Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

мегаом [МОм] в ом [Ом] • Конвертер электрического сопротивления • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц измерения

Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисления.Конвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер плотности потока водяного параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с возможностью выбора опорного давленияКонвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер реактивной мощностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева

Нагретый до 800°C резистивный нагревательный элемент.

Введение

Резисторы на этой плате из блока питания обведены красными прямоугольниками и составляют половину ее элементов

Термину сопротивление в некотором отношении повезло больше, чем другим физическим терминам: мы с раннего детства знакомимся с этим свойством окружающего мира, осваивая среду обитания, особенно когда тянемся к приглянувшейся игрушке в руках другого ребёнка, а он сопротивляется этому. Этот термин нам интуитивно понятен, поэтому в школьные годы во время уроков физики, знакомясь со свойствами электричества, термин электрическое сопротивление не вызывает у нас недоумения и его идея воспринимается достаточно легко.

Число производимых в мире технических реализаций электрического сопротивления — резисторов — не поддаётся исчислению. Достаточно сказать, что в наиболее распространённых современных электронных устройствах — мобильных телефонах, смартфонах, планшетах и компьютерах — число элементов может достигать сотен тысяч. По статистике резисторы составляют свыше 35% элементов электронных схем, а, учитывая масштабы производства подобных устройств в мире, мы получаем умопомрачительную цифру в десятки триллионов единиц. Наравне с другими пассивными радиоэлементами — конденсаторами и катушками индуктивности, резисторы лежат в основе современной цивилизации, являясь одним из китов, на которых покоится наш привычный мир.

Кабели должны обладать возможно меньшим электрическим сопротивлением

Определение

Электрическое сопротивление — это физическая величина, характеризующая некоторые электрические свойства материи препятствовать свободному, без потерь, прохождению электрического тока через неё. В терминах электротехники электрическое сопротивление есть характеристика электрической цепи в целом или её участка препятствовать протеканию тока и равная, при постоянном токе, отношению напряжения на концах цепи к силе тока, протекающего по ней.

Электрическое сопротивление связано с передачей или преобразованием электрической энергии в другие виды энергии. При необратимом преобразовании электрической энергии в тепловую, ведут речь об активном сопротивлении. При обратимом преобразовании электрической энергии в энергию магнитного или электрического поля, если в цепи течет переменный ток, говорят о реактивном сопротивлении. Если в цепи преобладает индуктивность, говорят об индуктивном сопротивлении, если ёмкость — о ёмкостном сопротивлении.

Полное сопротивление (активное и реактивное) для цепей переменного тока описывается понятиям импеданса, а для переменных электромагнитных полей — волновым сопротивлением. Сопротивлением иногда не совсем правильно называют его техническую реализацию — резистор, то есть радиодеталь, предназначенную для введения в электрические цепи активного сопротивления.

Закон Ома

Сопротивление обозначается буквой R или r и считается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать как

Закон Ома

R = U/I

где

R — сопротивление, Ом;

U — разность электрических потенциалов (напряжение) на концах проводника, В;

I — сила тока, протекающего между концами проводника под действием разности потенциалов, А.

Эта формула называется законом Ома, по имени немецкого физика, открывшего этот закон. Немаловажную роль в расчёте теплового эффекта активного сопротивления играет закон о выделяемой теплоте при прохождении электрического тока через сопротивление — закон Джоуля-Ленца:

Q = I2 · R · t

где

Q — количество выделенной теплоты за промежуток времени t, Дж;

I — сила тока, А;

R — сопротивление, Ом;

t — время протекания тока, сек.

Георг Симон Ом

Единицы измерения

Основной единицей измерения электрического сопротивления в системе СИ является Ом и его производные: килоом (кОм), мегаом (МОм). Соотношения единиц сопротивления системы СИ с единицами других систем вы можете найти в нашем конвертере единиц измерения.

Историческая справка

Первым исследователем явления электрического сопротивления, а, впоследствии, и автором знаменитого закона электрической цепи, названного затем его именем, стал выдающийся немецкий физик Георг Симон Ом. Опубликованный в 1827 году в одной из его работ, закон Ома сыграл определяющую роль в дальнейшем исследовании электрических явлений. К сожалению, современники не оценили его исследования, как и многие другие его работы в области физики, и, по распоряжению министра образования за опубликование результатов своих исследований в газетах он даже был уволен с должности преподавателя математики в Кёльне. И только в 1841 году, после присвоения ему Лондонским королевским обществом на заседании 30 ноября 1841 г. медали Копли, к нему наконец-то приходит признание. Учитывая заслуги Георга Ома, в 1881 г. на международном конгрессе электриков в Париже было решено назвать его именем теперь общепринятую единицу электрического сопротивления («один ом»).

Физика явления в металлах и её применение

По своим свойствам относительной величины сопротивления, все материалы подразделяются на проводники, полупроводники и изоляторы. Отдельным классом выступают материалы, имеющие нулевое или близкое к таковому сопротивление, так называемые сверхпроводники. Наиболее характерными представителями проводников являются металлы, хотя и у них сопротивление может меняться в широких пределах, в зависимости от свойств кристаллической решётки.

По современным представлениям, атомы металлов объединяются в кристаллическую решётку, при этом из валентных электронов атомов металла образуется так называемый «электронный газ».

Перегорание нити лампы накаливания в воздухе

Относительно малое сопротивление металлов связано именно с тем обстоятельством, что в них имеется большое количество носителей тока — электронов проводимости — принадлежащих всему ансамблю атомов данного образца металла. Возникающий при приложении внешнего электрического поля, ток в металле представляет собой упорядоченное движение электронов. Под действием поля электроны ускоряются и приобретают определённый импульс, а затем сталкиваются с ионами решётки. При таких столкновениях, электроны изменяют импульс, частично теряя энергию своего движения, которая преобразуется во внутреннюю энергию кристаллической решётки, что и приводит к нагреванию проводника при прохождении по нему электрического тока. Необходимо заметить, что сопротивление образца металла или сплавов металлов данного состава зависит от его геометрии, и не зависит от направления приложенного внешнего электрического поля.

Дальнейшее приложение всё более сильного внешнего электрического поля приводит к нарастанию тока через металл и выделению всё большего количества тепла, которое, в конечном итоге, может привести к расплавлению образца. Это свойство применяется в проволочных предохранителях электрических цепей. Если температура превысила определенную норму, то проволока расплавляется, и прерывает электрическую цепь — по ней больше не может течь ток. Температурную норму обеспечивают, выбирая материал для проволоки по его температуре плавления. Прекрасный пример того, что происходит с предохранителями, даёт опыт съёмки перегорания нити накала в обычной лампе накаливания.

Наиболее типичным применением электрического сопротивления является применение его в качестве тепловыделяющего элемента. Мы пользуемся этим свойством при готовке и подогреве пищи на электроплитках, выпекании хлеба и тортов в электропечах, а также при работе с электрочайниками, кофеварками, стиральными машинами и электроутюгами. И совершенно не задумываемся, что своему комфорту в повседневной жизни мы опять же должны быть благодарны электрическому сопротивлению: включаем ли бойлер для душа, или электрический камин, или кондиционер в режим подогрева воздуха в помещении — во всех этих устройствах обязательно присутствует нагревательный элемент на основе электрического сопротивления.

В промышленном применении электрическое сопротивление обеспечивает приготовление пищевых полуфабрикатов (сушка), проведение химических реакций при оптимальной температуре для получения лекарственных форм и даже при изготовлении совершенно прозаических вещей, вроде полиэтиленовых пакетов различного назначения, а также при производстве изделий из пластмасс (процесс экструдирования).

Физика явления в полупроводниках и её применение

В полупроводниках, в отличие от металлов, кристаллическая структура образуется за счёт ковалентных связей между атомами полупроводника и поэтому, в отличие от металлов, в чистом виде они имеют значительно более высокое электрическое сопротивление. Причем, если говорят о полупроводниках, обычно упоминают не сопротивление, а собственную проводимость.

Микропроцессор и видеокарта

Привнесение в полупроводник примесей атомов с большим числом электронов на внешней оболочке, создаёт донорную проводимость n-типа. При этом «лишние» электроны становятся достоянием всего ансамбля атомов в данном образце полупроводника и его сопротивление понижается. Аналогично привнесение в полупроводник примесей атомов с меньшим числом электронов на внешней оболочке, создаёт акцепторную проводимость р-типа. При этом «недостающие» электроны, называемые «дырками», становятся достоянием всего ансамбля атомов в данном образце полупроводника и его сопротивление также понижается.

Наиболее интересен случай соединения областей полупроводника с различными типами проводимости, так называемый p-n переход. Такой переход обладает уникальным свойством анизотропии — его сопротивление зависит от направления приложенного внешнего электрического поля. При включении «запирающего» напряжения, пограничный слой p-n перехода обедняется носителями проводимости и его сопротивление резко возрастает. При подаче «открывающего» напряжения в пограничном слое происходит рекомбинация носителей проводимости в пограничном слое и сопротивление p-n перехода резко понижается.

На этом принципе построены важнейшие элементы электронной аппаратуры — выпрямительные диоды. К сожалению, при превышении определённого тока через p-n переход, происходит так называемый тепловой пробой, при котором как донорные, так и акцепторные примеси перемещаются через p-n переход, тем самым разрушая его, и прибор выходит из строя.

Главный вывод о сопротивлении p-n переходов заключается в том, что их сопротивление зависит от направления приложенного электрического поля и носит нелинейный характер, то есть не подчиняется закону Ома.

Несколько иной характер носят процессы, происходящие в МОП-транзисторах (Металл-Окисел-Полупроводник). В них сопротивлением канала исток-сток управляет электрическое поле соответствующей полярности для каналов p- и n-типов, создаваемое затвором. МОП-транзисторы почти исключительно используются в режиме ключа — «открыт-закрыт» — и составляют подавляющее число электронных компонентов современной цифровой техники.

Вне зависимости от исполнения, все транзисторы по своей физической сути представляют собой, в известных пределах, безынерционные управляемые электрические сопротивления.

В ксеноновой лампе-вспышке (обведена красной линией) вспышка происходит после ионизации газа в результате уменьшения его электрического сопротивления

Физика явления в газах и её применение

В обычном состоянии газы являются отличными диэлектриками, поскольку в них имеется очень малое число носителей заряда — положительных ионов и электронов. Это свойство газов используется в контактных выключателях, воздушных линиях электропередач и в воздушных конденсаторах, так как воздух представляет собой смесь газов и его электрическое сопротивление очень велико.

Так как газ имеет ионно-электронную проводимость, при приложении внешнего электрического поля сопротивление газов вначале медленно падает из-за ионизации всё большего числа молекул. При дальнейшем увеличении напряжения внешнего поля возникает тлеющий разряд и сопротивление переходит на более крутую зависимость от напряжения. Это свойство газов использовалась ранее в газонаполненных лампах — стабисторах — для стабилизации постоянного напряжения в широком диапазоне токов. При дальнейшем росте приложенного напряжения, разряд в газе переходит в коронный разряд с дальнейшим снижением сопротивления, а затем и в искровой — возникает маленькая молния, а сопротивление газа в канале молнии падает до минимума.

Основным компонентом радиометра-дозиметра Терра-П является счетчик Гейгера-Мюллера. Его работа основана на ударной ионизации находящегося в нем газа при попадании гамма-кванта, в результате которой резко снижается его сопротивление, что и регистрируется.

Свойство газов светиться при протекании через них тока в режиме тлеющего разряда используется для оформления неоновых реклам, индикации переменного поля и в натриевых лампах. То же свойство, только при свечении паров ртути в ультрафиолетовой части спектра, обеспечивает работу и энергосберегающих ламп. В них световой поток видимого спектра получается в результате преобразования ультрафиолетового излучения флуоресцентным люминофором, которым покрыты колбы ламп. Сопротивление газов точно так же, как и в полупроводниках, носит нелинейный характер зависимости от приложенного внешнего поля и так же не подчиняется закону Ома.

Физика явления в электролитах и её применение

Сопротивление проводящих жидкостей — электролитов — определяется наличием и концентрацией ионов различных знаков — атомов или молекул, потерявших или присоединивших электроны. Такие ионы при недостатке электронов называются катионами, при избытке электронов — анионами. При приложении внешнего электрического поля (помещении в электролит электродов с разностью потенциалов) катионы и анионы приходят в движение; физика процесса заключается в разрядке или зарядке ионов на соответствующем электроде. При этом на аноде анионы отдают излишние электроны, а на катоде катионы получают недостающие.

Гальваническое покрытие хромом пластмассовой душевой головки. На внутренней стороне, не покрытой хромом, виден тонкий красный слой меди.

Существенным отличием электролитов от металлов, полупроводников и газов является перемещение вещества в электролитах. Это свойство широко используется в современной технике и медицине — от очистки металлов от примесей (рафинирование) до внедрения лекарственных средств в больную область (электрофорез). Сверкающей сантехнике наших ванн и кухонь мы обязаны процессам гальваностегии – никелированию и хромированию. Излишне вспоминать, что качество покрытия достигается именно благодаря управлению сопротивлением раствора и его температурой, а также многими другими параметрами процесса осаждения металла.

Поскольку человеческое тело с точки зрения физики представляет собой электролит, применительно к вопросам безопасности существенную роль играет знание о сопротивлении тела человека протеканию электрического тока. Хотя типичное значение сопротивления кожи составляет около 50 кОм (слабый электролит), оно может варьироваться в зависимости от психоэмоционального состояния конкретного человека и условий окружающей среды, а также площади контакта кожи с проводником электрического тока. При стрессе и волнении или при нахождении в некомфортных условиях оно может значительно снижаться, поэтому для расчётов сопротивления человека в технике безопасности принято значение 1 кОм.

Любопытно, что на основе измерения сопротивления различных участков кожи человека, основан метод работы полиграфа — «детектора» лжи, который, наряду с оценкой многих физиологических параметров, определяет, в частности, отклонение сопротивления от текущих значений при задавании испытуемому «неудобных» вопросов. Правда этот метод ограниченно применим: он даёт неадекватные результаты при применении к людям с неустойчивой психикой, к специально обученным агентам или к людям с аномально высоким сопротивлением кожи.

В известных пределах к току в электролитах применим закон Ома, однако, при превышении внешнего прилагаемого электрического поля некоторых характерных для данного электролита значений, его сопротивление также носит нелинейный характер.

Физика явления в диэлектриках и её применение

Сопротивление диэлектриков весьма высоко, и это качество широко используется в физике и технике при применении их в качестве изоляторов. Идеальным диэлектриком является вакуум и, казалось бы, о каком сопротивлении в вакууме может идти речь? Однако, благодаря одной из работ Альберта Эйнштейна о работе выхода электронов из металлов, которая незаслуженно обойдена вниманием журналистов, в отличие от его статей по теории относительности, человечество получило доступ к технической реализации огромного класса электронных приборов, ознаменовавших зарю радиоэлектроники, и по сей день исправно служащих людям.

Магнетрон 2М219J, установленный в бытовой микроволновой печи

Согласно Эйнштейну, любой проводящий материал окружён облаком электронов, и эти электроны, при приложении внешнего электрического поля, образуют электронный луч. Вакуумные двухэлектродные приборы обладают различным сопротивлением при смене полярности приложенного напряжения. Раньше они использовались для выпрямления переменного тока. Трёх- и более электродные лампы использовались для усиления сигналов. Теперь они вытеснены более выгодными с энергетической точки зрения транзисторами.

Однако осталась область применения, где приборы на основе электронного луча совершенно незаменимы — это рентгеновские трубки, применяемые в радиолокационных станциях магнетроны и другие электровакуумные приборы. Инженеры и по сей день всматриваются в экраны осциллографов с электронно-лучевыми трубками, определяя характер происходящих физических процессов, доктора не могут обойтись без рентгеновских снимков, и все мы ежедневно пользуемся микроволновыми печами, в которых стоят СВЧ-излучатели — магнетроны.

Поскольку характер проводимости в вакууме носит только электронный характер, сопротивление большинства электровакуумных приборов подчиняется закону Ома.

Резисторы поверхностного монтажа

Резисторы: их назначение, применение и измерение

Переменный регулировочный резистор

Резистор (англ. resistor, от лат. resisto — сопротивляюсь) — элемент электрической цепи, предназначенный для использования его в качестве электрического сопротивления. Помимо этого, резисторы, являясь технической реализацией электрического сопротивления, также характеризуются паразитной ёмкостью, паразитной индуктивностью и нелинейностью вольт-амперной характеристики.

Резистор — электронный прибор, необходимый во всех электронных схемах. По статистике, 35% любой радиосхемы составляют именно резисторы. Конечно, можно попытаться выдумать схему без резисторов, но это будут лишь игры разума. Практические электрические и электронные схемы без резисторов немыслимы. С точки зрения инженера-электрика любой прибор, обладающий сопротивлением, может называться резистором вне зависимости от его внутреннего устройства и способа изготовления. Ярким примером тому служит история с крушением дирижабля «Италия» полярного исследователя Нобиле. Радисту экспедиции удалось отремонтировать радиостанцию и подать сигнал бедствия, заменив сломанный резистор грифелем карандаша, что, в конечном итоге, и спасло экспедицию.

10-ваттный керамический резистор

Резисторы являются элементами электронной аппаратуры и могут применяться в качестве дискретных компонентов или составных частей интегральных микросхем. Дискретные резисторы классифицируются по назначению, виду вольтамперной характеристики, по способу защиты и по способу монтажа, характеру изменения сопротивления, технологиям изготовления и рассеиваемой тепловой энергии. Обозначение резистора в схемах приведено на рисунке ниже:

Резисторы можно соединять последовательно и параллельно. При последовательном соединении резисторов общее сопротивление цепи равно сумме сопротивлений всех резисторов:

R = R1 + R2 + … + Rn

При параллельном соединении резисторов их общее сопротивление цепи равно

R = R1 · R2 · … · Rn/(R1 + R2 + … + Rn)

По назначению резисторы делятся на:

  • резисторы общего назначения;
  • резисторы специального назначения.

По характеру изменения сопротивления резисторы делятся на:

По способу монтажа:

  • для печатного монтажа;
  • для навесного монтажа;
  • для микросхем и микромодулей.

По виду вольт-амперной характеристики:

Цветовая маркировка резисторов

В зависимости от габаритов и назначения резисторов, для обозначения их номиналов применяются цифро-символьная маркировка или маркировка цветными полосками для резисторов навесного или печатного монтажа. Символ в маркировке может играть роль запятой в обозначении номинала: для обозначения Ом применяются символы R и E, для килоом — символ К, для мегаом — символ М. Например: 3R3 означает номинал в 3,3 Ом, 33Е = 33 Ом, 4К7 = 4,7 кОм, М56 = 560 кОм, 1М0 = 1,0 Мом.

Цветовая маркировка резисторов

Измерение сопротивления резистора с помощью мультиметра

Для малогабаритных резисторов навесного монтажа и печатного применяется маркировка цветными полосками по имеющимся таблицам. Чтобы не рыться в справочниках, в Интернете можно найти множество различных программ для определения номинала резистора.

Резисторы для поверхностного монтажа (SMD) маркируются тремя или четырьмя цифрами или тремя символами, в последнем случае номинал тоже определяется по таблице или по специальным программам.

Измерение резисторов

Наиболее универсальным и практичным методом определения номинала резистора и его исправности является непосредственное измерение его сопротивления измерительным прибором. Однако при измерении непосредственно в схеме следует помнить, что ее питание должно быть отключено и что измерение будет неточным.

Литература

Автор статьи: Сергей Акишкин

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Как измерить сопротивление мультиметром. Измерение сопротивления мультиметром

У каждого человека хотя бы раз в жизни возникала необходимости провести те или иные измерения электрических величин. Будь то напряжение в розетке или просто проверить зарядку аккумулятора в автомобиле все мы прибегаем к помощи измерительных приборов. Во времена СССР с измерительными приборами было очень туго, достать их было очень трудно, и не все понимали, как ими пользоваться.

На сегодняшний день проблем с приобретением того или иного инструментами нет можно купить что душе угодно хоть лабораторию для измерений, как говорится – «любой каприз за ваши деньги».

Но речь в сегодняшней статье пойдет не о лаборатория для измерений (это уже на профессиональном уровне), а об обычных мультиметрах которыми так часто пользуются электрики включая меня.

Приветствую всех друзья на сайте «Электрик в доме». Ранее я уже публиковал статьи о том как пользоваться мультиметром при проведении измерений, но ввиду того что мне приходит очень много вопросов и комментариев с просьбой рассказать

как можно проверить исправность лампочки или замерить сопротивление резистора, решил опубликовать подробный материал как измерить сопротивление мультиметром.

Метод измерения электрического сопротивления – как работает прибор

Принцип, по которому выполняется измерение электрического сопротивления мультиметром, основан на самом главном законе электротехники – законе Ома. Формула известна нам из школьного курса физики, говорит следующее: сила тока, протекающая по участку цепи прямо пропорциональна напряжению (ЭДС) и обратно пропорциональна сопротивлению на этом участке I (сила тока) = U (напряжение) / R (сопротивление).

Именно по этой связи работает прибор. Зная две из величин, можно легко вычислит третью. В качестве источника напряжения используется встроенный источник (DC) питания прибора, которым является штатная батарейка напряжением 9 В.

По сути измерения выполняются косвенным методом. Если приложить к щупам прибора измеряемое сопротивление, например Rх, ток протекающий в цепи будет зависеть только от него. Зная силу тока и напряжение можно легко вычислить сопротивление.

Настройки прибора перед измерениями

Итак, друзья давайте поближе познакомимся с самим прибором. В моем случает это цифровой мультиметр DT9208A. В стандартном комплекте идет одна пара щупов для силовых измерений и термопара для измерения температуры, которой я еще ни разу не пользовался.

На передней панели имеется круговой переключатель. Именно с помощью этого переключателя выполняется выбор рабочего режима и диапазона измерений. Переключатель работает как «трещетка» и фиксируется в каждом новом положении.

Вся круговая панель разбита не сектора и имеет разноцветную маркировку (это в моем случае). Иногда сектора обводят отдельными линиями, как бы отделяя необходимый параметр.

Сектор измерения сопротивлений расположен вверху и разбит на семь диапазонов: 200, 2k, 20k, 200k, 2M, 20M, 200M. Приставки «k» и «M» означают кило (10 в 3-й степени) и мега (10 в 6-й степени) соответственно.

Для работы необходимо переключатель установить на нужную позицию сектора. Нас интересует сопротивление, соответственно, перед тем как измерить сопротивление мультиметром нужно выставить переключатель в сектор обозначенный значком «Ω».

Для удобства работы с прибором щупы имеют разную расцветку. Разницы нет, куда вставлять какой щуп но общепринятым правилом считается что черный щуп вставляется в клемму обозначенную «com» (сокращенно от common – общий), а красный щуп вставляется в клемму обозначенную «VΩCX+».

Перед выполнением любых измерений необходимо проверить работоспособности самого прибора, так как может оказаться обрыв в измерительной цепи (например, плохой контакт щупов). Для этого концы щупов закорачивают между собой. Если прибор исправен и в цепи нет обрыва, то на дисплее появятся нулевые показания. Возможно, показания будут не нулевыми, а тысячные части Ом. Это связано с сопротивлением проводов измерительных проводов и переходным сопротивлением между щупами и их клеммами.

При разомкнутых щупах на дисплее будет отображаться «1» (единица) с отметкой диапазона измерений.

Такими несложными действиями выполняется подготовка мультиметра для измерения сопротивления.

Некоторые мультиметры оснащаются полезной опцией, называемой «прозвонкой». Если установить переключатель режимов работы на значок диода, при замыкании щупов звучит сигнал (зуммер). Это позволяет проверять исправность цепей и прямые переходы полупроводников сопротивлением до 50 Ом на слух, не отвлекаясь на дисплей.

Как измерить сопротивление резистора мультиметром

С теорией ознакомились и на первый взгляд вроде бы все понятно, однако как показывает практика, именно при практических работах у людей часто возникают вопросы. Поэтому давайте попробуем провести измерения какого-нибудь элемента, например резистора.

Берем вот такой постоянный резистор. Это один из распространенных видов постоянных резисторов. Его сопротивление должно быть 50 кОм, я это точно знаю, так как покупал его в магазине. Проверяем, так ли это? Для этого прикладываем один щуп к одному концу, другой – к другому концу.

Перед тем как измерить сопротивление мультиметром необходимо выставить рабочий переключатель в нужный диапазон. На какую отметку устанавливать ползунок, если не известно номинал резистора?

Необходимо чтобы переключатель всегда находился в ближайшем большем положении измерений. Так как я заведомо знаю, что номинал резистора 50 кОм я выставляю переключатель в ближайшее большее положение, в данном случае это – 200k. Если установить переключатель в положении меньше соответствующему сопротивлению (на отметку 20k) на дисплее НЕ БУДУТ отображаться данные. Сработает внутренняя блокировка.

Это касается не только измерения сопротивлений, но и при измерении таких величин как напряжение и ток. Например если вы хотите измерить напряжение в розетке, а по шкале из рабочих диапазонов положения 200 и 750 В, переключатель необходимо установить в положение 750 В. Если установить переключатель в положение 200 В и сунуть щупы в розетку прибор от этого не повредится так как внутри имеется защитная блокировка на этот счет, но все равно вы ни каких данных не получите.

Еще один из резисторов который у меня оказался под рукой номиналом 10 Ом, давайте замерим его сопротивление.

Выставляем переключатель мультиметра на отметке 200 (это является ближайшее большее положение для данного номинала) и измеряем.

Друзья хочу отметить, что переключатель необходимо выставлять именно на ближайшее большее положение это этого будет зависеть точность измерений. Чем выше предел измерений от номинала измеряемого сопротивления, тем большую погрешность будет давать прибор.

Измеряем сопротивление переменного резистора

Друзья это мы замеряли сопротивление постоянного резистора, электрическое сопротивление которого не изменятся и не может регулироваться. Давайте теперь попробуем выполнить замеры для

переменного резистора.

Отличие между ними в том, что сопротивление последнего можно менять вручную переключая ползунок в нужное положение.

У меня имеется переменный резистор на 10 кОм о чем свидетельствует надпись на нем.

Как измерить сопротивление мультиметром в этом случае? Все очень просто значение 10 кОм соответствует между двумя крайними контактами. Контакт который расположен по середине является «плавающим». Если приложить щупы между крайним и средним контактом и регулировать ползунок (крутить по или против часовой стрелки), то можно увидеть, как изменяется сопротивление в зависимости от положений ползунка.

Сопротивление должно равномерно и непрерывно возрастать или уменьшаться от нуля до номинального значения. Самая частая неисправность – исчезновение контакта токосъемника при прокручивании проявится показанием «бесконечности» прибором.

Проверка лампочек накаливания мультиметром

А теперь давайте рассмотрим практическое применение мультиметра в бытовых условиях. Часто дома возникают такие неприятные ситуации как неисправность освещения.

Причем причина может быть самой неординарной от перегорания самой лампочки до неисправности светильника или выключателя освещения либо куда хуже повреждение в распределительной коробке.

Наиболее частые неисправности, конечно же, является перегорание лампочки, поэтому прежде чем ковырять распредкоробку, нужно проверить целостности лампочки. Визуально осмотром целостности нити не всегда удается выявить неисправность. Тем более, не обязательно может произойти перегорание нити. Реже случается короткое замыкание в цоколе и токовых вводах (электродах).

Поэтому с помощью обычного тестера можно легко проверить не только домашнюю лампу накаливания, но и фару автомобиля или мотоцикла.

Как измерить мультиметром сопротивление нити? Нужно установить минимальный предел измерения «Ω». Одним щупом надо прикоснуться к корпусу цоколя, другой кончик прижать к верхнему контакту цоколя.

Как можно видеть сопротивление рабочей лампы накаливания мощностью 100 Вт составляет 36,7 Ом.

Если при измерениях на дисплее мультиметра будет отображаться «1», а для аналоговых (стрелочных) приборов показание «бесконечность» это будет свидетельствовать о внутреннем обрыве/перегорании нити в лампе.

На этом все дорогие друзья, надеюсь, в данной статье был полностью раскрыт вопрос как измерить сопротивление мультиметром. Если остались вопросы задавайте их в комментариях. Если статья была для вас интересной буду признателен за репост в соц.сетях.

Похожие материалы на сайте:

Понравилась статья – поделись с друзьями!

 

Как измерить электрическое сопротивление цепи мультиметром

Омметр – это измерительный прибор, служащий для определения величины сопротивления в электрических цепях. Сопротивление измеряется в Омах и обозначается латинской буквой

R. О том, что такое Ом в популярной форме изложено в статье сайта «Закон силы тока».

Структурная схема и обозначение на схемах Омметра

Измерительный прибор Омметр структурно представляет собой стрелочный или цифровой индикатор с последовательно включенной батарейкой или источником питания, как показано на фотографии.

Функцию измерения сопротивления имеют все комбинированные приборы – стрелочные тестеры и цифровые мультиметры.

На практике, прибор, который измеряет только сопротивление, используется для особых случаев, например, для измерения сопротивления изоляции при повышенном напряжении, сопротивления заземляющего контура или как образцовый, служащий для поверки других омметров боше низкой точности.

На электрических измерительных схемах омметр обозначается греческой буквой омега заключенной в окружность, как показано на фотографии.

Подготовка Омметра для измерений

Ремонт электропроводки, электротехнических и радиотехнических изделий заключается в проверке целостности проводов и в поиске нарушения контакта в их соединениях.

В одних случаях сопротивление должно быть равно бесконечности, например сопротивление изоляции. А в других – равно нулю, например сопротивление проводов и их соединений. А в некоторых случаях равно определенной величине, например сопротивление нити накала лампочки или нагревательного элемента.

Внимание! Измерять сопротивление цепей, во избежание выхода из строя Омметра, допускается выполнять только при полном их обесточивании. Необходимо вынуть вилку из розетки или вынуть батарейки из отсека. Если в схеме есть электролитические конденсаторы большей емкости, то их необходимо разрядить, замкнув выводы конденсатора через сопротивление номиналом около 100 кОм на несколько секунд.

Как и при измерениях напряжения, перед измерением сопротивления, необходимо подготовить прибор. Для этого нужно установить переключатель прибора в положение, соответствующее минимальному измерению величины сопротивления.

Перед измерениями следует проверить работоспособность прибора, так как могут быть плохими элементы питания и Омметр может не работать. Для этого нужно соединить между собой концы щупов.

У тестера стрелка при этом должна установится точно на нулевую отметку, если не установилась, то можно покрутить ручку «Уст. 0». Если не получится, надо заменить батарейки.

Для прозвонки электрических цепей, например, при проверке электрической лампочки накаливания, можно пользоваться прибором, у которого сели батарейки и стрелка не устанавливается на 0, но хоть немного реагирует при соединении щупов. Судить о целостности цепи будет возможно по факту отклонения стрелки. Цифровые приборы должны тоже показывать нулевые показания, возможно отклонение в десятых долях омов, за счет сопротивления щупов и переходного сопротивления в контактах подключения их к клеммам прибора.

При разомкнутых концах щупов, стрелка тестера должна установится в точку, обозначенную на шкале ∞, а в цифровых приборах, мигать перегрузка или высвечиваться цифра 1 на индикаторе с левой стороны.

Омметр готов к работе. Если прикоснуться концами щупов к проводнику, то в случае его целостности, прибор покажет нулевое сопротивление, в противном случае, показания не изменятся.

В дорогих моделях мультиметров есть функция прозвонки цепей со звуковой индикацией, обозначенная в секторе измерения сопротивлений символом диода. Она очень удобна при прозвонке низкоомных цепей, например проводов кабеля витых пар для Интернета или бытовой электропроводки. Если провод цел, то прозвонка сопровождается звуковым сигналом, что освобождает от необходимости считывать показания с индикатора мультиметра.

Примеры из практики измерения сопротивления изделий

Теоретически обычно все понятно, однако на практике часто возникают вопросы, на которые лучше всего помогут ответить примеры проверки омметром наиболее часто встречающихся изделий.

Проверка ламп накаливания

Перестала светить лампочка накаливания в светильнике или в автомобильных бортовых приборах, как узнать причину? Неисправен может быть выключатель, электрический патрон или электропроводка. С помощью тестера легко проверяется любая лампа накаливания из домашнего светильника или фары автомобиля, нити накала ламп дневного света и энергосберегающих ламп. Для проверки достаточно установить переключатель прибора в положение измерения минимального сопротивления и прикоснуться концами щупов к выводам цоколя лампочки.

Сопротивление нити накала лампочки составило 51 Ом, что свидетельствует о ее исправности. Если бы нить была в обрыве, то прибор показал бы бесконечное сопротивление. Сопротивление галогенной лампочки на 220 В мощностью 50 ватт при свечении составляет около 968 Ом, автомобильной лампочки на 12 вольт мощностью 100 ватт, около 1,44 Ом.

Стоит заметить, что сопротивление нити лампы накаливания в холодном состоянии (когда лампочка не горит) в несколько раз меньше, чем в разогретом. Это связано с физическим свойством вольфрама. Его сопротивление с разогревом нелинейно возрастает. Поэтому лампы накаливания, как правило, перегорают в момент включения.

К сожалению светодиодные и энергосберегающие лампы без разборки мультиметром не проверить, так как питающее напряжение с выводов цоколя подается на диодный мост драйвера.

С помощью онлайн калькулятора вы можете самостоятельно рассчитать сопротивление любой лампочки накаливания или нагревательного элемента, например, ТЭНа, электрического паяльника.

Проверка звуковоспроизводящих наушников

Бывает у наушников в одном из излучателей, или в обоих сразу, звук искажаться, периодически исчезает или отсутствует. Тут возможны два варианта, либо неисправны наушники, или устройство, с которого поступает сигнал. С помощью омметра легко найти причину их поломки и отремонтировать наушники.

Для проверки наушников нужно подсоединить концы щупов к их разъему. Обычно наушники подключаются к аппаратуре с помощью разъема типа Джек 3,5 мм, показанному на фотографии.

Одним концом щупа прикасаются к общему выводу, а вторым по очереди к выводам правого и левого каналов. Сопротивление должно быть одинаковым и составлять около 40 Ом. Обычно в паспорте на наушники сопротивление указывается.

Если сопротивление каналов сильно отличается, то возможно в проводах имеется короткое замыкание или обрыв провода. Убедиться в этом легко, достаточно концы щупов подсоединить к выводам правого и левого каналов. Сопротивление должно быть в два раза больше, чем одного наушника, то есть уже 80 Ом. Практически измеряется суммарное сопротивление последовательно включенных излучателей.

Если сопротивление при шевелении проводников во время измерений изменяется, значит, провод в каком-то месте перетертый. Обычно провода перетираются в местах выхода из Джека или излучателей.

Для локализации места обрыва провода нужно во время измерений, изгибать провод локально, зафиксировав остальную его часть. По нестабильности показаний омметра вы определите место дефекта. Если у Джека, то нужно приобрести разборный разъем, откусить старый с участком плохого провода и распаять провод на контакты нового Джека.

Если обрыв находится у входа в наушники, то нужно их разобрать, удалить дефектную часть провода, зачистить концы и припаять, к тем же контактам, к которым провода были припаяны раньше. В статье сайта «Как паять паяльником» Вы можете ознакомиться об искусстве пайки.

Измерение номинала резистора (сопротивления)

Резисторы (сопротивления) широко применяются в электрических схемах. Поэтому при ремонте электронных устройств возникает необходимость проверки исправности резистора или определения его величины.

На электрических схемах резистор обозначается в виде прямоугольника, внутри которого иногда пишут римскими цифрами его мощность. I – один ватт, II – два ватта, IV – четыре ватта, V – пять ватт.

Проверить резистор (сопротивление) и определить его номинал можно с помощью мультиметра, включенного в режим измерения сопротивления. В секторе режима измерения сопротивления, предусмотрено несколько положений переключателя. Это сделано для того, чтобы повысить точность результатов измерений.

Например, положение 200 позволить измерять сопротивления величиной до 200 Ом. 2k – до 2000 Ом (до 2 кОм). 2M – до 2000000 Ом. (до 2 МОм). Буква k после цифр обозначает приставку кило – необходимость умножения числа на 1000, M обозначает Мега, и число нужно умножить на 1 000 000.

Если переключатель установить в положение 2k, то при измерении резистора номиналом 300 кОм прибор покажет перегрузку. Необходимо переключить его в положение 2М. В отличие, от измерения напряжения, в каком положении находится переключатель, не имеет значения, всегда можно в процессе измерений его переключить.

Онлайн калькуляторы для определения номинала резисторов


по цветовой маркировке

Иногда при проверке резистора, омметр показывает, какое-то сопротивление, но если резистор в результате перегрузок изменил свое сопротивление и оно уже не соответствует маркировке, то такой резистор применять недопустимо. Современные резисторы маркируются с помощью цветных колец. Определить номинал резистора, маркированного цветными кольцами удобней всего с помощью онлайн калькулятора.

Онлайн калькулятор для определения сопротивления резисторов


маркированных 4 цветными кольцами

Онлайн калькулятор для определения сопротивления резисторов маркированных


5 цветными кольцами

Проверка диодов мультиметром или тестером

Полупроводниковые диоды широко применяются в электрических схемах для преобразования переменного в постоянный ток, и обычно при ремонте изделий, после внешнего осмотра печатной платы в первую очередь проверяют диоды. Диоды изготавливают из германия, кремния и других полупроводниковых материалов.

По внешнему виду диоды бывают разной формы, прозрачные и цветные, в металлическом, стеклянном или пластмассовом корпусе. Но они всегда имеют два вывода и сразу бросаются в глаза. В схемах в основном применяются выпрямительные диоды, стабилитроны и светодиоды.

Условное обозначение диодов на схеме представляет собой стрелку, упирающуюся в отрезок прямой линии. Обозначается диод латинскими буквами VD, за исключением светодиодов, которые обозначаются буквами HL, В зависимости от назначения диодов в схему обозначения вносятся дополнительные элементы, что и отражено на чертеже выше. Так как в схеме диодов бывает больше одного, то для удобства после букв VD или HL добавляется порядковый номер.

Проверить диод гораздо легче, если представлять, как он работает. А работает диод как ниппель. Когда Вы надуваете мячик, резиновую лодку или автомобильное колесо, то воздух в них входит, а обратно его не пускает ниппель.

Диод работает точно также. Только пропускает в одну сторону не воздух, а электрический ток. Поэтому для проверки диода нужен источник постоянного тока, которым и может служить мультиметр или стрелочный тестер, так как в них установлена батарейка.

Выше представлена структурная схема работы мультиметра или тестера в режиме измерения сопротивления. Как видно, на клеммы подается напряжение постоянного тока определенной полярности. Плюс принято подавать на красную клемму, а минус на черную. При прикосновении к выводам диода таким образом, что плюсовой выход прибора окажется на анодном выводе диода, а минусовой на катоде диода, то ток через диод пойдет. Если щупы поменять местами, то диод ток не пропустит.

Диод обычно может иметь три состояния – быть исправным, пробитым или в обрыве. При пробое диод превращается в отрезок провода, будет пропускать ток при любом порядке прикосновении щупов. При обрыве напротив, ток не будет идти никогда. Редко, но бывает и еще одно состояние, когда изменяется сопротивление перехода. Такую неисправность можно определить по показаниям на дисплее.

По выше приведенной инструкции можно проверять выпрямительные диоды, стабилитроны, диоды Шоттки и светодиоды, как с выводами, так и в SMD исполнении. Рассмотрим, как проверять диоды на практике.

В первую очередь необходимо, соблюдая цветовую маркировку, вставить в мультиметр щупы. Обычно в COM вставляется черный провод, а в V/R/f – красный (это плюсовой вывод батарейки). Далее необходимо установить переключатель режимов работы в положение прозвонки (если есть такая функция измерений), как на фотографии или в положение 2kOm. Включить прибор, сомкнуть концы щупов и убедиться в его работоспособности.

Практику начнем с проверки древнего германиевого диода Д7, этому экземпляру уже 53 года. Диоды на основе германия сейчас практически не выпускают из-за высокой стоимости самого германия и низкой предельной рабочей температуры, всего 80-100°С. Но эти диоды имеют самое маленькое падение напряжения и уровень собственных шумов. Их очень ценят сборщики ламповых усилителей звука. В прямом включении падение напряжения на диоде из германия составляет всего 0,129 В. Стрелочный тестер покажет приблизительно 130 Ом. При смене полярности мультиметр показывает 1, стрелочный тестер покажет бесконечность, что означает очень большое сопротивление. Данный диод исправен.

Порядок проверки кремниевых диодов не отличается от проверки сделанных из германия. На корпусе диода, как правило, помечается вывод катода, это может быть окружность, линия или точка. В прямом включении падение на переходе диода составляет около 0,5 В. У мощных диодов напряжение падения меньше, и составляет около 0,4 В. Точно также, проверяются стабилитроны и диоды Шоттки. Падение напряжения у диодов Шоттки составляет около 0,2 В.

У мощных светодиодов на прямом переходе падает более 2 В и прибор может показывать 1. Но тут сам светодиод является индикатором исправности. Если при прямом включении видно, даже самое слабое свечение светодиода, то он исправен.

Надо заметить, что некоторые типы мощных светодиодов состоят из цепочки включенных последовательно несколько светодиодов и внешне это не заметно. Такие светодиоды иногда имеют падение напряжения до 30 В, и проверить их возможно только от блока питания с напряжением на выходе более 30В и включенным последовательно со светодиодом токоограничивающим резистором.

Проверка электролитических конденсаторов

Различают два основных вида конденсаторов, простые и электролитические. Простые конденсаторы можно включать в схему как угодно, а электролитические только с соблюдением полярности, иначе конденсатор выйдет из строя.

На электрических схемах конденсатор обозначается двумя параллельными линиями. При обозначении электролитического конденсатора обязательно обозначается его полярность подключения знаком «+».

Электролитические конденсаторы низко надежны, и являются самой распространенной причиной отказа электронных блоков изделий. Вздутый конденсатор в блоке питания компьютера или другого устройства, не редкая картина.

Тестером или мультиметром в режиме измерения сопротивления можно успешно проверять исправность электролитических конденсаторов, или как еще говорят, прозвонить. Конденсатор нужно выпаять из печатной платы и обязательно разрядить, чтобы не повредить прибор. Для этого нужно закоротить его выводы металлическим предметом, например пинцетом. Для проверки конденсатора переключатель на приборе нужно установить в режим измерения сопротивления в диапазоне сотен килоом или мегаом.

Далее нужно, прикоснуться щупами к выводам конденсатора. В момент касания стрелка прибора должна резко отклониться по шкале и медленно вернуться в положение бесконечного сопротивления. Скорость отклонения стрелки зависит от величины емкости конденсатора. Чем емкость конденсатора больше, тем медленнее будет возвращаться на место стрелка. Цифровой прибор (мультиметр) при прикосновении щупов к выводам конденсатора, сначала покажет маленькое сопротивление, а затем все возрастающее вплоть до сотен мегом.

Если поведение приборов отличается от выше описанного, например сопротивление конденсатора составляет ноль Ом или бесконечность, то в первом случае имеется пробой между обмотками конденсатора, а во втором, обрыв. Такой конденсатор неисправен и применению не подлежит.


Роман 11.11.2015

Александр, здравствуйте!
При выпайке одного из выводов резистор поломался пополам. Подскажите пожалуйста номинал сопротивления, цифры на нем такие есть ОМЛТ 12К 5% 7к4.
И просто интересно, поломанный резистор если спаять, он получается будет рабочий?

Александр

Здравствуйте, Роман!
Номинал резистора 12 кОм. Даже номинал переломленного резистора без маркировки можно определить с помощью мультиметра.
Резистор представляет собой керамическую трубку, на который нанесен резистивный слой.
Щупы тестера прикладываются к выводу и на торце нащупывается этот слой по показанию прибора. Так же поступают со второй половинкой. В сумме получится номинал целого резистора.
Спаять сломанный резистор не получится, так как резистивный слой представляет собой тонкий слой резистивного материала.

Мегаом – это… Что такое Мегаом?

  • мегаом — сущ., кол во синонимов: 2 • единица (830) • мегом (2) Словарь синонимов ASIS. В.Н. Тришин. 2013 …   Словарь синонимов

  • мегаом — megaomas statusas T sritis Standartizacija ir metrologija apibrėžtis Kartotinis elektrinės varžos matavimo vienetas, lygus milijonui omų, t. y. 1 MΩ = 10⁶ Ω. atitikmenys: angl. megohm vok. Megaohm, n; Megohm, n rus. мегаом, m; мегом, m pranc.… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • мегаом — megaomas statusas T sritis fizika atitikmenys: angl. mega ohm; megohm vok. Megaohm, n; Megohm, n rus. мегаом, m; мегом, m pranc. mégohm, m …   Fizikos terminų žodynas

  • мегаом — а, ч. Одиниця електричного опору – 106 Ом (МОм) …   Український тлумачний словник

  • Внутреннее сопротивление — Двухполюсник и его эквивалентная схема Внутреннее сопротивление двухполюсника  импеданс в эквивалентной схеме двухполюсника, состоящей из последовател …   Википедия

  • Омметр — (Ом + др. греч. μετρεω «измеряю»)  измерительный прибор непосредственного отсчёта для определения электрических активных (омических) сопротивлений. Обычно измерение производится по постоянному току, однако, в некоторых электронных омметрах… …   Википедия

  • Дифференциальный усилитель — Схема дифференциального усилителя на базе электронного моста с n p n биполярными транзисторами Дифференциальный усилитель  электронный усилитель с двумя входами, выходной сигнал которого равен разности входных напряжений, умноженной на… …   Википедия

  • мегом — мом, мегаом Словарь русских синонимов. мегом сущ., кол во синонимов: 2 • мегаом (2) • мом (5) …   Словарь синонимов

  • МЕГА — (Mega) приставка к названиям единиц, обозначающая в метрической системе увеличение в миллион раз, напр. 1 мегом (мегаом) = 106 ом. Обозначение: М или мег. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ… …   Морской словарь

  • Ом — У этого термина существуют и другие значения, см. Ом (значения). Ом (обозначение: Ом, Ω) единица измерения электрического сопротивления в Международной системе единиц (СИ). Ом равен электрическому сопротивлению проводника, между концами которого… …   Википедия

  • 59961-15: FT510 Тестер Франклина – Производители и поставщики

    Назначение

    Тестер Франклина FT510 (далее – тестер), зав. № BM1349130733, предназначен для измерения коэффициента сопротивления изоляционного покрытия образцов из анизотропной (ГОСТ Р 53934) и изотропной (ГОСТ Р 54480) электротехнической стали по методике ГОСТ 12119.8 в диапазоне от 0 до 1000 Ом-см2

    Описание

    Принцип действия тестера основан на том, что десять металлических электродов с известной площадью контакта накладывают с определенным давлением на поверхность образца электротехнической стали с изоляционным покрытием. Между электродами и металлической основой образца создают напряжение определенной величины (0,5 В) и измеряют общий ток с десяти электродов с помощью прецизионного резистора, находящегося вне стабилизирующего контура. По измеренному значению тока вычисляют коэффициент сопротивления изоляционного покрытия.

    Тестер включает в себя блок электропитания и испытательный прибор, состоящий из измерительной головки с десятью металлическими электродами заданной площади контакта, гидравлического блока для создания давления на электроды и блока управления для подъема и опускания измерительной головки.

    Процесс измерения автоматизирован.

    Значение тока выводится на дисплей источника питания и на дисплей компьютера. Результат вычисления коэффициента сопротивления изоляционного покрытия выводится на дисплей компьютера в числовом виде.

    Место нанесения знака утверждения типа

    Место нанесения поверительного клейма или знака поверки в виде наклейки

    Программное обеспечение

    В составе тестера используется программное обеспечение (ПО), указанное в таблице 1.

    Таблица 1 – Идентификационные данные программного обеспечения тестера

    Идентификационные данные (признаки)

    Значение

    Идентификационное наименование ПО

    Franklin Reader

    Номер версии (идентификационный номер) ПО

    1.2

    Цифровой идентификатор ПО

    7D 6BAB387CF4B37E9 0EA9F 7FED979ACD

    Другие идентификационные данные (если имеются)

    Уровень защиты ПО тестера от непреднамеренных и преднамеренных изменений соответствует уровню «средний» по Р 50.2.077-2014.

    ПО используется для сбора и обработки полученных данных. Результат вычисления коэффициента сопротивления изоляционного покрытия выводится на дисплей компьютера в числовом виде. Есть возможность вывода данных на принтер.

    Технические характеристики

    Наименование характеристики

    Значение

    характеристики

    Единица

    измерения

    Диапазон измерения коэффициента сопротивления изоляционного покрытия

    от 0 до 1000

    Ом-см2

    Пределы допускаемой относительной погрешности измерения коэффициента сопротивления изоляционного покрытия

    ± 5,5

    %

    Диапазон измерения постоянного тока

    от 0,003 до 1,0

    А

    Пределы допускаемой относительной погрешности измерения постоянного тока

    ± 1

    %

    Относительная погрешность задаваемого значения опорного напряжения (Ином = 0,5 В)

    ± 0,5

    %

    Сопротивление резисторов, соединенных с электродами

    5,00 ± 0,05

    Ом

    Сопротивление шунта

    1,000 ± 0,001

    Ом

    Общая площадь электродов

    645 ± 6

    2

    мм

    Давление, создаваемое электродами

    1290,0 ± 64,5

    Н

    Габаритные размеры, не более:

    –    блок электропитания

    –    испытательный прибор

    530 х 320 х 180 400 х 370 х 580

    мм

    мм

    Масса:

    –    блок электропитания

    –    испытательный прибор

    6

    60

    кг

    кг

    Параметры электрического питания:

    –    напряжение питающей сети

    –    частота питающей сети

    230,0 ± 11,5 50,0 ± 2,5

    В

    Гц

    Условия эксплуатации:

    –    температура окружающего воздуха

    –    относительная влажность воздуха (при t=25 °С), не более

    20 ± 5 80

    °С

    %

    Знак утверждения типа

    наносится типографским способом на титульный лист Руководства по эксплуатации в левой верхней части листа и на корпус источника питания тестера в виде наклейки.

    Комплектность

    № п/п

    Наименование

    Кол-во

    1

    Блок электропитания

    1 шт.

    2

    Испытательный прибор

    1 шт.

    3

    Компьютер

    1 шт.

    4

    Руководство по эксплуатации

    1 экз.

    5

    ГСИ. Тестер Франклина. Методика поверки МП 95-261-2014

    1 экз.

    6

    Описание

    1 экз.

    Поверка

    осуществляется по документу МП 95-261-2014«ГСИ. Тестер Франклина. Методика поверки», утвержденному ГЦИ СИ ФГУП «УНИИМ» 18.12.2014 г.

    Эталонные средства измерений, используемые для поверки:

    –    мост постоянного тока, диапазон от 0 до 10 Ом, класс точности 0,1;

    –    динамометр сжатия образцовый 3 разряда, диапазон от 0 до 2 кН;

    –    микрометр, диапазон от 0 до 25 мм, класс точности 2;

    –    магазин сопротивления, диапазон от 0,01 Ом до 100 кОм, класс точности 0,05/4 х 10-6.

    Сведения о методах измерений

    Методика измерений входит в состав Руководства по эксплуатации «Тестер Франклина FT510, автоматический. Версия 1.2».

    Нормативные документы, устанавливающие требования к тестеру Франклина

    ГОСТ 12119.8-98 «Сталь электротехническая. Методы определения магнитных и электрических свойств. Метод измерения коэффициента сопротивления изоляционного покрытия».

    Техническая документация фирмы «BROCKHAUS MESSTECHNIK» (Германия).

    Рекомендации к применению

    Выполнение работ по оценке соответствия промышленной продукции и иных объектов обязательным требованиям в соответствии с законодательством Российской Федерации о техническом регулировании.

    Маркировка резисторов: цветовая, кодовая – RadioRadar

    Цветовая маркировка резисторов чаще всего представляет собой набор цветных колец на корпусе резистора, причем каждому маркировочному цвету соответствует определенный цифровой код.

    Кодированное обозначение номинального сопротивления, допуска и примеры обозначения


       Кодированное обозначение номинальных сопротивлений резисторов состоит из трёх или четырёх знаков, включающих две цифры и букву или три цифры и букву. Буква кода является множителем, обозначающим сопротивление в омах, и определяет положение запятой десятичного знака. Кодированное обозначение допускаемого отклонения состоит из буквы латинского алфавита (табл. 1).

    Таблица 1

    СопротивлениеДопускПримеры обозначения
    МножительКодДопуск,
    %
    КодПолное
    обозначение
    Код
    1K(E)±0,1В(Ж)3,9 Ом±5%3R9J
    ±0,25С(У)215 Ом±2%215RG
    103К(К)±0,5D(Д)1 кОм±5%1KOJ
    ±1F(P)12,4 кОМ±1%12К4F
    106М(М)±2G(Л)10 кОм±5%10KJ
    ±5J(И)100 кОм±5М10J
    109G(Г)±10К(С)2,2 МОм±10%2М2К
    ±20М(В)6,8 ГОм±20%6G8M
    1012T(T)±30N(Ф)1 ТОм±20%1ТОМ

       Примечание: В скобках указано старое обозначение.

       Цветовая маркировка наносится в виде четырёх или пяти цветных колец. Каждому цвету соответствует определённое цифровое значение (табл. 2). У резисторов с четырмя цветными кольцами первое и второе кольца обозначают величину сопротивления в омах, третье кольцо – множитель, на который необходимо умножить номинальную величину сопротивления, а четвертое кольцо определяет величину допуска в процентах.

    Цветовая маркировка номинального сопротивления и допуска отечественных резисторов.


     

    Рис. 1 Маркировка резисторов отечественного производства.

     

    Таблица 2

    Цвет знакаНоминальное сопротивление,
    Ом
    Допуск,
    %
    ТКС
    [ppm/°C]
    Первая
    цифра
    Вторая
    цифра
    Третья
    цифра
    Множитель
    Серебристый 10-2±10 
    Золотистый10-1±5
    Черный 001 
    Коричневый11110±1100
    Красный222102±250
    Оранжевый333103 15
    Желтый44410425
    Зеленый5551050,5 
    Голубой666106±0,2510
    Фиолетовый777107±0,15
    Серый888108±0,05 
    Белый999109 1

    Цветовая маркировка резисторов фирмы “PHILIPS”


       Маркировка осуществляется 4,5 или 6 цветными полосами, несущими информацию о номинале, допуске и температурном коэффициенте сопротивления (ТКС) соответственно. Дополнительную информацию несет цвет корпуса резистора и взаимное расположение полос.

    Рис. 2
    Маркировка резисторов фирмы “PHILIPS”

    Таблица 3

    Цвет знакаНоминальное сопротивление,
    Ом
    Допуск,
    %
    ТКС
    [ppm/°C]
    Первая
    цифра
    Вторая
    цифра
    Третья
    цифра
    Множитель
    Серебристый 10-2±10 
    Золотистый10-1±5
    Черный 001 
    Коричневый11110±1100
    Красный222102±250
    Оранжевый333103 15
    Желтый44410425
    Зеленый5551050,5 
    Голубой666106±0,25
    Фиолетовый777107±0,1
    Серый888108 
    Белый999 

    Нестандартная цветовая маркировка резисторов


       Помимо стандартной цветовой маркировки многие фирмы применяют нестандартную (внутрифирменную) маркировку. Нестандартная маркировка применяется для отличия, например, резисторов,изготовленных по стандартам MIL,от стандартов промышленного и бытового назначения, указывает на огнестойкость и т.д.

    Рис. 4
    Цветовая маркировка резисторов – нестандартная.

    Кодовая маркировка отечественных резисторов


       В соответствии с ГОСТ 11076-69 и требованиями Публикаций 62 и 115-2 IЕС первые 3 или 4 символа несут информацию о номинале резистора, определяемом по базовому значению из рядов ЕЗ…Е192, и множителе. Последний символ несет информацию о допуске, т.е. классе точности резистора. Требования ГОСТ и IEC практически совпадают с еще одним стандартом BS1852 (British Standart).

    Рис. 5
    Кодовая маркировка.

       Помимо строки, определяющей номинал и допуск резистора, может наносится дополнительная информация о типе резистора, его номинальной мощности и дате выпуска.

    Например:

    Рис. 6
    Дополнительная информация о типе резистора.

    Перемычки и резисторы с “нулевым” сопротивлением


       Многие фирмы выпускают в качестве плавких вставок или перемычек специальные провода Jumper Wire с нормированными сопротивлением и диаметром (0,6 мм, 0,8 мм) и резисторы с “нулевым” сопротивлением. Резисторы выполняются в стандартном цилиндрическом корпусе с гибкими выводами (Zero-Ohm) или в стандартном корпусе для поверхностного монтажа (Jumper Chip). Реальные значения сопротивления таких резисторов лежат в диапазоне единиц или десятков миллиом (~ 0,005…0,05 Ом). В цилиндрических корпусах маркировка осуществляется черным кольцом посередине, в корпусах для поверхностного монтажа (0603, 0805, 1206…) маркировка обычно отсутствует либо наносится код “000” (возможно “0”).

    Рис. 7
    Перемычки и резисторы с нулевым сопротивлением.

    Маркировка резисторов прецинзионных высокостабильных фирмы “PANASONIC”


    Рис. 8
    Кодовая маркировка резисторов фирмы “PANASONIC”

    Маркировка резисторов фирмы “PHILIPS”


       Фирма “PHILIPS”кодирует номинал резисторов в соответствии с общепринятыми стандартами, т.е первые две или три цифры указывают номиналв Ом, а последняя – количество нулей (множитель). В зависимости от точности резистора номинал кодируется в виде 3 или 4 символов. Отличия от стандартной кодировки могут заключаться в трактовке цифр 7,8 и 9 в последнем символе.

       Буква R выполняет роль десятичной запятой или, она стоит в конце, указывает на диапазон. Единичный символ “0” указывает на резистор с нулевым сопротивлением (Zero-Ohm).

    Таблица 4

    Последний символНоминал резистора
    1100…976 Ом
    21…9,76 кОм
    310…97,6 кОм
    4100…976 кОм
    51…9,76 МОм
    610…68 МОм
    70,1…0,976 Ом
    81…9,76 Ом
    910…97,6 Ом
    00 Ом
    R1…91 Ом

     

    Рис. 9
    Маркировка резисторов фирмы “PHILIPS”

       Таким образом, если на резисторе вы увидите код 107 – это не 10 с семью нулями (100 МОм). а всего лишь 0,1 Ом.

    Маркировка резисторов фирмы “BOURNS”


    Рис. 10
    А.Маркировка 3 цифрами

       Первые две цифры указывают значения в Ом, последняя – количество нулей. Распространяется на резисторы из ряда Е-24, допусками 1 и 5%, типоразмерами 0603, 0805 и 1206.

    Рис. 11
    В.Маркировка резисторов 4 цифрами

       Первые три цифры указывают значения в Ом, последняя – количество нулей. Распространяется на резисторы из ряда Е-96, допуском 1%, типоразмерами 0805 и 1206. Буква R играет роль десятичной запятой.

    Рис. 12 С.Цветовая маркировка резисторов 3 символами

       Первые два символа – цифры, указывающие значение сопротивления в Ом, взятые из нижеприведенной таблицы 5, последний символ – буква, указывающая значение множителя: S=10-2; R=10-1; А=1; В= 10; С=102; D=103; Е=104; F=105. Распространяется на резисторы из ряда Е-96, допуском 1%. типоразмером 0603.

    Таблица 5

    КодЗначениеКодЗначениеКодЗначениеКодЗначение
    01100251784931673562
    02102261825032474576
    03105271875133275590
    04107281915234076604
    05110291965334877619
    06113302005435778634
    07115312055536579649
    08118322105637480665
    09121332155738381681
    10124342215839282698
    11127352265940283715
    12130362326041284732
    13133372376142285750
    14137382436243286768
    15140392496344287787
    16143402556445388806
    17147412616546489825
    18150422676647590845
    19154432746748791866
    20158442806849992887
    21162452876951193909
    22165462947052394931
    23169473017153695953
    24174483097254996976

       Примечание: Маркировки А и В – стандартные, маркировка С – внутрифирменная.

    Ом | Единицы измерения Wiki

    Ом (символ: Ω) – это единица измерения электрического импеданса в системе СИ или, в вырожденном случае, электрического сопротивления.

    Определение []

    Ом – это сопротивление, которое создает разность потенциалов в один вольт, когда через него протекает ток в один ампер.

    1 Ом = 1 В / А = 1 м 2 • кг • с –3 • A –2

    Начало координат []

    Ом назван в честь Георга Ома, немецкого физика, который обнаружил связь между напряжением и током, выраженную в законе Ома.

    Пояснение []

    R составляет 1 Ом, если В = один вольт и I = 1 ампер

    По определению закона Ома, устройство имеет сопротивление 1 Ом, если напряжение в один вольт вызывает ток в один ампер. расход ( R = V / I ). Альтернативно и эквивалентно устройство, которое рассеивает один ватт мощности при протекании через него тока в один ампер, имеет сопротивление в один Ом ( R = P / I 2 ).

    С 1990 года для поддержания сопротивления на международном уровне используется квантовый эффект Холла, где для «постоянной Клауса фон Клитцинга» используется обычное значение, установленное 18-й Генеральной конференцией по мерам и весам как R {K-90} = 25812,807 Ом.

    Импеданс в виде комплексного числа является обобщением сопротивления. Его действительная часть – сопротивление, а мнимая часть – реактивное сопротивление. Импеданс, сопротивление и реактивное сопротивление измеряются в омах.

    Символ ом – заглавная буква греческого алфавита омега (буква) (Ω). Если греческую букву использовать нельзя, вместо нее используется слово Ом . Различные руководства по использованию Международной системы единиц не запрещают в явной форме исключение окончательного «о» некоторых префиксов СИ, хотя в них также нет ничего, что указывало бы на то, что это допустимо. В результате почти с такой же вероятностью можно увидеть «килоом», «килоом» и даже «кило-ом», и то же самое верно для гекто-, микро-, нано-, пико-, фемто-, атто- , зепто- и йокто-.Единственная другая единица СИ, которая страдает от такой орфографической неточности, – это ампер. В конкретном случае ома можно даже увидеть, что приставка «а» теряет эту гласную: отсюда мегом и гигом . Высшие префиксы редко используются с ом. С другой стороны, миллиом (или миллом) виден там, где измеряется сопротивление кабелей и т. Д.

    В конструкторской электронной документации используются единицы ом, килоом (10 3 Ом) и мегом (10 6 Ом).На принципиальных схемах килоомы обозначаются сокращенно “К”, а мегаомы – “М”. Таким образом, 33 кОм будет отображаться как 33 кОм, а 5,1 МОм – как 5,1 МОм. Значения меньше 1 кОм отображаются без какого-либо символа после числа, поэтому 680 Ом будет просто отображаться как 680. Это не вызывает путаницы, поскольку числовое значение помещается рядом со схематическим обозначением резистора, и резистор обычно идентифицируется. обозначением , R плюс числовая часть, например R12.

    преобразования []

    Измерение в омах является обратной величиной в сименсах, единицах измерения электрической проводимости в системе СИ. Обратите внимание, что «siemens» употребляется как в единственном, так и во множественном числе. Величина, обратная ому, также называется mho, от ом до , записанная в обратном направлении.

    См. Также []

    Внешние ссылки []

    Как соотносятся напряжение, ток и сопротивление: Закон Ома

    Том I – Округ Колумбия »ЗАКОН ОМА»

    Электрическая цепь образуется, когда создается токопроводящий путь для позволяют свободным электронам непрерывно двигаться.Это непрерывное движение Свободные электроны, проходящие через проводники цепи, называют током , , и его часто называют «потоком», как поток жидкости через полую трубу.

    Сила, побуждающая электроны «течь» в цепи, называется напряжением , напряжением . Напряжение – это особая мера потенциальной энергии, которая всегда относительный между двумя точками. Когда мы говорим об определенном количестве напряжение, присутствующее в цепи, мы имеем в виду измерение о том, сколько потенциальной энергии существует для перемещения электронов из одной конкретной точки в этой цепи в другую конкретную точку.Без ссылки на , две конкретные точки , термин «напряжение» не имеет значения.

    Свободные электроны имеют тенденцию перемещаться по проводникам с некоторой степенью трение или противодействие движению. Это противодействие движению больше правильно называется сопротивление . Количество тока в цепи зависит от количества доступного напряжения, чтобы мотивировать электронов, а также количество сопротивления в цепи, чтобы противостоять электронный поток.Как и напряжение, сопротивление – величина относительная. между двумя точками. По этой причине величины напряжения и сопротивление часто указывается как «между» или «поперек» двух точек в цепи.

    Чтобы иметь возможность делать значимые заявления об этих количествах в цепей, мы должны иметь возможность описывать их количество в одном и том же способ, которым мы могли бы количественно определить массу, температуру, объем, длину или любой другой другой вид физической величины. Для массы мы можем использовать единицы «фунт» или «грамм».”Для температуры мы можем использовать градусы Фаренгейта или градусов Цельсия. Вот стандартные единицы измерения для электрический ток, напряжение и сопротивление:

    «Символ», указанный для каждого количества, является стандартным буквенным обозначением. буква, используемая для обозначения этой величины в алгебраическом уравнении. Подобные стандартизированные буквы распространены в дисциплинах физика и техника, и признаны во всем мире. Единица аббревиатура “для каждого количества представляет собой используемый алфавитный символ. как сокращенное обозначение его конкретной единицы измерения.А также, да, этот странный на вид символ “подкова” – заглавная греческая буква Ω, просто символ в иностранном алфавите (извинения перед читателями-греками).

    Каждая единица измерения названа в честь известного экспериментатора в области электричества: amp в честь француза Андре М. Ампера, вольт в честь итальянца Алессандро Вольта и Ом в честь немца Георга Симона Ома.

    Математический символ для каждой величины также имеет значение.В «R» для сопротивления и «V» для напряжения говорят сами за себя, тогда как “I” для тока кажется немного странным. Считается, что “я” должно было представлять «Интенсивность» (потока электронов) и другой символ напряжения, «E». расшифровывается как «Электродвижущая сила». Из каких исследований я смог Да, похоже, есть некоторые споры о значении «я». Символы «E» и «V» по большей части взаимозаменяемы, хотя некоторые тексты зарезервируйте “E” для обозначения напряжения на источнике (таком как батарея или генератор) и “V” для обозначения напряжения на любом другом элементе.

    Все эти символы выражаются заглавными буквами, за исключением случаев, когда величина (особенно напряжение или ток) описывается в терминах короткого периода времени (называемого «мгновенное» значение). Например, напряжение батареи, которое стабильный в течение длительного периода времени, будет обозначаться заглавной буквой буква «Е», а пик напряжения удара молнии в самом момент, когда он попадет в линию электропередачи, скорее всего, будет обозначен строчная буква «е» (или строчная буква «v») для обозначения этого значения как находясь в один момент времени.Это же соглашение о нижнем регистре выполняется верно и для тока, строчная буква «i» обозначает ток в некоторый момент времени. Однако большинство измерений постоянного тока (DC), которые стабильны во времени, будут обозначены заглавными буквами.

    Одна основополагающая единица электрического измерения, которой часто учат в начало курсов электроники, но впоследствии редко используемое, блок кулон , который является мерой электрического заряда, пропорциональной количеству электроны в несбалансированном состоянии.Один кулон заряда равен 6 250 000 000 000 000 000 электронов. Символ электрического заряда количество – заглавная буква “Q” с единицей измерения кулоны. сокращенно заглавной буквой “C”. Так получилось, что агрегат для поток электронов, amp, равен 1 кулону электронов, проходящих через заданная точка в цепи за 1 секунду времени. В этих терминах ток – это скорость движения электрического заряда по проводнику.

    Как указывалось ранее, напряжение – это мера потенциальной энергии на единицу заряда , доступной для перемещения электронов из одной точки в другую.Прежде чем мы сможем точно определить, что такое «вольт» то есть, мы должны понять, как измерить эту величину, которую мы называем “потенциал энергия ». Общая единица измерения энергии любого вида – джоулей , равно количеству работы, выполненной приложенной силой в 1 ньютон через движение на 1 метр (в том же направлении). В британских частях это чуть меньше 3/4 фунта силы, приложенной на расстоянии 1 фут. Проще говоря, требуется около 1 джоуля энергии для поднимите гирю 3/4 фунта на 1 фут от земли или перетащите что-нибудь расстояние в 1 фут с использованием параллельного тягового усилия 3/4 фунта.Определенный в этих научных терминах 1 вольт равен 1 джоуля электрической потенциальной энергии на (деленный на) 1 кулон заряда. Таким образом, батарея на 9 вольт выделяет 9 джоулей энергии на каждый кулон электронов, перемещаемых по цепи.

    Эти единицы и символы электрических величин станут очень важно знать, когда мы начинаем исследовать отношения между ними в схемах. Первые и, пожалуй, самые важные отношения Между током, напряжением и сопротивлением называется закон Ома, открытый Георгом Саймоном Омом и опубликованный в его статье 1827 года Математическое исследование гальванической цепи .Главное открытие Ома заключалось в том, что величина электрического тока через металлический проводник в цепи прямо пропорционально напряжение, приложенное к нему, для любой заданной температуры. Ом выражен его открытие в виде простого уравнения, описывающего, как напряжение, ток и сопротивление взаимосвязаны:

    В этом алгебраическом выражении напряжение (E) равно току (I) умноженное на сопротивление (R). Используя методы алгебры, мы можем преобразовать это уравнение в два варианта, решая для I и R, соответственно:

    Давайте посмотрим, как эти уравнения могут работать, чтобы помочь нам анализировать простые схемы:

    В приведенной выше схеме есть только один источник напряжения (аккумулятор слева) и только один источник сопротивления току. (лампа справа).Это позволяет очень легко применять закон Ома. Если мы знаем значения любых двух из трех величин (напряжения, тока и сопротивления) в этой цепи, мы можем использовать закон Ома для определения третьей.

    В этом первом примере мы рассчитаем величину тока (I) в цепи, учитывая значения напряжения (E) и сопротивления (R):

    Какая величина тока (I) в этой цепи?

    В этом втором примере мы рассчитаем величину сопротивления (R) в цепи, учитывая значения напряжения (E) и тока (I):

    Какое сопротивление (R) предлагает лампа?

    В последнем примере мы рассчитаем величину напряжения, подаваемого батареей, с учетом значений тока (I) и сопротивления (R):

    Какое напряжение обеспечивает аккумулятор?

    Закон Ома – очень простой и полезный инструмент для анализа электрических схемы.Он так часто используется при изучении электричества и электроники, которую нужно сохранить в памяти серьезными ученик. Для тех, кто еще не знаком с алгеброй, есть трюк с запоминанием того, как решить для любого одного количества, учитывая другое два. Сначала расположите буквы E, I и R в виде треугольника следующим образом:

    Если вы знаете E и I и хотите определить R, просто удалите R с картинки и посмотрите, что осталось:

    Если вы знаете E и R и хотите определить I, удалите I и посмотрите, что осталось:

    Наконец, если вы знаете I и R и хотите определить E, удалите E и посмотрите, что осталось:

    В конце концов, вам придется познакомиться с алгеброй, чтобы серьезно изучать электричество и электронику, но этот совет может сделать ваш первый расчеты запомнить немного легче.Если тебе комфортно с алгебры, все, что вам нужно сделать, это зафиксировать E = IR в памяти и получить другие две формулы из того, когда они вам понадобятся!

    • ОБЗОР:
    • Напряжение измеряется в вольт. обозначается буквами «E» или «V».
    • Ток измеряется в ампер. , обозначается буквой «I».
    • Сопротивление измеряется в Ом. обозначается буквой «R».
    • Закон Ома: E = IR; I = E / R; R = E / I

    Как набрать символ ома в Word / Excel (он же символ омега)

    Символ Ω (ом или омега) является двадцать четвертым и последним в греческом алфавите.В физике он используется как единица измерения сопротивления в системе СИ, тогда как в математике он используется для обозначения конца или предела теории множеств. В греческой системе счисления омега использовалась для обозначения 800.

    902
    ИМЯ СИМВОЛА ОМ / ОМЕГА
    СИМВОЛ Ом
    АЛЬТЕРНЫЙ КОД ДЛЯ НИЖНЕГО КОРПУСА 969 ДЛЯ ВЕРХНЕГО КОРПУСА 234
    БЫСТРОЕ КРЕПЛЕНИЕ ДЛЯ WINDOWS ALT + [ALT CODE]
    SHORTCUT FOR MAC OPTION + Z
    SHORTCUT 902 X26 SHORTC11 902 X26 SHORTCUS 902

    Теперь возникает вопрос: «Как ввести символ омега / ом в Word или Excel?»

    Есть много способов сделать это.Некоторые из них я расскажу в этой статье. Используя эти простые методы, можно легко вставить символ омега в любое время и в любом месте. Итак, без лишних слов, давайте начнем:

    ALT-коды: Обратите внимание: Alt-код для Ω (омега) равен 234.

    Каждому символу назначен уникальный alt-код, с помощью которого мы можем легко вставьте эти символы в соответствии с нашими потребностями.

    1. Нажмите клавишу цифрового блока, чтобы активировать цифровую клавиатуру. Если у портативного компьютера нет цифровой клавиатуры, используйте клавишу fn + клавишу num lock.
    2. Теперь начните нажимать клавишу alt и одновременно введите альтернативный код для символа омега (то есть 234).
    3. Отпустите клавишу alt, и ваш символ омега будет вставлен в документ.

    Мой личный фаворит, просто «скопируйте и вставьте»:

    Это один из самых удобных методов, поскольку все мы хорошо знакомы с элементами управления копированием и вставкой. Так что, если есть какие-либо трудности с вставкой любого символа, символа или любого другого знака, не волнуйтесь, друг мой, потому что копирование символа и вставка его в нужное место займет не более нескольких секунд.

    1. Скопируйте символ омега отсюда, используя опцию копирования в раскрывающемся меню формы, которое появляется после нажатия правой кнопки сенсорной панели, или используя Ctrl + C.
    1. Переместите курсор в любое место вставьте символ. Снова нажмите правую кнопку сенсорной панели и просто выберите «вставить» в раскрывающемся меню или нажмите Ctrl + V.

    И вот ваш символ вставлен!

    Вариант вставки:

    1.Начните с открытия страницы Word или листа Excel.

    2. Затем щелкните вариант вставки, указанный в верхнем левом разделе страницы в качестве одного из заголовков.

    1. После этого выберите опцию «символ» на панели задач.
    1. Теперь, если в диалоговом окне появляется символ омега, хорошо, значит, ваша работа сделана. Просто выберите символ и щелкните по нему. Если соответствующий символ не появляется, перейдите к «другим символам», выберите нужный из списка и вставьте его.

    В Excel выполняется аналогичная процедура. Выберите опцию «символы», а затем выберите нужный символ из списка.

    Благодаря этому ваш символ будет успешно вставлен в ваш документ!

    Ярлыки – не всегда неправильный вариант!

    Это потому, что мы будем использовать ярлыки, чтобы упростить процесс вставки символов омега в соответствии с нашими потребностями.

    На данный момент доступно несколько ярлыков в пределах юрисдикции Windows.Однако некоторые из них доступны только в текстовых документах. Например, мы уже обсуждали метод «alt key», используя код 234. Однако теперь метод, которым я собираюсь поделиться, этот ярлык применим только к текстовым документам.

    1. Поместите курсор в то место, куда вы собираетесь вставить символ.

    2. Теперь нажмите 2126 на цифровой части клавиатуры.

    3. После этого нажмите alt + x.

    Ваша омега будет вставлена ​​в ваш текстовый документ в соответствии с вашими потребностями.

    Также есть ярлык исключительно для Mac.

    Вы должны переместить курсор в желаемое место, куда вы собираетесь вставить символ. Теперь одновременно нажмите на клавиатуре Mac “option + Z”. При этом омега будет вставлена ​​в соответствии с вашими потребностями.

    The TYPO:

    Используя этот метод, вы можете легко вставить символ по вашему выбору, просто играя с функцией автозамены компьютера. Как мы уже знаем, функция автокоррекции исправляет любую ошибку неявно, без вмешательства пользователя.Но задумывались ли вы, как компьютер узнает, что мы собираемся напечатать? Поскольку компьютер не является экстрасенсом, он хорошо оборудован предопределенным форматом, в котором уже введены все возможные ошибки, касающиеся особенно точного слова.

    Из-за этого, если мы напишем какое слово, оно автоматически изменится на какое.

    Используя эту функцию, мы можем обмануть компьютер, вставляя необходимые нам символы каждый раз, когда мы намеренно пишем конкретное неправильное слово. Другими словами, если мы введем в компьютер информацию о том, что слово «ом» является неправильной интерпретацией символа Ω, каждый раз, когда мы напишем ом, он автоматически преобразует его в Ω.

    1. Сначала щелкните диалоговое окно символов и выберите другие символы.

    2. Оттуда выберите символ омега и щелкните опцию автокоррекции, присутствующую в нижнем левом углу поля.

    3. А теперь выберите опцию «заменять текст по мере ввода».

    4. Введите слово «ом» и символ «Ω».

    5. Наконец, нажмите «добавить», а затем «ок».

    Каждый раз, когда вы вводите «ом», компьютер преобразует его в «Ω».

    На этом мы подошли к концу этой статьи.Я надеюсь, что эти методы и шаги помогут вам легко вставить омегу или любой другой символ в желаемое место.

    Законы Ома и Ватта | SpazzTech

    Что такое закон Ома и закон Ватта ?:

    Закон Ома определяет одно из самых фундаментальных соотношений в электронике. Это соотношение между напряжением, током и сопротивлением. Закон Ватта определяет еще одно из самых фундаментальных соотношений в электронике.Это соотношение между мощностью и величинами, определенное законом Ома. Мы не сможем углубиться в электронику, пока эти концепции не будут поняты.

    Вольт:

    Единицей измерения параметра напряжения является вольт. Символ, который используется для обозначения вольт, – это буква «V». В зависимости от ситуации используются как верхний, так и нижний регистры. Символом параметра напряжения также является буква «V». Если бы электрическая цепь представляла собой садовый шланг, напряжение было бы аналогично давлению в шланге.Единица V равна количеству энергии в Джоулях, необходимой для перемещения одного кулона электронов между двумя точками. Напряжение иногда называют «потенциалом», потому что оно может перемещать эти электроны.

    Ампер или Ампер:

    Единицей измерения параметра тока является ампер. Ампер часто сокращается до ампер. Символ, используемый для обозначения усилителя, – это буква «А». В зависимости от ситуации используются как верхний, так и нижний регистр.Символ, используемый для представления параметра тока, – это буква «I». Если бы электрическая цепь представляла собой садовый шланг, ток был бы подобен скорости потока воды в шланге. Единица A равна количеству кулонов, проходящих через контур за одну секунду.

    Ом:

    Единицей измерения параметра сопротивления является ом. Для обозначения сопротивления используется символ Ω. Символ, используемый для обозначения параметра сопротивления, – это буква «R».Если бы электрическая цепь была садовым шлангом, сопротивление было бы любым клапаном или другим ограничением в шланге. Единица Ω равна сопротивлению, которое существует, когда 1 А протекает между двумя точками с напряжением 1 В между этими двумя точками. Это составляет основу форм закона Ома, приведенных в следующем разделе.

    Формы закона Ома:

    Мощность:

    Единицей измерения мощности в электронике чаще всего является ватт.Символ, используемый для обозначения ватта, – это заглавная буква «W». По сути, мощность – это скорость выполнения работы. Фактически, один ватт равен одному джоулю в секунду. Из определений, данных для вольт и ампер, приведенных выше, мы можем сказать, что один ватт также равен одному вольту, умноженному на один ампер, потому что вольт – это мера джоулей на кулон, а ампер – мера кулонов в секунду. Кулоны сокращаются, и у нас остаются джоули в секунду.

    Формы закона Ватта:

    Объединенная взаимосвязь закона Ома и закона Ватта Настенная диаграмма:

    Объединив закон Ома и закон Ватта, нам нужно знать только две величины, чтобы определить две другие.Эти величины представляют собой напряжение (В) в вольтах, ток (I) в амперах, сопротивление (R) в омах и мощность (P) в ваттах. Все отношения между этими количествами приведены в таблице ниже.

    © Copyright 2014-2017 SpazzTech LLC. Все права защищены

    Закон Ома

    Мы рассматриваем фундаментальную связь в электронике и физике.

    Закон Ома был открыт Георгом Омом в 1837 году, и это основное уравнение, которое управляет многими схемами.Три основных ингредиента – это ток через простую цепь, приложенное напряжение (обычно от батареи) и сопротивление устройства, которое использует ток для выполнения некоторой работы, обычно тепла или света. На этом этапе вы узнаете о
    • математическая формулировка закона Ома и основная обратная зависимость, которую он кодирует
    • как аналогия с водопроводной трубой может помочь понять значение закона Ома.

    Закон Ома

    Закон Ома гласит, что if (normalsize {V}) – это напряжение (измеренное в вольтах) на резисторе (normalsize {R}) (измеренное в омах), которое потребляет ток (normalsize {I}) (измеренный в амперах), то [Большой {V = IR}.] Резистор – это объект, который использует электрическую энергию и преобразует ее во что-то еще, например, тепло или свет. Примером может служить тостер. Электроэнергия, протекающая через тостер, питается от перепада напряжения, подаваемого через электрическую розетку. Чем выше напряжение, тем больший ток (нормальный размер {I}) проходит через тостер. Итак, для фиксированного резистора (нормальный размер {R}) закон Ома устанавливает линейную пропорциональность между напряжением и током. Нити для тостера Ник Карсон на en.wikipedia CC BY 3.0, через Wikimedia Commons Однако мы можем взглянуть на закон и по-другому. Если мы рассматриваем напряжение (нормальный размер {V}) как фиксированное, то сопротивление и ток обратно пропорциональны, поскольку их произведение постоянно и равно фиксированному напряжению. Если мы увеличиваем сопротивление, то ток уменьшается, а если мы уменьшаем сопротивление, то ток увеличивается. Это ситуация с цепью, работающей от батареи, или с электричеством в нашем доме, где подаваемое напряжение является постоянным ((нормальный размер {110-120}) вольт в большинстве стран Америки (нормальный размер {220-230}) вольт в Европе, Австралии и большинстве стран Азии).Однако, строго говоря, в этом случае напряжение меняется по направлению. В предельном случае, когда сопротивление становится равным нулю, например, если вы заменяете тостер на провод, то течет бесконечно большой ток. Затем происходит короткое замыкание , часто с катастрофическими последствиями, особенно если у вас нет плавкого предохранителя, который разрывает цепь в такой аварийной ситуации.

    Некоторые примеры

    Если мы подключим лампу к цепи, работающей от батареи на 6 В, и потребляем ток 3 А, тогда сопротивление (нормальный размер R) будет равно [Large R = frac {V} {I} = frac 63 = 2; text {ohms}.] Теперь, если мы подключим ту же лампу к 10-вольтовой батарее, то ток (нормальный размер I) будет [Большой I = гидроразрыв {V} {R} = гидроразрыв {10} 2 = 5; текст {амперы}.] Если мы хотим сделать свет ярче, нам нужно увеличить ток, скажем, до 8 ампер, тогда нам нужно увеличить наше напряжение до [Большой V = IR = 8 × 2 = 16; текст {вольт}.]

    Q1 (E): электрическое устройство подключено к напряжению 120 вольт. Найдите ток, если сопротивление 480 Ом.

    Q2 (E): Предположим, что у нас есть батарея с некоторым постоянным напряжением, освещающая небольшую лампу, и амперметр показывает 40 мА, где мА означает миллиампер, что составляет одну тысячную часть ампер.Если ток упал до 20 мА, что случилось с сопротивлением?

    Как резистор сопротивляется?

    Резистор – это любое устройство, замедляющее прохождение тока в цепи. Электричество, по сути, перемещает электроны, и, как и вода, если поток прерывается, ограничивается или сопротивляется , проходит меньше. Некоторые материалы имеют низкое сопротивление, например медная проволока, что позволяет электронам проходить через них без особых проблем. Другие материалы, такие как дерево, обладают высоким сопротивлением, почти мгновенно останавливая электрический ток.На практике у нас есть такие вещи, как лампы и тостеры, которые генерируют свет или тепло от электронов, замедляя их, но все же пропуская.

    Ом также обнаружил другой закон, который описывает, какое сопротивление имеет данный материал, например кусок проволочной трубки:

    [Large R = frac {rho L} {A}]

    где (нормальный размер L) – длина резистора, (нормальный размер rho) – величина, которая зависит от материала, а (нормальный размер A) – площадь поперечного сечения резистора.Итак (размер нормали R) равен , прямо пропорционально длине (размер нормали L): удвоить длину проволочной трубки, и ее сопротивление удвоится. Но (нормальный размер R) также обратно пропорционален площади поперечного сечения (нормальный размер A): удвоить площадь и половину сопротивления.

    3 кв. (E): трубчатый резистор имеет форму проволоки. Если мы утроим его длину и уменьшим вдвое диаметр, что произойдет с его сопротивлением?

    Гидравлический аналог

    Для понимания закона Ома иногда бывает полезна аналогия с гидравликой для начинающих.Представьте себе воду, текущую по горизонтальной трубе. Давление воды (нормальный размер P) аналогично напряжению (нормальный размер V), потому что это разница давлений между двумя точками вдоль трубы, которая заставляет воду течь. Фактический расход воды (нормальный размер F) в этом случае является аналогом тока (нормальный размер I).

    А что с аналогом резистора? Это можно представить как нечто, препятствующее потоку воды, например, ограничители или отверстия в трубах. Если вода проталкивается через очень тонкую трубку, то чем длиннее трубка и чем меньше ее площадь поперечного сечения, тем большее сопротивление (нормальный размер R) она будет оказывать на расход воды (нормальный размер F).И чем больше сопротивление, тем меньше расход.

    Соответствующее уравнение для нашего гидравлического аналога в соответствующих единицах равно

    [Большой P = FR.]

    Таким образом, если мы сохраним давление фиксированным, то скорость потока и ограничение будут обратно пропорциональны: по мере уменьшения размера ограничения (размер по нормали R) расход (размер по нормали F) должен увеличиваться.

    На рисунке ниже мы ожидаем, что более тонкая трубка будет действовать как сопротивление потоку в большой трубке.

    ответов

    A1. По закону Ома ток можно найти по

    [Большой {I = гидроразрыв {V} {R} = гидроразрыв {120} {480} = 0,25; текст {амперы}}.]

    A2. При постоянном напряжении соотношение между током и сопротивлением обратное. Следовательно, если ток уменьшается вдвое, сопротивление увеличивается вдвое.

    A3. Утроение длины резистора увеличивает его сопротивление в 3 раза, а уменьшение его диаметра вдвое увеличивает площадь поперечного сечения на 1/4.В целом сопротивление изменяется в раз (frac {3} {1/4} = 12).

    Использование омметра – Автомобильная электроника Wells

    Измеритель с ручной регулировкой (слева) – Измеритель с автоматическим выбором диапазона (справа)

    Настройка измерителя для тестирования

    При проверке сопротивления компонента провода измерителя могут быть подключены в любом направлении.Некоторые компоненты могут содержать диод, который потребует определенного подключения. В этом случае в наших инструкциях вы получите указание о правильном подключении проводов.

    Если вы используете измеритель с автоматическим выбором диапазона, аналогичный правому измерителю, установите переключатель в положение «Ом» или «?» позиция.

    Если у вас есть измеритель ручной настройки, аналогичный левому измерителю, установите переключатель в самое нижнее положение или шкалу «200», чтобы начать. После подключения выводов вашего измерителя к детали может потребоваться ручная регулировка измерителя до нужной шкалы.Перемещайте переключатель вверх по шкале 2k, 20k или 200k, пока не получите значение сопротивления, которое можно прочитать, а числа будут оставаться относительно стабильными.

    При измерении компонента с очень низким значением сопротивления, такого как первичная обмотка катушки зажигания, вы должны учитывать небольшое сопротивление по умолчанию, которое может иметь ваш измеритель. Перед тем как подключиться к испытуемому, соедините провода вашего глюкометра вместе. Измеритель автоматического выбора диапазона может иметь кнопку «Ноль»; нажмите кнопку с соединенными вместе выводами.Показание измерителя должно упасть до нуля Ом. Если на вашем измерителе нет кнопки «Ноль», вам нужно будет вычесть сопротивление по умолчанию из значения, записанного при выполнении проверки компонентов.

    В качестве примера предположим, что вы измеряете сопротивление первичной обмотки катушки зажигания. Когда вы соединили провода, вы получили сопротивление 0,2 Ом. Когда вы подключаете провода измерителя к разъемам первичной катушки, ваш измеритель показывает 0,8 Ом. Вы должны вычесть 0,2 Ом из 0.Во время теста зафиксировано 8 Ом. Истинное значение первичного сопротивления катушки зажигания составляет 0,6 Ом (0,8 – 0,2 = 0,6).

    Анализ показаний счетчика

    Независимо от того, используете ли вы для тестирования измеритель с автоматическим выбором диапазона или измеритель с ручной настройкой, показания могут выглядеть примерно так; (пример: 0,826 k). Значение счетчика с буквой «k» после номера потребует преобразования в целое число. Символ «k» означает 1000. Чтобы преобразовать показание в целое число, замените десятичную точку запятой.В нашем примере, перемещая десятичную запятую на три пробела вправо, целое число становится 826.00, или 826 Ом сопротивления в цепи. Попробуем еще один пример. преобразовать показание счетчика 1.026k в целое число. Следуя правилам и заменив десятичную точку на запятую, показание станет 1026.00, или 1026 Ом сопротивления.

    Обозначения резисторов

    Резистор Резистор

    Обозначения резистора / электрического сопротивления

    Символ Описание Символ Описание
    Резистор
    Система IEC
    + информация
    Резистор
    Система NEMA
    Импеданс
    + информация
    Матрица резисторов
    e.грамм. 8 резисторов
    Шунтирующий резистор с подключениями по току и напряжению Резистор с гнездами тока
    Резистор с фиксированными розетками Реактивный резистор
    Не перегорающий резистор Резистор нереактивный
    Защитный резистор
    Выполняет функцию предохранителя
    Аттенюатор
    + Информация
    Защитный резистор
    Выполняет функцию предохранителя
    Мемристор
    Резистор памяти
    + Информация
    Нагревательный элемент
    + информация
    Нагревательный элемент

    Символы Переменные и регулируемые резисторы

    Переменный резистор
    Реостат / потенциометр
    + Информация
    Переменный резистор
    Реостат / потенциометр
    Резистор постоянного тока Резистор ступенчатый переменный
    Резистор ступенчатый переменный Потенциометр
    Регулируемый резистор
    Предустановленный реостат
    + Информация
    Линейный потенциометр
    Потенциометр с подвижным контактом
    + информация
    Регулируемый резистор
    Предустановленный реостат
    Потенциометр с подвижным контактом и настройками по умолчанию
    Предустановленный резистор с подвижным контактом и выключенным положением
    Переменный резистор с угольными дисками
    + Инфо

    Обозначения специальных резисторов

    LDR – Фоторезистор
    Светозависимый резистор.При увеличении интенсивности света уменьшается сопротивление
    + Info
    LDR – Фоторезистор
    Ширина – сторона, освещенная светом
    LDR – Фоторезистор
    Система NEMA
    LDR – Фоторезистор
    Резистор NTC – термистор
    Отрицательный температурный коэффициент
    Сопротивление уменьшается с повышением температуры
    + Информация
    Резистор PTC – термистор
    Положительный температурный коэффициент
    Сопротивление увеличивается с повышением температуры
    + Информация
    NTC – Термистор
    Система NEMA
    VDR – Варистор
    Резистор зависимый от напряжения
    + Информация
    Термистор
    + информация
    VDR – Варистор
    VDR – Варистор
    Сопротивление уменьшается с увеличением напряжения
    VDR – Варистор
    VDR – Варистор
    Система NEMA
    Магнитный резистор
    Его сопротивление зависит от магнитных полей
    RTD
    Температурный датчик сопротивления
    RTD
    Температурный датчик сопротивления
    Железо-водородный резистор / Барреттер
    + Информация
    Картинная галерея резистора
    Загрузить символы
    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *