Схема простейшего блок питания постоянного тока, как сделать постоянный ток из переменного. « ЭлектроХобби
Вашему вниманию предлагается электрическая схема простейшего блока питания с постоянным током на выходе. Эта схема является самой обычной и элементарной. Она состоит из понижающего трансформатора, диодного моста и конденсатора. Каждый из этих электрических элементов выполняет свою определенную функцию в задаче получения постоянного тока с пониженным напряжением. Давайте же разберем подробнее, как именно работает данная электрическая схема постоянного тока.
Итак, всё начинается с входного трансформатора. Он имеет две обмотки, намотанные на магнитный металлический сердечник. Его первичная обмотка рассчитана на переменное сетевое напряжение, на которую подается 220 вольт. Напомню, что в обычной электрической сети течёт переменный ток (если включена нагрузка), частота которого равна 50 герцам. Это значит, что за одну секунду в сети 50 раз меняется плюс на минус и наоборот. То есть, сначала на одном проводе находится плюс, а на другом минус, потом они плавно (по синусойде) меняются местами, и так 50 раз за секунду. Такой ток нельзя подавать на устройства, которые питаются от постоянного тока, от переменного они в лучшем случае просто не будут работать, а в худшем просто выйдут из строя, попросту сгорят.
В схеме постоянного тока трансформатор является понижающим элементом. Он уменьшает сетевое напряжение до нужного (обычно это 5, 9, 12, 24 вольта). А его понижающие (или повышающие) свойство обязано именно переменному току. Именно переменный ток легко можно преобразовывать за счет различного количества витков на трансформаторе. Итак, мы подали на вход трансформатора 220 вольт, а на его выходе (вторичной обмотки) получили пониженное напряжение (столько, сколько нам было нужно). А теперь уже пониженное напряжение нуждается в преобразовании его в постоянный ток. Эту часть схемы постоянного тока (которая его делает) называется диодным мостом.
Именно диодный мост, стоящий в нашей электрической схеме после трансформатора, делает из переменного напряжения постоянное. Диодный мост состоит из 4 диодов, либо же из сборки в одном корпусе. Если переменное напряжение периодически меняла свою полярность на противоположную, то именно диодный мост делает так, что эта полярность уже не меняется. После моста с диодами электрический ток имеет вид пульсирующих плавно нарастающих и затухающих импульсов. Это уже постоянный ток, но всё же он импульсный, а нам нужен ровный, без скачков. И для этого в схеме постоянного тока стоит третий функциональный элемент, который называется конденсатором. Именно он гасит эти самые электрические скачки напряжения. После конденсатора, на выходе электрической схемы простейшего блока питания уже имеется постоянный ток, в нём всё равно присутствуют небольшие скачки, но они уже не критичны для устройств, которые будут питаться от него.
Для большинства электрических устройств, питающихся от постоянного тока, подобный блок питания является классикой. Если же прибору нужен, всё же, более стабильный постоянный ток, то для этой цели в нашу схему добавляются различные стабилизаторы, задача которых донести постоянный ток до нужного качества (минимальные скачки и пульсации). Что касается конкретных элементов в этой схеме постоянного тока. Естественно, различные устройства имеют различную мощность. Прежде чем делать схему блока питания постоянного тока сначала нужно четко знать, какую номинальную и максимальную силу тока он может обеспечить. Если мы знаем мощность нашей нагрузки (потребляемый ток нашего устройства, что будет подключаться к блоку питания постоянного тока), то добавив запас в 25-50% мы смело можем делать свой БП.
Зная нужную мощность мы сначала подбираем силовой трансформатор, у которого вторичная обмотка имеет достаточный диаметр (для обеспечения нужного тока). Далее выбираем диодный мост, полупроводники которого также рассчитаны на силу тока большую, чем будет проходить через них (номинальный ток), и если ток достаточно велик, то необходимо подумать об охлаждении диодов. Ну и последний функциональный элемент схемы постоянного тока, это ёмкость. Тут обычно ставиться электролитический конденсатор с напряжением чуть большим, чем напряжение питания. Для большинства обычных блоков питания емкость конденсатора колеблется от 10-ов до 1000-сяч микрофарад.
P.S. Сборка подобной схемы постоянного тока не составит большого труда. Тут больше важна подходящая элементная база, то есть в собранном блоке питания должны функциональные элементы соответствовать своей мощности и номиналу. Если всё сделано правильно, а допустим при больших токах на диодном мосте не предусмотрен радиатор для охлаждения, то спустя некоторое время схем перестанет работать, так как выйдет из строя мост (в результате теплового пробоя). Так что подбирайте элементы правильно.
Блоки питания электронных устройств – устройство и принцип работы основных схем
ектронные устройства можно условно разделить на две группы: мобильные и стационарные. Первые из них используют так называемые первичные источники питания, – гальванические батареи или аккумуляторы, которые имеют запас электроэнергии.
Здесь сразу вспоминаются мобильные телефоны, фотоаппараты, пульты дистанционного управления и много других портативных устройств. В этом случае аккумуляторы и батареи вне конкуренции, поскольку заменить их попросту нечем. Единственным неудобством, платой за мобильность является то, что время действия таких устройств ограничено емкостью батарей, и, как правило, невелико. Исключением из этого правила являются, разве что, наручные часы. Потребление энергии у них очень низкое, что заложено на стадии проектирования, поэтому на одной батарейке часы могут ходить целый год, а то и больше.
Стационарные устройства, как правило, получают питание от вторичных источников. Такие источники собственной энергии не вырабатывают, а лишь преобразуют электрический ток до требуемых параметров: из сетевого напряжения 220В блоки питания вырабатывают пониженные напряжения, необходимые для питания полупроводниковой аппаратуры. Такие блоки питания часто называются сетевыми.
Опасные сетевые блоки питания
Самыми простейшими являются блоки питания с гасящим конденсатором или резистором. Подобные блоки описывались в радиотехнических журналах в девяностые годы прошлого века. КПД таких блоков питания крайне мал не более 20%, поэтому они применяются для питания устройств, мощность которых не более единиц ватт: можно запитать одну – две микросхемы.
Основным недостатком подобных блоков является то, что они гальванически не развязаны от первичной сети, в результате чего вся схема – потребитель также находится под опасным потенциалом. Прикосновение к элементом такой схемы совсем нежелательно, и даже опасно. Поэтому налаживание подобных конструкций выполняется с использованием развязывающего трансформатора, описанного в статье «Как изготовить трансформатор безопасности».
Но даже при таком налаживании эти схемы все равно остаются опасными, поэтому рекомендовать их для применения не следует. Если все же такой схемы не избежать (какой смысл делать отдельный источник для питания фотореле, которое висит высоко на столбе?), то остается надеяться на аккуратность и грамотность пользователя.
Безопасные блоки с гасящим конденсатором
Схема блока питания с гасящим конденсатором и гальванической развязкой от сети описана в статье «Терморегулятор для сварки пластмасс» и показана на рисунке 1. Автор схемы В. Кузнецов.
Рисунок 1. Схема блока питания с гасящим конденсатором и гальванической развязкой от сети
Схема подробно описана в упомянутой статье, была многократно повторена (не один десяток раз) и показала отличные результаты. Поэтому здесь отметим только основные моменты. Сетевое напряжение через гасящий конденсатор C1 выпрямляется мостом VD1 и стабилизируется на уровне 24В стабилизатором на транзисторе VT3. От этого стабилизатора питается генератор, выполненный на транзисторах VT1, VT2. «Силовой» трансформатор Тр2 выполнен на ферритовом кольце диаметром 20 мм.
Такой трансформатор на частоте 40…50 КГц может выдать в нагрузку мощность до 7 ватт, что вполне достаточно для питания схемы, описанной в статье. Выходные напряжения стабилизируются простейшими параметрическими стабилизаторами на стабилитронах VD5, VD6. Благодаря наличию развязывающего трансформатора Тр2, питаемая нагрузка гальванически развязана от сети, что обеспечивает электробезопасность схемы.
Представьте себе, как бы выглядела термопара, находящаяся под потенциалом сети! Но следует заметить, что все, что изображено на схеме справа от сердечника трансформатора Тр2, находится под потенциалом сети, и требует аккуратного и осторожного обращения. Еще одна схема безопасного блока питания с гасящим конденсатором показана на рисунке 2.
Рисунок 2. Схема безопасного блока питания с гасящим конденсатором
Первичная обмотка трансформатора малогабаритных блоков питания содержит несколько (четыре…семь) тысяч витков сверхтонкого провода,- 0,05…0,06мм . Чтобы такую обмотку не мотать предлагается с помощью гасящего конденсатора снизить напряжение на первичной обмотке до 30…40В. В этом случае первичная обмотка содержит не более 600…700 витков достаточно толстого провода (0,1…0,15мм). Вторичная обмотка рассчитывается как обычно на требуемое напряжение.
Трансформатор можно намотать на магнитопроводе Ш12*15 от абонентского громкоговорителя. Более точно значение напряжений можно подобрать при помощи конденсатора C1.
Блоки питания современной аппаратуры
Современная аппаратура промышленного изготовления, например, компьютеры, музыкальные центры, телевизоры, – большей частью имеет импульсные источники питания.
Основная идея таких источников в следующем. Выпрямленное напряжение сети преобразуется инвертором в переменное частотой в несколько десятков, а иногда и сотен килогерц. На таких частотах трансформаторы получаются очень малых размеров, что позволяет значительно уменьшить габариты и массу блоков питания.
После трансформатора импульсные напряжения выпрямляются и сглаживаются фильтрами, размер которых за счет высокой частоты также невелик по сравнению с традиционными блоками питания, работающих на частоте сети. Стабилизация выходных напряжений осуществляется в первичной цепи при помощи широтно-импульсной модуляции – ШИМ, что также способствует повышению КПД и уменьшению габаритов блока питания.
Не столь давно считалось, что импульсные источники питания оправдывают себя лишь начиная от мощности не менее 100 Ватт. При этом основным критерием считалась удельная мощность, т.е. мощность, приходящаяся на 1 кубический дециметр объема блока питания. При мощности импульсного источника ниже 100 Вт, удельная мощность импульсного источника получалась ниже, чем у обычного блока питания. Попросту сказать, габариты импульсного источника могли получиться больше, чем у обычного трансформаторного.
Но техника не стоит на месте, элементная база электроники развивается очень быстро. Современная промышленность освоила производство импульсных источников мощностью всего в несколько ватт, достаточно вспомнить хотя бы зарядные устройства для сотовых телефонов и «пальчиковых» аккумуляторов.
Здесь уже просто на глаз видно, что удельная мощность таких источников выше, чем аналогичных «зарядников» (совсем недавно были и такие) с сетевым трансформатором. Вот так хорошо дело обстоит в промышленном производстве: на одном только обмоточном проводе, да трансформаторном железе и миниатюрных корпусах получается огромная экономия.
В условиях же любительского технического творчества для изготовления конструкции в единственном экземпляре вполне подходит традиционный источник питания с сетевым трансформатором. Хотя изредка приходится искать нестандартные решения проблемы электропитания, например при ремонте аппаратуры.
Импульсный блок питания из электронного трансформатора
Вот, пожалуйста, наглядный практический пример. В звуковом микшере импортного производства почему-то произошел обрыв первичной обмотки силового трансформатора, который был выполнен на кольцевом магнитопроводе.
Мощность данного трансформатора была около 20 Вт, что наводило на грустные размышления о том, что количество витков первичной обмотки, скорее всего, не одна тысяча витков (чем меньше размеры трансформатора, тем большее количество витков приходится на один вольт, и провод тоньше). А перематывать вручную на кольце… Но и это было не главным: высота кольцевого трансформатора была настолько мала, что заменить другим, уже готовым Ш-образным возможности не представлялось, не позволяли габариты корпуса.
Решить вопрос позволило применение электронного трансформатора, правда, потребовалась некоторая доработка, которая описана в статье «Как сделать блок питания из электронного трансформатора?». Смысл переделки в том, что электронный трансформатор рассчитан на работу с лампами накаливания, которые к нему подключены постоянно, то есть запуск трансформатора происходит под нагрузкой. Если же нагрузки нет, то схема не запускается. Тот же эффект наблюдается при незначительной нагрузке.
Представьте себе, что нагрузка мощный усилитель звуковой частоты: как только прекратился звук, – пауза, так блок питания выключился и больше не запустился. Вот доработка электронного трансформатора и сводится к тому, чтобы блок питания на его основе включался и работал даже без нагрузки.
Электронный трансформатор как раз тот случай, где изготовление импульсного источника упрощено до предела: все уже сделано, детали все на месте, трансформаторы уже все намотаны, а цена просто смешная. Просто набор «Сделай сам»! Даже в случае неудачного эксперимента, выбросить будет совсем не жалко. Если детали покупать в розницу, получится намного дороже. Поэтому в домашних условиях проще изготовить обычный трансформаторный блок питания.
Сетевые адаптеры из Китая
В случае, когда мощность нагрузки невелика, спасти положение вполне может сетевой адаптер китайского производства. Это всем известный блок, выполненный в виде большой сетевой вилки с хвостом, оканчивающимся разъемом, который, почему-то называют «джек». Внутри вилки находится сетевой трансформатор мощностью не более 5…7 ватт, выпрямительный мостик и сглаживающий конденсатор.
В некоторых блоках имеется движковый переключатель, позволяющий ступенчато изменять выходное напряжение в пределах 5…15В. Выходное напряжение, указанное на переключателе, соответствует работе под нагрузкой.
Конструкция подобных адаптеров упрощена до предела: китайцы не удосужились даже установить предохранитель. Да по большому счету не слишком он тут и нужен. Первичная обмотка намотана таким тонким проводом, что он сам по себе является неплохим предохранителем. Если первичная обмотка сгорит, то остается этот адаптер просто выбросить и купить новый.
Цена таких адаптеров невелика, чтобы заниматься их ремонтом. Экономия обмоточного провода в этих адаптерах очень заметна. Такие блоки питания заметно греются даже на холостом ходу, без нагрузки.
В следующей статье будет рассказано, как можно самостоятельно сделать простой и надежный блок питания для домашней лаборатории.
Борис Аладышкин
Продолжение статьи: Блоки питания для домашней лаборатории
Источник: http://electrik. info
б.п. образовательная услуга | Схемы онлайн-эксперимент
Ресурсы
Видео схемы
Видео
Яркие огни, видео по электрическим схемам. (0:41)
Для доступа к этому ресурсу вам необходимо авторизоваться или зарегистрироваться.
Схемы онлайн-эксперимент
Интерактивное занятие
Веселый и интерактивный научный онлайн-эксперимент с электрическими цепями.
Для доступа к этому ресурсу вам необходимо авторизоваться или зарегистрироваться.
Руководство по доставке онлайн-экспериментов Circuits
Руководство по доставке
Руководство по доставке с целями обучения, словарным запасом, ответами и ссылками на учебный план
Для доступа к этому ресурсу вам необходимо авторизоваться или зарегистрироваться.
Рабочий лист 1 (резюме схем)
Рабочий лист
Рабочий лист с символами цепей и схемами.
Для доступа к этому ресурсу вам необходимо авторизоваться или зарегистрироваться.
Рабочий лист 2 (запись эксперимента)
Рабочий лист
Лист планирования эксперимента, в котором исследуется эффект наличия более одной лампочки в цепи.
Для доступа к этому ресурсу вам необходимо авторизоваться или зарегистрироваться.
Онлайн-эксперимент сопротивления воздуха
Какой спиннер будет падать дольше всех? Онлайн-эксперимент, видео и рабочие листы по сопротивлению воздуха.
Вид
Классификационные материалы: стартовое видео и рабочие листы
Какой материал самый прочный? Ресурсы для стимулирования обсуждения и поддержки расследования.
Вид
Разложение и микроорганизмы: стартовое видео и рабочие листы
Откуда мы знаем, что микроорганизмы существуют, если они слишком малы, чтобы их можно было увидеть? Ресурсы для стимулирования обсуждения и поддержки расследования
Вид
Онлайн-эксперимент с измерителями силы
Интерактивный научный онлайн-эксперимент и вспомогательный рабочий лист по силам.
Вид
Пятый округ приказывает FERC пересчитать штраф за манипулирование рынком в отношении BP BP America, Incorporated и связанные с ней организации за манипулирование рынком природного газа после урагана «Айк», обрушившегося на юго-восток Техаса в сентябре 2008 г.
Заявителями являются четыре подразделения BP: BP America, Incorporated; BP Corporation North America, Incorporated; Производственная компания BP America; и Энергетическая компания ВР. В сноске суд отмечает, что «… FERC возбудил принудительные действия против различных организаций, связанных с BP, но мы называем эти коллективные организации BP». FERC является единственным ответчиком.
Суд кратко описывает характер рынка манипуляция. «Когда обрушился ураган, цены на газ в HSC [Houston Ship Channel, газовый узел в Хьюстоне] резко упал, в результате чего BP получила значительную прибыль». прибыль в результате «спредовой» позиции BP, т. е. «… разница между цены на природный газ в Henry Hub, крупном рынке природного газа в Луизиане. часто используется в качестве национального эталона и… [HSC]».
Суд продолжает: «И посреди суматохи на рынке ВР высмотрел возможность; компания заработала бы на миллионы больше, если бы цена разница между HSC и Henry Hub сохранилась после того, как ураган стал история. Согласно FERC, BP воспользовалась этой возможностью, участвуя в избыток физических продаж в HSC, намереваясь снизить цены, по которым зависела стоимость его финансового положения».
Пятый округ рассмотрел регулирующее решение FERC в соответствии с Закон об административном производстве. Наиболее существенный вопрос, поднятый BP, был юрисдикционный. BP утверждала, что FERC обладает юрисдикцией только в отношении межгосударственных деятельности и что «… ни одна из рассматриваемых сделок не была сделками в газ между штатами регулируется Законом о природном газе».
Суд занимается длительным анализом Закона о природном газе, в частности, поправка 2005 г. , которая добавила следующие меры против манипулирования положения: «Использование любой организацией прямо или косвенно или использовать в связи с покупкой или продажей природного газа или покупка или продажа транспортных услуг, подпадающих под юрисдикцию комиссия, любое манипулятивное или вводящее в заблуждение устройство или приспособление…»
Суд отклонил аргумент FERC о том, что формулировка закона, которая «… запрещает манипулирование «любым лицом» «в связи» с юрисдикцией [т.е. межгосударственная] транзакция», наделяет FERC юрисдикцией в отношении «… любой сделка с природным газом, являющаяся частью манипулятивной схемы, при условии, что схема влияет на цену сделки в юрисдикции NGA».
Суд принял соответствующий аргумент FERC о юрисдикции. “Хотя FERC не утверждает, что какая-либо из транзакций BP напрямую связана с покупка или транспортировка природного газа через границы штатов, Комиссия убедительно указывает на свою давнюю позицию, которую BP здесь не оспаривает – что после того, как газ продается или транспортируется в рамках торговли между штатами, он остается межгосударственный газ.