Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments
Зарядное из блока питания компьютера на ШИМ HS8108B (SG6105)

Блок с подобным ШИМ мы уже успешно переделывали в зарядное устройство, но сейчас пойдем совсем по другому пути. Интересен этот вариант переделки тем, что выходное напряжение можно выставлять в довольно широком диапазоне. А при желании можно переделать такой блок питания компьютера в регулируемый блок. Но обо всем по порядку. Сегодня мы расскажем, как сделать зарядное из блока питания компьютера на ШИМ HS8108B (аналог SG6105).

Как сделать зарядное из блока питания компьютера на ШИМ HS8108B?

Для переделки мы приобрели новый и недорогой блок питания GameMax 400W. Относительно самого блока хотелось бы добавить пару строк.

Блок не обезображен элементами входного фильтра, в нем отсутствуют Y-конденсаторы, выходные электролиты распаянные не все, по сути это блок тянет на честных 300-350 Вт, но для автомобильного зарядного устройства подходит в самый раз. Вместо обозначенных в характеристиках двух шин

+12 В на самом деле присутствует только одна. Единственное преимущество — простая схема и низкая цена.

Немного о ШИМ такого БП. Для начала хотелось бы сказать пару слов о ШИМ HS8108b. HS8108b — это полный аналог SG6105.

По сути, помимо ШИМ он еще выполняет функцию мультивизора, отслеживает выходное напряжение по основным шинам + 3,3 В; + 5 В; +12 В; на отклонение от нормы. При заниженном (или завышенном) напряжении на любой из этих шин блок просто уйдет в защиту. Для обмана мультивизора нам придется эмулировать несколько идеальных напряжений и подавать на соответствующие входы микросхемы. Для создания напряжений 3,3 В; 5 В; 12 В мы используем стабилизатор 7812 и резистивный делитель подключенный к его выходу. Собираем данную схему на отдельной небольшой плате.

Когда плата будет готова можно будет приступить к самому блоку питания.

Для удобства мы подобрали максимально приближенную схему этого бока питания. Ей оказалась Colorsit 300U, единственные отличия — не совпадает нумерация деталей, а также дежурка GameMax 400W выполнена на WG606P. Обвязка ШИМ без изменений, что нам и нужно.

На следующей схеме обозначены все дальнейшие изменения, которые производились для переделки в зарядное из блока питания компьютера.




Первым делом разбираем блок питания, отпаиваем провода, выходящие из блока. Оставляем только черный — «минус» и желтый — «шина +12 В«. Для автоматического старта зеленый обрезаем и подпаиваем на минус. После первых манипуляций проверяем работоспособность блока.

Далее закрепляем изготовленную плату со стабилизатором и делителем на радиаторе или в другом удобном месте.

Подключаем питание стабилизатора. На этом моменте важно убедиться, что на выходе нашей платы присутствуют необходимые напряжения: 12 В; 5 В; 3,3 В.

Если сделанная плата формирует необходимые напряжения правильно, можно ее подключать к ШИМ. Отключаем ножки ШИМ, которые мониторят напряжения по шинам 12 В; 5 В; 3,3 В, и подключаем их к соответствующим выводам платы.

При подключении важно внимательно рассмотреть трассировку платы. Некоторые дорожки придется перерезать, возможно, где-то необходимо бросить перемычку.


Если плата правильно подключена — блок питания запустится и на выходе мы получим 12 В. На этом этапе мультивизор уже не отслеживает выходное напряжение.

После отключения мониторинга выходных напряжений мы можем приступить к поднятию напряжения до 14,2 В. Измеряем напряжение на 17 ножке ШИМ. У нас оно составило 2,5 В

.

Измеряем сопротивление резистора, соединяющего 17 ножку HS8108B с минусом (на схеме обозначен как R23), предварительно отпаиваем один из его выводов. Сопротивление составило 13,1 кОм.

Удаляем резистор, соединяющий 17 ножку HS8108B с шиной + 5 В (на схеме обозначен как R25), вместо R28 устанавливаем многооборотный подстроечный резистор.

Подстроечный резистор предварительно настраиваем на такое сопротивление, чтобы напряжение на делителе состоящего из R25 (подстроечный) и R28 (13 кОм) составило 2,5 В. Из расчета вышло, что R25 должен быть настроен на 49 кОм.

Настраиваем подстроечный резистор на 49 кОм и заменяем им резистор

R28.

Включаем блок, на выходе должно быть напряжение очень близкое к 12 В.

С помощью подстроечного резистора можно производить настройку выходного напряжения до 14,2 В.

Если есть желание превратить такой блок в регулируемый, необходимо подстроечный резистор заменить переменным, поставить на выходные шины электролитические конденсаторы с высшим рабочим напряжением и изменить номинал нагрузочных резисторов на шинах.

После установки необходимого напряжения можно вывести крокодилы, установить вольтамперметр для контроля процесса зарядки и добавить на выходе защиту от переполюсовки.

Важно! Защиту от переполюсовки использовать желательно, т.к. при подключении АКБ неправильной полярностью блок моментально выходит из строя.

Ну и финальные тесты, зарядное из блока питания компьютера уже готово. Важно помнить, что зарядка АКБ происходит постоянным напряжением. Сила тока при подключении сильно разряженной батареи кратковременно может достигать

10 А, но снижается по мере заряда. При токе порядка 0,5 А заряд АКБ можно считать оконченным.

Если Вам понравилась идея переделки, пишите комментарии, задавайте вопросы и не забывайте поделиться статей в социальных сетях.

Вконтакте

Facebook

Twitter

Одноклассники

comments powered by HyperComments
Зарядное из блока питания компьютера на ШИМ HS8108B (SG6105)

Блок с подобным ШИМ мы уже успешно переделывали в зарядное устройство, но сейчас пойдем совсем по другому пути. Интересен этот вариант переделки тем, что выходное напряжение можно выставлять в довольно широком диапазоне. А при желании можно переделать такой блок питания компьютера в регулируемый блок. Но обо всем по порядку. Сегодня мы расскажем, как сделать зарядное из блока питания компьютера на ШИМ

HS8108B (аналог SG6105).

Как сделать зарядное из блока питания компьютера на ШИМ HS8108B?

Для переделки мы приобрели новый и недорогой блок питания GameMax 400W. Относительно самого блока хотелось бы добавить пару строк.

Блок не обезображен элементами входного фильтра, в нем отсутствуют Y-конденсаторы, выходные электролиты распаянные не все, по сути это блок тянет на честных 300-350 Вт, но для автомобильного зарядного устройства подходит в самый раз. Вместо обозначенных в характеристиках двух шин +12 В на самом деле присутствует только одна. Единственное преимущество – простая схема и низкая цена.

Немного о ШИМ такого БП. Для начала хотелось бы сказать пару слов о ШИМ HS8108b. HS8108b – это полный аналог SG6105.

По сути, помимо ШИМ он еще выполняет функцию мультивизора, отслеживает выходное напряжение по основным шинам

+ 3,3 В; + 5 В; +12 В; на отклонение от нормы. При заниженном (или завышенном) напряжении на любой из этих шин блок просто уйдет в защиту. Для обмана мультивизора нам придется эмулировать несколько идеальных напряжений и подавать на соответствующие входы микросхемы. Для создания напряжений 3,3 В; 5 В; 12 В мы используем стабилизатор 7812 и резистивный делитель подключенный к его выходу. Собираем данную схему на отдельной небольшой плате.

Когда плата будет готова можно будет приступить к самому блоку питания.

Для удобства мы подобрали максимально приближенную схему этого бока питания. Ей оказалась Colorsit 300U, единственные отличия – не совпадает нумерация деталей, а также дежурка GameMax 400W выполнена на WG606P. Обвязка ШИМ без изменений, что нам и нужно.

На следующей схеме обозначены все дальнейшие изменения, которые производились для переделки в зарядное из блока питания компьютера.




Первым делом разбираем блок питания, отпаиваем провода, выходящие из блока. Оставляем только черный – “минус” и желтый – “шина +12 В“. Для автоматического старта зеленый обрезаем и подпаиваем на минус. После первых манипуляций проверяем работоспособность блока.

Далее закрепляем изготовленную плату со стабилизатором и делителем на радиаторе или в другом удобном месте.

Подключаем питание стабилизатора. На этом моменте важно убедиться, что на выходе нашей платы присутствуют необходимые напряжения: 12 В; 5 В; 3,3 В.

Если сделанная плата формирует необходимые напряжения правильно, можно ее подключать к ШИМ. Отключаем ножки ШИМ, которые мониторят напряжения по шинам 12 В; 5 В; 3,3 В, и подключаем их к соответствующим выводам платы.

При подключении важно внимательно рассмотреть трассировку платы. Некоторые дорожки придется перерезать, возможно, где-то необходимо бросить перемычку.


Если плата правильно подключена – блок питания запустится и на выходе мы получим 12 В. На этом этапе мультивизор уже не отслеживает выходное напряжение.

После отключения мониторинга выходных напряжений мы можем приступить к поднятию напряжения до 14,2 В. Измеряем напряжение на 17 ножке ШИМ. У нас оно составило 2,5 В.

Измеряем сопротивление резистора, соединяющего 17 ножку HS8108B с минусом (на схеме обозначен как R23), предварительно отпаиваем один из его выводов. Сопротивление составило 13,1 кОм.

Удаляем резистор, соединяющий 17 ножку HS8108B с шиной + 5 В (на схеме обозначен как R25), вместо 

R28 устанавливаем многооборотный подстроечный резистор.

Подстроечный резистор предварительно настраиваем на такое сопротивление, чтобы напряжение на делителе состоящего из R25 (подстроечный) и R28 (13 кОм) составило 2,5 В. Из расчета вышло, что R25 должен быть настроен на 49 кОм.

Настраиваем подстроечный резистор на 49 кОм и заменяем им резистор R28.

Включаем блок, на выходе должно быть напряжение очень близкое к 12 В.

С помощью подстроечного резистора можно производить настройку выходного напряжения до 14,2 В.

Если есть желание превратить такой блок в регулируемый, необходимо подстроечный резистор заменить переменным, поставить на выходные шины электролитические конденсаторы с высшим рабочим напряжением и изменить номинал нагрузочных резисторов на шинах.

После установки необходимого напряжения можно вывести крокодилы, установить вольтамперметр для контроля процесса зарядки и добавить на выходе защиту от переполюсовки.

Важно! Защиту от переполюсовки использовать желательно, т.к. при подключении АКБ неправильной полярностью блок моментально выходит из строя.

Ну и финальные тесты, зарядное из блока питания компьютера уже готово. Важно помнить, что зарядка АКБ происходит постоянным напряжением. Сила тока при подключении сильно разряженной батареи кратковременно может достигать 10 А, но снижается по мере заряда. При токе порядка 0,5 А заряд АКБ можно считать оконченным.

Если Вам понравилась идея переделки, пишите комментарии, задавайте вопросы и не забывайте поделиться статей в социальных сетях.

VK

Facebook

Twitter

Odnoklassniki

comments powered by HyperComments

Hs8108 схема блока питания

Речь пойдёт о технологии переделки компьютерного блока питания (БП) в лабораторный БП.

Три года назад я опубликовал статью «Лабораторный блок питания из БП АТ», к которой читатели проявили огромный интерес! Стоит только сказать, что повторивших этот БП уже более 20 человек! Да не у всех получилось всё сразу, но я отвечал на комментарии к статье, помогая разобраться в проблемах. В итоге радость от работающего БП получили все!

Хочу сказать огромное спасибо моим читателям, что задавали вопросы! Во-первых, мои ответы на комментарии превратились в кладезь знаний для всех! Именно поэтому, я просил писать вопросы в статье, а не в личной переписке. Во-вторых, вы помогли мне усовершенствовать данную конструкцию! Ещё раз всем спасибо, кто задавал вопросы и высказывал предложения по усовершенствованию.

Отдельная благодарность Юрию Вячеславовичу Evergreen747 , который наравне со мною помогает отвечать на ваши многочисленные вопросы!

Тот блок питания делался много лет назад (намного раньше, чем была написана первая статья!). К тому же я переделал всего один экземпляр БП AT, и не было возможности набрать статистики по проблемам, которые могут встретиться в других вариантах таких блоков. Вы же мне очень помогли это сделать.

Недостатки первой конструкции лабораторного БП, прежде всего, связаны с отсутствием дежурного источника питания. Это выражается в том, что БП не держит низкое напряжение на выходе при малых токах нагрузки. Типично на холостом ходу выставить напряжение ниже 5…8 В не удаётся. Второе – это неустойчивая работа в режиме стабилизации тока, особенно в момент перехода из режима стабилизации напряжения: появляется пульсация выходного напряжения, иногда сопровождающаяся треском или писком…

Тот блок питания прекрасно подходит для питания мощных потребителей и зарядки аккумуляторных батарей, но для работы с маломощной электроникой, требующей низкого напряжения питания – он немного грубоват. Поэтому я сделал новый блок питания, внеся доработки, а старый перевёл на «постоянную работу» в гараж.

Новый вариант БП

Всё дальнейшее повествование будет основано на том, что вы хорошо изучили первую статью о переделке БП AT – я повторяться не буду, а расскажу лишь о модификациях прежней конструкции с практической стороны на примере создания нового БП. Так что кто не читал – идите по ссылке и изучайте. Первая статья для вас так и должна остаться «библией»!

Итак, разгребая хлам на работе, заинтересовал меня один БП ATX 400W: он не из самых современных, а выполнен на обычной TL494 (то, что нам нужно!), схема защиты – на LM339 (не плохо), у него добротный фильтр по питанию, крупный трансформатор, большая ёмкость конденсаторов в фильтре (470 мкФ 200 В), а также солидные радиаторы – что обещало действительно хорошую выходную мощность. Его я и препарировал!

Начал, естественно, с пылесоса… Затем, внимательнее изучил внутренности: выполнен он очень добротно – все входные цепи, выпрямитель сетевого напряжения, конденсаторы фильтра, силовые транзисторы преобразователя (MJE13009) уже стоят «по максимуму», значит умощнять его не придётся.

После включил его, нагрузив цепи +5V и +12V лампочками 12 В 35 Вт (очень удобно использовать миниатюрные галогеновые лампочки для люстр – они без проблем втыкаются прямо в разъёмы Mini-Fit) – работает! За минуту работы с такой нагрузкой при отключенном вентиляторе ничего не нагрелось – отлично.

Далее начал искать его принципиальную схему. Посмотрел основные моменты слаботочной части: хоть в нём и стоят две самые распространённые для БП ATX микросхемы (TL494 и LM339), но схема включения LM339 сильно отличалась (их действительно много вариантов). Защита по мощности через диод от среднего отвода запускающего трансформатора вела как раз к ней, а нам нужно её сохранить! Ничего страшного – начал срисовывать этот кусок схемы с печатной платы. Хуже нет копаться в чужом монтаже…

Ага, защита по превышению мощности выполнена на первом компараторе LM339, второй компаратор является триггером (защёлкой) и на него же заведена защита от перенапряжения. Выход защиты заведён на выв. 4 TL494 (что нам и нужно!). На двух оставшихся компараторах сделана индикация Power_Good. Схема включения БП (PS_ON) выполнена на двух транзисторах и также заведена на выв. 4. Удачная схема! Теперь ясно что оставить, а что сохранить:

В данном случае мне повезло: схема защиты по мощности работает через выв. 4 TL494. Но если вы внимательно посмотрите на схему входных цепей защиты, то увидите, что сигнал со среднего вывода запускающего трансформатора через R20 и D22 поступает на два делителя напряжения, и первый из них (на резисторах 47 и 6,2 кОм) заведён также и на выв. 16 TL494, который нам нужно высвободить. В данном случае это грубая «аварийная защита», дублирующая схему на компараторах LM339 и её можно спокойно убирать, выпаяв этот делитель.

Второй же делитель (R48–R50), перед входом компаратора (выв. 7 LM339) нужно превратить в регулируемый, для возможности настройки порога срабатывания защиты. Для этого можно заменить постоянный резистор в любом из его плеч на подстроечный с номиналом в 2 раза больше. Я заменил резистор верхнего плеча (47 кОм) на подстроечный 100 кОм.

В схеме защиты от перенапряжения достаточно заменить стабилитрон ZD3, подключенный к цепи +12V на КС522А. Кстати, для проверки работоспособности этой защиты достаточно закоротить стабилитрон пинцетом – БП должен выключиться.

Если в вашем БП схема защиты выполнена с использованием второго компаратора TL494 (выв. 15 и 16), который нам нужно высвободить для петли регулировки тока – то рекомендую собирать самую распространённую и многократно проверенную схему защиты на двух транзисторах. Вот полная схема БП в хорошем разрешении, в котором используется данная схема защиты. А вот, что должно остаться от защиты:

Сигнал берётся от среднего вывода трансформатора T2, через диод D22 и далее по цепочке поступает на базу Q10. А с коллектора Q8 через диод D29 поступает на выв. 4 TL494. Также на базу Q10 заведена защита от перенапряжения с выхода выпрямителя: стабилитрон КС522А и резистор 1-1,5 кОм включенные последовательно.

Что касается выпрямителя и фильтра выходного напряжения, то здесь меня также ждала удача: выпрямитель +12V имел разводку на плате для размещения двух выпрямительных диодных сборок параллельно (зеркально, с каждой стороны радиатора) в корпусе TO-220. В схеме фильтра уже присутствовал второй дроссель (на ферритовом стержне) и имелось достаточное место для установки электролитических конденсаторов взамен штатных. Значит, делаем фильтр на его же месте, в соответствии с рекомендациями в первой статье.

Диодные сборки для выпрямителя подобрал SBR20100CT (20 А, 100 В, корпус TO-220) из имеющихся дома от других компьютерных БП. Установил два корпуса в параллель, как это и позволяла печатная плата.

Дроссель групповой фильтрации я выпаял, и смотал с кольца родные обмотки (обмотка +12V содержала 12 витков). После намотал новую обмотку эмалированным проводом Ø1,0 мм на этом же кольце – 25 витков в два провода, сложенных вместе — всё, как рекомендовано в первой статье. Это, как раз 2 слоя намотки: на внешней стороне кольца витки второго слоя располагаются между витками первого слоя. Мотать рекомендую «от середины» к каждому концу обмотки – так короче концы проводов которые нужно пропускать через кольцо. Провод нужно хорошо натягивать, что бы он плотно прилегал к кольцу.

У меня имеется много конденсаторов с промышленных плат 1500 мкФ 35 В – их я и поставил в фильтр взамен штатных. В принципе, такой ёмкости уже достаточно. Также добавил керамические конденсаторы параллельно им, и установил резистор 100 Ом 2 Вт для устойчивой работы БП без внешней нагрузки. Этот резистор должен быть поднят над платой на всю длину его выводов – он может нагреваться при установке предельных значений напряжения.

Единственное, что нужно не забыть сделать в БП ATX – это убрать цепь вольтдобавки от выпрямителя +12V, которая питает микросхему ШИМ TL494 (выв. 12). Обычно это диод или диод последовательно с резистором в несколько Ом. В отличие от штатной схемы – выходное напряжение нашего БП будет регулируемым, и эта цепь только добавит нестабильности питания для ШИМ. Пульсации на выходе от этого увеличиваются. Пусть ШИМ питается только от дежурного источника.

Стал просматривать ещё раз схемы на сайте и наткнулся на схему аналогичного БП… Бывает! Ничего общего в названии, но отличие лишь в порядке нумерации элементов на плате и значениях ёмкости больших электролитических конденсаторов (не удивительно, схема от БП мощностью 300 Вт) – остальное один в один. Покажу и на примере всей схемы, что было удалено, а что оставлено.

И так, силовая (высоковольтная) часть у нас в порядке. Выходной выпрямитель и фильтр подготовлен. Защита от превышения мощности и перенапряжения имеется. Схема выключения БП выпаяна. Осталось сделать схему управления.

На этом этапе рекомендую испытать БП

Это выявит возможные ошибки в переделанной части, позволит определиться с максимальной нагрузочной способностью БП, проверить температурный режим его элементов, и работу схемы защиты. Вы будете полностью уверены в полной работоспособности БП до установки платы управления.

Для этого нужно подключить простейший делитель напряжения из двух резисторов (15 и 4,7 кОм) и потенциометр (10…50 кОм) к первому компаратору TL494 (выв. 1 и 2), как показано на схеме ниже. Чтобы исключить влияние второго компаратора, выв. 16 нужно заземлить, а на выв. 15 подать небольшое напряжение. В некоторых БП это уже сделано – так что не торопитесь резать эти цепи! В моём БП в штатной схеме на выв. 15 было уже подано +5 В, а выв. 16 остался заземлён через резистор 6,2 кОм от бывшего делителя.

Пробное включение в сеть производите через лампу накаливания 220 В 100 Вт, включенную вместо предохранителя. Это позволит избежать выхода из строя силовых транзисторов. В случае превышения тока, лампа просто зажжётся, сохранив дорогостоящие транзисторы. Естественно, БП запитанный через лампочку не позволит нагрузить его, так что испытание под нагрузкой нужно производить уже без лампочки.

Сделайте пробное включение. Если БП не запускается, то проверяйте сначала наличие напряжения 300…310 В на конденсаторах сетевого выпрямителя, затем наличие напряжения питания +12 В (или выше), которое поступает от источника дежурного напряжения на вывод 12 TL494, и затем отсутствие напряжения на выв. 4 – если оно там присутствует, то значит, защита запрещает работу ШИМ. Если ошибок нет – то выходное напряжение будет плавно регулироваться потенциометром в диапазоне от 0 до 20…21 В. Если это так, то можно отключать лампочку, ставить предохранитель обратно и переходить к испытаниям БП под нагрузкой.

Но сначала позаботьтесь об охлаждении силовых элементов! Вентилятор можно расположить сбоку от радиаторов, что бы он их хорошо продувал. Питание на вентилятор можно взять от дежурного источника (с выхода выпрямителя, питающего TL494), убедившись, что там, около 12 В.

В качестве нагрузки БП я использую толстую (около 1 мм) нихромовую проволоку, подсоединяясь к ней «крокодилами». Сопротивление меняю – изменяя расстояние между точками подключения – получается классический реохорд. Достаточно 2 м длины. Проволока будет накаляться (иногда докрасна) – так что позаботьтесь, чтобы она свободно висела не соприкасалась с окружающими предметами. При нагрузках более 10 А, я использую две сложенные вместе проволоки.

Нагружайте БП постепенно, контролируя напряжение и ток! Следите за нагревом силовых элементов. Лучший вариант – когда при предельных мощностях радиатор с силовыми транзисторами, радиатор с выпрямительными диодами и дроссель на кольце нагреваются примерно в равной степени. Не забывайте, что радиатор силовых транзисторов находится под потенциалом сети питания!

Подавляющее большинство компьютерных БП тянет ток 10 А при напряжении 20 В, т.е. 200 Вт мощности по бывшей 12V обмотке. Лучший вариант – контролировать осциллографом скважность импульсов на вторичной обмотке. Пределом следует считать примерно 90% заполнение (не бойтесь, 100% не даст выставить логика работы TL494). У моего БП предельная мощность по этой обмотке составила 250 Вт. Порог срабатывания защиты я настроил на 220…230 Вт.

Нагрев элементов был не столь существенный и я пошёл дальше. Попробовал нагрузить БП током 20 А при напряжении 10 В (те же 200 Вт) – диоды выпрямителя и дроссель стали греться больше, но терпимо. И тогда я решил сделать предел регулировки тока 20 А. Это позволит в диапазоне выходных напряжений от 0 до 10 В нагружать БП током 20 А. Выше этого напряжения предельный ток будет спадать (это ограничит нам схема защиты по перегрузке) до уровня 10 А при 20 В. Например, при напряжении 14 В блок может отдать в нагрузку ток 16 А, что очень заманчиво!

Многие жалуются на треск и писк, при определённых напряжениях и токах нагрузки. Испытывая БП на различных нагрузках я тоже с этим столкнулся и решил глубже изучить этот вопрос.

Писк – это самовозбуждение в петле регулировки выходного напряжения: от выходной “+” клеммы, до выв. 1 TL494 (включая внутренний компаратор в ней, т.е. как бы до выв. 3 TL494). Самовозбуждение проявляется появлением пульсаций напряжения на выходных клеммах БП, что прекрасно видно осциллографом. Прежде всего, это связано с цепочками отрицательной обратной связи (ООС) между выв. 2 и 3 и выв. 15 и 3, которые определяют коэффициент усиления в петле регулировки. В своей первой конструкции я оттуда выбросил резисторы, а зря!

Нужно сохранить штатную цепочку между выв. 2 и 3 TL494. У меня в старой схеме (конденсатор 0,1 мкФ) не лучший вариант, нужно поставить туда конденсатор в районе 0,022…0,047 мкФ и резистор 33…68 кОм, включенные последовательно. Резистор нужно подобрать по минимуму самовозбуждения (писка). Вместо резистора я ставил подстроечный 100 кОм, и загоняя БП в режим максимального «писка» (подбирая сочетание выходного напряжения и тока нагрузки БП), меняя сопротивление этого резистора находил минимум (проще смотреть осциллографом амплитуду пульсаций на выходе БП). У меня, например, идеальная цепочка получилась при сочетании 0,033 мкФ и 43 кОм.

Позднее, аналогично я подобрал и номиналы в петле ООС регулировки тока – RC цепочку между выв. 15 и 3 TL494. У меня идеальная цепочка получилась при сочетании 0,15 мкФ и 4,7 кОм. Конденсаторы этих цепочек должны отличаться по ёмкости, иначе, при одинаковых цепочках, появляется самовозбуждение на границе перехода из режима стабилизации напряжения в режим стабилизации тока – компараторы внутри TL494 начинают как бы «бороться» между собой, кому из них регулировать напряжение на выходе.

Также причиной самовозбуждения являются просадки напряжения по проводнику массы на плате между выпрямителем выходного напряжения и минусом питания TL494. Пробуйте соединить короткой толстой перемычкой (провод сечением не менее 1,5 мм²) средний вывод вторичной обмотки трансформатора (косичку), сидящий на земле, с землёй вблизи выв. 7 микросхемы TL494. Также точка, куда припаивается провод земли от переменных резисторов регулировки напряжения и тока должна быть выбрана вблизи выв. 7. Проверку лучше делать прямо на ходу: берёте кусок провода сечением 2,5 мм² длиной сантиметров 10-12, изгибаете дугой и пробуете соединять эти точки между собой.

Ну и третье – это наводки на провода цепи регулировки выходного напряжения от трансформатора – попробуйте повесить конденсатор 0,01 мкФ между выв. 2 и 7 (земля). Делайте именно в этом порядке! Т.к. иногда, установка перемычки, например, полностью убирает самовозбуждение, и после этого RC цепочку ООС уже не подобрать по минимуму.

В итоге я снизил размах пульсаций при токе нагрузки 10 А и напряжении 20 В в режиме стабилизации напряжения ниже 5 мВ, и в режиме стабилизации тока ниже 15 мВ. Это очень высокие показатели!

После испытания БП можно переходить к сборке платы управления. В первом варианте я отказался от использования дифференциального усилителя в петле регулировки тока, дабы уменьшить количество проводов. А зря! Коэффициент стабилизации тока оказался невысоким, плюс падение напряжения на проводах земли дополнительно вносило погрешность. Поэтому в новой схеме я включил оба операционных усилителя (ОУ) по дифференциальной схеме. Требования к типу ОУ остаются прежними, как написано в первой статье.

Усилитель в цепи регулировки напряжения (DA1.1) остался неизменным. При указанных номиналах резисторов (R1=R3 и R2=R4) предел регулировки напряжения соответствует 20,0 В. Для точной работы дифференциального усилителя нужно сохранять равенство этих сопротивлений в парах. Резисторы с номиналом 4,9 кОм составлены из двух, включенных последовательно (например, 3,9 и 1 кОм, или 4,7 кОм и 200 Ом и т.п.).

Усилитель в цепи регулировки тока собран по аналогичной дифференциальной схеме включения ОУ (DA1.2), что требует подключения его входов отдельными тонкими проводами непосредственно к клеммам шунта. Амперметр я использовал прежний SAH0012R-50, поэтому шунт остался точно таким же 75ШИП1-50-0.5 с сопротивлением 1,5 миллиОма. При этом шунте и указанных в схеме номиналах резисторов (R5=R7 и R6=R8) предел регулировки тока составляет 20 А. Чтобы уменьшить предел регулировки тока до 10 А нужно уменьшить сопротивление резисторов R5, R7 до 110 Ом. В случае использования амперметра с другим шунтом, отличающимся по сопротивлению, чтобы задать верхний предел регулировки тока, потребуется изменить сопротивление резисторов R5 и R7 (или R6 и R8), сохраняя равенство их сопротивлений между собой.

Индикацию перехода в режим стабилизации тока я перенёс в цепь регулировки напряжения, поменяв входы компаратора (DA1.4) между собой. В принципе – это не принципиально…

Как и в прошлой конструкции, переменные резисторы регулировки напряжения и тока (R10 и R11), а также R12–R14, C2 и C3 расположены на отдельной плате, расположенной на передней панели корпуса. Файл платы в формате Sprint-Layout можно скачать от сюда. Цепочки C4, R15 (штатная) и C5, R16 расположены на плате БП вблизи микросхемы TL494. Остальное расположено на отдельной плате, которую можно скачать от сюда. Монтаж выполнен на SMD элементах.

Хочу ещё раз подчеркнуть, что питание и землю на схему управления нужно брать от точек на плате БП в непосредственной близости от выв. 12 и 7 TL494. Земля к переменным резисторам регулировки тока и напряжения на передней панели также должна браться вблизи выв. 7 TL494. Корпус переменных резисторов должен быть заземлён.

Дежурный источник питания

Теперь поговорим о внутреннем питании ШИМ, платы управления, вольтметра, амперметра и вентилятора. В принципе, суммарный потребляемый ток этих элементов не высокий – его прекрасно потянет дежурный источник питания. Но нужно учитывать импульсный характер нагрузки, который имеет, прежде всего, вентилятор, и измерительные приборы (за счёт динамического режима работы светодиодных цифровых индикаторов). Пульсации в цепи питания ШИМ и платы управления нам ни к чему, поэтому их нужно развязать между собой.

Я пошёл ещё дальше: дежурный источник питания имеет два выхода: стабилизированный +5V_SB и второй, напряжением около 12 В, который стабилизирован параметрически (косвенно). Первый нам не нужен, а используется, как раз второй! Поэтому я перенёс цепи стабилизации напряжения с выхода +5V_SB на второй выход и настроил их на напряжение 12 В. (Если вам нужно для каких-либо целей +5 В, то можно установить интегральный стабилизатор LM7805 от этой цепи.)

Дата: 17.01.2017 // 0 Комментариев

Блок с подобным ШИМ мы уже успешно переделывали в зарядное устройство, но сейчас пойдем совсем по другому пути. Интересен этот вариант переделки тем, что выходное напряжение можно выставлять в довольно широком диапазоне. А при желании можно переделать такой блок питания компьютера в регулируемый блок. Но обо всем по порядку. Сегодня мы расскажем, как сделать зарядное из блока питания компьютера на ШИМ HS8108B (аналог SG6105).

Как сделать зарядное из блока питания компьютера на ШИМ HS8108B?

Для переделки мы приобрели новый и недорогой блок питания GameMax 400W. Относительно самого блока хотелось бы добавить пару строк.

Блок не обезображен элементами входного фильтра, в нем отсутствуют Y-конденсаторы, выходные электролиты распаянные не все, по сути это блок тянет на честных 300-350 Вт, но для автомобильного зарядного устройства подходит в самый раз. Вместо обозначенных в характеристиках двух шин +12 В на самом деле присутствует только одна. Единственное преимущество — простая схема и низкая цена.

Немного о ШИМ такого БП. Для начала хотелось бы сказать пару слов о ШИМ HS8108b. HS8108b — это полный аналог SG6105.

По сути, помимо ШИМ он еще выполняет функцию мультивизора, отслеживает выходное напряжение по основным шинам + 3,3 В; + 5 В; +12 В; на отклонение от нормы. При заниженном (или завышенном) напряжении на любой из этих шин блок просто уйдет в защиту. Для обмана мультивизора нам придется эмулировать несколько идеальных напряжений и подавать на соответствующие входы микросхемы. Для создания напряжений 3,3 В; 5 В; 12 В мы используем стабилизатор 7812 и резистивный делитель подключенный к его выходу. Собираем данную схему на отдельной небольшой плате.

Когда плата будет готова можно будет приступить к самому блоку питания.

Для удобства мы подобрали максимально приближенную схему этого бока питания. Ей оказалась Colorsit 300U, единственные отличия — не совпадает нумерация деталей, а также дежурка GameMax 400W выполнена на WG606P. Обвязка ШИМ без изменений, что нам и нужно.

На следующей схеме обозначены все дальнейшие изменения, которые производились для переделки в зарядное из блока питания компьютера.

Первым делом разбираем блок питания, отпаиваем провода, выходящие из блока. Оставляем только черный — «минус» и желтый — «шина +12 В«. Для автоматического старта зеленый обрезаем и подпаиваем на минус. После первых манипуляций проверяем работоспособность блока.

Далее закрепляем изготовленную плату со стабилизатором и делителем на радиаторе или в другом удобном месте.

Подключаем питание стабилизатора. На этом моменте важно убедиться, что на выходе нашей платы присутствуют необходимые напряжения: 12 В; 5 В; 3,3 В.

Компьютерные блоки питания

В этом разделе размещены материалы о ремонте различных компьютерных блоков питания, для удобства они разбиты на группы, по типу ШИМ-контроллера, используемого в блоке.

БП на основе ШИМ 2003. Здесь размещены материалы о блоках питания, выполненных на основе микросхем 2003 и DR-B2002, “неизвестного” производителя, эти микросхемы являются аналогами (проверено). Datasheet-ов на эти микросхемы я не встречал, описание DR-B2002 можно посмотреть здесь. По назначению выводов, с этими микросхемами также совпадают чипы 2005, 2005Z (за исключением выводов 1 и 6). Интересная схема со сравнением микросхем 2003 (DR-B2002) и SG6105.

БП на основе ШИМ 3528. Здесь размещены материалы о блоках питания, выполненных на основе микросхемы 3528 (FSP 3528, FSP3528) фирмы FSP GROUP. Datasheet-а я не встречал, некоторую информацию о ней можно почерпнуть здесь.

БП на основе ШИМ AT2005B. Здесь размещены материалы о блоках питания, выполненных на основе микросхем 2005B, AT2005B фирмы Advanced Technology Electronics, SDC2005 (SDC 2005, SDC2005B, SDC 2005B) фирмы Shaoxing Devechip Microelectronics. Datasheet на AT2005B можно посмотреть здесь, а описание – здесь, datasheet на SDC2005 находится здесь. В принципе тоже самое что WT7514L, но с другой (смещённой) цоколёвкой.

БП на основе ШИМ CM6800. Здесь размещены материалы о блоках питания, выполненных на основе микросхем CM6800G, CM6800TX фирмы CHAMPION MICROELECTRONIC CORP. Datasheet на CM6800 можно посмотреть здесь.

БП на основе ШИМ KA3511. Здесь размещены материалы о блоках питания, выполненных на основе микросхем KA3511 (22 DIP) и KA3511BS (24-SDIP) фирмы FAIRCHILD SEMICONDUCTOR. Datasheet на KA3511 можно посмотреть здесь, а её описание – здесь.

БП на основе ШИМ SG6105. Здесь размещены материалы о блоках питания, выполненных на основе микросхем SG6105 (SG6105ADZ, SG6105D, SG6105DZ) фирмы SYSTEM GENERAL (на сайте SYSTEM GENERAL указано что “System General Corp. has been merged by Fairchild Semiconductor Corp. in 2007”, так что за datasheet-ами можно зайти и на FAIRCHILD SEMICONDUCTOR), ATE6105 фирмы Advanced Technology Electronics, FSP3529Z фирмы FSP GROUP, HS8108 фирмы HuaXin Micro-Electronics, IW1688 фирмы IN WIN, SC6105 и SD6109 фирмы Silan Microelectronics (замена SD6109 на SG6105 на практике не проверялась). Эти микросхемы являются аналогами. Datasheet на SG6105 можно посмотреть здесь, а её описание – здесь и здесь. Мне доводилось менять SG6105 на IW1688 (и наоборот).

БП на основе ШИМ TL494. Здесь размещены материалы о блоках питания, выполненных на основе микросхем TL494 (TL494CN) фирмы TEXAS INSTRUMENTS, AZ7500BP фирмы Advanced Analog Circuits, DBL494 фирмы DAEWOO, EST. TL494 фирмы East Semiconductor Technology, KA7500B (KA7500C) фирмы FAIRCHILD SEMICONDUCTOR, KIA494AP фирмы KEC, MIK494 фирмы mikron, S494P, SDC7500 (SDC 7500, SDC7500B, SDC 7500B) фирмы Shaoxing Devechip Microelectronics, SP494, TL494L и UTC51494 фирмы UTC. Все эти микросхемы взаимозаменяемы. Datasheet на TL494 можно посмотреть здесь, на KA7500B – здесь, а описание на TL494 – здесь.

БП на основе ШИМ UC384x. Здесь размещены материалы о блоках питания, выполненных на основе микросхем UC3843B фирмы STMicroelectronics, GM3843 и GM3845 фирмы Gamma Microelectronics, KA3843A фирмы FAIRCHILD SEMICONDUCTOR, SDC 3842A (SDC3842A) фирмы Shaoxing Devechip Microelectronics. Datasheet на микросхему UC3842B (UC3843B, UC3844B, UC3845B) (STMicroelectronics) можно посмотреть здесь.

БП на основе ШИМ WT7514L. Здесь размещены материалы о блоках питания, выполненных на основе микросхем WT7514L и WT7520 фирмы Weltrend, эти чипы имеют два основных различия. Первое – тип частотозадающего элемента на шестом выводе, у WT7514L – это конденсатор CT (обычно ёмкостью 2.2nF), а у WT7520 – резистор RT (обычно сопротивлением 100-120кΩ), далее в скобках указан тип элемента CT или RT для разных микросхем. И второе – функция десятого вывода – TPG (Time Power Good) у WT7514L, SS (Soft Start) у WT7520. Аналогами этих микросхем являются: AT2005, AT2005A (CT), ATE7520 (RT) фирмы Advanced Technology Electronics, CG8010 (CG8010DX16; RT) фирмы ChipGoal, CR6505 (CT) фирмы Chip-Rail, LPG-899 (LPG 899, LPG899; CT) фирмы Linkworld, SDC2921 (RT) фирмы Shaoxing Devechip Microelectronics и DR0183 (CT) “неизвестного” производителя. Datasheet на микросхему WT7514L можно посмотреть здесь, на WT7520 – здесь, а описание на LPG-899 – здесь.

БП на основе других ШИМ. Здесь размещены материалы о блоках питания, выполненных на основе различных микросхем, не попадающих под описания вышеприведённых категорий.

Схема блока питания на 24 В 9 А, datasheet БП

Давно поглядывал на блок питания 24 Вольта. Читал ранее обзор уважаемого kirich на похожий БП только 6 заявленных Ампер, но моя хотелка требовала брать сразу помощнее. Поэтому выбор пал на более мощный.

Упаковка — коробка из простого коричневого картона, заклеенная обычным скотчем. Внутри блок питания в запаянном антистатическом пакете.

Осмотр платы явных косяков не выявил. Ну кроме обычных для китайцев разводов от плохо смытого флюса.

Сначала думал, что входного электролита в 100 мкФ маловато, но тесты показали, что хватает.

Межобмоточный конденсатор Y-типа. Термистор в наличии 5D-11.

ШИМ-контроллер аккуратно затерли. Транзистор, как и в менее мощной серии, аналогичен — 20N60C3. Конденсатор питания ШИМ-контроллера стоял 22 мкФ, поменял на 47 мкФ. Если я ошибся с этим действием, то буду рад, если поправите.

На выходе стоят запараллеленные диодные сборки 20200CT 20A 200V.

Суммарная емкость выходных электролитов (измерял без выпаивания) составила около 3260 мкФ.

И теперь немного отчета по тестам.
Напряжение холостого хода 24.05 В. Пульсации порядка 70 мВ.

Нагрузка 14.5 Ом кучкой цементных двадцативатников. Напряжение 24.05 В. Пульсации больше 60 мВ амплитудой не заметил.

Нагрузка 7.2 Ом кучкой цементных двадцативатников. Ток 3.3 А. Напряжение 24.05 В. Пульсации не больше 60 мВ.

Тест удалось поддерживать минут 5, гроздь резисторов слишком сильно разогрелась и я отключил БП. Оба радиатора были температурой 40-45 градусов.

Специально притащил из гаража нихромовую спираль из проволоки диаметром 1 мм.

Использовал часть спирали, сопротивление при комнатной составило 3.2 Ом. Ток 7.5 А. Напряжение 23.98 В. Пульсации достигли размаха 180 мВ.

Под такой нагрузкой держал максимум секунд 30. Несмотря на вентилятор, раскалялась достаточно быстро и чуть не проплавила мне коврик, на фотографии есть след. Может кто подскажет, после отключения БП, секунд через 10, я замерил сопротивление на клеммах и увидел 2.5 Ом, которое потихоньку росло. Вроде бы с прогревом нихром увеличивает сопротивление или я что-то не догоняю?

Учитывая, что нагружать я его планирую не больше 100 Вт, то думаю есть заявка на долговременную работу без выхода из строя.
Товар куплен за свои кровные, так что простите за то, что не так усердно старался его спалить )))

Update 06.02.2018
Нарыл схемку в инете

Замена SG6105 на TL494 с помощью платы-переходника

Когда радиолюбители берутся за переделки блоков питания от компьютера, блоки с ШИМ SG6105 и его аналогами стараются обходить стороной. Встроенные системы защиты в эту микросхему не дают возможности легко производить манипуляции с выходными напряжениями. Сегодня мы покажем, каким способом возможна замена SG6105 на TL494 с помощью простого переходника и продемонстрируем его в работе.

Замена SG6105 на TL494 с помощью платы-переходника

Особенностью ШИМ SG6105 является целый ряд встроенных защит, из-за чего производители обожают его использовать в своих блоках. SG6105 сразу может выключать блок при превышении (или при снижении) напряжения даже на одной из силовых шин, контролирует наличие отрицательных напряжений на выходе БП. А также имеет отдельные выходы для детекции перегрузки или другой нештатной аварийной ситуации. По сути, SG6105 имеет в своем составе TL494, два TL431 и кучу другой начинки, которая отвечает за вышеперечисленные защиты.

Популярный в народе TL494 легко поддается манипуляциям и имеет огромный потенциал для разного рода переделок. Сможет ли он полноценно заменить SG6105, сейчас увидим. Для этого мы набросали схему переходника, что бы лучше было понятно, как заменить ШИМ SG6105 на TL494.



Плата имеет компактные габариты 40х35 мм и встает на штатное место SG6105, для удобства лучше использовать панельку. Необходимо учесть, что блок питания запуститься сразу при включении в сеть и все защиты от короткого замыкания и перегрузки работать не будут!! Ссылка на печатку будет в конце статьи!

Далее изготовили плату–переходник с одной микросхемы на другую. Как видим, такой переходник имеет на борту TL494 с минимальной обвязкой для работы, а также две TL431. В некоторых блоках встроенные TL431 в SG6105 не задействованы, но в других отвечают за формирование напряжений по шине 3,3 В, а также дежурных 5 В.

Прототип по нашим эскизам изготовил Виталий Ликин из Волгограда. При создании прототипа платы решено было пренебречь двумя TL431 из за особенностей этого блока. К стати, полезной фишкой такой платы является то, что если заменить R4 на переменный резистор с номиналом 10 кОм, можно уже получить уже блок питания с регулировкой напряжения от 0 В до 16,5 В.


Важно! При установке такого переходника необходимо учитывать некоторые нюансы, связанные с питанием SG6105 и Tl494. Для нормальной работы Tl494 питание должно быть в диапазоне 7-40 В; для SG6105 — напряжения питания составляет 5 В. В большинстве случаев 20 ножка SG6105 подключена к дежурке с напряжением 5 В, что недостаточно для нормальной работы TL494. Необходимо изменить подачу питания на 20 ножку согласно схеме.

Переключив питание на другую обмотку дежурки, мы получаем напряжение питание ШИМ около 1517 В, что достаточно для нормальной работы Tl494.


Подобный переходник имеет огромный потенциал т.к. он сможет упростить переделку блока на основе SG6105 и его аналогов ATE6105, FSP3529Z, HS8108, IW1688, SC6105, должен подходить практически ко всем блокам на основе этих МС. Ну, и конечно смотрим видео демонстрацию работы самого первого образца платы.

Как выяснилось позже из-за различных вариаций блоков на основе SG6105 наш самый первый образец не работал на некоторых моделях. Вникнув в особенности таких блоков мы видоизменили схему и дополнили ее так, что бы полностью унифицировать плату. В итоге наша схема заработала на всех моделях не зависимо от их схематических отличий, а наглядную работу самого первого варианта платы мы как раз и видим на видео.

Если Вам понравились подобные эксперименты над блоками — ставьте лайк и поделитесь материалом с другими! Как и обещали, печатку платы можно скачать тут:

Вконтакте

Facebook

Twitter

Одноклассники

comments powered by HyperComments
Регулируемый источник питания из БП ATX на TL494. Часть 1 — железо / ХабрВсем привет!

Сегодня хотел бы рассказать Вам о своём опыте переделки самого обычного китайского БП ATX в регулируемый источник питания со стабилизацией тока и напряжения(0-20А, 0-24В).

В этой статье мы подробно рассмотрим работу ШИМ контроллера TL494, обратной связи и пробежимся по модернизации схемы БП и разработке самодельной платы усилителей ошибок по напряжению и току.



Честно признаться, сейчас я даже не могу назвать модель подопытного БП. Какой-то из многочисленных дешевых 300W P4 ready. Надеюсь, не нужно напоминать, что на деле эти 300W означают не больше 150, и то с появлением в квартире запаха жареного.

Рассчитываю на то, что мой опыт сможет быть кому-то полезен с практической точки зрения, а потому упор сделаю на теорию. Без нее всё равно не получится переделать БП т.к. в любом случае будут какие-то отличия в схеме и сложности при наладке.

Схема БП ATX
Для начала пройдемся по схеме БП ATX на контроллере TL494(и его многочисленных клонах).
Все схемы очень похожи друг на друга. Гугл выдает их довольно много и кажется я нашел почти соответствующую моему экземпляру.


Ссылка на схему в полном размере

Структурно разделим БП на следующие блоки:
— выпрямитель сетевого напряжения с фильтром
— источник дежурного питания(+5V standby)
— основной источник питания(+12V,-12V,+3.3V,+5V,-5V)
— схема контроля основных напряжений, генерация сигнала PowerGood и защита от КЗ

Выпрямитель с фильтрами это всё что в левом верхнем углу схемы до диодов D1-D4.

Источник дежурного питания собран на трансформаторе Т3 и транзисторах Q3 Q4. Стабилизация построена на обратной связи через опторазвязку U1 и источнике опорного напряжения TL431. Подробно рассматривать работу этой части я не буду т.к. знаю, что слишком длинные статьи читать не очень весело. В конце я дам название книги, где подробно рассмотрены все подробности.

Обратите внимание, в схеме по ошибке и ШИМ контроллер TL494 и ИОН дежурного питания TL431 обозначены как IC1. В дальнейшем я буду упоминать IC1 имея ввиду именно ШИМ контроллер.

Основной источник питания собран на трансформаторе Т1, высоковольтных ключах Q1 Q2, управляющем трансформаторе Т2 и низковольтных ключах Q6 Q7. Всё это дело раскачивается и управляется микросхемой ШИМ контроллера IC1. Понимание принципа работы контроллера и назначения каждого элемента его обвязки — это как раз то, что необходимо для сознательной доработки БП вместо слепого повторения чужих рекомендаций и схем.

Механизм работы примерно таков: ШИМ контроллер, поочередно открывая низковольтные ключи Q6 Q7, создает ЭДС в первичной обмотке трансформатора Т2. Видите, эти ключи питаются низким напряжением от дежурного источника питания? Найдите на схеме R46 и поймете о чем я. ШИМ контроллер также питается от этого дежурного напряжения. Чуть выше я назвал трансформатор Т2 управляющим, но кажется у него есть какое-то более правильное название. Его основная задача — гальваническая развязка низковольтной и высоковольтной части схемы. Вторичные обмотки этого трансформатора управляют высоковольтными ключами Q1 Q2, поочередно открывая их. С помощью такого трюка низковольтный ШИМ контроллер может управлять высоковольтными ключами с соблюдением мер безопасности. Высоковольтные ключи Q1 Q2 в свою очередь раскачивают первичную обмотку трансформатора Т1 и на его вторичных обмотках возникают интересующие нас основные напряжения. Высоковольтными эти ключи называются потому, что коммутируют они выпрямленное сетевое напряжение, а это порядка 300В! Напряжение со вторичных обмоток Т1 выпрямляется и фильтруется с помощью LC фильтров.

Теперь, надеюсь, в целом картину вы себе представляете и мы можем идти дальше.

ШИМ контроллер TL494.
Давайте разберемся как же устроен ШИМ контроллер TL494.
Будет лучше, если вы скачаете даташит www.ti.com/lit/ds/symlink/tl494.pdf, но в принципе я постараюсь вынести из него самое главное с помощью картинок. Для более глубокого понимания всех тонкостей советую вот этот документ: www.ti.com/lit/an/slva001e/slva001e.pdf

Начнем, как это ни странно, с конца — с выходной части микросхемы.
Сейчас всё внимание на выход элемента ИЛИ (помечен красным квадратом).
Выход этого элемента в конкретный момент времени напрямую управляет состоянием одного или обоих сразу ключей Q1 Q2.
Вариант управления задаётся через пин 13(Output control).

Важная вещь №1: если на выходе элемента ИЛИ лог 1 — выходные ключи закрыты(выключены). Это верно для обоих режимов.
Важная вещь №2: если на выходе элемента ИЛИ лог 0 — один из ключей(или оба сразу) открыт(включен).

Вырисовывается следующая картина: по восходящему фронту открытый ранее транзистор закрывается(в этот момент они оба гарантированно закрыты), триггер меняет своё состояние и по нисходящему фронту включается уже другой ключ и будет оставаться включенным пока снова не придет восходящий фронт и не закроет его, в этот момент опять триггер перещёлкивается и следующий нисходящий фронт откроет уже другой транзистор. В single ended режиме ключи всегда работают синхронно и триггер не используется.

Время, когда выход находится в лог. 1(и оба ключа закрыты) называется Dead time.
Отношение длительности импульса(лог. 0, транзистор открыт) к периоду их следования называется коэффициент заполнения(PWM duty cycle). Например если коэффициент 100% то на выходе элемента ИЛИ всегда 0 и транзистор(или оба) всегда открыт.

Простите, но стараюсь объяснять максимально доступно и почти на пальцах, потому что официальным сухим языком это можно и в даташите прочитать.

Ах да, зачем же нужен Dead time? Если коротко: в реальной жизни верхний ключ будет тянуть наверх(к плюсу) а нижний вниз(к минусу). Если открыть их одновременно — будет короткое замыкание. Это называется сквозной ток и из-за паразитных емкостей, индуктивностей и прочих особенностей такой режим возникает даже если вы будете открывать ключи строго по очереди. Чтобы сквозной ток свести к минимуму нужен dead time.

Теперь обратим внимание на генератор пилы(oscillator), который использует выводы 5 и 6 микросхемы для установки частоты.
На эти выводы подключается резистор и конденсатор. Это и есть тот самый RC генератор о котором наверное многие слышали. Теперь на выводе 5(CT) у нас пила от 0 до 3.3В. Как видим, эта пила подается на инвертирующие входы компараторов Dead-time и PWM.

С терминами и работой выходной части ШИМ контроллера более-менее определились, теперь будем разбираться при чем тут пила и зачем нам все эти компараторы и усилители ошибок. Мы поняли, что отношение длительности импульса к периоду их следования определяет коэффициент заполнения, а значит и выходное напряжение источника питания т.к. в первичную обмотку трансформатора будет вкачиваться тем больше энергии, чем больше коэффициент заполнения.

Для примера разберемся, что нужно сделать чтобы установить коэффициент заполнения 50%. Вы еще помните про пилу? Она подается на инвертирующие входы компараторов PWM и Dead time. Известно, что если напряжение на инвертирующем входе выше чем на неинвертирующем — выход компаратора будет лог.0. Напомню, что пила — это плавно поднимающийся от 0 до 3.3в сигнал, после чего резко падающий на 0в.
Таким образом, чтобы на выходе компаратора 50% времени был лог.0 — на неинвертирующий вход нужно подать половину напряжения пилы(3.3в/2=1,65в). Это и даст искомые 50% duty cycle.

Заметили, что оба компаратора сходятся на том самом элементе ИЛИ, а значит, пока какой-то из компараторов выдает лог.1 — другой не может ему помешать. Т.е. приоритет имеет тот компаратор, который приводит к меньшему коэффициенту заполнения. И если на Dead time компаратор напряжение подается снаружи, то на PWM компаратор можно подать сигнал как извне(3 пин) так и с встроенных усилителей ошибок(это обычные операционные усилители). Они тоже соединяются по схеме ИЛИ, но т.к. мы уже имеем дело с аналоговым сигналом — схема ИЛИ реализуется с использованием диодов. Таким образом контроль над коэффициентом заполнения захватывает тот усилитель ошибки, который просит меньший коэффициент заполнения. Состояние другого при этом не имеет значения.

Обратная связь.
Хорошо, теперь как на всём этом построить источник питания? Очень просто! Нужно охватить БП отрицательной обратной связью. Разница между желаемым(заданным) и имеющимся напряжением называется ошибка. Если в каждый момент времени воздействовать на коэффициент заполнения так, чтобы исправить ошибку и привести ее к 0 — получим стабилизацию выходного напряжения(или тока). Обратная связь является отрицательной до тех пор, пока реагирует на ошибку управляющим воздействием с противоположным знаком. Если обратная связь будет положительной — пиши пропало! В таком случае обратная связь будет увеличивать ошибку вместо того чтобы уменьшать ее.

Всё это работа для тех самых усилителей ошибок. На инвертирующий вход усилителя ошибки подается опорное напряжение(эталон), а на неинвертирующий заводится напряжение на выходе источника питания. Кстати внутри ШИМ контроллера есть источник опорного напряжения 5В, который является точкой отсчёта во всех измерениях.

Компенсация обратной связи
Даже не знаю как бы по-проще это объяснить. С обратной связью всё просто только в идеальном мире. На практике же если вы изменяете коэффициент заполнения — выходное напряжение меняется не сразу, а с некоторой задержкой.

К примеру усилитель ошибки зарегистрировал понижение напряжения на выходе, откорректировал коэффициент заполнения и прекратил вмешиваться в систему, но напряжение продолжает нарастать и потом усилитель ошибки вынужден снова корректировать коэффициент заполнения уже в другую сторону. Такая ситуация происходит из-за задержки реакции. Так система может перейти в режим колебаний. Они бывают затухающими и незатухающими. Блок питания в котором могут возникнуть незатухающие колебания сигнала обратной связи — долго не протянет и является нестабильным.

У обратной связи есть определенная полоса пропускания. Допустим полоса 100кГц. Это означает, что если выходное напряжение будет колебаться с частотой выше 100кГц — обратная связь этого просто не заметит и корректировать ничего не будет. Конечно, хотелось бы, чтобы обратная связь реагировала на изменения любой частоты и выходное напряжение было как можно стабильнее. Т.е. борьба идет за то, чтобы обратная связь была максимально широкополосной. Однако та самая задержка реакции не позволит нам сделать полосу бесконечно широкой. И если полоса пропускания цепи обратной связи будет шире чем возможности самого БП на отработку управляющих сигналов(прямая связь) — на некоторых частотах отрицательная обратная связь будет внезапно становиться положительной и вместо компенсации ошибки будет ее еще больше увеличивать, а это как раз условия возникновения колебаний.

Теперь от задержек в секундах давайте перейдем к частотам, коэффициентам усиления и фазовым сдвигам…
Полоса пропускания это максимальная частота, на которой коэффициент усиления больше 1.
С увеличением частоты коэффициент усиления уменьшается. В принципе это справедливо для любого усилителя.
Итак, чтобы наш БП работал стабильно должно выполняться одно условие: во всей полосе частот, где суммарное усиление прямой и обратной связи больше 1(0дБ), отставание по фазе не должно превышать 310 градусов. 180 градусов вносит инвертирующий вход усилителя ошибки.

Вводом в обратную связь различных фильтров добиваются того, чтобы это правило выполнялось. Если очень грубо, то компенсация обратной связи это подгонка полосы пропускания и ФЧХ обратной связи под реакции реального источника питания(под характеристики прямой связи).

Тема эта очень не простая, под ней лежит куча математики, исследований и прочих трудов… Я лишь стараюсь в доступном виде изложить саму суть вопроса. Могу порекомендовать к прочтению вот эту статью, где хоть и не так на пальцах, но тоже в доступном виде освещен этот вопрос и даны ссылки на литературу: bsvi.ru/kompensaciya-obratnoj-svyazi-v-impulsnyx-istochnikax-pitaniya-chast-1

От теории к практике
Теперь мы можем взглянуть на схему БП и понять что в ней много лишнего. В первую очередь я выпаял всё, что относится к контролю выходных напряжений(схема формирования сигнала Power good). Нейтрализовал встроенные в ШИМ контроллер усилители ошибок путем подачи +5vref на инвертирующие входы и посадив на GND неинвертирующие. Удалил штатную схему защиты от КЗ. Выпилил все не нужные выходные фильтры от напряжений которые не используются… Заменил выходные диоды на более мощные. Заменил трансформатор! Выпаял его из качественного БП где написанные 400W действительно означают 400W. Разница в размерах между тем, что стояло тут до этого говорит сама за себя:

Заменил дроссели в выходном фильтре(с того-же 400W БП) и конденсаторы поставил на 25В:

Далее я разработал схему, позволяющую регулировать стабилизацию выходного напряжения и устанавливать ограничение тока выдаваемого БП.

Схема реализует внешние усилители ошибок собранные на операционных усилителях LM358 и несколько дополнительных функций в виде усилителя шунта(INA197) для измерения тока, нескольких буферных усилителей для выдачи величины установленного и измеренного тока и напряжения на другую плату, где собрана цифровая индикация. О ней я расскажу в следующей статье. Выдавать на другую плату сигналы как есть — не лучшее решение т.к. источник сигнала может быть достаточно высокоомным, провод ловит шум, мешая обратной связи работать устойчиво. В первой итерации я с этим столкнулся и пришлось всё переделать. В принципе на схеме всё подписано, подробно комментировать ее не вижу смысла и думаю, что для тех кто понял теорию выше, должно быть всё довольно очевидно.

Отмечу лишь, что цепочки C4R10 и C7R8 это и есть компенсация обратной связи о которой я говорил выше. Честно говоря, в ее настройке очень помогла прекрасная статьи эмбэддера под ником BSVi. bsvi.ru/kompensaciya-obratnoj-svyazi-prakticheskij-podxod Этот подход реально работает и потратив денек-другой мне удалось добиться стабильной работы БП описанным в статье методом. Сейчас, конечно, я бы справился часа за два наверно, но тогда опыта не было и по неосторожности я взорвал не мало транзисторов.

Ах да, обратите внимание на емкость C7! 1uF это довольно много. Сделано это для того, чтобы обратную связь по току зажать в быстродействии. Это такой грязный хак для преодоления нестабильности возникающей на границе перехода от стабилизации напряжения к стабилизации тока. В таких случаях применяют какие-то более навороченные приёмы, но так заморачиваться я не стал. Супер точная стабилизация тока мне не нужна, к тому же к моменту, когда я столкнулся с этой бедой — проект переделки БП успел здорово надоесть!

По этой схеме лазерным утюгом была изготовлена плата:

Она встраивается в БП вот таким образом:

В качестве шунта для измерения тока выбран кусок медной проволоки длинной сантиметров 10 наверно.

Корпус я использовал от довольно качественного БП Hiper. Кажется это самый проветриваемый корпус из всех что я видел.

Также возник вопрос о подключении вентилятора. БП ведь регулируется от 0 до 24В, а значит кулер придется питать от дежурки. Дежурка представлена двумя напряжениями — стабильными 5В, которые идут на материнскую плату и не стабилизированным, служебным питанием около 13.5В которое используется для питания самого ШИМ контроллера и для раскачки управляющего трансформатора. Я использовал обычный линейный стабилизатор чтобы получить стабильные +12В и завёл их на маленькую платку терморегуляции оборотов кулера, выпаянную с того-же Hiper’a. Платку закрепил на радиаторе шурупом просто из соображений удобства подключения кулера.

Радиаторы кстати пришлось изогнуть ибо они не вмещались в корпус нового формата. Лучше перед изгибанием их нагревать паяльной станцией, иначе есть шанс отломать половину зубов. Терморезистор регулятора закрепил на дросселе групповой стабилизации т.к. это самая горячая часть.

В таком виде БП прошел длительные испытания, питая кучу автомобильных лампочек дальнего света и выдерживал нагрузки током порядка 20А при напряжении 14В. А еще он гордо зарядил несколько автомобильных аккумуляторов, когда у нас в Крыму выключали свет.

Будущее уже рядом
Тем временем я задумал немного нестандартную систему индикации режимов работы БП, о чем в последствии немного сожалел, но всё-же она работает!

Так что в следующей статье вас ждет программирование ATMega8 на C++ с применением шаблонной магии, различных паттернов и самописная библиотека для вычислений с фиксированной точкой поверх которой реализовано усреднение отсчётов АЦП и перевод их в напряжение/ток по таблице с линейной интерполяцией. Каким-то чудом всё это уместилось в 5 с копейками килобайт флэша.

Не переключайте канал, должно быть интересно.

Кстати, обещанная в начале книга:
Куличков А.В. «Импульсные блоки питания для IBM PC»
radioportal-pro.ru/_ld/0/15_caf3ebe8f7eaeee.djvu

P.S. Надеюсь, изложенное выше окажется полезным. Строго не судите, но конструктивная критика приветствуется.

Added для RO пользователей которые не могут писать комментарии: email: altersoft_пёс_mail.ру

HS8108 Лист данных – контроллер режима переключения источника питания

Номер детали: HS8108

Функция: ИС контроллера режима переключения источника питания

Комплектация: DIP 28-контактный тип

Производители: HuaXin

Изображение

Описание

Описание HS000 микросхема контроллера переключения режимов питания для настольных ПК. Он обеспечивает все функции, необходимые для контроля и управления выходом блока питания. Реализовано дистанционное управление ВКЛ / ВЫКЛ, схемы исправного питания, некоторые функции защиты от перенапряжения и перегрузки.
Он непосредственно определяет все выходные рельсы для OVP без необходимости использования внешних делителей. Встроенный таймер генерирует точную синхронизацию для цепи управления, включая задержку выключения PS. Переключение между циклами ШИМ предотвращает насыщение силового трансформатора и обеспечивает самый быстрый отклик для защиты от короткого замыкания, что значительно снижает нагрузку на силовые транзисторы. Два внутренних точные 431 шунтирующие регуляторы обеспечивают стабильное опорное напряжение и драйвер для 3.3V и 5V-ожидания регулирования.Используя минимальное количество внешних компонентов, HS8108 включает в себя все функции для двухтактной и / или полумостовой топологии, уменьшая стоимость производства и пространство на печатной плате, а также увеличивая MTBF для источника питания.

Распиновка

Особенности

1. Контроллер питания полумоста (или 494) ПК + два 431 + ШИМ
2. Функция удаленного включения / выключения
3. Схема предупреждения об отключении питания ﹠ Питание хорошая схема
4. Время задержки для сигналов PSON и PG
5.Защита от перенапряжения для 3,3 В, 5 В и 12 В
6. Защита от пониженного напряжения для 3,3 В, 5 В, 12 В, -12 В и / или -5 В
7. Двухтактный ШИМ и выходы тотемного полюса
8. Перенапряжение защита от короткого замыкания и питания
9. Два шунтирующих регулятора для 3,3 В и 5 В Sb
10. Мягкий запуск и максимальный рабочий цикл 93%

HS8108 Лист данных

Статьи по теме в сети

.

Бесплатная доставка HS8108B HS8108B | | – AliExpress

Добро пожаловать в наш магазин

Если вы покупаете больше количества, пожалуйста, свяжитесь с нами

Все основные кредитные карты принимаются через депозитарий обработчика защищенных платежей

Если вы не можете оформить заказ сразу после аукцион закрыт, пожалуйста, подождите несколько минут и повторите попытку Платежи должны быть завершены в течение 3 дней.

1. Доставка по всему миру. (За исключением некоторых стран и APO / FPO)
2. Заказы обрабатываются своевременно после подтверждения платежа.
3. Мы отправляем только подтвержденные заказы адреса. Ваш заказ адрес должен совпадать с адресом доставки.
4. Показанные изображения не являются фактическим товаром и предназначены только для ознакомления.
5. ВРЕМЯ ПЕРЕХОДА ОБСЛУЖИВАНИЯ, предоставляемых перевозчиком, исключая выходные и праздничные дни. Время в пути может меняться, особенно в праздничные дни.
6.Если вы не получили посылку в течение 30 дней с момента оплаты, пожалуйста, свяжитесь с нами. Мы отследим посылку и свяжемся с вами как можно скорее с ответом. Наша цель – удовлетворение клиентов!
7. Из-за разницы в состоянии склада и времени мы выберем доставку вашего товара с нашего первого доступного склада для быстрой доставки.
8. Срок поставки:

Страна Прибл.Срок поставки

Воздушная почта Китайской Почты

США, Великобритания, Австралия 20-30 рабочих дней
Канада, Западная Европа, Северная Европа, Центральная Европа 20-30 рабочих дней
Другая страна 20-30 рабочих дней
FedEx или DHL Северная Америка, Австралия, Западная Европа, Северная Европа, Центральная Европа 3-7 рабочих дней
Другая страна 5-10 рабочих дней

1.У вас есть 7 дней, чтобы связаться с нами и 30 дней, чтобы вернуть его со дня его получения. Если этот предмет находится в вашем распоряжении более 7 дней, он считается использованным, и МЫ НЕ ВЫДАЕМ ВАМ ВОЗВРАТ ИЛИ ЗАМЕНУ. Нет никаких исключений! Стоимость доставки несет продавец и покупатель пополам.
2. Все возвращаемые товары ДОЛЖНЫ БЫТЬ в оригинальной упаковке, и вы ДОЛЖНЫ ПРЕДОСТАВИТЬ нам номер для отслеживания доставки, конкретную причину возврата и ваш номер телефона.
3. Мы вернем ВАШУ ПОЛНУЮ СУММУ ВЫИГРЫШНОЙ ЗАЯВКИ, после получения товара в его первоначальном состоянии и упаковке со всеми компонентами и аксессуарами, ПОСЛЕ ОБОИХ Покупатель и Продавец отменяют транзакцию с Aliexpress.ИЛИ, вы можете выбрать замену.
4. Мы будем нести всю стоимость доставки, если товар (ы) не так, как рекламируется.

Мы поддерживаем высокие стандарты качества и стремимся к 100% удовлетворенности клиентов! Обратная связь очень важна. Мы просим вас немедленно связаться с нами, прежде чем вы дадите нам нейтральный или отрицательный отзыв, чтобы мы могли удовлетворительно решить ваши проблемы.
Невозможно решить проблемы, если мы не знаем о них

Добро пожаловать на следующий визит

.Схема плавного пуска

для блока питания

Цепь плавного пуска предотвращает внезапное протекание тока в цепи во время пуска. Это замедляет скорость нарастания выходного напряжения путем минимизации избыточного тока во время запуска. Полезно защитить устройства или электронные компоненты от повреждений, вызванных мгновенным высоким входным током. Некоторые компоненты, которые ограничены по току и имеют плохое регулирование нагрузки, могут быть повреждены из-за этого высокого входного тока.Здесь мы строим схему плавного пуска, используя ИС стабилизатора напряжения LM317 и PNP-транзистор BC557.

Требуемый материал

  • LM317-Регулируемый регулятор напряжения IC
  • BC557-PNP Транзистор
  • Диод
  • – 1N4007
  • Резистор
  • – (1 кОм, 5,6 кОм, 47 кОм)
  • Конденсатор – (0,1 мкФ, 22 мкФ)
  • входное питание – 9 В
  • макет

LM317 Регулятор напряжения IC

Это регулируемая трехполюсная ИС регулятора напряжения с высоким значением выходного тока 1.5A. Микросхема LM317 помогает в ограничении тока, защите от тепловой перегрузки и в безопасной рабочей зоне. Он также может обеспечить работу с плавающей точкой для применения под высоким напряжением. Если мы отсоединяем регулируемую клемму, LM317 все равно поможет в защите от перегрузки. У него типичная линия и регулировка нагрузки 0,1%. Это также устройство без содержания свинца.

Его рабочая температура и температура хранения находятся в диапазоне от -55 до 150 ° C и обеспечивают максимальный выходной ток 2,2 А. Мы можем обеспечить входное напряжение в диапазоне 3–40 В постоянного тока, а i т может дать выходное напряжение 1.От 25 В до 37 В , которые мы можем варьировать в зависимости от необходимости, используя два внешних резистора на регулируемом ПИН-коде LM317. Эти два резистора работают как схема делителя напряжения, используемая для увеличения или уменьшения выходного напряжения.

Распиновка LM317

Pinout of LM317

Soft Start Принципиальная схема

Soft Start Circuit for Power Supply

Примечание: Входное напряжение всегда должно быть выше (минимум + 3 В), чем требуемое выходное напряжение (максимальный выход LM317 составляет 37 В).

Здесь мы соединили лампочку со схемой плавного пуска, чтобы лампочка медленно светилась до полной яркости. Вы можете изменить скорость свечения лампы, изменив значение конденсатора, например, увеличить время нарастания, увеличить значение конденсатора C2.

Soft Start Circuit Hardware

Работа цепи плавного пуска

Здесь мы используем LM317, линейную и положительную интегральную схему стабилизатора напряжения, которая автоматически уменьшает свой выходной ток, когда он находится в состоянии недогрузки или перегрева.

Комбинация PNP-транзистора BC557 и конденсатора C2 помогает схеме постепенно увеличивать выходное напряжение.

Первоначально, когда конденсатор не заряжен, выходное напряжение цепи определяется как:

  VC1 + VBE + 1,25 В 
  = 0 + 0,7 + 1,25 
  = 1,95 В  

Где VC1 – напряжение на конденсаторе, VBE – напряжение базы к эмиттеру, а 1,25 – минимальное выходное напряжение LM317.

Когда напряжение на конденсаторе C2 увеличивается, Vout увеличивается с той же скоростью и достигает желаемого выходного напряжения, установленного в соответствии со значением резистора. Следовательно, когда выходное напряжение достигает желаемого значения, транзистор отключается.

Итак, когда мы запускаем источник питания, лампочка накаливания начинает становиться ярче в зависимости от напряжения на ней. Таким образом, эта схема предотвращает внезапный выброс тока в цепь и, следовательно, предотвращает повреждение устройства.

Преимущества схемы плавного пуска

  • Используется для уменьшения пускового тока и увеличения срока службы устройства.
  • Повышение эффективности
  • Схемы плавного пуска
  • дешевы и малы по размеру
  • Как двигатель плавного пуска используется для насосов двигателей и других промышленных двигателей.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *