Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Защита электродвигателя. Виды, схемы, принцип действия защиты электродвигателя.

Для чего нужна защита двигателя?

Для того чтобы избежать непредвиденных сбоев, дорогостоящего ремонта и последующих потерь из-за простоя электродвигателя, очень важно оборудовать двигатель защитным устройством.

Защита двигателя имеет три уровня:

Внешняя защита от короткого замыкания установки. Устройства внешней защиты, как правило, являются предохранителями разных видов или реле защиты от короткого замыкания. Защитные устройства данного типа обязательны и официально утверждены, они устанавливаются в соответствии с правилами безопасности.

Внешняя защита от перегрузок, т.е. защита от перегрузок двигателя насоса, а, следовательно, предотвращение повреждений и сбоев в работе электродвигателя. Это защита по току.

Встроенная защита двигателя с защитой от перегрева, чтобы избежать повреждений и сбоев в работе электродвигателя. Для встроенного устройства защиты всегда требуется внешний выключатель, а для некоторых типов встроенной защиты двигателя требуется даже реле перегрузки.

Возможные условия отказа двигателя

Во время эксплуатации могут возникать различные неисправности. Поэтому очень важно заранее предусмотреть возможность сбоя и его причины и как можно лучше защитить двигатель. Далее приведён перечень условий отказа, при которых можно избежать повреждений электродвигателя:

• Низкое качество электроснабжения:

• Высокое напряжение

• Пониженное напряжение

• Несбалансированное напряжение/ ток (скачки)

• Изменение частоты

• Неверный монтаж, нарушение условий хранения или неисправность самого электродвигателя

• Постепенное повышение температуры и выход её за допустимый предел:

• недостаточное охлаждение

• высокая температура окружающей среды

• пониженное атмосферное давление (работа на большой высоте над уровнем моря)

• высокая температура рабочей жидкости

• слишком большая вязкость рабочей жидкости

• частые включения/отключения электродвигателя

• слишком большой момент инерции нагрузки (свой для каждого насоса)

• Резкое повышение температуры:

• блокировка ротора

• обрыв фазы

Для защиты сети от перегрузок и короткого замыкания при возникновении каких-либо из перечисленных выше условий отказа необходимо определить, какое устройство защиты сети будет использоваться. Оно должно автоматически отключать питание от сети. Плавкий предохранитель является простейшим устройством, выполняющим две функции. Как правило, плавкие предохранители соединяются между собой при помощи аварийного выключателя, который может отключить двигатель от сети питания. На следующих страницах мы рассмотрим три типа плавких предохранителей с точки зрения их принципа действия и вариантов применения: плавкий предохранительный выключатель, быстродействующие плавкие предохранители и предохранители с задержкой срабатывания.

Плавкий предохранительный выключатель

Плавкий предохранительный выключатель — это аварийный выключатель и плавкий предохранитель, объединённые в едином корпусе. С помощью выключателя можно размыкать и замыкать цепь вручную, в то время как плавкий предохранитель защищает двигатель от перегрузок по току. Выключатели, как правило, используются в связи с выполнением сервисного обслуживания, когда необходимо прервать подачу тока.

Аварийный выключатель имеет отдельный кожух. Этот кожух защищает персонал от случайного контакта с электрическими клеммами, а также защищает выключатель от окисления. Некоторые аварийные выключатели оборудованы встроенными плавкими предохранителями, другие аварийные выключатели поставляются без встроенных плавких предохранителей и оснащены только выключателем.

Устройство защиты от перегрузок по току (плавкий предохранитель) должно различать перегрузки по току и короткое замыкание. Например, незначительные кратковременные перегрузки по току вполне допустимы. Но при дальнейшем увеличении тока устройство защиты должно срабатывать немедленно. Очень важно сразу предотвращать короткие замыкания. Выключатель с предохранителем — пример устройства, используемого для защиты от перегрузок по току. Правильно подобранные плавкие предохранители в выключателе размыкают цепь при токовых перегрузках.

Плавкие предохранители быстрого срабатывания

Быстродействующие плавкие предохранители обеспечивают отличную защиту от короткого замыкания. Однако кратковременные перегрузки, такие как пусковой ток электродвигателя, могут вызвать поломку плавких предохранителей такого вида. Поэтому быстродействующие плавкие предохранители лучше всего использовать в сетях, которые не подвержены действию значительных переходных токов. Обычно такие предохранители выдерживают около 500% своего номинального тока в течение одной четвёртой секунды. По истечении этого времени вставка предохранителя плавится и цепь размыкается. Таким образом, в цепях, где пусковой ток часто превышает 500% номинального тока предохранителя, быстродействующие плавкие предохранители использовать не рекомендуется.

Плавкие предохранители с задержкой срабатывания

Данный тип плавких предохранителей обеспечивает защиту и от перегрузки, и от короткого замыкания. Как правило, они допускают 5-кратное увеличение номинального тока на 10 секунд, и даже более высокие значения тока на более короткое время. Обычно этого достаточно, чтобы электродвигатель был запущен и плавкий предохранитель не открылся. С другой стороны, если возникают перегрузки, которые продолжаются больше, чем время плавления плавкого элемента, цепь также разомкнётся.

Время срабатывания плавкого предохранителя

Время срабатывания плавкого предохранителя — это время плавления плавкого элемента (проволоки), которое требуется для того, чтобы цепь разомкнулась. У плавких предохранителей время срабатывания обратно пропорционально значению тока — это означает, что чем больше перегрузки по току, тем меньше период времени для отключения цепи.

В общем, можно сказать, что у электродвигателей насосов очень короткое время разгона: меньше 1 секунды. В этой связи для электродвигателей подойдут предохранители с задержкой времени срабатывания с номинальным током, соответствующим току полной нагрузки электродвигателя.

Иллюстрация справа демонстрирует принцип формирования характеристики времени срабатывания плавкого предохранителя. Ось абсцисс показывает соотношение между фактическим током и током полной нагрузки: если электродвигатель потребляет ток полной нагрузки или меньше, плавкий предохранитель не размыкается. Но при величине тока, в 10 раз превышающей ток полной нагрузки, плавкий предохранитель разомкнётся практически мгновенно (0,01 с). На оси ординат отложено время срабатывания.

Во время пуска через индукционный электродвигатель проходит достаточно большой ток. В очень редких случаях это приводит к выключению посредством реле или плавких предохранителей. Для уменьшения пускового тока используются различные методы пуска электродвигателя.

Что такое автоматический токовый выключатель и как он работает?

Автоматический токовый выключатель является устройством защиты от перегрузок по току. Он автоматически размыкает и замыкает цепь при заданном значении перегрузки по току. Если токовый выключатель применяется в диапазоне своих рабочих параметров, размыкание и замыкание не наносит ему никакого ущерба. Сразу же после возникновения перегрузки можно легко возобновить работу автоматического выключателя — он просто устанавливается в исходное положение.

Различают два вида автоматических выключателей: тепловые и магнитные.

Тепловые автоматические выключатели

Тепловые автоматические выключатели — это самый надёжный и экономичный тип защитных устройств, которые подходят для электродвигателей. Они могут выдержать большие амплитуды тока, которые возникают при пуске электродвигателя, и защищают электродвигатель от сбоев, таких как блокировка ротора.

Магнитные автоматические выключатели

Магнитные автоматические выключатели являются точными, надёжными и экономичными. Магнитный автоматический выключатель устойчив к изменениям температуры, т.е. изменения температуры окружающей среды не влияют на его предел срабатывания. По сравнению с тепловыми автоматическими выключателями, магнитные автоматические выключатели имеют более точно определённое время срабатывания. В таблице приведены характеристики двух типов автоматических выключателей.

Рабочий диапазон автоматического выключателя

Автоматические выключатели различаются между собой уровнем тока срабатывания. Это значит, что всегда следует выбирать такой автоматический выключатель, который может выдержать самый высокий ток короткого замыкания, который может возникнуть в данной системе.

Функции реле перегрузки

Реле перегрузки:

• При пуске электродвигателя позволяют выдерживать временные перегрузки без разрыва цепи.

• Размыкают цепь электродвигателя, если ток превышает предельно допустимое значение и возникает угроза повреждения электродвигателя.

• Устанавливаются в исходное положение автоматически или вручную после устранения перегрузки.

IEC и NEMA стандартизуют классы срабатывания реле перегрузки.

Обозначение класса срабатывания

Как правило, реле перегрузки реагируют на условия перегрузки в соответствии с характеристикой срабатывания. Для любого стандарта (NEMA или IEC) деление изделий на классы определяет, какой период времени требуется реле на размыкание при перегрузке. Наиболее часто встречающиеся классы: 10, 20 и 30. Цифровое обозначение отражает время, необходимое реле для срабатывания. Реле перегрузки класса 10 срабатывает в течение 10 секунд и менее при 600% тока полной нагрузки, реле класса 20 срабатывает в течение 20 секунд и менее, а реле класса 30 — в течение 30 секунд и менее.

Угол наклона характеристики срабатывания зависит от класса защиты электродвигателя. Электродвигатели IEC обычно адаптированы к определённому варианту использования. Это означает, что реле перегрузки может справляться с избыточным током, величина которого очень близка к максимальной производительности реле. Класс 10 — самый распространённый класс для электродвигателей IEC. Электродвигатели NEMA имеют внутренний конденсатор большей ёмкости, поэтому класс 20 для них применяется чаще.

Реле класса 10 обычно используется для электродвигателей насосов, так как время разгона электродвигателей составляет около 0,1-1 секунды. Для многих высокоинерционных промышленных нагрузок необходимо для срабатывания реле класса 20.

Сочетание плавких предохранителей с реле перегрузки

Плавкие предохранители служат для того, чтобы защитить установку от повреждений, которые могут быть вызваны коротким замыканием. В связи с этим плавкие предохранители должны иметь достаточную ёмкость. Более низкие токи изолируются с помощью реле перегрузки. Здесь номинальный ток плавкого предохранителя соответствует не рабочему диапазону электродвигателя, а току, который может повредить наиболее слабые составляющие установки. Как было упомянуто ранее, плавкий предохранитель обеспечивает защиту от короткого замыкания, но не защиту от перегрузок при низком токе.

На рисунке представлены наиболее важные параметры, формирующие основу согласованной работы плавких предохранителей в сочетании с реле перегрузки.

Очень важно, чтобы плавкий предохранитель сработал прежде, чем другие детали установки получат тепловое повреждение в результате короткого замыкания.

Современные наружные реле защиты двигателя

Усовершенствованные наружные системы защиты двигателя также обеспечивают защиту от перенапряжения, перекоса фаз, ограничивают число включений/выключений, устраняют вибрации. Кроме того, они позволяют контролировать температуру статора и подшипников через датчик температуры (PT100), измерять сопротивление изоляции и регистрировать температуру окружающей среды. В дополнение к этому усовершенствованные наружные системы защиты двигателя могут принимать и обрабатывать сигнал от встроенной тепловой защиты. Далее в этой главе мы рассмотрим устройство тепловой защиты.

Наружные реле защиты двигателя предназначены для защиты трёхфазных электродвигателей при угрозе повреждения двигателя за короткий или более длительный период работы. Кроме защиты двигателя, наружное реле защиты имеет ряд особенностей, которые обеспечивают защиту электродвигателя в различных ситуациях:

• Подаёт сигнал прежде, чем возникает неисправность в результате всего процесса

• Диагностирует возникшие неисправности

• Позволяет выполнять проверку работы реле во время техобслуживания

• Контролирует температуру и наличие вибрации в подшипниках

Можно подключить реле перегрузки к центральной системе управления зданием для постоянного контроля и оперативной диагностики неисправностей. Если в реле перегрузки установлено наружное реле защиты, сокращается период вынужденного простоя из-за прерывания технологического процесса в результате поломки. Это достигается благодаря быстрому обнаружению неисправности и недопущению повреждений электродвигателя.

Например, электродвигатель может быть защищён от:

• Перегрузки

• Блокировки ротора

• Заклинивания

• Частых повторных пусков

• Разомкнутой фазы

• Замыкания на массу

• Перегрева (с помощью сигнала, поступающего от электродвигателя через датчик PT100 или терморезисторы)

• Малого тока

• Предупреждающего сигнала о перегрузке

Настройка наружного реле перегрузки

Ток полной нагрузки при определённом напряжении, указанном в фирменной табличке, является нормативом для настройки реле перегрузки. Так как в сетях разных стран присутствует различное напряжение, электродвигатели для насосов могут использоваться как при 50 Гц, так и при 60 Гц в широком диапазоне напряжений. В связи с этим в фирменной табличке электродвигателя указывается диапазон тока. Если нам известно напряжение, мы можем вычислить точную допустимую нагрузку по току.

Пример вычисления

Зная точную величину напряжения для установки, можно рассчитать ток полной нагрузки при 254 / 440 Y B, 60 Гц.

Данные отображаются в фирменной табличке, какпоказано в иллюстрации.

Вычисления для 60 Гц

Коэффициент усиления напряжения определяется следующими уравнениями:

Расчет фактического тока полной нагрузки (I):

(Значения тока для подключения по схеме «треугольник» и «звезда» при минимальных значениях напряжения)

(Значения тока для подключения по схеме «треугольник» и «звезда» при максимальных значениях напряжения)

Теперь с помощью первой формулы можно рассчитать ток полной нагрузки:

I для «треугольника»:

I для «звезды»:

Величины для тока полной нагрузки соответствуют допустимому значению тока полной нагрузки электродвигателя при 254 Δ/440 Y В, 60 Гц.

Внимание: наружное реле перегрузки электродвигателя всегда устанавливается на номинальное значение тока, указанное в фирменной табличке.

Однако если электродвигатели сконструированы с учётом коэффициента нагрузки, который затем указывается в фирменной табличке, напр., 1.15, заданное значение тока для реле перегрузки может быть увеличено на 15% по сравнению с током полной нагрузки или коэффициентом нагрузки в амперах (SFA — service factor amps), который, как правило, указывается в фирменной табличке.

Внутренняя защита, встраиваемая в обмотки или клеммную коробку

Для чего нужна встроенная защита двигателя, если электродвигатель уже оснащён реле перегрузки и плавкими предохранителями? В некоторых случаях реле перегрузки не регистрирует перегрузку электродвигателя. Например, в ситуациях:

• Когда электродвигатель закрыт (недостаточно охлаждается) и медленно нагревается до опасной температуры.

• При высокой температуре окружающей среды.

• Когда наружная защита двигателя настроена на слишком высокий ток срабатывания или установлена неправильно.

• Когда электродвигатель перезапускается несколько раз в течение короткого периода времени и пусковой ток нагревает электродвигатель, что в конечном счёте, может его повредить.

Уровень защиты, который может обеспечить внутренняя защита, указывается в стандарте IEC 60034-11.

Обозначение TP

TP — аббревиатура «thermal protection» — тепловая защита. Существуют различные типы тепловой защиты, которые обозначаются кодом TP (TPxxx). Код включает в себя:

• Тип тепловой перегрузки, для которой была разработана тепловая защита (1-я цифра)

• Число уровней и тип действия (2-я цифра)

• Категорию встроенной тепловой защиты (3-я цифра)

В электродвигателях насосов, самыми распространёнными обозначениями TP являются:

TP 111: Защита от постепенной перегрузки

TP 211: Защита как от быстрой, так и от постепенной перегрузки.

Обозначение

Техническая егрузка и ее варианты (1-я цифра)

Количество уровней и функциональная область (2-я цифра)

Категория 1 (3-я цифра)

ТР 111

Только медленно (постоянная перегрузка)

1 уровень при отключении

1

ТР 112

2

ТР 121

2 уровня при аварийном сигнале и отключении

1

ТР 122

2

ТР 211

Медленно и быстро (постоянная перегрузка, блокировка)

1 уровень при отключении

1

ТР 212

2

ТР 221 ТР 222

2 уровня при аварийном сигнале и отключении

1

2

ТР 311 ТР 321

Только быстро (блокировка)

1 уровень при отключении

1

2

Изображение допустимого температурного уровня при воздействии на электродвигатель высокой температуры. Категория 2 допускает более высокие температуры, чем категория 1.

Все однофазные электродвигатели Grundfos оснащены защитой двигателя по току и температуре в соответствии с IEC 60034-11. Тип защиты двигателя TP 211 означает, что она реагирует как на постепенное, так и на быстрое повышение температуры.

 

Сброс данных в устройстве и возврат в начальное положение осуществляется автоматически. Трёхфазные электродвигатели Grundfos MG мощностью от 3.0 кВт стандартно оборудованы датчиком температуры PTC.

Эти электродвигатели были испытаны и одобрены как электродвигатели TP 211, которые реагируют и на медленное, и на быстрое повышение температуры. Другие электродвигатели, используемые для насосов Grundfos (MMG модели D и E, Siemens, и т.п.), могут быть классифицированы как TP 211, но, как правило, они имеют тип защиты TP 111.

Необходимо всегда учитывать данные, указанные на фирменной табличке. Информацию о типе защиты конкретного электродвигателя можно найти на фирменной табличке — маркировка с буквенным обозначением TP (тепловая защита) согласно IEC 60034-11. Как правило, внутренняя защита может быть организована при помощи двух типов устройств защиты: Устройств тепловой защиты или терморезисторов.

Устройства тепловой защиты, встраиваемые в клеммную коробку

В устройствах тепловой защиты, или термостатах, используется биметаллический автоматический выключатель дискового типа мгновенного действия для размыкания и замыкания цепи при достижении определённой температуры. Устройства тепловой защиты называют также «кликсонами» (по названию торговой марки от Texas Instruments). Как только биметаллический диск достигает заданной температуры, он размыкает или замыкает группу контактов в подключённой схеме управления. Термостаты оснащены контактами для нормально разомкнутого или нормально замкнутого режима работы, но одно и то же устройство не может использоваться для двух режимов. Термостаты предварительно откалиброваны производителем, и их установки менять нельзя. Диски герметично изолированы и располагаются на контактной колодке.

Через термостат может подаваться напряжение в цепи аварийной сигнализации — если он нормально разомкнут, или термостат может обесточивать электродвигатель — если он нормально замкнут и последовательно соединён с контактором. Так как термостаты находятся на наружной поверхности концов катушки, то они реагируют на температуру в месте расположения. Применительно к трёхфазным электродвигателям термостаты считаются нестабильной защитой в условиях торможения или в других условиях быстрого изменения температуры. В однофазных электродвигателях термостаты служат для защиты при блокировке ротора.

Тепловой автоматический выключатель, встраиваемый в обмотки

Устройства тепловой защиты могут быть также встроены в обмотки, см. иллюстрацию.

Они действуют как сетевой выключатель как для однофазных, так и для трёхфазных электродвигателей. В однофазных электродвигателях мощностью до 1,1 кВт устройство тепловой защиты устанавливается непосредственно в главном контуре, чтобы оно выполняло функцию устройства защиты на обмотке. Кликсон и Термик — примеры тепловых автоматических выключателей. Эти устройства называют также PTO (Protection Thermique a Ouverture).

Внутренняя установка

В однофазных электродвигателях используется один одинарный тепловой автоматический выключатель. В трёхфазных электродвигателях — два последовательно соединённых выключателя, расположенных между фазами электродвигателя. Таким образом, все три фазы контактируют с тепловым выключателем. Тепловые автоматические выключатели можно установить на конце обмоток, однако это приводит к увеличению времени реагирования. Выключатели должны быть подключены к внешней системе управления. Таким образом электродвигатель защищается от постепенной перегрузки. Для тепловых автоматических выключателей реле — усилителя не требуется.

Тепловые выключатели НЕ ЗАЩИЩАЮТ двигатель при блокировке ротора.

Принцип действия теплового автоматического выключателя

На графике справа показана зависимость сопротивления от температуры для стандартного теплового автоматического выключателя. У каждого производителя эта характеристика своя. TN обычно лежит в интервале 150-160 °C.

Подключение

Подключение трёхфазного электродвигателя со встроенным тепловым выключателем и реле перегрузки.

Обозначение TP на графике

Защита по стандарту IEC 60034-11:

TP 111 (постепенная перегрузка). Для того чтобы обеспечить защиту при блокировке ротора, электродвигатель должен быть оборудован реле перегрузки.

Терморезисторы, встраиваемые в обмотки

Второй тип внутренней защиты — это терморезисторы, или датчики с положительным температурным коэффициентом (PTC). Терморезисторы встраиваются в обмотки электродвигателя и защищают его при блокировке ротора, продолжительной перегрузке и высокой температуре окружающей среды. Тепловая защита обеспечивается с помощью контроля температуры обмоток электродвигателя с помощью PTC датчиков. Если температура обмоток превышает температуру отключения, сопротивление датчика меняется соответственно изменению температуры.

В результате такого изменения внутренние реле обесточивают контур управления внешнего контактора. Электродвигатель охлаждается, и восстанавливается приемлемая температура обмотки электродвигателя, сопротивление датчика понижается до исходного уровня. В этот момент происходит автоматическое приведение модуля управления в исходное положение, если только он предварительно не был настроен на сброс данных и повторное включение вручную.

Если терморезисторы установлены на концах катушки самостоятельно, защиту можно классифицировать только как TP 111. Причина в том, что терморезисторы не имеют полного контакта с концами катушки, и, следовательно, не могут реагировать так быстро, как если бы они изначально были встроены в обмотку.

Система, чувствительная к температуре терморезистора, состоит из датчиков с положительным температурным коэффициентом (PTC), устанавливаемых последовательно, и твердотельного электронного выключателя в закрытом блоке управления. Набор датчиков состоит из трёх — по одному на фазу. Сопротивление в датчике остаётся относительно низким и постоянным в широком диапазоне температур, с резким увеличением при температуре срабатывания. В таких случаях датчик действует как твердотельный тепловой автоматический выключатель и обесточивает контрольное реле. Реле размыкает цепь управления всего механизма для отключения защищаемого оборудования. Когда температура обмотки восстанавливается до допустимого значения, блок управления можно привести в прежнее положение вручную.

Все электродвигатели Grundfos мощностью от 3 кВт и выше оснащены терморезисторами. Система терморезисторов с положительным температурным коэффициентом (PTC) считается устойчивой к отказам, так как в результате выхода из строя датчика или отсоединении провода датчика возникает бесконечное сопротивление, и система срабатывает так же, как при повышении температуры, — происходит обесточивание контрольного реле.

Принцип действия терморезистора

Критические значения зависимости сопротивление/ температура для датчиков системы защиты электродвигателя определены в стандартах DIN 44081/ DIN 44082.

На кривой DIN показано сопротивление в датчиках терморезистора в зависимости от температуры.

По сравнению с PTO терморезисторы имеют следующие преимущества:

• Более быстрое срабатывание благодаря меньшему объёму и массе

• Лучше контакт с обмоткой электродвигателя

• Датчики устанавливаются на каждой фазе

• Обеспечивают защиту при блокировке ротора

Обозначение TP для электродвигателя с PTC

Защита двигателя TP 211 реализуется, только когда терморезисторы PTC полностью установлены на концах обмоток на заводе-изготовителе. Защита TP 111 реализуется только при самостоятельной установке на месте эксплуатации. Электродвигатель должен пройти испытания и получить подтверждение о соответствии его маркировке TP 211. Если электродвигатель с терморезисторами PTC имеет защиту TP 111, он должен быть оснащён реле перегрузки для предотвращения последствий заклинивания.

Соединение

На рисунках справа представлены схемы подключения трёхфазного электродвигателя, оснащённого терморезисторами PTC, с расцепителями Siemens. Для реализации защиты как от постепенной, так и от быстрой перегрузки, мы рекомендуем следующие варианты подключения электродвигателей, оснащённых датчиками PTC, с защитой TP 211 и TP 111.

Электродвигатели с защитой TP 111

Если электродвигатель с терморезистором имеет маркировку TP 111, это значит, что электродвигатель защищён только от постепенной перегрузки. Для того чтобы защитить электродвигатель от быстрой перегрузки, электродвигатель должен быть оборудован реле перегрузки. Реле перегрузки должно подключаться последовательно к реле PTC.

Электродвигатели с защитой TP 211

Защита TP 211 двигателя обеспечивается, только если терморезистор PTC полностью встроен в обмотки. Защита TP 111 реализуется только при самостоятельном подключении.

Терморезисторы разработаны в соответствии со стандартом DIN 44082 и выдерживают нагрузку Umax 2,5 В DC. Все отключающие элементы предназначены для приёма сигналов от терморезисторов DIN 44082, т.е терморезисторов компании Siemens.

Обратите внимание: Очень важно, чтобы встроенное устройство PTC было последовательно соединено с реле перегрузки. Многократные повторные включения реле перегрузки могут привести к сгоранию обмотки в случае блокировки электродвигателя или пуска при высокой инерции. Поэтому очень важно, чтобы температурные показатели и данные по потребляемому току устройства PTC и реле

www.eti.su

Электрический двигатель: комплексная релейная защита

Главная страница » Электрический двигатель: комплексная релейная защита

Практически нет в эксплуатации техники, где не использовался бы электрический двигатель. Этот вид электромеханических приводов самой разной конфигурации применяется повсеместно. С конструктивной точки зрения, электромотор – оборудование несложное, вполне понятное и простое. Однако работа электродвигателя сопровождается значительными нагрузками разного характера. Именно поэтому на практике применяются реле защиты двигателя, функциональность которых также носит разносторонний характер. Степень эффективности, на которую рассчитана защита электрического двигателя, как правило, определяется схемными решениями внедрения реле и датчиков контроля.

Содержимое публикации

Схема комплексной защиты двигателя

Существуют различные типы защитных реле, предназначенных исключить сбои двигателя при работе. Этими реле определяется рабочие состояние мотора, выходящее за рамки нормы, что в конечном итоге приводит к срабатыванию автоматического выключателя.

Комплексная защита двигателя обеспечивает контроль:

  • нарушений в обмотках и связанных цепях;
  • чрезмерной перегрузки и короткого замыкания;
  • дисбаланса трёхфазного и однофазного напряжения;
  • изменения порядка чередования фаз и коммутационных напряжений.

Основная характеристика защитных реле двигателя — это зависимость уменьшения времени срабатывания от увеличения магнитуды тока повреждения.

Устройства из серии приборов, гарантирующих целостность моторов при работе электрических двигателей в тяжелых эксплуатационных условиях

Рассмотрим различные варианты защиты, применяемые к традиционным электрическим двигателям, находящимся в эксплуатации.

Перечень защит и предназначение

Список часто применяемых защитных решений состоит из шести реализуемых функций:

  1. Перегрузка по току.
  2. Перегрев статорных обмоток.
  3. Перегрев ротора.
  4. Пониженное напряжение.
  5. Дисбаланс и пофазный сбой.
  6. Реверс фаз.

Прежде чем подробнее рассмотреть отмеченные схемы защиты, логичным видится разделить двигатели на две группы эксплуатационного статуса – значимые и малозначимые.

Перегрузка двигателя по току

Это основной функционал защиты, направленный на предотвращение короткого замыкания обмоток статора. Здесь предохранители и элементы прямого действия используются для защиты статорных обмоток двигателя.

Применительно к малозначимым сервисным моторам, для автоматического отключения используется мгновенное реле с обратно-зависимым временем реагирования на фазные перегрузки по току.

Схема защиты двигателя от перегрузки по току и замыканий на землю: 1, 2, 3 — трансформаторы тока; 4, 5, 6 — устройства отсечки по току; Ф1, Ф2, Ф3 — линейные фазы; 7 — земля

Реле чередования фаз обычно настраиваются на 3,5-4 кратное превышение рабочего тока двигателя, с учётом достаточной задержки по времени, чтобы исключить срабатывание в моменты запуска мотора.

Для сервисных двигателей высокой значимости реле тока с обратно-зависимым временем срабатывания, как правило, не используются. Причиной тому является задействованный автоматический выключатель непосредственно в цепи двигателя.

Перегрев статорных обмоток

Критичное состояние, в основном обусловленное непрерывной перегрузкой, торможением ротора или дисбалансом тока статора. Для полной защиты, в данном случае, трёхфазный двигатель необходимо оснастить элементами контроля перегрузки на каждой фазе.

Здесь для защиты малозначимых сервисных двигателей обычно используется защита от перегрузки по току либо прямое срабатывание на отключение от источника питания в случае перегрузки.

Если номинальная мощность двигателя превышает 1000 кВт, вместо одиночного реле с резистивным датчиком температуры, как правило, используется реле обратно-зависимого времени срабатывания по току.

Термисторы предельной температуры для статора двигателя: 1 — залуженная часть проводника 7-10 мм; 2 — размер длины 510 — 530 мм; 3 — длина термистора 12 мм; 4 — диаметр термистора 3 мм; Дуговые соединения длиной 200 мм

Для значимых моторов автоматическое отключение применяют по желанию. В качестве главного защитника от перегрева статорных обмоток используется тепловое реле.

Фактор перегрева ротора (фазного)

Защита от перегрева ротора часто встречается в двигателях с раневым (фазным) ротором. Увеличение тока ротора отражается на токе статора, что требует включения защиты от превышения тока статора.

Настройка реле защиты статора по току в целом составляет величину, равную току полной нагрузки, увеличенному в 1,6 раза. Этого значения вполне достаточно, чтобы определить перегрев фазного ротора и включить блокировку.

Защита от пониженного напряжения

Электродвигатель потребляет чрезмерный ток при работе под напряжением ниже установленной нормы. Поэтому защита от недостатка напряжения или перенапряжения должна обеспечиваться датчиками перегрузки или чувствительными температурными элементами.

Чтобы избежать перегрева, двигатель необходимо обесточить на 40-50 минут даже в случае небольших перегрузок, превышающих 10 — 15% норматива.

Классический вариант термального контроля статорной обмотки: Т — датчики температуры, встроенные непосредственно среди обмоточных проводников

Защитное реле следует использовать для контроля нагрева ротора двигателя из-за токов обратной последовательности, возникающих в статоре по причине дисбаланса напряжения питания.

Дисбаланс и пофазный сбой

Несбалансированное трехфазное питание также вызывает протекание тока обратной последовательности в обмотках статора двигателя. Подобное состояние вызывает перегрев обмотки статора и ротора (фазного).

Несбалансированное состояние, кратковременно передаваемое двигателю, необходимо контролировать и  поддерживать на таком уровне, чтобы избежать появления непрерывного состояния дисбаланса.

Рекомендуется применять реле защиты двигателя, чувствительное  на отказ обмотки статора. Например, на межфазное замыкание или короткое замыкание на землю.

Предпочтительно реле контроля межфазного замыкания питать от положительной фазы, а для защиты от замыканий на землю использовать дифференциальное реле мгновенной отсечки, подключенное в цепь контура трансформатора тока.

Непредусмотренный реверс фазы

В некоторых случаях реверс фазы видится опасным явлением для мотора. Например, такое состояние может негативно отражаться на работе лифтового оборудования, кранов, подъемников, некоторых видов общественного транспорта.

Здесь обязательно следует предусматривать защиту от реверса фаз – специализированное реле. Работа реле реверса фазы основана на электромагнитном принципе. Прибор содержит дисковый двигатель, приводимый в движение магнитной системой.

Плата и схема устройства реверса фазы: 1 — автоматический выключатель или плавкая вставка; 2 — защита от перегрузки; 3 — фаза текущая; 4 — реверс фазы; 5 — электродвигатель

Если отмечается правильная последовательность фаз, диск формирует крутящий момент в положительном направлении. Следовательно, вспомогательный контакт удерживается в закрытом положении.

Когда фиксируется реверс фазы, крутящий момент диска изменяется на противоположное направление. Следовательно, вспомогательный контакт переключается в открытое положение.

Эта система коммутации используется для защиты, в частности – для управления автоматическим выключателем.

Традиционная защита асинхронных двигателей

Схема защиты трехфазных асинхронных двигателей небольшой мощности показана на рисунке ниже. Магнитный контактный пускатель содержит группу кнопок пуска и останова, связанных соответствующими вспомогательными контактами, защитными устройствами перегрузки или недогрузки.

Стартовая кнопка (КН1) представляет собой обычный прямой контактный переключатель, который обычно удерживается в нормально открытом состоянии усилием пружины. В свою очередь кнопка останова (КН2) удерживается в состоянии нормально закрытом также посредством пружины.

Стоит нажать кнопку пуска (замкнуть линию), рабочая катушка контактора получает питание через контакты (ВК) реле перегрузки (Р1-Р3). Образованное магнитное поле катушки притягивает металлический сердечник контактора.

В результате замыкаются три главных контакта (К1-К3) магнитного пускателя, через которые электродвигатель (М) соединяется с трёхфазным источником питания.

Схема пуска, останова и аварийной блокировки: П1, П2, П3 — плавкие предохранители; Р1, Р2, Р3 — токовые реле; ВК — контакты блокировки; КП — катушка пускателя; К1, К2, К3 — контакторы пускателя; КН1 — кнопка пуска; КН2 — кнопка останова; М- мотор

Пока кнопка «пуск» (КН1) замкнута, цепь питания проходит через контакты кнопки «стоп» (КН2) и катушку магнитного пускателя (КП). Между тем, цепь питания катушки индуктивности теперь уже поддерживается иной схемой.

Поддержка осуществляется вспомогательными контактами (ВК) реле с токовым управлением (Р1-Р3), поэтому возврат кнопки «пуск» в исходное положение ситуацию не изменит. Контактор останется замкнутым, а двигатель в работе.

Как работает функционал защиты

Обычно двигатели мощностью до 20 кВт рассматриваются как маломощные аппараты. Максимум защиты таких моторов обеспечивается:

  • предохранителями с высокой отключающей способностью,
  • биметаллическими реле и
  • реле напряжения.

Все эти элементы защиты собраны, как правило, в структуре магнитного пускателя.

Чаще всего выгорание линейных предохранителей защиты двигателя отмечается на одной фазе. Этот обрыв может оставаться не обнаруженным, даже если двигатель защищён обычным биметаллическим реле.

Структура предохранителя: 1 — торцевая крышка; 2 — кремнезём; 3 — фарфоровый корпус; 4 — выступ крепежа; 5 — предохраняющий элемент; 6 — оловянный сплав; 7 — конструкция управления дугой

Обнаружение обрыва фазы зачастую не дают и реле напряжения, подключенные на каждой линии. Несмотря на обрыв одной фазы, схемой обмоток электродвигателя поддерживается значительная обратная ЭДС на клемме фазы, находящейся в обрыве.

Поэтому уровень напряжения на реле остаётся достаточно высоким, что не приводит к срабатыванию. Однако сложности обнаружения подобных дефектов вполне преодолимы.

Достаточно использовать дополнительный набор из трех реле, управляемых по току. Подключение наглядно демонстрирует схема защиты двигателя, показанная выше.

Защитные функции токовых реле

Управляемые током реле — устройства простые, но обладающие эффектом мгновенной отсечки. Конструктивно прибор состоит из следующих деталей:

  • катушка тока;
  • один или несколько нормально разомкнутых контактов.

Механизм движения контактов управляются ЭДС катушки тока. Традиционно токовые реле подключаются на каждой фазе последовательно с плавкими защитными предохранителями.

Когда срабатывает магнитный пускатель, электродвигатель запускается, ток питания течёт через катушку. Магнитодвижущая сила катушки (ЭДС) воздействует на механику и замыкает контакты реле. Цепь питания мотора замыкается.

Блокиратор токовой перегрузки: 1 — электрические коннекторы; 2 — индикатор отключения; 3 — тест; 4 — клеммы для проводников двигателя; 5 — сигнальный контакт; 6 — кнопка сброса; 7 — селектор «авто» или «ручной»; 8 — кнопка останова; 9 — шкала установки тока; 10 — механическая защёлка

Если, вдруг, случится обрыв фазы, ток катушки индуктивности снижается, контакты соответствующего реле переключаются в нормально-открытое положение.

Учитывая, что контакты всех трех защитных реле соединяются последовательно, цепь питания мотора разомкнётся.

Защитные функции тепловых реле

Все классические конструкции моторов предполагают использование опорных и упорных подшипников. В зависимости от мощности электродвигателей, может устанавливаться тот или иной вид подшипников, либо оба вида вместе.

Неисправность подшипника любого вида нередко приводит к полной остановке вращения ротора. Внезапное механическое заклинивание, в свою очередь, провоцирует резкий подъём тока статорной обмотки двигателя и последующий перегрев.

Здесь токовая защита не способна удовлетворительно реагировать на событие. Как правило, этот вид защиты настроен с учётом стартового тока двигателя и короткой временной составляющей. Проблема клина может быть решена только путём внедрения защиты от тепловой перегрузки.

Также защиту в данном случае допустимо обеспечить индивидуальным модулем, настроенным на определенное время срабатывания по току. В случае применения тепловой отсечки, разумно ставить датчик температуры, встроенный непосредственно в подшипниковый узел.

Теоретический минимум по защите электродвигателей

zetsila.ru

Как защитить электродвигатель от перегрузок. Применяемые устройства | Полезные статьи

Любой электродвигатель нуждается в надежной защите от теплового перегрева, короткого замыкания и всевозможных перегрузок, которые могут быть вызваны аварийными ситуациями или неисправностями. Чтобы не допустить подобных ситуаций, в промышленности производится довольно много разных устройств, которые как в отдельном порядке, так и в комплекте с другими средствами, образуют блок мощной защиты электродвигателя. Помимо этого, в современные схемы обязательно включают различные элементы, предназначенные для того, чтобы комплексно защитить электрооборудование в случае исчезновении напряжения одной или сразу нескольких фаз питания. Защита электродвигателей очень важна в любом производстве, ведь без нее довольно трудно представить полноценную работу станков и агрегатов.

Существуют сложные средства защиты электродвигателей, использующихся для противодействия аварийным ситуациям, в числе которых могут быть такие случаи как, например, несанкционированный пуск, работа сразу на двух фазах, работа при низком или высоком напряжении, короткое замыкание электрической цепи.

К таким средствам относятся предохранители или автоматические выключатели с кривой D (они защищают электродвигатель от токов короткого замыкания). Особенность их работы заключается в том, что такие автоматические устройства не отключаются при запуске электродвигателя, если сила его пускового тока достигает высокой отметки на период, который по времени меньше одной секунды. Наиболее популярная марка подобных выключателей — это, например, Acti 9.

Также могут использоваться специальные автоматические выключатели для защиты электродвигателей. Автомат защиты электродвигателя имеет электромагнитный и регулируемый тепловой расцепитель, что дает возможность защитить агрегат от короткого замыкания и перегрузки. В результате существенно уменьшается время простоя двигателя, а также снижаются расходы на его техобслуживание. Здесь можно упомянуть такие марки как, например, GV2(3), PKZM, MPE 25 и пр.Используются для защиты и тепловые реле, которые устанавливаются на контакторы (обеспечивают защиту от перегрузки). Реле тепловой защиты отключает трехфазные электродвигатели при перегреве с использованием встроенного вспомогательного выключателя. Известные марки таких реле — это, в частности, SIRIUS и ZB.Реле контроля напряжения, асимметрии и наличия фаз в свою очередь обесточивает двигатель в случае пропадания одной из фаз, превышении или понижении допустимого напряжения. Благодаря такому реле в случае аварии трехфазная нагрузка автоматически отключается. Кроме того, реле контроля напряжения самостоятельно возвращается к рабочему режиму после того, как сеть восстанавливается. Популярные марки подобных реле выпускаются компаниями EKF и ABB.

Устройство защиты электродвигателя — это залог его стабильной работы. Основной принцип работы таких устройств заключается в том, что они следят за потреблением тока двигателем, а также измеряют температуру его обмотки и отключают двигатель, когда обмотка нагревается больше предельно допустимой температуры.

cable.ru

Защита асинхронного двигателя — способы и схемы

Асинхронный двигатель является наиболее надёжным из всех электродвигателей. Он просто устроен, поэтому при правильной эксплуатации может прослужить очень долго. Но чтобы это произошло, потребуется защита от тех или иных проблем, которые могут сократить срок его службы. Если случается аварийный режим необходимо своевременно и быстро отключить электродвигатель, чтобы авария не получила разрушительного развития.

Наиболее распространёнными аварийными ситуациями и соответствующими им видами защиты являются:

  • Короткие замыкания. В такой ситуации превышение заданных величин токов в обмотках должно вызвать срабатывание защиты, которая выполнит отключение от сети.
  • Перегрузка, в результате которой температура всего движка увеличивается.
  • Проблемы с напряжением, которое либо уменьшается, либо пропадает.
  • Исчезновение напряжения на одной из фаз.

В схемах защиты используются плавкие предохранители, реле и магнитные пускатели с автоматическими выключателями. Схема может быть построена таким образом, что будет выполняться сразу несколько видов защиты асинхронного двигателя. Например, могут быть использованы автоматические выключатели с коммутациями и при перегрузках, и при коротких замыканиях. Плавкие предохранители имеют одноразовое действие и требуют вмешательства оператора для замены.

Реле и магнитные пускатели срабатывают многократно, но могут отличаться по способу восстановления исходного состояния. Для них возможен либо автоматический самовозврат, либо установка вручную. Защиту надо выбирать, основываясь на:

  • предназначении привода, в котором работает асинхронный двигатель;
  • электромеханических параметрах привода;
  • условиях окружающей среды;
  • возможности обслуживания персоналом.
  • Главными качествами защиты должна быть простота в эксплуатации и надёжность.

Любой асинхронный двигатель должен иметь защиту от коротких замыканий. При этом она должна быть спроектирована и настроена с учётом тока пуска и торможения, которые могут превышать номинальный ток почти в десять раз. Но необходимо учитывать и возможность замыканий в обмотке движка в разных местах. При таких ситуациях защитное срабатывание должно произойти при величине тока меньшей, чем при пуске асинхронного двигателя. Поскольку такие требования противоречат друг другу защиту приходится делать с задержкой отключения. Если за это время ток, который двигатель потребляет из сети, существенно увеличится, она сработает.

Требования к защите при коротких замыканиях в асинхронных двигателях заложены в ПУЭ, которые требуют следующее (показано на изображении ниже).

  • Место установки – перед зажимами движка на ответвлении к нему.
  • Надёжное отключение при коротких замыканиях на его зажимах.

Точки на изображении:

  • К1 – однофазное замыкание на землю в сетях с заземлением нейтрали;
  • К2 – двухфазное замыкание;
  • К3 – трёхфазное короткое замыкание.

Ток перегрузки движка надо учитывать только в тех приводах, в которых возможны нарушения нормального технологического процесса с большими внешними усилиями, приложенными к валу. При этом надо учитывать перегрузочную способность электродвигателя. Если защита от перегрузки срабатывает слишком часто, вероятнее всего то, что мощность движка не соответствует назначению. В таких случаях недопустимы ложные срабатывания, которые устраняются правильным выбором и качественной регулировкой компонентов защиты.

Короткие замыкания и защита от перегрузок

Простейшая защита от замыканий содержит только плавкие предохранители. Они применяются в диапазоне мощностей двигателей до 100 кВт. Однако при их использование возможно перегорание не всех трёх предохранителей. Поэтому движок может искусственно оказаться с одной или двумя отключенными фазными обмотками. В зависимости от назначения электропривода существуют разные критерии выбора предохранителей.

Если у привода нагрузка вентиляторного типа, для которой характерен лёгкий пуск, номинальный ток плавкой вставки выбирается не менее 40% от величины пускового тока. Этот критерий применим для металлорежущих станков, вентиляторов, насосов и т.п. у которых переходный процесс длится от двух до пяти секунд. Если время переходного процесса более длительное от десяти до двадцати секунд номинальный ток плавкой вставки должен быть не менее 50% от величины пускового тока. Этот критерий применим для приводов с валом заторможенных нагрузкой. К ним можно отнести дробилки, центрифуги, шаровые мельницы.

Если имеется группа из нескольких электродвигателей, предохранители ставятся на каждый из них и на распределительный щит. На нём в каждой фазе устанавливается предохранитель с номинальным током равным сумме номинальных токов предохранителей всех движков. Если величина пускового тока не известна, а мощность Р асинхронного двигателя менее 100 кВт, можно выбрать приблизительное значение номинального тока I предохранителя таким способом:

  • при напряжении 500 Вольт I=4,5Р;
  • при напряжении 380 Вольт I=6Р;
  • при напряжении 220 Вольт I=10,5Р.

Для более точного срабатывания и для всего диапазона мощностей асинхронных двигателей применяются схемы защиты с реле. Такие схемы позволяют учесть токи пуска и торможения и не реагировать на них. Срабатывание реле приводит к выключению магнитного пускателя и обесточиванию двигателя. Эти так называемые «максимальные» реле в зависимости от конструкции имеют катушку, рассчитанную на токи от десятых долей Ампера до сотен Ампер, а так же контакты, отключающие ток в катушке магнитного пускателя.

Погрешность их срабатывания обычно не превышает десяти процентов. Возврат в исходное состояние конструктивно наиболее часто сделан вручную. Типовая схема защиты показана на изображении. РМ – обозначения максимальных реле, Л – обозначение магнитного пускателя.

Максимальные реле также применяются и для защиты от перегрузки. Но при этом в схему вводится реле времени, которое позволяет сделать настройку её без учёта пусковых токов.

Тепловая защита

Тепловое реле является альтернативным способом защиты электродвигателя с определённой инерцией срабатывания. Принцип действия основан на использовании биметаллической пластины, которая нагревается током обмоток двигателя. Деформация пластины приводит к срабатыванию контактов, необходимых для отключения движка.

Надёжность такой защиты зависит от подобия тепловых процессов в реле и в двигателе. Такое возможно только при достаточно длительном перерыве между включениями и выключениями движка. Условия окружающей среды для двигателя и для элементов тепловой защиты должны быть одинаковыми.

Скорость срабатывания тепловых реле тем меньше, чем больше ток, протекающий через нагревательные элементы или же саму пластину в зависимости от конструкции. При больших значениях токов в обмотках асинхронного двигателя подключение выполняется с использованием трансформаторов тока. Существуют модели магнитных пускателей со встроенными в них тепловыми реле.

Основными электрическими параметрами являются

  • номинальное напряжение. Это максимальное напряжение в сети допустимое для использования реле.
  • Номинальный ток, при котором реле работает длительно и не срабатывает при этом.

Тепловая защита не способна реагировать на токи короткого замыкания и недопустимые кратковременные перегрузки. Поэтому её надо использовать совместно хотя бы с плавкими предохранителями.

Более совершенной разновидностью защиты электродвигателя от недопустимого нагрева является схема с использованием специального датчика тепла. Такой тепловой сенсор располагается на самом движке в том или ином месте. Некоторые модели двигателей имеют встроенный биметаллический сенсор – контакт, подключаемый к защите.

Понижение напряжения и пропадание фазы

Полностью нагруженный асинхронный двигатель, работающий при пониженном напряжении, быстро нагревается. Если в нём есть встроенный тепловой сенсор, сработает тепловая защита. Если такового нет, необходима защита от понижения напряжения. Для этих целей служат реле, которые срабатывают при снижении напряжения и подают сигнал на отключение движка. На схеме ниже это РН.

Восстановление исходного состояния защиты обычно выполняется вручную или автоматически, но с задержкой во времени для каждого двигателя при их группе. Иначе одновременный групповой запуск после восстановления опять-таки может вызвать повторное понижение напряжения в сети и новое отключение.

Специальная защита от пропадания фазы, то есть от работы только на двух фазах ПУЭ предусматривает только в таких приводах, где возможны неприемлемые по своей тяжести последствия. Экономически целесообразно не изготовление и установка такой защиты, а ликвидация причин, приводящих к такому режиму работы.

Самыми последними техническими решениями в построении защиты электродвигателей являются автоматические выключатели с воздушным гашением дуги. Некоторые модели совмещают в себе возможности рубильника, контактора, максимального и теплового реле и выполняют соответствующие защитные функции. В таком автомате контакты размыкаются мощной взведенной пружиной. Освобождение её происходит в зависимости от типа исполнительного элемента — электромагнитного или теплового.

podvi.ru

Тепловая защита электродвигателя. Электротепловое реле.

Здравствуйте, уважаемые читатели сайта sesaga.ru. В предыдущей статье мы с Вами рассмотрели принципиальные схемы включения магнитного пускателя, обеспечивающие реверс вращения электродвигателя.

Продолжаем знакомиться с магнитным пускателем и сегодня рассмотрим типовые схемы подключения электротеплового реле типа РТИ, которое предназначено для защиты от перегрева обмоток электродвигателя при токовых перегрузках.

1. Устройство и работа электротеплового реле.

Электротепловое реле работает в комплекте с магнитным пускателем. Своими медными штыревыми контактами реле подключается к выходным силовым контактам пускателя. Электродвигатель, соответственно, подключают к выходным контактам электротеплового реле.

Внутри теплового реле находятся три биметаллические пластины, каждая из которых сварена из двух металлов, имеющих различный коэффициент теплового расширения. Пластины через общее «коромысло» взаимодействуют с механизмом подвижной системы, которая связана с дополнительными контактами, участвующими в схеме защиты электродвигателя:

1. Нормально-замкнутый NC (95 – 96) используют в схемах управления пускателем;
2. Нормально-разомкнутый NO (97 – 98) применяют в схемах сигнализации.

Принцип действия теплового реле основан на деформации биметаллической пластины при ее нагреве проходящим током.

Под действием протекающего тока биметаллическая пластина нагревается и прогибается в сторону металла, имеющего меньший коэффициент теплового расширения. Чем больший ток будет протекать через пластину, тем сильнее она будет греться и прогибаться, тем быстрее сработает защита и отключит нагрузку.

Допустим, что электродвигатель подключен через тепловое реле и работает в нормальном режиме. В первый момент времени работы электродвигателя через пластины течет номинальный ток нагрузки и они нагреваются до рабочей температуры, которая не вызывает их изгиб.

По какой-то причине ток нагрузки электродвигателя стал увеличиваться и через пластины потек ток выше номинального. Пластины начнут сильнее греться и прогибаться, что приведет в движение подвижную систему и она, воздействуя на дополнительные контакты реле (95 – 96), обесточит магнитный пускатель. По мере остывания пластины вернутся в исходное положение и контакты реле (95 – 96) замкнутся. Магнитный пускатель опять будет готов к запуску электродвигателя.

В зависимости от величины протекающего тока в реле предусмотрена уставка срабатывания по току, влияющая на силу изгиба пластины и регулирующаяся поворотным регулятором, расположенным на панели управления реле.

Помимо поворотного регулятора на панели управления расположена кнопка «TEST», предназначенная для имитации срабатывания защиты реле и проверки его работоспособности до включения в схему.

«Индикатор» информирует о текущем состоянии реле.

Кнопкой «STOP» обесточивается магнитный пускатель, но как в случае с кнопкой «TEST», контакты (97 – 98) не замыкаются, а остаются в разомкнутом состоянии. И когда Вы будете задействовать эти контакты в схеме сигнализации, то учитывайте этот момент.

Электротепловое реле может работать в ручном или автоматическом режиме (по умолчанию стоит автоматический режим).

Для перевода в ручной режим необходимо повернуть поворотную кнопку «RESET» против часовой стрелки, при этом кнопка слегка приподнимается.

Предположим, что сработало реле и своими контактами обесточило пускатель.
При работе в автоматическом режиме после остывания биметаллических пластин контакты (95 — 96) и (97 — 98) автоматически перейдут в исходное положение, тогда как в ручном режиме перевод контактов в исходное положение осуществляется нажатием кнопки «RESET».

Кроме защиты эл. двигателя от перегрузок по току, реле обеспечивает защиту и в случае обрыва питающей фазы. Например. При обрыве одной из фаз, электродвигатель, работая на оставшихся двух фазах, станет потреблять больше тока, отчего биметаллические пластины нагреются и реле сработает.

Однако электротепловое реле не способно защитить двигатель от токов короткого замыкания и само нуждается в защите от подобных токов. Поэтому при установке тепловых реле необходимо устанавливать в цепь питания электродвигателя автоматические выключатели, защищающие их от токов короткого замыкания.

При выборе реле обращают внимание на номинальный ток нагрузки электродвигателя, который будет защищать реле. В инструкции по эксплуатации, идущей в коробке, есть таблица, по которой выбирается тепловое реле для конкретной нагрузки:

Например.
Реле РТИ-1302 имеет предел регулировки тока уставки от 0,16 до 0,25 Ампер. Значит, нагрузку для реле следует выбирать с номинальным током около 0,2 А или 200 mA.

2. Принципиальные схемы включения электротеплового реле.

В схеме с тепловым реле используют нормально-замкнутый контакт реле КК1.1 в цепи управления пускателем, и три силовых контакта КК1, через которые подается питание на электродвигатель.

При включении автоматического выключателя QF1 фаза «А», питающая цепи управления, через кнопку SB1 «Стоп» поступает на контакт №3 кнопки SB2 «Пуск», вспомогательный контакт 13НО пускателя КМ1, и остается дежурить на этих контактах. Схема готова к работе.

При нажатии на кнопку SB2 фаза через нормально-замкнутый контакт КК1.1 поступает на катушку магнитного пускателя КМ1, пускатель срабатывает и его все нормально-разомкнутые контакты замыкаются, а нормально-замкнутые размыкаются.

При замыкании контакта КМ1.1 пускатель встает на самоподхват. При замыкании силовых контактов КМ1 фазы «А», «В», «С» через контакты теплового реле КК1 поступают на обмотки электродвигателя и двигатель начинает вращение.

При увеличении тока нагрузки через силовые контакты термореле КК1, реле сработает, контакт КК1.1 разомкнется и пускатель КМ1 обесточится.

Если возникнет необходимость в простой остановке двигателя, то достаточно будет нажать на кнопку «Стоп». Контакты кнопки разорвутся, фаза прервется и пускатель обесточится.

На фотографиях ниже показана часть монтажной схемы цепей управления:

Следующая принципиальная схема аналогична первой и отличается лишь тем, что нормально-замкнутый контакт термореле (95 – 96) разрывает ноль пускателя. Именно эта схема получила наибольшее распространение из-за удобства и экономичности монтажа: ноль сразу заводят на контакт термореле, а со второго контакта реле бросают перемычку на катушку пускателя.

При срабатывании термореле контакт КК1.1 размыкается, «ноль» разрывается и пускатель обесточивается.

И в заключении рассмотрим подключение электротеплового реле в реверсивной схеме управления пускателем.

От типовой схемы она, как и схема с одним пускателем, отличается лишь наличием нормально-замкнутого контакта реле КК1.1 в цепи управления, и тремя силовыми контактами КК1, через которые запитывается электродвигатель.

При срабатывании защиты контакты КК1.1 разрываются и отключают «ноль». Работающий пускатель обесточивается и двигатель останавливается. При возникновении необходимости в простой остановке двигателя достаточно нажать на кнопку «Стоп».

Вот и подошел к логическому завершению рассказ о магнитном пускателе.
Понятно, что только одних теоретических знаний мало. Но если Вы будете практиковаться, то сможете собрать любую схему с применением магнитного пускателя.

И уже по сложившейся традиции небольшой видеоролик о применении электротеплового реле.

Удачи!

sesaga.ru

Защита асинхронного двигателя — способы и схемы

Если правильно эксплуатировать асинхронный двигатель, он прослужит очень долго. Однако существуют факторы, способные сократить срок его службы, и их требуется нейтрализовать. В случае входа в аварийный режим электромотор должен быть быстро и своевременно отключен, иначе он сгорит.

К стандартным и часто встречающимся аварийным ситуациям относятся:

  • Короткое замыкание (КЗ). В этом случае срабатывает защита, которая отключает мотор от сети.
  • Перегрузка, из-за которой происходит перегрев двигателя.
  • Уменьшение или исчезновение напряжения.
  • Отсутствие напряжения на одной фазе.

Для защиты служат плавкие предохранители, магнитные пускатели или реле. Плавкие предохранители является одноразовыми, и после сгорания их приходится заменять. Автоматические переключатели с коммутациями срабатывают и при перегрузках, и при КЗ. Реле и магнитные пускатели бывают многократного действия с автоматическим самовозвратом или с ручным возвратом.

Защита от КЗ настраивается с учетом 10-кратного превышения номинального тока токами пуска и торможения. При местных замыканиях в обмотках мотора защита должна срабатывать, когда ток меньше, чем при пуске. В защите также предусматривают задержку отключения, и она срабатывает, если за это время потребляемый из сети ток сильно возрастет. Если защита от перегрузки действует слишком часто, скорее всего, мощность мотора не соответствует его назначению. Ложные срабатывания устраняют, соответственно выбирая и регулируя компоненты защиты.

Следует помнить, что любые способы и схемы защиты асинхронного электродвигателя должны быть не только просты, но и надежны.

Короткие замыкания, а также защита от перегрузок

Плавкие вставки – простейшая защита от коротких замыканий для моторов мощностью до 100 кВт. Если перегорят не все 3 предохранителя, могут отключиться только 1 или 2 фазные обмотки.

Если переходный процесс длится 2-5 секунд, номинальный ток предохранителя не должен быть меньше 40 % величины пускового тока, а если 10-20 секунд – то минимум 50 %. При неизвестной величине пускового тока и мощности Р мотора меньше 100 кВт примерная величина номинального тока I вставки выбирается так:

  • при U 500 вольт I = 4,5 Р;
  • при U 380 вольт I = 6 Р;
  • при U 2200 вольт I = 10,5 Р.

Тепловая защита

Тепловое реле – это биметаллическая пластина, нагреваемая током обмоток мотора. Деформируясь, она активизирует контакты, отключающие мотор. Тепловые реле могут встраиваться в магнитные пускатели. Следует принимать в расчет максимальное напряжение в сети, при котором допускается применение теплового реле, и ток, при котором реле работает долгое время и не активизируется.

Тепловое реле не может реагировать на токи короткого замыкания. Не действуют на него и недолгие перегрузки, которые недопустимы. Поэтому рекомендуется совмещать использование теплового реле с плавкими вставками.

Специальный датчик тепла защищает электромотор от перегрева еще успешнее. Он устанавливается на самом электромоторе. Некоторые двигатели имеют встроенный биметаллический датчик, представляющий собой контакт, который подключен к защите.

Понижение напряжения и исчезновение фазы

Если асинхронный электромотор работает с полной нагрузкой, а напряжение при этом понижено, то он начинает быстро нагреваться. Если в него встроен температурный сенсор, включится тепловая защита.

Если же температурного сенсора не имеется, надо обеспечить защиту электродвигателя от падения напряжения. В таком случае используются реле. Когда уменьшается напряжение, они срабатывают и подают сигнал на отключение электродвигателя. Исходное состояние защиты может восстанавливаться вручную или автоматически; при этом происходит задержка во времени для каждого электромотора при их группе. В противном случае при одновременном групповом запуске после восстановления напряжение в сети может снова понизиться, и произойдет новое отключение.

Правила устройства и эксплуатации электроустановок требуют защиты от исчезновения фазы тока только в случаях экономически нецелесообразных последствий. Экономически выгоднее не изготавливать и устанавливать такую защитную систему, а устранить причины, приводящие к режиму работы только на двух фазах.

Новейшими устройствами для защиты электромоторов можно назвать автоматические выключатели, способные к воздушному гашению дуги. В некоторых конструкциях совмещаются возможности рубильника, контактора, максимального реле и термореле. В подобных моделях мощная взведенная пружина размыкает контакты. Ее освобождение зависит от того, каков исполнительный элемент – электромагнитный или тепловой.

Таким образом, защита асинхронного двигателя, способы и схемы которой изложены выше, должна реализовываться пользователем в обязательном порядке.

www.szemo.ru

11. Защита электродвигателей

Защита
электродвигателей.

Виды
повреждений и ненормальных режимов
работы ЭД.

Повреждения
электродвигателей.

В обмотках электродвигателей могут
возникать замыкания на землю одной фазы
статора, замыкания между витками и
многофазные КЗ. Замыкания на землю и
многофазные КЗ могут также возникать
на выводах электродвигателей, в кабелях,
муфтах и воронках. Короткие замыкания
в электродвигателях сопровождаются
прохождением больших токов, разрушающих
изоляцию и медь обмоток, сталь ротора
и статора. Для защиты электродвигателей
от многофазных КЗ служит токовая отсечка
или продольная дифференциальная защита,
действующие на отключение.

Однофазные
замыкания на землю в обмотках статора
электродвигателей напряжением 3—10 кВ
менее опасны по сравнению с КЗ, так как
сопровождаются прохождением токов 5—20
А, определяемых емкостным током сети.
Учитывая сравнительно небольшую
стоимость электродвигателей мощностью
менее 2000 кВт, защита от замыканий на
землю устанавливается на них при токе
замыкания на землю более 10 А, а на
электродвигателях мощностью более 2000
кВт — при токе замыкания на землю более
5 А защита действует на отключение.

Защита
от витковых замыканий на электродвигателях
не устанавливается. Ликвидация повреждений
этого вида осуществляется другими
защитами электродвигателей, поскольку
витковые замыкания в большинстве случаев
сопровождаются замыканием на землю или
переходят в многофазное КЗ.

Электродвигатели
напряжением до 600 В защищаются от КЗ
всех видов (в том числе и от однофазных)
с помощью плавких предохранителей или
быстродействующих электромагнитных
расцепителей автоматических выключателей.

Ненормальные
режимы работы.

Основным видом ненормального режима
работы для электродвигателей является
перегрузка их токами больше номинального.
Допустимое время перегрузки
электродвигателей, с,
определяется по следующему выражению:

Рис.
6.1. Зависимость тока электродвигателя
от частоты вращения ротора.

где
k

кратность тока электродвигателя по
отношению к номинальному; А

коэффициент, зависящий от типа и
исполнения электродвигателя: А
== 250
— для закрытых электродвигателей,
имеющих большую массу и размеры, А
=

150
— для открытых электродвигателей.

Перегрузка
электродвигателей может возникнуть
вследствие перегрузки механизма
(например, завала углем мельницы или
дробилки, забивания пылью вентилятора
или кусками шлака насоса золоудаления
и т. п.) и его неисправности (например,
повреждения подшипников и т. п.). Токи,
значительно превышающие номинальные,
проходят при пуске и самозапуске
электродвигателей. Это происходит
вследствие уменьшения сопротивления
электродвигателя при уменьшении его
частоты вращения. Зависимость тока
электродвигателя I
от частоты вращения п
при постоянном напряжении на его выводах
приведена на рис. 6.1. Ток имеет наибольшее
значение, когда ротор электродвигателя
остановлен; этот ток, называемый пусковым,
в несколько раз превышает номинальное
значение тока электродвигателя. Защита
от перегрузки может действовать на
сигнал, разгрузку механизма или отключение
электродвигателя. После отключения КЗ
напряжение на выводах электродвигателя
восстанавливается и частота его вращения
начинает увеличиваться. При этом по
обмоткам электродвигателя проходят
большие токи, значения которых определяются
частотой вращения электродвигателя и
напряжением на его выводах. Снижение
частоты вращения всего на 10—25 % приводит
к уменьшению сопротивления электродвигателя
до минимального значения, соответствующего
пусковому току. Восстановление нормальной
работы электродвигателя после отключения
КЗ называется самозапуском, а токи,
проходящие при этом, — токами самозапуска.

На
всех асинхронных электродвигателях
самозапуск может быть осуществлен без
опасности их повреждения, и поэтому их
защита должна быть отстроена от режима
самозапуска. От возможности и длительности
самозапуска асинхронных электродвигателей
основных механизмов собственных нужд
зависит бесперебойная работа тепловых
электростанций. Если из-за большого
снижения напряжения нельзя обеспечить
самозапуск всех работающих электродвигателей,
часть из них приходится отключать. Для
этого используется специальная защита
минимального напряжения, отключающая
неответственные электродвигатели при
снижении напряжения на их выводах до
60—70 % номинального. В случае обрыва
одной из фаз обмотки статора электродвигатель
продолжает работать. Частота вращения
ротора при этом несколько уменьшается,
а обмотки двух неповрежденных фаз
перегружаются током в 1,5—2 раза большим
номинального. Защита электродвигателя
от работы на двух фазах применяется
лишь на электродвигателях, защищенных
предохранителями, если двухфазный режим
работы может повлечь за собой повреждение
электродвигателя.

На
мощных тепловых электростанциях в
качестве привода для дымососов, дутьевых
вентиляторов и циркуляционных насосов
получили широкое распространение
двухскоростные асинхронные электродвигатели
напряжением 6 кВ. Эти электродвигатели
выполняются с двумя независимыми
статорными обмотками, каждая из которых
подключается через отдельный выключатель,
причем обе статорные обмотки одновременно
не могут быть включены, для чего в схемах
управления предусмотрена специальная
блокировка. Применение таких
электродвигателей позволяет экономить
электроэнергию путем изменения их
частоты вращения в зависимости от
нагрузки агрегата. На таких электродвигателях
устанавливается по два комплекта
релейной защиты.

В
эксплуатации применяются также схемы
электропривода, предусматривающие
вращение механизма (например, шаровой
мельницы) двумя спаренными электродвигателями,
которые присоединяются к одному
выключателю. При этом все защиты являются
общими для обоих электродвигателей, за
исключением токовой защиты нулевой
последовательности, которая
предусматривается для каждого
электродвигателя и выполняется с помощью
токовых реле, подключенных к ТТ нулевой
последовательности, установленным на
каждом кабеле.

Защита
асинхронных ЭД от междуфазных к.з.,
перегрузок и замыканий на землю.

Для
защиты от многофазных КЗ электродвигателей
мощностью до 5000 кВт обычно используется
максимальная токовая отсечка. Наиболее
просто токовую отсечку можно выполнить
с реле прямого действия, встроенными в
привод выключателя. С реле косвенною
действия применяется одна из двух схем
соединения ТТ и реле, приведенных на
рис. 6.2 и 6.3. Отсечка выполняется с
независимыми токовыми реле. Использование
токовых реле с зависимой характеристикой
(рис. 6 3) позволяет обеспечить с помощью
одних и тех же реле защиту от КЗ и
перегрузки. Ток срабатывания отсечки
выбирается -по следующему выражению:

где
kсх
— коэффициент схемы, равный 1 для схемы
на рис. 6.3 и v3 для схемы на рис. 6.2; Iпуск
—пусковой ток электродвигателя.

Если
ток срабатывания реле отстроен от
пускового тока, отсечка, как правило,
надежно отстроена и от.
тока, который электродвигатель посылает
в сечь при внешнем КЗ.

Зная
номинальный ток электродвигателя Iном
и кратность пускового тока kп,
указываемую в каталогах, можно подсчитать
пусковой ток по следующему выражению:

Рис.
6.2 Схема защиты электродвигателя токовой
отсечкой с одним токовым реле мгновенного
действия: а
— цепи тока, б
— цепи оперативного постоянного тока

Как
видно по осциллограмме, приведенной на
рис. 6.4, на которой показан пусковой ток
электродвигателя питательного насоса,
в первый момент пуска появляется
кратковременный пик намагничивающего
тока, превышающий пусковой ток
электродвигателя. Для отстройки от
этого пика ток срабатывания отсечки
выбирается с учетом коэффициента
надежности: kн=1,8
для реле типа РТ-40, действующих через
промежуточное реле; kн
= 2 для реле типов ИТ-82, ИТ-84 (РТ-82, РТ-84), а
также для реле прямого действия.

Рис.
6.3. Схема защиты электродвигателя от
коротких замыканий и перегрузки с двумя
реле типа РТ-84:
а
цепи тока, б
— цепи оперативного постоянного тока.

Т

Рис.
6 4. Осциллограмма пускового тока
электродвигателя.

токовую
отсечку электродвигателей мощностью
до 2000 кВт следует выполнять, как правило,
по наиболее простой и дешевой однорелейной
схеме (см. рис. 6.2). Однако недостатком
этой схемы является более низкая
чувствительность по сравнению с отсечкой,
выполненной по схеме на рис. 6.3, к
двухфазным КЗ между одной из фаз, на
которых установлен ТТ, и фазой без ТТ.
Это имеет место, так как ток срабатывания
отсечки, выполненной по однорелейной
схеме, согласно (6.1) в vЗ раз больше, чем
в двухрелейной схеме. Поэтому на
электродвигателях мощностью 2000—5000 кВт
токовая отсечка для повышения
чувствительности выполняется двухрелейной.
Двухрелейную схему отсечки следует
также применять на электродвигателях
мощностью до 2000 кВт, если коэффициент
чувствительности однорелейной схемы
при двухфазном КЗ на выводах электродвигателя
меньше двух.

На
электродвигателях мощностью 5000 кВт и
более устанавливается продольная
дифференциальная защита, обеспечивающая
более высокую чувствительность к КЗ на
выводах и в обмотках электродвигателей.
Эта защита выполняется в двухфазном
или в трехфазном исполнении с реле типа
РНТ-565 (аналогично защите генераторов).
Ток срабатывания рекомендуется принимать
2Iном.

Поскольку
защита в двухфазном исполнении не
реагирует на двойные замыкания на землю,
одно из которых возникает в обмотке
электродвигателя на фазе В,
в которой отсутствует ТТ, дополнительно
устанавливается специальная защита от
двойных замыканий без выдержки времени.

ЗАЩИТА
ОТ ПЕРЕГРУЗКИ

Защита
от перегрузки устанавливается только
на электродвигателях, подверженных
технологическим перегрузкам (мельничных
вентиляторов, дымососов, мельниц,
дробилок, багерных насосов и т. п.), как
правило, с действием на сигнал или
разгрузку механизма. Так, например, на
электродвигателях шахтных мельниц
защита может действовать на отключение
электродвигателя механизма, подающего
уголь, благодаря чему предотвращается
завал мельницы углем.

Защита
от перегрузки должна отключать
электродвигатель, на котором она
установлена, только в том случае, если
без остановки электродвигателя нельзя
устранить причину, вызвавшую перегрузку.
Использование защиты от перегрузки с
действием на отключение целесообразно
также в установках без обслуживающего
персонала.

Ток
срабатывания защиты от перегрузки
принимается равным:

где
kн
= 1,1—1,2.

При
этом реле защиты от перегрузки смогут
сработать от пускового тока, поэтому
выдержка времени защиты принимается
10—20 с по условию отстройки от времени
пуска электродвигателя. Защита от
перегрузки выполняется с помощью
индукционного элемента реле типа ИТ-80
(РТ-80) (см. рис 6.3). Если электродвигатель
при перегрузках должен отключаться, в
схеме защиты используются реле типа
ИТ-82 (РТ-82). На электродвигателях, защита
которых от перегрузки не должна
действовать на отключение, целесообразно
использовать реле с двумя парами
контактов типа ИТ-84 (РТ-84), обеспечивающие
раздельное действие отсечки и индукционного
элемента.

Для
ряда электродвигателей (дымососов,
дутьевых вентиляторов, мельниц), время
разворота которых составляет 30—35 с,
схема защиты от перегрузки с реле РТ-84
дополняется реле времени типа ЭВ-144,
которое приходит в действие после
замыкания контакта токового реле. При
этом выдержка времени защиты может быть
увеличена до 36 с. В последнее время для
защиты от перегрузки электродвигателей
собственных нужд применяется схема
защиты с одним реле тока типа РТ-40 и
одним реле времени типа ЭВ-144, а для
электродвигателей с временем пуска
более 20 с — реле времени типа ВЛ-34 (со
шкалой 1—100 с).

Защита
минимального напряжения.

После
отключения КЗ происходит самозапуск
электродвигателей, подключенных к
секции или системе шин, на которых во
время КЗ имело место снижение напряжения.
Токи самозапуска, в несколько раз
превышающие номинальные, проходят по
питающим линиям (или трансформаторам)
собственных нужд. В результате напряжение
на шинах собственных нужд, а следовательно,
и на электродвигателях понижается
настолько, что вращающий момент на валу
электродвигателя может оказаться
недостаточным для
его
разворота.
Самозапуск электродвигателей может не
произойти, если напряжение на шинах
окажется ниже 55—65 % Iном.
Для того чтобы обеспечить самозапуск
наиболее ответственных электродвигателей,
устанавливается защита минимального
напряжения, отключающая неответственные
электродвигатели, отсутствие которых
в течение некоторого времени не отразится
на производственном процессе. При этом
уменьшается суммарный ток самозапуска
и повышается напряжение на шинах
собственных нужд, благодаря чему
обеспечивается самозапуск ответственных
электродвигателей.

В
некоторых случаях при длительном
отсутствии напряжения защита минимального
напряжения отключает и ответственные
электродвигатели. Это необходимо, в
частности, для пуска схемы АВР
электродвигателей, а также по технологии
производства. Так, например, в случае
остановки всех дымососов необходимо
отключить мельничные и дутьевые
вентиляторы и питатели пыли; в случае
остановки дутьевых вентиляторов —
мельничные вентиляторы и питатели пыли.
Отключение ответственных электродвигателей
защитой минимального напряжения
производится также в тех случаях, когда
их самозапуск недопустим по условиям
техники безопасности или из-за опасности
повреждения приводимых механизмов.

Наиболее
просто защиту минимального напряжения
можно выполнить с одним реле напряжения,
включенным на междуфазное напряжение.
Однако такое выполнение защиты ненадежно,
так как при обрывах в цепях напряжения
возможно ложное отключение электродвигателей.
Поэтому однорелейная схема защиты
применяется только при использовании
реле прямого действия.Для предотвращения
ложного срабатывания защиты при нарушении
цепей напряжения применяются специальные
схемы включения реле напряжения. Одна
из таких схем для четырех электродвигателей,
разработанная в Тяжпромэлектропроекте,
показана на рис. 6.5. Реле минимального
напряжения прямого действия КVТ1—KVT4
включены на междуфазные напряжения ab
и bс.
Для повышения надежности защиты эти
реле питаются отдельно от приборов и
счетчиков, которые подключены к цепям
напряжения через трехфазный автоматический
выключатель SF3
с мгновенным электромагнитным расцепителем
(использованы две фазы автоматического
выключателя).

Фаза
В
цепей напряжения заземлена не глухо, а
через пробивной предохранитель FV,
чю исключает возможность однофазных
КЗ в цепях напряжения и также повышает
надежность защиты. В фазе А
защиты установлен однофазный автоматический
выключатель SFI
с
электромагнитным мгновенным расцепителем,
а в фазе С
автоматический
выключатель с замедленным тепловым
расцепителем. Между фазами А
и С
включен конденсатор С емкостью порядка
30 мкФ, назначение которого указано ниже.

Рис.
6 5. Схема защиты минимального напряжения
с реле прямого действия типа РНВ

При
повреждениях в цепях напряжения
рассматриваемая защита будет вести
себя следующим образом. Замыкание одной
из фаз на землю, как уже отмечалось выше,
не приводит к отключению автоматических
выключателей, так как цепи напряжения
не имеют глухого заземления. При
двухфазном КЗ фаз В
и С
отключится только автоматический
выключатель SF2
фазы С.
Реле напряжения KVT1
и KVT2
остаются при этом подключенными к
нормальному напряжению и поэтому не
запускаются. Реле KVT3
и KVT4,
запустившиеся при КЗ в цепях напряжения,
после отключения автоматического
выключателя SF2
вновь
подтянутся, так как на них будет подано
напряжение от фазы А
через конденсатор С.
При КЗ фаз АВ
или АС
отключится автоматический выключатель
SF1,
установленный в фазе А.
После отключения КЗ реле KVT1
и KVT2
вновь подтянутся под действием напряжения
от фазы С,
поступающего через конденсатор С. Реле
KVT3
и KVT4
не запустятся. Аналогично будут вести
себя реле и при обрыве фаз А
и С.
Таким образом, рассматриваемая схема
защиты не работает ложно при наиболее
вероятных повреждениях цепей напряжения.
Ложная работа защиты возможна только
при маловероятных повреждениях цепей
напряжения — трехфазном КЗ или при
отключении автоматических выключателей
SF1
и SF2.
Сигнализация
неисправности цепей напряжения
осуществляется контактами реле KV1.1,
KV2.1, KV3.1

и контактами автоматических выключателей
SF1.1,
SF2.1, SF3.1.

В
установках с постоянным оперативным
током защита минимального напряжения
выполняется для каждой секции сборных
шин собственных нужд по схеме, приведенной
на рис. 6.6. В цепи реле времени КТ1,
действующего на отключение неответственных
электродвигателей, включены последовательно
контакты трех минимальных реле напряжения
KV1.
Благодаря такому включению реле
предотвращается ложное срабатывание
защиты при перегорании любого
предохранителя в цепях трансформатора
напряжения. Напряжение срабатывания
реле KV1
принимается порядка 70 % Uном.

Рис.
6.6. Схема защиты минимального напряжения
на постоянном оперативном токе:
а
— цепи переменного напряжения; б
— оперативные цепи I
на
отключение неответственных двигателей;
II
— на отключение ответственных двигателей.

Выдержка
времени защиты на отключение неответственных
электродвигателей отстраивается от
отсечек электродвигателей и устанавливается
равной 0,5—1,5 с. Выдержка времени на
отключение ответственных электродвигателей
принимается 10—15 с, для того чтобы защита
не действовала на их отключение при
снижениях напряжения, вызванных КЗ и
самозапуском электродвигателей. Как
показывает опыт эксплуатации, в ряде
случаев самозапуск электродвигателей
продолжается 20—25 с при снижении
напряжения на шинах собственных нужд
до 60—70 %Uном.
При этом, если не принять дополнительных
мер, защита минимального напряжения
(реле KV1),
имеющая уставку срабатывания (0,6—0,7)
Uном,
могла
бы доработать и отключить ответственные
электродвигатели. Для предотвращения
этого в цепи обмотки реле времени КТ2,
действующего на отключение ответственных
электродвигателей, включается контакт
KV2.1
четвертого реле напряжения KV2.
Это минимальное реле напряжения имеет
уставку срабатывания порядка (0,4—0,5)
Uном
и надежно возвращается во время
самозапуска. Реле KV2
будет длительно держать замкнутым свой
контакт только при полном снятии
напряжения с шин собственных нужд. В
тех случаях, когда длительность
самозапуска меньше выдержки времени
реле КТ2,
реле KV2
не устанавливается.

В
последнее время на электростанциях
применяется другая схема защиты,
показанная на рис. 6.7. В этой схеме
используются три пусковых реле: реле
напряжения обратной последовательности
KV1
типа РНФ-1М и реле минимального напряжения
KV2
и KV3
типа
РН-54/160.

Рис.
6.7. Схема защиты минимального напряжения
с реле напряжения прямой последовательности:
а
— цепи напряжения; б
— оперативные цепи

В
нормальном режиме, когда междуфазные
напряжения симметричны, размыкающий
контакт KV1.1
в цепи обмоток реле времени защиты КТ1
и КТ2
замкнут, а замыкающий KV1.2
в цепи сигнализации разомкнут. Размыкающие
контакты реле K.V2.1
и KV3.1
при этом разомкнуты. При снижении
напряжения на всех фазах контакт KV1.1
останется замкнутым и поочередно
подействуют: первая ступень защиты
минимального напряжения, которая
осуществляется с помощью реле KV2
(уставка срабатывания 0,7Uном)
и КТ1;
вторая — с помощью реле KV3
(уставка срабатывания 0,5
U
ном)
и КТ2.
В случае нарушения одной или двух фаз
цепей напряжения срабатывает реле KV1,
замыкающим контактом которого KV1.2
подается сигнал о неисправности цепей
напряжения. При срабатывании каждой
ступени защиты подается плюс на шинки
ШМН1
и ШМН2
соответственно, откуда он поступает на
цепи отключения электродвигателей.
Действие защиты сигнализируется
указательными реле КН1
и КН2,
имеющими обмотки параллельного включения.

studfiles.net

Отправить ответ

avatar
  Подписаться  
Уведомление о