Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Разница между заземлением и занулением

Заземление и зануление служат для предотвращения ударов электрического тока. Но между занулением и заземлением есть существенная разница, которая заключается не только в способе установки.

 Разница зануления и заземления. Суть защитных установок

Заземление и зануление отличаются друг от друга по принципу работы:

  • заземление применяется для сетей с изолированной нейтралью. Необходимо, для того чтобы снизить напряжение
  • зануление применяется там, где установлена глухозаземленная нейтраль. Это нужно для того, чтобы срабатывали автоматические выключатели при попадании тока в нетоковедущую часть устройства. Представляет собой соединенные части из металла, которые не находятся под напряжением

Чтобы лучше разобраться в работе этих защитных систем и понять разницу между ними, нужно поговорить о каждом из них отдельно.

Принцип работы заземления, виды систем заземления

Заземляющее устройство образуется заземлителем с проводником или системой проводников.

Они соединяют между собой токопроводящие участки приборов и землю. Выделяют три вида систем заземления:

  • рабочие – поддерживают установленный режим работы установок в нормальных и аварийных ситуациях
  • защитные – защищают людей и животных от удара током после повреждения фазных проводов
  • грозозащитные – с их помощью заземляют молниеотводы

Заземлители бывают естественные (трубопроводы, обсадные трубы, но ни в коем случае не отопительные и водопроводные трубы) и искусственные (специально сооруженные конструкции, к которым относится уголковая сталь, стальные стержни).

Заземления классифицируются по количеству рабочих и защитных проводников:

  • TN-C – в наше время применяется все реже и встречается только в старых постройках; предназначались для трехфазных четырехпроводных сетей. Данная система не обеспечивает нужной безопасности
  • TN-C-S – к такой системе переходят от TN-C тогда, когда в старой постройке планируется установка новой техники, в частности компьютерной. Уровень необходимой безопасности довольно высок
  • TN-S – нулевой и рабочий проводники прокладывают отдельно, соединив токопроводящие части электрической установки
  • TT – в этой системе с землей связаны открытые токоведущие участки
  • IT – в отличие от TT изолирована от земли, благодаря чему утечка тока снижается максимально

Принцип работы зануления

Если дополнительно установить к занулению УЗО, это приведет к выключению одного из элементов, действующих наиболее быстро, или одновременному срабатыванию двух устройств. Нулевой провод всегда должен находиться в исправности. В случае если этот провод оборвется, в зануленных корпусах возрастет напряжение. Поэтому монтаж выключателей в нулевой провод запрещен.

В чем разница между занулением и заземлением

Основная разница заземления и зануления – то, что в заземлении уровень безопасности обеспечивается снижением напряжения тока, которое происходит очень быстро, а в занулении – от отключения поврежденного участка электрической сети. Поэтому заземление безопаснее и надежнее зануления. Также разница между заземлением и занулением состоит в том, что монтаж зануления – более тонкая и сложная работа, в то время как для установки заземления не требуется иметь особые навыки.

Как произвести монтаж заземления или зануления, можно увидеть на видео. Также в видео более подробно рассказано о разнице между занулением и заземлением.

Чем отличается заземление от зануления: разница

Современная трёхфазная электропроводка выполнена по пятипроводной схеме, а однофазная по трёхпроводной. В этих схемах зануление и заземление выполнены отдельными проводами, следовательно, они выполняют разные функции. Для того чтобы правильно использовать эти проводники необходимо знать, чем отличается заземление от зануления.

Определение из нормативных документов

В “библии” электромонтёров Правилах Устройства Электроустановок п.п.1.7.28-1.7.31 даётся чёткое определение, что считается заземлением, а что занулением электрооборудования.

Однако формулировки, используемые в этом и других документах, являются сложными для людей, не связанных с электричеством. Для лучшего понимания материала статьи можно объяснить, что такое заземление и зануление простыми словами.

Что такое зануление

Все жилые районы и большинство промышленных предприятий подключены к понижающим трансформаторам, вторичные обмотки которых соединены в “звезду” и подключены к контуру заземления без разрывов и переключателей. Такая схема электропитания называется “с глухозаземлённой нейтралью”.

От таких подстанций отходит четыре провода – три фазных от концов обмоток и нейтраль, или нулевой проводник, от средней точки звезды. Занулением является соединение металлических корпусов электроприборов с нейтралью трансформатора или с нулевым проводником в однофазной сети 220В.

Согласно ПУЭ п.1.7.31 защитным занулением это подключение будет в том случае, если оно выполнено для повышения электробезопасности, а не по требованиям технологии или иным причинам.

Информация! Если нулевой проводник, присоединённый к контуру заземления или глухозаземлённой нейтрали, используется только для защиты, то его можно назвать “защитнное заземление”.

Что такое заземление

Заземление – это подключение корпуса оборудования к контуру заземления. Такой контур может находиться возле здания или на трансформаторной подстанции. В последнем случае электропитание осуществляется по пятипроводной схеме, с дополнительным заземляющим проводом РЕ.

Соединение оборудования с заземлителями может осуществляться с двумя целями:

  • Защитное заземление. Производится для предотвращения электротравм. Определение даётся в ПУЭ п.1.7.29.
  • Рабочее (функциональное) заземление. Используется для работы электрооборудования, описывается в ПУЭ п.1.7.30.
Информация! Соединение заземления с нейтралью в трансформаторной подстанции или во вводном щитке даёт возможность также называть его “защитным занулением”.

Для чего применяют заземление и зануление

С точки зрения электротехники эти проводники являются равнозначными и основное отличие заземления от зануления заключается в назначении таких проводов.

Зачем необходимо заземление

Прикосновение к элементам, находящимся под напряжением сети, может быть опасным для здоровья. В исправном оборудовании корпус отделён от токоведущих частей при помощи изоляционных материалов.

При разрушении изоляции на металлических частях корпуса появляется высокое напряжение и если оборудование не подключено к контуру заземления контакт человека с оборудованием приведёт к поражению электрическим током.

Наличие заземления обеспечивает отсутствие разности потенциалов между оборудованием с повреждённой изоляцией и заземлёнными элементами здания. При этом происходит срабатывание дифференциальной защиты и, при коротком замыкании на корпус, отключению автоматического выключателя.

Рабочее и защитное зануление

Соединение оборудования с нейтралью есть двух видов:

  • Защитное
    . Предназначено для отключения питания при нарушении изоляции. При этом возникает короткое замыкание между элементами, подключёнными к фазным проводам, и занулённым корпусом. Это вызывает повышение тока в сети выше уставки соответствующего автоматического выключателя.
  • Рабочее. Используется для получения однофазного напряжения в трёхфазной сети. В данной схеме нейтраль подключается не к корпусу, а к нулевой шине электросхемы или щита.

Схема подключения

Схемы подключения заземления и зануления отличаются в зависимости от назначения.

Защитное заземление должно подключаться к электроприборам без выключателей и разъединителей. Для этого используется отдельный пятый проводник РЕ в подходящем кабеле. Второй конец этого кабеля присоединяется к глухозаземлённой нейтрали понижающего трансформатора в схемах электроснабжения TN-S.

Защитное зануление предполагает присоединение корпусов оборудования к нейтральному проводнику ДО вводного автомата и в таком виде практически не используется.

Для использования защитного зануления точку соединения с нейтралью необходимо дополнительно заземлять. При этом морально устаревшая схема электроснабжения TN-C преобразовывается в более современную схему TN-C-S.

Рабочее зануление выполняется путём установки в электрощите нулевой шины N. К ней присоединяются нулевые провода отдельных линий при монтаже однофазных автоматов и нейтраль однофазных потребителей в трёхфазной сети.

Принцип работы заземления и зануления

Основная задача защитного заземления и защитного зануления одинаковая – предотвратить электротравму человека при повреждении изоляции между элементами, находящимися под напряжением и металлическим корпусом оборудования.

Однако эти приспособления выполняют свои функции по-разному и главное, чем отличается зануление от заземления это способом защиты и используемой защитной аппаратуры.

Принцип работы заземления

Для поражения электрическим током необходима разность потенциалов между корпусом оборудования и поверхностью, на которой стоит человек. Обычно это заземлённый пол или сантехника. При повреждении изоляции заземляющий провод отводит высокое напряжение в землю и шунтирует тело человека.

Согласно нормам ПУЭ п.1.8.39 сопротивление контура заземления должно быть не более 4 Ом, что многократно превышает сопротивление тела человека, даже если контакт был произведён мокрыми руками.

В результате ток, протекающий через организм, становится намного меньше величины, при которой он начинает ощущаться как лёгкое покалывание.

Ток, протекающий через заземляющий провод, называется ток утечки и его появление приводит к срабатыванию дифференциальной защиты, а при его увеличении выше уставки автоматического выключателя происходит аварийное отключение автомата линии.

Принцип работы зануления

Зануление является менее надёжной защитой и предназначено для отключения линии в аварийных ситуациях защитным автоматом. Это защитное устройство сработает только при коротком замыкании между внутренней частью электрооборудования и корпусом.

Фактически, нулевой проводник в сетях с глухозаземлённой нейтралью выполняет две функции – заземления и зануления и является совмещённым проводом PEN, однако его сопротивление не нормируется и разность потенциалов между занулённым корпусом и заземлёнными элементами здания может достигать значительной величины, особенно если линия проложена тонким проводом и имеет значительную протяжённость и сопротивление.

Подходящий к квартире или частному дому однофазный двухжильный кабель кроме двухполюсного автомата проходит через дифреле, которое не отключает питание при нарушении изоляции. Такая защита сработает только при прикосновении к корпусу оборудования с повреждённой изоляцией.

В чем практическая разница между заземлением и занулением

Если заземляющий и нейтральный проводники оба проходят от потребителя к глухозаземлённой нейтрали трансформаторной подстанции, где подключаются к контуру заземления, то возможно не имеет значения, как их использовать?

Несмотря на то, что с точки зрения электротехники эти проводники равнозначные, отличия в монтаже делают недопустимым произвольное подключение земли и ноля в щитке и к электроприборам. Согласно ПУЭ, у каждого из этих проводов свои требования и область применения:

  • Заземление. Используется для того, чтобы обеспечить отсутствие напряжения на корпусе электроприбора. При нарушении изоляции напряжение по заземляющему проводнику отводится в землю, при этом появляется ток утечки. Если его величина превышает 30мА, то срабатывает УЗО или дифавтомат, установленные в электрощитке. Заземляющий провод должен проходить от контура заземления до розетки или корпуса оборудования без автоматов или выключателей без контакта с нейтралью.
  • Зануление. Согласно ПУЭ п.1.7.132 использовать подключение к рабочему нулевому проводнику для защиты от поражения электричеством запрещено, поэтому зануление применяется для разделения трёхфазного электропитания на три однофазных линии. Для подключения к нейтрали корпуса оборудования необходимо выполнить отвод от нулевого провода с дополнительным заземлением места разделения. В этом случае дополнительный провод считается заземляющим.
Заземление и зануление служат для защиты человека от поражения электрическим током. Основное отличие зануления от заземления в том что они по разному осуществляют эту защиту. Заземление обеспечивает безопасность путем снижения напряжения прикосновения до безопасной величины (электрический ток уходит в землю). Зануление – путем отключения поврежденного оборудования от сети.

Что лучше

Главное, чем отличается заземление от зануления, это надёжностью защиты от поражения электрическим током. По нейтральному проводу протекает электрический ток, что может привести к разрушению мест соединений и подгоранию контактов автоматов и рубильников.

Согласно ПУЭ, нулевой проводник должен отключаться одновременно с фазным, но это не гарантирует одновременного включения контактов выключателя. В этом случае на корпусе занулённого электроприбора через электросхему появится фазное напряжение.

В отличие от защитного заземления, установленное в схеме зануления УЗО будет отключать питание только в случае попадания человека под напряжение.

Ток утечки, протекающий через повреждённую изоляцию и зануление, вызовет только срабатывание автоматического выключателя при коротком замыкании. Незначительный ток может привести к полному разрушению электроприбора и его возгоранию.

Опасность зануления в быту

Для защиты от поражения электрическим током применяются два вида защит – заземление и зануление. В чем разница между ними понимают не все электромонтёры, а тем более домашние мастера.

Поэтому при монтаже электропроводки иногда вместо заземляющего провода используется подключение к нейтрали. Выполнить эту работу по всем нормам ПУЭ, описанным в главе 1.7, затруднительно и вместо этого просто производится соединение нейтральной и заземляющей шин в электрощитке после вводного автомата или даже в розетке.

Такое зануление выполняет свои защитные функции до тех пор, пока нейтральный проводник сохраняет свою целостность на всем протяжении. При аварийных ситуациях на заземляющих клеммах и корпусах электроприборов гарантировано появляется напряжение, что может быть опасным для жизни.

Поэтому использование рабочего нулевого проводника в качестве защитного запрещено нормами ПУЭ.

Вывод

Главное, чем отличается заземление от зануления – это надёжность защиты. В случае подключении корпуса к заземлению высокое напряжение отводится в землю и появляющийся при этом ток утечки вызывает срабатывание дифференциальной защиты. При монтаже зануления отключение производится автоматическим выключателем только в случае короткого замыкания. Поэтому при выборе способа защиты зануление следует устанавливать только при невозможности произвести монтаж заземления.

Похожие материалы на сайте:

Понравилась статья – поделись с друзьями!

 

Назначение заземления, отличие заземления от зануления

Покупая любое электрооборудование, будь то стиральная машина или холодильник он не рассчитан на пожизненный срок службы и в процессе работы как любое другое оборудование может сломаться. Чтобы защитить электрооборудование от ненормальных режимах работы (перегрузка или короткое замыкание) применяются различные защитные аппараты (автоматы, пробки и т. д.)

Но бывают ситуации, когда защитные устройства не реагируют на возникшие повреждения. Одним из таких случаев является повреждение внутренней изоляции и возникновении на металлическом корпусе оборудования высокого напряжения.

В этом случае защита необходима самому человеку, который попадет под напряжение прикоснувшись к поврежденному оборудованию. Для защиты от таких повреждений и было придумано заземление, основное назначение которого – снизить величину этого напряжения.

То есть, основное назначение заземления – снизить напряжение прикосновения до безопасной величины.

Предположим, что у вас дома имеется потолочный светильник, корпус которого не подключен к заземлению. В следствии повреждения изоляции металлическая часть светильника оказалась под напряжением. В тот момент когда вы попытаетесь поменять лампочку вас ударит током, так как прикоснувшись к корпусу вы становитесь проводником и электрический ток будет протекать через ваше тело в землю.

Если же светильник будет заземлен, большая часть тока будет стекать в землю по заземляющему проводу и в момент касания, напряжение на корпусе, будет намного меньше, а соответственно и величина тока проходящий через вас будет также меньше.

Заземлением – называется соединение металлических нетоковедущих частей электроустановки с землей (контуром заземления) которые в нормально состоянии не находятся под напряжением, но могут оказаться из-за повреждения изоляции.

Также, заземление необходимо для функциональности таких аппаратов как УЗО. Если корпуса электроустановок не будут соединены с землей, то ток утечки протекать не будет, а значит УЗО, не среагирует на неисправность.

Отличие заземления от зануления

Наряду с заземлением вам наверняка приходилось слышать такой термин как зануление.

Занулением – называется соединение металлических нетоковедущих частей электроустановки с нулем (нулевым проводником сети).

По своему назначению заземление и зануление выполняют одну и туже задачу – защищают человека от поражения электрическим током. Однако обеспечивают они эту защиту немного разными способами. В сетях с занулением происходит отключение от сети электрооборудования, корпус которого из-за пробоя изоляции оказался под напряжением.

Рассмотрим пример, в котором обеспечивается защита электроустановки с помощью зануления.

Как видно из рисунка при пробое фазы на соединенный с нулем корпус возникает замкнутый контур между фазой и нулем, то есть однофазное короткое замыкание. На возникшее короткое замыкание реагируют защитные устройства, такие как автоматы или предохранители, в результате происходит отключение поврежденной электроустановки от источника питания.

Рассмотренные выше примеры дают возможность сделать вывод что:

– заземление осуществляется защиту снижением напряжения прикосновения.
– зануление осуществляется защиту отключением электроустановки от сети.

Наверняка у вас возникал вопрос в каких случаях выполняют защиту заземлением, а в каких занулением. Применение в разных случаях заземления и зануления вызвано разными системами заземления электроустановок. В электроустановках напряжением до 1000 В применяются пять систем заземления: TN-C, TN-S, TN-C-S, TT, IT.

Зануление используют в качестве защиты в таких системах, в которых присутствует PEN, PE или N проводник. Это сети с глухо заземленной нейтралью, TN-C, TN-S и TN-C-S.

Заземление применяют в электроустановках с системами заземления TT и IT.

Рассмотренные выше способы заземления и зануления больше подходят для применения в промышленных электроустановках на производстве. Более детально рассмотреть подключение и монтаж заземления для бытовых электроустановок можно здесь: заземление в квартире и заземление в частном доме.

Понравилась статья – поделись с друзьями!

 

Заземление и зануление электроустановок | Novation.by

Заземление электроустановки – это обеспечение электробезопасности путём целенаправленной электрической связи корпуса устройства с “землёй”. Защита делится на два варианта: заземление и зануление. Их общей целью является нейтрализация вредного для человека при касании воздействия электрического тока, если оборудование на корпусе или же в любой другой доступной точке пробило на опасное напряжение.

Заземление

Суть защитного заземления в обеспечении безопасной эксплуатации электрооборудования путём соединения его защищаемой части с соответствующим устройством – “землёй”. Если на внешнем кожухе установки или любой другой её детали внезапно окажется электрический потенциал, вред для человека будет сведён к минимуму. Главная характеристика заземляющего устройства – его сопротивление, качество защиты улучшается с его понижением. Заземление можно разделить на две основные детали – заземлитель и проводящие соединители, обеспечивающие контакт с заземляемой деталью. Областью использования защитного заземления являются трёхфазные сети, нейтраль в которых изолирована.

Защитное заземление действует на основе серьёзного уменьшения разности потенциалов между деталью, на которую пробило напряжение (корпус и т. д.), и землёй, вплоть до безопасного для человека уровня. Если заземление отсутствует, контакт с опасным местом электроустановки является непосредственным контактом с фазой. У возникающего электрического тока нет иных путей, кроме тела человека. При низком электрическом сопротивлении надетой обуви, самого пола и наличии изолированности проводов от “земли” величина тока окажется недопустимой для пострадавшего. Если организация работы по охране труда была выполнена грамотно и проблемная деталь имеет защитное заземление, то даже в случае больших значений воздействующего напряжения, оно не вызовет серьёзных последствий для организма. Согласно закону Ома, сила тока будет обратно пропорциональна сопротивлению. При наличии двух параллельных цепей – человеческого тела и заземляющего контура, при равном значении исходного напряжения (фаза), сила проходящего тока будет тем выше, чем меньше сопротивление цепи. Сконструированное с учётом обеспечения минимального сопротивления защитное заземление примет на себя основной электрический ток, обезопасив имеющего значительно более высокое сопротивление человека.

Два типа заземления

Заземлители делятся на два типа – естественные и искусственные. Если для заземления используются уже существовавшие при постройке здания металлические конструкции (трубы, арматура и т.п.), заземлитель называют естественным. Когда стальные стержни, уголки или трубы специально забивают или закапывают в землю, конструкция является искусственной. В целях повышения безопасности длина искусственного заземлителя не может быть меньше 2.5 м., а улучшая защиту, металлические фрагменты комбинируют путём сварки стальными накладками или проволокой. Чтобы обеспечить электрический контакт между заземляемым прибором и заземлителем, принято использовать шины, выполненные из меди или стали. Заземляющие проводники крепят к корпусу оборудования при помощи сварки или с использованием надёжного резьбового соединения. Обязательная защита с использованием технологии заземления требуется для трансформаторов, электрических шкафов и щитов, а также большинства промышленных и некоторых бытовых приборов и механизмов.

Хотя защитное заземление в большой степени уменьшает риск для человека, оно не ликвидирует его полностью. Потенциальная проблема в наличии своего собственного сопротивления у заземлителя, соединительных проводов и даже земли. Если изоляция нарушена, замыкающий ток проделает путь от заземляемой детали до земли, и на каждом этапе имеющееся сопротивление создаст дополнительную разность потенциалов. Итоговое суммарное напряжение будет значительно ниже общепринятых в России 220 В, однако всё ещё может составлять небезопасные для человека значения. Чтобы снизить суммарное напряжение надо уменьшить сопротивление заземлителя относительно финальной точки – земли. Общепринятой практикой является увеличение количества искусственных заземлителей.

Зануление

Вторым видом защиты от удара током при пробое на корпус является защитное зануление. Оно заключается в целенаправленном соединении частей электрического прибора, потенциально могущих оказаться под фазой, с заземленным выводом источника переменного или с аналогичной средней точкой в сетях постоянного тока. Тем самым пробой любой фазы на корпус оборудования переводится в короткое замыкание с заземлённым нулём. Протекающий при защитном занулении ток в разы больше, чем в случае заземления. Поэтому основной целью создания защитного зануления является быстрое прекращение работы и полное обесточивание сломанного устройства в принципе.

Нулевой проводник бывает рабочим и защитным. Рабочий проводник предназначен для полноценного питания электроустановки, поэтому не отличается от других носителей по толщине и качеству изоляции, материалу и сечению провода. Защитный проводник имеет целью всего лишь создание в краткий период времени короткого замыкания очень высокого тока, который позволит сработать защите и оперативно обесточить неисправное устройство. В качестве нулевого защитного провода часто выступают используемые при прокладывании проводки стальные трубы или нулевые провода без дополнительных деталей (выключателей и предохранителей). Равно как и заземление, зануление не может полностью защитить человека от воздействия электричества при непосредственном контакте с находящимся под фазой элементом конструкции. Если обеспечение электробезопасности в помещении требует повышенного внимания, строго необходимо комбинировать зануление с другими мерами защиты – выравниванием потенциала и защитным отключением.


Чем отличается заземление от зануления?

Отличие заземления от зануления значительное. Попробуем разобраться в этом вопросе. Зануление согласно ПУЭ – это преднамеренная защита, которая используется исключительно в промышленных целях и не должна практиковаться на бытовом уровне.

Но все же, очень часто, в квартирах делается зануление. По всем прогнозам, такая система далека от совершенства и совсем не безопасна. Почему же тогда прибегают к такой крайней мере? Отчасти из-за недостатка знаний в этой области, или из-за безвыходной ситуации.

Во время ремонта квартиры  многие делают полный или частичный электромонтаж не только с целью удобства расположения розеток и выключателей, но и для замены изношенной электропроводки. Так же, современный человек желает  сделать свое жилье более безопасным, поэтому, пожелания заказчика сводятся к тому, чтобы в доме было заземление.

Что  используется в новостройках: заземление или зануление?

Новостройки по всем правилам обеспечиваются трехпроводным кабелем (фаза, ноль, земля) в однофазной системе и пятипроводным кабелем (три фазы, ноль, земля) в трехфазной системе, т.е. по системе заземления TN-C-S или TN-S. В таких системах занулением и не пахнет.

Система TN-C-SСистема TN-S

Можно ли в старом фонде сделать заземление?

Старый фонд очень редко подвергается реконструкции. Для того чтобы перевести с системы TN-C, т.е. двухпроводная система (фаза и ноль), на такие эффективные системы как TN-C-S и  TN-S, в которых предусмотрен защитный проводник РЕ (земля), своими силами практически не возможно. Модернизацией в основном занимается специализированная электротехническая компания.

Система TN-C

В системе TN-C нет защитного проводника (земли).  Никто не станет тянуть из своей квартиры отдельный заземляющий провод  для того, чтобы сделать заземление, к примеру, в подвале. Хотя, некоторые решаются обеспечить себя заземлением, если квартира расположена на первом этаже. Но большинству населения такой маневр осуществить не представляется возможным.

Прежде чем подключить защитный проводник РЕ (земля) из квартиры, нужно определить, какие есть возможности.Определите наличие  заземления в щитовой, к которой можно подключить третий проводник. В щитовой должна быть либо заземляющая шина РЕ, либо все этажные щитовые должны быть соединены между собой металлической шиной, и в итоге подсоединены к общему контуру заземления дома, т.е. речь идет о повторном заземлении. Это дает возможность подключить к щиту заземляющий проводник из квартиры. Если эти два варианта отсутствуют, значит, в доме нет  заземления и в этом случае делают запрещенное зануление. Как уже было сказано ранее, такой метод в жилом секторе совсем не безопасен.

Как делается зануление?

Зануление не выполняет роль заземления, такая схема расчитана на эффект короткого замыкания. На производстве нагрузки более или менее  распределены равномерно, и ноль выполняет в основном защитные функции. Здесь нулевой проводник цепляют к корпусу электродвигателя. При попадании на корпус электродвигателя напряжения одной из фаз, произойдет короткое замыкание. В свою очередь, сработает на выключение автоматический выключатель или автомат дифференциальной защиты. Следует принять во внимание еще один неоспоримый факт —  все электроустановки на производстве соединены между собой металлической заземляющей шиной и выведены на общий контур заземления всего здания.

Можно ли сделать зануление в квартире?

Можно,но не нужно. Чем это грозит? Предположим ваше оборудование (стиральная машина,бойлер и др.) занулены. Если нулевой провод по каким-либо причинам обгорит или электрик случайно перепутал подключение проводов (вместо нуля подключил фазу), то ваше оборудование просто перегорит из-за большого напряжения.

Если вы запланировали электромонтажные работы в своем жилье, а затем узнаете, что в доме нет  заземления ни в каком виде, все же лучше прокладывать трехжильный кабель. Две жилы (фаза и ноль) подключаем планово, а вот третий проводник защитного заземления оставляем незадействованным до ожидания реконструкции стояков, где будет предусмотрено заземление.

Если вы все же надумали сделать в квартире зануление, нужно помнить, что вы берете на себя огромную ответственность. В любом случае, при наличии заземления или зануления, нельзя пренебрегать установкой защитной аппаратуры, таких как УЗО (Устройство защитного отключения) и ограничитель напряжения.

Оцените качество статьи:

В чем разница между занулением и заземлением?

Автор Alexey На чтение 7 мин. Просмотров 628 Опубликовано Обновлено

Занулением называют преднамеренное электрическое соединение глухозаземлённой нейтральной точки трансформатора или генератора в сетях однофазного, трехфазного, постоянного тока, с открытыми токопроводящими поверхностями электроустановок и оборудования, не находящихся под напряжением в нормальном состоянии.

Зануление выполняют для обеспечения электробезопасности электрооборудования на промышленном производстве.

В быту, согласно новым нормативам ПУЭ, указанным в 1.7.132, данный способ электротехнической защиты запрещён.

Домашняя электросеть является однофазной, поскольку питание бытовых электроприборов осуществляется из обычных розеток, где присутствует фаза и рабочий ноль, который недопустимо совмещать с защитным проводом, делая зануление корпуса.

Применение на производстве

Зануление применяется для гарантированно быстрого времени (не более 0,4с) срабатывания защитных выключателей и предохранителей на производстве, если на корпусе появится опасное для жизни напряжение.

Отличие заземления и зануления

При этом также обеспечивается пожарная безопасность – в случае применения одного только заземления, в виду его большего, чем у нулевого провода сопротивления, ток утечки может быть недостаточным, чтобы быстро сработали предохранители, рассчитанные на большие токи нагрузки.

Схема защитного заземления. 1) Электроустановка ; 2) Проводник; 3) Заземлители.

Но, этих значений тока утечки, и того промежутка времени, необходимого на срабатывание защиты, может быть достаточно, чтобы изоляция проводов внутри оборудования загорелась и вызвала пожар.

Таким образом, с помощью зануления гарантированно достигается кратковременный ток короткого замыкания, который не успевает разогреть электропроводку, но заставляет сработать защитные устройства. Нужно понимать, что в данном случае заземление и зануление используются вместе, так как оборудование заземлено общим контуром заземления предприятия, имеющего множество заземляющих устройств.

Схема защитного зануления. 1) Электроустановка; 2) Токовая защита; Ro — заземленный нулевой провод

Кроме того, подача электроэнергии на производство производится с нескольких вводов, что гарантирует сбалансированность фаз и страхует систему от обрыва ноля.

Самовольное зануление смертельно опасно!

Часто при модернизации старой электропроводки в квартире, с переходом на новую, трёхпроводную систему, с защитным проводом РЕ, некоторые «горе — специалисты» говорят, что заземление это зануление, и советуют занулять шину PE, если в многоквартирном доме эксплуатируется старая система TN-C.

Данный совет является смертельно опасным из-за ряда причин:

  • При обрыве нуля электроприборы, включённые в сеть после разрыва, питающиеся от разных фаз, будут формировать уравновешенное среднее значение напряжения на оставшемся нулевом проводе. Поскольку подключённая нагрузка не может быть случайным образом уравновешенна, то напряжение сформировавшейся нейтрали будет отличаться от ноля, соответственно возникший потенциал, оказавшийся на корпусах электроприборов из-за зануления, может быть очень опасным.

    Принцип работы лампы накаливания при неправильном заземлении

  • В случае проведения ремонтных работ в этажном электрощите вполне может случиться, что вводные провода в квартиру будут поменяны местами. В этом случае все металлические корпуса бытовой техники окажутся под фазным напряжением, и защитный автомат не сработает, потому что электроприборы не будут заземлены, а зануление РЕ провода принесёт смертельный потенциал. Не поможет даже УЗО, потому что оно не контролирует токи в РЕ проводнике.

    Принцип работы электроприбора при неправильном заземлении

  • При нормально выполненном электротехническом проекте в доме, шина РЕ соединяется с системой уравнивания потенциалов (СУП), особенно это касается ванной комнаты, где все металлические поверхности и коммуникации должны быть соединены. При самовольном занулении шины РЕ, и соединении её с СУП, получится повторное заземление нулевого провода на данную систему, что является грубым нарушением, угрожающим безопасности соседей. Если же не соединять подвергшуюся занулению шину РЕ, то СУП не сможет выполнять защитные функции, так как корпуса бойлера, стиральной машины в ванной будут подключены к нулевому проводу, а не к заземлению.
ПУЭ 7.1.13

Прогресс в электротехнике

Ранее зануление активно применялось в быту для электрической безопасности электроплит. Но в таких домах уделялось повышенное внимание нулевому проводу, в каждом этажном щитке имелось повторное заземление, поэтому зануление не являлось опасным из-за обрыва нулевого провода. Электроснабжение в те времена осуществлялось по системе TN-C, где нулевой провод одновременно выполнял функции защитного проводника.

Система заземления TN-C

Регламентировался электромонтаж оборудования и электроустановок нормативами ПУЭ шестого издания, где вообще запрещалось эксплуатировать электрооборудование без зануления.


Но прогресс в электротехнике привел к тому, что старая система была упразднена из-за многих недостатков, часть из которых была описана выше. Система заземления TN-S

На данный момент действуют новые нормативы ПУЭ седьмого издания, где требуется, чтобы электроснабжение домов жилого фонда и организаций осуществлялось по новым системам TN-S, TN-C-S.

Система заземления TN-C-S

Применение зануления в энергоснабжении

Согласно новым нормативам ПУЭ, в системе электроснабжения TN-C-S, заземление заменяет зануление касательно бытовых электроприборов, но не исключает его из защитного процесса в глобальном масштабе, так как зануление шины защитного провода PE происходит на вводно-распределительном устройстве (ВРУ) многоквартирного здания.

В данном случае соединяют совмещённый провод PEN с главной заземляющей шиной (ГЗШ), которая имеет повторное заземление.

Хотя ноль и крепится напрямую к ГЗШ, которая одновременно является PE шиной, имеющей контакт с металлическими корпусами бытовых электроприборов посредством защитного проводника, такое зануление отличается от простого подсоединения нулевого провода PEN к заземляющей клемме электрооборудования в квартире.

Отличие состоит в том, что данном случае на ВРУ происходит повторное заземление нулевого провода, которое теоретически можно рассматривать как зануление заземляющего устройства и соединённой с ним шины РЕ. Но так не принято говорить, данный процесс называют разделением провода PEN на PE (защитный проводник) и N (рабочий ноль) в точке повторного заземления.

Альтернатива занулению

В системе TN-S зануление защитного провода РЕ происходит только в одной точке – на заземляющем контуре трансформаторной подстанции или генератора, там происходит разделение PEN провода, и после него защитный проводник и рабочий ноль нигде не пересекаются.

В описанных выше схемах энергоснабжения заземление и зануление взаимно дополняют друг друга, обеспечивая электробезопасность, но в системах с изолированной нейтралью (IT), также как и в системе TT,зануление не применяется вообще.

Электрооборудование, получающее электроснабжение по регламенту IT или ТТ, имеет заземление при помощи собственных контуров. Поскольку в режиме IT осуществляется электропитание специфического оборудования, то стоит подробней рассмотреть только систему TT, как единственную альтернативу самовольному и неправильному занулению шины PE, ведь переход на новые системы электроснабжения (TN-S, TN-C-S) является большой проблемой для множества домов, старше двадцати лет.

Электросеть, выполненная по схеме TT, сможет надёжно обеспечить электротехническую защиту от поражения, и будет намного безопасней, чем несанкционированное зануление, если она будет соответствовать нормативу ПУЭ 1.7.39.

При модернизации домашней электропроводки, данный способ обеспечения безопасности является надёжнее, чем занулять шину PE, или оставлять её вообще не подключённой, дожидаясь обновления электросети всего многоквартирного дома.

Зануление в частном доме

Не запрещается производить разделение PEN в частном доме, если выполняются нижеприведённые нормативы ПУЭ:


В данном случае для совмещённого нулевого провода выполняют повторное заземление плюс занулениедля шины защитного проводника PE.

Исходя из вышесказанного, можно сделать вывод, что выполненное должным образом зануление является важным звеном для обеспечения электротехнической безопасности, и вместе с заземлением делает возможным осуществление электроснабжения по более дешёвой системе TN-C-S.

Система ТТ

Разница в цене, по сравнению с TN-S, состоит в том, разделение PEN происходит на вводе в дом, и нет необходимости тянуть провод PE к трансформаторной подстанции. Но также нужно запомнить, что игнорирование нормативов и запретов ПУЭ может привести к летальным последствиям, если самовольно производить зануление PE проводника или металлических корпусов оборудования. В

се самостоятельные электромонтажные работы должны быть согласованы в компании энергоснабжения, и ими же должны быть произведены контрольные измерения и проверки правильности выполнения работ.

в чем разница, плюсы и минусы

В предназначении и монтаже этих способов защиты от поражения электрическим током путаются даже профессиональные электрики. Речь идет не о всех, но прецеденты есть. А ведь элементарное понятие терминов иногда спасает десятки жизней. Даже если говорить не о поражении током, а о сдаче в эксплуатацию нового частного дома. Если выполнить защиту неправильно, контролирующая организация не разрешит подачу напряжения на вводной щит. И правильно сделает, никому не хочется брать на себя ответственность за жизни людей. Сегодня разберемся, что означают термины заземление и зануление, в чем разница между ними, и когда возможно использование того или иного способа защиты.

Правильно выполненное заземление – залог долговечности бытовых приборов и безопасности человека.

Содержание статьи

Требования электробезопасности: выдержки из ГОСТ

В соответствии с ГОСТ 12.1.009–76:

  • защитное заземление – это преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут  оказаться под напряжением;
  • зануление – это преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением.

В ГОСТ Р 50571.2– 94 «Электроустановки зданий. Часть 3. Основные характеристики» приводится классификация систем заземления электрических сетей: IT, TT, TN–С, TN–C–S, TN–S.

Однако иногда возможности заземлить устройства, нет. Тогда делается защитное зануление

Согласно ПУЭ заземление выполняется (при наличии контура или возможности его монтажа) в обязательном порядке. Заземленными должны быт все металлические корпуса электроприборов, которые гипотетически могут попасть под напряжение. Если возможность заземления отсутствует, производится защитное зануление с обязательной установкой устройств защитного отключения (УЗО) и автоматических выключателей в вводном электрическом щите.

Конечно, язык, которым написаны ПУЭ и ГОСТ бывает сложен для человека без электротехнического образования, а значит стоит разобрать подробно, что такое заземление и зануление на обычном языке, понятном простому обывателю.

Все металлические шкафы и корпуса приборов должны быть заземлены или занулены

Что такое заземление: как устроено, принцип работы и преимущества такой защиты

Принцип работы заземления в том, чтобы не допустить прохождения электрического тока через тело человека, если в силу каких-либо обстоятельств корпус электроприбора окажется под напряжением. Такое может случиться при повреждении изоляции жил кабеля. Рассмотрим пример. Жила с поврежденной изоляцией соприкасается с металлическим корпусом микроволновой печи. Хозяйка, готовя пищу на кухне, прикасается к электроприбору, который не заземлен. Это приводит к тому, что ток устремляется к земле, используя человеческое тело, как проводник. Итог может быть самым плачевным, вплоть до летального исхода.

Неисправная электропроводка приводит к возникновению напряжения на корпусе бытовых приборов

Теперь разберем для чего нужно заземление, как оно работает. Тот же пример, но уже с использованием защиты. Требования к заземлению применяются самые жесткие. При замерах сопротивление контура должно практически отсутствовать, что позволяет току беспрепятственно уходить в землю по шине. Законы физики не дают напряжению протекать через человеческое тело, которое имеет свое сопротивление. У одних оно больше, у других меньше, но наличие его не оспаривается. Получается, что ток утекает по пути наименьшего сопротивления, через заземлитель. Если при этом в схему включено УЗО, оно определит утечку и отключит подачу электроэнергии на прибор.

Устройство защитного отключения (УЗО) срабатывает при малейшей утечке тока

Что такое зануление электроприборов: возможности применения

Защитное зануление электроприборов используется, если смонтировать заземление невозможно. Такая ситуация может возникнуть в случае, если многоквартирный дом построен в советские времена. Своего контура у таких домов нет, а самостоятельно его устроить не получится.

Защитное зануление – это система, выполняющая отличную от заземления работу. Если второе призвано увести напряжение в землю, исключая возможность поражения электрическим током, то первое выполняется с целью создания (при пробое изоляции и попадания напряжения на корпус) короткого замыкания. В этом случае срабатывает автоматика и электричество отключается.

Источником опасности может стать любой незаземленный электроприбор

Важная информация! В многоквартирных домах современной постройки и частных секторах в наши дни монтаж зануления запрещен. Это продиктовано целями безопасности проживающих. Автоматика может подвести, что приведет к непоправимым последствиям.

Защитное зануление требует правильного монтажа. Не стоит думать, что достаточно бросить перемычку с нулевого контакта внутри розетки на заземляющий. Это категорически запрещено. Рассмотрим ситуацию, когда уже «подгоревший» ноль подвергается нагрузке короткого замыкания, а автомат еще не успевает сработать. Ноль отгорает, исключив замыкание, но прибор остается под напряжением. Человек, надеясь на отсутствие электричества (света ведь нет, ноль отгорел) на ощупь продвигается к выходу и облокачивается на корпус бытового прибора, находящегося под напряжением. Исход ясен, не так ли?

Правильно  выполненное заземление вкупе с защитной автоматикой – залог спокойствия проживающих в доме или квартире

Зануление и  заземление: в чем разница

Разница этих систем в методе осуществления защиты. При устройстве защитного заземления роль отсекателя напряжения при возникновении аварийной ситуации берет на себя УЗО, а в случае монтажа зануления УЗО становится бессильно, сработать может только автомат. Почему так происходит? Устройство защитного отключения реагирует только на токовые утечки, совершенно игнорируя любые перегрузки, включая короткое замыкание. В случае монтажа зануления и включения в схему УЗО без автомата, при коротком замыкании УЗО не срабатывает, а попросту сгорает, не отключив напряжение с линии.

Вот  к чему может  привести неправильный  монтаж защитного зануления

Чем отличается заземление от зануления: обобщение

Заземление отличается от зануления способом защиты и монтажом. Такие системы противоречат друг другу, а значит монтаж схемы с включением обоих вариантов, неприемлем. Зануление устраивается только в многоквартирных домах, не оборудованных собственным контуром. В иных случаях такой монтаж запрещен. О способах его устройства сейчас поговорим подробнее.

Что такое зануление и как его правильно устроить

Схема монтажа выглядит следующим образом. Пришедшая к вводному автомату нейтраль раздваивается, каждая из жил идет на отдельную шину. Одна из шин становится нулевой, а вторая заземляющей. От шины нейтрали жилы идут через автоматику и дальше на все нулевые контакты потребителей квартиры. Заземляющая соединяется с корпусом вводного щита, провод желто-зеленого цвета от нее идет на соответствующие контакты розеток и осветительные приборы, которые этого требуют. Соприкосновение заземляющего провода  с нулевым после защитной автоматики запрещено.

Вывод заземления из-под земли. Ниже, на определенном расстоянии находится контур

Важная информация! Неправильный монтаж защитного зануления приводит к отгоранию жил кабелей, пожару. Так же возможно поражение электрическим током вплоть до летального исхода.

Лучший вариант защиты это заземляющее устройство?

Единственно правильный ответ на этот вопрос – да. Это действительно так. Контур заземления, смонтированный по всем правилам, защитит человека намного лучше предыдущего варианта. Улучшить защиту можно при помощи дополнительных устройств – автоматических выключателей, УЗО или дифавтоматов. Ведь что такое защитное заземление? По своей сути это система отвода электрического тока в случае аварии туда, где он не может навредить человеку.

Так должен выглядеть готовый контур заземления частного дома

Касаемо заземляющего устройства можно сказать, что оно может быть различным – контур заземления по периметру здания, «треугольник» во дворе или естественный заземлитель. Все правила и способы его монтажа мы обязательно рассмотрим в одной из ближайших тем. Но для общей информации имеет смысл понять определение, что является естественным заземлителем.

Полезно знать! В качестве естественного заземлителя можно использовать любые металлические конструкции, находящиеся под землей, за исключением трубопроводов ГСМ, канализации и предметов, покрытых антикоррозийными составами. Водопроводные трубы для этой цели могут использоваться.

В таких домах заземление не предусмотрено – придется довольствоваться занулением

Преимущества и недостатки квартирного зануления

О недостатках такой защиты говорилось сегодня много. Попробуем обобщить информацию. При таком способе нельзя быть уверенным на 100% в своей защите. Особенно, если монтаж выполнен неправильно. Еще одним минусом является то, что при слабом контакте или поврежденном кабеле, автомат просто не успеет сработать. В результате провод отгорит, что потребует ремонта.

Положительным в такой защите является возможность ее монтажа в многоквартирном доме старой постройки, где контур заземления отсутствует. Хоть и плохая, но все же защита. Сразу вспоминается поговорка, «с паршивой овцы хоть шерсти клок» или «на безрыбье и рак – рыба». Предлагаем  посмотреть несколько фото примеров щитов с выполненным в них занулением.

Заключение

Несмотря на то, что монтаж защитного зануления в жилых помещениях не рекомендуется, бывают ситуации, когда без него не обойтись. Тогда уже не до выбора, и человек применяет те средства защиты, которые ему доступны. Главное – это развести схему электропроводки квартиры и сделать правильно все расключения в вводном распределительном щите. Помните, что от этого зависит сохранность имущества, здоровье, а иногда и жизнь. Ведь напряжение в домашней сети опасно – оно может нанести серьезный ущерб организму.

Очень надеемся, что изложенная сегодня информация была полезна читателям. Если возникли вопросы, мы всегда рады на них ответить. Задать их можно в обсуждении ниже. Там же можно и поделиться своим опытом или оставить комментарий к статье.

А напоследок интересный и познавательный ролик по теме нашего сегодняшнего разговора:

 

Предыдущая

ИнженерияЛичный кабинет на портале MOS.RU: лайфхаки для пользователей

Следующая

ИнженерияПЛЭН отопление: специфика новой технологии инфракрасного обогрева

Понравилась статья? Сохраните, чтобы не потерять!

ТОЖЕ ИНТЕРЕСНО:

ВОЗМОЖНО ВАМ ТАКЖЕ БУДЕТ ИНТЕРЕСНО:

Веб-сайт класса физики

Заземление положительно заряженного электроскопа

Электроскоп – это устройство для определения заряда, которое показывает наличие заряда на самом устройстве или на других объектах в непосредственной близости. Наличие заряда на электроскопе обозначается отклонением его иглы от ее обычного вертикального положения. Игла, имея возможность свободно вращаться вокруг своей оси, будет отклоняться всякий раз, когда заряд в игле будет таким же, как заряд в вертикальной опоре, на которой она балансирует.Поскольку пластина, опора и игла электроскопа соединены и сделаны из проводящего материала, любой заряд электроскопа будет распределяться по всему проводнику. Таким образом, если электроскоп приобретает общий положительный заряд, этот положительный заряд будет распространяться по всему электроскопу – пластине, опоре и игле. Поскольку одинаковые заряды отталкиваются, положительно заряженная опора и положительно заряженная игла отталкиваются друг от друга, вызывая отклонение иглы.

При прикосновении к положительно заряженному электроскопу его заряд заземляется (или нейтрализуется).Это показано на анимации ниже. Процесс заземления включает в себя передачу электронов между заряженным электроскопом и проводящим объектом, к которому он прикасается. При прикосновении к положительно заряженному электроскопу электроны попадают в электроскоп с земли. Имея положительный заряд, электроскоп притягивает часть электронов проводящего материала (в данном случае человека). Отрицательно заряженные электроны попадают в электроскоп и нейтрализуют положительный заряд. Когда электроскоп теряет заряд, игла возвращается в свое естественное вертикальное положение.


Дополнительная информация о физических описаниях электростатических явлений доступна в Учебном пособии по физике. Подробная информация доступна по следующим темам:

Нейтраль и заряженные объекты

Взаимодействие зарядов

Заземление – снятие заряда

Как нейтрализовать заряд объекта, который нельзя заземлить

В предыдущем посте мы узнали, что в зоне, защищенной от электростатического разряда (EPA), все поверхности, предметы, люди и устройства, чувствительные к электростатическому разряду (ESD), имеют одинаковый электрический потенциал.Мы достигаем этого, используя только «заземляемые» материалы или. Но что делать, если вам абсолютно необходим предмет в вашем EPA, и он не может быть заземлен? Не переживайте, не вся надежда потеряна! Есть несколько вариантов, которые позволят вам использовать рассматриваемый предмет. Поясним…

Проводники и изоляторы

В ESD Control мы различаем проводников и изоляторов . Материалы, которые легко переносят электроны, называются проводниками и . Некоторыми примерами проводников являются металлы, углерод и слой пота человеческого тела.

Заряженный проводник может переносить электроны, что позволяет ему быть заземленным

Материалы, которые не переносят электроны легко, называются изоляторами и по определению являются непроводящими. Некоторые известные изоляторы – это обычные пластмассы и стекло.

Изоляторы удерживают заряд, их нельзя заземлить и «отводить» заряд.

Как проводники, так и изоляторы могут заряжаться статическим электричеством и разряжаться.Электростатические заряды можно эффективно снять с проводников, заземлив их. Однако заземленный элемент должен быть токопроводящим или рассеивающим. С другой стороны, изолятор будет удерживать заряд и не может быть заземлен и «отводит» заряд.

Проводники и изоляторы в EPA

Первые два фундаментальных принципа ESD Control:

  1. Заземлите все проводники, включая людей.
  2. Снимите все изоляторы.

Чтобы достичь №1, все поверхности, продукты и люди связаны с землей.Связывание означает соединение, обычно через сопротивление от 1 до 10 МОм. Ремешки для запястий и коврики для рабочей поверхности – одни из наиболее распространенных устройств, используемых для снятия статических зарядов. Браслеты отводят заряд от операторов, а правильно заземленный коврик обеспечит заземление для незащищенных устройств, чувствительных к электростатическому разряду. Подвижные предметы (например, контейнеры и инструменты) скрепляются путем нахождения на скрепленной поверхности или удерживания связанным человеком.

Однако что, если рассматриваемый статический заряд находится на чем-то, что не может быть заземлено, т.е.е. изолятор? Тогда вступит в силу № 2 наших принципов управления электростатическим разрядом. В соответствии со стандартом ESD «» все второстепенные изоляторы и предметы (пластмассы и бумага), такие как кофейные чашки, пищевые обертки и личные вещи, должны быть удалены с рабочей станции или любых других предметов. операция, при которой обрабатываются незащищенные ESDS. Угроза электростатического разряда, связанная с основными изоляторами технологического процесса или источниками электростатического поля , должна быть оценена, чтобы убедиться, что:

  • электростатическое поле в месте работы с ESDS не должно превышать 5 000 В / м;

или

  • Если электростатический потенциал, измеренный на поверхности технологического изолятора, превышает 2 000 В, объект должен находиться на расстоянии не менее 30 см от ESDS; и
  • Если электростатический потенциал, измеренный на поверхности технологического изолятора, превышает 125 В, объект должен находиться на расстоянии не менее 2,5 см от ESDS.”

[IEC 61340-5-1: 2016 пункт 5.3.4.2 Изоляторы]

Всегда держите изоляторы на расстоянии не менее 31 см от предметов ESDS

Изоляторы, необходимые для процесса

Ну, все мы знаем, что в жизни нет ничего черного и белого. Было бы легко просто следовать приведенным выше «правилам» и Боб – ваш дядя, но, к сожалению, это не всегда возможно. Бывают ситуации, когда упомянутый изолятор является предметом, используемым на рабочем месте, например ручным инструментом.Они необходимы – вы не можете просто выбросить их из EPA. Если вы это сделаете, работа не будет выполнена.

Итак, возникает вопрос – как «удалить» эти жизненно важные изоляторы, фактически не «удаляя» их из своего EPA? Сначала вы должны попробовать 2 варианта:

.

1. Замените обычные изоляционные предметы на антистатическую версию. Имеется множество инструментов и принадлежностей, защищенных от электростатических разрядов – от обработки документов до чашек и диспенсеров, щеток и мусорных баков. Они являются проводящими или рассеивающими и заменяют стандартные изолирующие разновидности, которые обычно используются на рабочем месте.Дополнительные сведения об использовании инструментов и аксессуаров, защищающих от электростатического разряда, см. В этом посте.

2. Периодически наносите слой Topical Antistat. Reztore® Topical Antistat (или аналогичный раствор) предназначен для использования на поверхностях, не подверженных электростатическому разряду. После нанесения и высыхания поверхности остается антистатическое и защитное покрытие, рассеивающее статическое электричество. Покрытие, рассеивающее статическое электричество, позволяет заряду стекать при заземлении. Антистатические свойства снизят трибоэлектрическое напряжение до менее 200 вольт.Таким образом, он придает поверхностям электрические свойства, не подверженные электростатическому разряду, до тех пор, пока твердое покрытие не изнашивается.

Если эти два варианта не подходят для вашего приложения, изолятор называют «важным для процесса», и поэтому нейтрализация с помощью ионизатора должна стать необходимой частью вашей программы управления электростатическим разрядом.

Нейтрализация

Большинство рабочих станций ESD имеют изоляторы или изолированные проводники, которые нельзя удалить или заменить. Их следует решать с помощью ионизации.Примерами некоторых распространенных основных изоляторов технологического процесса являются подложка для печатных плат, изолирующие испытательные приспособления и пластиковые корпуса изделий.

Корпуса для электронных устройств – изоляторы, необходимые для производства

Примером изолированных проводов могут быть токопроводящие дорожки или компоненты, установленные на печатной плате, которые не контактируют с рабочей поверхностью ESD.

Ионизатор создает большое количество положительно и отрицательно заряженных ионов. Вентиляторы помогают ионам течь по рабочей зоне.Ионизация может нейтрализовать статические заряды на изоляторе за считанные секунды, тем самым уменьшая их способность вызывать повреждение электростатическим разрядом. Заряженные ионы, созданные ионизатором, будут:

  • нейтрализует заряды на технологических изоляторах
  • нейтрализует заряды на второстепенных изоляторах
  • нейтрализует изолированные проводники
  • минимизировать трибоэлектрический заряд

Изоляторы и изолированные проводники часто используются в устройствах, чувствительных к электростатическому разряду (ESDS) – ионизаторы могут помочь

Сводка

Изоляторы по определению не являются проводниками и поэтому не могут быть заземлены.Изоляторы можно контролировать, выполнив следующие действия в EPA:

  • Всегда держите изоляторы на расстоянии не менее 31 см от предметов ESDS или
  • Замените обычные изоляционные элементы на версию с защитой от электростатического разряда или
  • Периодически наносите слой Topical Antistat

Когда ничего из вышеперечисленного невозможно, изолятор называют «важным для процесса», и поэтому нейтрализация с помощью ионизатора должна стать необходимой частью вашей программы управления электростатическим разрядом.

Последствия для здоровья повторного подключения человеческого тела к поверхностным электронам Земли

J Environ Public Health. 2012; 2012: 291541.

, 1, 2 , * , 3 , 4 , 5 и 6

Гаэтан Шевалье

1 Департамент развития и клеточной биологии, Калифорнийский университет в Ирвине, Ирвин, Калифорния 92697, США

2 Earth FX Inc., Палм-Спрингс, Калифорния 92262, США

Стивен Т. Синатра

3 Медицинский факультет Университета CT, c / o Optimum Health Building, 257 East Center Street, Farmington, CT 06040, USA

Джеймс Л. Ошман

4 Nature’s Own Research Association, Dover, NH 03821, USA

Karol Sokal

5 Отделение амбулаторной кардиологии, Военный клинический госпиталь, 85-681 Быдгощ, Польша

Pawel Sokal Department

64 6 отделения нейрохирургии, Военный клинический госпиталь, 85-681 Быдгощ, Польша

1 Кафедра развития и клеточной биологии Калифорнийского университета в Ирвине, Ирвин, Калифорния 92697, США

2 Earth FX Inc., Палм-Спрингс, Калифорния 92262, США

3 Медицинский факультет Университета CT, c / o Optimum Health Building, 257 East Center Street, Farmington, CT 06040, USA

4 Nature’s Own Research Association, Dover, NH 03821, США

5 Отделение амбулаторной кардиологии, Военный клинический госпиталь, 85-681 Быдгощ, Польша

6 Отделение нейрохирургии, Военный клинический госпиталь, 85-681 Быдгощ, Польша

Швалфен Редактор:

Поступило 15.06.2011; Принята в печать 4 октября 2011 г.

Это статья в открытом доступе, распространяемая под лицензией Creative Commons Attribution License, которая разрешает неограниченное использование, распространение и воспроизведение на любом носителе при условии правильного цитирования оригинальной работы.

Эта статья цитируется в других статьях в PMC.

Abstract

Экологическая медицина обычно занимается факторами окружающей среды, негативно влияющими на здоровье человека. Тем не менее, новые научные исследования выявили удивительно положительный и недооцененный экологический фактор, влияющий на здоровье: прямой физический контакт с огромным количеством электронов на поверхности Земли.Современный образ жизни отделяет людей от таких контактов. Исследования показывают, что этот разрыв может быть одним из основных факторов физиологической дисфункции и плохого самочувствия. Было обнаружено, что воссоединение с электронами Земли способствует интригующим физиологическим изменениям и субъективным отчетам о благополучии. Заземление (или заземление) относится к открытию преимуществ – включая лучший сон и уменьшение боли – от ходьбы босиком на улице или сидения, работы или сна в помещении, подключенных к проводящим системам, которые переносят электроны Земли из земли в тело.В этой статье рассматриваются исследования заземления и потенциал заземления как простого и легко доступного глобального метода, имеющего важное клиническое значение.

1. Введение

Экологическая медицина фокусируется на взаимодействии между здоровьем человека и окружающей средой, включая такие факторы, как загрязненный воздух и вода и токсичные химические вещества, а также то, как они вызывают или опосредуют заболевания. Повсюду в окружающей среде присутствует удивительно полезный, но игнорируемый глобальный ресурс для поддержания здоровья, профилактики заболеваний и клинической терапии: поверхность самой Земли.Это установленный, хотя и не получивший широкого признания факт, что поверхность Земли обладает безграничным и постоянно обновляемым запасом свободных или подвижных электронов. Поверхность планеты электропроводна (за исключением ограниченных ультрасухих областей, таких как пустыни), и ее отрицательный потенциал поддерживается (т.е. пополняется запасом электронов) глобальной атмосферной электрической цепью [1, 2].

Растущее количество свидетельств свидетельствует о том, что отрицательный потенциал Земли может создать стабильную внутреннюю биоэлектрическую среду для нормального функционирования всех систем организма.Более того, колебания интенсивности потенциала Земли могут быть важны для установки биологических часов, регулирующих суточные ритмы тела, такие как секреция кортизола [3].

Также хорошо известно, что электроны из молекул антиоксидантов нейтрализуют активные формы кислорода (ROS, или, говоря популярным языком, свободные радикалы), участвующие в иммунных и воспалительных реакциях организма. Интернет-ресурс Национальной медицинской библиотеки PubMed содержит список 7021 исследования и 522 обзорных статей, полученных в результате поиска по запросу «антиоксидант + электрон + свободный радикал» [3].Предполагается, что приток свободных электронов, поглощаемых телом при прямом контакте с Землей, вероятно, нейтрализует АФК и тем самым уменьшает острое и хроническое воспаление [4]. На протяжении всей истории люди в основном ходили босиком или в обуви из шкур животных. Спали на земле или на коже. Благодаря прямому контакту или через смоченную потом шкуру животных, используемую в качестве обуви или ковриков для сна, многочисленные свободные электроны земли могли проникать в тело, которое является электропроводным [5].Благодаря этому механизму каждая часть тела могла уравновеситься с электрическим потенциалом Земли, тем самым стабилизируя электрическую среду всех органов, тканей и клеток.

Современный образ жизни все больше отделяет людей от изначального потока электронов Земли. Например, с 1960-х годов мы все чаще носим изолирующую обувь на резиновой или пластиковой подошве вместо традиционной кожи, сделанной из шкур. Росси посетовал на то, что использование изоляционных материалов в обуви после Второй мировой войны отделило нас от энергетического поля Земли [6].Очевидно, мы больше не спим на земле, как раньше.

В течение последних десятилетий резко возросло количество хронических заболеваний, иммунных расстройств и воспалительных заболеваний, и некоторые исследователи ссылаются на факторы окружающей среды как на их причину [7]. Однако возможность современного отключения от поверхности Земли как причина не рассматривалась. Большая часть исследований, рассмотренных в этой статье, указывает на это.

В конце 19 века движение за возвращение к природе в Германии утверждало, что босиком на улице даже в холодную погоду приносит много пользы для здоровья [8].В 1920-х годах Уайт, врач, исследовал практику сна заземленным после того, как некоторые люди сообщили, что они не могут нормально спать, «если они не находятся на земле или не связаны с землей каким-либо образом», например, с помощью медных проводов. прикреплены к заземленным водопроводным, газовым или радиаторным трубам. Он сообщил об улучшении сна с помощью этих методов [9]. Однако эти идеи никогда не прижились в обществе.

В конце прошлого века эксперименты, инициированные независимо Обером в США [10] и К.Sokal и P. Sokal [11] в Польше выявили явные физиологические преимущества и пользу для здоровья при использовании проводящих подкладок, матов, электродных пластырей типа EKG и TENS, а также пластин, соединенных внутри помещения с Землей снаружи. Обер, бывший руководитель кабельного телевидения, обнаружил сходство между человеческим телом (биоэлектрическим организмом, передающим сигнал) и кабелем, используемым для передачи сигналов кабельного телевидения. Когда кабели «заземлены» на землю, помехи практически исключаются из сигнала.Кроме того, все электрические системы стабилизируются путем заземления их на Землю. К. Сокал и П. Сокал, тем временем, обнаружили, что заземление человеческого тела представляет собой «универсальный регулирующий фактор в природе», который сильно влияет на биоэлектрические, биоэнергетические и биохимические процессы и, по-видимому, оказывает значительное модулирующее влияние на хронические заболевания, с которыми они ежедневно сталкиваются. клиническая практика.

Заземление (также известное как заземление) относится к контакту с электронами на поверхности Земли при ходьбе босиком на улице, сидя, работе или сне в помещении, подключенном к проводящим системам, некоторые из которых запатентованы, которые передают энергию земли в тело.Новые научные исследования подтверждают концепцию, согласно которой электроны Земли вызывают множественные физиологические изменения, имеющие клиническое значение, включая уменьшение боли, улучшение сна, переход от симпатического к парасимпатическому тонусу в вегетативной нервной системе (ВНС) и разжижающий кровь эффект. Исследование, наряду со многими анекдотическими сообщениями, представлено в новой книге под названием Earthing [12].

2. Обзор документов по заземлению

Исследования, обобщенные ниже, включают методы тестирования в помещении в контролируемых условиях, которые имитируют ходьбу босиком на открытом воздухе.

2.1. Сон и хроническая боль

В слепом пилотном исследовании Обер набрал 60 субъектов (22 мужчины и 28 женщин), которые страдали самоописанными нарушениями сна и хронической болью в мышцах и суставах в течение как минимум шести месяцев [10]. Субъекты были случайным образом разделены на месячное исследование, в котором обе группы спали на проводящих матрасах из углеродного волокна, предоставленных Ober. Половина контактных площадок была подключена к специальному заземлению за окном спальни каждого испытуемого, а другая половина была «фиктивно» заземлена – не подключена к Земле.Результаты представлены в.

Таблица 1

Субъективная обратная связь о сне, боли и самочувствии.

Категории Испытуемые * Контрольные испытуемые **
То же Улучшено То же Улучшено
Время засыпать = 85% 20 = 87% 3 = 13%
Качество сна 2 = 7% 25 = 93% 20 = 87% 3 = 13%
Ощущение бодрствования отдохнувшим 0 = 0% 27 = 100% 20 = 87% 3 = 13%
Жесткость и боль в мышцах 5 = 18% 22 = 82% 23 = 100% 0 = 0%
Хроническая боль в спине и / или суставах 7 = 26% 20 = 74% 23 = 100% 0 = 0%
Общее благополучие -быть 6 = 22% 21 = 78% 20 = 8 7% 3 = 13%

Большинство обоснованных испытуемых описали симптоматическое улучшение, в то время как большинство в контрольной группе этого не сделали.Некоторые субъекты сообщили о значительном облегчении астматических и респираторных заболеваний, ревматоидного артрита, ПМС, апноэ во сне и гипертонии во время сна. Эти результаты показали, что эффект заземления выходит за рамки уменьшения боли и улучшения сна.

2.2. Сон, стресс, боль и кортизол

Пилотное исследование оценивало суточные ритмы кортизола, коррелирующие с изменениями сна, боли и стресса (тревожность, депрессия и раздражительность), по данным субъективной отчетности [13].Двенадцать субъектов с жалобами на дисфункцию сна, боль и стресс были заземлены на Землю во время сна в собственных кроватях с использованием проводящего наматрасника в течение 8 недель.

Чтобы получить базовое измерение кортизола, испытуемые жевали дакроновые мази в течение 2 минут, а затем помещали их в промаркированные пробирки, которые хранились в холодильнике. Самостоятельный сбор образцов начинался в 8 часов утра и повторялся каждые 4 часа. После 6 недель заземления субъекты повторили этот 24-часовой тест слюны.Образцы обрабатывали с помощью стандартного радиоиммуноанализа. Сводные результаты показаны на.

Уровни кортизола до и после заземления. У нестрессированных людей нормальный 24-часовой профиль секреции кортизола следует предсказуемой схеме: самый низкий около полуночи и самый высокий около 8 часов утра. Тенденция нормализации паттернов после шести недель сна обоснована.

Субъективные симптомы нарушения сна, боли и стресса сообщались ежедневно в течение 8-недельного периода тестирования. У большинства испытуемых с уровнем ночной секреции от высокого до вне допустимого наблюдалось улучшение после того, как он спал на земле. Это демонстрируется восстановлением нормальных профилей секреции кортизола днем ​​и ночью.

Одиннадцать из 12 участников сообщили, что засыпали быстрее, и все 12 сообщили, что ночью просыпались реже. Заземление тела ночью во время сна также положительно влияет на уровень утренней усталости, дневную энергию и уровень боли в ночное время.

Около 30 процентов взрослого населения Америки в целом жалуются на нарушение сна, в то время как примерно у 10 процентов наблюдаются симптомы функционального нарушения в дневное время, соответствующие диагнозу бессонницы. Бессонница часто коррелирует с большой депрессией, генерализованной тревогой, злоупотреблением психоактивными веществами, деменцией, а также с различными болями и физическими проблемами. Прямые и косвенные издержки хронической бессонницы оцениваются в десятки миллиардов долларов ежегодно только в США [14].Принимая во внимание бремя личного дискомфорта и затрат на лечение, заземление тела во время сна, кажется, может многое предложить.

2.3. Заземление снижает электрические поля, наведенные на тело

Напряжение, наведенное на человеческое тело из-за электрической среды, измерялось с помощью измерительной головки с высоким импедансом. Эпплуайт, инженер-электрик и эксперт по проектированию систем электростатического разряда в электронной промышленности, был одновременно объектом и автором исследования [15].Измерения проводились в незаземленном состоянии, а затем были заземлены с помощью токопроводящей накладки и токопроводящей подушки. Автор измерил индуцированные поля в трех положениях: левая грудь, живот и левое бедро.

Каждый метод (пластырь и пластырь) немедленно снижал общий переменный ток (AC) 60 Гц окружающего напряжения, наведенный на тело, на очень значительный коэффициент, в среднем около 70. показывает этот эффект.

Влияние заземления подушки на режим 60 Гц.

Исследование показало, что когда тело заземлено, его электрический потенциал выравнивается с электрическим потенциалом Земли за счет передачи электронов от Земли к телу.Это, в свою очередь, препятствует тому, чтобы режим 60 Гц создавал электрический потенциал переменного тока на поверхности тела и не создавал возмущений электрических зарядов молекул внутри тела. Исследование подтверждает «зонтичный» эффект заземления тела, объясненный лауреатом Нобелевской премии Ричардом Фейнманом в его лекциях по электромагнетизму [16]. Фейнман сказал, что когда потенциал тела такой же, как электрический потенциал Земли (и, следовательно, заземлен), оно становится продолжением гигантской электрической системы Земли.Таким образом, потенциал Земли становится «рабочим агентом, который нейтрализует, уменьшает или отталкивает электрические поля от тела».

Applewhite смог задокументировать изменения внешнего напряжения, наведенного на тело, отслеживая падение напряжения на резисторе. Этот эффект ясно показал «эффект зонтика», описанный выше. Тело заземленного человека не подвержено возмущениям электронов и электрических систем.

Джеймисон спрашивает, является ли отсутствие надлежащего заземления людей фактором, способствующим потенциальным последствиям электрического загрязнения в офисных помещениях [17].Существует много споров о том, вызывают ли электромагнитные поля в окружающей среде риск для здоровья [18], но нет никаких сомнений в том, что организм реагирует на присутствие электрических полей в окружающей среде. Это исследование демонстрирует, что заземление по существу устраняет внешнее напряжение, наведенное на тело от обычных источников электроэнергии.

2.4. Физиологические и электрофизиологические эффекты

2.4.1. Снижение общего уровня стресса и напряжения и сдвиг в балансе ВНС

Пятьдесят восемь здоровых взрослых субъектов (включая 30 контрольных) участвовали в рандомизированном двойном слепом пилотном исследовании, посвященном влиянию заземления на физиологию человека [19].Заземление осуществлялось с помощью токопроводящей клейкой ленты на подошве каждой ступни. Система биологической обратной связи регистрировала электрофизиологические и физиологические параметры. Подопытные были подвергнуты воздействию 28 минут в незаземленном состоянии, а затем 28 минут с подключенным заземляющим проводом. Контроли откопали в течение 56 минут.

После заземления около половины испытуемых показали резкое, почти мгновенное изменение среднеквадратичных (rms) значений электроэнцефалограмм (ЭЭГ) левого полушария (но не правого полушария) на всех частотах, проанализированных системой биологической обратной связи (бета , альфа, тета и дельта).

Все заземленные испытуемые показали резкое изменение среднеквадратичных значений поверхностных электромиограмм (SEMG) правой и левой верхней трапециевидной мышцы. Заземление снизило пульс объема крови (BVP) у 19 из 22 подопытных (статистически значимо) и у 8 из 30 контрольных (несущественно). Заземление человеческого тела оказало значительное влияние на электрофизиологические свойства мозга и мускулатуры, на BVP, а также на шум и стабильность электрофизиологических записей. Взятые вместе, изменения в ЭЭГ, ЭМГ и BVP предполагают снижение общих уровней стресса и напряженности, а также сдвиг баланса ВНС при заземлении.Результаты расширяют выводы предыдущих исследований.

2.4.2. Подтверждение перехода от симпатической к парасимпатической активации

Многопараметрическое двойное слепое исследование было разработано для воспроизведения и расширения предыдущих электрофизиологических и физиологических параметров, измеренных сразу после заземления, с помощью улучшенной методологии и современного оборудования [20]. Четырнадцать мужчин и 14 женщин с хорошим здоровьем в возрасте от 18 до 80 лет были протестированы, сидя в удобном кресле, в течение двухчасовых сеансов заземления, оставляя время для стабилизации сигналов до, во время и после заземления (40 минут для каждого периода). .Также были записаны фиктивные двухчасовые сеансы заземления с теми же испытуемыми, что и в контрольной группе. Для каждого сеанса статистический анализ проводился на четырех 10-минутных сегментах: до и после заземления (фиктивное заземление для контрольных сеансов) и до и после незаземления (фиктивное незаземление для контрольных сеансов). Были задокументированы следующие результаты:

  1. немедленное уменьшение (в течение нескольких секунд) проводимости кожи (SC) при заземлении и немедленное увеличение при отсутствии заземления. Никаких изменений в контрольных сеансах (фиктивное заземление) не наблюдалось;

  2. Частота дыхания (ЧД) увеличилась во время заземления, и этот эффект продолжался после заземления.Дисперсия RR увеличивалась сразу после заземления, а затем уменьшалась;

  3. Дисперсия оксигенации крови (BO) уменьшилась во время заземления, после чего резко увеличилась после заземления;

  4. Дисперсии частоты пульса (PR) и индекса перфузии (PI) увеличивались к концу периода заземления, и это изменение сохранялось после незаземления.

Немедленное снижение SC указывает на быструю активацию парасимпатической нервной системы и соответствующую дезактивацию симпатической нервной системы.Немедленное увеличение SC при прекращении заземления указывает на обратный эффект. Повышенный RR, стабилизация BO и небольшое увеличение частоты сердечных сокращений предполагают начало метаболической реакции исцеления, требующей увеличения потребления кислорода.

2.4.3. Иммунные клетки и болевые реакции с индукцией мышечной болезненности с отсроченным началом

Уменьшение боли от заземленного сна было документально подтверждено в предыдущих исследованиях [10, 13]. Это пилотное исследование искало маркеры крови, которые могли бы различать заземленных и незаземленных субъектов, которые завершили один сеанс интенсивных эксцентрических упражнений, что привело к отсроченной мышечной болезненности (DOMS) икроножной мышцы [21].Если бы маркеры могли различать эти группы, будущие исследования можно было бы проводить более подробно с большей предметной базой. DOMS является распространенной жалобой в мире фитнеса и спорта после чрезмерной физической активности и включает острое воспаление перенапряженных мышц. Он развивается через 14–48 часов и сохраняется более 96 часов [22]. Нет известных методов лечения, сокращающих период восстановления, но очевидно, что массаж и гидротерапия [23–25] и иглоукалывание [26] могут уменьшить боль.

Восемь здоровых мужчин в возрасте 20–23 лет проделали аналогичную процедуру подъема носков, неся на плечах штангу, равную одной трети веса их тела.Каждый участник тренировался индивидуально в понедельник утром, а затем контролировал оставшуюся часть недели, соблюдая аналогичный график приема пищи, сна и жизни в отеле. Группа была случайным образом разделена на две части и либо заземлена, либо мнимо заземлена с использованием токопроводящего пластыря, помещенного на подошву каждой ступни в часы активности, и токопроводящего листа в ночное время. Полный анализ крови, химический анализ крови, химический анализ ферментов, уровень кортизола в сыворотке и слюне, магнитно-резонансная томография и спектроскопия, а также уровни боли (всего 48 параметров) были взяты в одно и то же время дня перед эксцентрическим упражнением и в 24, 48 и 72 часа спустя.Параметры, постоянно различающиеся на 10 процентов и более, нормализованные по отношению к исходному уровню, были сочтены заслуживающими дальнейшего изучения.

Параметры, которые различались по этим критериям, включали количество лейкоцитов, билирубин, креатинкиназу, соотношение фосфокреатин / неорганический фосфат, глицеринфосфорилхолин, фосфорилхолин, визуальную аналоговую шкалу боли и измерения давления в правой икроножной мышце.

Результаты показали, что заземление тела на Землю изменяет показатели активности иммунной системы и боли.Среди необоснованных мужчин, например, наблюдалось ожидаемое резкое увеличение лейкоцитов на этапе, когда известно, что DOMS достигает своего пика, и большее восприятие боли (см.). Этот эффект демонстрирует типичную воспалительную реакцию. Для сравнения, у заземленных мужчин было только небольшое снижение лейкоцитов, что указывало на скудное воспаление и, впервые наблюдаемое, более короткое время восстановления. Позже Браун прокомментировал, что были «значительные различия» в боли, о которой сообщали эти мужчины [12].

Отсроченное начало болезненности и заземления мышц. В соответствии со всеми измерениями, необоснованные субъекты выражали ощущение большей боли. Обнаружение боли было связано с приглушенным ответом белых кровяных телец, указывающим на то, что заземленное тело испытывает меньше воспалений.

2.4.4. Вариабельность сердечного ритма

Быстрое изменение проводимости кожи, о котором сообщалось в более раннем исследовании, привело к гипотезе о том, что заземление может также улучшить вариабельность сердечного ритма (ВСР), измерение реакции сердца на регуляцию ВНС.Было разработано двойное слепое исследование с 27 участниками [27]. Испытуемые сидели в удобных креслах с откидывающейся спинкой. На подошву каждой ступни и на каждую ладонь помещали четыре адгезивных электродных пластыря типа чрескожной электрической стимуляции нервов (TENS).

Участники служили своим собственным контролем. Данные каждого участника из 2-часового сеанса (40 минут из которых были обоснованными) сравнивались с данными другого 2-часового фиктивного сеанса. Последовательность сеансов заземления по сравнению с сеансами фиктивного заземления назначалась случайным образом.

Во время заземленных сеансов у участников наблюдалось статистически значимое улучшение ВСР, которое выходило далеко за рамки основных результатов релаксации (которые были продемонстрированы на необоснованных сеансах). Поскольку улучшение ВСР является важным положительным индикатором состояния сердечно-сосудистой системы, предлагается использовать простые методы заземления в качестве базовой интегративной стратегии для поддержки сердечно-сосудистой системы, особенно в ситуациях повышенного вегетативного тонуса, когда симпатическая нервная система активнее, чем парасимпатическая. нервная система.

2.4.5. Снижение основных показателей остеопороза, улучшение регуляции уровня глюкозы и иммунного ответа

К. Сокал и П. Сокал, кардиолог и нейрохирург, отец и сын из медицинского персонала военной клиники в Польше, провели серию экспериментов, чтобы определить, действительно ли контакт с Землей через медный проводник может повлиять на физиологические процессы [11]. Их исследования были вызваны вопросом, влияет ли естественный электрический заряд на поверхности Земли на регуляцию физиологических процессов человека.

Двойные слепые эксперименты проводились в группах от 12 до 84 субъектов, которые соблюдали одинаковую физическую активность, диету и потребление жидкости в течение испытательных периодов. Заземление было достигнуто с помощью медной пластины (30 мм × 80 мм), размещенной на нижней части стойки, прикрепленной полосой, чтобы она не оторвалась в течение ночи. Пластина была соединена проводящим проводом с большей пластиной (60 мм × 250 мм), контактировавшей с Землей снаружи.

В одном эксперименте с субъектами, не принимавшими лекарства, заземление в течение одной ночи сна приводило к статистически значимым изменениям концентрации минералов и электролитов в сыворотке крови: железа, ионизированного кальция, неорганического фосфора, натрия, калия и магния.Почечная экскреция кальция и фосфора была значительно снижена. Наблюдаемое снижение содержания кальция и фосфора в крови и моче напрямую связано с остеопорозом. Результаты показывают, что заземление на одну ночь снижает основные показатели остеопороза.

Непрерывное заземление во время отдыха и физической активности в течение 72 часов снижает уровень глюкозы натощак у пациентов с инсулинозависимым сахарным диабетом. Пациенты хорошо контролировались глибенкламидом, противодиабетическим препаратом, в течение примерно 6 месяцев, но на момент исследования у них был неудовлетворительный гликемический контроль, несмотря на рекомендации по питанию и физическим упражнениям и дозу глибенкламида 10 мг / день.

К. Сокал и П. Сокал взяли образцы крови у 6 взрослых мужчин и 6 женщин, не имевших в анамнезе заболеваний щитовидной железы. Одна ночь заземления вызвала значительное снижение уровня свободного трийодтиронина и повышение уровня свободного тироксина и тиреотропного гормона. Значение этих результатов неясно, но предполагает влияние заземления на взаимосвязь печени, гипоталамуса и гипофиза с функцией щитовидной железы. Обер и др. [12] наблюдали, что многие люди, принимающие препараты для лечения щитовидной железы, сообщали о симптомах гипертиреоза, таких как учащенное сердцебиение, после начала приема заземления.Такие симптомы обычно исчезают после того, как лекарство будет снижено под наблюдением врача. Через ряд регуляторов обратной связи гормоны щитовидной железы влияют почти на все физиологические процессы в организме, включая рост и развитие, обмен веществ, температуру тела и частоту сердечных сокращений. Очевидно, что необходимы дальнейшие исследования влияния заземления на функцию щитовидной железы.

В другом эксперименте исследовали влияние заземления на классический иммунный ответ после вакцинации. Заземление ускорило иммунный ответ, о чем свидетельствует увеличение концентрации гамма-глобулина.Этот результат подтверждает связь между заземлением и иммунным ответом, как было предложено в исследовании DOMS [21].

К. Сокал и П. Сокал приходят к выводу, что заземление человеческого тела влияет на физиологические процессы человека, включая повышение активности катаболических процессов, и может быть «основным фактором, регулирующим эндокринную и нервную системы».

2.4.6. Электродинамика измененной крови

Поскольку заземление вызывает изменения многих электрических свойств тела [1, 15, 19, 28], следующим логическим шагом была оценка электрических свойств крови.Подходящим показателем является дзета-потенциал эритроцитов (RBC) и агрегация RBC. Дзета-потенциал – это параметр, тесно связанный с количеством отрицательных зарядов на поверхности эритроцитов. Чем выше число, тем выше способность эритроцитов отталкивать другие эритроциты. Таким образом, чем больше дзета-потенциал, тем меньше свертываемость крови.

В исследовании приняли участие десять относительно здоровых субъектов [29]. Они были удобно усажены в кресло с откидной спинкой и были заземлены в течение двух часов с накладками электродов на их ступни и руки, как и в предыдущих исследованиях.Образцы крови были взяты до и после.

Приземление тела к земле существенно увеличивает дзета-потенциал и снижает агрегацию эритроцитов, тем самым снижая вязкость крови. Субъекты, страдающие от боли, сообщали об уменьшении до такой степени, что это было почти незаметно. Результаты убедительно свидетельствуют о том, что заземление – естественное решение для пациентов с чрезмерной вязкостью крови, вариант, представляющий большой интерес не только для кардиологов, но и для любого врача, обеспокоенного взаимосвязью вязкости крови, свертываемости и воспаления.В 2008 году Адак и его коллеги сообщили о наличии как гиперкоагулируемой крови, так и плохого дзета-потенциала эритроцитов у диабетиков. Зета-потенциал был особенно низким среди диабетиков с сердечно-сосудистыми заболеваниями [30].

3. Обсуждение

До сих пор физиологическое значение и возможные последствия для здоровья стабилизации внутренней биоэлектрической среды организма не были важной темой исследований. Однако некоторые аспекты этого относительно очевидны. В отсутствие контакта с землей внутреннее распределение заряда не будет равномерным, а будет подвержено различным электрическим возмущениям в окружающей среде.Хорошо известно, что многие важные регуляции и физиологические процессы связаны с событиями, происходящими на поверхности клеток и тканей. В отсутствие общей контрольной точки или «земли» электрические градиенты из-за неравномерного распределения заряда могут накапливаться вдоль поверхностей тканей и клеточных мембран.

Мы можем предсказать, что такая разница зарядов будет влиять на биохимические и физиологические процессы. Во-первых, структура и функционирование многих ферментов чувствительны к местным условиям окружающей среды.Каждый фермент имеет оптимальный pH, который способствует максимальной активности. Изменение электрического окружения может изменить pH биологических жидкостей и распределение заряда на молекулах и тем самым повлиять на скорость реакции. Эффект pH возникает из-за наличия критически важных заряженных аминокислот в активном центре фермента, которые участвуют в связывании субстрата и катализе. Кроме того, способность субстрата или фермента отдавать или принимать ионы водорода зависит от pH.

Другой пример – потенциалзависимые ионные каналы, которые играют критическую биофизическую роль в возбудимых клетках, таких как нейроны.Локальные изменения профилей заряда вокруг этих каналов могут привести к электрической нестабильности клеточной мембраны и к несоответствующей спонтанной активности, наблюдаемой во время определенных патологических состояний [31].

Исследование заземления предлагает понимание клинического потенциала контакта босиком с Землей или имитации контакта босиком в помещении через простые проводящие системы, стабильности внутренней биоэлектрической функции и физиологии человека. Первоначальные эксперименты привели к субъективным сообщениям об улучшении сна и уменьшении боли [10].Последующие исследования показали, что улучшение сна коррелирует с нормализацией дневного и ночного профиля кортизола [13]. Результаты значительны в свете обширных исследований, показывающих, что недостаток сна оказывает стрессовое воздействие на организм и приводит ко многим пагубным последствиям для здоровья. Недостаток сна часто является следствием боли. Следовательно, уменьшение боли может быть одной из причин только что описанных преимуществ.

Уменьшение боли во время сна было подтверждено в контролируемом исследовании DOMS.Заземление – первое известное вмешательство, ускоряющее восстановление после DOMS [21]. Болезненные состояния часто являются результатом различных видов острых или хронических воспалительных состояний, частично вызванных АФК, генерируемыми нормальным метаболизмом, а также иммунной системой как частью реакции на травму или травму. Воспаление может вызвать боль и потерю подвижности в суставах. Воспалительный отек может оказывать давление на болевые рецепторы (ноцирецепторы) и нарушать микроциркуляцию, что приводит к ишемической боли.Воспаление может вызвать выброс токсичных молекул, которые также активируют болевые рецепторы. Современные биомедицинские исследования также документально подтвердили тесную связь между хроническим воспалением и практически всеми хроническими заболеваниями, включая болезни старения, и сам процесс старения. Резкий рост воспалительных заболеваний недавно был назван «воспалительным старением» для описания прогрессирующего воспалительного статуса и потери способности справляться со стрессом как основных компонентов процесса старения [32].

Уменьшение воспаления в результате заземления было зарегистрировано с помощью инфракрасной медицинской визуализации [28], а также измерений химического состава крови и количества лейкоцитов [21]. Логическое объяснение противовоспалительных эффектов заключается в том, что заземление тела позволяет отрицательно заряженным антиоксидантным электронам с Земли проникать в организм и нейтрализовать положительно заряженные свободные радикалы в очагах воспаления [28]. Документально подтвержден поток электронов от Земли к телу [15].

Пилотное исследование электродинамики эритроцитов (дзета-потенциал) показало, что заземление значительно снижает вязкость крови, важный, но игнорируемый параметр при сердечно-сосудистых заболеваниях, диабете [29] и кровообращении в целом. Таким образом, разжижение крови может способствовать доставке большего количества кислорода к тканям и дополнительно способствовать уменьшению воспаления.

Снижение стресса было подтверждено различными измерениями, показывающими быстрые сдвиги в ВНС от симпатического к парасимпатическому преобладанию, улучшение вариабельности сердечного ритма и нормализацию мышечного напряжения [19, 20, 27].

Здесь не приводится множество наблюдений Обера и др. За более чем два десятилетия. [12] и K. Sokal и P. Sokal [11], указывающие на то, что регулярное заземление может улучшить кровяное давление, сердечно-сосудистые аритмии и аутоиммунные состояния, такие как волчанка, рассеянный склероз и ревматоидный артрит. Некоторые эффекты заземления на лекарства описаны Ober et al. [12] и на сайте: http://www.earthinginstitute.net/. Например, комбинация заземления и кумадина может оказывать комплексный разжижающий кровь эффект и должна контролироваться врачом.Сообщалось о нескольких случаях повышенного МНО. МНО (международное нормализованное отношение) – широко используемый метод измерения коагуляции. Влияние заземления на функцию щитовидной железы и прием лекарств было описано ранее.

С практической точки зрения врачи могут рекомендовать пациентам «занятия босиком» на открытом воздухе, если позволяют погода и условия. Обер и др. [12] заметили, что ходьба босиком всего 30-40 минут в день может значительно уменьшить боль и стресс, и исследования, обобщенные здесь, объясняют, почему это так.Очевидно, что заземление босиком не требует затрат. Однако использование токопроводящих систем во время сна, работы или отдыха в помещении предлагает более удобный и рутинный подход.

4. Заключение

De Flora et al. написал следующее: «С конца 20-го века хронические дегенеративные заболевания преодолели инфекционные заболевания как основные причины смерти в 21-м веке, поэтому увеличение продолжительности жизни человека будет зависеть от поиска вмешательства, которое подавляет развитие этих заболеваний и замедляет их развитие. их прогресс »[33].

Может ли такое вмешательство быть расположено прямо у нас под ногами? Заземляющие исследования, наблюдения и связанные с ними теории открывают интригующую возможность относительно поверхностных электронов Земли как неиспользованного ресурса здоровья – Земли как «глобального лечебного стола». Новые данные показывают, что контакт с Землей – будь то на улице босиком или в помещении с подключением к заземленным проводящим системам – может быть простой, естественной и в то же время чрезвычайно эффективной экологической стратегией против хронического стресса, дисфункции ВНС, воспаления, боли, плохого сна, нарушения ВСР. , гиперкоагулируемая кровь и многие общие расстройства здоровья, включая сердечно-сосудистые заболевания.Исследования, проведенные на сегодняшний день, подтверждают концепцию, согласно которой заземление человеческого тела может быть важным элементом в уравнении здоровья наряду с солнечным светом, чистым воздухом и водой, питательной пищей и физической активностью.

Раскрытие информации

Г. Шевалье, С. Т. Синатра и Дж. Л. Ошман являются независимыми подрядчиками Earthx L. Inc., компании, спонсирующей исследования в области заземления, и владеют небольшим процентом акций компании.

Ссылки

1. Уильямс Э., Хекман С.Локальный суточный ход электризации облаков и глобальный суточный ход отрицательного заряда на Земле. Журнал геофизических исследований . 1993. 98 (3): 5221–5234. [Google Scholar] 2. Анисимов С., Мареев Е., Бакастов С. О возникновении и эволюции аэроэлектрических структур в поверхностном слое. Журнал геофизических исследований D . 1999. 104 (12): 14359–14367. [Google Scholar] 3. Oschman JL. Перспектива: предположим, что сферическая корова: роль свободных или мобильных электронов в работе с телом, энергетической и двигательной терапии. Журнал работы с телом и двигательной терапии . 2008. 12 (1): 40–57. [PubMed] [Google Scholar] 4. Oschman JL. Перенос заряда в живой матрице. Журнал работы с телом и двигательной терапии . 2009. 13 (3): 215–228. [PubMed] [Google Scholar] 5. Холидей Д., Резник Р., Уокер Дж. Основы физики, четвертое издание . Нью-Йорк, Нью-Йорк, США: John Wiley & Sons; 1993. [Google Scholar] 6. Росси В. Половая жизнь стопы и обуви . Vol. 61. Хартфордшир, Великобритания: Издания Вордсворта; 1989 г.[Google Scholar] 7. Stein R. Разрушает ли современная жизнь нашу иммунную систему? Washington Post; 2008. [Google Scholar] 8. Просто A. Возвращение к природе: истинный естественный метод исцеления и жизни и истинное спасение души . Нью-Йорк, Нью-Йорк, США: Б. Похоть; 1903. [Google Scholar] 9. Уайт Г. Более тонкие силы природы в диагностике и терапии . Лос-Анджелес, Калифорния, США: типография Phillips Printing Company; 1929. [Google Scholar] 11. Сокал К., Сокал П. Заземление человеческого тела влияет на физиологические процессы. Журнал альтернативной и дополнительной медицины . 2011. 17 (4): 301–308. [Бесплатная статья PMC] [PubMed] [Google Scholar] 12. Обер С., Синатра С.Т., Цукер М. Заземление: самое важное открытие в области здравоохранения? Лагуна-Бич, Калифорния, США: Основные публикации в области здравоохранения; 2010. [Google Scholar] 13. Гали М., Теплиц Д. Биологические эффекты заземления человеческого тела во время сна, измеренные по уровням кортизола и субъективным отчетам о сне, боли и стрессе. Журнал альтернативной и дополнительной медицины .2004. 10 (5): 767–776. [PubMed] [Google Scholar] 15. Applewhite R. Эффективность токопроводящей накладки и токопроводящей подушки в снижении наведенного напряжения человеческого тела за счет заземления. Европейская биология и биоэлектромагнетизм . 2005; 1: 23–40. [Google Scholar] 16. Фейнман Р., Лейтон Р., Сэндс М. Лекции Фейнмана по физике . II. Бостон, Массачусетс, США: Аддисон-Уэсли; 1963. [Google Scholar] 17. Джеймисон KS, ApSimon HM, Джеймисон SS, Белл JNB, Йост MG. Влияние электрических полей на заряженные молекулы и частицы в отдельных микросредах. Атмосферная среда . 2007. 41 (25): 5224–5235. [Google Scholar] 18. Genuis SJ. Реализация актуальной идеи: изучение воздействия электромагнитного излучения на здоровье населения. Здравоохранение . 2008. 122 (2): 113–124. [PubMed] [Google Scholar] 19. Chevalier G, Mori K, Oschman JL. Влияние заземления на физиологию человека. Европейская биология и биоэлектромагнетизм . 2006. 2 (1): 600–621. [Google Scholar] 20. Chevalier G. Изменения частоты пульса, частоты дыхания, оксигенации крови, индекса перфузии, проводимости кожи и их изменчивость, вызванные во время и после заземления людей в течение 40 минут. Журнал альтернативной и дополнительной медицины . 2010; 16 (1): 1–7. [PubMed] [Google Scholar] 21. Браун Р., Шевалье Г., Хилл М. Пилотное исследование влияния заземления на болезненность мышц с отсроченным началом. Журнал альтернативной и дополнительной медицины . 2010. 16 (3): 265–273. [Бесплатная статья PMC] [PubMed] [Google Scholar] 22. Бобберт М.Ф., Холландер А.П., Хуйцзин ПА. Факторы отсроченной мышечной болезненности мужчины. Медицина и наука в спорте и физических упражнениях . 1986. 18 (1): 75–81.[PubMed] [Google Scholar] 23. Тартибиан Б., Малеки Б., Аббаси А. Влияние приема жирных кислот Омега-3 на воспринимаемую боль и внешние симптомы отсроченной мышечной болезненности у нетренированных мужчин. Клинический журнал спортивной медицины . 2009. 19 (2): 115–119. [PubMed] [Google Scholar] 24. Вейл Дж, Халсон С., Гилл Н., Доусон Б. Влияние гидротерапии на признаки и симптомы отсроченной мышечной болезненности. Европейский журнал прикладной физиологии . 2008. 102 (4): 447–455. [PubMed] [Google Scholar] 25.Зайнуддин З., Ньютон М., Сакко П., Носака К. Влияние массажа на отсроченную болезненность мышц, отек и восстановление мышечной функции. Журнал спортивной подготовки . 2005. 40 (3): 174–180. [Бесплатная статья PMC] [PubMed] [Google Scholar] 26. Hübscher M, Vogt L, Bernhörster M, Rosenhagen A, Banzer W. Влияние иглоукалывания на симптомы и мышечную функцию при отсроченной мышечной болезненности. Журнал альтернативной и дополнительной медицины . 2008. 14 (8): 1011–1016. [PubMed] [Google Scholar] 27.Chevalier G, Sinatra S. Эмоциональный стресс, вариабельность сердечного ритма, заземление и улучшение вегетативного тонуса: клиническое применение. Интегративная медицина: журнал врача . 2011; 10 (3) [Google Scholar] 28. Oschman JL. Могут ли электроны действовать как антиоксиданты? Обзор и комментарии. Журнал альтернативной и дополнительной медицины . 2007. 13 (9): 955–967. [PubMed] [Google Scholar] 29. Шевалье Г., Синатра СТ, Ошман Дж. Л., Делани Р. М.. Заземление человеческого тела снижает вязкость крови – главный фактор сердечно-сосудистых заболеваний. Журнал альтернативной и дополнительной медицины . Под давлением. [Бесплатная статья PMC] [PubMed] [Google Scholar] 30. Адак С., Чоудхури С., Бхаттачарья М. Динамическое и электрокинетическое поведение мембраны эритроцитов при сахарном диабете и диабетических сердечно-сосудистых заболеваниях. Biochimica et Biophysica Acta . 2008. 1780 (2): 108–115. [PubMed] [Google Scholar] 31. Шахин М, Шателье А, Бабич О, Крупп Дж. Напряжение-управляемые натриевые каналы при неврологических расстройствах. ЦНС и неврологические расстройства – мишени для лекарств .2008. 7 (2): 144–158. [PubMed] [Google Scholar] 32. Франчески С., Бонафе М., Валенсин С. и др. Воспаление-старение: эволюционная перспектива старения иммунитета. Летопись Нью-Йоркской академии наук . 2000; 908: 244–254. [PubMed] [Google Scholar] 33. де Флора С., Квалья А., Бенничелли С., Верчелли М. Эпидемиологическая революция 20-го века. Журнал FASEB . 2005. 19 (8): 892–897. [PubMed] [Google Scholar]

ESD Journal – Заземление человеческого тела

Следующее статья, посвященная теме, которая может быть интересна нашим читатели.Эта технология не проверялась на пригодность технический персонал ESD Journal. В некоторых случаях мы можем иметь либо поддерживающее, либо отрицательное мнение. Однако мы публикуем, Вам решать.

ЗАЗЕМЛЕНИЕ ЧЕЛОВЕЧЕСКИЙ ТЕЛ ДЛЯ НЕЙТРАЛИЗАЦИИ БИОЭЛЕКТРИЧЕСКОГО НАПРЯЖЕНИЯ ОТ СТАТИЧЕСКОГО ЭЛЕКТРИЧЕСТВА И ЭДС.

А.Клинтон Обер
[просмотреть биографию мистера Обера]

Вентура, Калифорния

ВВЕДЕНИЕ

С начала времен, кроме последние несколько поколений люди прожили всю свою жизнь в основном в прямом физическом контакте с землей; поэтому предполагается что люди на протяжении всей эволюции имели естественную основу.

В наше время люди изолировали сами от контакта с землей, надев синтетическую подошву обувь и проживание в домах, которые возвышают тело над землей. Следовательно, люди больше не имеют естественного заземления, и теперь тело заряжается статическим электричеством и излучает электрический ток. поля теперь могут создавать неестественные слабые электрические токи внутри тело.[1]

Эта работа свидетельствует о том, что потеря естественного грунта позволяет постороннему электричеству мешать с нормальной биоэлектрической деятельностью организма и подчеркивают ее, что тем самым мешает естественному здоровью и сну.

Сегодня все физически напряжены, их мышцы напряжены, боли в спине и суставах являются нормой и большинство плохо спите.Все эти состояния связаны с избыточной стимуляцией. нервной системы и / или вмешательство биоэлектрических коммуникации между ячейками.

Например, мышцы реагируют только на к биоэлектрическим коммуникациям от нервов. Когда эти сообщения Мышцы напрягаются и остаются напряженными. Этот приводит к усталости, проблемам со скелетом и болям.

В какой степени ЭМП создают аномальные электрическая активность в / или на теле? В 1995 году Национальный институт наук об окружающей среде [NIEHS] и Департамент США Министерство энергетики [DOE] заявило, что обычное воздействие электрического и магнитного поля [ЭМП] от бытовых электрических проводов теперь создают неестественные слабые электрические токи между клетками человека.Другими словами 24 часа в день, если вы живете и спите в современном доме. [1]

Эти неестественные токи в корпус являются прямым результатом изоляции тела от земли контакт. Вопрос в том, являются ли эти токи вместе со статическими электричество, создаваемое на теле из-за ковров и т. д., мешает нормальные биоэлектрические функции?

Показание есть; согласно Американский институт стресса, более 75% всех посещений начальных школ врачи теперь работают при состояниях здоровья, связанных со стрессом.В описание стресса; состояние постоянной тревоги и нервозности в котором мышцы становятся и остаются напряженными. Стресс теперь подтвержден быть основным виновником сердечно-сосудистых заболеваний, рака, желудочно-кишечного тракта, кожные, неврологические и эмоциональные расстройства, а также множество расстройств связаны с нарушениями иммунной системы, начиная от простуды и герпес, артрит и СПИД.[2]

В конце 1960-х, когда люди обувь на синтетической подошве, впервые диагностированная как стрессовая, ковры и тому подобное только что стали популярными, а электричество а бытовые электроприборы утроились по сравнению с предыдущим поколением.

Сделайте эти неестественные слабые электрические токи в теле тоже мешают спать?

Согласно Национальному Сну Отчет Фонда «Сон-2000» [3], почти две трети американских взрослые [62%] сейчас страдают от проблем со сном.У американцев есть самые удобные кровати и самая защищенная среда для сна в мире. Тем не менее, в традиционных обществах, где большинство людей спят на шкурах животных, травяных ковриках или непосредственно на земле, проблемы со сном не существует. [4] Что касается американцев, то большинство сейчас спят в пределах 12 дюймов электрических проводов, спрятанных в стене во главе их кровать и с электрическими шнурами вокруг кровати или рядом с ней.Все из которых излучать электронные поля всю ночь и создавать слабые электрические токи в теле [1].

Дело в том, что большинство людей, с лучшим медицинским обслуживанием в истории человечества, теперь все больше и больше страдают от плохого сна и проблем со здоровьем, связанных со стрессом, предполагает, что что-то, в значительной степени неизвестное медицинскому сообществу и общественности, является неправильный.Резкое изменение естественного заземления тела чтобы теперь проводить неестественные слабые электрические токи между ячейками наиболее вероятный кандидат. Предоставляются косвенные доказательства тем фактом, что люди в традиционных обществах, поддерживающие контакты с землей не испытывают обычного сна и стресса, связанного с проблемы здоровья в современном мире [4]. И животные, которые живут в прямом контакте с землей.

Более убедительные доказательства сообщили NIEHS и DOE [1], что в какой-то лаборатории изучает биологические эффекты ЭМП:

-Изменения функций клеток и ткань -Ускоренный рост опухоли

-Снижение гормона мелатонина -Изменения биоритмов

-Изменения иммунной системы -Изменения активности мозга и частоты сердечных сокращений человека

Вопрос в том; восстановив естественный заземления к телу и тем самым нейтрализовать эти слабые электрические токи в теле и статическое электричество на теле, делают мышцы расслабиться и вернуться в нормальный сон?

В поисках ответа следующие тест был проведен.

МЕТОД И МАТЕРИАЛЫ

Для эффективного восстановления контакта с землей в течение длительного периода испытуемые спали на рассеивающем угле. матрацные подушки из волокна, помещенные под их подогнанные простыни, соединенные через заземляющий провод [защищен линейным быстродействующим током 1/100 А предохранитель], к заземляющему стержню, вбитому в землю возле их спальни. окно.Заземленные наматрасники созданы таким образом, чтобы имитировать Плоскость земли в грядке.

Нарушения сна наряду с хроническими мышечная и суставная боль, которую испытуемые испытывали в течение как минимум шести месяцев были записаны для установления исходной линии.

Испытание длилось 30 дней.

ВЫБОР УЧАСТНИКОВ

Реклама, распространяемая по десять салонов красоты в округе Вентура, штат Калифорния, обратились к людям, испытывающим проблемы со сном, сопровождающиеся напряжением мышц и / или хроническим суставом боль для участия в исследовании.Из респондентов шестьдесят человек принимала участие.

Возраст испытуемых был от 23 до 74 года

субъектов мужского пола = 22

Женщины-субъекты = 38

Заявленные проблемы со сном = 100%

Заявленная хроническая мышца или сустав боль = 100%

Испытуемые были разделены случайным образом на две группы.Первая группа из тридцати спала на углеродном волокне. наматрасники подключены к специальному заземлению, снаружи окно их спальни. Вторая контрольная группа из тридцати человек спала. на матрасных подушках из углеродного волокна, но не были подключены к земле земля.

Электронное поле создало заряд на их тела были записаны с помощью вольтметра переменного тока, подключенного к земле контакт с землей и телом при помощи ручного зонда или электрода ЭКГ пластырь.

Измеренный заряд созданного электронного поля на телах испытуемых, лежащих в их кроватях, были следующие:

Испытуемые Контроль предметы

Менее 1 В 2 2

1 В или более 28 28

2 В или более * 16 15

3 В или более 8 6

4 В или более 4 3

5 вольт или более 3 2

* У всех испытуемых в среднем было 2+ вольта на их телах, когда они лежали в своих кроватях.

Измеренный заряд созданного электронного поля на телах испытуемых после заземления: в среднем 10 милливольт или менее.

РЕЗУЛЬТАТЫ

испытуемых *

Субъекты управления **

Категории

То же

Улучшено

То же

Улучшено

Пора заснуть

4–15%

23 – 85%

20 – 87%

3–13%

Качество сна

2–7%

25 – 93%

20 – 87%

3–13%

Чувство отдохнувшего бодрствования

0–0%

27–100%

20 – 87%

3–13%

Жесткость и боль в мышцах

5–18%

22 – 82%

23–100%

0–0%

Хроническая спина и / или сустав боль

7 – 26%

20 – 74%

23–100%

0–0%

Общее благополучие

6 – 22%

21 – 78%

20 – 87%

3–13%

* От трех участников.** От семи участников отчеты не поступали.

ОБСУЖДЕНИЕ

Целью данной работы было предоставить доказательства того, что когда человеческое тело заземлено, оно естественно защищен от статического электричества и излучаемых электрических полей. Это подтвердили показания счетчика заземленного предмета. В Ожидалось, что польза от заземления расслабит мышцы и улучшить сон.Это тоже подтвердилось.

Заслуживает упоминания то, что несколько участники исследования заявили, что они также испытали значительное облегчение от астматических и респираторных заболеваний, ревматоидного артрита, ПМС, апноэ во сне и гипертония, во время сна заземлены. Эти неожиданные результаты показывают, что потеря контакта с землей играет гораздо большая роль в общем здоровье, чем предполагалось вначале этого исследования.

ДОПОЛНИТЕЛЬНАЯ ПОДДЕРЖКА ЭТИМ РЕЗУЛЬТАТЫ

  • В мае 1999 г. NIEH-EMF RAPID отчет, упоминается, что сообщалось о биологических эффектах люди, подвергающиеся воздействию ЭМП, таких как изменения уровня мелатонина не могут быть подтверждены исследованиями на животных. Таким образом, собственно последствия для людей неубедительны.[5]

В исследованиях на животных овцы подверглись воздействию к ЭМП от линии электропередач, как сообщалось, не испытывали изменение уровня мелатонина. Овца, которая гуляла и спала прямо на землю были естественным образом заземлены на всем протяжении эксперимент. Тот факт, что уровень мелатонина у овец остается нормальным когда заземлено, подтверждает эти выводы о том, что когда люди заземлены их сон улучшается.

  • Личная записка Роджера Когхилла, MA Biol. MI Biol. MA Environ Mgt. кто является ведущим исследователем ученый и автор, специализирующийся в области биоэлектромагнетизма, наука, изучающая взаимодействие электричества с органическая жизнь.

Да, я готов поверить что заземление поможет рассеять любые посторонние электрические поля, которые в противном случае могли бы повлиять на собственные эндогенные поля.Мы обнаружили, что последние жизненно важны для благополучия, с побочными эффектами, если их потревожить. Это также может быть путь вперед для защиты от высокочастотного излучения.

Бест, Роджер Когхилл 12.05.99

По результатам обследования пациента, кто участвовал в Mr.Обера, я заземлил кровати 35 человек. дополнительные пациенты в течение двухмесячного периода. Измерения электронного поля кровати в этой группе колеблется от 0,3 до 47 вольт до заземления. Разнообразие пользы для здоровья произошли в это время. Многие улучшения, такие как повышенная энергия и спортивные результаты, можно отнести к улучшенному сну, о котором сообщили почти все. Тем не мение, во многих случаях также реагировали метаболические и гормональные нарушения.Хроническая боль в спине прошла в нескольких случаях, жесткие артриты. суставы стали более гибкими, приступы астмы утихли, симптомы ПМС значительно уменьшилось. Эти данные подтверждают, что электронные поля влияют на тело.

ВЫВОДЫ

Важный результат этого исследования в том, что человеческое тело при заземлении естественно защищено от статическое электричество и слабые электрические токи, возникающие в тело излучаемыми электрическими полями.Преимущества заземления тела есть; значительно улучшается сон, расслабляются мышцы, хроническая спина и боли в суставах утихают, и общее состояние здоровья улучшается.

ОСНОВНЫЕ ССЫЛКИ

  1. Национальный институт окружающей среды Науки о здоровье и U.S. Министерство энергетики, вопросы и ответы об ЭДС, электрических и магнитных полях, связанных

с использованием электроэнергии [1995]

2. Американский институт стресса, www.stress.org/problems

3. Национальный фонд сна, www.sleepfoundation.org/pressarchives

4.Сны неизведанного ландшафта [1999] Кэрол М. Уортман, антрополог, Эмори

Университет Атланты, Джорджия

5. Национальный институт окружающей среды Быстрый отчет по медицинским наукам о EMF [май 1999 г.]

Для получения дополнительной информации об этом учеба или для лиц, заинтересованных в проведении дополнительных исследований по вопросам личного заземления и здоровья, пожалуйста, обращайтесь:

Clint Ober @ 805-844-0888 или по электронной почте Clintober @ вундеркинд.нетто

Последствия для здоровья повторного подключения человеческого тела к поверхностным электронам Земли

Экологическая медицина обычно занимается экологическими факторами, оказывающими негативное влияние на здоровье человека. Тем не менее, новые научные исследования выявили удивительно положительный и недооцененный экологический фактор, влияющий на здоровье: прямой физический контакт с огромным количеством электронов на поверхности Земли. Современный образ жизни отделяет людей от таких контактов.Исследования показывают, что этот разрыв может быть одним из основных факторов физиологической дисфункции и плохого самочувствия. Было обнаружено, что воссоединение с электронами Земли способствует интригующим физиологическим изменениям и субъективным отчетам о благополучии. Заземление (или заземление) относится к открытию преимуществ – включая лучший сон и уменьшение боли – от ходьбы босиком на улице или сидения, работы или сна в помещении, подключенных к проводящим системам, которые переносят электроны Земли из земли в тело.В этой статье рассматриваются исследования заземления и потенциал заземления как простого и легко доступного глобального метода, имеющего важное клиническое значение.

1. Введение

Экологическая медицина фокусируется на взаимодействии между здоровьем человека и окружающей средой, включая такие факторы, как загрязненный воздух и вода и токсичные химические вещества, а также то, как они вызывают или опосредуют болезни. Повсюду в окружающей среде присутствует удивительно полезный, но игнорируемый глобальный ресурс для поддержания здоровья, профилактики заболеваний и клинической терапии: поверхность самой Земли.Это установленный, хотя и не получивший широкого признания факт, что поверхность Земли обладает безграничным и постоянно возобновляемым запасом свободных или подвижных электронов. Поверхность планеты электропроводна (за исключением ограниченных ультрасухих областей, таких как пустыни), и ее отрицательный потенциал поддерживается (т.е. пополняется запасом электронов) глобальной атмосферной электрической цепью [1, 2].

Растущее количество свидетельств свидетельствует о том, что отрицательный потенциал Земли может создать стабильную внутреннюю биоэлектрическую среду для нормального функционирования всех систем организма.Более того, колебания интенсивности потенциала Земли могут быть важны для установки биологических часов, регулирующих суточные ритмы тела, такие как секреция кортизола [3].

Также хорошо известно, что электроны из молекул антиоксидантов нейтрализуют активные формы кислорода (ROS, или, говоря популярным языком, свободные радикалы), участвующие в иммунных и воспалительных реакциях организма. Интернет-ресурс Национальной медицинской библиотеки PubMed содержит список 7021 исследования и 522 обзорных статей, полученных по запросу «антиоксидант + электрон + свободный радикал» [3].Предполагается, что приток свободных электронов, поглощаемых телом при прямом контакте с Землей, вероятно, нейтрализует АФК и тем самым уменьшает острое и хроническое воспаление [4]. На протяжении всей истории люди в основном ходили босиком или в обуви из шкур животных. Спали на земле или на коже. Благодаря прямому контакту или через смоченную потом шкуру животных, используемую в качестве обуви или ковриков для сна, многочисленные свободные электроны земли могли проникать в тело, которое является электропроводным [5].Благодаря этому механизму каждая часть тела могла уравновеситься с электрическим потенциалом Земли, тем самым стабилизируя электрическую среду всех органов, тканей и клеток.

Современный образ жизни все больше отделяет людей от изначального потока электронов Земли. Например, с 1960-х годов мы все чаще носим изолирующую обувь на резиновой или пластиковой подошве вместо традиционной кожи, сделанной из шкур. Росси посетовал на то, что использование изоляционных материалов в обуви после Второй мировой войны отделило нас от энергетического поля Земли [6].Очевидно, мы больше не спим на земле, как раньше.

В течение последних десятилетий резко возросло количество хронических заболеваний, иммунных расстройств и воспалительных заболеваний, и некоторые исследователи ссылаются на факторы окружающей среды как на их причину [7]. Однако возможность современного отключения от поверхности Земли как причина не рассматривалась. Большая часть исследований, рассмотренных в этой статье, указывает на это.

В конце 19 века движение за возвращение к природе в Германии утверждало, что босиком на улице даже в холодную погоду приносит много пользы для здоровья [8].В 1920-х годах Уайт, врач, исследовал практику сна заземленным после того, как некоторые люди сообщили, что они не могут нормально спать, «если они не находятся на земле или не связаны с землей каким-либо образом», например, с помощью медных проводов. прикреплены к заземленным водопроводным, газовым или радиаторным трубам. Он сообщил об улучшении сна с помощью этих методов [9]. Однако эти идеи никогда не прижились в обществе.

В конце прошлого века эксперименты, инициированные независимо Обером в США [10] и К.Sokal и P. Sokal [11] в Польше выявили явные физиологические преимущества и пользу для здоровья при использовании проводящих подкладок, матов, электродных пластырей типа EKG и TENS, а также пластин, соединенных внутри помещения с Землей снаружи. Обер, бывший руководитель кабельного телевидения, обнаружил сходство между человеческим телом (биоэлектрическим организмом, передающим сигнал) и кабелем, используемым для передачи сигналов кабельного телевидения. Когда кабели «заземлены» на землю, помехи практически исключаются из сигнала.Кроме того, все электрические системы стабилизируются путем заземления их на Землю. К. Сокал и П. Сокал, тем временем, обнаружили, что заземление человеческого тела представляет собой «универсальный регулирующий фактор в природе», который сильно влияет на биоэлектрические, биоэнергетические и биохимические процессы и, по-видимому, оказывает значительное модулирующее влияние на хронические заболевания, с которыми они ежедневно сталкиваются. клиническая практика.

Заземление (также известное как заземление) относится к контакту с электронами поверхности Земли при ходьбе босиком на улице, сидя, работе или сне в помещении, подключенном к проводящим системам, некоторые из которых запатентованы, которые передают энергию земли в тело.Новые научные исследования подтверждают концепцию, согласно которой электроны Земли вызывают множество физиологических изменений, имеющих клиническое значение, включая уменьшение боли, улучшение сна, переход от симпатического к парасимпатическому тонусу в вегетативной нервной системе (ВНС) и разжижающий кровь эффект. Исследование, наряду со многими анекдотическими сообщениями, представлено в новой книге под названием Earthing [12].

2. Обзор документов по заземлению

Исследования, обобщенные ниже, включают методы тестирования в помещении в контролируемых условиях, которые имитируют ходьбу босиком на открытом воздухе.

2.1. Сон и хроническая боль

В слепом пилотном исследовании Обер набрал 60 субъектов (22 мужчины и 28 женщин), которые страдали самоописанными нарушениями сна и хронической болью в мышцах и суставах в течение как минимум шести месяцев [10]. Субъекты были случайным образом разделены на месячное исследование, в котором обе группы спали на проводящих матрасах из углеродного волокна, предоставленных Ober. Половина контактных площадок была подключена к специальному заземлению за окном спальни каждого испытуемого, а другая половина была «фиктивно» заземлена, а не подключена к Земле.Результаты представлены в Таблице 1.


Категории Испытуемые * Контрольные испытуемые **
То же Улучшено То же Улучшено
Улучшено
Улучшено
Время засыпать 4 = 15% 23 = 85% 20 = 87% 3 = 13%
Качество сна 2 = 7% 25 = 93 % 20 = 87% 3 = 13%
Ощущение бодрствования отдохнувшим 0 = 0% 27 = 100% 20 = 87% 3 = 13%
Жесткость мышц и боль 5 = 18% 22 = 82% 23 = 100% 0 = 0%
Хроническая боль в спине и / или суставах 7 = 26% 20 = 74% 23 = 100% 0 = 0% 9030 0
Общее самочувствие 6 = 22% 21 = 78% 20 = 87% 3 = 13%

* От трех участников отчеты не получены.
** От семи участников отчеты не поступали.

Большинство обоснованных испытуемых описали симптоматическое улучшение, в то время как большинство в контрольной группе этого не сделали. Некоторые субъекты сообщили о значительном облегчении астматических и респираторных заболеваний, ревматоидного артрита, ПМС, апноэ во сне и гипертонии во время сна. Эти результаты показали, что эффект заземления выходит за рамки уменьшения боли и улучшения сна.

2.2.Сон, стресс, боль и кортизол

Пилотное исследование оценивало суточные ритмы кортизола, коррелирующие с изменениями сна, боли и стресса (тревожность, депрессия и раздражительность), по данным субъективных отчетов [13]. Двенадцать субъектов с жалобами на дисфункцию сна, боль и стресс были заземлены на Землю во время сна в собственных кроватях с использованием проводящего наматрасника в течение 8 недель.

Чтобы получить базовое измерение кортизола, испытуемые жевали дакроновые мази в течение 2 минут, а затем помещали их в промаркированные пробирки, которые хранились в холодильнике.Самостоятельный сбор образцов начинался в 8 часов утра и повторялся каждые 4 часа. После 6 недель заземления субъекты повторили этот 24-часовой тест слюны. Образцы обрабатывали с помощью стандартного радиоиммуноанализа. Совокупность результатов показана на рисунке 1.


Субъективные симптомы дисфункции сна, боли и стресса сообщались ежедневно в течение 8-недельного периода тестирования. У большинства испытуемых с уровнем ночной секреции от высокого до вне допустимого наблюдалось улучшение после того, как он спал на земле.Это демонстрируется восстановлением нормальных профилей секреции кортизола днем ​​и ночью.

Одиннадцать из 12 участников сообщили, что засыпали быстрее, и все 12 сообщили, что ночью просыпались реже. Заземление тела ночью во время сна также положительно влияет на уровень утренней усталости, дневную энергию и уровень боли в ночное время.

Около 30 процентов взрослого населения Америки в целом жалуются на нарушение сна, в то время как примерно у 10 процентов наблюдаются симптомы функционального нарушения в дневное время, соответствующие диагнозу бессонницы.Бессонница часто коррелирует с большой депрессией, генерализованной тревогой, злоупотреблением психоактивными веществами, деменцией, а также с различными болями и физическими проблемами. Прямые и косвенные издержки хронической бессонницы оцениваются в десятки миллиардов долларов ежегодно только в США [14]. Принимая во внимание бремя личного дискомфорта и затрат на лечение, заземление тела во время сна, кажется, может многое предложить.

2.3. Заземление снижает электрические поля, наведенные на тело

Напряжение, наведенное на человеческое тело из-за электрической среды, измерялось с помощью измерительной головки с высоким импедансом.Эпплуайт, инженер-электрик и эксперт по проектированию систем электростатического разряда в электронной промышленности, был одновременно объектом и автором исследования [15]. Измерения проводились в незаземленном состоянии, а затем были заземлены с помощью токопроводящей накладки и токопроводящей подушки. Автор измерил индуцированные поля в трех положениях: левая грудь, живот и левое бедро.

Каждый метод (пластырь и пластырь) немедленно снижал общий переменный ток (AC) 60 Гц окружающего напряжения, наведенный на тело, на очень значительный коэффициент, в среднем около 70.На рисунке 2 показан этот эффект.


Исследование показало, что когда тело заземлено, его электрический потенциал выравнивается с электрическим потенциалом Земли за счет передачи электронов от Земли к телу. Это, в свою очередь, препятствует тому, чтобы режим 60 Гц создавал электрический потенциал переменного тока на поверхности тела и не создавал возмущений электрических зарядов молекул внутри тела. Исследование подтверждает «зонтичный» эффект заземления тела, объясненный лауреатом Нобелевской премии Ричардом Фейнманом в его лекциях по электромагнетизму [16].Фейнман сказал, что когда потенциал тела совпадает с электрическим потенциалом Земли (и, следовательно, заземлен), оно становится продолжением гигантской электрической системы Земли. Таким образом, потенциал Земли становится «рабочим агентом, который нейтрализует, уменьшает или отталкивает электрические поля от тела».

Applewhite смог задокументировать изменения внешнего напряжения, наведенного на тело, отслеживая падение напряжения на резисторе. Этот эффект ясно показал «эффект зонтика», описанный выше.Тело заземленного человека не подвержено возмущениям электронов и электрических систем.

Джеймисон спрашивает, является ли отсутствие надлежащего заземления людей фактором, способствующим потенциальным последствиям электрического загрязнения в офисных помещениях [17]. Существует много споров о том, вызывают ли электромагнитные поля в окружающей среде риск для здоровья [18], но нет никаких сомнений в том, что организм реагирует на присутствие электрических полей в окружающей среде. Это исследование демонстрирует, что заземление по существу устраняет внешнее напряжение, наведенное на тело от обычных источников электроэнергии.

2.4. Физиологические и электрофизиологические эффекты
2.4.1. Снижение общих уровней стресса и напряжения и сдвиг в балансе ВНС

Пятьдесят восемь здоровых взрослых субъектов (включая 30 контрольных) участвовали в рандомизированном двойном слепом пилотном исследовании, посвященном изучению воздействия заземления на физиологию человека [19]. Заземление осуществлялось с помощью токопроводящей клейкой ленты на подошве каждой ступни. Система биологической обратной связи регистрировала электрофизиологические и физиологические параметры.Подопытные были подвергнуты воздействию 28 минут в незаземленном состоянии, а затем 28 минут с подключенным заземляющим проводом. Контроли откопали в течение 56 минут.

После заземления около половины испытуемых показали резкое, почти мгновенное изменение среднеквадратичных (rms) значений электроэнцефалограмм (ЭЭГ) левого полушария (но не правого полушария) на всех частотах, проанализированных системой биологической обратной связи (бета , альфа, тета и дельта).

Все заземленные испытуемые показали резкое изменение среднеквадратичных значений поверхностных электромиограмм (SEMG) правой и левой верхней трапециевидной мышцы.Заземление снизило пульс объема крови (BVP) у 19 из 22 подопытных (статистически значимо) и у 8 из 30 контрольных (несущественно). Заземление человеческого тела оказало значительное влияние на электрофизиологические свойства мозга и мускулатуры, на BVP, а также на шум и стабильность электрофизиологических записей. Взятые вместе, изменения в ЭЭГ, ЭМГ и BVP предполагают снижение общих уровней стресса и напряженности, а также сдвиг баланса ВНС при заземлении. Результаты расширяют выводы предыдущих исследований.

2.4.2. Подтверждение перехода от симпатической к парасимпатической активации

Многопараметрическое двойное слепое исследование было разработано для воспроизведения и расширения предыдущих электрофизиологических и физиологических параметров, измеренных сразу после заземления, с помощью улучшенной методологии и современного оборудования [20]. Четырнадцать мужчин и 14 женщин с хорошим здоровьем в возрасте от 18 до 80 лет были протестированы, сидя в удобном кресле, в течение двухчасовых сеансов заземления, оставляя время для стабилизации сигналов до, во время и после заземления (40 минут для каждого периода). .Также были записаны фиктивные двухчасовые сеансы заземления с теми же испытуемыми, что и в контрольной группе. Для каждого сеанса статистический анализ проводился на четырех 10-минутных сегментах: до и после заземления (фиктивное заземление для контрольных сеансов) и до и после незаземления (фиктивное незаземление для контрольных сеансов). Были задокументированы следующие результаты: (i) немедленное уменьшение (в течение нескольких секунд) проводимости кожи (SC) при заземлении и немедленное увеличение при отсутствии заземления. Никаких изменений не наблюдалось для контрольных сеансов (фиктивное заземление); (ii) частота дыхания (ЧД) увеличивалась во время заземления, эффект, который сохранялся после незаземления.Вариация RR увеличивалась сразу после заземления, а затем уменьшалась; (iii) дисперсия оксигенации крови (BO) уменьшалась во время заземления, а затем резко увеличивалась после незаземления; (iv) вариации частоты пульса (PR) и индекса перфузии (PI) увеличивались к концу периода заземления, и это изменение сохранялось после размыкания.

Немедленное снижение SC указывает на быструю активацию парасимпатической нервной системы и соответствующую дезактивацию симпатической нервной системы.Немедленное увеличение SC при прекращении заземления указывает на обратный эффект. Повышенный RR, стабилизация BO и небольшое увеличение частоты сердечных сокращений предполагают начало метаболической реакции исцеления, требующей увеличения потребления кислорода.

2.4.3. Иммунные клетки и болевые реакции с индукцией мышечной болезненности с отсроченным началом

Уменьшение боли от заземленного сна было документально подтверждено в предыдущих исследованиях [10, 13]. Это пилотное исследование искало маркеры крови, которые могли бы различать заземленных и незаземленных субъектов, которые завершили один сеанс интенсивных эксцентрических упражнений, что привело к отсроченной мышечной болезненности (DOMS) икроножной мышцы [21].Если бы маркеры могли различать эти группы, будущие исследования можно было бы проводить более подробно с большей предметной базой. DOMS является распространенной жалобой в мире фитнеса и спорта после чрезмерной физической активности и включает острое воспаление перенапряженных мышц. Он развивается через 14–48 часов и сохраняется более 96 часов [22]. Нет известных методов лечения, сокращающих период восстановления, но очевидно, что массаж и гидротерапия [23–25] и иглоукалывание [26] могут уменьшить боль.

Восемь здоровых мужчин в возрасте 20–23 лет проделали аналогичную процедуру подъема носков, неся на плечах штангу, равную одной трети веса их тела.Каждый участник тренировался индивидуально в понедельник утром, а затем контролировал оставшуюся часть недели, соблюдая аналогичный график приема пищи, сна и жизни в отеле. Группа была случайным образом разделена на две части и либо заземлена, либо мнимо заземлена с использованием токопроводящего пластыря, помещенного на подошву каждой ступни в часы активности, и токопроводящего листа в ночное время. Полный анализ крови, химический анализ крови, химический анализ ферментов, уровень кортизола в сыворотке и слюне, магнитно-резонансная томография и спектроскопия, а также уровни боли (всего 48 параметров) были взяты в одно и то же время дня перед эксцентрическим упражнением и в 24, 48 и 72 часа спустя.Параметры, постоянно различающиеся на 10 процентов и более, нормализованные по отношению к исходному уровню, были сочтены заслуживающими дальнейшего изучения.

Параметры, которые различались по этим критериям, включали количество лейкоцитов, билирубин, креатинкиназу, соотношение фосфокреатин / неорганический фосфат, глицеринфосфорилхолин, фосфорилхолин, визуальную аналоговую шкалу боли и измерения давления в правой икроножной мышце.

Результаты показали, что заземление тела на Землю изменяет показатели активности иммунной системы и боли.Среди необоснованных мужчин, например, наблюдалось ожидаемое резкое увеличение лейкоцитов на стадии, когда известно, что DOMS достигает своего пика, и более сильное восприятие боли (см. Рисунок 3). Этот эффект демонстрирует типичную воспалительную реакцию. Для сравнения, у заземленных мужчин было только небольшое снижение лейкоцитов, что указывало на скудное воспаление и, впервые наблюдаемое, более короткое время восстановления. Позже Браун прокомментировал, что были «значительные различия» в боли, о которой сообщали эти мужчины [12].


2.4.4. Вариабельность сердечного ритма

Быстрое изменение проводимости кожи, о котором сообщалось в более раннем исследовании, привело к гипотезе о том, что заземление может также улучшить вариабельность сердечного ритма (ВСР), измерение реакции сердца на регуляцию ВНС. Было разработано двойное слепое исследование с 27 участниками [27]. Испытуемые сидели в удобных креслах с откидывающейся спинкой. На подошву каждой ступни и на каждую ладонь помещали четыре адгезивных электродных пластыря типа чрескожной электрической стимуляции нервов (TENS).

Участники служили своим собственным контролем. Данные каждого участника из 2-часового сеанса (40 минут из которых были обоснованными) сравнивались с данными другого 2-часового фиктивного сеанса. Последовательность сеансов заземления по сравнению с сеансами фиктивного заземления назначалась случайным образом.

Во время заземленных сеансов у участников наблюдалось статистически значимое улучшение ВСР, которое выходило далеко за рамки основных результатов релаксации (которые были продемонстрированы на необоснованных сеансах). Поскольку улучшение ВСР является важным положительным индикатором состояния сердечно-сосудистой системы, предлагается использовать простые методы заземления в качестве базовой интегративной стратегии для поддержки сердечно-сосудистой системы, особенно в ситуациях повышенного вегетативного тонуса, когда симпатическая нервная система активнее, чем парасимпатическая. нервная система.

2.4.5. Снижение основных показателей остеопороза, улучшение регуляции уровня глюкозы и иммунного ответа

К. Сокал и П. Сокал, кардиолог и нейрохирург, отец и сын из медицинского персонала военной клиники в Польше, провели серию экспериментов, чтобы определить, действительно ли контакт с Землей через медный проводник может повлиять на физиологические процессы [11]. Их исследования были вызваны вопросом, влияет ли естественный электрический заряд на поверхности Земли на регуляцию физиологических процессов человека.

Двойные слепые эксперименты проводились в группах от 12 до 84 субъектов, которые соблюдали одинаковую физическую активность, диету и потребление жидкости в течение испытательных периодов. Заземление было достигнуто с помощью медной пластины (30 мм × 80 мм), размещенной на нижней части стойки, прикрепленной полосой, чтобы она не оторвалась в течение ночи. Пластина была соединена проводящим проводом с большей пластиной (60 мм × 250 мм), контактировавшей с Землей снаружи.

В одном эксперименте с субъектами, не принимавшими лекарства, заземление в течение одной ночи сна приводило к статистически значимым изменениям концентрации минералов и электролитов в сыворотке крови: железа, ионизированного кальция, неорганического фосфора, натрия, калия и магния.Почечная экскреция кальция и фосфора была значительно снижена. Наблюдаемое снижение содержания кальция и фосфора в крови и моче напрямую связано с остеопорозом. Результаты показывают, что заземление на одну ночь снижает основные показатели остеопороза.

Непрерывное заземление во время отдыха и физической активности в течение 72 часов снижает уровень глюкозы натощак у пациентов с инсулинозависимым сахарным диабетом. Пациенты хорошо контролировались глибенкламидом, противодиабетическим препаратом, в течение примерно 6 месяцев, но на момент исследования у них был неудовлетворительный гликемический контроль, несмотря на рекомендации по питанию и физическим упражнениям и дозу глибенкламида 10 мг / день.

К. Сокал и П. Сокал взяли образцы крови у 6 взрослых мужчин и 6 женщин, не имевших в анамнезе заболеваний щитовидной железы. Одна ночь заземления вызвала значительное снижение уровня свободного трийодтиронина и повышение уровня свободного тироксина и тиреотропного гормона. Значение этих результатов неясно, но предполагает влияние заземления на взаимосвязь печени, гипоталамуса и гипофиза с функцией щитовидной железы. Обер и др. [12] наблюдали, что многие люди, принимающие препараты для лечения щитовидной железы, сообщали о симптомах гипертиреоза, таких как учащенное сердцебиение, после начала приема заземления.Такие симптомы обычно исчезают после того, как лекарство будет снижено под наблюдением врача. Через ряд регуляторов обратной связи гормоны щитовидной железы влияют почти на все физиологические процессы в организме, включая рост и развитие, обмен веществ, температуру тела и частоту сердечных сокращений. Очевидно, что необходимы дальнейшие исследования влияния заземления на функцию щитовидной железы.

В другом эксперименте исследовали влияние заземления на классический иммунный ответ после вакцинации. Заземление ускорило иммунный ответ, о чем свидетельствует увеличение концентрации гамма-глобулина.Этот результат подтверждает связь между заземлением и иммунным ответом, как было предложено в исследовании DOMS [21].

К. Сокал и П. Сокал приходят к выводу, что заземление человеческого тела влияет на физиологические процессы человека, включая повышение активности катаболических процессов, и может быть «основным фактором, регулирующим эндокринную и нервную системы».

2.4.6. Измененная электродинамика крови

Поскольку заземление вызывает изменения многих электрических свойств тела [1, 15, 19, 28], следующим логическим шагом была оценка электрических свойств крови.Подходящим показателем является дзета-потенциал эритроцитов (RBC) и агрегация RBC. Дзета-потенциал – это параметр, тесно связанный с количеством отрицательных зарядов на поверхности эритроцитов. Чем выше число, тем выше способность эритроцитов отталкивать другие эритроциты. Таким образом, чем больше дзета-потенциал, тем меньше свертываемость крови.

В исследовании приняли участие десять относительно здоровых субъектов [29]. Они были удобно усажены в кресло с откидной спинкой и были заземлены в течение двух часов с накладками электродов на их ступни и руки, как и в предыдущих исследованиях.Образцы крови были взяты до и после.

Приземление тела к земле существенно увеличивает дзета-потенциал и снижает агрегацию эритроцитов, тем самым снижая вязкость крови. Субъекты, страдающие от боли, сообщали об уменьшении до такой степени, что это было почти незаметно. Результаты убедительно свидетельствуют о том, что заземление – естественное решение для пациентов с чрезмерной вязкостью крови, вариант, представляющий большой интерес не только для кардиологов, но и для любого врача, обеспокоенного взаимосвязью вязкости крови, свертываемости и воспаления.В 2008 году Адак и его коллеги сообщили о наличии как гиперкоагулируемой крови, так и плохого дзета-потенциала эритроцитов у диабетиков. Зета-потенциал был особенно низким среди диабетиков с сердечно-сосудистыми заболеваниями [30].

3. Обсуждение

До сих пор физиологическое значение и возможные последствия для здоровья стабилизации внутренней биоэлектрической среды организма не были важной темой исследований. Однако некоторые аспекты этого относительно очевидны. В отсутствие контакта с землей внутреннее распределение заряда не будет равномерным, а будет подвержено различным электрическим возмущениям в окружающей среде.Хорошо известно, что многие важные регуляции и физиологические процессы связаны с событиями, происходящими на поверхности клеток и тканей. В отсутствие общей контрольной точки или «земли» электрические градиенты из-за неравномерного распределения заряда могут накапливаться вдоль поверхностей тканей и клеточных мембран.

Мы можем предсказать, что такая разница зарядов будет влиять на биохимические и физиологические процессы. Во-первых, структура и функционирование многих ферментов чувствительны к местным условиям окружающей среды.Каждый фермент имеет оптимальный pH, который способствует максимальной активности. Изменение электрического окружения может изменить pH биологических жидкостей и распределение заряда на молекулах и тем самым повлиять на скорость реакции. Эффект pH возникает из-за наличия критически важных заряженных аминокислот в активном центре фермента, которые участвуют в связывании субстрата и катализе. Кроме того, способность субстрата или фермента отдавать или принимать ионы водорода зависит от pH.

Другой пример – потенциалзависимые ионные каналы, которые играют критическую биофизическую роль в возбудимых клетках, таких как нейроны.Локальные изменения профилей заряда вокруг этих каналов могут привести к электрической нестабильности клеточной мембраны и к несоответствующей спонтанной активности, наблюдаемой во время определенных патологических состояний [31].

Исследование заземления предлагает понимание клинического потенциала контакта босиком с Землей или имитации контакта босиком в помещении через простые проводящие системы, стабильности внутренней биоэлектрической функции и физиологии человека. Первоначальные эксперименты привели к субъективным сообщениям об улучшении сна и уменьшении боли [10].Последующие исследования показали, что улучшение сна коррелирует с нормализацией дневного и ночного профиля кортизола [13]. Результаты значительны в свете обширных исследований, показывающих, что недостаток сна оказывает стрессовое воздействие на организм и приводит ко многим пагубным последствиям для здоровья. Недостаток сна часто является следствием боли. Следовательно, уменьшение боли может быть одной из причин только что описанных преимуществ.

Уменьшение боли во время сна было подтверждено в контролируемом исследовании DOMS.Заземление – первое известное вмешательство, ускоряющее восстановление после DOMS [21]. Болезненные состояния часто являются результатом различных видов острых или хронических воспалительных состояний, частично вызванных АФК, генерируемыми нормальным метаболизмом, а также иммунной системой как частью реакции на травму или травму. Воспаление может вызвать боль и потерю подвижности в суставах. Воспалительный отек может оказывать давление на болевые рецепторы (ноцирецепторы) и нарушать микроциркуляцию, что приводит к ишемической боли.Воспаление может вызвать выброс токсичных молекул, которые также активируют болевые рецепторы. Современные биомедицинские исследования также документально подтвердили тесную связь между хроническим воспалением и практически всеми хроническими заболеваниями, включая болезни старения, и сам процесс старения. Резкий рост воспалительных заболеваний недавно был назван «воспалительным старением» для описания прогрессирующего воспалительного статуса и потери способности справляться со стрессом как основных компонентов процесса старения [32].

Уменьшение воспаления в результате заземления было зарегистрировано с помощью инфракрасной медицинской визуализации [28], а также измерений химического состава крови и количества лейкоцитов [21]. Логическое объяснение противовоспалительных эффектов заключается в том, что заземление тела позволяет отрицательно заряженным антиоксидантным электронам с Земли проникать в организм и нейтрализовать положительно заряженные свободные радикалы в очагах воспаления [28]. Документально подтвержден поток электронов от Земли к телу [15].

Пилотное исследование электродинамики эритроцитов (дзета-потенциал) показало, что заземление значительно снижает вязкость крови, важный, но игнорируемый параметр при сердечно-сосудистых заболеваниях, диабете [29] и кровообращении в целом. Таким образом, разжижение крови может способствовать доставке большего количества кислорода к тканям и дополнительно способствовать уменьшению воспаления.

Снижение стресса было подтверждено различными измерениями, показывающими быстрые сдвиги в ВНС от симпатического к парасимпатическому преобладанию, улучшение вариабельности сердечного ритма и нормализацию мышечного напряжения [19, 20, 27].

Здесь не приводится множество наблюдений Обера и др. За более чем два десятилетия. [12] и K. Sokal и P. Sokal [11], указывающие на то, что регулярное заземление может улучшить кровяное давление, сердечно-сосудистые аритмии и аутоиммунные состояния, такие как волчанка, рассеянный склероз и ревматоидный артрит. Некоторые эффекты заземления на лекарства описаны Ober et al. [12] и на сайте: http://www.earthinginstitute.net/. Например, комбинация заземления и кумадина может оказывать комплексный разжижающий кровь эффект и должна контролироваться врачом.Сообщалось о нескольких случаях повышенного МНО. МНО (международное нормализованное отношение) – широко используемый метод измерения коагуляции. Влияние заземления на функцию щитовидной железы и прием лекарств было описано ранее.

С практической точки зрения врачи могут рекомендовать пациентам «занятия босиком» на открытом воздухе, если позволяют погода и условия. Обер и др. [12] заметили, что ходьба босиком всего 30-40 минут в день может значительно уменьшить боль и стресс, и исследования, обобщенные здесь, объясняют, почему это так.Очевидно, что заземление босиком не требует затрат. Однако использование токопроводящих систем во время сна, работы или отдыха в помещении предлагает более удобный и рутинный подход.

4. Заключение

De Flora et al. написал следующее: «С конца 20-го века хронические дегенеративные заболевания преодолели инфекционные заболевания как основные причины смерти в 21-м веке, поэтому увеличение продолжительности жизни человека будет зависеть от поиска вмешательства, которое подавляет развитие этих заболеваний и замедляет их развитие. их прогресс »[33].

Может ли такое вмешательство быть расположено прямо у нас под ногами? Заземляющие исследования, наблюдения и связанные с ними теории открывают интригующую возможность того, что электроны на поверхности Земли являются неиспользованным ресурсом здоровья, а Земля – ​​«столом для глобального лечения». Новые данные показывают, что контакт с Землей – будь то на улице босиком или в помещении с подключением к заземленным проводящим системам – может быть простой, естественной и в то же время чрезвычайно эффективной экологической стратегией против хронического стресса, дисфункции ВНС, воспаления, боли, плохого сна, нарушения ВСР. , гиперкоагулируемая кровь и многие общие расстройства здоровья, включая сердечно-сосудистые заболевания.Исследования, проведенные на сегодняшний день, подтверждают концепцию, согласно которой заземление человеческого тела может быть важным элементом в уравнении здоровья наряду с солнечным светом, чистым воздухом и водой, питательной пищей и физической активностью.

Раскрытие информации

Г. Шевалье, С. Т. Синатра и Дж. Л. Ошман являются независимыми подрядчиками Earthx L. Inc., компании, спонсирующей исследования в области заземления, и владеют небольшим процентом акций компании.

Статическое электричество | Ганноверская страховая группа

Разряд статического электричества (эл.g., электростатический разряд) может вызвать возгорание и взрывы, часто приводящие к большим потерям. На этой странице кратко описаны свойства статического электричества и меры противопожарной защиты, связанные с электростатическим разрядом.

Введение

Статическое электричество непреднамеренно генерируется во время многих промышленных операций. Такие операции могут включать перенос жидкостей между контейнерами; смешивание и смешивание жидкостей; или дробление, измельчение или просеивание порошков.Хотя возникновение статического заряда вызывает беспокойство, повреждение вызывает электростатический разряд (ESD). ESD – это быстрое высвобождение или перенос электронов от одного объекта к другому, что приводит к нейтрализации заряда на обоих материалах.

Для возникновения электростатического разряда требуются три условия: должен быть процесс, который генерирует статический заряд, заряд должен накапливаться, и накопление заряда должно быть достаточно большим, чтобы вызвать электрический пробой окружающей атмосферы.Тип разряда и количество выделяемой энергии будут зависеть от физических и химических свойств системы.

ESD могут вызвать возгорание и взрывы. Чтобы это произошло, разряд должен происходить в воспламеняющейся или взрывоопасной атмосфере, и разряд должен быть достаточно сильным, чтобы воспламенить атмосферу. Если смесь находится за пределами диапазона воспламенения или статический разряд не обладает достаточной энергией, воспламенения не произойдет. Контроль любого из условий, необходимых для электростатического разряда, может снизить опасность статического электричества.Одним из распространенных методов борьбы с опасностями статического электричества является использование соединения и заземления, например, при перекачке легковоспламеняющихся жидкостей. Связывание и заземление уменьшают количество генерации / накопления заряда и нейтрализуют заряд.

Этот отчет представляет собой введение в статическое электричество и контроль электростатического разряда. В нем описаны различные проблемы пожара, которые могут быть вызваны статическим электричеством, а также кратко описаны физика, природа, возникновение и методы борьбы.

Статическое электричество

Ядро атома содержит протоны с положительным зарядом и нейтроны без заряда. Поле электронов с отрицательным зарядом вращается вокруг ядра. Основываясь на этой фундаментальной структуре атомов, поверхности всех материалов будут обладать электронами. Когда материалы с различными концентрациями слабо связанных поверхностных электронов приводят в контакт друг с другом, поверхностные электроны пытаются уравновесить, позволяя атому стать электрически нейтральным.Пока два материала находятся в контакте, поверхностные электроны свободно обмениваются. Эта «связь» наиболее распространена, когда материалы состоят из материалов с большим количеством свободных электронов на внешней оболочке атома.

Когда материалы разделены, перенос электронов прекращается, и на поверхности обоих материалов может оставаться электрический заряд. Когда объект потерял электроны (например, стал положительно заряженным) или приобрел электроны (например, стал отрицательно заряженным), он приобрел статический заряд.

Оставленный в статическом режиме, этот заряд может увеличиваться в размерах, пока не перейдет в другой материал с противоположным зарядом. Типичный пример этого статического заряда – натирание хлопка (например, носков) по полиэстеру (например, ковру). Человек, соприкасающийся (то есть связанный) с хлопком, разовьет заряд. Когда этот человек касается другого предмета (например, дверной ручки) с меньшим зарядом, заряд переносится (то есть нейтрализуется). Если заряд имеет высокий потенциал, заряд может перекрывать воздушное пространство для рассеивания, что называется электростатическим разрядом.

Генерация статического заряда

Различные материалы и процессы могут приводить к образованию статического заряда, включая движение жидкостей по трубам и шлангам, распыление жидкостей и перемещение мелкодисперсных твердых частиц. Генерация статического заряда происходит в точке контакта материалов, которую часто называют относительной границей раздела. Генерация заряда обычно происходит, когда контакт включает движение, например, жидкость по шлангу. Это относительное движение позволяет увеличивать потенциал статического заряда.

Статический заряд часто возникает, когда материалы, которые обычно являются изоляторами, например бумага, контактируют с неизолирующими материалами, такими как сталь. Этот тип генерации заряда часто называют трибоэлектрическим или трением. Движение бумаги по ролику из нержавеющей стали позволяет передать бумагу свободные выборы на поверхности ролика. Это вызывает появление на бумаге отрицательного заряда, который может сохраняться в течение длительного времени (например, нескольких часов). Доказательства этого типа зарядки можно ясно продемонстрировать, потерев полиэтиленовый лист (т.е.е., сэндвич-пленка) поверх куска нержавеющей стали. Статический заряд на полиэтилене позволит ему прикрепляться к материалам с более низким потенциалом, таким как стены, что приводит к «статическому сцеплению».

Общие промышленные условия, при которых может возникать статическое электричество, включают:

  • Течение жидкости по трубам и фильтрам.
  • Заливка жидкости между двумя отдельными емкостями.
  • Распыление проводящих жидкостей.
  • Потирание поверхности изоляционного материала.
  • Прохождение конвейеров по роликам.
  • Дробление, измельчение и просеивание.
  • Выгрузка порошка из пакетов.

Люди могут также накапливать статические заряды, ходя по изолирующим полам или коврам или снимая синтетическую одежду. Независимо от используемых материалов, процесс генерации заряда требует, чтобы разнородные поверхности контактировали друг с другом и передавали свободные электроны. В результате разделения один из материалов сохраняет заряд.

Электростатический разряд

Статические заряды со временем постепенно рассеиваются из-за естественного отталкивания одноименно заряженных атомов и молекул. Скорость рассеяния заряда будет зависеть от характеристик материала и наличия проводящего пути к материалу с другим электрическим состоянием. Если скорость образования заряда больше, чем скорость рассеивания заряда, или объект изолирован от проводящего пути, так что заряд не может выравниваться, статический заряд будет накапливаться на объекте.

Этот разряд энергии происходит, когда накопленный заряд достигает достаточно высокого потенциала, чтобы перекрыть воздушное пространство другому материалу. Существует несколько типов электростатических разрядов, в том числе искры, тлеющие коронки, щеточные разряды и объемные поверхностные разряды. По сути, тип разряда зависит от используемых материалов и формы области, где возникает перемычка между поверхностями. Электростатический разряд является важным источником воспламенения легковоспламеняющихся жидкостей, газов и некоторых видов пыли.

Легковоспламеняющиеся жидкости

Статический заряд возникает, когда жидкости движутся в контакте с другими материалами (например, с жидкостью, протекающей по трубе). Статический заряд также возникает во время смешивания, заливки, перекачивания, фильтрации или перемешивания жидкостей. Эта накопленная энергия представляет собой потенциальный источник воспламенения. Когда накопленный заряд рассеивается, возникающая энергия может воспламенить воспламеняющуюся паровоздушную смесь. Эта опасность наиболее велика, когда жидкости переносятся между контейнерами, могут стоять в открытых контейнерах или наноситься на поверхности, поскольку могут образовываться как статический заряд, так и воспламеняющаяся топливно-воздушная смесь.

Горючие газы

Как и в случае с легковоспламеняющимися жидкостями, статический разряд может привести к воспламенению горючих газов. Процесс, посредством которого это может происходить, в основном такой же, как и для жидкостей, за исключением того, что газы легче воспламеняются. Газы, не загрязненные твердыми или жидкими частицами, не генерируют значительного статического электричества. Однако статический заряд может возникнуть, если протекающий газ загрязнен пылью, оксидами металлов, частицами накипи, частицами жидкости или аэрозолями.

Пыль

Пыль, смещенная с поверхности, на которой она лежит, может генерировать значительный заряд. Общий развиваемый заряд зависит от химического состава материала, размера частиц и степени контакта с поверхностью. Генерация заряда возникает редко, если и пыль, и поверхность, на которой она лежит, являются проводниками. Однако это может произойти, если один материал является проводником, а другой – непроводником.

Когда горючая пыль взвешивается в воздухе и подвергается статическому разряду, может произойти взрыв.См. Дополнительную информацию по этой теме в разделе «Взрывы пыли».

Контроль электростатических разрядов

Для предотвращения воспламенения горючих смесей от электростатического разряда можно использовать три основных метода. Они контролируют воспламеняющуюся смесь, контролируют накопление статического электричества и нейтрализуют заряд.

Контроль горючей смеси

Инерцирование горючих смесей, вентиляция помещения или перемещение оборудования, создающего статическое электричество, может предотвратить возгорание горючих смесей, вызванное статическим электричеством.

Инертинг

Процесс инертизации легковоспламеняющейся смеси для предотвращения воспламенения достигается устранением или уменьшением содержания кислорода до точки, при которой смесь не может воспламениться. Наиболее эффективный метод инертизации смеси – введение в газовую смесь инертного газа, такого как азот, что приводит к дефициту кислорода в окружающей среде.

Вентиляция

Механическая вентиляция может использоваться аналогично инертированию. За счет использования механической вентиляции смесь можно разбавить до уровня ниже ее воспламеняемости, в результате чего смесь станет слишком бедной для возгорания.Этот процесс также можно использовать для удаления горючей пыли от источников возгорания.

Переезд

Перемещение оборудования, производящего статическое электричество, является очень эффективным решением для контроля за воспламеняющейся средой. Этот метод желателен, потому что он устраняет источник возгорания и не полагается на другие методы контроля, которые могут дать сбой.

Контроль статической генерации

Контроль статического электричества основан на контроле того, как эти материалы объединяются и разделяются.Тип материала, скорость контакта и продолжительность контакта – все это играет ключевую роль в генерации заряда. Контроль статического электричества зависит от материалов, контактирующих друг с другом.

Антистатические покрытия, добавки и спреи снижают способность материала генерировать статический заряд за счет снижения поверхностного сопротивления материала, что позволяет статическому заряду течь на землю. Снижение поверхностного сопротивления материала позволяет электронам быстро рассеиваться, предотвращая высвобождение большого накопленного отрицательного заряда.

Углеводородное топливо содержит следовые количества материалов, которые могут диссоциировать на ионы. Во время потока топлива разделение заряда происходит на границе раздела между топливом и любым несмешивающимся материалом, например стенкой трубы. Эта статическая зарядка углеводородного топлива во время перекачки уже давно признана потенциальной опасностью взрыва. Опасность может быть уменьшена путем введения ограничений по расходу топлива во время перекачки продукта. Эта уменьшенная скорость потока позволяет электронному заряду рассеиваться быстрее, чем он может накапливаться на поверхности контейнера, тем самым предотвращая накопление статического электричества.

Нейтрализация заряда

Нейтрализация заряда – это процесс, при котором накопленные статические заряды одного электрического потенциала становятся нейтральными. Путем устранения (например, нейтрализации) заряда исключается возможность неконтролируемого рассеивания заряда и связанного с этим воспламенения. Методы нейтрализации заряда включают увлажнение, заземление и склеивание, ионизацию и статические гребни.

Увлажнение

Увлажнение – это процесс увеличения относительной влажности в рабочей зоне для предотвращения накопления статических зарядов на непроводящих материалах.Увлажнение наиболее эффективно для борьбы с накоплением статического электричества там, где в технологических процессах используются изоляционные материалы, такие как бумага, дерево и текстиль. Поскольку эти материалы обычно являются изоляторами, они могут накапливать статические заряды в результате обработки и повседневного обращения. При увеличении относительной влажности поверхности материалов становятся влажными. Эта влага увеличивает поверхностную проводимость, позволяя статическому заряду свободно рассеиваться. Чтобы быть эффективным, уровень влажности должен быть повышен как минимум до 60 процентов или выше.Увлажнение неэффективно для контроля статического электричества на материалах с высоким содержанием углеводородов из-за неспособности углеводородов поглощать воду.

Заземление (заземление) и соединение

Заземление и перемычка являются одними из наиболее распространенных методов рассеивания заряда. «Соединение» – это метод соединения двух или более проводящих объектов вместе с помощью проводящих проводов или кабелей. «Заземление» или «Заземление» – это метод соединения двух или более проводящих объектов с землей и представляет собой особую форму соединения.Некоторые объекты по своей природе связаны с землей (например, подземные трубопроводы или подземные или надземные резервуары для хранения). Связывание сводит к минимуму потенциальные различия между проводящими объектами. Заземление устраняет или сводит к минимуму разность потенциалов между проводящими объектами и землей.

Жидкости с температурой воспламенения¹ ниже 100 ° F (37,8 ° C) нельзя переносить между контейнерами, если оба контейнера не соединены или не заземлены. Правильное соединение или заземление необходимо для предотвращения накопления статического электричества, возникающего при переносе жидкостей.Положения для подключения или заземления включают:

  • Электрическое соединение (т. Е. Скрепление) контейнеров друг с другом перед переносом жидкости.
  • Электрическое соединение обоих контейнеров с заземлением перед перекачкой жидкости.

Дополнительное руководство по контролю статического электричества можно найти в NFPA 77, Рекомендуемая практика по статическому электричеству , опубликованном Национальной ассоциацией противопожарной защиты (NFPA). Приложение A к NFPA 77 содержит подробные чертежи различных методов соединения и заземления.Эти чертежи можно использовать в качестве руководства по типам методов заземления и соединения, которые могут применяться в различных процессах дозирования.

Склеивающие соединения могут выполняться с помощью зажимов под давлением, пайки или сварки. Зажимы аккумуляторного типа или магнитные зажимы могут использоваться для обеспечения контакта металла с металлом, в зависимости от типа используемых металлов.

Заземление также может быть выполнено с помощью «статической гребенки». Статическая расческа – это просто металлический стержень с рядом острых игл.Если заземленную статическую гребенку поднести близко к изолированному заряженному телу (или заряженной изолирующей поверхности), ионизация воздуха в точках обеспечит достаточную проводимость, чтобы заряд мог быстро рассеяться. Статические гребни обычно используются для рассеивания энергии в процессе, в котором используются изоляционные материалы, такие как бумага и текстиль. Гребень изготовлен из проводящего материала, такого как сталь или медь, который электрически соединен с землей (нейтралью). Поддерживая постоянный контакт с продуктом, поверхностные заряды, улавливаемые изолятором, рассеиваются через гребенку на землю, тем самым устраняя накопление статического электричества.Этот метод очень эффективен и используется как в производстве, так и в обычных устройствах, таких как компьютерный принтер.

Ионизация

Статический заряд проводящего объекта может свободно течь по поверхности объекта. На проводящем сферическом объекте заряд равномерно распределяется по поверхности. На проводящем несферическом объекте самоотталкивание заряда заставит его накапливаться на поверхности с наименьшим радиусом кривизны.

Если проводящее тело окружено воздухом (или другим газом) и на проводящем объекте есть острые иглы, заряд будет концентрироваться на них и производить ионизацию воздуха, делая его проводящим.Острое острие иглы позволяет проводнику достигать лишь небольшого напряжения до того, как скорость утечки или скорость рассеивания заряда сравняется со скоростью генерации заряда. Следовательно, на таком объекте не будет накапливаться статический заряд.

Сводка

Когда разнородные материалы соприкасаются друг с другом, могут возникать статические заряды. Эти заряды могут представлять собой незначительные неудобства или значительный источник энергии воспламенения в определенных условиях. Контроль образования, накопления и разряда статического электричества требует целенаправленного анализа задействованных процессов и реализации мер контроля.

Список литературы

  1. Eckhoff, R.K. Взрывы пыли в обрабатывающих производствах . 2-е изд. Оксфорд, Великобритания: Elsevier, 1997.
  2. .
  3. Международный совет кодов (ICC). Международный кодекс пожарной безопасности . Фоллс-Черч, Вирджиния: ICC, 2015.
  4. Luttgens, G., and N. Wilson. Опасность электростатического разряда . 1-е изд. Оксфорд, Великобритания: Linacre House, 1997.
  5. .
  6. Национальная ассоциация противопожарной защиты (NFPA). Справочник по противопожарной защите . 20-е изд.Куинси, Массачусетс: NFPA, 2008.
  7. .
  8. Рекомендуемая практика по статическому электричеству . NFPA 77. Куинси, Массачусетс: NFPA, 2014.

¹ Точка воспламенения . Точка воспламенения – это минимальная температура, при которой из жидкости выделяется достаточное количество пара для образования горючей смеси с воздухом.


АВТОРСКИЕ ПРАВА © 2016, ISO Services, Inc.

Рекомендации, советы и содержание этого материала предназначены только для информационных целей и не предназначены для рассмотрения всех возможных юридических обязательств, опасностей, нарушений кодекса, потенциальных убытков или исключений из надлежащей практики.Ганноверская страховая компания, а также ее филиалы и дочерние компании («Ганновер») прямо отказываются от каких-либо гарантий или заявлений о том, что принятие любых рекомендаций или советов, содержащихся в данном документе, сделает любые помещения, имущество или работу безопасными или в соответствии с любым законом или постановлением. Ни при каких обстоятельствах этот материал или ваше согласие с любыми рекомендациями или советами, содержащимися в нем, ни при каких обстоятельствах не должны истолковываться как устанавливающие наличие или доступность какого-либо страхового покрытия в The Hanover.Предоставляя вам эту информацию, The Hanover не берет на себя (и, в частности, отказывается от каких-либо обязательств) перед вами никаких обязательств или ответственности. Решение о принятии или выполнении любых рекомендаций или советов, содержащихся в этом материале, должно приниматься вами.

LC ДЕК 2018 2015-152
171-1199 (18.04)

Электростатика – Электроскоп – Электричество и магнетизм – Физические демонстрации – Физика – Научно-технический колледж

В нашем распоряжении несколько электроскопов.

Они отлично подходят для демонстрации базовой электростатики. Бугорок, торчащий сверху, соединяется с материалом посередине. Материал посередине состоит из продолжения твердого проводящего стержня и полосы фольги. Обычно они сидят в контакте, но если им дать заряд, они оттолкнутся. Электроскоп можно заряжать с помощью стеклянных или резиновых стержней, натертых на шелке или шерсти. Необходимое оборудование для серии экспериментов с электроскопом:

Когда стеклянный стержень натирают шелком, шелк отделяет электроны от стержня, оставляя на нем положительный заряд.Когда твердый резиновый стержень натирается шерстью, он забирает электроны из шерсти, получая отрицательный заряд.

На самом деле, это один из самых надежных электростатических экспериментов, которые я когда-либо видел. Фотографии, представленные на этой странице, были сделаны в жаркий влажный день (который обычно означает смерть для электростатических экспериментов). Если ваши результаты кажутся довольно слабыми и не впечатляющими, потрите стержни более энергично и дольше, и это должно сработать.

А теперь займемся наукой. Класс, знакомьтесь с электроскопом:

Фольга находится на левой стороне токопроводящего стержня.На этом электроскопе нет чистой зарядки. Это содержательный, но скучный электроскоп. Давайте немного перемешаем. Натираем резиновым стержнем, делая отрицательным, приближаем и …

Фольга движется! Это магия! Фольга движется, потому что фольга и проводящий стержень рядом с ней заряжены отрицательно. Откуда мне это знать? Я умен, вот почему.

Когда отрицательно заряженный стержень приближается к электроскопу, положительные заряды притягиваются к нему, а отрицательные заряды отталкиваются от него.Поскольку протоны не движутся (они составляют структуру всего сущего), отрицательно заряженные электроны – единственные заряженные частицы в электроскопе, которые могут двигаться в ответ на этот заряженный стержень. Когда резиновый стержень приближается, электроны проталкиваются вниз в электроскоп, отрицательно заряжая проводящий стержень и фольгу, оставляя верхнюю часть заряженной положительно. Обратите внимание, что чистый заряд электроскопа по-прежнему равен нулю. Если я уберу стержень в этот момент:

Если теперь мы приведем отрицательно заряженный резиновый стержень в контакт с верхней частью электроскопа, чтобы заряд мог передаваться между электроскопом и резиновым стержнем, этого не произойдет.

Электроскоп имеет чистый нейтральный заряд, а резиновый стержень имеет чистый отрицательный заряд. Если они соприкоснутся, оба получат чистый отрицательный заряд. Уберите резиновый стержень, и электроскоп останется с отрицательным зарядом.

Верните отрицательно заряженный стержень, и еще больше электронов попадет в электроскоп.

Зарядите стеклянный стержень шелком (придав ему положительный заряд) и поднесите его ближе, и избыток электронов сконцентрируется сильнее к верху, немного нейтрализуя нижнюю часть.

И, конечно, я могу заземлить электроскоп, просто прикоснувшись к нему и украдив все эти лишние электроны.

Теперь электроскоп снова нейтрален. Чистая плата за это не взимается.

Итак, мы зарядили электроскоп контактным способом, но теперь давайте попробуем кое-что, что сначала кажется немного больше похожим на колдовство. Заряжаем электроскоп индукцией. Для начала, давайте снова зарядим резиновый стержень и поднесем его ближе, но на этот раз мой палец останется на электроскопе, чтобы он был заземлен.

Нет заряда, что понятно, потому что электроскоп заземлен. Я воздержусь от описания физики для пары картинок, чтобы сделать его более драматичным. А пока давайте просто пройдемся по процедуре. Убираю палец, чтобы он больше не был заземлен, и …

… ничего. Даже с отрицательно заряженным стержнем рядом с ним мы все равно не видим никакого заряда внизу. Что это может означать для чистого заряда электроскопа? Давайте поспешим к следующему шагу, прежде чем вы опередите меня и правильно ответите на него: давайте уберем резиновую удочку.

Заряжено сейчас! Превосходно. Итак, очевидно, поскольку мы использовали отрицательно заряженный стержень для его зарядки, фольга должна подняться еще выше, если мы снова приблизим ее, как мы видели в предыдущем упражнении по зарядке контактом, верно?

Неправильно. Первый намек должен был быть сделан двумя фотографиями назад, что выглядит очень похоже. СЕЙЧАС раскрою физику зарядки индукцией. Когда я заземлил электроскоп, я дал электронам другой путь выхода вместо того, чтобы идти вниз по проводящему стержню.Человеческое тело представляет собой огромный резервуар заряда по сравнению с электроскопом, поэтому все подвижные электроны предпочтут попасть в мой палец, а не по проводящему стержню и фольге. Таким образом, когда отрицательно заряженный стержень приближается, электроскоп получает положительный суммарный заряд, поскольку некоторые из его электронов уходят в мой палец. Верхняя часть, ближайшая к отрицательно заряженному стержню, заряжается, но нижняя часть электроскопа остается нейтральной. Когда резиновый стержень удаляется, заряды внутри электроскопа немного расходятся, и, таким образом, весь электроскоп приобретает положительный заряд.

Чтобы подтвердить это, мы поднесем положительно заряженный стеклянный стержень поближе и увидим, что фольга действительно получает более сильный положительный заряд.

Последнее, что осталось сделать, это заземлить электроскоп. На этот раз давайте сделаем это с огнем, потому что с огнем все веселее и интереснее *!

Огонь ионизирует воздух вокруг себя, разделяя положительные и отрицательные заряды. Если это ионизированное облако поднести к чему-то заряженному, это поможет его нейтрализовать.В этом случае свободные электроны притягиваются к положительно заряженному электроскопу. Они встречаются, поладили и с тех пор живут долго и счастливо.

* Коллеги по химическому факультету неоднократно сообщали мне, что не разделяют этого мнения. Вот почему физика всегда лучше.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *