Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Принцип работы частотного преобразователя. Схема частотного привода.

Переити в каталог продукции: Частотные преобразователи

Электроприводы постоянного тока являются очень простыми с точки зрения организации системы регулирования скорости вращения двигателя, но сам электродвигатель является слабым звеном системы, ведь он достаточно дорогой и при этом не отличается особой надежностью. К тому же область применения данных двигателей ограничена из-за излишнего искрения щеток и, следовательно, повышенной электроэрозии и износа коллектора, что к общем не позволяет использовать двигатели постоянного тока в пыльных условиях и в средах с опасностью взрыва. Альтернативой электроприводам постоянного тока является комплексное применение асинхронных двигателей переменного тока с частотными преобразователями.

Асинхронные двигатели повсеместно используются в виду очень простого устройства и надежности, при меньших габаритах и массе они обеспечивают такую же мощность, как и двигатели постоянного тока. Главным минусом их является сложность организации системы регулирования скорости двигателя традиционными для двигателей постоянного тока методами. Теоретическая база для разработки первых частотных преобразователей, которые могли уже тогда стать решением вопроса регуляции скорости, была заложена еще в 30-е годы двадцатого века. Отсутствие микропроцессоров и транзисторов не позволяло воплотить теорию в практику, но с появлением транзисторных схем и управляющих микропроцессоров в Японии, США и Европе примерно в одно время были разработаны варианты частотных преобразователей.

При наличии других способов управления скорости вращения исполняющих механизмов (речь идет о механических вариаторах, резисторных группах, вводимыми в ротор/статор, электромеханических частотных преобразователях, гидравлике) наиболее эффективным является использование статических частотных преобразователей, который экономическим выгоднее других вариантов в виду дешевизны монтажа, эксплуатации и высокого КПД. Неприхотливость преобразователей также обусловлена отсутствием подвижных частей в виду того, что регуляция осуществляется на этапе подачи тока и основана на изменении параметров питания, а не на контроле за скоростью вращения при помощи средств механического управления.

Каков принцип частотных методов регулирования? Наглядное объяснение можно вывести из следующей формулы

Из выражения видно, что путем изменения частоты входного питающего напряжения (f1) изменяется угловая скорость статора, точнее его магнитного поля, но этом взаимозависимые характеристики. Эффект достигается при постоянном числе пар полюсов (p). Что это дает? В первую очередь, плавность регулирования (в особенности при пиковых нагрузках в момент пуска двигателя) скорости при очень высокой жесткости механических характеристик. Также достигается повышенное скольжение асинхронного двигателя, что существенно снижает потери мощности и увеличивает коэффициент полезного действия.

Высокие показатели КПД, коэффициента мощности, перегрузочной способности достигаются при одновременном изменении частоты и напряжения. Законы изменения этих параметров напрямую зависят от момента нагрузки, который может иметь статичный, вентиляторный и обратно пропорциональный скорости вращения характер.

При постоянном моменте нагрузке напряжение на статоре будет регулироваться в пропорциональной зависимости от частоты, что хорошо видно из формулы:

Если момент нагрузки имеет вентиляторный характер, то напряжение будет пропорционально квадрату частоты питающего напряжения.

Ну и моменте нагрузки, который обратно пропорционален скорости получим:

      Как видно из вышеописанного при обеспечении одновременного регулирования частоты питающего напряжения и параметров напряжения на статоре частотным преобразователем достигается плавное бесступенчатое регулирование скорости вращения вала двигателя. При этом отсутствие передач позволяет более точно регулировать скорость вращения по заданным пользователем параметрам.

Основные достоинства применения регулируемых приводов на предприятиях.

Интеграция систем регулирования качественно изменяет технические характеристики всех участников технологического процесса, нуждающегося в регуляции. Большая часть экономической эффективности заключается в возможности регулирования при помощи частотного преобразователя технологических характеристик процессов, температуры, давления, скорости движения, скорости подачи главного движения. Конечно же, максимальная эффективность достигается на объектах, предназначенных для перемещения жидких масс. До сих пор популярным способом регулирования скорости потока и мощности является применение заслонок и заглушек, в частных случаях различных регулирующих механических клапанов, но эти методы менее эффективны чем изменение скорости самого исполнительного механизма и чреваты потерями транспортируемой жидкости.

       Разница в производительности и эффективности между дросселированием посредством механических средств и применением частотных преобразователей очевидна на следующем рисунке. (схема 1) Из схемы становится ясно, что возрастает экономия ресурсов, а также нивелируются проблемы, связанные с полной потерей динамической мощности потока во время закрытия заслонок, что приводит, по сути, к холостой работе двигателя. Это увеличивает экономическую эффективность частотных преобразователей.

Конструкция типового частотного преобразователя.

Принципиальной задачей преобразователя частоты является изменение параметров электрического тока, это осуществляется при помощи транзисторного выпрямления тока и преобразования его до необходимых заданных значений. Типовой частотный преобразователь состоит из трех частей:

– Звено постоянного тока. Состоит из выпрямителя и фильтрационных устройств. Звено постоянного тока принимает входной сигнал и перенаправляет его в инвертор.

– Импульсного инвертора. Силовой трехфазный инвертор обычно имеет шесть транзисторов-ключей и осуществляет преобразование тока до заданных частот и амплитуд, а затем подает его на статор. Инвертор может состоять из тиристорной схемы.

– Микропроцессорной системы управления. Управляет системами преобразования и защиты преобразователя.

Четкая синусоида выходного сигнала – результат работы IGBT-транзисторов в качестве ключей инвертора, которые работают с более высокой частотой переключения, чем устаревшие тиристоры.

Как работает частотный преобразователь?

Схема преобразователя представлена в наглядном виде на следующем рисунке. (схема 2)

На схеме отображены основные структурные части преобразователя, а именно: инвертор, диодный силовой выпрямитель, модуль управления широтно-импульсной модуляцией, система управления, дроссель и конденсатор фильтра. Регуляция выходной частоты и напряжения (fвых. и Uвых., соответственно) осуществляется путем широтно-импульсного управления высокой частоты. Управление зависит от периодичности модуляции. Это период, в течение которого статор по очереди получает сигнал от положительного и отрицательного полюса напряжения. Длительность периода модулируется согласно синусоидальному закону гармонических частот, дополнительное преобразование происходит уже в обмотках двигателя, где после фильтрации ток имеет уже строго синусоидальную форму.

      Сама кривая выходного напряжения – это двуполярная последовательность высокой частоты, созданная прямоугольными импульсами. Данные параметры также регулируются широтно-импульсной модуляцией, а сама ширина импульсов модулируется по синусоидальному закону. Изменение характеристик выходного напряжения осуществляется одним из двух способов: изменение AP (амплитуды) путем регуляции значения входного напряжения Uвх.; при Uвх., имеющим постоянное значение, путем внесения изменений в программу, контролирующую периодичность переключения переключателей V1-V6. Наличие современных IBGT-транзисторов на микропроцессорном управлении применение второго способа является более продуктивным и широко используемым. ШИМ также позволяет добиться формы кривой тока близкой к синусоиде, но уже благодаря свойствам обмоток, выполняющих функции фильтра.

Данный метод управления также позволяет существенно увеличить коэффициент полезного действия преобразователя и по своим характеристикам полностью аналогично методике управления путем изменения амплитуды и частоты тока. В наше время существует несколько компоновок инверторов с управляемыми ключами: запираемые GTO тиристоры; биполярные IGBT-транзисторные ключи с затвором. С примером можно ознакомиться на следующем рисунке. (рисунок 2) Здесь изображена мостовая трехфазная схема с использованием IGBT-транзисторов. Инвертор автономный. В данной схеме используется комплекс из 6 транзисторных ключей (на схеме V1-V6), емкостного фильтра тока. Транзисторы включены при помощи диодов обратного тока (на схеме D1-D6) по встречно-параллельной схеме.

Алгоритм переключения вентилей задается микропроцессором, переключение преобразует постоянное Uвх. в переменное выходное напряжение с прямоугольными импульсами. Активная составляющая токового потока асинхронного двигателя проходит через транзисторы, а реактивная – через диоды обратного тока.

И – трехфазный мостовой инвертор;
В – трехфазный мостовой выпрямитель;

Сф – конденсатор фильтра;

Переити в каталог продукции: Частотные преобразователи

Частотный преобразователь – принцип работы, схема подключения частотника

Чтобы подключить частотник к асинхронному трёхфазному двигателю, следует хотя бы на минимальном уровне разбираться в схеме его подключения и принципах работы. Нижеприведённая информация позволяет изучить данную тему.

Принцип управления электродвигателем

Ротор электрического двигателя функционирует благодаря вращению электромагнитных полей под статорной обмоткой. Скорость движения ротора находится в зависимости от промышленной частоты питающей сети.

Стандартное её значение составляет 50Гц и вызывает соответственно пятьдесят колебательных периодов за секунду. На протяжении минуты количество оборотов увеличивается до трёх тысяч. Настолько же часто осуществляются обороты ротора подвергаемого воздействию электромагнитных полей.

При изменении уровня прилагаемой к статору частоты, появляется возможность управления вращательной скоростью ротора и соединяемого с ним привода. Именно благодаря этому принципу осуществляется управление электродвигателем.

Классификация частотных преобразователей

По своим конструктивным различиям модели частотного преобразователя делятся на:

Индукционные.

Сюда относятся электрические двигатели имеющие асинхронный принцип работы. Данные устройства не отличаются высоким уровнем КПД и значительной эффективностью. Ввиду этих качеств они не имеют большой доли в общем числе преобразователей и редко применяются.

Электронные.

Пригодны для осуществления плавного управления оборотами в машинах асинхронного и синхронного типа. Управление в электронных моделях может производиться двумя способами:

Скалярный (согласно предварительно введённым параметрам взаимозависимости вращательной V и частоты).

Наиболее простой подход к управлению, довольно неточный.

Векторный.

Отличительной характеристикой является точность управления.

Векторное управление преобразователем частот

Принцип работы векторного управления заключается в следующем: при нём оказывается воздействие на магнитный поток, изменяя направление его «пространственного вектора» и регулирующий роторную частоту поля.

Создать рабочий алгоритм частотного преобразователя с векторным управлением можно при помощи двух способов:

Бессенсорное управление.

Осуществляется за счёт назначения зависимостей чередования между последовательностями широтно-импульсных модуляций инвертора для предварительно составленных алгоритмов. Регуляция размера амплитуды и выходной частоты, которую имеет напряжение, осуществляется в соответствии со скольжением и нагрузочным током, но обратная связь от роторной вращательной скорости не учитывается.

Потокорегулирование.

Рабочие токи устройства регулируются. При этом они раскладываются на активный и реактивный компонент. Это облегчает возможность внесения корректирующих изменений в рабочий процесс (изменение амплитуд, частот, векторных углов, которые имеет напряжение на выходе).

Способствует повышению точности и диапазона регуляции вращений асинхронного двигателя. Весьма актуален такой подход для устройства с малыми оборотами и высоким уровнем двигательных нагрузок.

В целом, схема векторного управления более прочих подходит для динамической регулировки вращающегося момента трёхфазного асинхронного двигателя.

Подключение транзисторных ключей

Все шесть IGBT-транзисторов соединяются с соответствующими диодами обратного тока с соблюдением встречно-параллельной схемы. После по цепи силового подключения, образуемой каждым транзистором происходит прохождение активного тока асинхронного двигателя, с последующим направлением его реактивной составляющей через диоды. С целью обеспечения безопасности инвертора и асинхронного двигателя от воздействия сторонних электрических помех конструкция преобразователя частоты может включать в себя помехозащитные фильтры. Если промышленные источники постоянного тока имеют рабочее напряжение в 220 В, то они также могут использоваться для запитывания инверторов.

Как подключить частотник к асинхронному двигателю?

Используемый для управления частотой напряжения преобразователь зачастую используется для энергоснабжения трёхфазных двигателей.  С помощью преобразователя частоты также возможно обеспечить присоединение такого устройства к однофазной сети, предотвратив снижение его рабочей мощности. Этим они значимо выигрывают у конденсаторов, которые при подключении не могут сохранить исходный уровень мощности. Подробней про применение частотника для трехфазника- смотрите здесь.

При подключении частотного преобразователя следует предварительно разместить автоматический выключатель, функционирующий от тока сети по значению равного номинальному (или наиболее близкого к таковому) уровню потребления тока в двигателе. Если используется частотник трёхфазного типа, то соответственно следует воспользоваться трёхфазным автоматом с общим рычагом. Такой вариант обеспечивает быстрое обесточивание всех фаз сразу при замыкании на одной из них.

Ток срабатывания по своим характеристикам должен совпадать с однофазным током электрического двигателя.

В случае же, если для частотного преобразователя свойственно однофазное питание, то следует применить одинарный автомат, который подходит для работы с утроенным однофазным током.

Однако, при любых обстоятельствах установку частотного преобразователя нельзя осуществлять через включение автомата в месте разрыва нулевых или заземляющих проводов. В таких условиях подразумевается только прямое включение автомата.

Дальнейшую настройку преобразователя частоты осуществляют через соединение с контактами электрического двигателя. Используются при этом фазные провода. Но предварительно производится соединение обмоток электрического двигателя по схеме «звезда» или «треугольник».

Работа по той или иной схеме базируется на том, каков тип преобразователя частоты и характер производимого им напряжения.

По стандарту корпус каждого двигателя имеет отметку с двумя значениями, которым может равняться напряжение. Если частотник продуцирует напряжение соответствующее нижней границы, то соединение осуществляется по типу «треугольник». В остальных случаях для использования принцип «звезды».

Месторасположение управляющего пульта, обязательно прилагающегося при покупке частотного преобразователя, следует подбирать тщательно, чтобы обеспечить наибольшее удобство пользования.

Подключения пульта управления осуществляется по схеме обозначенной в прилагаемой к преобразователю инструкции. После рукоятка фиксируется на нулевом уровне, и автомат включается. В этот момент должно наблюдаться свечение светового индикатора.

Для использования частотного преобразователя, следует надавить кнопку «RUN» (она уже запрограммирована надлежащим образом). Далее делается лёгкий поворот рукоятки, провоцирующий старт постепенного вращения электрического двигателя. Если вращение осуществляется в направлении, противоположном необходимому, то следует нажать реверс. После при помощи рукоятки настраивается требуемая частота вращения устройства. При этом следует учитывать, что на корпусе пульта управления зачастую прописаны не уровни частоты вращения двигателя, выражаемые в оборотах в минуту, а частоты, которую имеет питающее напряжение, выражаемое в герцах.

Чтобы ограничить пусковой ток и снизить пусковой момент в момент пуска асинхронного двигателя с уровнем мощности больше 5000Вт, используется подключение типа «звезда-треугольник». До достижения номинала скорости задействуется схема подключения частотного преобразователя «звезда», а после питание осуществляется по схеме «треугольник». В момент переключения уровень пускового тока уменьшается в три раза относительно прямого пуска. При начале работы по второй схеме до момента разгона двигателей ток возрастёт до уровня прямого пуска. Такой варианты наиболее актуален для, имеющих большую маховую массу, позволяя после разгона сбросить нагрузку.

Логично, что использование такой схемы возможно только с двигателями, рассчитанными на подключения обоих типов.

Проведение работы по схеме «звезда-треугольник» всегда чревато резкими скачками уровня тока в противовес плавному нарастанию в условиях прямого пуска. В момент смены соединения скорость резко снижается и увеличить её можно только увеличив силу тока.

Частотный преобразователь.Как подключить трёхфазный электродвигатель от 220В.


Watch this video on YouTube

Подключение частотного преобразователя к электродвигателю (схема)

Преобразователь частоты переменного тока уже много лет применяются при строительстве электромеханических приборов и агрегатов. Они позволяют модулировать частоту для того, чтобы регулировать скорость вращения вола электрического двигателя.

Частотники позволили подключать трёхфазный электрический двигатель к однофазной сети питания, при этом, не теряя мощности. При старинном типе подключения, через емкий конденсатор, большая часть мощности двигателя терялась, КПД существенно снижалось, обмотки электрического двигателя сильно перегревались.

Всех этих проблем удалось избежать, применением частотного преобразователя. При этом очень важно соблюдать правильное подключение частотного преобразователя к электрическому двигателю.

Некоторые особенности подключения любого частотника в связку с электрическим двигателем.

Во-первых

Из соображений безопасности эксплуатации прибора, при подключении частотника (или любого иного прибора) к сети питания, обязательно нужно устанавливать защитный автомат. Автомат устанавливается перед частотником.

При этом если частотный преобразователь подключается в сеть с трёхфазным напряжением, то установить необходимо автомат тоже трёхфазный, но с общим рычагом отключения.
Это позволит отключить питание от всех фаз одновременно, если хотя бы на одной фазе будет короткое замыкание или сильная перегрузка.

Если преобразователь частоты подключается в сеть с однофазным напряжением, то соответственно применяется автомат однофазный. Но при этом, в расчет берётся ток одной фазы, умноженный на три.

При подключении трёхфазного автомата, его рабочий ток определяется током одной фазы.

Однозначно запрещено устанавливать защитный автомат в разрыв нулевого кабеля, как при однофазном подключении, так и при трёхфазном. Такое подключение только внешне выглядит идентичным (ошибочно понимать, что цепь одна и не важно, где её разрывать).
На самом деле, в случае разрыва фазовых кабелей, при срабатывании автомата, питание полностью отключается и на цепях прибора не будет фаз вовсе. Это безопасно. А при срабатывании автомата с разорванным нулём, работа прибора прекратиться. Но при этом, обмотки двигателя и цепи частотника останутся под напряжением, что является нарушением правил техники безопасности и опасно для человека.

Также, не при каких условиях не разрывается заземляющий кабель. Как и нулевой, они должны быть подключены к соответствующим шинам напрямую.

Во вторых

Следует подключить фазовые выходы частотного преобразователя к контактам электрического двигателя. При этом обмотки электрического двигателя следует подключить по принципу «треугольник» или «звезда». Тип выбирается исходя из напряжения, которое вырабатывает частотник. Как правило, к каждому инвертеру приложена инструкция, в которой подробно расписано, как соединяются обмотки двигателя для подключения конкретного частотника. Схема подключения частотного преобразователя к 3-х фазному двигателю также должна быть приведена в инструкции.

Обычно на корпусах двигателей приведены оба значения напряжения. Если частотник соответствует меньшему, то обмотки соединяются по принципу треугольника. В других случаях по принципу звезды. Схема подключения частотного преобразователя также должна быть приведена в паспорте частотника. Там же обычно приводятся и рекомендации по подключению.

В третьих

Практически к каждому преобразователю частоты в комплекте прилагается выносной пульт управления. Несмотря на то, что на самом корпусе частотника уже есть интерфейс для ввода данных управления и программирования, наличие выносного пульта управления является очень удобной опцией.

Пульт монтируется в месте, где удобнее всего с ним работать. В некоторых случаях, когда преобразователь частоты несколько уступает в пылевой защите и защите от влаги, сам частотник может быть установлен вдали от двигателя, а пульт управления рядом, для того, чтобы не бегать к шкафу управления и не регулировать обороты там.

Всё зависит от конкретных обстоятельств и требований производства.

Первый пуск и настройка преобразователя частоты

После подключения к преобразователю частоты пульта управления, следует рукоятку скорости вращения вала двигателя перевести в наименьшее положение. После этого нужно включить автомат, тем самым подать питание на частотник. Как правило, после включения питания должны загореться световые индикаторы на частотнике и, при наличии светодиодной панели, на ней должны отобразиться стартовые значения.

Принцип подключения цепей управления частотного преобразователя не является универсальным. Нужно соблюдать указания, указанные в инструкции к конкретному частотнику.

Для первого запуска двигателя потребуется нажать кратковременно клавишу пуска на частотнике. Как правило, эта кнопка запрограммирована на пуск двигателя по умолчанию на фабрике.

После пуска, вал двигателя должен начать медленно вращаться. Возможно, двигатель будет вращаться в противоположную сторону, отличную. От необходимой. Проблему можно решить программированием частотника на реверсное движение вала. Все современные модели преобразователей частоты поддерживают эту функцию. Можно воспользоваться и примитивным подключением фаз в другом порядке фаз. Хотя это долго и не рентабельно по затрате времени и сил электромонтёра.

Дальнейшая настройка предполагает выставления нужного значения оборотов двигателя. Нередко на частотника отображается не частота вращения вала двигателя, а частота питающего двигатель напряжения, выраженная в герцах. Тогда потребуется воспользоваться таблицей, для определения соответствующего значения частоты напряжения частоте вращения вала двигателя.

При монтаже и обслуживании, а также замене преобразователя частоты важно соблюдать ряд рекомендаций.

  • Любое касание рукой или иной частью тела токоведущего элемента может отнять здоровье или жизнь. Это важно помнить при любой работе со шкафом управления. При работе со шкафом управления следует отключить входящее питание и убедиться что именно фазы отключены.
  • Важно помнить, что некоторое напряжение может ещё оставаться в цепи, даже при угасании световых индикаторов. Посему, при работе с агрегатами до 7 кВт, после отключения питания рекомендуется прождать минут пять не меньше. А при работе с приборами более 7 кВт, прождать нужно не менее 15 минут после отключения фаз. Это даст возможность разрядиться всем имеющимся в цепи конденсаторам.
  • Каждый преобразователь частоты должен иметь надёжное заземление. Заземление проверяется согласно правилам профилактических работ.
  • Строго запрещено использовать в качестве заземления нулевой кабель. Заземление монтируется отдельным кабелем отдельно от нулевой шины. Даже при наличии и нулевой шины и шины заземления, при соответствии их нормам электромонтажа, соединять их запрещено.
  • Важно помнить, что клавиша отключения частотника не является гарантией обесточивания цепей. Эта клавиша всего лишь останавливает двигатель, при этом ряд цепей может оставаться под напряжением.

Подключение частотного преобразователя к электродвигателю осуществляется с применением кабелей, сечение которых соответствует тем характеристикам, которые указаны в паспорте частотника. Нарушение норм в меньшую сторону недопустимо. В большую сторону, может быть не целесообразно.

Прежде чем как подключить частотный преобразователь к электродвигателю, важно убедиться в соответствии условий, при которых будет работать преобразователь частоты. Фактически, условия должны соответствовать рекомендациям, приведённым в инструкции.

В каждом конкретном случае, подключение частотника может сопровождаться рядом обязательных условий. Чтобы узнать, как подключить частотник к 3 фазному двигателю схемы, которого есть в наличии. Сначала изучаются схемы. Если в них всё понятно, подключение выполняется при строго следовании инструкции. Если что-то не понятно, не следует выдумывать самостоятельно и полагаться на свою интуицию. Нужно связаться с поставщиком или производителем, для получения соответствующих указаний.

[wpfmb type=’warning’ theme=2]Лучше дождаться помощи специалиста, чем потом ремонтировать сломанную технику. Случай-то не будет гарантийным.[/wpfmb]

Частотный преобразователь.Как подключить трёхфазный электродвигатель от 220В.


Watch this video on YouTube

Схема частотного преобразователя. Описание структуры преобразователей частоты для асинхронных электродвигателей.

Об асинхронных двигателях переменного тока, работой которых управляют частотные преобразователи, часто говорят, как о лучшей альтернативе электрическим приводам постоянного тока. Хотя система, регулирующая скорость, с которой вращается электродвигатель, в последних не отличается сложностью, высокая стоимость и не очень высокая надежность делают их невыгодными. Есть и иные проблемы: щетки чрезмерно искрят, из-за чего повышена электроэрозия и изнашивается коллектор. Поэтому такие электродвигатели нельзя применять в сильно запыленных местах и там, где велика потенциальная опасность взрыва.

Схему преобразователя частоты придумали в далеких 1930-х годах. Однако внедрить ее в жизнь удалось только когда появились полупроводники и транзисторные элементы. Основным недостатком, свойственным асинхронным двигателям, является сложность организации системы, регулирующей скорость, с которой вращается двигатель. Вот почему понадобились частотники.

Конструктивные особенности преобразователей частоты

Схема частотного преобразователя асинхронного двигателя имеет следующую ключевую задачу: изменить характеристики, которые имеет проходящий через нее ток. Задача решается транзисторным выпрямлением электротока, который затем преобразовывается до требуемых определенных значений. Схема преобразователя частоты включает в себя три основных части. Она оснащена основанной на микропроцессорах управляющей системой, звеном постоянного тока, импульсным инвертором.

Задачи, которые выполняет первая из вышеперечисленных частей, следующие: управлять работой систем преобразования, защищать частотник. В составе второй части используются устройства фильтрации и выпрямитель. Ими осуществляются прием сигнала на входе и перенаправление того к инвертору. Ну а третьей частью (импульсным инвертором) производится преобразование тока таким образом, что тот приобретает определенную амплитуду и частоту. Затем преобразованный ток подается на статор. Обычно в конструкции используются 6 транзисторов-ключей либо построенная на тиристорах схема.

Схема частотного преобразователя способна обеспечить четкость синусоиды, которую имеет сигнал на выходе, если она собрана с использованием не устаревших тиристоров, а IGBT-транзисторов (они работают как инверторные ключи).

Принцип функционирования частотника

Вообще, полноценный частотник комплектуется следующими устройствами: системой управления, инвертором, управляющим широтно-импульсной модуляцией модулем, диодным силовым выпрямителем, конденсатором фильтра и дросселем. Это его основные структурные элементы. Регуляцию напряжения и частоты на выходе схема преобразователя осуществляет с помощью высокочастотного широтно-импульсного управления. Последнее же имеет зависимость от того, какая периодичность у модуляции.

Модуляцию определяют как отрезок времени, на протяжении которого статором получаются поочередные сигналы посылаемые то отрицательным, то положительным полюсом. Продолжительность данного отрезка модулируется в согласии с законом гармонических частот, который называют синусоидальным. А в обмотках электродвигателя ток подвергается дополнительному преобразованию, и после прохождения фильтра ему присуща четко синусоидальная форма. И, как уже было сказано выше, крайне желательно, чтобы схема частотного преобразователя подключаемого в асинхронные электродвигатели была собрана на IGBT-транзисторах.

Кривую, которую имеет выходное напряжение (а по сути она является ничем иным, как двуполярной последовательностью высокой частоты), создают импульсы, имеющие прямоугольную конфигурацию. Их тоже регулирует широтно-импульсная модуляция. Модулирование ширины, которую имеют импульсы, производится в соответствии с синусоидальным законом. Есть два способа, используя которые схема преобразователя частоты изменяет параметры напряжения на выходе.

Один из этих способов заключается в регуляции значения, которое имеет напряжение на входе, дающей результат в виде изменения амплитуды. Второй способ такой: значение, которое имеет напряжение на входе не изменяется, но делаются корректировки в программе, контролирующей, с какой периодичностью переключаются переключатели (6 транзисторных ключей). Производимые сегодня IGBT-транзисторы делают применение второго из вышеописанных способов более предпочтительным. Соответственно, он очень широко используется. Сегодня уже не так часто встречается схема частотного преобразователя, собранная не на IGBT-транзисторах. ШИМ, конечно, тоже способна выдавать кривую тока, по форме близкую к синусоиде. Однако только потому, что обмотки электродвигателя играют роль фильтра.

Частотный преобразователь

Дмитрий Левкин

Частотный преобразователь, или преобразователь частоты – электротехническое устройство (система управления), используемое для контроля скорости и/или момента двигателей переменного тока путем изменения частоты и напряжения питания электродвигателя.

Согласно ГОСТ 23414-84 полупроводниковый преобразователь частоты – полупроводниковый преобразователь переменного тока, осуществляющий преобразование переменного тока одной частоты в переменный ток другой частоты

Частотный преобразователь – это устройство, используемое для того чтобы обеспечить непрерывное управление процессом. Обычно частотный преобразователь способен управлять скоростью и моментом асинхронных и/или синхронных двигателей.

Частотный преобразователь небольшой мощности

Высоковольтный преобразователь

Преобразователи частоты находят все более широкое применение в различных приложениях промышленности и транспорта. Благодаря развитию силовых полупроводниковых элементов, инверторы напряжения и инверторы тока с ШИМ управлением получают все более широкое распространение. Устройства, которые преобразуют постоянный сигнал в переменный, с желаемым напряжением и частотой, называются инверторами. Такое преобразование может быть осуществлено с помощью электронных ключей (BJT, MOSFET, IGBT, MCT, SIT, GTO) и тиристоров в зависимости от задачи.

На данный момент основная часть всей производимой электрической энергии в мире используется для работы электрических двигателей. Преобразование электрической мощности в механическую мощность осуществляется с помощью электродвигателей мощностью от меньше ватта до нескольких десятков мегаватт.

    Современные электроприводы должны отвечать различным требованиям таким как:
  • максимальный КПД;
  • широкий диапазон плавной установки скорости вращения, момента, ускорения, угла и линейного положения;
  • быстрое удаление ошибок при изменении управляющих сигналов и/или помех;
  • максимальное использование мощности двигателя во время сниженного напряжения или тока;
  • надежность, интуитивное управление.

Основными элементами частотного преобразователя являются силовая часть (преобразователь электрической энергии) и управляющее устройство (контроллер). Современные частотные преобразователи обычно имеют модульную архитектуру, что позволяет расширять возможности устройства. Также зачастую имеется возможность установки дополнительных интерфейсных модулей и модулей расширения каналов ввода/вывода.

Функциональная схема частотного преобразователя

На микроконтроллере частотного преобразователя выполняется программное обеспечение, которое управляет основными параметрами электродвигателя (скоростью и моментом). Основные методы управления бесщеточными двигателями, используемые в частотных преобразователях представлены в таблице ниже.

Характеристики основных способов управления электродвигателями используемых в частотных преобразователях [3]

Примечание:

  1. Без обратной связи.
  2. С обратной связью.
  3. В установившемся режиме

Широкое развитие силовых электрических преобразователей в последние десятилетия привело к увеличению количества исследований в области модуляции. Метод модуляции непосредственно влияет на эффективность всей энергосистемы (силовой части, системы управления), определяя экономическую выгоду и производительность конечного продукта.

Главная цель методов модуляции – добиться лучшей формы сигналов (напряжений и токов) с минимальными потерями. Другие второстепенные задачи управления могут быть решены посредством использования правильного способа модуляции, такие как уменьшение синфазной помехи, выравнивание постоянного напряжения, уменьшение пульсаций входного тока, снижение скорости нарастания напряжения. Одновременное достижение всех целей управления невозможно, необходим компромисс. Каждая схема силового преобразователя и каждое приложение должны быть глубоко изучены для определения наиболее подходящего метода модуляции.

    Методы модуляции можно разделить на четыре основные группы:
  • ШИМ – широтно-импульсная модуляция
  • ПВМ – пространственно-векторная модуляция
  • гармоническая модуляция
  • методы переключения переменной частоты

Корни силовой электроники уходят к 1901 году, когда П.К. Хьюитт изобрел ртутный вентиль. Однако современная эра полупроводниковой силовой электроники началась с коммерческого представления управляемого кремниевого выпрямителя (тиристора) компанией General Electric в 1958 году. Затем развитие продолжалось в области новых полупроводниковых структур, материалов и в производстве, давая рынку много новых устройств с более высокой мощностью и улучшенными характеристиками. Сегодня силовая электроника строится на металл-оксид-полупроводниковых полевых транзисторах (MOSFET – metal-oxide-semiconductor field-effect transistor) и биполярных транзисторах с изолированным затвором (IGBT – Insulated-gate bipolar transistors), а для диапазона очень высоких мощностей – на тиристорах с интегрированным управлением (IGCT – Integrated gate-commutated thyristor). Также сейчас доступны интегрированные силовые модули. Новая эра высоковольтных, высокочастотных и высокотемпературных технологий открывается многообещающими полупроводниковыми устройствами, основанными на широкой запрещенной зоне карбида кремния (SiC). Новые силовые полупроводниковые устройства всегда инициируют развитие новых топологий преобразователей [3].

Инвертор напряжения

Инвертор напряжения наиболее распространен среди силовых преобразователей.

Двухуровневый инвертор напряжения

Двухуровневый инвертор напряжения (two-level voltage-source inverter) – наиболее широко применяемая топология преобразователя энергии. Он состоит из конденсатора и двух силовых полупроводниковых ключей на фазу. Управляющий сигнал для верхнего и нижнего силовых ключей связан и генерирует только два возможных состояния выходного напряжения (нагрузка соединяется с положительной или отрицательной шиной источника постоянного напряжения).

Схема двухуровневого инвертора напряжения

Фазное напряжение двухуровневого инвертора напряжения

Используя методы модуляции для генерирования управляющих импульсов возможно синтезировать выходное напряжение с желаемыми параметрами (формой, частотой, амплитудой). Из-за содержания высоких гармоник в выходном сигнале для генерирования синусоидальных токов выходной сигнал необходимо фильтровать, но так как данные преобразователи обычно имеют индуктивную нагрузку (электродвигатели) дополнительные фильтры используются только при необходимости.

Максимальное выходное напряжение определяется значением постоянного напряжения звена постоянного тока. Для эффективного управления мощной нагрузкой требуется высокое постоянное напряжение звена постоянного тока, но на практике это напряжение ограничено максимальным рабочим напряжением полупроводников. Для примера низковольтные IGBT транзисторы обеспечивают выходное напряжение до 690 В. Для того чтобы обойти данное ограничение по напряжению в последние десятилетия были разработаны схемы многоуровневых преобразователей. Данные преобразователи сложнее, чем двухуровневые в плане топологии, модуляции и управления, но при этом имеют лучшие показатели по мощности, надежности, габаритам, производительности и эффективности.

Трехуровневый преобразователь с фиксированной нейтральной точкой

В трехуровневом преобразователе с фиксированной нейтральной точкой (three-level neutral point clamped converter) постоянное напряжение делится поровну посредством двух конденсаторов, поэтому фаза может быть подключена к линии положительного напряжения (посредством включения двух верхних ключей), к средней точке (посредством включения двух центральных ключей) или к линии отрицательного напряжения (посредством включения двух нижних ключей). Каждому ключу в данном случае требуется блокировать только половину напряжения звена постоянного тока, тем самым позволяя увеличить мощность устройства, используя те же самые полупроводниковые ключи, как и в обычном двухуровневом преобразователе. В данном преобразователе обычно используются высоковольтные IGBT транзисторы и IGCT тиристоры.

Схема трехуровневого преобразователя с фиксированной нейтральной точкой

    Недостатками данных преобразователей являются:
  • Дисбаланс конденсаторов, создающий асимметрию в преобразователе. Данную проблему предлагается решать путем изменения метода модуляции.
  • Неравное распределение потерь из-за того, что потери на переключение внешних и центральных ключей отличаются в зависимости от режима работы. Данная проблема не может быть решена с использованием обычной схемы, поэтому была предложена измененная топология – активный преобразователь со связанной нейтральной точкой (active NPC). В этой схеме диоды заменены управляемыми ключами. Таким образом, выбирая соответствующую комбинацию ключей, возможно уменьшить и равномерно распределить потери.
    • Фазное напряжение трехуровневого преобразователя с фиксированной нейтральной точкой

      Преобразователь с фиксированной нейтральной точкой может масштабироваться для достижения больше чем трех уровней выходного сигнала путем деления напряжения звена постоянного тока более чем на два значения посредством конденсаторов. Каждое из этих деленных напряжений может быть подключено к нагрузке с использованием расширенного набора ключей и ограничительных диодов. Вместе с увеличением мощности преимуществами многоуровневого преобразователя является лучшее качество электроэнергии, меньшее значение скорости нарастания напряжения (dv/dt) и связанных электромагнитных помех. Однако, когда преобразователь со связанной нейтральной точкой имеет более трех уровней, появляются другие проблемы. С точки зрения схемотехники в таком случае ограничительные диоды требуют более высокое максимальное рабочее напряжение чем основные ключи, что требует использования различных технологий или нескольких ограничительных диодов соединенных последовательно. В дополнение становится критическим неравномерное использование силовых элементов в схеме. В итоге из-за увеличения количества элементов снижается надежность. Приведенные недостатки ограничивают использование преобразователей с фиксированной нейтральной точкой с более чем тремя уровнями в промышленных приложениях.

      Многоуровневые преобразователи

      Каскадные преобразователи основанные на модульных силовых ячейках со схемой H-мост (cascaded H-bridge – CHB) и преобразователи с плавающими конденсаторами (flying capacitor converter) были предложены для обеспечения большего количества уровней выходного напряжения в сравнении с преобразователями с фиксированной нейтральной точкой.

      Каскадный Н-мостовой преобразователь

      Каскадный преобразователь – высоко модульный преобразователь, состоящий из нескольких однофазных инверторов, обычно называемыми силовыми ячейками, соединенными последовательно для формирования фазы. Каждая силовая ячейка выполнена на стандартных низковольтных компонентах, что обеспечивает их легкую и дешевую замену в случае выхода из строя.

      Схема каскадного преобразователя

      Основным преимуществом данного преобразователя является использование только низковольтных компонентов, при этом он дает возможность управлять мощной нагрузкой среднего диапазона напряжения. Несмотря на то что частота коммутации в каждой ячейке низкая, эквивалентная частота коммутации приложенная к нагрузке – высокая, что уменьшает потери на переключение ключей, дает низкую скорость нарастания напряжения (dv/dt) и помогает избежать резонансов.

      Фазное напряжение каскадного преобразователя

      Преобразователь с плавающими конденсаторами

      Выходное напряжение преобразователя с плавающими конденсаторами получается путем прямого соединения выхода фазы с положительной, отрицательной шиной или подключением через конденсаторы. Количество уровней выходных напряжений зависит от количества навесных конденсаторов и отношения между различными напряжениями.

      Схема преобразователя с плавающими конденсаторами

      Этот преобразователь, как и в случае каскадного преобразователя, также имеет модульную топологию, где каждая ячейка состоит из конденсатора и двух связанных ключей. Однако, в отличие от каскадного преобразователя добавление дополнительных силовых ключей к конденсаторному преобразователю не увеличивает номинальную мощность преобразователя, а только уменьшает скорость нарастания напряжения (dv/dt), улучшая коэффициент гармоник выходного сигнала. Как и у каскадного преобразователя, модульность уменьшает стоимость замены элементов, облегчает поддержку и позволяет реализовать отказоустойчивую работу.

      Фазное напряжение преобразователя с плавающими конденсаторами

      Конденсаторный преобразователь требует только один источник постоянного тока для питания всех ячеек и фаз. Поэтому, можно обойтись без входного трансформатора, а количество ячеек может быть произвольно увеличено в зависимости от требуемой выходной мощности. Подобно преобразователю с фиксированной нейтральной точкой, этому преобразователю требуется специальный алгоритм управления для регулирования напряжения на конденсаторах.

      Инвертор тока

      Для работы инвертору тока всегда требуется управляемый выпрямитель, чтобы обеспечить постоянный ток в звене постоянного тока. В стандартной топологии обычно используются тиристорные выпрямители. Чтобы уменьшить помехи в нагрузке, в звене постоянного тока используется расщепленная индуктивность. Инвертор тока имеет схему силовых ключей наподобие инвертора напряжения, но в качестве силовых ключей используются тиристоры с интегрированным управлением (IGCT). Выходной ток имеет форму ШИМ и не может быть напрямую приложен к индуктивной нагрузке (электродвигателю), поэтому инвертор тока обязательно включает выходной емкостной фильтр, который сглаживает ток и выдает гладкое напряжение на нагрузку. Этот преобразователь может быть реализован для работы на средних напряжениях и более того он по природе имеет возможность рекуперации энергии.

      Схема инвертора тока с выпрямителем

      Прямые преобразователи

      Прямые преобразователи передают энергию прямо от входа к выходу без использования элементов накопления энергии. Основным преимуществом таких преобразователей является меньшие габариты. Недостатком – необходимость более сложной схемы управления.

      Циклоконвертер относится к категории прямых преобразователей. Данный преобразователь широко использовался в приложениях требующих высокую мощность. Этот конвертер состоит из двойных тиристорных преобразователей на фазу, который может генерировать изменяемое постоянное напряжение, контролируемое таким образом, чтобы следовать опорному синусоидальному сигналу. Вход каждого преобразователя питается от фозосмещающего трансформатора, где устраняются гармоники входного тока низкого порядка. Выходное напряжение является результатом комбинации сегментов входного напряжения в котором основная гармоника следует за опорным сигналом. По своей природе данный преобразователь хорошо подходит для управления низкочастотными мощными нагрузками.

      Схема циклоконвертера

      Матричный преобразователь в его прямой и непрямой версии также принадлежит к категории прямых преобразователей. Основной принцип работы прямого матричного преобразователя (direct matrix converter) – возможность соединения выходной фазы к любому из входных напряжений. Преобразователь состоит из девяти двунаправленных ключей, которые могут соединить любую входную фазу с любой выходной фазой, позволяя току течь в обоих направлениях. Для улучшения входного тока требуется индуктивно-емкостной фильтр второго порядка. Выход напрямую соединяется с индуктивной нагрузкой. Не все доступные комбинации ключей возможны, они ограничены только 27 правильными состояниями коммутации. Как говорилось ранее, основное преимущество матричных преобразователей – меньшие габариты, что важно для автомобильных и авиационных приложений.

      Схема прямого матричного преобразователя

      Непрямой матричный преобразователь (indirect matrix converter) состоит из двунаправленного трехфазного выпрямителя, виртуального звена постоянного тока и трехфазного инвертора. Количество силовых полупроводников такое же как у прямых матричных преобразователей (если двунаправленный ключ рассматривается как два однонаправленных ключа), но количество возможных состояний включения отличается. Используя ту же самую конфигурацию непрямого матричного преобразователя, возможно упростить его топологию и уменьшить количество элементов ограничив его работу от положительного напряжения в виртуальном звене постоянного тока. Уменьшенная топология называется разреженный матричный преобразователь (sparse matrix converter).

      Схема непрямого матричного преобразователя

      Схема разреженного матричного преобразователя

        Библиографический список
      • ГОСТ Р 50369-92 Электроприводы. Термины и определения.
      • Rahul Dixit, Bindeshwar Singh, Nupur Mittal. Adjustable speeds drives: Review on different inverter topologies.- Sultanpur, India.:International Journal of Reviews in Computing, 2012.
      • Marian P. Kazmierkowski, Leopoldo G. Franquelo, Jose Rodriguez, Marcelo A. Perez, Jose I. Leon, “High-Performance Motor Drives”, IEEE Industrial Electronicsd, vol. 5, no. 3, pp. 6-26, Sep.2011.

Преобразователь частоты схема электрическая принципиальная схема


13 июня 2021 г. 07:59

Китайцы планируют заработать на этом большие. Можно ли запитать частотник от сети постоянного тока. Это могут быть двери, шкатулки, сейфы или запуск какоголибо действия, например, запуск ракеты. Сконфигурированный исходный файл может быть загружен в частотный преобразователь, находящийся в уп. Все они имеют опыт отношений и разводы за плечами. Наиболее распространен истоковый повторитель по схеме рис. Она предназначена для обеспечения коротковолновой радиосвязи и может быть установлена в автомобилях и бронеобъектах. Интеллектуальное управление компрессором и вентилятором конденсатора испарителя необходимо в любой оптимизированной системе охлаждения. Проверьте провода панели управления и убедитесь, есть ли ошибка. Вот собрал блок питания по такой схеме. Как правильно выбрать рыбные консервы, на что обратить внимание, чтобы приобрести качественный и безопасный продукт? В частотнике имеется множество полезных программируемых функций, множество цифровых и аналоговых входов и выходов, что позволяет использование в сложных системах управления. Для простых применений, когда от привода не требуется высокой функциональности. Чем сложнее система управления, тем большее количество каналов потребуется. На тот фиг, если сами въедете в когото. Не тутто было ещ часа два хуерачил. Автоматическая центровка ленты позволит сэкономить время. Вы ответили словопадом и ни слова по делу. Благодаря такому функционалу уменьшается риск преждевременного износа оборудования. Данный частотник можно использовать во многих отраслях производства, где возникает необходимость в частотном регулировании асинхронного электродвигателя. Часто, рассматривая компенсацию реактивной мощности в сети, потребитель учитывает только главный фактор оплату реактивной мощности в пользу энергоснабжающей организации. Тем не менее, при считывании отображаемой на нем информации трудностей не возникает. Вот уже многие годы они успешно применяются в различных сферах производства. Для разного типа соединений обмоток коэффициент составляет. Ниже приведена упрощенная формула расчета срока окупаемости частотных преобразователей. Второй способ намного эффективнее, поскольку внешнее устройство может быть подключено к любому электромотору. На сколько я понимаю, то да, в момент разгона фрезы. Он позволит хранить в базе информацию о тех, с кем мы не ведем торговую деятельность, но взаимодействуем по рабочим вопросам. Будем рассматривать корпусную артиллерию отдельно от армейской. На верхнем конце вала закреплено рулевое колесо, а нижний конец вала соединен с ведущим валиком поршневого колеса. Сын работает в салоне, продает автомобили. Последний устанавливается в металлический корпус с угольником, на котором укрепляется гетинаксовая планка с контактами и радиоэлементами. Но его босс не лыком шит. От этого низкая конкуренция и в целом не очень высокий уровень. Ну а теперь, дорогие мои криворукие друзья, в этой статье мы будем читать схемы и анализировать их, используя прошлые статьи. Вы хотите измерять частоту вращения, хотелось бы поподробнее узнать как вы это сделаете. Может так случиться, что этот ток, протекая по земляному проводнику, протечет и через тот участок, по которому течет входной ток от источника сигнала, через вход усилителя, и далее обратно к источнику по земле. Однако, учитывая устойчивый рост рынка регулируемых приводов, ожидается, что объем рынка приводов постоянного тока останется более или менее устойчивым в течение некоторого периода. Грубость и хамство по отношению к собеседникам. В любом случае, голодать и нищенствовать что мать, что ребенок не будут. Читайте монографии и статьи, и, пожалуйста, не повторяйте идиотизмы. Компаньон перед камином или за сериалом во время отдыха днм. Все будет зависеть от тяжести и плотности земли на участке. Мои родители помогают сильно и с малым посидеть и по дому, ей все ни так то малого простудили то суп жирный сварили. Радиатор, охлаждающий диоды, выпрямляющие выходное напряжение. Предусматривается система блокировок параметров работы, повышающая безопасность во время эксплуатации. Вместе с тем, наблюдатели отмечают, что пока не ясно, на каком основании был сделан такой вывод. Как побороть или как сделать сброс? Используются для плавного частотного пуска и регулирования частоты вращения синхронных электродвигателей, турбогенераторов, двигателейгенераторов, дымососов и др. На все частотники идет выносной пульт управления по желанию заказчика. У нас вы можете купить любой тип оборудования все приводы одинаково эффективно оптимизируют расход электроэнергии. Встроенный вращающийся цифровой задатчик упрощает процесс программирования. Данное программное обеспечение позволяет редактировать и настраивать параметры управления и режимы работы преобразователя, осуществлять пуск, реверс, останов электродвигателя, изменять заданную частоту вращения, просматривать в режиме реального времени все параметры преобразователя, строить временные диаграммы их изменения, формировать подробный архив аварий. Контроль качества на всех этапах производства. В комплект поставки частотного преобразователя не входит панель управления комплект панели управления докупается отдельно про сами панели, ниже. Но у меня есть видение, как команда должна работать. Нагрузка на валу организуется подмагничиванем тормозного двигателя. Может работать в помещениях с высоким содержанием пыли и влаги. Этот вход используется, например, для подключения датчиков обратной связи. Невозможно точно знать коэффициент мощности и мощность двигателя, а следовательно и силу тока. Исходя из полученных соотношений, можно сделать вывод, что отклик неидеального аналогоцифрового преобразователя на синусоидальный сигнал представляет собой сумму постоянной составляющей и гармоник, кратных несущей частоте исходного радиоимпульса. Одна часть продукции не имеет отечественных аналогов, а другая часть при более высоком качестве обладает более низкой стоимостью. Эти действия также можно сделать через форму обратной связи. Существует два основным метода управления электродвигателями с использованием частотных преобразователей. Уточняйте важные для вас параметры и характеристики в магазинах у консультантов или по телефонам и электронной почте. Все модели таких принтеров имеют различия в принципах печати и в производительности. Управление тремя электронасосными агрегатами общей магистрали. А к числу ее недостатков относится сравнительно низкое значение напряжения в контактной сети, ограниченное допустимым значением напряжения двигателей. Аналоговые входы нужны для того, чтобы оператор смог получить и расшифровать сигналы о сбое настроек или состоянии механизма. Через несколько месяцев будет гораздо больший масштаб свершений. Входные и выходные фильтры для частотного преобразователя назначение, принцип действия, подключение, особенности. Чтобы избежать проблем, эксперты рекомендуют покупать те усилители, которые мощнее сабвуферов. Оплачивая услуги на сайте, вы принимаете оферту. Изготовление кран балок, козловых и консольных кранов! В результате, в назначенный день отменили работы. При этом должна быть обеспечена подача на испытуемый блок шкаф, конструктивный узел имитированных входных сигналов с учетом их возможного отклонения при воздействии механического или климатического фактора на взаимосвязанные блоки шкафы, конструктивные узлы. Подойдет для насоса, бетономешалки, циркулярки, для токарного, сверлильного и других типов станков. Жидкостное охлаждение двигатели с водяным охлаждением еще один очень эффективный метод стабилизации рабочей температуры. Так и знайте сделаю все возможное, чтобы сын не служил. К примеру, от условий эксплуатации самого двигателя, от схемы подключения, от конденсаторов, а, точнее, от их емкости. Что грозит сосудам ног на длинных праздниках? Попал в наряд по кухне с большущим дагестанцем, который в свободное время только тренировался. Инсинье пробил с ходу по трибунам. Данная функция защищает от поломки компрессор. Компактная структура, подходит к комплекту станки. А также множество способов и методов получения, изготовления и производства изделий, препаратов, материалов и многого другого. Поэтому я, молча кивнув, подхватила сумочку, вышла из такси и захлопнула дверь. Преобразователь частоты и дроссель постоянного тока закреплены с помощью винтов к поддону рис. Основное назначение, это стабилизатор напряжения в блоках питания. Нельзя постоянно перегружать частотный преобразователь, а небольшой запас его выходной мощности обеспечит ему длительную и безаварийную работу. Права и обязанности детей и их родителей в сфере образования. К торцу верхнего корпуса крепится поворотный электромагнит. Но такие механизмы имеют громоздкую конструкцию, их нужно обслуживать. С помощью преобразователей частоты можно регулировать производительность данного тягодутьевого механизма путм изменения уровня частоты вращения, при этом, поддерживая заданный уровень технологического параметра. Довольно часто эти устройства эксплуатируются в круглосуточном режиме, либо в тяжелых климатических условиях, поэтому рано или поздно выходят из строя. Для этого укажите свои данные и прикрепите чертеж изделия в векторном формате, и т. Просто жесть, тут даже земля трясется.

Ссылки по теме:

Частотные преобразователи – структура, принцип работы

Внимание! Приведенная ниже информация носит теоретический характер. Если Вам необходимо решить конкретную задачу или разобраться как и какое оборудование следует применить в Вашем случае, воспользуйтесь бесплатной консультацией связавшись с нами одним из указанных вверху данной страницы или на странице “Контакты” способов, либо заполните опросный лист. Инженер службы технической поддержки направит Вам рекомендации на указанный Вами адрес электронной почты. 

 

Частотные преобразователи – это устройства, предназначенные для преобразования переменного тока (напряжения) одной частоты в переменный ток (напряжение) другой частоты.

 

Выходная частота в современных преобразователях может изменяться в широком диапазоне и быть как выше, так и ниже частоты питающей сети.

 

Схема любого преобразователя частоты состоит из силовой и управляющей частей. Силовая часть обычно выполнена на тиристорах или транзисторах, которые работают в режиме электронных ключей. Управляющая часть выполняется на цифровых микропроцессорах и обеспечивает управление силовыми электронными ключами, а также решение большого количества вспомогательных задач (контроль, диагностика, защита).

 

Частотные преобразователи, применяемые в регулируемом электроприводе, в зависимости от структуры и принципа работы силовой части разделяются на два класса:

    1. С явно выраженным промежуточным звеном постоянного тока.
    2. С с непосредственной связью (без промежуточного звена постоянного тока).
      • Практически самый высокий КПД относительно других преобразователей (98,5% и выше).
      • Способность работать с большими напряжениями и токами, что делает возможным их использование в мощных высоковольтных приводах, относительная дешевизна, несмотря на увеличение абсолютной стоимости за счет схем управления и дополнительного оборудования.

 

Каждый из существующих классов имеет свои достоинства и недостатки, которые определяют область рационального применения каждого из них.

 

Исторически первыми появились преобразователи с непосредственной связью (рис. 4.), в которых силовая часть представляет собой управляемый выпрямитель и выполнена на не запираемых тиристорах. Система управления поочередно отпирает группы тиристоров и подключает статорные обмотки двигателя к питающей сети.

 

 

 

 

  

Таким образом, выходное напряжение преобразователя формируется из «вырезанных» участков синусоид входного напряжения. На рис.5. показан пример формирования выходного напряжения для одной из фаз нагрузки. На входе выигрывают у тиристорных действует трехфазное синусоидальное напряжение uа, uв, uс. Выходное напряжение uвых имеет несинусоидальную «пилообразную» форму, которую условно можно аппроксимировать синусоидой (утолщенная линия). Из рисунка видно, что частота выходного напряжения не может быть равна или выше частоты питающей сети. Она находится в диапазоне от 0 до 30 Гц. Как следствие малый диапазон управления частоты вращения двигателя (не более 1: 10). Это ограничение не позволяет применять такие преобразователи в современных частотно регулируемых приводах с широким диапазоном регулирования технологических параметров.

 

Использование не запираемых тиристоров требует относительно сложных систем управления, которые увеличивают стоимость преобразователя.

 

«Резаная» синусоида на выходе преобразователя является источником высших гармоник, которые вызывают дополнительные потери в электрическом двигателе, перегрев электрической машины, снижение момента, очень сильные помехи в питающей сети. Применение компенсирующих устройств приводит к повышению стоимости, массы, габаритов, понижению к.п.д. системы в целом.

 

Наряду с перечисленными недостатками преобразователей с непосредственной связью, они имеют определенные достоинства. К ним относятся:

 

Подобные схемы преобразователей используются в старых приводах и новые конструкции их практически не разрабатываются.

 

Наиболее широкое применение в современных частотно регулируемых приводах находят частотники с явно выраженным звеном постоянного тока (рис. 6.)

 

В частотных преобразователях этого класса используется двойное преобразование электрической энергии: входное синусоидальное напряжение с постоянной амплитудой и частотой выпрямляется в выпрямителе (В), фильтруется фильтром (Ф), сглаживается, а затем вновь преобразуется инвертором (И) в переменное напряжение изменяемой частоты и амплитуды. Двойное преобразование энергии приводит к снижению к.п.д. и к некоторому ухудшению массогабаритных показателей по отношению к преобразователям с непосредственной связью.

 

Для формирования синусоидального переменного напряжения используются автономные инверторы напряжения и автономные инверторы тока.

 

В качестве электронных ключей в инверторах применяются запираемые тиристоры GTO и их усовершенствованные модификации GCT, IGCT, SGCT, и биполярные транзисторы с изолированным затвором IGBT.

 

Главным достоинством тиристорных преобразователей частоты, как и в схеме с непосредственной связью, является способность работать с большими токами и напряжениями, выдерживая при этом продолжительную нагрузку и импульсные воздействия.

 

Они имеют более высокий КПД (до 98%) по отношению к преобразователям на IGBT транзисторах (95 – 98%).

 

Преобразователи частоты на тиристорах в настоящее время занимают доминирующее положение в высоковольтном приводе в диапазоне мощностей от сотен киловатт и до десятков мегаватт с выходным напряжением 3 — 10 кВ и выше. Однако их цена на один кВт выходной мощности самая большая в классе высоковольтных преобразователей.

 

До недавнего прошлого преобразователи частоты на GTO составляли основную долю и в низковольтном частотно регулируемом приводе. Но с появлением IGBT транзисторов произошел «естественный отбор» и сегодня преобразователи на их базе общепризнанные лидеры в области низковольтного частотно регулируемого привода.

 

Тиристор является полууправляемым приборам: для его включения достаточно подать короткий импульс на управляющий вывод, но для выключения необходимо либо приложить к нему обратное напряжение, либо снизить коммутируемый ток до нуля. Для этого в тиристорном преобразователе частоты требуется сложная и громоздкая система управления.

 

Биполярные транзисторы с изолированным затвором IGBT отличают от тиристоров полная управляемость, простая не энергоемкая система управления, самая высокая рабочая частота.

 

Вследствие этого преобразователи частоты на IGBT позволяют расширить диапазон управления скорости вращения двигателя, повысить быстродействие привода в целом.

 

Для асинхронного электропривода с векторным управлением преобразователи на IGBT позволяют работать на низких скоростях без датчика обратной связи.

 

Применение IGBT с более высокой частотой переключения в совокупности с микропроцессорной системой управления в частотных преобразователях снижает уровень высших гармоник, характерных для тиристорных преобразователей. Как следствие меньшие добавочные потери в обмотках и магнитопроводе электродвигателя, уменьшение нагрева электрической машины, снижение пульсаций момента и исключение так называемого «шагания» ротора в области малых частот. Снижаются потери в трансформаторах, конденсаторных батареях, увеличивается их срок службы и изоляции проводов, уменьшаются количество ложных срабатываний устройств защиты и погрешности индукционных измерительных приборов.

 

Частотные преобразователи на транзисторах IGBT по сравнению с тиристорными преобразователями при одинаковой выходной мощности отличаются меньшими габаритами, массой, повышенной надежностью в силу модульного исполнения электронных ключей, лучшего теплоотвода с поверхности модуля и меньшего количества конструктивных элементов.

 

Они позволяют реализовать более полную защиту от бросков тока и от перенапряжения, что существенно снижает вероятность отказов и повреждений электропривода.

 

На настоящий момент низковольтные преобразователи на IGBT имеют более высокую цену на единицу выходной мощности, вследствие относительной сложности производства транзисторных модулей. Однако по соотношению цена/качество, исходя из перечисленных достоинств, они явно выигрывают у тиристорных, кроме того, на протяжении последних лет наблюдается неуклонное снижение цен на IGBT модули.

 

Главным препятствием на пути их использования в высоковольтном приводе с прямым преобразованием частоты и при мощностях выше 1 – 2 МВт на настоящий момент являются технологические ограничения. Увеличение коммутируемого напряжения и рабочего тока приводит к увеличению размеров транзисторного модуля, а также требует более эффективного отвода тепла от кремниевого кристалла.

 

Новые технологии производства биполярных транзисторов направлены на преодоление этих ограничений, и перспективность применения IGBT очень высока также и в высоковольтном приводе. В настоящее время IGBT транзисторы применяются в высоковольтных преобразователях в виде последовательно соединенных нескольких единичных модулей.

 

Структура и принцип работы низковольтного преобразователя частоты на IGBT транзисторах

Типовая схема низковольтного преобразователя частоты представлена на рис. 7. В нижней части рисунка изображены графики напряжений и токов на выходе каждого элемента инвертора.

 

Переменное напряжение питающей сети (uвх.)с постоянной амплитудой и частотой (U вх = const, f вх = const) поступает на управляемый или неуправляемый выпрямитель (1).

 

Для сглаживания пульсаций выпрямленного напряжения (uвыпр.) используется фильтр (2). Выпрямитель и емкостный фильтр (2) образуют звено постоянного тока.

 

С выхода фильтра постоянное напряжение u d поступает на вход автономного импульсного инвертора (3).

 

Автономный инвертор современных низковольтных преобразователей, как было отмечено, выполняется на основе силовых биполярных транзисторов с изолированным затвором IGBT. На рассматриваемом рисунке изображена схема преобразователя частоты с автономным инвертором напряжения как получившая наибольшее распространение.

 

 

В инверторе осуществляется преобразование постоянного напряжения ud в трехфазное (или однофазное) импульсное напряжение u и изменяемой амплитуды и частоты. По сигналам системы управления каждая обмотка электрического двигателя подсоединяется через соответствующие силовые транзисторы инвертора к положительному и отрицательному полюсам звена постоянного тока. Длительность подключения каждой обмотки в пределах периода следования импульсов модулируется по синусоидальному закону. Наибольшая ширина импульсов обеспечивается в середине полупериода, а к началу и концу полупериода уменьшается. Таким образом, система управления обеспечивает широтно-импульсную модуляцию (ШИМ) напряжения, прикладываемого к обмоткам двигателя.Амплитуда и частота напряжения определяются параметрами модулирующей синусоидальной функции.

 

При высокой несущей частоте ШИМ (2 … 15 кГц) обмотки двигателя вследствие их высокой индуктивности работают как фильтр. Поэтому в них протекают практически синусоидальные токи.

 

В схемах преобразователей с управляемым выпрямителем (1) изменение амплитуды напряжения uи может достигаться регулированием величины постоянного напряжения ud, а изменение частоты – режимом работы инвертора.

 

При необходимости на выходе автономного инвертора устанавливается фильтр (4) для сглаживания пульсаций тока. (В схемах преобразователей на IGBT в силу низкого уровня высших гармоник в выходном напряжении потребность в фильтре практически отсутствует.)

 

Таким образом, на выходе преобразователя частоты формируется трехфазное (или однофазное) переменное напряжение изменяемой частоты и амплитуды (вых = var, f вых = var).

 


Сделать заказ на частотный преобразователь

Принципиальная схема преобразователя частоты и выходного фильтра.

Контекст 1

… Напряжение CM может вызвать резонанс фильтра CM. В этой статье эффекты методов модуляции сравниваются с использованием моделирования и экспериментов. Используется фильтр, аналогичный предложенному в [2]. Кроме того, исследуется проблема запуска, возникающая из насыщенного синфазного индуктора [3], и предлагается алгоритм запуска. На рис. 1 показана принципиальная схема выходного фильтра инвертора.LC-фильтр, состоящий из трехфазной катушки индуктивности L f и трех конденсаторов C f, ослабляет высокие частоты дифференциального напряжения. Точка звезды конденсаторов LC-фильтра подключена к отрицательной шине постоянного тока через последовательно соединенные конденсатор C c и резистор R …

Контекст 2

… конденсатор C c и резистор R c. Дополнительная катушка индуктивности CM L c увеличивает индуктивность CM, не влияя на цепь DM. Эта топология обеспечивает путь для тока CM и снижает напряжение CM на клеммах двигателя.В этой статье все синфазные напряжения измеряются относительно средней точки конденсаторов звена постоянного тока, отмеченных цифрой n на рис. 1, методы непрерывной ШИМ с инжекцией нулевой последовательности. Метод DPWM, предложенный в [9], представляет методы двухфазной модуляции. Третий метод модуляции – ШИМ понижения напряжения CM, предложенный в [14]. Эти три метода кратко описаны ниже. На рис. 2 показан метод пересечения треугольников с нулем …

Контекст 3

… Рис. 8 (b) показывает напряжение CM двигателя и ток утечки двигателя при использовании LC-фильтра дифференциального режима. LC-фильтр изменяет контур CM: резонансная частота контура CM уменьшается, а демпфирование снижается. Напряжение CM выше, чем без фильтра. На рис. 8 (c) показаны величины CM в виде фильтра, показанного на рис. 1. Метод двухфазной модуляции (DPWM) вызвал отключение по перегрузке по току, как и ожидалось на основе моделирования. Резонанс фильтра CM был вызван резким изменением среднего напряжения CM и вызвал насыщение катушки индуктивности CM.Максимальный пик тока CM составил около 25 А, что привело к срабатыванию максимальной токовой защиты. …

Контекст 4

… Метод NSVM3 не был реализован, поскольку интерфейс модулятора экспериментальной установки не поддерживал шаблоны переключения, необходимые для метода NSVM3. На рис. 10 показаны экспериментальные результаты для метода SVPWM при изменении индекса модуляции от 0 до 0,95. Наибольший ток CM достигается при нулевом индексе модуляции. Когда индекс модуляции увеличивается, составляющие частоты переключения напряжения CM и тока CM уменьшаются.Низкочастотная составляющая напряжения CM …

Контекст 5

… синфазная фильтрация представляет собой проблему: привод может отключиться из-за перегрузки по току при запуске модуляции. О проблеме сообщалось в [3] для немного другой топологии фильтра. На рис. 11 (а) показано начало модуляции привода, оснащенного выходным фильтром, показанным на рис. 1. SVPWM запускается, индекс модуляции равен M = 0, а начальное значение тока CM фильтра равно нулю. .Начальное напряжение на конденсаторе CM составляет половину напряжения звена постоянного тока, потому что звено постоянного тока является плавающим, а все переключатели питания …

Контекст 6

… Фильтрация синфазного сигнала представляет проблему: привод может отключиться от перегрузки по току при запуске модуляции. О проблеме сообщалось в [3] для немного другой топологии фильтра. На рис. 11 (а) показано начало модуляции привода, оснащенного выходным фильтром, показанным на рис. 1. SVPWM запускается, индекс модуляции равен M = 0, а начальное значение тока CM фильтра равно нулю. .Начальное напряжение на конденсаторе CM составляет половину напряжения звена постоянного тока, поскольку звено постоянного тока является плавающим и все переключатели питания разомкнуты до того, как в [3] было предложено аппаратное решение проблемы запуска: Контекст 7

… сильных колебаний можно избежать, предотвратив обратную и прямую сильную зарядку конденсатора CM. Это улучшение достигается путем начала с короткой продолжительности включения нулевого вектора 111, а затем его медленного удлинения, т.е.е. d z Если опорное напряжение равно нулю, (6) уменьшается до s 0 = 2d z – 1. На рис. 11 (b) показано начало модуляции при использовании предложенного алгоритма запуска. Остается только первый пик тока CM (-13 А). Таким образом, достигается значительное улучшение …

ЦЕПЬ ПРЕОБРАЗОВАТЕЛЯ ЧАСТОТА НА НАПРЯЖЕНИЕ

Преобразователь частоты в напряжение – это электронное устройство, которое преобразует синусоидальную входную частоту в пропорциональный ток или выходное напряжение. Базовая схема включает операционные усилители и RC-цепи (цепи резисторных конденсаторов).Операционные усилители используются для обработки сигналов. И RC-сети используются для удаления частотно-зависимой пульсации. На схеме ниже показана принципиальная схема преобразователя частоты в напряжение с использованием сетей ОУ и RC:

Входная частота этого преобразователя может находиться в диапазоне 0-10 кГц. И выход может быть от 0 до -10 В.

Блок-схема преобразователя F-V

На приведенной выше блок-схеме показан преобразователь частоты в напряжение.Схема заряжает конденсатор до определенного уровня. В него включен интегратор, и конденсатор разряжается в этот интегратор или в цепь нижних частот. Это происходит для всех циклов входного сигнала. Прецизионный переключатель и моностабильный мультивибратор генерируют импульс определенной амплитуды и периода, который подается в сеть усреднения. Следовательно, мы получаем на выходе постоянное напряжение.

СХЕМА F-V С ИСПОЛЬЗОВАНИЕМ LM331

Это принципиальная схема преобразователя частоты в напряжение, использующего LM331.

Photo Credit circuittoday

Эта ИС в основном представляет собой преобразователь напряжения в частоту, но может использоваться как преобразователь частоты в напряжение. Его приложения также включают аналого-цифровое преобразование и долгосрочную интеграцию.

Преобразователь БС РАБОЧИЙ

В этой схеме lm331 используется для преобразования частоты в напряжение. Напряжение на выходе пропорционально частоте на входе. Это 8-контактная ИС. Источник подключен к выводу 8 и подает 15 В постоянного тока.Контакты 3 и 4 подключены к земле. Входная частота задается на контакте 6, а выходное напряжение снимается с контакта 1. Входная частота дифференцируется с помощью резистора R7 и конденсатора C3, а затем результирующая последовательность импульсов поступает на контакт 6. Схема таймера запускается встроенной схемой. -в схеме компаратора в ИС при появлении отрицательного фронта последовательности импульсов на выводе 6.

Ток, вытекающий из вывода 6, пропорционален значениям конденсатора C1 и резистора R1 (которые также известны как компоненты синхронизации) и входной частоте.Таким образом, мы получаем выходное напряжение на резисторе R4, которое пропорционально входной частоте. В этой цепи используется 15 В постоянного тока, но рабочее напряжение IC может быть от 5 до 30 вольт постоянного тока. Величина резистора R3 зависит от напряжения питания.

ПРИМЕНЕНИЕ ПРЕОБРАЗОВАТЕЛЕЙ F-V

Эти преобразователи используются в широком диапазоне приложений, таких как связь, управление мощностью, измерительные и измерительные системы и т. Д.

Мы подробно обсудим следующие приложения:

  1. Преобразователь частоты в напряжение в тахометрах.
  2. Измерение разности частот.
ПРЕОБРАЗОВАТЕЛЬ И ЦИФРОВОЙ ТАХОМЕТР

Цифровой тахометр – это электронное устройство, измеряющее скорость вращения колеса. Они отображают скорость вращения в виде напряжения, поэтому в них требуется преобразователь частоты в напряжение. На схеме ниже показан цифровой тахометр.

Цифровой тахометр

Частоту возникновения некоторых событий можно измерить с помощью измерителя скорости.Он считает события за определенный период времени, а затем делит количество событий на общее время, и, следовательно, мы получаем коэффициент. Это теория работы простого тахометра.

Мы используем микросхему LM2907 для этой схемы тахометра. Это 8-контактная ИС. На вывод 1 подаем частотный сигнал на вход зарядовой накачки. На выводе 2 напряжение будет между двумя значениями: (V CC ) – V BE и ¾ (V CC ) – V BE .

На схеме ниже показана конфигурация микросхемы LM2907:

.

Конденсаторы C1 и C2 и резистор R1 имеют определенные значения в соответствии с требованиями схемы.Эти значения можно изучить в техническом паспорте LM2907.

Интерфейс LM2907

Входной сигнал подается на вывод 1, а на вывод 11 подается опорное напряжение. На контакты 8 и 9 подается постоянное напряжение. Инвертирующий вход операционного усилителя соединен с выходом эмиттера. На выводе 5 мы получаем напряжение с низким импедансом, которое пропорционально заданной входной частоте. С вывода 5 и вывода 10 мы получаем выходной сигнал 67 Гц / В. Этот вывод отправляется на АЦП, а затем DSP может прочитать этот вывод.

ИЗМЕРЕНИЕ РАЗНИЦЫ ЧАСТОТ

TC9400 – это ИС преобразователя частоты в напряжение и напряжения в частоту. Его основные схемы подключения включают три резистора, два конденсатора и опорное напряжение. Мы можем использовать две микросхемы TC9400 и работать с ними в режиме преобразования частоты в напряжение, чтобы получить измерения разности частот.

Мы используем два преобразователя и получаем V1 и V2 как два отдельных выхода. Единичное усиление инвертирует напряжение V2, поступающее от преобразователя 2 nd F / V.Подключен операционный усилитель, который складывает как напряжения V1, так и инвертированное напряжение –V2. Эта сумма будет пропорциональна фактической разнице частот между F1 и F2. В цепь также включен преобразователь V / F, который дает частотный выход, который снова пропорционален разности частот между F1 и F2. Таким образом, мы получаем измерение разности частот как по частоте, так и по напряжению. На приведенной ниже диаграмме показана схема измерения разницы требований f .

Помимо этих двух приложений, существует множество других применений преобразователей F / V, таких как делители / умножители частоты, частотные декодеры, частотомеры, регуляторы скорости двигателя и т. Д., Которые можно легко найти на нескольких веб-страницах.

Схема преобразователя частоты в напряжение

Преобразователь частоты в напряжение преобразует частоты или импульсы в пропорциональный электрический выходной сигнал, такой как напряжение или ток. Это важный инструмент для электромеханических измерений, когда происходят повторяющиеся события.Таким образом, когда мы обеспечиваем частоту на схеме преобразователя частоты в напряжение , она будет обеспечивать пропорциональный выход постоянного тока. Здесь мы используем KA331 IC для построения схемы преобразователя частоты в напряжение .

KA331 IC

KA331 – это преобразователь напряжения в частоту, который используется для создания простого недорогого аналого-цифрового преобразователя, но его также можно использовать в качестве преобразователя частоты в напряжение. 8-контактная микросхема DIP может работать в широком диапазоне частот от 1 Гц до 100 кГц.Также он имеет широкий диапазон питающего напряжения от 5В до 40В. KA331 является эквивалентом популярного LM331. LM331 также может использоваться в этой цепи F-to-V.

Ниже приведена схема контактов и внутренняя схема KA331 , взятые из даташита,

.

Требуемый материал
  1. KA331 IC – 1шт
  2. .01uF керамический конденсатор – 1шт
  3. Конденсатор керамический 470 пФ – 1шт
  4. 1 мкФ электролитический конденсатор с номиналом 16 В
  5. Резистор 10 кОм с показателем стабильности 1% MFR – 2шт
  6. Резистор 100 кОм с показателем стабильности 1% MFR – 2шт
  7. Резистор 68 кОм с показателем стабильности 1% MFR – 1шт
  8. А 6.Резистор 8 кОм с показателем стабильности 1% MFR – 1шт
  9. Макет
  10. Источник питания 15В
  11. Проволока одножильная
  12. Генератор частоты или функциональный генератор для проверки всей цепи.

Принципиальная схема

Работа от частоты до цепи напряжения

Основным элементом схемы является КА331. Вход схемы подключен к конденсатору C1 емкостью 470 пФ, который дополнительно подключен к пороговому выводу KA331 (вывод 6).Резисторы R3 и R4 образуют цепь делителя напряжения, которая подключена к контакту 7 компаратора KA331. Конденсатор C3 и резистор R5 – это RC-таймер, который обеспечивает необходимые колебания на выводе 5. Резистор R2 обеспечивает опорный ток на выводе 2. На схему подается напряжение 15 В, которое подключается к выводу 8 KA331.

Для расчета выходного напряжения цепи формула –

  Vout = f  вход  x Опорное напряжение x (R  L  / R  S ) x (R  t  x C  t ) 
 

Где f input – частота, R L – резистор нагрузки, R S – резистор источника тока, R t и C t – резистор и конденсатор RC-генератора.

Следовательно, для нашей схемы формула будет –

  Vout = f  вход  x Опорное напряжение x (R  6  / R  2 ) x (R  5  x C  3 )  

Согласно таблице данных, опорное напряжение для KA331 составляет 1,89 В . Итак, если мы подадим на схему входной сигнал 500 Гц, чтобы получить выходное напряжение –

  Vout = 500 x 1,89 x (100k / 100k) x (6,8k x 0,001 мкФ) 
  Vout = 500 x 1.89 x 1 x (6800 тыс. X 10 -8 ) 
  Vout = 0,064 В или 64 мВ  

Итак, когда в цепи применяется частота 500 Гц, она будет обеспечивать выходное напряжение 64 мВ.

Здесь мы построили схему на макете .

Проверка цепи от частоты до напряжения

Для проверки схемы используются следующие инструменты –

  1. Настольный блок питания Scientific PSD3205.
  2. Генератор функций Metravi FG3000.
  3. Мультиметр UNI-T UT33D.

Схема построена с использованием 1% металлопленочных резисторов, допуски конденсаторов не учитываются. Во время тестирования комнатная температура составляла 22 градуса Цельсия.

Для проверки схемы на стенде установлен источник питания 15В.

Функциональный генератор выдает около 500 Гц в виде прямоугольной волны на выходе.

Для тех, у кого нет доступа к генератору функций, схема таймера может быть построена с использованием классической микросхемы LM555 или Arduino также может использоваться для создания генератора функций. Однако приложение Android также может работать, когда сигналы генерируются через выход для наушников.

Мультиметр подключен к выходу, и диапазон выбран как милливольт.

Выход мультиметра показывает рассчитанное значение.Схема выдает выходной сигнал 64 мВ, когда на вход подается прямоугольный сигнал частотой 500 Гц.

Подробное рабочее видео приведено в конце, где даны несколько входов, а выходное напряжение изменяется пропорционально входному напряжению.

Улучшения

Эта схема преобразователя частоты в напряжение может быть построена на печатной плате для большей точности. Критическим участком схемы является RC-генератор.RC-генератор необходимо разместить на близком расстоянии от микросхемы KA331. На большом расстоянии медная дорожка может сместить колебания, так как она будет добавлять дополнительное сопротивление, а также вносить паразитную емкость. Также требуется правильная заземляющая плоскость.

Приложения

Преобразователь частоты в напряжение используется в измерениях и контрольно-измерительных приборах, например, тахометр использует преобразователь частоты в напряжение для расчета скорости двигателя. Эту технику используют и разные виды манометров, спидометры.

2 Объяснение простых схем преобразователя напряжения в частоту

Схема преобразователя напряжения в частоту преобразует пропорционально изменяющееся входное напряжение в пропорционально изменяющуюся выходную частоту.

В первой конструкции используется микросхема IC VFC32, которая представляет собой усовершенствованное устройство преобразования напряжения в частоту от BURR-BROWN, специально разработанное для получения чрезвычайно пропорциональной частотной характеристики подаваемому входному напряжению для заданного применения схемы преобразователя напряжения в частоту.

Как работает устройство

Если входное напряжение изменяется, выходная частота следует этому и изменяется пропорционально с большой степенью точности.

Выход IC представляет собой транзистор с открытым коллектором, которому просто нужен внешний подтягивающий резистор, подключенный к источнику 5 В, чтобы выход был совместим со всеми стандартными устройствами CMOS, TTL и MCU.

Можно ожидать, что выходной сигнал этой ИС будет устойчивым к шумам и с превосходной линейностью.

Полный диапазон преобразования выходного сигнала определяется включением внешнего резистора и конденсатора, размеры которых могут быть выбраны для получения достаточно широкого диапазона отклика.

Основные характеристики VFC32

Устройство VFC32 также имеет функцию работы противоположным образом, то есть его можно настроить для работы также как преобразователь частоты в напряжение с аналогичной точностью и эффективностью. Об этом мы подробно поговорим в следующей статье.

ИС может поставляться в различных упаковках в зависимости от требований вашего приложения.

На первом рисунке ниже показана стандартная схема преобразователя напряжения в частоту, где R1 используется для настройки диапазона обнаружения входного напряжения.

Включение обнаружения полной шкалы

Резистор 40 кОм может быть выбран для получения обнаружения входа полной шкалы от 0 до 10 В, другие диапазоны могут быть достигнуты простым решением следующей формулы:

R1 = Vfs / 0.25 мА

Предпочтительно R1 должен быть типа MFR для обеспечения повышенной стабильности. Регулируя значение R1, можно уменьшить доступный диапазон входного напряжения.

Для достижения регулируемого выходного диапазона FSD вводится диапазон C1, значение которого может быть соответствующим образом выбрано для назначения любого желаемого диапазона преобразования выходной частоты, здесь, на рисунке, он выбран, чтобы дать шкалу от 0 до 10 кГц для входного диапазона от 0 до 10 В. .

Однако следует отметить, что качество C1 может напрямую влиять на линейность или точность выходного сигнала, поэтому рекомендуется использовать конденсатор высокого качества.Тантал, возможно, станет хорошим кандидатом для этого типа области применения.

Для более высоких диапазонов порядка 200 кГц и выше можно выбрать конденсатор большей емкости для C1, а R1 можно установить на 20 кОм.

Соответствующий конденсатор C2 не обязательно влияет на работу C1, однако значение C2 не должно выходить за заданный предел. Значение для C2, как показано на рисунке ниже, не следует понижать, хотя увеличение его значения выше этого может быть нормальным. что выходной каскад, подключенный к этому выводу, будет испытывать только понижающуюся характеристику напряжения / тока (низкий логический уровень) для предлагаемого преобразования напряжения в частоту.

Чтобы получить переменную логическую реакцию вместо только ответа «понижающийся ток» (низкий логический уровень) от этой распиновки, нам необходимо подключить внешний подтягивающий резистор с питанием 5 В, как показано на второй диаграмме выше.

Это обеспечивает поочередно изменяющийся логический высокий / низкий отклик в этой распиновке для подключенного каскада внешней схемы.

Возможные приложения

Описанная схема преобразователя напряжения в частоту может использоваться для многих конкретных приложений пользователя и может быть настроена для любых соответствующих требований.Одним из таких приложений может быть создание цифрового измерителя мощности для записи потребления электроэнергии для данной нагрузки.

Идея состоит в том, чтобы подключить резистор, считывающий ток, последовательно с рассматриваемой нагрузкой, а затем интегрировать развивающийся ток на этом резисторе с описанной выше схемой преобразователя напряжения в частоту.

Поскольку ток, нарастающий на чувствительном резисторе, будет пропорционален потребляемой нагрузке, эти данные будут точно и пропорционально преобразованы в частоту с помощью описанной схемы.

Преобразователь частоты может быть дополнительно интегрирован со схемой частотомера IC 4033 для получения цифровых калиброванных показаний потребления нагрузки, и это может быть сохранено для будущей оценки.

Предоставлено: http://www.ti.com/lit/ds/symlink/vfc32.pdf

2) Использование IC 4151

Следующая высокопроизводительная схема преобразователя частоты в напряжение построена на основе нескольких компонентов и ИС. на основе коммутационной схемы. При значениях деталей, указанных на схеме, коэффициент преобразования достигается с линейной характеристикой прибл.1%. При подаче входного напряжения от 0 до 10 В оно преобразуется в пропорциональную величину выходного напряжения прямоугольной формы от 0 до 10 кГц.

С помощью потенциометра P1 можно настроить схему так, чтобы входное напряжение 0 В генерировало выходную частоту 0 Гц. Компонентами, отвечающими за фиксацию частотного диапазона, являются резисторы R2, R3, R5, P1 вместе с конденсатором C2.

Применяя формулы, показанные ниже, можно преобразовать отношение напряжения к частоте, чтобы схема работала очень хорошо для нескольких уникальных приложений.

При определении произведения T = 1.1.R3.C2 вы должны убедиться, что оно всегда меньше половины минимального периода вывода, то есть положительный выходной импульс всегда должен быть минимальным до тех пор, пока отрицательный импульс.

f0 / Uin = [0,486. (R5 + P1) / R2. R3. C2]. [кГц / В]

T = 1,1. R3. C2

Преобразователи частоты | Power Systems International

Авиация


Преобразователи частоты

Marine


Преобразователи частоты

От берега до корабля

Промышленные преобразователи частоты


От 50 Гц до 60 Гц / от 60 Гц до 50 Гц

Преобразователи частоты

Что такое преобразователь частоты?

Проще говоря, преобразователи частоты – это устройство преобразования энергии.Преобразователь частоты преобразует базовую синусоидальную мощность с фиксированной частотой и фиксированным напряжением (сетевое питание) в выходной сигнал переменной частоты и переменного напряжения, используемый для управления скоростью асинхронных двигателей.

Зачем нужен преобразователь частоты?

Основная функция преобразователя частоты в водной среде – экономия энергии. За счет управления скоростью насоса вместо регулирования потока с помощью дроссельных клапанов можно значительно сэкономить энергию.

Например, снижение скорости на 20% может дать экономию энергии на 50%.Ниже описывается снижение скорости и соответствующая экономия энергии. Помимо экономии энергии, значительно увеличивается срок службы крыльчатки, подшипников и уплотнений.

Доступно множество различных типов преобразователей частоты, которые предлагают оптимальный метод согласования производительности насоса и вентилятора с требованиями системы. Он преобразует стандартную мощность предприятия (220 В или 380 В, 50 Гц) в регулируемое напряжение и частоту для питания двигателя переменного тока. Частота, применяемая к двигателю переменного тока, определяет скорость двигателя.

Двигатели переменного тока обычно представляют собой такие же стандартные двигатели, которые могут быть подключены к сети переменного тока.За счет включения байпасных пускателей работа может поддерживаться даже в случае выхода инвертора из строя.

Преобразователи частоты

также обладают дополнительным преимуществом – увеличенным сроком службы подшипников и уплотнений насоса. Благодаря поддержанию в насосе только давления, необходимого для удовлетворения требований системы, насос не подвергается воздействию более высоких давлений, чем необходимо. Следовательно, компоненты служат дольше.

Те же преимущества, но в меньшей степени, применимы и к вентиляторам, работающим от преобразователей частоты.

Для достижения оптимальной эффективности и надежности многие специалисты получают подробную информацию от производителей.Это может включать эффективность преобразователя частоты, необходимое техническое обслуживание, диагностические возможности преобразователя частоты и общие рабочие характеристики.

Затем они проводят подробный анализ, чтобы определить, какая система даст наилучшую окупаемость инвестиций.

Дополнительные преимущества преобразователей частоты

Помимо экономии энергии и лучшего управления технологическим процессом, преобразователи частоты могут обеспечить и другие преимущества:

  • Преобразователь частоты может использоваться для управления технологической температурой, давлением или расходом без использования отдельного контроллера.Соответствующие датчики и электроника используются для сопряжения управляемого оборудования с преобразователем частоты.
  • Расходы на техническое обслуживание можно снизить, поскольку более низкие рабочие скорости приводят к увеличению срока службы подшипников и двигателей.
  • Устранение дроссельных клапанов и заслонок также устраняет необходимость технического обслуживания этих устройств и всех связанных с ними средств управления.
  • Устройство плавного пуска для двигателя больше не требуется.
  • Контролируемая скорость разгона в жидкостной системе может устранить проблемы гидравлического удара.
  • Способность преобразователя частоты ограничивать крутящий момент до уровня, выбранного пользователем, может защитить приводимое оборудование, которое не может выдерживать чрезмерный крутящий момент.

Анализировать систему в целом

Поскольку процесс преобразования входящей мощности с одной частоты на другую приведет к некоторым потерям, экономия энергии всегда должна происходить за счет оптимизации производительности всей системы.

Первым шагом в определении потенциала энергосбережения системы является тщательный анализ работы всей системы.Для обеспечения экономии энергии требуется детальное знание работы оборудования и требований к технологическим процессам. Кроме того, следует учитывать тип преобразователя частоты, предлагаемые функции и общую пригодность для применения.

Преобразователи частоты | Внутренняя конфигурация

Преобразователи частоты

содержат три первичные секции:

  • Схема выпрямителя – состоит из диодов, тиристоров или биполярных транзисторов с изолированным затвором. Эти устройства преобразуют мощность сети переменного тока в постоянный ток.
  • DC Bus – состоит из конденсаторов, которые фильтруют и накапливают заряд постоянного тока.
  • Инвертор
  • – состоит из высоковольтных мощных транзисторов, которые преобразуют мощность постоянного тока в выход переменного тока с переменной частотой и напряжением, подаваемый на нагрузку.

Преобразователи частоты также содержат мощный микропроцессор, который управляет схемой инвертора для создания почти чистого синусоидального напряжения переменной частоты, подаваемого на нагрузку. Микропроцессор также управляет конфигурациями ввода / вывода, настройками преобразователя частоты, состояниями неисправности и протоколами связи.

Или для получения дополнительной информации о преобразователях частоты используйте форму ниже

ЭЛЕКТРОННАЯ ИЗДЕЛИЯ, 50 ГЦ – Аренда преобразователя частоты

Электронные преобразователи частоты

пользуются наибольшей популярностью среди отделов исследований и разработок, испытательных лабораторий и инженеров-испытателей. Их способность предлагать фиксированную 50 Гц или регулируемую выходную частоту и / или напряжение в широком диапазоне позволяет удовлетворить практически любые требования или спецификации тестирования электрических продуктов.

Электронные преобразователи частоты обычно меньше, легче и тише, чем их аналоги на основе двигателей-генераторов. Подробнее…

Преимущества и особенности арендных электронных преобразователей частоты AP&C

Мы оптимизируем наши сдаваемые в аренду электронные преобразователи частоты для использования в аренде, предоставляя нашим арендаторам множество встроенных преимуществ, что позволяет нам удерживать арендаторов из года в год. Эти преимущества включают:

    • Быстрая и простая установка благодаря конструкции. Конфигурация каждого сдаваемого в аренду электронного преобразователя частоты позволяет минимизировать время монтажников. Необходимо только подключение входных и выходных кабелей к четко обозначенным и легко доступным клеммам. Каждый преобразователь частоты снабжен сокращенным листом руководства по установке и эксплуатации, который помогает избежать потери времени на чтение руководств для владельцев и пользователей оборудования.

    • Оборудование , прошедшее тщательное техническое обслуживание и полное испытание под нагрузкой, обеспечивает нашим арендаторам душевное спокойствие и гарантию надежности оборудования.Мы постоянно ремонтируем наши арендованные электронные преобразователи частоты.

    • Точно регулируемая выходная частота , гарантирующая выходную частоту 50 Гц. Это помогает обеспечить точные результаты тестирования проверяемого оборудования или правильность работы нагрузочного оборудования, как если бы оно было от электросети с частотой 50 Гц. Электронные преобразователи частоты доступны с однофазной или трехфазной конфигурацией питания.

    • Точное регулирование выходного напряжения +/- 1% или выше помогает обеспечить точные результаты испытаний проверяемого оборудования или правильность работы нагрузочного оборудования, как если бы оно было от электросети 50 Гц.Кроме того, на многих моделях выходное напряжение обычно регулируется +/- 15% или более.

    • Встроенный выходной автоматический выключатель помогает электрически защитить выходную цепь электронного преобразователя частоты и силовую проводку к нагрузке. Автоматический выключатель также позволяет вручную отключить выходную мощность 50 Гц от подключенной нагрузки без необходимости отключения преобразователя частоты. Установка упрощена, поэтому установщику не нужно поставлять и устанавливать внешний автоматический выключатель.

    • Все входные и выходные соединительные клеммы имеют четкую маркировку для легкой и быстрой установки. Установщику необходимо только подключить входные кабели от сетевого источника питания и выходные кабели от выходных клемм преобразователя частоты к подключенной нагрузке.

    • Простые / интуитивно понятные органы управления оператора позволяют пользователю быстро ввести электронный преобразователь частоты в эксплуатацию без необходимости изучать сложное руководство оператора.

    • Измерение выходной мощности позволяет оператору оборудования контролировать выходное напряжение и ток электронного преобразователя частоты. Измерение предусмотрено на большинстве наших арендованных электронных преобразователей частоты.

  • Специально разработанный транспортный поддон для тяжелых условий эксплуатации предоставляется для каждого арендуемого преобразователя частоты. Поддон повышенной прочности специально разработан для легкого перемещения преобразователя частоты на место с помощью вилочного погрузчика или домкрата для поддонов.Почти все наши арендаторы оставляют преобразователь частоты привинченным к поддону на время аренды.

Разместите заказ сейчас!

Существует минимальный объем технической информации, необходимой для принятия обоснованного решения о типе и мощности необходимого арендуемого преобразователя частоты. Мы упрощаем заказ (БЕЗ ФОРМ ДЛЯ ЗАПОЛНЕНИЯ) , предоставляя 2 различных метода заказа.

    • ЗАКАЗ ПО ТЕЛЕФОНУ. Большинство наших клиентов по аренде предпочитают звонить нашим опытным инженерам по эксплуатации по номеру 714-540-9010 с просьбой о помощи.Мы работаем вместе с вами над поиском необходимых технических данных.

  • ЗАКАЗАТЬ ПО ЭЛЕКТРОННОЙ ПОЧТЕ. Свяжитесь с нами по электронной почте с вашим общим запросом, и наш инженер свяжется с вами как можно скорее, чтобы помочь вам с процессом выбора арендуемого преобразователя частоты.

Воспользуйтесь нашими информационными ссылками ниже, если вы решите ознакомиться с необходимыми техническими данными, прежде чем связываться с нами.

Технические характеристики помогут познакомить вас с электрическими характеристиками проверяемого оборудования или нагрузки, двигателя-генератора и электронных преобразователей частоты.

Контрольный список для выбора предоставляет пошаговый метод выявления основных технических данных, необходимых для выбора преобразователя частоты.

Схема конфигурации электрических выходов предлагает схемы однофазной и трехфазной электрической конфигурации, которые помогут вам определить конфигурацию, которая соответствует потребностям вашего приложения.

Planet Voltages определяет уровни напряжения, количество фаз и частоты, используемые в различных странах по всей планете.Этот список можно использовать в качестве справочника, чтобы помочь установить электрические характеристики коммунальной электросети страны или города.

Несколько слов о преобразователях частоты

Несколько слов о преобразователях частоты (фото: bpa.ru)

Введение

С конца 1960-х годов преобразователи частоты претерпели очень быстрые изменения, в основном в результате развития микропроцессоров и полупроводников. технологии и их удешевление. Однако основные принципы работы преобразователей частоты остались прежними.

Преобразователи частоты можно разделить на четыре основных компонента :

Рисунок 1 – Упрощенный преобразователь частоты

1. Выпрямитель

Выпрямитель, который подключается к одно- / трехфазной сети переменного тока и генерирует пульсирующий постоянный ток . напряжение . Существует два основных типа выпрямителей – управляемых и неуправляемых .


2.Промежуточный контур

Промежуточный контур. Есть три типа:

  1. Один, который преобразует напряжение выпрямителя в постоянный ток.
  2. Один, который стабилизирует или сглаживает пульсирующее напряжение постоянного тока и передает его в распоряжение инвертора.
  3. Один, который преобразует постоянное напряжение постоянного тока выпрямителя в переменное напряжение переменного тока.

3. Инвертор

Преобразователь генерирует частоту напряжения двигателя.В качестве альтернативы, некоторые инверторы также могут преобразовывать постоянное напряжение постоянного тока в переменное напряжение переменного тока.


Схема управления

Электроника схемы управления, которая передает сигналы на – и принимает сигналы от выпрямителя, промежуточной схемы и инвертора. Детали, которыми управляют, зависят от конструкции отдельного преобразователя частоты ( см. Рисунок 2 ).

Общим для всех преобразователей частоты является то, что схема управления использует сигналы для включения или выключения полупроводников инвертора.Преобразователи частоты разделены по схеме переключения, которая регулирует напряжение питания двигателя.

На рисунке 2 показаны различные принципы конструкции / управления:

  1. – это управляемый выпрямитель,
  2. – это неуправляемый выпрямитель,
  3. – это промежуточная цепь переменного постоянного тока,
  4. – это промежуточная цепь постоянного постоянного напряжения. ,
  5. – это промежуточная цепь переменного постоянного тока,
  6. – это инвертор PAM и инвертор
  7. PWM.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *