого включения чаще всего используется кнопка или реле.

Поскольку пуск однофазного двигателя с конденсатором происходит довольно быстро, то дополнительная обмотка работает небольшое время. Это позволяет для экономии выполнять ее из провода с меньшим сечением, нежели основная обмотка. Для предупреждения перегрева дополнительной обмотки в схему часто добавляют центробежный выключатель или термореле. Эти устройства отключают её при наборе двигателем определенной скорости или при сильном нагреве.

Схема с пусковым конденсатором имеет хорошие пусковые характеристики двигателя. Но рабочие характеристики при таком включении ухудшаются.
Это связано с принципом работы асинхронного двигателя, когда вращающееся поле является не круговым, а эллиптическим. В результате этого искажения поля возрастают потери и падает КПД. Есть несколько вариантов подключения асинхронных двигателей под рабочее напряжение. Соединение звездой и треугольником (а также комбинированный способ) имеют свои преимущества и недостатки. Выбранный метод включения влияет на пусковые характеристики агрегата и его рабочую мощность.

Принцип действия магнитного пускателя основан на возникновении магнитного поля при прохождении электричества через втягивающую катушку. Подробнее об управлении двигателем с реверсированием и без читайте в отдельной статье.

Более хорошие рабочие характеристики можно получить при использовании схемы с рабочим конденсатором.

В этой схеме конденсатор после запуска двигателя не отключается. Правильным подбором конденсатора для однофазного двигателя можно компенсировать искажение поля и повысить КПД агрегата. Но для такой схемы ухудшаются пусковые характеристики. Необходимо также учитывать, что выбор величины емкости конденсатора для однофазного двигателя производится под определенный ток нагрузки.
При изменении тока относительно расчетного значения поле будет переходить от круговой к эллиптической форме и характеристики агрегата ухудшатся. В принципе, для обеспечения хороших характеристик необходимо при изменении нагрузки двигателя менять величину емкости конденсатора. Но это может слишком усложнить схему включения.

Компромиссным решением является выбор схемы с пусковым и рабочим конденсаторами. Для такой схемы рабочие и пусковые характеристики будут средними по сравнению с рассмотренными ранее схемами.

В общем, если при подключении однофазного двигателя через конденсатор требуется большой пусковой момент, то выбирается схема с пусковым элементом, а при отсутствии такой необходимости – с рабочим.

Подключение конденсаторов для запуска однофазных электродвигателей

Перед подключением к двигателю можно проверить конденсатор мультиметром на работоспособность.

При выборе схемы у пользователя всегда есть возможность выбрать именно ту схему, которая ему подходит. Обычно все выводы обмоток и выводы конденсаторов выведены в клеммную коробку двигателя.

Чтобы установить скрытую проводку в деревянном доме, необходимо кроме обладания определенными знаниями оценить все плюсы и минусы данного вида энергоснабжения помещений.

Наличие трехжильной проводки в частном доме предполагает использование системы заземления, которую можно сделать своими руками. Как заменить электропроводку в квартире по типовым схемам, можно узнать здесь.

При необходимости модернизировать схему или самостоятельно сделать расчет конденсатора для однофазного двигателя можно, исходя из того, что на каждый киловатт мощности агрегата требуется емкость в 0,7 — 0,8 мкФ для рабочего типа и в два с половиной раза большая емкость для пускового. При выборе конденсатора необходимо учитывать, что пусковой должен иметь рабочее напряжение не меньше 400 В.
Это связано с тем, что при пуске и остановке двигателя в электрической цепи из-за наличия ЭДС самоиндукции возникает всплеск напряжения, достигающий 300-600 В.

Выводы:

  1. Однофазный асинхронный двигатель широко используется в бытовых приборах.
  2. Для запуска такого агрегата необходима дополнительная (пусковая) обмотка и фазосдвигающий элемент — конденсатор.
  3. Существуют различные схемы подключения однофазного электродвигателя через конденсатор.
  4. Если надо иметь больший пусковой момент, то используется схема с пусковым конденсатором, при необходимости получения хороших рабочих характеристик двигателя используется схема с рабочим конденсатором.

Подробное видео о том, как подключить однофазный двигатель через конденсатор

Как подключить однофазный электродвигатель, схема запуска

Работа асинхронных электрических двигателей основывается на создании вращающегося магнитного поля, приводящего в движение вал. Ключевым моментом является пространственное и временное смещение обмоток статора по отношению друг к другу. В однофазных асинхронных электродвигателях для создания необходимого сдвига по фазе используется последовательное включение в цепь фазозамещающего элемента, такого как, например, конденсатор.

Содержание:

  1. Отличие от трехфазных двигателей
  2. Как это работает
  3. Основные схемы подключения
  4. Другие способы
  • Подбор конденсатора
  • Отличие от трехфазных двигателей

    Использование асинхронных электродвигателей в чистом виде при стандартном подключении возможно только в трехфазных сетях с напряжением в 380 вольт, которые используются, как правило, в промышленности, производственных цехах и других помещениях с мощным оборудованием и большим энергопотреблением. В конструкции таких машин питающие фазы создают на каждой обмотке магнитные поля со смещением по времени и расположению (120˚ относительно друг друга), в результате чего возникает результирующее магнитное поле. Его вращение приводит в движение ротор.

    Однако нередко возникает необходимость подключения асинхронного двигателя в однофазную бытовую сеть с напряжением в 220 вольт (например в стиральных машинах). Если для подключения асинхронного двигателя будет использована не трехфазная сеть, а бытовая однофазная (то есть запитать через одну обмотку), он не заработает. Причиной тому переменный синусоидальный ток, протекающий через цепь. Он создает на обмотке пульсирующее поле, которое никак не может вращаться и, соответственно, двигать ротор. Для того, чтобы включить однофазный асинхронный двигатель необходимо:

    1. добавить на статор еще одну обмотку, расположив ее под 90˚ углом от той, к которой подключена фаза.
    2. для фазового смещения включить в цепь дополнительной обмотки фазосдвигающий элемент, которым чаще всего служит конденсатор.

    Редко для сдвига по фазе создается бифилярная катушка. Для этого несколько витков пусковой обмотки мотаются в обратную сторону. Это лишь один из вариантов бифиляров, которые имеют несколько другую сферу применения, поэтому, чтобы изучить их принцип действия, следует обратиться к отдельной статье.

    После подключения двух обмоток такой двигатель с конструкционной точки зрения является двухфазным, однако его принято называть однофазным из-за того что в качестве рабочей выступает лишь одна из них.

    Схема подключения коллекторного электродвигателя в 220В

    Схема подключения однофазного асинхронного двигателя (схема звезда)

    Как это работает

    Пуск двигателя с двумя расположенными подобным образом обмотками приведет к созданию токов на короткозамкнутом роторе и кругового магнитного поля в пространстве двигателя. В результате их взаимодействия между собой ротор приводится в движение. Контроль показателей пускового тока в таких двигателях осуществляется частотным преобразователем.

    Несмотря на то, что функцию фаз определяет схема присоединения двигателя к сети, дополнительную обмотку нередко называют пусковой. Это обусловлено особенностью, на которой основывается действие однофазных асинхронных машин – крутящийся вал, имеющий вращающее магнитное поле, находясь во взаимодействии с пульсирующим магнитным полем может работать от одной рабочей фазы. Проще говоря, при некоторых условиях, не подсоединяя вторую фазу через конденсатор, мы могли бы запустить двигатель, раскрутив ротор вручную и поместив в статор. В реальных условиях для этого необходимо запустить двигатель с помощью пусковой обмотки (для смещения по фазе), а потом разорвать цепь, идущую через конденсатор. Несмотря на то, что поле на рабочей фазе пульсирующее, оно движется относительно ротора и, следовательно, наводит электродвижущую силу, свой магнитный поток и силу тока.

    Основные схемы подключения

    В качестве фазозамещающего элемента для подключения однофазного асинхронного двигателя можно использовать разные электромеханические элементы (катушка индуктивности, активный резистор и др.), однако конденсатор обеспечивает наилучший пусковой эффект, благодаря чему и применяется для этого чаще всего.

    однофазный асинхронный двигатель и конденсатор

    Различают три основные способа запуска однофазного асинхронного двигателя через:

    • рабочий;
    • пусковой;
    • рабочий и пусковой конденсатор.

    В большинстве случаев применяется схема с пусковым конденсатором. Это связано с тем, что она используется как пускатель и работает только во время включения двигателя. Дальнейшее вращение ротора обеспечивается за счет пульсирующего магнитного поля рабочей фазы, как уже было описано в предыдущем абзаце. Для замыкания цепи пусковой цепи зачастую используют реле или кнопку.

    Поскольку обмотка пусковой фазы используется кратковременно, она не рассчитана на большие нагрузки, и изготавливается из более тонкой проволоки. Для предотвращения выхода её из строя в конструкцию двигателей включают термореле (размыкает цепь после нагрева до установленной температуры) или центробежный выключатель (отключает пусковую обмотку после разгона вала двигателя).

    Таким путем достигаются отличные пусковые характеристики. Однако данная схема обладает одним существенным недостатком – магнитное поле внутри двигателя, подключенного к однофазной сети, имеет не круговую, а эллиптическую форму. Это увеличивает потери при преобразовании электрической энергии в механическую и, как следствие, снижает КПД.

    Схема с рабочим конденсатором не предусматривает отключение дополнительной обмотки после запуска и разгона двигателя. В данном случае конденсатор позволяет компенсировать потери энергии, что приводит к закономерному увеличению КПД. Однако в пользу эффективности проходится жертвовать пусковыми характеристиками.

    Для работы схемы необходимо подбирать элемент с определенной ёмкостью, рассчитанной с учетом тока нагрузки. Неподходящий по емкости конденсатор приведет к тому, что вращающееся магнитное поле будет принимать эллиптическую форму.

    Своеобразной «золотой серединой» является схема подключения с использованием обоих конденсаторов – и пускового, и рабочего. При подключении двигателя таким способом его пусковые и рабочие характеристики принимают средние значения относительно описанных выше схем.

    На практике для приборов, требующих создания сильного пускового момента используется первая схема с соответствующим конденсатором, а в обратной ситуации – вторая, с рабочим.

    Другие способы

    При рассмотрении методов подключения однофазных асинхронных двигателей нельзя обойти внимание два способа, конструктивно отличающихся от схем для подключения через конденсатор.

    С экранированными полюсами и расщепленной фазой

    В конструкции такого двигателя используется короткозамкнутая дополнительная обмотка, а на статоре присутствуют два полюса. Аксиальный паз делит каждый из них на две несимметричные половины, на меньшей из которых располагается короткозамкнутый виток.

    После включения двигателя в электрическую сеть пульсирующий магнитный поток разделяется на 2 части. Одна из них движется через экранированную часть полюса. В результате получается два разнонаправленных потока с отличной от основного поля скоростью вращения. Благодаря индуктивности появляется электродвижущая сила и сдвиг магнитных потоков по фазе и времени.

    Витки короткозамкнутой обмотки приводят к существенным потерям энергии, что и является главным недостатком схемы, однако она относительно часто используется в климатических и нагревательных приборах с вентилятором.

    С асимметричным магнитопроводом статора

    Особенностью двигателей с данной конструкцией заключается в несимметричной форме сердечника, из-за чего появляются явно выраженные полюса. Для работы схемы необходим короткозамкнутый ротор и обмотка в виде беличьей клетки. Характерным отличием этой конструкции является отсутствие необходимости в фазовом смещении. Улучшенный пуск двигателя осуществляется благодаря оснащению его магнитными шунтами.

    Среди недостатков этих моделей асинхронных электродвигателей выделяют низкий КПД, слабый пусковой момент, отсутствие реверса и сложность обслуживания магнитных шунтов. Но, несмотря на это, они имеют широкое применение в производстве бытовой техники.

    Подбор конденсатора

    Перед тем как подключить однофазный электродвигатель, необходимо произвести расчет необходимой ёмкости конденсатора. Это можно сделать самостоятельно или воспользоваться онлайн-калькуляторами. Как правило, для рабочего конденсатора на 1 кВт мощности должно приходиться примерно 0,7-0,8 мкФ емкости, и около 1,7-2 мкФ – для пускового. Стоит отметить, что напряжение последнего должно составлять не менее 400 В. Эта необходимость обусловлена возникновением 300-600 вольтного всплеска напряжения при старте и останове двигателя.

    Керамический и электролитический конденсатор

    Ввиду своих функциональных особенностей однофазные электродвигатели находят широкое применение в бытовой технике: пылесосах, холодильниках, газонокосилках и других приборов, для работы которых достаточно частоты вращения двигателя до 3000 об/мин. Большей скорости, при подключении к стандартной сети с частотой тока в 50 Гц, невозможно. Для развития большей скорости используют коллекторные однофазные двигатели.

    Схема подключения двигателя через конденсатор

    Есть 2 типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Их различие в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это нужно потому, что после разгона она снижает КПД.

    В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная, они смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

    Схема подключения однофазного двигателя через конденсатор

    При подключении однофазного конденсаторного двигателя есть несколько вариантов схем подключения. Без конденсаторов электромотор гудит, но не запускается.

    • 1 схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже.
    • 3 схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском, а с рабочим конденсором — если нужны хорошие рабочие характеристики.
    • 2 схема — подключения однофазного двигателя — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и используется чаще всего. Она на втором рисунке. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

    Схема подключения трёхфазного двигателя через конденсатор

    Здесь напряжение 220 вольт распределяется на 2 последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.

    Максимальной мощности двигателя на 380 В в сети 220 В можно достичь используя соединение типа треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность.

    Важно помнить: трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на 220 В. Поэтому если есть ввод на 380 В — обязательно подключайте к нему — это обеспечит более стабильную и экономичную работу устройств. Для пуска мотора не понадобятся различные пусковики и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к сети 380 В.

    Онлайн расчет емкости конденсатора мотора

    Введите данные для расчёта конденсаторов — мощность двигателя и его КПД

    Есть специальная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись онлайн калькулятором или рекомендациями, которые выведены на основании многих опытов:

    Рабочий конденсатор берут из расчета 0,8 мкФ на 0,1 кВт мощности двигателя;
    Пусковой подбирается в 2-3 раза больше.

    Конденсаторы должны быть неполярными, то есть не электролитическими. Рабочее напряжение этих конденсаторов должно быть минимум в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 350 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting.

    Пусковые конденсаторы для моторов

    Эти конденсаторы можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.

    При нормальной работе трехфазных асинхронных электродвигателей с конденсаторным пуском, включенных в однофазную сеть предполагается изменение (уменьшение) емкости конденсатора с увеличением частоты вращения вала. В момент пуска асинхронных двигателей (особенно, с нагрузкой на валу) в сети 220 В требуется повышенная емкость фазосдвигающего конденсатора.

    Реверс направления движения двигателя

    Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Такую операцию может делать двухпозиционный переключатель, на центральный контакт которого подключается вывод от конденсатора, а на два крайних вывода от «фазы» и «нуля».


    Запуск трехфазных электродвигателей с помощью конденсаторов

    Запуск трехфазных электродвигателей с помощью конденсаторов, подключая их к бытовой однофазной электросети, можно осуществлять только в исключительных случаях (когда нет возможности подключиться к трехфазной сети), поскольку в ней сразу возникает вращающееся магнитное поле, создающее условия для того, чтобы ротор вращался в статоре. Помимо прочего, этот режим позволяет достичь максимальной мощности и эффективности работы электромотора.

    Для того чтобы достичь максимальной выходной мощности электродвигателя (максимум 70% сравнительно с трехфазным подключением), при подключении к домашней однофазной электросети совершают три обмотки по схеме «треугольник». При подключении по схеме «звезда» максимальная мощность достигает не более 50% от возможной. При однофазном подключении на два выхода создается возможность подключения фазы и ноля без третьей фазы, которую восполняет конденсатор.

    От того, как сформирован третий контакт (через фазу или ноль), зависит направление вращения ротора. В режиме одной фазы достигается идентичность частоты вращения трехфазному режиму.

    Как подключить электромотор с конденсатором

    Асинхронные электромоторы мощностью до 1.5кВт, запускающиеся без нагрузки, требуют для своего подключения только рабочий конденсатор. Один конец конденсатора подключают к нулю, а второй – к третьему выходу треугольника. Для изменения направления вращения ротора подключение конденсатора ведут от фазы.

    Если мотор сразу при запуске работает под нагрузкой или его мощность превышает 1.5кВт, в схему вводят пусковой конденсатор, включающийся в работу параллельно рабочему. Он включается всего на несколько секунд и увеличивает пусковой толчок во время старта. При кнопочном подключении пускового конденсатора остальную схему подключают от сети через тумблер или через кнопку с двумя фиксирующими положениями.

    Для запуска подключают питание через тумблер или двухпозиционную кнопку, затем нажимают на пусковую кнопку и удерживают ее до запуска электромотора. По осуществлении запуска кнопку отпускают, и ее пружина размыкает контакты и отключает пусковую емкость.

    Для реверсивного запуска трехфазных электродвигателей с помощью конденсаторов в сети 220В в схему вводят тумблер переключения, который служит для подключения одного конца рабочего конденсатора к фазе и к нулю.

    Если мотор не запускается или слишком медленно набирает обороты, в схему вводят пусковой конденсатор, подключаемый через кнопку «Пуск». Обычно на схемах провода, предназначенные для подключения этой кнопки в режиме реверса, обозначаются фиолетовым цветом. Если реверс не нужен, кнопка с проводами и правый пусковой конденсатор в схему не вводятся. Для запуска двигателя, рассчитанного на 220В, конденсаторы не нужны.

    Выбор конденсаторов для электромоторов

    Для подключения трехфазных электромоторов к бытовой сети нужно использовать только модели типа МБГЧ, МБПГ, МБГО и БГТ с рабочим напряжением (U раб.) минимум 300 вольт. Обозначение и величина емкости конденсатора указываются на его корпусе.

    Расчет емкости

    • Для подключения звездой используют формулу Сраб.=2800х(I/U), а для подключения треугольником – Сраб.=4800х(I/U), где Сраб. – это емкость рабочего конденсатора в мкФ, I – потребляемый мотором ток (по паспорту), U – напряжение сети, равное 220 вольтам. Емкость пусковых конденсаторов, обычно превышающую емкость рабочих конденсаторов вдвое-втрое, подбирают экспериментальным путем.
    • Расчет надо составлять на номинальную мощность, поскольку при работе в половину силы электромотор будет нагреваться. Для уменьшения тока в обмотке необходимо уменьшить емкость рабочего конденсатора. Если емкости не хватает до необходимой, электродвигатель будет развивать низкую мощность.
    • Лучше всего начинать подбор конденсатора для трехфазного электродвигателя с наименьшего допустимого значения емкости, и постепенно увеличивать показатель до оптимальной величины.
    • При долгой работе без нагрузки электромотор, переделанный с 380В на 220В, сгорит.
    • После отключения агрегата на выводах конденсаторов долго сохраняется напряжение опасной величины, поэтому их надо ограждать во избежание случайного прикосновения.
    • Необходимо разряжать конденсаторы каждый раз перед началом их эксплуатации.
    • Трехфазный электромотор мощностью свыше 3кВт нельзя подключать к домашней электросети на 220 вольт, потому что при неправильно подобранной защите будет плавиться изоляция проводов и выбиваться пробки, в худшем случае возможно возгорание.

    При соблюдении вышеперечисленных правил и рекомендаций подключение трехфазного электродвигателя к бытовой сети не представляет сложности. Не следует только забывать о технике безопасности.


    Как работает однофазный двигатель?

    Чтобы понять, как работает однофазный асинхронный двигатель переменного тока, полезно понять основы работы с трехфазным асинхронным двигателем.

    Ток в статоре трехфазного двигателя (неподвижные катушки в двигателе) создает вращающееся магнитное поле. Магнитное поле вращается из-за сдвига фазы на 120 ° в каждой фазе источника питания. Это вращающееся магнитное поле индуцирует ток в стержнях ротора.Ток в роторе создает собственное магнитное поле. Взаимодействие между магнитными полями статора и ротора заставляет ротор вращаться. Для трехфазных двигателей следует отметить одну важную вещь: поскольку они работают на трех фазах, которые смещены друг относительно друга, они самозапускаются. (См. Верхний рисунок.)

    Как он «вращается»

    Однофазные двигатели работают по тому же принципу, что и трехфазные двигатели, за исключением того, что они работают только от одной фазы. Одна фаза создает колеблющееся магнитное поле, которое движется вперед и назад, а не вращающееся магнитное поле (см. Нижний рисунок).Из-за этого у истинно однофазного двигателя нулевой пусковой момент. Однако, как только ротор начинает вращаться, он продолжает вращаться в результате колебания магнитного поля в статоре.

    Спустя годы инженеры придумали умные способы запуска однофазных двигателей. Большинство из них связано с созданием второй фазы, которая помогает создавать вращающееся магнитное поле в статоре. Эту фазу часто называют стартовой или вспомогательной.

    Типы однофазных двигателей

    Некоторыми из различных типов однофазных двигателей являются двигатель с экранированными полюсами, двигатель с расщепленной фазой, двигатель с постоянным разделенным конденсатором (также называемый двигателем с однофазным конденсатором) и двигатель с двумя конденсаторами.Основное различие в конструкции этих двигателей заключается в том, как производится вторая фаза. В двигателях с экранированным полюсом и в двигателях с разделенной фазой конденсатор не используется, в то время как в двигателях с постоянным разделенным конденсатором (PSC) и двумя номинальными конденсаторами используется. Двигатели с разделенной фазой и конденсаторные двигатели с двумя номиналами могут использовать центробежный переключатель для отключения фазы запуска, когда двигатели набирают скорость, в то время как двигатели с экранированным полюсом и двигатели PSC не имеют переключателя.

    У каждого из этих двигателей также есть свои компромиссы в производительности.Двигатели с экранированными полюсами – очень простые двигатели и, как правило, недорогие, но они имеют низкий КПД и, как правило, предназначены для применения с малой мощностью. Двигатели с расщепленной фазой, как правило, недорогие, но у них низкий пусковой момент и высокий пусковой ток. Двигатели PSC предлагают более высокий пусковой момент и более высокий КПД, чем двигатели без конденсатора.

    >> Хотите узнать больше об асинхронных двигателях? Прочтите в нашем блоге о синхронных и асинхронных двигателях или посмотрите наше видео о том, как выбрать мотор-редуктор.

    Однофазные промышленные двигатели

    – как они работают?

    Где бы мы были без электродвигателя?

    Эти машины дали нам все, от освещения до охлаждения и даже сверхбыстрых электромобилей, и все это за счет преобразования электроэнергии в механическое движение. Существует много типов электродвигателей, но электродвигатели переменного тока остаются обычным явлением в промышленности благодаря своей элегантности и проверенным характеристикам. Эти двигатели используют переменный ток и физику электромагнетизма для генерации вращательной мощности и бывают разных типов в зависимости от области применения.В этой статье будут рассмотрены однофазные промышленные двигатели, опора современного мира, обеспечивающая энергией многие полезные инструменты. Этот двигатель, его принципы работы и его характеристики будут обсуждены, чтобы помочь разработчикам понять преимущества однофазных двигателей, а также когда их использовать.

    Что такое однофазные двигатели?

    Однофазные двигатели – это двигатель переменного тока, в котором используются электромагнитные принципы для создания полезной энергии вращения. Они работают примерно так же, как и двигатели с короткозамкнутым ротором, с фазным ротором и другие многофазные двигатели, за исключением того, что они несколько упрощены (дополнительную информацию об этих двигателях можно найти в наших статьях о короткозамкнутых роторах, роторах и асинхронных двигателях).«Однофазный» относится только к входной мощности, поэтому существует много типов двигателей, которые используют однофазные входы. Обычно они используются в асинхронных двигателях, но также могут быть синхронными. Однофазные двигатели содержат как статоры, так и роторы, как и большинство электродвигателей, но они используют только одну обмотку в своем статоре, которая пропускает только один переменный ток, а их роторы, как правило, более простые, чем у других конструкций. Для них также требуется стартер, поскольку использование только одной фазы входной мощности обеспечивает нулевой пусковой момент в состоянии покоя.

    Как работают однофазные двигатели?

    В однофазных двигателях используются как статоры, так и роторы, как и в других двигателях переменного тока, хотя они работают по-другому. В трехфазных двигателях 120-градусное разделение фаз между тремя токами переменного тока, проходящими через обмотки статора, создает вращающееся магнитное поле; однако магнитное поле, создаваемое только одной фазой, «пульсирует» между двумя полюсами двигателя, поскольку существует только один переменный ток, создающий два возможных состояния магнитного поля (переменный ток имеет два синусоидальных пика, где магнитные поля будут равными, но противоположными по ориентации, или «вверх-вниз»).Это приближается к вращающемуся полю, но не полностью. Эти двигатели должны получить начальный толчок или почувствовать силу, «не совпадающую по фазе» с фазой статора, чтобы произошло начальное движение ротора. Стационарный ротор не будет ощущать никаких эффектов от этого пульсирующего магнитного поля «вверх-вниз», если он еще не движется, поскольку магнитные силы вверх-вниз идеально нейтрализуют друг друга. Пускатели двигателей решают эту проблему, добавляя противофазное воздействие (вспомогательные обмотки, конденсаторы и т. Д.), Которое затем создает моделируемое вращающееся магнитное поле для запуска двигателя.Более подробную информацию об этих стартерах можно найти в нашей статье о пускателях двигателей.

    Типы однофазных двигателей

    Однофазный двигатель относится только к типу используемого входного источника питания, а не к конкретной схеме статор-ротор-пускатель. Многие спецификации для других двигателей переменного тока применяются при выборе однофазного двигателя, и их можно найти в наших статьях об асинхронных двигателях и двигателях переменного тока. В этой статье будут описаны различные типы однофазных двигателей, чтобы общие принципы можно было применить к этим конкретным конструкциям.

    Двухфазные двигатели

    В двигателях

    с разделенной фазой имеется вспомогательная обмотка вне обмотки статора, чтобы обеспечить начальную разность фаз, необходимую для вращения. В обмотке стартера используется провод меньшего диаметра и меньше витков, чем в обмотке статора, что придает ей большее сопротивление. Оно будет не в фазе с основным магнитным полем, потому что повышенное сопротивление изменяет фазу питания. Эта обмотка с расщепленной фазой даст начальный толчок для начала вращения, а основная обмотка будет поддерживать двигатель в работе.Затем пусковую обмотку необходимо отключить (обычно с помощью центробежного переключателя на выходном валу), как только двигатель достигнет процента полной скорости (около 75% от номинальной скорости). Увеличение сопротивления пусковой обмотки также увеличивает риск перегорания катушки, поэтому эти переключатели необходимы для правильной и надежной работы двигателей с расщепленной фазой.

    Конденсаторные пусковые и конденсаторные пуско-конденсаторные двигатели

    В этих типах однофазных двигателей конденсаторы вместе со вспомогательной обмоткой обеспечивают разность фаз, необходимую для запуска вращения в этих двигателях.Они похожи на двигатели с расщепленной фазой, но для сдвига фазы стартера используют емкость вместо сопротивления. В двигателях с конденсаторным пуском центробежный выключатель отключает пусковой конденсатор, когда двигатель набирает определенную скорость (около 75-80% от полной скорости). Конденсаторные двигатели с пусковым конденсатором используют два конденсатора (пусковой конденсатор и рабочий конденсатор), где ток, протекающий через пусковой конденсатор, опережает приложенное напряжение и вызывает фазовый сдвиг. Пусковой конденсатор затем ускоряет запуск двигателя, а рабочий конденсатор переключается на работу, когда двигатель набирает номинальную скорость.

    Двигатели с постоянным разделением конденсаторов

    В двигателях с постоянным разделением конденсаторов используется постоянный конденсатор, включенный последовательно с пусковой обмоткой, без центробежного переключателя. Конденсатор постоянно используется при работающем двигателе, а это означает, что он не может обеспечить усиление, которое дает пусковой конденсатор, используемый в предыдущих двух конструкциях. Однако эти двигатели выигрывают от того, что не нуждаются в пусковом механизме (переключателе, кнопке и т. Д.), Поскольку рабочий конденсатор, включенный последовательно со вспомогательной обмоткой, пассивно изменяет фазу однофазного входа.Двигатели с постоянным разделением конденсаторов также реверсивны и, как правило, более надежны, чем другие однофазные двигатели.

    Двигатели с экранированными полюсами

    В этом типе однофазного двигателя не используются обмотки или пускатели для запуска двигателя. Вместо этого в этом двигателе используется схема, показанная на Рисунке 1 ниже:

    Рис. 1: Схема двигателя с экранированными полюсами. Обратите внимание на то, что заштрихованные катушки являются продолжением основной обмотки статора.

    Этот двигатель более прост, чем другие однофазные двигатели, поскольку не требует дополнительных цепей пускателя или переключателей.Корпус двигателя с C-образным сердечником изготовлен из магнитопроводящего материала (обычно железа), который передает пульсирующее магнитное поле от основной обмотки статора к ротору. Полюса этого двигателя разделены на две неравные половины, где два «затененных» полюса создаются путем расширения основной обмотки статора до меньших обмоток на одной из этих половин (показано выше). Когда однофазный переменный ток входит в С-образный сердечник, он «затеняет» намотанные половинки, заставляя магнитное поле отставать от затененной части (затеняющая катушка создает противоположное магнитное поле, замедляя магнитный поток).Это вызывает неравномерное распределение индуктивных сил по ротору и заставляет его вращаться.

    Заявки и критерии выбора

    Для некоторых приложений требуются определенные однофазные двигатели. В таблице 1 приведены качественные рабочие характеристики каждого типа двигателя.

    Таблица 1: Качественная сводка рабочих характеристик каждого типа однофазного двигателя.

    Пусковой момент

    КПД

    Надежность

    Стоимость

    Двухфазный двигатель

    Низкая

    Низкая

    Низкая

    Низкая

    Конденсатор-пуск

    Средний

    Средний

    Высокая

    Средний

    Конденсатор постоянного разделения

    Низкая

    Высокая

    Высокая

    Средний

    Конденсатор пуско-конденсаторный

    Высокая

    Высокая

    Высокая

    Высокая

    Шестигранник

    Низкая

    Низкая

    Низкая

    Низкая

    Двигатели

    с расщепленной фазой имеют относительно простую конструкцию, что снижает их стоимость и производительность.Однако они имеют низкий пусковой момент и склонны к перегреву из-за резистивного характера их пускового механизма. Применения с низким крутящим моментом, такие как ручные шлифовальные машины, небольшие вентиляторы и другие устройства с малой мощностью, лучше всего подходят для двигателей с расщепленной фазой. Не используйте этот двигатель, если требуется высокий крутящий момент или высокая частота цикла; при таком использовании электродвигатели с расщепленной фазой почти наверняка сгорят.

    Двигатели с конденсаторным пуском имеют улучшенный пусковой момент по сравнению с двигателями с расщепленной фазой и могут выдерживать высокие рабочие циклы.В результате они получили более широкое применение и являются основой для промышленных двигателей общего назначения. К ним, среди прочего, относятся конвейеры с ременным приводом, большие нагнетатели и редукторы. Их главный недостаток – стоимость, так как они дороже двигателей с расщепленной фазой.

    Электродвигатели с постоянным разделением на конденсаторы, обладая низким пусковым крутящим моментом, могут хорошо работать при высокой частоте циклов и иметь превосходную эффективность и надежность. Они двусторонние благодаря отсутствию пускового механизма и могут регулироваться по скорости.Их единственный серьезный недостаток заключается в том, что они не могут справиться с высокими крутящими моментами, но в остальном являются надежными, высокоэффективными машинами, отлично подходящими для гаражных ворот, открывателей ворот или любого другого приложения с низким крутящим моментом, которое требует мгновенного реверсирования.

    Конденсаторные двигатели с пусковым конденсатором сочетают в себе преимущества как конденсаторных двигателей с постоянным разделением, так и конденсаторных пусковых двигателей при удвоенной стоимости. Они могут приводить в действие приложения, которые слишком сложны для других однофазных двигателей, такие как воздушные компрессоры, насосы высокого давления, вакуумные насосы, приложения мощностью 1-10 л.с. и т. Д.используя их высокий пусковой момент. Они эффективны при полном токе нагрузки и надежны благодаря своей упрощенной конструкции. Если мощность, надежность и эффективность являются приоритетами, а стоимость не вызывает беспокойства, рассмотрите этот тип однофазного двигателя.

    Двигатели с экранированными полюсами часто считаются «одноразовыми» электродвигателями, поскольку они просты в производстве и дешевле заменять, чем ремонтировать. Их крутящий момент, эффективность и надежность далеки от того, чего могут достичь другие однофазные двигатели, но они недороги и хорошо работают в приложениях с низкой мощностью.К ним относятся бытовые применения, такие как вентиляторы для ванных комнат, фены, электрические часы, игрушки и т. Д. Если для проекта требуется лишь небольшая мощность, а цена имеет первостепенное значение, двигатель с экранированными полюсами будет работать нормально.

    Сводка

    В этой статье представлено понимание того, что такое однофазные промышленные двигатели и как они работают. Для получения дополнительной информации о сопутствующих продуктах обратитесь к другим нашим руководствам или посетите платформу Thomas Supplier Discovery Platform, чтобы найти потенциальные источники поставок или просмотреть подробную информацию о конкретных продуктах.

    Источники:
    1. https://geosci.uchicago.edu
    2. http://hyperphysics.phy-astr.gsu.edu/hbase/mintage/indmot.html
    3. http://www.egr.unlv.edu/~eebag/Induction%20Motors.pdf
    4. https://people.ucalgary.ca
    5. https://faculty.up.edu/lulay/me401/fetchpdf.cgi.pdf
    6. https://www.electrical4u.com/types-of- однофазный асинхронный двигатель /

    Прочие изделия для двигателей

    Больше от Machinery, Tools & Supplies

    Схема и работа однофазного двигателя

    Однофазные двигатели очень широко используются дома, в офисах, мастерских и т. Д.поскольку в большинство домов и офисов подается однофазное питание. Кроме того, однофазные двигатели надежны, дешевы по стоимости, просты в конструкции и легко ремонтируются.

    1. Однофазный асинхронный двигатель (разделенная фаза, конденсатор, экранированный полюс и т. Д.)
    2. Однофазный синхронный двигатель
    3. Отталкивающий двигатель и др.
    В этой статье объясняется основная конструкция и работа однофазного асинхронного двигателя .

    Однофазный асинхронный двигатель

    Конструкция однофазного асинхронного двигателя аналогична конструкции трехфазного асинхронного двигателя с короткозамкнутым ротором, за исключением того, что статор намотан для однофазного питания.Статор также снабжен «пусковой обмоткой», которая используется только для пусковых целей. Это можно понять из схемы однофазного асинхронного двигателя слева.
    Принцип работы однофазного асинхронного двигателя
    Когда на статор однофазного двигателя подается однофазное питание, он создает переменный магнитный поток в обмотке статора. Переменный ток, протекающий через обмотку статора, вызывает индуцированный ток в стержнях ротора (ротора с короткозамкнутым ротором) согласно закону электромагнитной индукции Фарадея.Этот индуцированный ток в роторе также будет создавать переменный магнитный поток. Даже после установки обоих переменных потоков двигатель не запускается (причина объясняется ниже). Однако, если ротор запускается внешней силой в любом направлении, двигатель разгоняется до конечной скорости и продолжает работать с номинальной скоростью. Такое поведение однофазного двигателя можно объяснить теорией вращения двойного поля.
    Теория вращения двойного поля

    Теория вращения двойного поля утверждает, что любая переменная величина (здесь переменный поток) может быть разделена на две составляющие, величина которых равна половине максимальной величины переменной величины, и обе эти составляющие вращаются в противоположном направлении.

    Следующие рисунки помогут вам понять теорию вращения двойного поля.
    Почему однофазный асинхронный двигатель не запускается автоматически?
    Статор однофазного асинхронного двигателя намотан с однофазной обмоткой. Когда на статор подается однофазное питание, он создает переменный магнитный поток (который чередуется только вдоль одной оси пространства). Переменный поток, действующий на ротор с короткозамкнутым ротором, не может производить вращение, только вращающийся поток может. Вот почему однофазный асинхронный двигатель не запускается автоматически.
    Как сделать самозапуск однофазного асинхронного двигателя?
    • Как объяснено выше, однофазный асинхронный двигатель не запускается автоматически . Для самозапуска его можно временно преобразовать в двухфазный двигатель при запуске. Это может быть достигнуто путем введения дополнительной «пусковой обмотки», также называемой вспомогательной обмоткой.
    • Следовательно, статор однофазного двигателя имеет две обмотки: (i) основная обмотка и (ii) пусковая обмотка (вспомогательная обмотка).Эти две обмотки подключены параллельно к однофазному источнику питания и разнесены на 90 электрических градусов друг от друга. Разность фаз в 90 градусов может быть достигнута путем последовательного подключения конденсатора к пусковой обмотке.
    • Следовательно, двигатель ведет себя как двухфазный двигатель, а статор создает вращающееся магнитное поле, которое заставляет ротор вращаться. Когда двигатель набирает скорость, скажем, до 80 или 90% от его нормальной скорости, пусковая обмотка отключается от цепи с помощью центробежного переключателя, и двигатель работает только от основной обмотки.

    Пуск однофазного двигателя – нарушение напряжения

    Основы пуска однофазного двигателя: Однофазный двигатель, подключенный к однофазной сети, не будет вращаться, поскольку обмотки не создают вращающееся магнитное поле. В течение одного полупериода сигнала переменного тока крутящий момент будет создаваться в одном направлении, а затем в противоположном направлении в течение следующего полупериода, тем самым нейтрализуя крутящий момент ротора. Однако двигатель можно повернуть вручную, и он продолжит вращаться в том направлении, в котором был повернут.Это ненадежный способ запуска двигателя. Для запуска двигателя необходимо создать вращающееся магнитное поле . Есть несколько различных способов реализовать подключение однофазного двигателя, которое приводит к вращающемуся магнитному полю. Их:

    * Конденсаторный пуск Мотор

    * Навсегда Двигатель с разделенным конденсатором

    * Конденсаторный пусковой конденсаторный двигатель

    * Двигатель с разделенной фазой

    Конденсаторный пусковой двигатель Двигатели

    с конденсаторным пуском – это однофазные асинхронные двигатели с двумя обмотками – основной обмоткой и пусковой обмоткой, в которых пусковая обмотка имеет последовательно соединенный конденсатор .Ток, проходящий через пусковую обмотку (с конденсатором), будет иметь разность фазового угла 90 градусов (в идеале) по сравнению с током, протекающим через основную обмотку. Из-за этой разности фаз создается результирующее вращающееся магнитное поле статора, которое вращает ротор. Схема однофазного двигателя с конденсаторным пуском показана ниже.

    Конденсаторный пусковой двигатель

    После запуска двигателя и достижения желаемой скорости центробежный переключатель, установленный на роторе, размыкает переключатель, тем самым отключая конденсатор от цепи. Такое расположение позволяет использовать конденсатор с кратковременным номиналом и, следовательно, снизить стоимость двигателя.

    Конденсаторный пуск двигателя – Диаграмма вектора

    Двигатели с конденсаторным пуском используются для жестких пусковых нагрузок, таких как компрессоры, конвейеры, насосы и некоторые машины инструменты.

    Двигатели с постоянным разделенным конденсатором

    Постоянный разделительный конденсатор (PSC) Двигатели имеют две обмотки, называемые основной и вспомогательной обмотками. Конденсатор постоянно включен последовательно со вспомогательной обмоткой. Основная и вспомогательная обмотки электрически установлены под углом 90 градусов. Кроме того, из-за наличия конденсатора ток, протекающий через вспомогательную обмотку, будет опережать ток в основной обмотке (ток в конденсаторе опережает напряжение). Благодаря этому в статоре создается чистое вращающееся магнитное поле, которое заставляет ротор вращаться.

    Паспортная табличка двигателя с постоянным разделенным конденсатором показана выше. В этом случае производитель рекомендует конденсатор емкостью 15 мкФ с номинальным напряжением 370 В переменного тока.

    Двигатели с постоянным разделенным конденсатором (PSC) Двигатели с постоянными разделенными конденсаторами (PSC) – фазовая диаграмма

    Выбор конденсатора – это компромисс между стоимостью, пусковым моментом и рабочими характеристиками. Двигатели PSC тихие и обладают высоким КПД. Двигатели PSC используются в вентиляторах, нагнетателях в системах отопления и кондиционирования воздуха.

    PSC Показан двигатель с подключенным конденсатором

    Конденсатор Пусковой Конденсатор Рабочий двигатель

    Сбалансированная двухфазная работа двигателя при пуске и на другой скорости может быть достигнута путем параллельного подключения двух конденсаторов при пуске, в результате чего конденсатор запускает двигатель с конденсатором .При запуске оба конденсатора будут включены в цепь, и как только скорость достигнет примерно 80%, пусковой конденсатор откроется, и в цепи будет только рабочий конденсатор. Пусковой конденсатор представляет собой большой электролитический конденсатор, а рабочий конденсатор обычно из маслонаполненной бумаги / полимера с низкими потерями и меньшей стоимости. Большой пусковой конденсатор дает двигателю больший пусковой крутящий момент, а рабочий конденсатор используется для улучшения рабочих характеристик.

    Конденсаторные двигатели с двумя номиналами работают тихо, плавно и имеют более высокий КПД.

    конденсатор пусковой конденсаторный двигатель

    Электродвигатель с разделенной фазой

    Асинхронный двигатель с расщепленной фазой имеет две обмотки – основную и пусковую. В пусковой обмотке используются провода меньшего размера (более тонкие), которые имеют более высокое сопротивление и меньшее количество витков (меньшая индуктивность и меньшее соотношение X / R), чем основная обмотка. Это приводит к тому, что ток пусковой обмотки будет больше совпадать по фазе с приложенным напряжением по сравнению с основной обмоткой. Эта разность фаз, которая не идеальна в 90 градусов, а больше около 30 градусов или меньше, достаточна для создания небольшого вращающегося магнитного поля и запуска двигателя.Крутящий момент для таких двигателей будет низким из-за неидеальной разности фаз между токами обмоток.

    Асинхронный двигатель с расщепленной фазой

    После запуска двигателя установленный на роторе центробежный выключатель отключает пусковую обмотку, и двигатель продолжает работать с основной обмоткой. Пусковой ток такого двигателя обычно выше, чем у конденсаторного пускового двигателя, в то время как рабочие характеристики такие же хорошие, как у других типов однофазных пускателей.

    Схема мотор-вектор с расщепленной фазой

    Асинхронные двигатели с расщепленной фазой используются для запуска легко запускаемых нагрузок, таких как вентиляторы, пилы и т.

    Дополнительная информация : Калькулятор двигателя, Калькулятор пускового тока двигателя

    Что такое асинхронный двигатель с расщепленной фазой? – его Приложения

    Электродвигатель с разделенной фазой также известен как электродвигатель для запуска с сопротивлением. Он имеет ротор с одной клеткой, а его статор имеет две обмотки, известные как основная обмотка и пусковая обмотка.Обе обмотки смещены в пространстве на 90 градусов. Основная обмотка имеет очень низкое сопротивление и высокое индуктивное сопротивление, тогда как пусковая обмотка имеет высокое сопротивление и низкое индуктивное сопротивление. Схема подключения двигателя показана ниже.

    Резистор включен последовательно со вспомогательной обмоткой. Ток в двух обмотках неодинаков, в результате вращающееся поле неоднородно. Следовательно, пусковой крутящий момент небольшой, порядка 1,5–2-кратного начального рабочего крутящего момента.При запуске двигателя обе обмотки включаются параллельно.

    Как только двигатель достигает скорости примерно от 70 до 80% от синхронной скорости, пусковая обмотка автоматически отключается от сети питания. Если мощность двигателей составляет около 100 Вт или более, центробежный выключатель используется для отключения пусковой обмотки, а для двигателей меньшего номинала используется реле для отключения обмотки.

    Реле подключено последовательно с основной обмоткой.При запуске в цепи протекает сильный ток, и контакт реле замыкается. Таким образом, пусковая обмотка находится в цепи, и по мере того, как двигатель достигает заданной скорости, ток в реле начинает уменьшаться. Таким образом, реле размыкает и отключает вспомогательную обмотку от источника питания, в результате чего двигатель работает только от основной обмотки.

    Векторная диаграмма асинхронного двигателя с расщепленной фазой показана ниже.

    Ток в основной обмотке (I M ) отстает от напряжения питания V почти на угол 90 градусов.Ток во вспомогательной обмотке I A примерно совпадает по фазе с линейным напряжением. Таким образом, существует разница во времени между токами двух обмоток. Разность фаз во времени ϕ составляет не 90 градусов, а порядка 30 градусов. Этой разности фаз достаточно для создания вращающегося магнитного поля.

    Ниже показана характеристика крутящего момента и скорости двигателя с расщепленной фазой .

    Здесь n 0 – точка, в которой срабатывает центробежный переключатель.Пусковой крутящий момент двигателя с резистивным пуском примерно в 1,5 раза больше крутящего момента при полной нагрузке. Максимальный крутящий момент примерно в 2,5 раза больше крутящего момента при полной нагрузке примерно при 75% синхронной скорости. Пусковой ток двигателя примерно в 7-8 раз превышает значение полной нагрузки.

    Направление электродвигателя с резистивным пуском можно изменить, изменив направление подключения основной или пусковой обмотки. Реверс двигателя возможен только в состоянии покоя.

    Применение асинхронного двигателя с расщепленной фазой

    Двигатели этого типа дешевы и подходят для легко запускаемых нагрузок, когда частота запуска ограничена. Этот тип двигателя не используется для приводов, которым требуется более 1 кВт из-за низкого пускового момента. Различные приложения следующие: –

    • Используется в стиральных машинах и вентиляторах кондиционеров.
    • Двигатели используются в миксерах-шлифовальных машинах, полировальных машинах.
    • Воздуходувки, центробежные насосы
    • Станок сверлильно-токарный.

    все, что вам нужно знать – Блог CLR

    Электродвигатели позволяют получать механическую энергию самым простым и эффективным способом. В зависимости от количества фаз питания , мы можем найти однофазных , двухфазных и трехфазных двигателей с обмоткой , , пусковой обмоткой и с катушкой пусковой обмотки с конденсатором . Причем выбор того или иного будет зависеть от необходимой мощности .

    Если вы участвуете в проекте и не знаете, какой тип двигателя вам следует использовать, этот пост вас заинтересует! В нем мы расскажем вам о каждом моторе и его отличиях. Поехали!

    Что такое однофазный двигатель?

    Однофазный двигатель – это вращающаяся машина с электрическим приводом , которая может преобразовывать электрическую энергию в механическую энергию .

    Работает от однофазного источника питания . Они содержат двух типов проводки : горячую и нейтральную.Их мощность может достигать 3 кВт, , а напряжения питания меняются в унисон.

    У них только одно переменное напряжение . Схема работает с двумя проводами , и ток, который проходит по ним, всегда одинаков.

    В большинстве случаев это малые двигатели с ограниченным крутящим моментом . Однако есть однофазные двигатели мощностью до 10 л.с., которые могут работать с подключениями до 440 В.

    Они не создают вращающегося магнитного поля; они могут генерировать только переменное поле , что означает, что для запуска им нужен конденсатор.

    Они просты в ремонте, и обслуживании, а также доступны по цене .

    Этот тип двигателя используется в основном в домах, офисах, магазинах и небольших непромышленных компаниях компании . Чаще всего использует , включая бытовую технику, систему отопления, вентиляции и кондиционирования воздуха для дома и бизнеса и другую технику, такую ​​как дрели, кондиционеры и системы открывания и закрывания гаражных ворот.

    Возможно, вас заинтересует: Советы по выбору малых электродвигателей

    Что такое двухфазный двигатель?

    Двухфазный двигатель – это система, которая имеет два напряжения, разнесенных на 90 градусов, , которая в настоящее время больше не используется.Генератор состоит из двух обмоток, расположенных под углом 90 градусов друг к другу.

    Для них требуется 2 провода под напряжением и один провод заземления, которые работают в двух фазах . Один увеличивает ток до 240 В для движения, а другой поддерживает плавность тока для использования двигателя.

    Что такое трехфазный двигатель?

    Трехфазный двигатель – это электрическая машина , которая преобразует электрическую энергию в механическую энергию посредством электромагнитных взаимодействий .Некоторые электродвигатели обратимы – они могут преобразовывать механическую энергию в электрическую, действуя как генераторы.

    Работают от трехфазного источника . Они приводятся в действие тремя переменными токами одинаковой частоты , которые достигают максимума в переменные моменты. Они могут иметь мощность от до 300 кВт и скорость от 900 до 3600 об / мин .

    Трехпроводные линии используются для передачи, но для конечного использования требуются 4-проводные кабели, которые соответствуют 3 фазам плюс нейтраль.

    Трехфазная электроэнергия – наиболее распространенный метод , используемый в электрических сетях по всему миру, поскольку он передает больше энергии и находит значительное применение в промышленном секторе .

    Различия между однофазным двигателем и трехфазным двигателем

    Во-первых, нам нужно различать тип установки и ток , протекающий через него. В этом отношении разница между однофазным током и трехфазным током заключается в том, что однофазный ток передается по одной линии.Кроме того, поскольку имеется только одна фаза или переменный ток , напряжение не меняется .

    Однофазные двигатели используются, когда трехфазная система недоступна и / или для ограниченной мощности – они обычно используются для мощностью менее 2 кВт или 3 кВт .

    Трехфазные двигатели обычно более широко используются в промышленности , поскольку их мощность более чем на 150% больше, чем у однофазных двигателей, и создается трехфазное вращающееся магнитное поле .

    При работе однофазного двигателя может быть шумно и генерироваться вибрации , трехфазные двигатели более дорогие, но они не создают этих вибраций и менее шумны.

    В CLR мы ежедневно работаем с однофазными двигателями , проектируя и производя редукторы скорости для достижения идеального движения. Наши истории успеха включают в себя систему складывания боковых зеркал для легковых и коммерческих автомобилей , которая может превышать 50 000 циклов – на 100% больше циклов, чем было первоначально запрошено нашим клиентом, Volkswagen .

    Нужна помощь с вашим проектом? В CLR мы постоянно ищем новых решения , адаптированных к потребностям наших клиентов, которые успешно соблюдают все новые правила. Какое движение вам нужно?

    Основная причина неисправностей однофазного двигателя

    Большинство проблем с однофазными двигателями связаны с центробежным выключателем, термовыключателем или конденсатором (-ами). Если проблема в центробежном выключателе, термовыключателе или конденсаторе, двигатель обычно обслуживается и ремонтируется.Однако, если двигателю более 10 лет и он менее 1 л.с., двигатель обычно заменяют. Если мощность мотора меньше 1/8 л.с., его почти всегда заменяют.

    Устранение неисправностей однофазных (однофазных) двигателей

    Двухфазный двигатель имеет пусковую и рабочую обмотки. Пусковая обмотка автоматически снимается центробежным переключателем при разгоне двигателя. Некоторые электродвигатели с расщепленной фазой также включают термовыключатель, который автоматически выключает электродвигатель при его перегреве.Термовыключатели могут иметь ручной или автоматический сброс. Следует проявлять осторожность с любым двигателем, который имеет автоматический сброс, поскольку двигатель может автоматически перезапуститься в любое время.

    Для диагностики двигателя с расщепленной фазой выполните следующую процедуру:

    1. Отключите питание двигателя. Осмотрите мотор. Замените двигатель, если он сгорел, вал заклинило или есть признаки повреждения.
    2. Проверьте, управляется ли двигатель термовыключателем.Если термовыключатель ручной, сбросьте термовыключатель и включите двигатель.
    3. Если двигатель не запускается, используйте вольтметр, например промышленный мультиметр Fluke 87V, для проверки напряжения на клеммах двигателя. Напряжение должно быть в пределах 10% от указанного напряжения двигателя. Если напряжение неправильное, устраните неисправность цепи, ведущей к двигателю. Если напряжение в норме, выключите двигатель, чтобы его можно было проверить.
    4. Выключите ручку предохранительного выключателя или комбинированного стартера.Заблокируйте и пометьте пусковой механизм в соответствии с политикой компании.
    5. При выключенном питании подключите Fluke 87V к тем же клеммам двигателя, от которых были отключены подводящие провода питания. Омметр покажет сопротивление пусковой и ходовой обмоток. Поскольку обмотки параллельны, их общее сопротивление меньше, чем сопротивление каждой обмотки в отдельности. Если счетчик показывает ноль, короткое замыкание. Если счетчик показывает бесконечность, имеется обрыв цепи. В любом случае двигатель следует заменить.Примечание. Размер двигателя слишком мал для того, чтобы его ремонт был рентабельным.
    6. Осмотрите центробежный выключатель на предмет признаков перегорания или поломки пружин. Если присутствуют какие-либо очевидные признаки проблем, отремонтируйте или замените переключатель. Если нет, проверьте переключатель с помощью омметра.

    Вручную приведите в действие центробежный выключатель. (Концевой колокол на стороне переключателя, возможно, придется удалить.) Если двигатель исправен, сопротивление на омметре уменьшится. Если сопротивление не меняется, проблема существует.Продолжайте проверять, чтобы определить проблему.

    Устранение неисправностей конденсаторных двигателей

    Конденсаторный двигатель – это двигатель с расщепленной фазой с добавлением одного или двух конденсаторов. Конденсаторы придают двигателю больший пусковой и / или рабочий крутящий момент. Устранение неисправностей конденсаторных двигателей похоже на поиск неисправностей двигателей с расщепленной фазой. Единственное дополнительное устройство, которое следует учитывать, – это конденсатор.

    Конденсаторы имеют ограниченный срок службы и часто являются проблемой конденсаторных двигателей. Конденсаторы могут иметь короткое замыкание, разрыв цепи или могут выйти из строя до такой степени, что их необходимо заменить.Износ может также изменить емкость конденсатора, что может вызвать дополнительные проблемы. При коротком замыкании конденсатора обмотка в двигателе может перегореть. Когда конденсатор выходит из строя или открывается, двигатель имеет плохой пусковой момент. Низкий пусковой крутящий момент может помешать запуску двигателя, что обычно вызывает перегрузки.

    Все конденсаторы имеют две проводящие поверхности, разделенные диэлектрическим материалом. Диэлектрический материал – это среда, в которой электрическое поле поддерживается при небольшой подаче внешней энергии или вообще без нее.Это тип материала, используемого для изоляции проводящих поверхностей конденсатора. Конденсаторы бывают масляные или электролитические. Масляные конденсаторы залиты маслом и опломбированы в металлическую тару. Масло служит диэлектрическим материалом.

    Электролитические конденсаторы используются в двигателях чаще, чем масляные. Электролитические конденсаторы образуются путем наматывания двух листов алюминиевой фольги, разделенных кусками тонкой бумаги, пропитанной электролитом. Электролит – это проводящая среда, в которой ток происходит за счет миграции ионов.Электролит используется в качестве диэлектрического материала. Алюминиевая фольга и электролит закрыты картонной или алюминиевой крышкой. Предусмотрено вентиляционное отверстие для предотвращения возможного взрыва в случае короткого замыкания или перегрева конденсатора.

    Конденсаторы переменного тока используются с конденсаторными двигателями. Конденсаторы, предназначенные для подключения к сети переменного тока, не имеют полярности.

    Для диагностики конденсаторного двигателя выполните следующую процедуру:

    1. Выключите ручку предохранительного выключателя или комбинированного стартера.Заблокируйте и пометьте пусковой механизм в соответствии с политикой компании.
    2. Используя Fluke 87V, измерьте напряжение на клеммах двигателя, чтобы убедиться, что питание отключено.
    3. Конденсаторы расположены на внешней раме двигателя. Снимаем крышку конденсатора. Внимание: хороший конденсатор будет держать заряд даже при отключении питания.
    4. Осмотрите конденсатор на предмет утечки, трещин или вздутия. Замените конденсатор, если он есть.
    5. Выньте конденсатор из цепи и разрядите его.Чтобы безопасно разрядить конденсатор, поместите резистор 20 000 Ом, 2 Вт на клеммы на пять секунд.
    6. После того, как конденсатор разрядится, подключите провода Fluke 87V к клеммам конденсатора. Fluke 87V покажет общее состояние конденсатора. Конденсатор исправен, закорочен или разомкнут.

    Настройте Fluke 87V на измерение емкости. Считываемое значение емкости должно находиться в пределах ± 20% от значения, указанного на этикетке конденсатора.

    Связанные ресурсы

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *