Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Архитектура. Бытовая техника. Канализация. Лестницы. Мебель. Окна. Отопление. Ремонт. Строительство

Доброго времени суток, уважаемые читатели сайта «Заметки электрика».

Помните, я уже Вам рассказывал, что при согласно федеральной программы, мы устанавливали подъездов и тамбуров. В данной статье я хочу рассказать Вам про фотореле для уличного освещения жилых дворов.

Наружное освещение у подъездов, или его еще называют козырьковым, осуществляется с помощью консольных светильников типа ЖКУ с защитным стеклом из поликарбоната. Так вот управлением этими светильниками производится с помощью фотореле.

В качестве фотореле для уличного освещения мы применяем светоконтролирующий выключатель типа LXP-02. Вот так он выглядит.

Также данное фотореле можно применить и для освещения дорог, парков, дачных участков и садов.

Технические характеристики фотореле для уличного освещения типа LXP-02

Фотореле типа LXP-02 в автоматическом режиме включает и отключает освещение в зависимости от условий освещенности.

Т.е. как только на улице стало темно, фотореле включает уличное освещение. И наоборот, как только на улице стало светло, фотореле отключает светильник от сети.

Таким образом происходит значительная экономия , а также увеличивается срок службы самих ламп.

Ниже я приведу Вам его технические характеристики:

  • источник питания 220 (В) переменного напряжения
  • коммутируемая цепь до 10 (А)
  • уровень рабочей освещенности

Уровень рабочей освещенности выставляется с помощью регулятора снизу фотореле. Если регулятор переместить в сторону «+», то фотореле будет включать светильник уже при небольшом затемнении или пасмурную погоду, если же регулятор переместить в сторону «-», то фотореле будет срабатывать только при наступлении темноты.

Обычно я регулятор оставляю в среднем положении.

Существует еще 2 разновидности фотореле типа LXP. Это LXP-01 и LXP-03. Они отличаются от LXP-02 только силой тока коммутируемой цепи и уровнем рабочей освещенности.

Установка фотореле типа LXP

Фотореле устанавливается на стене с помощью специального кронштейна, который входит в комплект поставки. Кронштейн крепится винтом к самому фотореле.

При установке необходимо убедиться в отсутствии помех, мешающих естественному дневному свету попадать на фотореле. А также перед фотореле не должны находиться качающиеся предметы, например, деревья.

Схема фотореле

Схема подключения фотореле для уличного освещения типа LXP-02 изображена, как на упаковочной коробке, так и на самом изделии.

Всего из фотореле выходит 3 провода: коричневый, красный и синий.

Зная , не трудно догадаться о их предназначении:

  • коричневый провод — фаза
  • синий провод — ноль
  • красный провод — коммутирующая фаза (на светильник)

Зная схему фотореле, приступаем к его подключению. производится в распределительной коробке, установленной там же на стене.

В качестве нагрузки у нас используется мощностью 70 (Вт).

Подключение фотореле для уличного освещения осуществляется следующим образом.

Если расписать эту схему более подробно, то это будет выглядеть так:

Если у Вас в доме используется система заземления или , то питание схемы осуществляется трехжильным кабелем (фаза, ноль, земля). Если же Вы до сих пор эксплуатируете электропроводку с системой заземления , то схема будет отличаться только отсутствием проводника PE.

Видео-версия данной статьи, а также по многочисленным просьбам в конце видео я показал схему подключения фотореле через контактор:

Дополнение 1. По многочисленным просьбам разместил фотографию внешнего вида печатной платы фотореле ФР-602. Схему прикладывать не буду — ее Вы можете найти на специализированных сайтах по электронике.

Дополнение 2. Довольно часто меня спрашивают про схему подключения светильника, чтобы он управлялся, как через фотореле (в автоматическом режиме), так и с помощью выключателя (в ручном режиме в любое время суток). Вот прикладываю такой вариант схемы.

P.S. Вот в принципе и все, что я хотел рассказать Вам про фотореле для уличного освещения. В настоящее время именно таким образом мы осуществляем электромонтаж наружного (козырькового) освещения жилых дворов. Если возникли вопросы, то задавайте свои вопросы в комментариях.

Датчик движения – это инфракрасное электронное устройство, которое даёт возможность обнаруживать присутствие и перемещение живого существа и помогает подключать питание приборов освещения и прочих электрических устройств.

Как правило, датчик движения применяют для включения осветительных приборов, но также их могут использовать и не только для этого.

По месту нахождения:

  • периметрические – применяются для освещения улицы;
  • внутренние;
  • периферийные.

По принципу действия:

  • ультразвуковые – реагируют на звуковые волны высокой частоты;
  • микроволновые – высокочастотные радиоволны;
  • инфракрасные – применяют излучение тепла;
  • активные – имеется передатчик и приёмник инфракрасного излучения;
  • пассивные – передатчик отсутствует.

По виду срабатывания:

  • тепловые – реагируют на изменения температуры в месте срабатывания;
  • звуковые – срабатывают на импульс при колебаниях воздуха от звуков;
  • колебательные – реагируют на перемену внешней среды и магнитного поля при движении объектов.

По устройству:

  • однопозиционные – присутствие приёмника и передатчика вместе в одном блоке;
  • двухпозиционные – передатчик и приёмник используются в разных корпусах;
  • многопозиционные – два и более блока с передатчиками и приёмниками.
  • многофункциональные датчики применяют при определении движения и уровня освещения в помещениях;
  • комнатный датчик используют для систем мониторинга и управления;
  • наружный датчик освещённости применяют для измерения степени внешнего освещения;
  • накладной датчик освещения создан для установки на стену;
  • потолочный датчик освещения устанавливают в подвесной потолок;
  • врезной датчик освещённости используют для обнаружения движения в офисных и жилых помещениях.

Схема датчика движения для освещения

Подключить устройство движения несложно, не сложнее схемы как подключить датчик движения к лампочке. В обоих случаях электрическая цепочка замыкается или размыкается.

Если нужна постоянная работа света при полном отсутствии какого-либо перемещения, в устройство схемы можно включить выключатель параллельным его подключением к датчику движения.

Благодаря этому, при включении выключателя освещение будет включено по другой цепочке в обход устройства, поскольку при выключенном переключателе контроль над состоянием освещения полностью вернётся к датчику движения.

Часто случается так, что специфическая форма помещения физически не даёт охватить всю площадь комнаты только одним устройством.

Например, в изогнутом коридоре, если установить один датчик движения, то он срабатывать не будет , когда объект будет двигаться за изгибом.

В таком случае используют схему подключения устройств, когда несколько датчиков подключают параллельно друг к другу.

Другими словами, нулевая фаза отдельно и не прерывается, подаётся на каждое устройство, после подсоединяют все выходы к лампе. В итоге срабатывание любого из этих датчиков замыкает цепочку, подавая напряжение к светильнику.

При таком присоединении нужно знать, что оба устройства нужно подключать от одной фазы , иначе между фазами произойдёт короткое замыкание.

Более того, технические условия и конструктивные особенности помещения также оказывают непосредственное воздействие на подключение.

Устанавливать устройство необходимо так, чтобы он получал как можно больший обзорный угол на предполагаемые области движения, при этом не должны экранировать детали интерьера, а также проёмы окон и дверей.

Датчики движения обладают длительно допустимым значением мощности на уровне от пятисот до тысячи Ватт. Это ограничивает их применение в условиях высокой нагрузки.

Если возникает необходимость в подключении через устройства сразу нескольких мощных светильников, то наилучшим решением будет применение магнитного пускателя.

При покупке устройства, в комплекте должна быть стандартная инструкция по его монтажу, подключению и настройке. Также схема должна быть на корпусе самого устройства.

Под крышкой устройства находится присоединительная колодка, а также подключённые к ней три цветных контакта, которые находятся снаружи корпуса. Подключение проводов производят к присоединительным зажимам. Если для подключения используют многожильный кабель, тогда лучше применить специальные втулочные наконечники НШВИ.

Ток на устройство приходит от сети по двум проводам: фаза L (провод коричневого цвета) и ноль N (провод синего цвета). После выхода фазы L из датчика движения, она приходит на один конец лампочки. Другой конец лампы накаливания подключён к нулевому контакту N.

При появлении движения в месте контроля срабатывает датчик и замыкает контакт реле

, что приводит к приходу фазы на светильник и свет включается.

Поскольку клеммная колодка для подключения обладает винтовыми зажимами, провода к устройству подключают с помощью наконечников НШВИ.

Следует знать, что подключение фазного кабеля лучше всего осуществлять по принципиальной схеме , которая дополняет руководство.

  • После подключения проводов нужно надеть крышку и перейти к следующей стадии – подключение кабелей в распределительной коробке.
  • В коробке имеется семь проводов, два от лампы, три от датчика и два питающих ноль и фаза. В питающем кабеле фаза окрашена в коричневый цвет, ноль – в синий.
  • У провода, который подключён к устройству белый кабель – это фаза, зелёный – это ноль, красный нужно подключить к сети.
  • Провода подключают примерно так: кабель фазный питающего провода подключают вместе с фазным проводом от устройства (белый и коричневый кабель). Далее, соединяют нулевой провод от питающего кабеля, нулевой кабель от устройства (зелёный) и нулевой кабель от лампы.
  • Остаются два свободных кабеля (красный от устройства движения и коричневый от лампы) – их соединяют вместе. Подключение выполнено.

Датчик движения подключён к лампе. Затем подаём питание, устройство реагирует на движение, замыкает цепочку и включает свет.

Можно ли устройство подключить с выключателем?

Для того чтобы некоторое время свет не отключался, вне зависимости от степени освещённости и движения, можно применить схему подключения устройства с выключателем , подключив обыкновенный выключатель в схему, параллельно датчику движения.

За счёт такого подключения можно при включённом выключателе держать включённым лампочку в течение необходимого времени. Если же управление освещением нужно целиком передать устройству, то выключатель отключают.

Настройка устройства для освещения

Настройка устройства – это ещё один важный этап работы датчика движения. Практически любой прибор, при помощи которого можно управлять лампами, обладает дополнительными настройками, дающие возможность добиться нормальной его работы.

Такие настройки выглядят как особые мини-приборы, которые предназначены для регулирования – это установка приостановки отключения TIME, регулирование степени освещённости LUX и установка восприимчивости к инфракрасному излучению SENS.

  1. Настройка включения от степени освещённости . Регулировку LUX применяют для корректной работы устройства днём. Прибор сработает при более низкой степени освещённости по сравнению с минимальным значением. Следовательно, датчик не сработает при более высокой степени освещённости по сравнению с выставленным пороговым значением.
  2. Настройка времени . При помощи установки TIME можно установить время, в течение которого освещение будет включено с того момента, когда было обнаружено движение в последний раз. Интервал времени может варьироваться от 1 до 600 секунд.
  3. Настройка восприимчивости к срабатыванию устройства . Регулировать восприимчивость к подключению, в зависимости от объёма и дальности объекта, можно при помощи регулятора SENS. Реакция устройства прямо зависит от степени чувствительности. При большом числе включения датчика восприимчивость лучше уменьшить, а установить яркость освещения ИК, на которую будет реагировать датчик движения.

В область видимости датчика, который устанавливают на улице, не должны попадать объекты, излучающие тепло или свет. Не стоит устанавливать устройство около деревьев и кустов, которые будут мешать правильному выявлению движения.

Нужно стараться сводить к минимуму вероятное воздействие электромагнитных излучений, из-за которых могут быть ложные срабатывания устройства.

Датчик необходимо направлять непосредственно на ту область, где выявление движения должно служить поводом для включения освещения.

Необходимо поддерживать датчик в чистоте, так как загрязнение негативно отражается на качестве работы устройства и радиусе действия.

Чтобы установить детектор движения, не нужны специализированные знания или профессиональный опыт. Достаточно разобраться в простых электросхемах и правильно соединить кабели между собой. В этой статье просто и понятно объяснено, как подключить датчик движения своими руками, а также приведены рекомендации по выбору прибора и решение возможных проблем во время монтажа.

Схемы подключения

Если раскрыть коробку у датчика движения, внутри будут обнаружены 3 провода с разными обозначениями на клеммной колодке: красный (A – нагрузка), синий (N – ноль), коричневый или черный (L – фаза). Присоединение проводов осуществляется с помощью клеммных зажимов. Схемы подключения также подробно описаны в инструкции к устройству или на корпусе.

Подключение одного прибора в цепь

Самый простой вариант – подключить детектор к лампе напрямую. Эта схема подходит для закрытых темных помещений без окон, где не требуется более сложной логики освещения.

Для этого понадобится трехжильный провод, чтобы подключаться к датчику, отвертка, НШВИ наконечники и клеммники (две штуки на 2 контакта и 1 штука на 3 контакта).

  1. Снять крышку прибора. Подключить трехжильный провод к колодке. Если цвета проводов в трехжильном проводе совпадают с цветами проводов в датчике, желательно распределить их как продолжение друг друга: красный к красному, синий к синему и т. д. с помощью НШВИ наконечников. Закрыть крышку.
  2. Подсоединить трехжильный провод к распределительной коробке, в которой нужно объединить между собой 7 проводов: 2 от лампы, 2 от электрощитка, 3 от датчика движения. Теперь надо соединить вместе фазные (L) кабели от датчика (коричневый или черный) и щитка (коричневый) при помощи клеммников. Затем нулевые (N) кабели от датчика, щитка и светильника (синие). И, наконец, оставшиеся два: нагрузку датчика (А) – красный и фазу светильника (L) – коричневый.
  3. Подать питание и проверить работоспособность датчика.
Схемы подключения датчиков движения

Подключение через выключатель

Иногда требуется присоединить в цепь выключатель. Это делается для того, чтобы была возможность принудительно включить свет, вне зависимости от движения в зоне видимости. Это можно реализовать, добавив в электрическую цепь параллельно к датчику движения выключатель с одной клавишей.

Для этой задачи, кроме НШВИ наконечников, трехжильного провода и отвертки понадобятся три клеммника на 3 контакта.

  1. Отключить сеть и проверить отсутствие напряжения.
  2. Подключить трехжильный провод к колодке устройства и провести его к распределительной коробке. Также вывести сюда кабель от выключателя.
  3. Внутри распределительной коробки теперь 9 проводов: по 2 от лампы, выключателя и щитка, плюс 3 от датчика. Соединяем фазные (L) кабели от датчика, электрощитка и выключателя (коричневые). Нулевые (N) от датчика, электрощитка и лампы (синие). И оставшиеся провода: нагрузочный от датчика (A, красный), нулевой от выключателя (N, синий) и фазовый от лампы (L, коричневый).
  4. Подать питание и проверить работоспособность.

Подключение нескольких приборов в цепь

Таким способом подключать датчики рекомендуют в основном для длинных коридоров и лестничных клеток. Это связано с небольшим радиусом действия датчиков либо с необычной планировкой помещения. В этом случае два и более датчика подключаются к одной фазе параллельным способом. Если сделать подключение к разным фазам, произойдет короткое замыкание.

  1. Отключить питание и проверить отсутствие напряжения.
  2. Объединить фазы (L, коричневый) у датчиков и электрощитка. Затем происходит подсоединение нагрузки (A, красный) у датчиков и фазы (L, коричневый) у лампы. Осталось объединить нулевые кабели (N, синий) между датчиками, лампой и электрощиктом.
  3. Включить питание и проверить работу всех устройств.

Так как ни один бытовой датчик движения не рассчитан на большие мощности прожекторов, возможно, придется подключить их к цепи через контактор с катушкой в 220 В. В отличие от предыдущей схемы, фазный (L, коричневый) провод идет на контактор от датчика и щитка. А нагрузка (A, красный) датчика идет не на лампу, а на катушку контактора. В этом случае лампа контролируется через контактор, а не напрямую.


Схема подключения к прожектору

Видео инструкция

Проверка установки

Чтобы проверить работает ли датчик, нужно выставить на максимум параметр LUX, а настройку TIME, наоборот, на самый минимум. Если после подачи электричества загорелся светодиодный индикатор, значит, произошло включение нагрузки. Если диод загорелся не сразу, это не значит, что прибор неисправен. Нужно подождать полминуты, чтобы он успел подготовиться к работе. Это позволяет проверить устройство до подключения остальных приборов, сэкономив время на поиске места для установки датчика.

Настройка

После установки прибора надо отрегулировать его для более точного срабатывания. Количество настроек зависит от модели устройства. В дешевых вариантах можно повлиять лишь на время включения света и на уровень освещенности. В более дорогих моделях добавляется настройка чувствительности сенсора, и возможность перемещать угол обзора датчика.

Угол обзора

Прослушиваемую зону прибора можно вычислить лишь примерно. Поэтому могут возникать ситуации, когда сенсор срабатывает не так, как предполагалось при установке. Одной из причин может быть выбор неправильного направления угла обзора. Поэтому если модель устройства позволяет изменять этот параметр, стоит этим воспользоваться.


Настройка для охвата максимальной территории
Чувствительность (SENS)

Эта настройка позволяет уменьшить количество ошибочных срабатываний от животных и других факторов. Справляется с опознанием кошек и маленьких собак, с крупными животными эффекта может не быть совсем. Начинать настройку лучше с минимального значения, постепенно увеличивая до нужных показателей.

Задержка выключения (TIME)

В зависимости от модели детектора параметр может варьироваться от 3 сек до 15 мин. Это значит, что после того как было обнаружено движение, лампочка будет гореть в течение этого времени. При этом, если время вышло, но человек все еще находится в зоне видимости прибора, свет будет гореть. Таймер начинает свой отсчет до выключения лампы после того, как движение прекратилось. Начинать настройку следует с минимального значения.

Уровень освещенности (LUX/DAY LIGHT)

Этот параметр устанавливает, в какой освещенности аппарат будет срабатывать. То есть чтобы он не срабатывал в дневное время, а начинал действовать только с наступлением сумерек или темноты. Для настройки надо вывернуть показатель на максимум, постепенно снижая до нужной чувствительности.

Возможные проблемы и их решение

Может возникать ситуация, когда выключение света не происходит, хотя прибор работает исправно. Здесь стоит проверить настройку длительности срабатывания (TIME), которая может быть выкручена в максимальное положение. Свет остается включен так долго, что просто не успевает погаснуть. В таком случае нужно уменьшить этот интервал до приемлемого результата.

Проблема может быть и в других настройках: слишком низкая чувствительность (SENS) или неверный порог освещения (LUX). Проверьте работу датчика, вывернув ручки на максимум, чтобы исключить эти варианты.

Датчики имеют свои особенности зоны обнаружения
Неоптимальное место установки

Возможно устройство загорожено шкафом или тумбой. Либо зона действия расположена слишком далеко от человека и не видит движения. Или лампа, к которой он подключен, находится настолько близко, что вызывает ложные срабатывания. Также есть вероятность, что угол зрения прибора направлен не туда, куда нужно. Эти недочеты исправляются легко и быстро. Мебель можно убрать либо поставить детектор в другое место. Для выбора оптимального места установки необходимо понимать принцип работы датчика. Микроволновые и ультразвуковые датчики любят движение к датчику или от него. А инфракрасные – движения мимо датчика. Если двигаться навстречу пиродатчика идеально по осевой линии, то он может и не работать. Понимание этих особенностей позволит избежать мертвых зон и ложных срабатываний. Как видим угол обзора, указанный в описании производителем, он не указывает в какой плоскости – это не полная информация, а хитрости производителя. Инфракрасный датчик может срабатывать, если в его поле видимости есть предметы с разной температурой, даже без движения этих предметов. Поэтому их еще называют датчиками присутствия.

Перегорание лампы

Перед установкой новой лампы проверяйте ее на работоспособность. Также это делается с помощью вольтметра, хотя способ не самый точный. Еще можно вкрутить лампу в другой светильник, который до этого работал с другой лампой.

Неисправность проводки

При подозрении на неисправность проводки нужно вызвать мастера либо прозвонить ее мультиметром самостоятельно. Другая причина кроется в неправильном подключении нулевого кабеля к датчику движения. Часто в место соединения с колодкой попадает строительный мусор, после чего образуется слой нагара и окисление металла. При этом контакт больше не проходит, и датчик перестает срабатывать. Чтобы это исправить, надо проверить провода на наличие повреждений, а окислившееся место тщательно очистить и прожать НШВИ наконечниками.

Брак и неправильные условия эксплуатации

К сожалению, от производственного брака и неправильной транспортировки устройства никто не застрахован. Часто это касается дешевых моделей с низким уровнем защиты. Или, например, к датчику была подключена мощная лампа, превышающая рекомендуемые показатели, и он не справился с нагрузкой. В корпус могла попасть вода или пыль. Перед покупкой не забывайте проверять исправность устройства.

Принцип работы и использование

Суть действия всех датчиков сводится к отслеживанию движущихся объектов, и замыканию электрической цепи, если шевеления обнаружены. Цепь размыкается, когда в поле зрения определенное время не было замечено никакого перемещения.

Виды датчиков движения

Технологии, с помощью которых датчики реализуют свою прямую обязанность, могут отличаться. Всего различают 5 видов детекции:

  • Инфракрасный (ИК). Такие датчики реагируют на изменение теплового излучения в зоне видимости. Из плюсов можно выделить удобство при монтаже вне помещения, полную безопасность для домочадцев, а также возможность регулировки дальности реагирования и очень низкое энергопотребление. Эти приборы пассивно прослушивают окружающее пространство, ничего не излучая. Из-за особенностей технологии могут происходить ложные срабатывания на животных и другие посторонние движения, особенно на улице. Кроме того, приспособление можно легко обмануть, надев не пропускающий ИК-излучение материал.

Конструкция ИК датчика движения
  • Ультразвуковой (УЗ). С помощью звуковых волн датчик прослушивает окружение с частотой 20–60 кГц, которые не слышны человеческому уху. Если отраженный сигнал изменил частоту, прибор понимает, что в зоне действия происходит движение, и срабатывает должным образом. Они неприхотливы к условиям эксплуатации, хорошо работают во влажных и пыльных помещениях вне зависимости от температуры. Относительно недорого стоят. Однако если в доме есть животные, лучше остановить выбор на другом устройстве. Также из недостатков можно выделить небольшой охват действия и безразличие к плавной походке и движениям.
  • Микроволновый (СВЧ). Устройство излучает электромагнитные волны частотой около 5,8 ГГц, регистрируя окружающие объекты. Этот тип используется в основном охранными системами. Для установки в жилом помещении не подходит, так как СВЧ-излучение небезопасно для человека.
  • Акустический . Детектор реагирует на резкий шум, ничего не излучает. Чаще всего используется в подвальных помещениях и на лестничных клетках.
  • Комбинированный (дуальный). Эти датчики совмещают в себе несколько технологий для уточнения результата. Их можно более точно настраивать, что уменьшает количество ложных срабатываний.

Каждая технология имеет свои достоинства и недостатки, которые влияют на выбор места установки прибора. Для домашнего использования больше всего подойдут ИК и УЗ датчики либо их комбинация.

Каждое устройство имеет ряд характеристик, о которых следует знать при покупке прибора.

Степень защиты

Другими словами, прочность корпуса устройства. Измеряется в IP: чем больше показатель, тем более прочная оболочка у прибора. Для уличного использования надо выбирать модели с IP 55 и выше. Для домашнего использования вполне хватит IP 22+.

Тип питания

Бывают проводные и беспроводные датчики движения. Соответственно, проводные питаются из стандартной сети в 220 В, а беспроводные работают от батареек, в том числе солнечных, и аккумуляторов. Вторые чаще используются, когда надо включать свет или другие приборы от низковольтных источников (например, от 12 V аварийной сети). Их используют в случае, если после евроремонта нет возможности проложить провод для передачи информации.


Важные характеристики датчика движения
Угол действия

Одна из ключевых характеристик, которая напрямую влияет на работу датчика и место установки. Чаще всего цифры варьируются от 90 до 360° по горизонтали и от 15 до 180° по вертикали.

Дальность действия

Этот параметр определяет, на каком расстоянии от прибора будет обнаружен человек. Измеряется в метрах и определяется по трем плоскостям:

  • Перпендикулярно, когда человек движется по касательной окружности, где центр – датчик движения.
  • Фронтально, когда человек движется по направлению к устройству.
  • Присутствие человека рядом с прибором.

Принципиальное отличие от угла обзора заключается в том, что тут измеряется дальность действия, а не угол обзора.

Максимальная подключаемая мощность

Большинство датчиков предназначены для маломощных приборов: от 500 до 1000 Вт. Если требуется подключить мощные лампы, надо добавить в схему магнитный пускатель между лампой и фазой датчика, а его катушку с другой стороны от лампы.

Варианты использования

Есть множество альтернативных вариантов использования, кроме включения и выключения света в комнате:

  • Охранные системы и сигнализация.
  • Подсветка ворот и дорожек у дома.
  • Установка контроля над работой фонтанов.
  • Монтаж подсветки бассейна.
  • Освещение лестниц и коридоров.
  • Освещение подвальных и подсобных помещений.
  • Срабатывание слива унитаза и включение вытяжки.
  • Светодиодная (LED) лента для .

Основная сфера использования – уличное освещение

Где устанавливать?

Без опыта установки подобных устройств довольно сложно выбрать оптимальное место для датчика. Поэтому стоит потратить немного времени на тестирование разных уголков в квартире или во дворе. Есть несколько общих рекомендаций, которые помогут в этом процессе:

  • В зоне видимости прибора не должно быть таких препятствий, как деревья, кустарники и другие, произвольно двигающиеся объекты.
  • Не рекомендуется устанавливать устройство рядом с другими осветительными приборами, микроволновками, вентиляторами, кондиционерами и батареями.
  • Свести к минимуму попадание воды, солнца, грязи и пыли. Если датчик устанавливается, например, во дворе, имеет смысл прикрепить над ним козырек или другую защиту от непогоды и направленных солнечных лучей.
  • Датчик должен охватывать максимальный угол обзора, при этом недопустимы какие-либо крупногабаритные объекты в поле зрения. Их наличие делает работу датчика неэффективной.

Места установки

Технические характеристики и внешний вид устройства напрямую влияет на место установки. Бытовые датчики движения обычно крепятся на потолке или стенах. Первый вариант удобно устанавливать в помещении с несколькими дверьми, где неизвестно, с какой стороны войдет человек. Потолочные датчики чаще всего имеют угол обзора в 360° и устанавливаются посередине комнаты. Но для разных датчиков важно направление движения, и в какой плоскости они работают.


Вариант исполнения настенного датчика движения

Перед тем как переходить к инструкции по подключению датчика движения для освещения своими руками, хотелось бы отметить, что рассматриваемое устройство это не одно и тоже что и , о котором мы уже говорили в предыдущей статье. Данное изделие предназначено для моментального включения света при попадании какого-либо объекта в зону обнаружения. О том, как самому установить и подключить сенсор движения мы поговорим далее!

В чем заключается принцип работы?

Многие задаются вопросом, как именно работает данный детектор. Чтобы читатели « » были полностью осведомлены, сначала быстро пробежимся по основному принципу действия сенсора.

Срабатывание и включение светильника будет зависеть от того, какой тип детектора Вы выбрали. На сегодняшний день существуют следующие виды датчиков движения для освещения:

  • звуковые — срабатывают на уровень шума в зоне обнаружения;
  • колебательные – замыкают цепь, если обнаружат вблизи движущийся объект;
  • инфракрасные – реагируют на тепло.

Для уличного применения лучше всего установить второй вариант датчика движения, который также подойдет и для использования в квартире (подъезде). Остальные два варианта чаще используются в охранных системах. Что касается самого принципа действия, тут все не сложно – детектор при обнаружении объекта (либо звука/ повышения температуры) подает сигнал, в результате чего реле замыкает цепь и происходит включение лампочки.

Кстати простой детектор можно сделать своими руками, если конечно имеете малейшие навыки работы с паяльником. Если возник интерес к созданию такой полезной самоделки, рекомендуем просмотреть видео урок, предоставленный ниже.

Делаем детектор своими руками

Способы подсоединения к сети

Второй, немаловажный нюанс, который Вы должны знать – схема подключения датчика движения к освещению. На сегодняшний день устройство можно подсоединять напрямую к светильнику, через обычный выключатель или в комбинации с еще одним детектором, установленном в другом месте.

К Вашему вниманию все четыре варианта разводки провода к клеммам:

Кстати, совсем не обязательно выводить новую линию от распределительной коробки, создавая дополнительные штробы в стене. Устройство для управления светом можно подсоединить к розетке, подключив электрический шнур с вилкой либо «врезать» напрямую к месту подключения люстры к электросети. Также существуют современные модели, работающие от батарейки (беспроводные).

Что касается первой схемы подключения датчика движения, она наиболее простая, но в то же время и наименее удобная для использования в доме и квартире, т.к. свет будет включаться только тогда, когда произойдет обнаружение. Второй вариант более удобный, потому что появляется возможность переключить цепь на обычный клавишный выключатель. В этом случае ток будет поступать в обход детектору, что позволит сделать освещение в комнате постоянным до тех пор, пока выключателем не разомкнуть цепь вручную.

Применение различных устройств для автоматического управления освещением наряду с использованием осветительных приборов с пониженным энергопотреблением преследует цель экономного расходования электроэнергии. Другая сторона использования датчиков движения для включения освещения состоит в повышении комфорта и безопасности человека. Применение автоматики для управления освещением входит в концепцию построения систем «умного дома». Наибольшее распространение получили детекторы освещенности, которые управляют включением осветительных приборов в зависимости от уровня светового потока, и датчики движения для включения света, реагирующие на нахождение человека в зоне контролируемого пространства, вне зависимости от уровня освещенности, или комбинация устройств обоих типов.

Применение

Изначально бесконтактные сенсоры движения разрабатывались для применения в охранных системах. Сложность конструкции, установки, регулировки и, как следствие, высокая стоимость делали их использование в системах управления освещенности не рациональным. Развитие микроэлектроники, снижение стоимости комплектующих послужили поводом для широкого распространения датчиков не только на промышленных предприятиях, но и в быту.

Использовать детектор движения возможно не только самостоятельно, но и в комплексе с обычной коммутационной аппаратурой, расширяя, таким образом, возможности и удобство управления освещением.

Наиболее распространенные области применения датчиков движения для освещения:

  • Подъезды и входы в помещение;
  • Лестничные площадки;
  • Территория возле домов и промышленных объектов;
  • Длинные проходные помещения;
  • Места, где пользование обычными устройствами выключения затруднено по каким-либо причинам, к примеру, из-за высокой влажности.

Самый доступный и понятный пример – освещение лестничных площадок. Не секрет, что в многоэтажных домах старой постройки уровень освещения лестничных площадок даже в дневное время оставляет желать лучшего, не говоря о темном времени суток. С другой стороны, непрерывное горение ламп, даже с низким энергопотреблением, совершенно не рационально, а ручное включение освещения затруднено по понятным причинам.

Использование автоматического бесконтактного контроля движения для дома позволяет включать освещение только при передвижении человека в зоне контроля. При покидании контролируемого участка лампы выключаются автоматически сразу же или по истечении заданного промежутка времени.

К сведению. Одна из особенностей датчиков движения – возможность одновременного их задействования в охранных системах.

Типы и особенности

Для автоматического управления освещением используется три типа датчиков движения, основанных на различных принципах реагирования:

  • Инфракрасный;
  • Ультразвуковой;
  • Микроволновый (радиодатчик).

Какой датчик движения выбрать? Все зависит от текущих требований, поскольку все три типа хоть и выполняют одинаковую функцию контроля освещённости, но имеют различные характеристики и особенности.

Инфракрасные датчики

Инфракрасные датчики движения для включения света имеют наиболее простую конструкцию и представляют собой направленный дистанционный термометр. Как известно, нагретые тела являются источником излучения в инфракрасном диапазоне. В зависимости от температуры, изменяется длина волны излучения и его интенсивность. Система с сенсорами, настроенными на температуру человеческого тела, включается в присутствии человека вблизи датчика. По сути, это тот же датчик света, только реагирующий на инфракрасный свет (тепловое излучение).

Устройства подобного типа имеют следующие недостатки:

  • Большая вероятность ложного срабатывания при наличии в зоне контроля нагретых устройств и предметов, к примеру, отопительных устройств;
  • Отсутствие срабатываний при экранировке теплового излучения. Войдя в помещение после морозной улицы в теплой одежде, человек с большой вероятностью обнаружен не будет;
  • Зависимость от уровня излучения. Взрослый человек и ребенок имеют различную излучающую поверхность.

У инфракрасных систем контроля есть и достоинства:

  • Абсолютная безопасность для окружающих;
  • Минимальная стоимость оборудования;
  • Возможность использования в устройствах пожарной сигнализации.

Ультразвуковые устройства

На ином принципе работает ультразвуковой датчик включения. Схема датчика движения имеет в своем составе две составляющих: излучатель ультразвуковых колебаний и приемник. Колебания ультразвуковой частоты распространяются в пространстве и, отражаясь от предметов, возвращаются в приемник. Оба сигнала одновременно поступают на сравнивающее устройство, которое использует эффект Доплера. Согласно ему, звуковые волны, отражаясь от движущихся предметов, изменяют свою длину. Если предмет приближается, то длина волны уменьшается, то есть увеличивается частота колебаний. При удалении предмета все происходит наоборот. Сравнивающее устройство вырабатывает сигнал рассогласования, пропорциональный разности частот излучателя и приемника. Таким образом, если в зоне контроля ультразвукового детектора все предметы неподвижны, сигнал рассогласования равен нулю, и датчик находится в неактивном состоянии. При появлении движущегося объекта (в нашем случае человека) сигнал рассогласования получает некоторое значение, которое вызывает срабатывание устройства.

Достоинства ультразвуковых датчиков:

  • Возможность точной настройки на минимальную скорость перемещения для срабатывания. При этом также возможна регулировка уровня чувствительности в зависимости от площади отражающей поверхности;
  • Широкое использование в системах охранной и пожарной сигнализации в качестве извещателя, поскольку наличие очага горения вызывает перемещение воздуха, достаточное для срабатывания. Ультразвуковой датчик движения для освещения совершенно нечувствителен к температуре.

Широкому распространению ультразвуковых устройств препятствуют несколько существенных недостатков:

  • Диапазон колебаний находится в зоне слышимости для большинства животных, особенно кошек и собак. Это может вызывать их беспокойство и даже провоцировать агрессию. Это отмечают все установившие себе такие устройства;
  • Невозможность использования вне помещений, поскольку возможны ложные срабатывания от порывов ветра, пролетающих птиц и крупных насекомых, абсолютная неработоспособность во время сильного дождя. Ультразвуковые датчики движения для включения света на улице не применяются;
  • Низкий радиус действия и реакция только на движущихся людей. Неподвижно стоящие люди не вызовут срабатываний.

Микроволновые датчики

Такие устройства несколько подобны ультразвуковым с тем отличием, что передача и прием ведутся в радиодиапазоне по тому же принципу, что и радиолокаторы. При этом реакция осуществляется не на изменение частоты отраженного сигнала, а на его уровень. Регулировка микроволнового датчика заключается в установке уровня чувствительности в пустом помещении. При нахождении человека в зоне контроля увеличивается уровень отраженного сигнала, что вызывает срабатывание устройства. Можно сказать, что микроволновый датчик запоминает окружающую обстановку и реагирует на ее изменение. Наиболее часто такую конструкцию имеют уличные датчики движения.

Достоинства микроволновых датчиков:

  • Высокая чувствительность;
  • Большая площадь зоны обслуживания;
  • Возможность срабатывания при перемещении даже за тонкими перегородками из материалов, пропускающих радиоволны;
  • Нечувствительность к погодным условиям.

Есть и недостатки, которые сужают спектр применения датчиков такого типа:

  • Наличие электромагнитного излучения, способного вредно действовать на организм человека;
  • Высокая чувствительность может вызвать ложные срабатывания;
  • Самая высокая стоимость среди аналогичных устройств.

Отдельный класс устройств представляют собой комбинированные системы, которые совмещают в себе несколько типов устройств. Такие конструкции призваны сохранить достоинства перечисленных устройств и нивелировать недостатки. Разумеется, такие конструкции имеют высокую сложность и достаточно дороги.

Большинство датчиков движения для включения света совмещены с таймером, который позволяет производить задержку выключения после покидания человеком зоны контроля. Это очень удобно, поскольку после выхода из зоны освещения человека свет остается некоторое время включенным. Данная функция широко используется при освещении лестничных пролетов и позволяет сократить количество приборов.

Монтаж и подключение

Сама по себе установка датчиков движения для освещения не вызывает никаких сложностей. Наиболее часто на устройстве имеется две пары клемм, одна из которых служит для подключения к питающей сети, а другая – для коммутируемого источника освещения.

Самую большую трудность представляет выбор места установки. Здесь нужно учитывать назначение датчика, его тип, конфигурацию помещения и его особенности. Порой приходится учитывать противоречивые факторы.

Для начала нужно определиться с типом датчика. Перед тем, как выбрать датчик движения, обращается внимание на условия в контролируемом пространстве, где будет производиться монтаж: внутри помещения или для улицы, наличие нагревательных приборов, предметов, попадающих в зону контроля и способных повлиять на чувствительность.

Теперь выбираем количество устройств, которое определяется размером обслуживаемого пространства. В документации на каждое устройство приведена диаграмма направленности чувствительного элемента, максимальная дальность обнаружения объекта. Для больших помещений может потребоваться установка нескольких сенсоров.

Как установить датчик

Место установки зависит и от конструкции выбранного датчика. Так, устройства, которые ставят на стену, имеют узконаправленную диаграмму, поэтому обычно их устанавливают на противоположной стене ближе к потолку. Таким образом, под контролем оказывается максимально доступная площадь. Потолочный датчик движения для включения света имеет круговую диаграмму и, будучи поставленным на потолке посередине помещения, способен отслеживать движения в любом участке. Датчики потолочной конструкции с круговой диаграммой наименее подвержены затенению посторонними предметами.

Широко используются комбинированные системы освещения, когда монтаж датчиков осуществляется совместно с обыкновенными выключателями. Используя различные схемы при подключении, можно получить некоторые преимущества:

  • Датчик движения, подключенный последовательно с выключателем. При помощи выключателя обесточивается полностью вся линия освещения, таким образом, датчик полностью выключается из работы. Пример – освещение на даче. Если строение закрыто, и приезд хозяев не предвидится, то наличие датчика становится излишним;
  • Параллельное включение датчика и выключателя. Позволяет коммутировать освещение вручную, вне зависимости от состояния датчика. Если выключатель находится во включенном положении, то работа датчика не сказывается на освещении, которое включено постоянно. В ином случае датчик работает как обычно.

Настройка

Первоначальную проверку работоспособности датчика движения для освещения можно произвести, не устанавливая их на запланированное место. Временную схему можно собрать прямо на столе. Для проверки нужно установить датчик движения на максимальную чувствительность. Они должны срабатывать от движения руки. Время работы таймера проверяется по выключению контрольной лампы после срабатывания датчика.

Окончательная регулировка производится уже после того, как выполнен монтаж на месте установки. Чувствительность нужно поставить таким образом, чтобы датчик уверенно срабатывал при нахождении людей в зоне контроля. Важно при этом не делать чувствительность излишне высокой, чтобы освещение не включалось от пробегающей кошки или собаки. После регулировки чувствительности устанавливаем при помощи таймера желаемое время задержки на отключение. Обычно пределы регулировки составляют от нескольких секунд до десятка минут.

Видео

Подключение датчика освещенности | СамЭлектрик.ру

Это третья, заключительная статья про датчик освещенности.

Первая часть, обзорно-вступительная, плюс фото внутренностей.
Вторая часть, разбор схемы датчика

Приведу три варианта схемы подключения, все они идентичны, разница только в способе отображения.

1. Схема по аналогии с датчиком движения


Схема подключения датчика освещенности полностью совпадает со схемой подключения датчика движения. Отличается только “начинка” датчиков.

Схема подключения датчика движения и датчика освещения

Схема подключения датчика движения и датчика освещения

Схема взята из статьи про датчик движения, ссылка выше.

Цвета на схеме соответствуют реальным цветам проводов на датчике. (Но это не точно))

2. Схема подключения датчика света из инструкции


Вот как схема подключения датчика света приведена в инструкции:

Датчик освещения LXP. Схема подключения из инструкции

Датчик освещения LXP. Схема подключения из инструкции

3. Подключение на основе фото датчика


Для тех, кто любит, чтобы всё было “на пальцах”, привожу такую картинку:

Схема подключения датчика света на основе фотографии

Схема подключения датчика света на основе фотографии

Небольшое пояснение по схемам подключения:

  • На коричневый провод приходит фаза.
  • На синий провод подключается ноль.
  • На красный провод подключается нагрузка (первый вывод светильника).
  • Второй вывод светильника подключается к нулю (туда же, куда и синий провод датчика)

Стоит добавить, что датчики света могут быть подключены так же, как и обычные выключатели – последовательно и параллельно, если есть необходимость. Пример можно увидеть в статье про параллельное включение двух датчиков движения.

Итак, с подключением разобрались, теперь

Монтаж датчика освещения


Казалось бы, чего тут премудрого? Прикрутил (см.картинку в начале статьи), подключил, настроил, и всё! Но бывает, место установки выбрано неудачно, и начинаются проблемы.

У нас на улице одно время уличные светильники вечером включались замысловато. Включатся, потухнут, опять включатся, и так с периодом около 1 минуты. Потом, с наступлением хорошей темноты, включались окончательно.

Почему так? Просто датчик освещения ошибочно был установлен в зону освещения включаемого фонаря. Получается: стало темно – датчик сработал – фонарь загорелся – стало светло – датчик выключился – стало темно… И так далее, замкнутый круг.

По ссылке в конце статьи есть рассказ о том, как я не мог понять, как прикрутить на стену датчик движения. И лишь с помощью читателей разобрался!

Настройка и калибровка


При настройке датчика освещенности важно использовать черный пакетик, который идёт в комплекте с датчиком. Этот пакетик служит для имитации ночи.

Кулечек для настройки датчика освещения

Кулечек для настройки датчика освещения

Этим кулёчком задается референсная метка, или уровень абсолютного нуля по освещенности.

Из органов настройки в датчике освещенности – только регулятор уровня освещения (LUX). Он устанавливает уровень, про котором срабатывает внутреннее реле датчика.

Подробнее настройка уровня описывается в описании принципиальной схемы.

Есть простейшие датчики освещения (например, LXP-01), в котором вообще нет никаких регулировок. Есть продвинутые, где ещё есть регулятор времени задержки включения/выключения.

Источник статьи

Обращение к читателям: А вы используете датчик освещенности? И как обычно называете это устройство?

Мои статьи на Дзене про разные датчики:

Если интересны темы канала, заходите также на мой сайт – https://samelectric.ru/ и в группу ВК – https://vk.com/samelectric

Не забываем подписываться и ставить лайки, впереди много интересного!

Обращение к хейтерам: за оскорбление Автора и Читателей канала – отправляю в баню.

Схема подключения и монтаж датчика освещенности

Датчик освещения LXP-02 и LXP-03. Монтаж

В статье рассмотрим вопросы монтажа и подключения датчика освещенности. Также приведены электрические схемы наиболее популярных моделей датчиков света.

Напоминаю, что это устройство широко применяется в сфере домашней автоматики для включения/выключения электрического освещения в зависимости от уровня освещенности на улице. Названия могут быть разные — датчик света, датчик освещенности, светоконтролирующим выключателем или фотореле, но суть одна.

Подробно о таком датчике я рассказал в первой части статьи — . Там подробно рассмотрено его устройство, работа и характеристики.

Поэтому — сразу перехожу к делу:

Подключение датчика освещенности

Приведу три варианта схемы подключения, все они идентичны, разница только в способе отображения.

1. Схема по аналогии с датчиком движения

Схема подключения датчика освещенности полностью совпадает со . Отличается только «начинка» датчиков.

Схема взята из статьи про датчик движения, ссылка выше.

2. Схема из инструкции к датчику света

Вот как схема подключения датчика света приведена в инструкции:

Датчик освещения LXP. Схема подключения из инструкции

3. Подключение на основе фото датчика

Для тех, кто любит, чтобы всё было «на пальцах», привожу такую картинку:

Небольшое пояснение по схемам подключения:

  • На коричневый провод приходит фаза.
  • На синий провод подключается ноль.
  • На красный провод подключается нагрузка (первый вывод светильника).
  • Второй вывод светильника подключается к нулю (туда же, куда и синий провод датчика)

Стоит добавить, что датчики света могут быть подключены так же, как и обычные выключатели — последовательно и параллельно, если есть необходимость. Пример можно увидеть в статье про .

Итак, с подключением разобрались, теперь

Монтаж датчика освещения

Казалось бы, чего тут премудрого? Прикрутил (см.картинку в начале статьи), подключил, настроил, и всё! Но бывает, место установки выбрано неудачно, и начинаются проблемы.

У нас на улице одно время уличные светильники вечером включались замысловато. Включатся, потухнут, опять включатся, и так с периодом около 1 минуты. Потом, с наступлением хорошей темноты, включались окончательно.

Почему так? Просто датчик освещения ошибочно был установлен в зону освещения включаемого фонаря. Получается: стало темно — датчик сработал — фонарь загорелся — стало светло — датчик выключился — стало темно… И так далее, замкнутый круг.

Настройка и калибровка

При настройке датчика освещенности важно использовать черный пакетик, который идёт в комплекте с датчиком. Этот пакетик служит для имитации ночи.

Кулечек для настройки датчика освещения

Из органов настройки в датчике освещенности — только регулятор уровня освещения (LUX). Он устанавливает уровень, про котором срабатывает внутреннее реле датчика.

Подробнее настройка уровня описывается в описании принципиальной схемы, ниже.

Есть простейшие датчики освещения (например, LXP-01), в котором вообще нет никаких регулировок. Есть продвинутые, где ещё есть регулятор времени задержки включения/выключения.

Ну, а теперь самое интересное —

Схемы датчиков освещения

Несомненно, для быстрого и легкого ремонта датчика освещенности нужна его схема, по которой сразу станет понятно, что куда подключено и как работает. Ниже привожу парочку схем датчиков и рекомендации по ремонту. Будут вопросы по ремонту — задавайте в комментариях.

Схема срисована именно с той платы, которая показана по ссылке в начале статьи. Стоит отметить, что производитель постоянно работает над улучшением своего устройства (цена/качество), поэтому схема может меняться.

Далее постоянное напряжение питает остальную схему, которая работает так. На выходе резистивного делителя 68к — VR — Фоторезистор формируется напряжение, обратно пропорциональное освещённости. Подстроечный резистор VR с сопротивлением 1 МОм — это та самая «крутилка», с помощью которой устанавливается желаемый уровень срабатывания.

Не факт, что в таких схемах ставят фоторезистор, может стоять и фотодиод, но принцип тот же.

Хотите экономить электроэнергию — ставьте максимальное сопротивление, крутите его по часовой (LUX- ), и он будет срабатывать тогда, когда будет уже совсем темно.

А хотите, чтобы освещение на улице включалось от малейшей тучки — крутите регулятор в другую сторону (LUX+ ).

При наступлении темноты освещенность падает, сопротивление фоторезистора растёт, напряжение на базе транзистора растёт. И достигает такого уровня, что транзистор открывается, через коллектор протекает ток, достаточный для включения реле КА

  • Диодный мост с фильтром — такой же как и в предыдущей схеме, я неудачно ее изобразил.
  • вместо одного стабилитрона — два последовательно, но напряжение питания схемы — то же, +24В.
  • Используется составная схема на двух комплиментарных транзисторах, поскольку реле более мощное, ток его катушки больше.
  • Зная принцип работы схемы, её легко отремонтировать. А если хотите подробнее разобраться в ремонте, то в статье пошагово расписана методика и философия ремонта подобных устройств.

    принцип работы и технические характеристики Подключение датчика день ночь к прожектору

    Подключить датчик движения своими руками не сложнее, чем заменить лампочку или . Прибор работает по стандартной схеме, замыкая или размыкая электрическую цепь.

    Вконтакте

    Одноклассники

    Назначение

    Задача прибора — автоматически подавать или отключать нагрузку в тот момент, когда зарегистрировано движение, учитывая при этом текущий уровень освещенности помещения. Днем или утром, когда света в комнате достаточно, датчик не будет включать дополнительные лампы.

    Обычная сфера применения датчиков — регулировка освещения на улицах или в подъездах, где свет требуется только в краткий промежуток времени, когда на участке пространства находится человек. В быту датчики движения применяют для автоматического включения/выключения света в помещении, где находятся непродолжительное время (например, в прихожих и коридорах).

    Схема подключения датчика движения видео:

    Как это работает?

    Когда движущийся объект попадает в зону, контролируемую датчиком, прибор замеряет степень освещенности. При значении ниже заданного в настройках (когда света вокруг датчика мало), устройство замыкает электроцепь и включает осветительные приборы.

    Принцип работы датчика движения логичен и достаточно прост, что гарантирует отсутствие «ложных сигналов» и уменьшает вероятность поломки прибора. С точки зрения практического применения все датчики движения работают по единому принципу и выполняют схожие задачи. Однако по техническим и конструкторским особенностям устройства различаются.

    Типы конструкции датчиков

    Устройства для регистрации движения разделяют в первую очередь по назначению. Выделяют модели:

    • охранные;
    • бытовые.

    Извещатели, или охранные датчики движения, используют при монтаже сигнализации. Их также называют инфракрасными извещателями.

    Обратите внимание!

    Бытовые датчики подходят для домов и квартир, они менее сложны и менее чувствительны.

    Выделяют активные (в датчике применяются приемник и передатчик) и пассивные (в приборе установлен только приемник, который реагирует на ИК-излучение) модели.

    Бытовые датчики движения

    В частных домах и квартирах чаще всего используют пассивный датчики, реагирующие на ИК-излучение. Устройство либо совмещено с лампой или прожектором, либо оборудовано реле, позволяющим подключить освещение.

    Именно бытовые модели оснащаются дополнительным датчиком освещенности. Такое устройство датчика движения позволяет ему «решить», нужно ли включать свет или естественного освещения достаточно. Большинство моделей оборудованы регулятором, при помощи которого можно указать, на какой промежуток времени после срабатывания нужно включить свет.

    Устройство датчика

    Как выбрать место для датчика?

    Чтобы прибор работал корректно, нужно внимательно выбирать место расположения прибора. Мало обеспечить нужную «зону реагирования», датчик необходимо изолировать от влияния внешних факторов, которые могут блокировать его работу или спровоцировать лишние срабатывания.

    Не следует ставить датчик рядом с техникой, которая излучает тепло или электромагнитные волны. Не лучшей идеей будет установить датчик движения возле батареи или трубы отопления, по которой подводится горячая вода.

    Эффективен датчик в помещениях, где проводится относительно мало времени — например, в коридоре. Устанавливать прибор в ванной комнате или гостиной не слишком удобно — придется постоянно «включать» свет заново, совершая лишние движения.

    Схемы подключения

    Подключение датчика

    Обычно прибор подключают в сеть вместо выключателя — замыкание цепи происходит автоматически. Если нужно предусмотреть режим, в котором лампа не гаснет после заданного промежутка времени, в схему встраивают отдельный выключатель. Схема подключения предусматривает параллельную работу датчика и обычного выключателя.

    В большом помещении один прибор может не справиться с объемом комнаты. Тогда применяют схему с двумя датчиками, расположенными в противоположных углах, которые контролируют один светильник либо зональную подсветку. Важно проследить, чтобы оба прибора работали от одной фазы, в противном случае возникнет короткое замыкание.

    Для случаев, когда необходимо включить несколько мощных ламп при сигнале от одного датчика (например, при организации уличного освещения), применяют схему подключения с магнитным пускателем.

    Проводка

    Как подключить датчик движения?

    Датчики подсоединяются к бытовой сети 220В — кроме автономных моделей, работающих от встроенной батареи. На корпусе прибора обязательно указывается схема правильного подключения, обычно рисунок нанесен возле клеммной колодки.

    Буква L обозначает точку включения фазы, N – нуля. Провод светильника подводится к разъему, промаркированному символом L’. Для подключения прибора нужно подать напряжение на первые два разъема.

    Провод с вилкой со свободной стороны зачищают от изоляции и соединяют с клеммами. При ошибке между фазой и нулем датчик не испортится — он всего лишь не будет работать, индикатор подачи питания также не включится. Длина провода подбирается таким образом, чтобы вилка свободно доставала до ближайшей . Подключение датчика движения для освещения в случае отсутствия поблизости розетки можно организовать и при помощи удлинителя — на качество работы прибора это не повлияет.

    Подключение

    Проверка установки

    Большинство бытовых датчиков оборудованы световым индикатором. Светодиод зажигается, когда прибор подключен к сети и работает. В «дежурном» режиме диод мигает с интервалом примерно в секунду. Если индикатор не зажегся сразу после подключения прибора к питанию — это еще не признак неисправности датчика. Некоторым моделям на активизацию и подготовку к работе требуется 20-30 секунд.

    Обратите внимание!

    При срабатывании устройства частота включений диода возрастает.

    Благодаря этой особенности исправность устройства можно проверить даже без полного подключения к сети, что упрощает выбор подходящего места для монтажа датчика.

    Как настроить датчик движения?

    Изменение настроек прибора проводится при помощи рукояток на корпусе. Их количество зависит от модели устройства, обычно переключателей от 2 до 4. Возле каждой ручки находится обозначение настройки, за которую она отвечает (буквенное и символьное), а также направление вращения рукоятки.

    Оптимальные параметры и настройки имеет смысл подобрать до монтажа датчика. После подключения, особенно если прибор монтируется под потолком, тестировать настройки и менять их будет не слишком удобно.

    LUX означает регулятор освещенности. С помощью этой настройки устанавливается пороговое значение освещенности, после которого датчик реагировать не будет. При первом подключении значение обычно ставится на максимум.

    Настройка датчика движения TIME отвечает за промежуток времени после срабатывания, в течение которого свет будет включен. Если движение продолжается после первого срабатывания, таймер начинает отсчет заново, потому при базовой установке время обычно ставится на минимум.

    Пожалуйста, помогите нам сделать сайт лучше! Оставьте сообщение и свои контакты в комментариях – мы свяжемся с Вами и вместе сделаем публикацию лучше!

    Правильное освещение в вечернее и ночное время позволяет создать во дворе непередаваемую атмосферу. Но ходит и включать каждый фонарь отдельно – уморительная задача. Именно поэтому лучше использовать датчик освещенности. Он самостоятельно оценивает полученные данные и включает или выключает фонари. Их есть немалое количество и каждый может предлагать какую-то свою изюминку. Как не растеряться среди обилия и что необходимо сделать для самостоятельного подключения? Именно об этом речь пойдет в статье.

    Как это работает

    Датчик освещенности – не совсем привычное наименование прибора. Чаще всего мастера называют его фотореле. В магазинах также можно увидеть его на прилавках под названием датчика сумерек, датчика дня/ночи, фотоэлектрического выключателя, датчика контроля рассвета, фотосенсора, фотодатчика и других. Суть функционирования прибора не меняется от того, как его называют. Он обеспечивает автоматическую подачу электрического тока к потребителю, когда солнце заходит и прекращает ее, когда солнце показывается на горизонте сутра.

    Принцип функционирования фотореле построен на взаимодействии световых волн с некоторыми веществами. При этом происходит изменение свойств вторых. Для этих целей были разработаны специальные транзисторы, диоды и резисторы. Все они имеют приставку фото. Некоторые из них замыкают или размыкают электрическую цепь в зависимости от попадания солнечных лучей. Фоторезисторы изменяют свою пропускную способность, увеличивая или уменьшая сопротивление. Все эти приборы заслуживают внимания. Некоторые из таких фотодатчиков будут более актуальны для одной местности и хуже покажут себя в другой. Поэтому важен правильный выбор датчика света.

    Из чего состоит датчик

    При покупке фотореле клиент получает в свое распоряжение коробку, в которой находятся все составляющие такого фотореле. Его элементами являются:

    • светочувствительный компонент;
    • выключатель, который реагирует на сумерки;
    • реле интервала;
    • реле чувствительности.

    В некоторых фотореле может быть использовано несколько светочувствительных элементов, которые дают более точную оценку количеству и качеству поступающего света. Они способны определять длину волны, которая воздействует на фотодатчик. Это необходимо, чтобы фотореле не срабатывало на освещение от фонаря, а только на солнечный цвет. В некоторых моделях фотореле смонтированы дополнительные подстроечные резисторы, которые дают возможность задать интервал, на протяжении которого будет включено освещение по времени, а также по истечении какого периода после захода солнца будет подано питание от фотореле.

    В качестве конечных потребителей, которые будут использованы в паре с фотореле могут выступать не только обычные лампы накаливания. Это могут быть и светодиодные ленты, а также газоразрядные лампы. Фотореле способно запитать их любое количество при правильном подключении. Некоторые фотореле имеют встроенный усилитель сигнала, который подается на третьи устройства, которые осуществляют контроль за системой освещения. Чтобы процесс коммутации происходил максимально надежно, в фотореле могут быть установлены тиристорные ключи, которые максимально быстро передают сигнал от фотореле.

    Разновидности датчиков

    Все фотореле условно можно выделить в несколько групп. Каждую из этих групп фотореле будет объединять один из показателей их характеристик. Среди групп фотореле выделяют:

    • по номинальному напряжению;
    • по номинальной нагрузке;
    • по герметичности корпуса;
    • по способу монтажа;
    • по дополнительным регуляторам.

    Лампочки, которые подключаются к фотореле необязательно могут работать от сит в 220 вольт, поэтому есть отдельные модели фотодатчиков, которые рассчитаны на номинальные напряжения в 12, 24 и 36 вольт. Обычно на фотореле указывается номинальная сила тока, которую выдерживает прибор. Именно по этому параметру легко рассчитать нагрузку, которую будет выдерживать фотореле. Например, если на фотореле написано, что оно рассчитано на 6 ампер, то при 220 вольтах это означает, что фотодатчик с легкостью потянет освещение с общей мощностью в 1,32 кВт. Для этого достаточно воспользоваться формулой P=UI, т. е. умножить силу тока на напряжение. По способу монтажа датчик может быть уличным или внутренним. И уже от этого будет зависеть

    Совет! Всегда покупайте фотореле с запасом по мощности. Это позволит впоследствии подключить к фотореле большую нагрузку, если это потребуется.

    Судить о том, где может быть установлено фотореле: на улице или в доме, можно по тому, какая степень защиты по стандарту IP на нем указана. Если стоит цифра 68 после этих букв, то такой датчик можно спокойно повесить под проливным дождем, и он не выйдет из строя. Форма корпуса фотореле может быть самой разнообразной: квадрат, прямоугольник, конус, шар и другие. Выбирайте то, что вам нравится больше всего и соответствует месту монтажа. Некоторые фотореле располагают дополнительными возможностями, такими как регулировка чувствительности. Она особенно понадобится зимой, когда выпадает снег. Последний отлично отражает свет. Прогулка ночью, когда лежит снег менее страшна, чем без него. Но фотореле может воспринять его отражение, как наступление утра, поэтому освещение с непредсказуемой частотой может включаться и отключаться.

    Обратите внимание! В продаже доступны комбинированные фотореле. Они могут идти в паре с датчиком движения. При этом свет будет включаться только в темное время суток и только тогда, когда будет наблюдаться определенное движение в контролируемой зоне.

    Преимущества применения

    Преимущество применения фотореле сложно переоценить. Это не только экономит время, но и средства. Некоторые здания требуют того, чтобы в вечернее время включалось освещение фасадов для создания уникального пространственного эффекта. Всем нравится, когда уличные фонари включаются своевременно. Фотореле могут применяться в паре с системами видеонаблюдения. Некоторые виды последних требуют хороший свет для качественной картинки. Фотореле используются не только для освещения. В некоторых случаях фотодатчики используются для систем полива. Как только прячется солнце, включаются насосы орошения. Делается это именно так, чтобы под палящим солнцем не опалить листву растений.

    Если вы постоянно контролируете счета за электричество, тогда обязательно увидите снижение цифры после начала применения фотодатчика. Производители стараются упростить схему сборки и подключения датчика света. Это означает, что для его монтажа нет необходимости привлекать профессионала, а все можно осуществить самостоятельно. Фотодатчик дает возможность повысить безопасность собственного жилища. Для взлома часто выбираются дома с плохим освещением. Фотореле будет срабатывать даже тогда, когда никого не будет дома и создавать эффект присутствия хозяев. В большинстве своем фотореле соответствуют заявленным характеристикам, поэтому говорить о недостатках не приходится. Могут быть только различия в моделях.

    Что выбрать

    Выбирать фотореле для освещения стоит под конкретные потребности или проект. Для этого необходимо учесть несколько факторов:

    • общая мощность освещения;
    • положение участка для освещения;
    • напряжение освещения;
    • место установки датчика;
    • время работы освещения;
    • наличие системы наблюдения;
    • необходимость дополнительных модулей.

    Рядом с каждым пунктом этого списка необходимо сделать требуемые пометки. Это позволит быстрее проанализировать характеристика фотореле, о которых говорилось выше. В некоторых случаях потребуется монтаж нескольких датчиков освещения.

    Способы и схемы подключения

    Разобраться с тем, как подключить фотореле для освещения сможет каждый, кто не обладает специальным образованием в области электротехники. Если в общем описать схему подключения фотореле в цепь, то она сводится к тому, что подающий провод питания заводится в сам датчик. От фотореле делается подводка фазы к потребителю, а нулевой провод отдельно подается от щитка. Есть три основных метода подключения фотореле для освещения в цепь:

    • с разводкой в коробке;
    • с разводкой в самом датчике;
    • подключение нагрузки через пускатель.

    На рисунке показано, как происходит подключение проводов не в датчике, а в специальной распределительной коробке. Именно такой способ считается грамотным. При этом коробку необходимо приобретать герметичную. В ней должны быть резиновые прокладки под крышкой, а также в каждом вводном отверстии. Только в таком случае можно гарантировать отсутствие окислительных процессов на контактных площадках.

    Бывают проекты, где общая мощность всей системы в десятки раз превышает номинальную мощность фотореле. В таких случаях потребуется применение пускателя. Суть схемы будет заключаться в том, что питание на всех потребителей будет идти не через фотореле, а через контактор. Сам фотодатчик будет только сигнализатором, который будет давать команду на замыкание или размыкание контактов пускателя. Такой метод наилучший с точки зрения безопасности. Срок службы фотореле при использовании пускателя увеличивается в несколько раз. Пример схемы такого подключения можно видеть ниже.

    Не все производители указывают предназначение проводов, которые находятся на фотореле для уличного освещения. Обычно их предусмотрено три. К двум из них подключается кабель питания. Обычно это синий и черный. К синему подводится ноль от щитка, к черному или коричневому подается фаза. Есть еще и третий красный провод. Он служит для подачи напряжения от фотореле к потребителю. На схеме видно, что из коробки к потребителю также отдельно идет нулевой провод.

    Поиск места для монтажа

    Знание способа подключения – не все, что необходимо для монтажа датчика для уличного освещения. Для него необходимо подобрать правильное место и высоту для монтажа. Именно в этом случае он будет корректно определять уровень освещенности. Первым фактором является необходимость открытой местности. То ест не должно быть никаких препятствий, которые бы мешали попаданию солнечного света на датчик. Поэтому лучше не размещать его под крышей. Высота размещения фотореле должна быть такой, чтобы к нему было легко добраться при необходимости выполнить обслуживание. Но свет от фар автомобилей должен находиться ниже, чтобы датчик не срабатывал на них.

    В ночное время, когда присутствуют источники искусственного света, датчик необходимо максимально удалить, чтобы свет фонарей уличного освещения или свет из окон не попадал на него. В некоторых случаях придется несколько раз изменить положение фотодатчика уличного освещения до того момента, когда будет найден оптимальный вариант. Некоторые советы можно почерпнуть из видео:

    Совет! Не располагайте датчик уличного освещения далеко от дома или другого помещения. Так легче будет осуществлять его контроль и очистку. Не располагайте его на столбе, который он будет контролировать, т. к. это только доставит хлопот. Такой подход потребует дополнительного метража кабеля, но в итоге такие затраты окупятся экономией времени.

    Дешевые модели датчиков не поддерживают никаких дополнительных настроек. В них выставлены средние положения, которые поддерживаются на протяжении всего периода функционирования. В других решениях есть два регулятора. Они понадобятся уже после полной установки и запуска всей системы. Регулятор часто представляет собой небольшое углубление под отвертку с указанием шкалы на корпусе. Одни из них позволяет отрегулировать чувствительность. То есть порог, при котором будет производиться включение всего освещения. Это очень полезный элемент, который позволяет поддерживать необходимые значения в различные по продолжительности дни. Для выбора правильного положения, его необходимо поставить в крайнее левое положение или к минусу. Как только наступит вечер и уже будет необходимо освещение, тогда потребуется вращать регулятор к плюсу до момента запуска уличного освещения. Делать это стоит очень плавно, чтобы не пропустить момент срабатывания.

    Есть ли альтернатива

    В некоторых местностях установка фотореле затруднена рельефом или обилием деревьев. В таких случаях можно использовать современную наработку, которая привязывается не к уровню освещения, а к другим данным. Такой прибор называется астрономическим таймером. Благодаря точному времени движения земли вокруг солнца и своей оси легко предсказать время восхода и заката в конкретной местности. Именно и делает этот прибор. Во время первого включения понадобится указать свое местоположение с помощью координат, а также точное время. Благодаря встроенной микропрограмме прибор будет включать и выключать уличное освещение.

    Преимуществом такого решения будет над фотореле является независимость от того, что происходит на улице. В дождливую погоду, когда света на улице мало, фотореле может ошибочно определить, что наступили сумерки и необходимо включить освещение. Астротаймер ориентируется по времени и координатам, поэтому на него не влияют такие изменения. Если фотореле испачкалось или притрушено снегом, то также могут быть ложные срабатывания. Для таймера, который работает по координатам не нужно выделять особое место для установки. Его можно разместить в любом удобном месте в доме. В некоторых моделях допускается регулировка отсрочки включения. Недостатком может быть только цена, но за качество необходимо платить.

    Обратите внимание! Вместо фотореле, можно использовать обычный временной таймер. Он будет подавать питание на освещение в заданное время. Он не такой удобный, как фотореле, но также сможет неплохо выручить.

    Заключение

    Обладая изложенной информацией, вы сможете легко самостоятельно приобрести фотореле и установить его. Вы по достоинству оцените преимущества фотореле над ручным включением освещения. Если у вас во дворе смонтирован уникальный проект иллюминации, тогда он будет радовать вас каждый раз после захода солнца.

    Датчик движения – это инфракрасное электронное устройство, которое даёт возможность обнаруживать присутствие и перемещение живого существа и помогает подключать питание приборов освещения и прочих электрических устройств.

    Как правило, датчик движения применяют для включения осветительных приборов, но также их могут использовать и не только для этого.

    По месту нахождения:

    • периметрические – применяются для освещения улицы;
    • внутренние;
    • периферийные.

    По принципу действия:

    • ультразвуковые – реагируют на звуковые волны высокой частоты;
    • микроволновые – высокочастотные радиоволны;
    • инфракрасные – применяют излучение тепла;
    • активные – имеется передатчик и приёмник инфракрасного излучения;
    • пассивные – передатчик отсутствует.

    По виду срабатывания:

    • тепловые – реагируют на изменения температуры в месте срабатывания;
    • звуковые – срабатывают на импульс при колебаниях воздуха от звуков;
    • колебательные – реагируют на перемену внешней среды и магнитного поля при движении объектов.

    По устройству:

    • однопозиционные – присутствие приёмника и передатчика вместе в одном блоке;
    • двухпозиционные – передатчик и приёмник используются в разных корпусах;
    • многопозиционные – два и более блока с передатчиками и приёмниками.
    • многофункциональные датчики применяют при определении движения и уровня освещения в помещениях;
    • комнатный датчик используют для систем мониторинга и управления;
    • наружный датчик освещённости применяют для измерения степени внешнего освещения;
    • накладной датчик освещения создан для установки на стену;
    • потолочный датчик освещения устанавливают в подвесной потолок;
    • врезной датчик освещённости используют для обнаружения движения в офисных и жилых помещениях.

    Схема датчика движения для освещения

    Подключить устройство движения несложно, не сложнее схемы как подключить датчик движения к лампочке. В обоих случаях электрическая цепочка замыкается или размыкается.

    Если нужна постоянная работа света при полном отсутствии какого-либо перемещения, в устройство схемы можно включить выключатель параллельным его подключением к датчику движения.

    Благодаря этому, при включении выключателя освещение будет включено по другой цепочке в обход устройства, поскольку при выключенном переключателе контроль над состоянием освещения полностью вернётся к датчику движения.

    Часто случается так, что специфическая форма помещения физически не даёт охватить всю площадь комнаты только одним устройством.

    Например, в изогнутом коридоре, если установить один датчик движения, то он срабатывать не будет , когда объект будет двигаться за изгибом.

    В таком случае используют схему подключения устройств, когда несколько датчиков подключают параллельно друг к другу.

    Другими словами, нулевая фаза отдельно и не прерывается, подаётся на каждое устройство, после подсоединяют все выходы к лампе. В итоге срабатывание любого из этих датчиков замыкает цепочку, подавая напряжение к светильнику.

    При таком присоединении нужно знать, что оба устройства нужно подключать от одной фазы , иначе между фазами произойдёт короткое замыкание.

    Более того, технические условия и конструктивные особенности помещения также оказывают непосредственное воздействие на подключение.

    Устанавливать устройство необходимо так, чтобы он получал как можно больший обзорный угол на предполагаемые области движения, при этом не должны экранировать детали интерьера, а также проёмы окон и дверей.

    Датчики движения обладают длительно допустимым значением мощности на уровне от пятисот до тысячи Ватт. Это ограничивает их применение в условиях высокой нагрузки.

    Если возникает необходимость в подключении через устройства сразу нескольких мощных светильников, то наилучшим решением будет применение магнитного пускателя.

    При покупке устройства, в комплекте должна быть стандартная инструкция по его монтажу, подключению и настройке. Также схема должна быть на корпусе самого устройства.

    Под крышкой устройства находится присоединительная колодка, а также подключённые к ней три цветных контакта, которые находятся снаружи корпуса. Подключение проводов производят к присоединительным зажимам. Если для подключения используют многожильный кабель, тогда лучше применить специальные втулочные наконечники НШВИ.

    Ток на устройство приходит от сети по двум проводам: фаза L (провод коричневого цвета) и ноль N (провод синего цвета). После выхода фазы L из датчика движения, она приходит на один конец лампочки. Другой конец лампы накаливания подключён к нулевому контакту N.

    При появлении движения в месте контроля срабатывает датчик и замыкает контакт реле , что приводит к приходу фазы на светильник и свет включается.

    Поскольку клеммная колодка для подключения обладает винтовыми зажимами, провода к устройству подключают с помощью наконечников НШВИ.

    Следует знать, что подключение фазного кабеля лучше всего осуществлять по принципиальной схеме , которая дополняет руководство.

    • После подключения проводов нужно надеть крышку и перейти к следующей стадии – подключение кабелей в распределительной коробке.
    • В коробке имеется семь проводов, два от лампы, три от датчика и два питающих ноль и фаза. В питающем кабеле фаза окрашена в коричневый цвет, ноль – в синий.
    • У провода, который подключён к устройству белый кабель – это фаза, зелёный – это ноль, красный нужно подключить к сети.
    • Провода подключают примерно так: кабель фазный питающего провода подключают вместе с фазным проводом от устройства (белый и коричневый кабель). Далее, соединяют нулевой провод от питающего кабеля, нулевой кабель от устройства (зелёный) и нулевой кабель от лампы.
    • Остаются два свободных кабеля (красный от устройства движения и коричневый от лампы) – их соединяют вместе. Подключение выполнено.

    Датчик движения подключён к лампе. Затем подаём питание, устройство реагирует на движение, замыкает цепочку и включает свет.

    Можно ли устройство подключить с выключателем?

    Для того чтобы некоторое время свет не отключался, вне зависимости от степени освещённости и движения, можно применить схему подключения устройства с выключателем , подключив обыкновенный выключатель в схему, параллельно датчику движения.

    За счёт такого подключения можно при включённом выключателе держать включённым лампочку в течение необходимого времени. Если же управление освещением нужно целиком передать устройству, то выключатель отключают.

    Настройка устройства для освещения

    Настройка устройства – это ещё один важный этап работы датчика движения. Практически любой прибор, при помощи которого можно управлять лампами, обладает дополнительными настройками, дающие возможность добиться нормальной его работы.

    Такие настройки выглядят как особые мини-приборы, которые предназначены для регулирования – это установка приостановки отключения TIME, регулирование степени освещённости LUX и установка восприимчивости к инфракрасному излучению SENS.

    1. Настройка включения от степени освещённости . Регулировку LUX применяют для корректной работы устройства днём. Прибор сработает при более низкой степени освещённости по сравнению с минимальным значением. Следовательно, датчик не сработает при более высокой степени освещённости по сравнению с выставленным пороговым значением.
    2. Настройка времени . При помощи установки TIME можно установить время, в течение которого освещение будет включено с того момента, когда было обнаружено движение в последний раз. Интервал времени может варьироваться от 1 до 600 секунд.
    3. Настройка восприимчивости к срабатыванию устройства . Регулировать восприимчивость к подключению, в зависимости от объёма и дальности объекта, можно при помощи регулятора SENS. Реакция устройства прямо зависит от степени чувствительности. При большом числе включения датчика восприимчивость лучше уменьшить, а установить яркость освещения ИК, на которую будет реагировать датчик движения.

    В область видимости датчика, который устанавливают на улице, не должны попадать объекты, излучающие тепло или свет. Не стоит устанавливать устройство около деревьев и кустов, которые будут мешать правильному выявлению движения.

    Нужно стараться сводить к минимуму вероятное воздействие электромагнитных излучений, из-за которых могут быть ложные срабатывания устройства.

    Датчик необходимо направлять непосредственно на ту область, где выявление движения должно служить поводом для включения освещения.

    Необходимо поддерживать датчик в чистоте, так как загрязнение негативно отражается на качестве работы устройства и радиусе действия.

    По принципу работы, датчик освещения устроен так : фоточувствительный элемент, который установлен в датчики, способен изменять свое сопротивление , в зависимости от освещения. В виде этого элемента, обычно выступает фоторезистор.

    Потом, в действие вступает схема калибровки, через которую сигнал от фоторезистора переходит на транзистор.

    В цепи транзистора имеется реле. Транзистор, с помощью реле замыкает сеть и лампа или прожектор, который подключен к сети, начинает светиться. В статье, принцип работы, будет описан более подробно.

    Как подключить датчик освещения.

    Стоит отметить, что схема подключения датчика освещения, идентична схеме подключения датчика движения.

    Правильный монтаж датчика освещения.

    Конечно, подключить и настроить дело не трудно, куда труднее, определить правильно место для установки датчика. Рассказывал мне знакомый историю, как у него в районе уличный фонарь, то включался, то выключался.

    А после наступления полной темноты на улице, он, наконец, начинал нормально работать. Знаете, в чем было дело?

    Датчик освещенности установили прямо под фонарь. Из-за этого, при наступлении темноты, он включал фонарь, распознавал, что светло и выключал. Подобная ситуация может случиться у всех. Но, чтобы такого не было, нужно не устанавливать датчики освещенности, рядом с источником света.

    Настройка датчика движения.

    Когда будете калибровать датчик, то используй черный мешочек, он идет в комплекте.

    Единственное, что можно настроить у этого датчика, это регулятор освещенности. Им можно установить уровень, когда будет срабатывать реле. Подробности регулировки и настройки описываются ниже.

    Датчик освещенности LXP-01, можно отнести к простейшим. Он не дает возможности ничего в нем изменить и настроить. Существуют более продвинутые датчики, в них можно настроить задержку срабатывания.

    Внешний вид датчика движения.

    Датчик LXP-02.

    Назначения выходов датчика:

    1. Красный нужен для подведения нагрузки

    2. Синий, может быть зеленым, это ноль

    3. Коричневый (черный) – датчик питания.

    Если убрать белый корпус, то под ним увидим схему датчика, расположенную на печатной плате.

    Для простого расчета необходимого числа ламп воспользуйтесь Калькулятором расчета количества ламп .

    В датчике расположено реле DE3F-N-A на 24 VDC. Ток контактов 10А. Это значение определяет максимальную нагрузки, на которую способен датчик. То есть, 10 на 220, будет 2,2кВт. Точно также заявлено в инструкции.

    Но мое мнение: к этому датчику, не стоит подключать больше 4 ампер. Все, что выше, только через промежуточный пускатель.

    Фотография платы датчика движения.

    Вот этим дорожки, со слоем припоя на них, именно они – чаще остальных горят при перегрузке, неправильно подключенного K3. Если такое произойдет, то заменять придется и реле.

    По инструкции, датчик освещения LXP-03 в состоянии коммутировать токи 25А. На плате указано, что ток реле 30А, скорее всего производители решили перестраховаться, и я, в этом плане, от них не далеко ушел. Решил ограничить ток на 16А.

    Для освещения – это ещё и с запасом.

    Ну и на десерт – все самое интересное:

    Представленная схема взята именно с той платы, которая показана в начале статьи. Сейчас производитель активно улучшает и изменяет свое устройство, поэтому некоторые данные могут измениться.

    В принципе, все одинаково:

    Напряжение питания 220V поступает через ноль и клеммы. Ноль – N, клеммы – L.

    Если вы измените местами фазу и ноль , или вообще выключите ноль, а не фазы, то ничего страшного не случится. Но делать это крайне не рекомендуется, безопасность ещё некто не отменял.

    Выпрямляется напряжение при помощи диодного моста, 4 диода типа 1N4007. За фильтрование напряжения отвечает электролитический конденсатор, стабилизация происходит на уровне +22…24V, для этого, установлен стабилитрон типа 1N4748.

    Оставшаяся часть схемы питается от постоянного напряжения. Устроена она следующим образом: На выходе резистивного делителя 68к — VR — Фоторезистор создается напряжение, которое полностью обратно идентично уровню освещения. То устройство, которым настраивается уровень срабатывания – это подстроечный резистор VR с сопротивлением 1 МОм.

    Что именно ставят в такие схемы: фоторезистор или фотодиод – неизвестно. Вероятнее фоторезистор, но похожий фотодиод тоже может там стоять.

    Если вы хотите экономно и эффективно расходовать электроэнергию, то крутите контролер по часовой стрелке до максимума, так датчик освещения будет срабатывать только при наступлении полной темноте. Выкрутив регулятор в обратную сторону, то будьте готовы кто тому, что свет будет включаться даже днем, если над вами нависнет большая туча.

    Вот, как проходит процесс выключения света при наступлении темноты: уровень освещения падает, начинает расти сопротивление фоторезисторов, напряжение на базе транзистора растет. Когда напряжение достигает определенного уровня, транзистор открывается и через коллектор начинает протекать ток, который активирует реле К1. Контактами реле включает нагрузку. Нагрузка подключается через вывод LOAD.

    Для обозначения рабочего состояния загорается светодиод . Чтобы реле слишком часто не переключало датчик, например, от колеблющейся ветки дерева, на схеме установлен конденсатор 47 мкФ, который сглаживает все процессы.

    Более мощная схема датчик освещения LXP-03:

    Она идентична первой схеме в статье, отличия перечислю:

    1. Схема питания в состоянии ограничивать напряжение в фазной цепи.

    2. Тут диодный мост с фильтрами. Такой же и в предыдущей схеме, просто я не очень удачно её изобразил.

    3. Вместо одного стабилитрона, как на первой схеме, тут их установлено два последовательно. Притом, напряжение осталось прежнее – +24В.

    4. Здесь установлено более мощное реле, с соответственно более мощным током катушки. Также, здесь используется составная схема на два комплементарных транзистора.

    Если вы знаете, как работает схема, то её будет легко отремонтировать.

    Как утверждают специалисты, применение датчиков движения (ДД) позволяет сэкономить до 30% электроэнергии, при этом, если устройства будут оснащены фотореле, то экономия достигает нереальных 58%. Если показатели действительно достоверные, то выбор специального детектора для системы освещения является целесообразным решением. В этой статье мы разберемся, как выбрать датчик движения для включения света и какие производители являются лучшими по цене и качеству.

    Критерии выбора

    Итак, существует несколько правил, воспользовавшись которыми можно правильно выбрать датчик движения. Давайте рассмотрим, что советуют специалисты:

    1. Определитесь с местом установки . Для улицы рекомендуется подобрать детектор со не менее 55, лучше 65. Если устройство будет установлено под навесом, допускается выбрать модель с индексом IP44. При выборе датчика движения для включения освещения в помещении (дом, квартира либо гараж), степень защиты может быть меньше, при условии, что повышенная влажность и запыленность отсутствуют.
    2. Учитываем возможные препятствия . Немного отойдем от темы и расскажем о видах детекторов. Существуют устройства, которые реагируют на тепловое излучение (инфракрасные). Они включают свет при обнаружении любых движущихся объектов, в том числе и животных. Второй вид изделий – звуковые или как их еще называют, акустические (срабатывают при возникновении шума). Следующая разновидность ДД – микроволновые. Они излучают волны, которые могут проходить через препятствия для обнаружения движения. Ну и последние, комбинированные устройства, сочетающие несколько способов реагирования. Так вот, в квартирах, на даче, и в частных домах рекомендуем использовать ИК-датчики или комбинированный вариант инфракрасного излучения с ультразвуковым. Для охраны лучшим решением будет использование микроволновых моделей, которые реагируют даже через небольшие препятствия (к примеру, перегородка). Такие устройства нашли применения в гаражах, складских помещениях и, в общем, в системах сигнализации.
    3. Определяемся с углом обзора . Если в помещение можно зайти с нескольких сторон (к примеру, 2-3 двери в коридоре либо подъезде), то лучше выбрать датчик движения с углом обзора 360 градусов (потолочный). Если же нужно производить включения света при проходе через один определенный участок, то достаточно подобрать детектор с углом обзора в 180 градусов и направить его на нужную зону обнаружения.
    4. Учитываем мощность светильников . Не менее важно правильно выбрать мощность ДД. Сделать это достаточно просто – узнаем мощность люстры в комнате, или, к примеру, светодиодного прожектора на улице и подбираем мощность детектора с небольшим запасом.
    5. Определяем радиус действия . Также при выборе датчика движения нужно учитывать максимальное расстояние, на которое он способен реагировать. Как правило, радиус обнаружения составляет от 6 до 50 метров. Соответственно, для небольших комнат в квартире и доме можно выбрать минимальный радиус (в туалете, кухне, прихожей, ванной), а вот для включения нужно определиться с радиусом действия и на основании этого выбрать подходящий параметр.
    6. Наличие фотореле . В последнее время большинство ДД дополнительно оснащаются детекторами освещенности, которые позволяют еще больше . Схема работы в этом случае такая: включение света происходит только, если уровень освещенности ниже заданных настроек. Это логично, ведь нет смысла включать освещение днем.
    7. . Еще одна полезная функция, на которую мы рекомендуем обратить внимание. Если у вас есть домашние животные, к примеру, небольшая собака во дворе, то лучше выбрать датчик движения с защитой от животных. В противном случае включение света будет спровоцировано вашими питомцами, что не очень удобно и экономично.

    Вот и все советы, которые вы должны учитывать при выборе устройства. Еще один важный момент – производитель детекторов, т.к. от него зависит долговечность и корректность работы изделия. Если вы не знаете, какой датчик движения лучше выбрать, рекомендуем останавливаться на продукции таких фирм, как Theben, Rev Ritter, Orbis и Camelion. В последнем случае производитель китайский, но, тем не менее, по цене и качеству является оптимальным. С подходящей моделью вы можете разобраться, если учтете наших 7 советов, предоставленных выше.

    Датчик включения света (фотореле) для уличного освещения

    Для контроля работы многих электрических приборов необходимы специальные контроллеры, которые отвечают за точность и правильность их работы. Предлагаем рассмотреть, как подключить простое уличное фотореле, что это такое и его принцип работы.

    Блок: 1/5 | Кол-во символов: 246
    Источник: https://www.asutpp.ru/fotorele.html

    Фотореле и принцип его работы

    Эффективный прибор позволяет контролировать затраты энергии, управлять освещением по необходимому режиму. Фотореле используют для своевременного включения и отключения уличных фонарей, что актуально для частных домов. Для этого в приборе предусмотрен датчик, чувствительный к свету. Элемент соединён с питательной цепью. При попадании лучей света датчик становится изолятором, а тёмное время суток прибор проводит электроэнергию к устройству освещения. Так работает фотореле, отключая фонари при дневном свете и включая их при отсутствии солнечных лучей.

    Компактное фотореле обладает простой конструкцией

    Освещение: применение фотореле

    Прибор контроля освещения используют в частных домах, размещая на фонарях вдоль дорожек или возле входной двери. В парке, загородном большом участке и других просторных территориях также применяют фотореле. Прибор практичен для освещения автостоянок, дворов, рекламных конструкций и зоны видимости видеокамер наружного наблюдения. Во всех случаях создаётся автоматизированная система, которая включает свет при наступлении темноты. Это позволяет экономить энергоресурсы и обеспечивает комфорт нужных зон.

    Датчик движения может дополнять фотореле

    Характеристики фотореле

    При выборе устройства для управления освещением учитывают его характеристики. Производители выпускают обширный ассортимент приборов, отличающихся внешним видом, характеристиками, номинальным напряжением питания и другими параметрами. Поэтому при выборе стоит обратить внимание на следующие особенности фотореле:

    • вес и размеры устройства;
    • температурные ограничения при эксплуатации;
    • сектор срабатывания;
    • мощность и уровень потребления энергии;
    • частота сети для работы;
    • номинальное напряжение для питания.

    Приборы также разделяются по типу коммутируемых светильников. Простые модели часто предназначены для работы с обычными лампами накаливания или галогенными устройствами. Для других вариантов ламп следует выбирать фотореле, мощность и характеристики которого соответствуют параметрам источника света.

    Блок: 2/7 | Кол-во символов: 2043
    Источник: https://aqua-rmnt.com/ehlektrosnabzhenie/shema-podklyucheniya-fotorele-dlya-ulichnogo-osveshheniya.html

    Описание фотореле

    Чувствительное фотореле на симисторе ГОСТ 51324.2.1-99. представляет собой оптронный прибор, состоящий из светодиодов, оптически связанных с контактами электроприборов. Его еще часто называют сумеречный светодиодный датчик, приспособление день-ночь и т.д.

    Фото – Фотореле фото

    Фотореле предлагают различные преимущества по сравнению с механическими реле времени:

    1. Малый размер. Размещенное в небольших блоках, таких как USOP, приспособление разрабатывается с уменьшенной платой;
    2. Длительный срок службы. При отсутствии механического контакта, значительно продлевается срок годности за счет того, что полностью отсутствует износ;
    3. Слаботочный привод. Данный прибор может работать с поступающим током даже в несколько миллиампер без усилителя. Таким образом, соседние устройства могут обходиться без драйверов;
    4. Бесшумная работа. При отсутствии механического контакта, бесконтактное реле при работе не издает совершенно никаких звуков;
    5. Высокая скорость. Фотореле примерно в 10 раз быстрее, чем механические аналоги (которые принимают несколько миллисекунд для переключения).
    6. Отличная производительность, многие приборы поставляются с таймером.

    Составляющими прибора являются: три контактных провода для подключения к общей сети, магнитный пускатель, якорь.

    Фото – Фотореле в разобранном виде

    Видео: простое фотореле

    Блок: 2/5 | Кол-во символов: 1328
    Источник: https://www.asutpp.ru/fotorele.html

    Принцип действия

    На схеме показан принцип действия устройства. Фоторезистор PR1 уменьшает при повышении освещенности свое сопротивление до нескольких Ком, благодаря чему открывается фототранзистор VT2, который включает фотореле K1, и уже это устройство, в свою очередь, начнет передавать сигналы. Защищает схему от самоиндукции диод VD1. Благодаря такому принципу, даже очень слабые сигналы позволяют включать или выключать свет.

    Фото – Схема фотореле

    Главная рабочая часть – фотоэлемент, представляет собой газовую трубку, в которой производится ионизация газа. Она имеет катод, который способен вырабатывать электроны пропорционально интенсивности направленного к ней света, также трубка оснащена анодом для сбора электронов.

    Фото – Фотореле

    Всякий раз, когда отрицательно заряженная поверхность помещается в атмосферу ионизируемого газа, такого как пары ртути или какой-либо инертный газ, на неё переходят электроны. Там посредством использования теории скоростей Ферми-Дирака, электроны ускоряются в зависимости от силы приложенного электрического поля.

    Фото – Фотореле TDM

    Эти электроны перемещаются на относительно короткое расстояние до столкновения с атомом ионизирующего газа. Когда электрон, имеющий постоянную кинетическую энергию, проходит через ионизирущее вещество, он нарушает атомы, с которыми сталкивается. Также его траектория действия может периодически меняться. Если материал является газообразным, то полученные фрагменты или ионы могут перемещаться в противоположную сторону друг от друга. Но если электроны выбиты из атомов, то они двигаются в одном направлении, а остаточные положительные ионы – в противоположном. Выход типа ионизации или фотоэлемента зависит от числа электронов на аноде.

    Именно перемещения электрических частиц в определенной последовательности и становится причиной переключения приспособления. Нужно сказать, что это особенно удобно для устройств с датчиком движения Finder, Legrand.

    Блок: 3/5 | Кол-во символов: 1928
    Источник: https://www.asutpp.ru/fotorele.html

    Схемы подсоединения

    Перед тем как переходить к установке светоконтролирующего выключателя (еще одно из популярных названий) вместо обычного выключателя света, нужно разобраться с тем, как нужно подключить провода к светильнику и клеммам датчика. Итак, схема подключения фотореле для уличного освещения может быть представлена в двух вариантах: с использованием распределительной коробки и без ее применения. Первый вариант принято использовать тогда, когда происходит замена электропроводки в доме, т.к. в этом случае нужно будет выводить новую линию из монтажной коробки.

    Выглядит разводка жил следующим образом:

    Как Вы видите, подсоединение фотореле к светильнику практически не отличается от подключения выключателя света. Также как и в обычном варианте, фаза ведется на разрыв, а ноль напрямую к фонарю. Единственная разница в том, что нулевой провод должен заводиться еще и в сам фотодатчик.

    Если Вы уже сделали ремонт в доме и не желаете штробить стену под новую линию, можно использовать второй вариант подключения фотореле своими руками – напрямую:

    В этом случае все 3 провода: фаза, ноль и заземление заводятся внутрь корпуса и поджимаются клеммами. Как первый, так и второй способ монтажа является правильным. Выбрав подходящий вариант можно переходить далее – к установке фотореле своими руками.

    Блок: 3/4 | Кол-во символов: 1308
    Источник: https://samelectrik.ru/kak-podklyuchit-datchik-osveshheniya-poshagovaya-foto-instrukciya.html

    Виды приборов

    В зависимости от назначения и выполняемых функций фотореле подразделяются на несколько основных видов.

    Со встроенным фотоэлементом

    Зачастую такие приборы объединены в единый блок с управляемым устройством, светильником и предназначены для установки на улице. Характеризуются высоким уровнем пыле-влагозащиты, не менее IP44. Работают только с тем устройством, в которое встроены.

    С выносным фотоэлементом

    Электронный блок устанавливается в щит, шкаф или монтируется в другом защищенном от воздействия погодных условий месте, поэтому требования к IP снижены, достаточно IP20. Фотоэлемент выносится наружу и соединяется проводами с электронным блоком. Требования к IP фотодатчика такие же, как для уличного исполнения, не ниже IP44. Разнесённая конструкция позволяет создавать щиты автоматизированного управления наружным освещением, где фотореле является одним из звеньев сложной, многоуровневой схемы. При подключении контактов фотореле к мощному внешнему реле или контактору, появляется возможность управлять нагрузкой большой мощности, например, в случае управления освещением парковки гипермаркета или автодороги.

    На различные уровни напряжения

    Питание фотореле может быть рассчитано на различные напряжения, 380, 220, 24, 12 Вольт. Есть модели, с очень широким диапазоном питающих напряжений от 12 до 264 В.

    Модели на низкое напряжение 12 и 24 В способны работать в схемах с применением альтернативных источников электроэнергии, солнечных батарей, ветрогенераторов с аккумуляторной поддержкой.

    Разновидностей приборов управления освещением довольно много. Среди них есть как простые, с функцией вкл/откл, так и профессиональные. Последние имеют расширенный набор функций, встроенные таймеры, календарь событий, умеют управлять основным и дежурным освещением и т.д. Для облегчения настройки и наблюдения за работой системы они оснащены дисплеем. Наличие энергонезависимой памяти даёт возможность запоминать введённые настройки.

    Блок: 3/7 | Кол-во символов: 1936
    Источник: https://electroadvice.ru/equipment/fotorele-dlya-ulichnogo-osveshheniya/

    Как подключить фотореле: пошаговая инструкция

    Сразу хотелось бы дать совет, оптимально подключить фотореле фр-75а и датчик движения. Приборы тесно связанны друг с другом, если вы собрались устанавливать датчик, тогда вы конкретно упростите установку.

    Пошаговая инструкция с фото:

    1. Отключаем УЗО.
    2. Протягиваем провод к месту установки фотореле, вещаем его рядом с прибором. Рекомендуем использовать провод ПВС, он лучшим образом зарекомендовал себя.
    3. Снимаем изоляцию, можете использовать специальный прибор для снятия изоляции.
    4. Делаем отверстия в корпусе фотореле, только внизу, это спасет от попадания влаги.
    5. Повышаем герметичность корпуса, можно использовать обычные резиновые уплотнители или герметический клей. Лучше остановится на первом варианте.
    6. Подключаем фотореле, для уличного освещения используя схему. Не забываем соблюдать цветовую маркировку.
    7. Подключаем фотореле к прожектору или лампе, вот так это выглядит на фото.
    8. Переходим к настройке, здесь все довольно просто, есть вот такой регулятор. Его нужно настроить на желанную интенсивность включения. Если поставить на максимум, свет будет включаться только в полной темноте. Чтобы все отрегулировать, можно использовать обычный черный пакет или лист бумаги, так вы поймете, при каком освещении он будет срабатывать.
    9. Проверяем, как все работает.

    Блок: 4/5 | Кол-во символов: 1306
    Источник: http://DekorMyHome.ru/remont-i-oformlenie/podkluchaem-fotorele-svoimi-rykami.html

    Как подключить устройство к уличному фонарю: схемы и принципы

    При подключении простого устройства нужно ознакомиться с его конструкцией. Главным элементом является фотодиод, который может находиться снаружи или внутри корпуса. В первом случае датчик монтируют на улице, а электронный блок подключают на электрическом щите в помещении. При внутреннем расположении чувствительной детали прибор монтируют на улице.

    Прибор имеет небольшие размеры и простое крепление

    Знание конструктивных особенностей устройства позволяет подключить его к фонарю максимально эффективно. Поэтому важно определить тип фотореле, приобрести качественный прибор, подобрать схему, а затем приступать к подключению датчика.

    Фотореле на схеме

    Правильная схема подключения значительно облегчает самостоятельную установку прибора. На электрической схеме фотодиод представлен в виде условного графического обозначения, представляющего собой треугольник на оси симметрии с направленными сверху вниз стрелками. На простых схемах прибор может обозначаться в виде круга или прямоугольника с надписью «ФР».

    Стрелки на схеме символизируют отражение света

    Подключение

    Кронштейн с прибором монтируют в затенённом месте. Листва деревьев, навесы, осадки не должны влиять на работу устройства. После определения места расположения нужно узнать количество светильников, для которых необходимо управление. На один источник света монтируется одно фотореле. Если же используется большое количество фонарей, то лучше всего применить контроллер. Он получает сигнал от фотодатчика и позволяет управлять несколькими светильниками одновременно.

    Схема подключения к одной лампе очень проста

    Конструкция прибора может включать в себя клеммы, что упрощает подключение. Они необходимы для зажима проводов. Кабель каждого цвета соединяют с соответствующим проводом лампы и цепи питания. Если клеммы отсутствуют, то следует установить распределительную коробку. Корпус устройства должен быть защищён от влаги и осадков. Известные производители указывают на упаковке или в инструкции схему подключения элемента.

    Блок: 4/7 | Кол-во символов: 2060
    Источник: https://aqua-rmnt.com/ehlektrosnabzhenie/shema-podklyucheniya-fotorele-dlya-ulichnogo-osveshheniya.html

    Технические характеристики

    В первую очередь надо решить, хотите вы фотореле для уличного освещения с выносным или встроенным датчиком света. Выносной датчик имеет небольшие размеры и его проще защитить от подсветки, самое же устройство можно поставить в доме, например, в щитке. Есть даже модели под дин-рейку. Фотореле со встроенным датчиком освещенности может стоять неподалеку от светильника. Важно только выбрать место так, чтобы свет от лампы не влиял на фотодатчик. Этот вариант удобнее, например, для светильников на солнечных батареях.

    Фотореле для уличного освещения с выносным датчиком (слева) и встроенным (справа)

    Эксплуатационные характеристики

    Определившись с типом датчика переходим к техническим параметрам:

    Чтобы выбрать фотореле для уличного освещения эти характеристики обязательны. Правильный их выбор определяет работоспособность устройства. Но есть еще некоторые параметры, влияющие на корректность работы устройства.

    Возможности настройки

    Есть несколько регулировок, которые позволяют настроить работу фотореле в каждом конкретном случае. Проблема в том, что настройки производятся вручную, поворотом нужного регулятора и добиться абсолютно одинаковых параметров у нескольких устройств нереально. Всегда есть какие-то отличия в их работе.

    При помощи этих настроек можно сделать работу фотореле для автоматического включения освещения участка комфортным, исключить ложные срабатывания.

    Блок: 3/7 | Кол-во символов: 3235
    Источник: https://elektroznatok.ru/osveshhenie/fotorele-dlya-ulichnogo-osveshheniya

    Установка реле и заземление

    В случае, если в квартире, доме или на улице применяется система заземления типа TN-S либо TN-C-S, электрическая схема питается от сети трехжильным кабелем (фазовый провод, нулевой, заземление). Но для подключения ламп при электропроводке типа TN-C, соединение будет отличаться только тем, что отсутствует проводник PE.

    Регулировка производится согласно установкам производителя. Перед тем, как подключить светильник обязательно проверяйте паспорт, сертификат и патент продавца, чтобы потом не пришлось делать капитальный ремонт проводки в квартире. Желательно установить в распределительный щит (шкаф) отдельный автомат на этот контроллер.

    Купить фотореле можно в любом электротехническом магазине, цена напрямую зависит от марки и области действия (улица – ФР-601 ИЭК, ФР-602, фасады – ФРСУ-1-0 ухл 4.2, ФРСУ-2-0 и прочие типы). Наиболее популярны следующие модели ФР-1 12 вольт, УТФР-1М, CSM, LUNA 110 AL, TWS-1, TWS-1M, AWZ-30, ABB (АВВ), LXP-01, DLS-1/50, AZH-S, АС-7, РФС-11, ФБ-2-16А (диап. 2-4 кВт), ЛЮКС 2.

    Фото – Подключение фотореле ФР-601

    Блок: 5/5 | Кол-во символов: 1079
    Источник: https://www.asutpp.ru/fotorele.html

    ФР-601 (602)

    Если речь заходит об использовании стандартных однофазных фотореле для освещения, то самой популярной моделью являются устройства ФР-601 и ФР-602 производства компании ІЕК.

    Они достаточно надежные, и даже у непосвященных в электронику пользователей не возникает вопросов, как подключить автоматический регулятор подсветки. Эти две модификации  имеют несущественные различия: они обе работают с током одних и тех же напряжения и частоты, имеют аналогичную потребляемую мощность (0,5 Вт) и абсолютно одинаковые комплекты поставки.

    Различия касаются лишь максимального сечения подключаемых проводников: для 601 модели она составляет 1,5 кв. мм., а для 602 — 2,5. Следовательно, отличается у них и номинальный ток нагрузки: 10 и 20 А, соответственно. Фотоэлемент у обеих моделей встроенный, его регулировка возможна в пределах от 0 до 50 лк с шагом в 5 лк.

    Блок: 3/9 | Кол-во символов: 867
    Источник: https://ProFazu.ru/svet/control/fotorele-shema.html

    Схемы подключения фотореле для уличного освещения

    Назначение фотореле для уличного освещения — подавать питание при наступлении темноты и отключать его на рассвете. То есть это своего рода выключатель, только вместо клавиши в нем установлен светочувствительный элемент. Потому схема его подключения аналогична: на фотореле подается фаза, снимается с его выходов и подается на светильники или группу фонарей.

    Самый простой случай — схема подключения фотореле к фонарю

    Так как фотореле для работы также необходимо питание, на соответствующие контакты подается ноль, желательно также подключить заземление.

    Как уже говорили раньше, подбирать фотореле надо по мощности подключаемой нагрузки. Но наблюдается одна закономерность: с увеличением мощности цены возрастают значительно. Для экономии можно подавать питание не через фотореле, а через  магнитный пускатель. Он предназначен для частого включения/отключения питания, а также с его помощью можно подключить питание с использованием светочувствительного элемента с малой подключаемой нагрузкой. По сути, он включает только магнитный пускатель, потому в расчет берут только его потребляемую мощность. А к выводам магнитного пускателя можно подключать и мощную нагрузку.

    Схема автоматизации освещения двора с использованием фотореле и магнитного пускателя (контактора)

    Если кроме датчика день/ночь надо еще подключить таймер или датчик движения, их ставят последовательно после реле освещения. Порядок установки движение/таймер неважен.

    Подключение светильников через фотореле, датчик движения и таймер

    Если датчик движения или таймер не нужны, их просто убираете из схемы. Она остается работоспособной.

    Блок: 6/7 | Кол-во символов: 1655
    Источник: https://elektroznatok.ru/osveshhenie/fotorele-dlya-ulichnogo-osveshheniya

    Выбор фотореле

    В продаже есть приборы как отечественного, так и зарубежного производства со схожим набором функций. При выборе устройства следует руководствоваться правилами:

    • Суммарная мощность подключаемых светильников должна соответствовать номинальной токовой нагрузке, указанной в паспорте реле и не превышать её.
    • Напряжение питания и род тока (постоянный или переменный) должны соответствовать выбранной модели.
    • Для уличной установки, необходимо применять прибор со степенью защиты не ниже IP В случае выносного датчика возможно снижение IP для электронного блока при условии его установки в защищённом месте.
    • При необходимости гибкой настройки стоит выбрать реле с дополнительными функциями или профессиональную модель.

    Блок: 6/7 | Кол-во символов: 724
    Источник: https://electroadvice.ru/equipment/fotorele-dlya-ulichnogo-osveshheniya/

    Оборудование высокой мощности

    Среди конкурентов также можно рассмотреть фотореле ФР-7Е, но не в его пользу говорят отсутствие защиты от влаги (IP40) и довольно высокая потребляемая мощность.

    Также к недостаткам можно отнести открытые контактные зажимы и отсутствие защиты подстроечного резистора на лицевой панели. Положительный момент — работать ФР-7 может в сетях переменного тока напряжением 220 вольт с напряжением до 5 ампер, что почти на порядок больше, нежели у рассмотренных выше конкурентов. Диапазон регулировки в 10 лк также устанавливается лишь специалистом — отрегулировать его самостоятельно не получится.

    По габаритам ФР-7 также превосходит рассмотренные в статье фотореле (см. чертеж).

    Блок: 7/9 | Кол-во символов: 705
    Источник: https://ProFazu.ru/svet/control/fotorele-shema.html

    Заключение

    Учитывая опыт эксплуатации фотореле в бытовых и промышленных условиях, наиболее стабильной и легко воспроизводимой в домашних условиях является модель ФР-602 или ее менее мощная вариация ФР-601 от компании AIK. Они отлично показывают себя в различных режимах работы, имеют хороший запас долговечности и, что самое главное, обладают минимальной себестоимостью. Кроме того, их сборка облегчается возможностью заменить многие зарубежные детали на дешевые отечественные аналоги.

    Блок: 8/9 | Кол-во символов: 486
    Источник: https://ProFazu.ru/svet/control/fotorele-shema.html

    Кол-во блоков: 24 | Общее кол-во символов: 26375
    Количество использованных доноров: 7
    Информация по каждому донору:
    1. https://aqua-rmnt.com/ehlektrosnabzhenie/shema-podklyucheniya-fotorele-dlya-ulichnogo-osveshheniya.html: использовано 3 блоков из 7, кол-во символов 5804 (22%)
    2. https://samelectrik.ru/kak-podklyuchit-datchik-osveshheniya-poshagovaya-foto-instrukciya.html: использовано 1 блоков из 4, кол-во символов 1308 (5%)
    3. http://DekorMyHome.ru/remont-i-oformlenie/podkluchaem-fotorele-svoimi-rykami.html: использовано 1 блоков из 5, кол-во символов 1306 (5%)
    4. https://ProFazu.ru/svet/control/fotorele-shema.html: использовано 5 блоков из 9, кол-во символов 4227 (16%)
    5. https://www.asutpp.ru/fotorele.html: использовано 4 блоков из 5, кол-во символов 4581 (17%)
    6. https://elektroznatok.ru/osveshhenie/fotorele-dlya-ulichnogo-osveshheniya: использовано 3 блоков из 7, кол-во символов 6489 (25%)
    7. https://electroadvice.ru/equipment/fotorele-dlya-ulichnogo-osveshheniya/: использовано 2 блоков из 7, кол-во символов 2660 (10%)

    схемы подключения, самостоятельное изготовление и пошаговая инструкция монтажа. Датчик освещения Датчик света для освещения

    По принципу работы, датчик освещения устроен так : фоточувствительный элемент, который установлен в датчики, способен изменять свое сопротивление , в зависимости от освещения. В виде этого элемента, обычно выступает фоторезистор.

    Потом, в действие вступает схема калибровки, через которую сигнал от фоторезистора переходит на транзистор.

    В цепи транзистора имеется реле. Транзистор, с помощью реле замыкает сеть и лампа или прожектор, который подключен к сети, начинает светиться. В статье, принцип работы, будет описан более подробно.

    Как подключить датчик освещения.

    Стоит отметить, что схема подключения датчика освещения, идентична схеме подключения датчика движения.

    Правильный монтаж датчика освещения.

    Конечно, подключить и настроить дело не трудно, куда труднее, определить правильно место для установки датчика. Рассказывал мне знакомый историю, как у него в районе уличный фонарь, то включался, то выключался.

    А после наступления полной темноты на улице, он, наконец, начинал нормально работать. Знаете, в чем было дело?

    Датчик освещенности установили прямо под фонарь. Из-за этого, при наступлении темноты, он включал фонарь, распознавал, что светло и выключал. Подобная ситуация может случиться у всех. Но, чтобы такого не было, нужно не устанавливать датчики освещенности, рядом с источником света.

    Настройка датчика движения.

    Когда будете калибровать датчик, то используй черный мешочек, он идет в комплекте.

    Единственное, что можно настроить у этого датчика, это регулятор освещенности. Им можно установить уровень, когда будет срабатывать реле. Подробности регулировки и настройки описываются ниже.

    Датчик освещенности LXP-01, можно отнести к простейшим. Он не дает возможности ничего в нем изменить и настроить. Существуют более продвинутые датчики, в них можно настроить задержку срабатывания.

    Внешний вид датчика движения.

    Датчик LXP-02.

    Назначения выходов датчика:

    1. Красный нужен для подведения нагрузки

    2. Синий, может быть зеленым, это ноль

    3. Коричневый (черный) – датчик питания.

    Если убрать белый корпус, то под ним увидим схему датчика, расположенную на печатной плате.

    Для простого расчета необходимого числа ламп воспользуйтесь Калькулятором расчета количества ламп .

    В датчике расположено реле DE3F-N-A на 24 VDC. Ток контактов 10А. Это значение определяет максимальную нагрузки, на которую способен датчик. То есть, 10 на 220, будет 2,2кВт. Точно также заявлено в инструкции.

    Но мое мнение: к этому датчику, не стоит подключать больше 4 ампер. Все, что выше, только через промежуточный пускатель.

    Фотография платы датчика движения.

    Вот этим дорожки, со слоем припоя на них, именно они – чаще остальных горят при перегрузке, неправильно подключенного K3. Если такое произойдет, то заменять придется и реле.

    По инструкции, датчик освещения LXP-03 в состоянии коммутировать токи 25А. На плате указано, что ток реле 30А, скорее всего производители решили перестраховаться, и я, в этом плане, от них не далеко ушел. Решил ограничить ток на 16А.

    Для освещения – это ещё и с запасом.

    Ну и на десерт – все самое интересное:

    Представленная схема взята именно с той платы, которая показана в начале статьи. Сейчас производитель активно улучшает и изменяет свое устройство, поэтому некоторые данные могут измениться.

    В принципе, все одинаково:

    Напряжение питания 220V поступает через ноль и клеммы. Ноль – N, клеммы – L.

    Если вы измените местами фазу и ноль , или вообще выключите ноль, а не фазы, то ничего страшного не случится. Но делать это крайне не рекомендуется, безопасность ещё некто не отменял.

    Выпрямляется напряжение при помощи диодного моста, 4 диода типа 1N4007. За фильтрование напряжения отвечает электролитический конденсатор, стабилизация происходит на уровне +22…24V, для этого, установлен стабилитрон типа 1N4748.

    Оставшаяся часть схемы питается от постоянного напряжения. Устроена она следующим образом: На выходе резистивного делителя 68к — VR — Фоторезистор создается напряжение, которое полностью обратно идентично уровню освещения. То устройство, которым настраивается уровень срабатывания – это подстроечный резистор VR с сопротивлением 1 МОм.

    Что именно ставят в такие схемы: фоторезистор или фотодиод – неизвестно. Вероятнее фоторезистор, но похожий фотодиод тоже может там стоять.

    Если вы хотите экономно и эффективно расходовать электроэнергию, то крутите контролер по часовой стрелке до максимума, так датчик освещения будет срабатывать только при наступлении полной темноте. Выкрутив регулятор в обратную сторону, то будьте готовы кто тому, что свет будет включаться даже днем, если над вами нависнет большая туча.

    Вот, как проходит процесс выключения света при наступлении темноты: уровень освещения падает, начинает расти сопротивление фоторезисторов, напряжение на базе транзистора растет. Когда напряжение достигает определенного уровня, транзистор открывается и через коллектор начинает протекать ток, который активирует реле К1. Контактами реле включает нагрузку. Нагрузка подключается через вывод LOAD.

    Для обозначения рабочего состояния загорается светодиод . Чтобы реле слишком часто не переключало датчик, например, от колеблющейся ветки дерева, на схеме установлен конденсатор 47 мкФ, который сглаживает все процессы.

    Более мощная схема датчик освещения LXP-03:

    Она идентична первой схеме в статье, отличия перечислю:

    1. Схема питания в состоянии ограничивать напряжение в фазной цепи.

    2. Тут диодный мост с фильтрами. Такой же и в предыдущей схеме, просто я не очень удачно её изобразил.

    3. Вместо одного стабилитрона, как на первой схеме, тут их установлено два последовательно. Притом, напряжение осталось прежнее – +24В.

    4. Здесь установлено более мощное реле, с соответственно более мощным током катушки. Также, здесь используется составная схема на два комплементарных транзистора.

    Если вы знаете, как работает схема, то её будет легко отремонтировать.

    Дополнительные функции в современных автомобилях делают вождение удобнее и безопаснее. Одной из таких опций является датчик света автомобиля. В статье расскажем о его устройстве и принципе работы.

    Что такое датчик света в автомобиле

    Другое название этой опции – датчик освещенности. Его устройство довольно простое. Представляет собой фотоэлемент, блок управления и небольшое реле. Сам элемент устанавливается в наиболее освещенном месте автомобиля, не подверженном загрязнению. Обычно над или под лобовым стеклом. Косвенно датчик освещенности можно отнести к системам безопасности. Водитель может просто забыть или проигнорировать необходимость включения фар при въезде в тоннель или другой затемненный участок. Система это сделает сама.

    Датчик света в салоне

    Фотоэлемент фиксирует изменение освещенности в пространстве. Если света недостаточно, то передается сигнал в блок управления, а затем реле включает ближний свет и габаритные огни. Если система фиксирует достаточную освещенность — то светотехника выключается.

    Устройство датчика света

    Конструкция компонента и всей системы довольно простое. Если такая опция присутствует в базовой комплектации автомобиля, то он располагается в специальной выемке перед лобовым стеклом. В корпусе датчика находится светодиод и светочувствительные элементы. Датчик соединен с блоком управления, реле и контактами включения габаритов и ближнего света.

    Переключатель управления освещением нужно выставить положение AUTO, чтобы система работала в автоматическом режиме.

    Переключатель системы освещения. Положение AUTO

    Специальные фотодиодные фильтры распознают дневной и электрический свет. Очень удобно, например, при въезде в тоннель или крытую парковку. Также можно настроить время затухания фар после выключения зажигания или при нормальном освещении.

    Виды датчиков света

    Обычный сенсор освещенности

    Если автомобиль не оснащен таким устройством, то его без труда можно установить самому. Стоит система недорого. Достаточно закрепить датчик, подключить реле и правильно соединить провода с электропроводкой автомобиля. Система будет исправно работать.

    Встроенный датчик освещенности

    Встроенные компоненты контроля освещенности идут в более дорогих комплектациях автомобилей. Как правило, набор их функций более широкий. Можно настроить систему на включение света в салоне, включение и выключение подсветки приборной панели.

    Комбинированный датчик освещенности

    Часто датчик света может быть объединен в одном устройстве с датчиком дождя. В этом случае он крепится в верхней части лобового стекла. Если с датчиком света все понятно, то в основе работы датчика дождя также лежат фотодиоды и фотоэлементы. Если на лобовое стекло попадают капли дождя, то проходящий свет преломляется по-другому и рассеивается на обратном пути. Фотоэлементы это улавливают и . При сильном дожде автоматически включаются и фары. Водители отмечают, что система работает корректно и правильно. Водителю не нужно включать стеклоочистители всякий раз, когда намокнет стекло. Фотоэлемент определяет уровень воды на стекле и интенсивность дождя и корректирует частоту взмахов стеклоочистителей самостоятельно. В некоторых моделях при дожде включается подогрев стекла, чтобы предотвратить его запотевание.

    Как проверить работоспособность устройства

    Данная опция очень удобна и водители к ней быстро привыкают. Не нужно беспокоиться о включении или выключении фар – система делает это сама. Но если система выйдет из строя, то автолюбитель может вовремя и не заметить поломки.

    Проверить датчик освещенности очень просто. Достаточно накрыть его темным материалом или ветошью. Если все в порядке, то система воспримет это как ночь и включит свет и габаритные огни.

    Каждый из нас мечтает, чтобы собственный дом был автоматизирован и для включения света или телевизора достаточно было просто войти в комнату. Если с бытовой техникой в плане автоматизации дела обстоят не очень, то с системой освещения все намного лучше. И сегодня в доме или квартире можно с помощью специальных устройств относительно просто создать систему для автоматического освещения.

    Наша статья расскажет вам, каким образом можно своими руками организовать в любом помещении дома качественную систему освещения, работающую в автоматическом режиме.

    Автоматизация подсветки: преимущества и назначение

    Создание системы для автоматического управления освещения в домашних помещениях является той мечтой, которая сегодня легко воплощается в жизнь с помощью специального оборудования. Такие системы в доме имеют следующие преимущества:

    • эффективное и комфортное управление работой осветительных приборов без непосредственного участия человека;
    • возможность установить автоматическое устройство системы управления света своими руками;
    • автоматическое включение света в темное время суток;
    • экономия на электричестве. Устройство (датчик движения, реле и т.д.), которое используется в той или иной ситуации, позволяет добиться разной степени экономии электроэнергии.

    Автоматическая подсветка помещения

    Стоит отметить, что системы автоматического освещения, применяемые внутри помещения, входят в понятие «умный дом» или «умный свет». Подключая такие системы, вы получаете возможность быстрого, комфортного и эффективного управления уровнем освещения в любом помещении дома, где установлена необходимая аппаратура.
    В зависимости от того, какое устройство имеет тот или иной прибор (датчик, реле и т.д.), включение света может осуществляться следующим образом:

    • через регистрацию прибором в заданной области движения. Здесь устройство содержит специальный сенсор, улавливающий любые изменения в контролируемой области. Тут для выключения/включения освещения необходима установка датчика движения;
    • через звуковые эффекты. Например, для включения света нужно похлопать в ладони. Здесь нужен специальный звуковой выключатель;
    • через степень освещенности. В данной ситуации используется реле, устройство которого способно оценивать уровень освещенности в доме и при падении ее ниже определенного показателя, производить включение света.

    Обратите внимание! Все перечисленные выше способы включения и выключения освещения в темное время суток могут использоваться как в доме, так и на улице. Но те аппараты, которые способны реагировать на звуковой сигнал, стоит устанавливать именно в помещениях, чтобы снизить риск ложного срабатывания.

    В некоторых ситуациях можно даже комбинировать приборы, имеющие разное устройство, чтобы достичь максимально полной автоматизации системы автоматического включения света в любом помещении дома или квартиры.
    Теперь рассмотрим более детально каждый тип аппаратов, применяемых для организации системы автоматического освещения.

    Датчики движения – самый распространенный вариант

    Чаще всего в доме система автоматического освещения организовывается путем установки датчиков движения. Такие приборы бывают самыми разнообразными:

    • инфракрасными. Являются самыми безопасными в плане длительной эксплуатации в жилых помещениях. Они проводят оценку изменений теплового сигнала и при обнаружении разницы между посланным и принятым сигналом могут включать или выключать свет в комнате;

    Инфракрасный датчик движения

    • микроволновой и ультразвуковой датчик. Такие изделия чаще используются для автоматизации системы освещения на улице. Это связано с тем, что микроволновое управление светом, особенно при длительном использовании, может негативно сказываться на состоянии здоровья людей. Принцип работы микроволнового и ультразвукового датчика практически аналогичен. Разница заключается только в типе принимаемого и испускаемого сигнала: микроволны или ультразвук. Схемы организации таких устройств почти идентичны;

    Микроволновой датчик движения

    Комбинированный датчик

    • комбинированный датчик. Такое управление светом, как и инфракрасное, является наиболее оптимальным для дома. Устройство комбинированного датчика содержит два типа сенсора, которые анализируют сигналы в контролируемой области.

    Обратите внимание! Комбинированные и инфракрасные датчики дают минимальное количество ложных срабатываний.

    Для правильной работы прибора нужны схемы подключения, которые обычно предоставляются производителями и находятся либо в инструкции к прибору, либо нанесены на бок упаковки. Схемы подключения могут иметь разный вид. Все зависит от модели прибора, с помощью которого планируется организовывать управление светом.
    Монтаж датчиков движения возможен в любых помещениях дома, включая ванную комнату и туалет. Свет в такой ситуации будет включаться при вхождении человека в комнату, и выключаться при его выходе.
    Кроме этого подобные устройства часто комбинируют с таким элементом, как автоматический выключатель света. Он может дополнять и другие типы устройств данной системы.

    Умный выключатель — хлопаем в ладоши

    Умный выключатель

    Еще одним довольно оригинальным, но, тем не менее, популярным способом включения света в помещении является установка выключателя, реагирующего на хлопки ладонями.

    Такое устройство оснащено микрофоном, для которого характерна высокая избирательность. Этот микрофон способен различать определенный звук и отделять его от других звуковых колебаний. Кроме этого, умный выключатель оснащен специальной автоматикой, которая способна анализировать полученный звуковой спектр и вычленять из него необходимый сигнал.

    Обратите внимание! Умный выключатель может реагировать не только на хлопок ладоней, но и на специальное слово. При желании в качестве сигнала можно использовать любую вариацию звуковых колебаний. Здесь главное грамотно все настроить.

    Для установки такого выключателя также используют специальные схемы. Это нужно обязательно учитывать при монтаже аппарата в доме.
    Использовать выключатель лучше всего в таких комнатах, как спальня, гостиная, кухня, коридор. А вот для ванной комнаты с туалетом умный выключатель не подойдет.

    Фотореле и их роль в системе автоматической подсветки дома

    Фотореле

    Все устройства, которые применяются для организации в доме автоматической системы подсветки, могут в той или мере реагировать на степень освещенности. Но есть специальные изделия, которые реагируют на уровень естественной подсветки. Это реле разных модификаций.

    Управление светом здесь происходит при снижении уровня естественного света ниже установленного показателя. Для того чтобы управление было правильным, реле такого плана нужно устанавливать, используя правильные схемы. Реле устанавливается в осветительный прибор. Только после этого управление будет доступно. Поэтому, если неправильно подключить хотя бы один провод, реле не будет функционировать как нужно.

    Схема подключения фотореле

    Вместе с тем стоит отметить, что при организации системы автоматического освещения внутри жилого сооружения, фотореле или другие его модификации используются редко. Чаще они входят в систему наружной подсветки, где их размещение будет наиболее актуальным и эффективным. Здесь, как правило, используется фотореле, которое имеет вид датчика. Он имеет определенную чувствительность к световым лучам. Попадая на реле, солнечные лучи способствую переходу устройства в режим изолятора. А вот в темное время суток, когда световой поток ослабевает, реле преобразуется в проводник. В результате такого преобразования происходит включение света ночью и вечером. Запитка прибора идет от электросети дома.

    Заключение

    Для того чтобы организовать в доме качественную и эффективную систему автоматического включения света, можно использовать три группы устройств. Каждая из них обладает своими преимуществами и недостатками, которые следует учитывать при выборе для дома. Есть некоторые приборы (микроволновые датчики движения), длительная работа которых вблизи людей недопустима по причине нанесения значительного вредя здоровью. И эта статья поможет вам сделать взвешенный выбор в пользу того или иного вида автоматического прибора для освещения жилых комнат.

    Как подобрать и установить датчики объема для автоматического управления светом

    Данные устройства предназначены для включения или отключения освещения на улице, основной особенностью является автоматическое управление этим процессом.

    Могут также называться:

    1. Сумеречное реле.
    2. Датчик света или освещения.
    3. Сумеречный выключатель.
    4. уличным освещением.

    Вне зависимости от приведенных названий, все они по своей сути являются одним и тем же приспособлением, с одинаковыми функциями и предназначением.

    Среди главных особенностей можно выделить следующие нюансы:

    1. Подавляющее большинство современных разновидностей являются программируемыми приборами с возможностью запоминания заданных параметров для изменения времени включения датчиков в зависимости от времени года и настройки других характеристик.
    2. Несмотря на то , что датчики предназначены для автоматического включения и отключения, на них имеется специальный тумблер или кнопка, позволяющие осуществлять ручное управление прибором.
    3. Ряд современных моделей наделен таймером , который позволяет автоматически включаться и отключаться не только в зависимости от окружающей обстановки, но и в соответствии с установленным временем.
    4. Все современные разновидности изготавливаются в специальном защитном корпусе из пластика, который изначально имеет возможность крепежа на поверхность стены или обратную сторону осветительного прибора.
    5. В случаях , если мощность светильников превышает соответствующий показатель датчиков освещения, то их эксплуатация все равно возможна, но в таком случае коммутация в электросеть должна происходить только через специальные пускатели магнитного типа или контактор, обладающий соответствующими параметрами.
    6. Если в приспособление дополнительно вмонтирован датчик , реагирующий на движения объектов, то установку необходимо осуществлять, учитывая обеспечиваемый кругозор окружающей территории.
    7. Имеется возможность подключения сразу целого ряда светильников на одну выходную группу фотореле, в этом случае должна быть задействована параллельная схема подключения.

    Устройство и принцип работы


    Классическое устройство подобных датчиков выглядит следующим образом и включает основные составляющие части:

    1. Фотоэлемент , способный распознавать и реагировать на степень естественного освещения в месте, где был установлен датчик.
    2. Сумеречный фотовыключатель , обеспечивающий автоматическое функционирование.
    3. Реле времени для обеспечения настройки соответствующих параметров.
    4. Усилитель сигналов.
    5. Ступень переключения.
    6. Потребитель электроэнергии , которым может являться любая современная разновидность ламп.

    Принцип, по которому происходит функционирование датчиков уличного освещения, достаточно прост и заключается в следующем:

    1. Светочувствительная деталь , обязательно входящая в конструкцию, меняет показатель своего сопротивления, если было зафиксировано какое-либо изменение в параметрах интенсивности окружающего освещения. Обычно эту функцию выполняет специальный резистор или фотодиод, также могут быть задействованы особые разновидности или тиристоров.
    2. От фотоэлемента , через схему регулировки, передается специфический сигнал, который направлен на вход транзистора.
    3. Транзистор оснащен реле , которое расположено в нагрузочной сети, после получения сигнала его контакты начинают процесс коммутации заданных пользователем нагрузок на источник света.

    Иными словами, функционирование датчика происходит по тем же принципам, что и работа стандартного выключателя, только осуществляется оно в автоматическом режиме.

    Виды уличных датчиков


    Все подобные устройства можно классифицировать по разным признакам, но основное деление осуществляется по способам управления :

    1. Приспособления , осуществляющие абсолютно все действия в автоматическом режиме в зависимости от изменений окружающего освещения.
    2. Приспособления , наделенные возможностью принудительного выключения.
    3. Приспособления , обладающие функцией сбережения расходуемой энергии в ночное время суток.
    4. Программируемые приспособления , в которых параметры функционирования и все настройки задаются пользователем в ручном режиме.

    Также, все датчики вне зависимости от способа управления можно классифицировать по типу нагрузки :

    1. Устройства , предназначенные для работы с обычными лампами накаливания на 220В, а также галогеновой разновидностью ламп на 220В или на 12В, функционирующих при помощи электронного или обмоточного .
    2. Устройства , предназначенные для работы с или разновидностями ламп и со светодиодными источниками света.

    Существует схожая классификация, разделяющая датчики по максимально возможной мощности нагрузки:

    1. Выдерживающие не более 1000 Вт.
    2. Выдерживающие не более 2000 Вт.
    3. Выдерживающие максимальное значение равное 3000 Вт.

    Последним вариантом классификации является деление всех датчиков по возможному типу монтажа:

    1. Устройства , предназначенные для внутренней установки. Подразумевается, что такие датчики монтируются внутрь электрощита при помощи стандартной DIN рейки.
    2. Накладные разновидности , предполагающие внешнюю установку. Вся конструкция устройства при этом будет расположена на поверхности стены.
    3. Приспособления , которые имеют выносной фотоэлемент для определения уровня внешнего освещения.

    Важно знать, что все подобные устройства также имеют и различную защиту от влаги, на открытых уличных пространствах допускается установка только тех приборов, которые имеют уровень защиты IP44 или IP54.

    Применение, плюсы и минусы использования

    Область применения у подобных приборов довольно широкая, чаще всего они используются в следующих целях:

    1. Автоматическое включение уличного света в наиболее темных местах.
    2. Осуществление подсветки фасадов различных построек.
    3. Освещение дачных участков в вечернее и ночное время.
    4. Увеличение зоны видимости систем видеонаблюдения в позднее время или в затемненных местах.
    5. Проведения освещения во дворы жилых районов.

    Использование фотореле в последнее время становится все более популярным, и подобные системы постепенно получают все более широкое распространение, это обусловлено следующими значимыми преимуществами:

    1. Самостоятельное включение и возможность ручного регулирования параметров данного процесса, является выгодным в финансовом плане, поскольку позволяет осуществлять экономию при оплате счетов за расходуемую электроэнергию.
    2. Существуют некоторые разновидности подобных приспособлений, например, обладающие встроенным в конструкцию фотоэлементом, которые отличаются довольно простой схемой установки и подключения. Это позволяет самостоятельно организовывать монтаж устройства без привлечения к этому процессу квалифицированных специалистов.
    3. Некоторые модели снабжены таймерами , это увеличивает их стоимость, но позволяет осуществлять значительную экономию в ходе эксплуатации, поскольку индивидуальный режим позволяет автоматически включать освещения только в те моменты, когда в этом есть необходимость.
    4. Автоматическое выполнение прибором всех необходимых действий. При этом, ряд более сложных современных моделей позволяет запускать освещения только в случае, если устройство фиксирует какие-либо движения. Это происходит благодаря наличию в конструкции специальных датчиков.
    5. Повышение уровня безопасности , поскольку автоматически включенное освещение создает иллюзию присутствия людей и способно отпугнуть злоумышленников.

    Какими-либо существенными недостатками подобные приспособления не обладают, если не считать тот факт, что они потребуют некоторых расходов. Однако, учитывая все преимущества и удобство подобных систем, этот минус является незначительным, а фотореле своей работой компенсирует все траты.

    Пошаговая инструкция подключения


    Перед началом проведения каких-либо работ, необходимо ознакомиться с сопутствующей технической документацией, поскольку там должна быть приведена схема подключения приспособления. Это является важным условием, так как особенности данного процесса зависят от разновидности датчика, его возможностей и наличия дополнительных элементов.

    Универсальных схем, которые одинаково подходили бы для всех устройств подобного типа, не существует.

    Однако, фактически во всех случаях, выводы реле представляют собой 3 провода, обладающие разной цветовой маркировкой, она соответствует следующим обозначениям:

    1. Черный проводник является фазой.
    2. Зеленый проводник является нулем.
    3. Красный проводник является фазой, которая коммутируется на источник освещения.
    1. Предварительно нужно установить на стене распределитель, в котором будет осуществляться соединение проводников.
    2. Подключить устройство в соответствии со схемой, которая изображена на нем самом или в технической документации, которая шла в комплекте с прибором. Для крепежа потребуется использовать специальный кронштейн, который монтируется в место, где на датчик будут попадать прямые солнечные лучи.
    3. Произвести коррекцию системы можно при помощи регулятора, это поможет настроить его реакцию на изменения условий освещенности.
    4. Монтаж самого регулятора осуществляется на внешней части устройства, обычно ему соответствуют следующие технические характеристики: чувствительный диапазон равен 5-10 Люкс; мощность равна 1-3 кВт, а параметры максимально допустимого тока 10А.
    5. Если приспособление было установлено внутри электрощита , куда не имеют доступа солнечные лучи, а также обладает довольно сложной конструкцией, то сам датчик и переключатель монтируются по отдельности, соединить оба элемента необходимо с помощью специальных кабелей.
    1. Если имеется внешний фотоэлемент , то его необходимо расположить таким образом, чтобы избежать прямого попадания света от подключаемого светильника, иначе устройство не будет правильно функционировать.
    2. Для осуществления проверки правильности подключения системы, потребуется подсоединение пускателя к электросети, это поможет убедиться, срабатывает ли фонарь.

    Широкий ассортимент моделей подобных устройств, обладающих различными возможностями, зачастую усложняет процесс выбора.

    Для того, чтобы он был осуществлен правильно, рекомендуется учесть следующие факторы:

    1. Условия , в которых будет использоваться данное приспособление. Например, для частных дачных участков хорошо подходят датчики, наделенные возможностью настройки порогов срабатывания, чтобы уменьшить объемы потребляемой электроэнергии. Иногда рационально использовать приборы с таймером, которые позволяют создать расписание их работы на год вперед.
    2. Совместимость имеющихся светильников и приобретаемого датчика по техническим параметрам. Важно не только чтобы они подходили по нагрузке и потребляемой мощности, но и чтобы у приспособления имелось около 15-20% запаса мощности.
    3. Ценовой диапазон. Многие устройства обладают рядом дополнительных функций, например, возможностью срабатывания при фиксации движения. Поскольку они влияют на итоговую стоимость прибора, необходимо заранее подумать насколько все возможности датчика будут востребованы, чтобы не переплачивать за него лишние деньги.

    Обзор моделей

    Для наглядной демонстрации подобных устройств, будет проведен небольшой обзор ряда моделей:

    Фотореле ФР-7


    Датчик освещения LXP-02 и LXP-03. Монтаж

    В статье рассмотрим вопросы монтажа и подключения датчика освещенности. Также приведены электрические схемы наиболее популярных моделей датчиков света.

    Напоминаю, что это устройство широко применяется в сфере домашней автоматики для включения/выключения электрического освещения в зависимости от уровня освещенности на улице. Названия могут быть разные – датчик света, датчик освещенности, светоконтролирующим выключателем или фотореле, но суть одна.

    Подробно о таком датчике я рассказал в первой части статьи – . Там подробно рассмотрено его устройство, работа и характеристики.

    Поэтому – сразу перехожу к делу:

    Подключение датчика освещенности

    Приведу три варианта схемы подключения, все они идентичны, разница только в способе отображения.

    1. Схема по аналогии с датчиком движения

    Схема подключения датчика освещенности полностью совпадает со . Отличается только “начинка” датчиков.

    Схема взята из статьи про датчик движения, ссылка выше.

    2. Схема подключения датчика света из инструкции

    Вот как схема подключения датчика света приведена в инструкции:

    Датчик освещения LXP. Схема подключения из инструкции

    3. Подключение на основе фото датчика

    Для тех, кто любит, чтобы всё было “на пальцах”, привожу такую картинку:

    Небольшое пояснение по схемам подключения:

    • На коричневый провод приходит фаза.
    • На синий провод подключается ноль.
    • На красный провод подключается нагрузка (первый вывод светильника).
    • Второй вывод светильника подключается к нулю (туда же, куда и синий провод датчика)

    Стоит добавить, что датчики света могут быть подключены так же, как и обычные выключатели – последовательно и параллельно, если есть необходимость. Пример можно увидеть в статье про .

    Итак, с подключением разобрались, теперь

    Монтаж датчика освещения

    Казалось бы, чего тут премудрого? Прикрутил (см.картинку в начале статьи), подключил, настроил, и всё! Но бывает, место установки выбрано неудачно, и начинаются проблемы.

    У нас на улице одно время уличные светильники вечером включались замысловато. Включатся, потухнут, опять включатся, и так с периодом около 1 минуты. Потом, с наступлением хорошей темноты, включались окончательно.

    Почему так? Просто датчик освещения ошибочно был установлен в зону освещения включаемого фонаря. Получается: стало темно – датчик сработал – фонарь загорелся – стало светло – датчик выключился – стало темно… И так далее, замкнутый круг.

    Настройка и калибровка

    При настройке датчика освещенности важно использовать черный пакетик, который идёт в комплекте с датчиком. Этот пакетик служит для имитации ночи.

    Кулечек для настройки датчика освещения

    Из органов настройки в датчике освещенности – только регулятор уровня освещения (LUX). Он устанавливает уровень, про котором срабатывает внутреннее реле датчика.

    Подробнее настройка уровня описывается в описании принципиальной схемы, ниже.

    Есть простейшие датчики освещения (например, LXP-01), в котором вообще нет никаких регулировок. Есть продвинутые, где ещё есть регулятор времени задержки включения/выключения.

    Ну, а теперь самое интересное –

    Схемы датчиков освещения

    Несомненно, для быстрого и легкого ремонта датчика освещенности нужна его схема, по которой сразу станет понятно, что куда подключено и как работает. Ниже привожу парочку схем датчиков и рекомендации по ремонту. Будут вопросы по ремонту – задавайте в комментариях.

    Схема срисована именно с той платы, которая показана по ссылке в начале статьи. Стоит отметить, что производитель постоянно работает над улучшением своего устройства (цена/качество), поэтому схема может меняться.

    Датчик освещения LXP-02. Схема электрическая принципиальная

    Но принцип остается тот же:

    Напряжение питания 220 Вольт поступает через клеммы L (фаза) и N (ноль).

    Фазу и ноль можно “перепутать”, как в принципе можно (но не рекомендуется) выключать ноль, а не фазу в обычных выключателях. Страдает только безопасность и здравый смысл.

    Напряжение выпрямляется диодным мостом (4 диода типа 1N4007), фильтруется (сглаживается) электролитическим конденсатором, и стабилизируется на уровне +22…24 Вольта стабилитроном типа 1N4748.

    Далее постоянное напряжение питает остальную схему, которая работает так. На выходе резистивного делителя 68к – VR – Фоторезистор формируется напряжение, обратно пропорциональное освещённости. Подстроечный резистор VR с сопротивлением 1 МОм – это та самая “крутилка”, с помощью которой устанавливается желаемый уровень срабатывания.

    Не факт, что в таких схемах ставят фоторезистор, может стоять и фотодиод, но принцип тот же.

    Хотите экономить электроэнергию – ставьте максимальное сопротивление, крутите его по часовой (LUX- ), и он будет срабатывать тогда, когда будет уже совсем темно.

    А хотите, чтобы освещение на улице включалось от малейшей тучки – крутите регулятор в другую сторону (LUX+ ).

    При наступлении темноты освещенность падает, сопротивление фоторезистора растёт, напряжение на базе транзистора растёт. И достигает такого уровня, что транзистор открывается, через коллектор протекает ток, достаточный для включения реле КА . Реле своими контактами включает нагрузку, которая подключается через вывод LOAD .

    При этом загорается светодиод, а конденсатор 47 мкФ в цепи базы сглаживает все процессы, чтобы реле слишком быстро не щёлкало, например, если его перекрывает ветка дерева, колеблющаяся от ветра.

    В заключение – схема более мощной модели, LXP-03:

    Схема подключения датчика движения для освещения. Датчик движения для включения света – принцип работы Как подключаются датчики движения

    Включать освещение в некоторых помещениях или на улице на весь темный период неразумно. Чтобы свет горел только тогда когда нужно, в цепь питания светильника ставят датчик движения. В «нормальном» состоянии он разрывает цепь питания. При появлении в его зоне действия какого-то движущегося предмета, контакты замыкаются, освещение включается. После того, как объект пропадет из зоны действия, свет выключается. Такой алгоритм работы отлично показал себя в уличном освещении, в освещении подсобных помещений, коридоров, подвалов, подъездов и лестниц. В общем, в тех местах, где люди появляются только периодически. Так что для экономии и удобства лучше поставить датчик движения для включения света.

    Виды и разновидности

    Датчики движения для включения света могут быть разных типов, предназначены для различных условий эксплуатации. В первую очередь надо смотреть где может устанавливаться устройство.

    Уличные датчики движения имеют высокую степень защиты корпуса. Для нормальной эксплуатации на открытом воздухе берут датчики с IP не ниже 55, но лучше — выше. Для установки в доме можно брать IP 22 и выше.

    Тип питания


    Самая многочисленная группа — проводные для подключения к 220 В. Беспроводных меньше, но их тоже достаточно. Они хороши если включать надо освещение, работающее от низковольтных источников тока — аккумуляторных или солнечных батарей, например.

    Способ определения наличия движения

    Датчик движения для включения света может определять движущиеся объекты используя различные принцип детекции:


    Чаще всего для включения света на улице или дома используют инфракрасные датчики движения. Они имеют невысокую цену, большой радиус действия, большое количество регулировок, которые помогут настроить его. На лестницах и в длинных коридорах лучше поставить датчик с ультразвуком или микроволновой. Они в состоянии включить освещение даже если вы еще далеко от источника света. В охранных системах рекомендованы к установке микроволновые — они обнаруживают движение даже за перегородками.

    Технические характеристики

    После того, как определились с тем, какой датчик движения для включения света вы будете ставить, надо подобрать его технические характеристики.

    Угол обзора

    Датчик движения для включения света может обладать различным углом обзора в горизонтальной плоскости — от 90° до 360°. Если к объекту могут подходить с любого направления, ставят датчики с радиусом 180-360° — в зависимости от его расположения. Если устройство закреплено на стене, достаточно 180°, если на столбе — уже нужно 360°. В помещениях можно использовать те, которые отслеживают движение в узком секторе.

    Если дверь одна (подсобное помещение, например), может быть достаточно узкополосного датчика. Если в помещение входить могут с двух-трех сторон, модель должна уметь видеть, как минимум, на 180°, а лучше — во все стороны. Чем шире»охват», тем лучше, но стоимость широкоугольных моделей значительно выше, так что стоит исходить из принципа разумной достаточности.

    Есть также угол обзора по вертикали. В обычных недорогих моделях он составляет 15-20°, но есть модели, которые могут охватывать до 180°. Широкоугольные детекторы движения обычно ставят в охранных системах, а не в системах освещения, так как стоимость их солидная. В связи с этим, стоит правильно подбирать высоту установки прибора: чтобы «мертвая зона», в которой детектор просто ничего не видит, была не в том месте, где движение наиболее интенсивное.

    Дальность действия

    Тут снова-таки, стоит выбирать с учетом того, в помещении будет устанавливаться датчик движения для включения света или на улице. Для помещений радиуса действия в 5-7 метров хватит с головой.

    Для улицы желательна установка более «дальнобойных». Но тут тоже смотрите: при большом радиусе охвата ложные срабатывания могут быть очень частыми. Так что слишком большая зона покрытия может быть даже недостатком.

    Мощность подключаемых светильников

    Каждый датчик движения для включения света рассчитан на подключение определенной нагрузки — он может пропускать через себя ток определенного номинала. Потому, при выборе, надо знать, суммарную мощность ламп, которые устройство будет подключать.

    Чтобы не переплачивать за повышенную пропускную способность датчика движения, да еще и сэкономить на счетах за электричество, используйте не лампы накаливания, а более экономичные — газоразрядные, люминесцентные или .

    Способ и место установки

    Кроме явного деления на уличные и «домашние» есть еще один тип деления по месту установки датчиков движения:


    Если освещение включается только для повышения комфорта, выбирают корпусные модели, так как при равных характеристиках они дешевле. Встраиваемые ставят в охранных системах. Они миниатюрные, но более дорогие.

    Дополнительные функции

    Некоторые детекторы движения имеют дополнительные возможности. Некоторые из них явное излишество, другие, в определенных ситуациях, могут быть полезны.


    Это все функции, которые могут быть полезны. Особенно обратите внимание на защиту от животных и задержку отключения. Это действительно полезные опции.

    Где разместить

    Установить датчик движения для включения освещения надо правильно — чтобы работал он корректно, придерживайтесь определенных правил:


    В больших помещениях устройство лучше устанавливать на потолке. Его радиус обзора должен быть 360°. Если датчик должен включать освещение от любого движения в помещении, его устанавливают по центру, если контролируется только какая-то часть, расстояние выбирается так, чтобы «мертвая зона» бала минимальной.

    Датчик движения для включения света: схемы установки

    В самом простом случае датчик движения подключается в разрыв фазного провода, который идет на лампу. Если речь идет о темном помещении без окон, такая схема работоспособна и оптимальна.

    Если говорить конкретно о подключении проводов, то фаза и ноль заводятся на вход датчика движения (обычно подписаны L для фазы и N для нейтрали). С выхода датчика фаза подается на лампу, а ноль и земля на нее берем со щитка или с ближайшей распределительной коробки.

    Если же речь идет об уличном освещении или включении света в помещении с окнами, надо будет или ставить датчик освещенности (фотореле), или устанавливать на линии выключатель. Оба устройства предотвращают включение освещения в светлое время суток. Просто одно (фотореле) работает в автоматическом режиме, а второе включается принудительно человеком.

    Ставятся они также в разрыв фазного провода. Только при использовании датчика освещенности, его надо ставить перед реле движения. В таком случае оно будет получать питание только после того как стемнеет и не будет работать «вхолостую» днем. Так как любой электроприбор рассчитан на определенное количество срабатываний, это продлит срок эксплуатации датчика движения.

    Все описанные выше схемы имеют один недостаток: освещение нельзя включить на длительное время. Если вам надо вечером проводить какие-то работы на лестнице, вам придется все время двигаться, иначе периодически свет будет отключаться.

    Для возможности длительного включения освещения, параллельно с детектором устанавливается выключатель. Пока он выключен, датчик в работе, свет включается когда он срабатывает. Если вам надо включить лампу на длительный период, щелкаете выключателем. Лампа горит все время, пока выключатель снова не будет переведен в положение «выключено».

    Регулировка (настройка)

    После монтажа, датчик движения для включения света необходимо настроить. Для настройки почти всех параметров на корпусе есть небольшие поворотные регуляторы. Их можно поворачивать, вставив в прорезь ноготь, но лучше использовать маленькую отвертку. Опишем регулировку датчика движения типа ДД со встроенным датчиком освещенности, так как они чаще всего ставятся в частных домах для автоматизации .

    Угол наклона

    Для тех датчиков, которые крепятся на стенах, сначала надо выставить угол наклона. Они закреплены на поворотных кронштейнах, при помощи которых и изменяется их положение. Его надо выбрать так, чтобы контролируемая область была самой большой. Точные рекомендации дать не получится, так как зависит это от угла вертикального обзора модели и от того, на какой высоте вы его повесили.

    Оптимальная высота установки датчика движения — около 2.4 метра. В этом случае даже те модели, которые могут охватывать всего 15-20° по вертикали контролируют достаточное пространство. Настройка угла наклона — это очень приблизительное название того, чем вам придется заниматься. Будете понемногу менять угол наклона, проверять, как срабатывает в таком положении датчик с разных возможных точек входа. Несложно, но муторно.

    Чувствительность

    На корпусе эта регулировка подписана SEN (от английского sensitive — чувствительность). Положение можно менять от минимального (min/low) до максимального (max/hight).

    Это — одна из самых сложных настроек, так как от нее зависит будет ли срабатывать датчик на мелких животных (кошек и собак). Если собака большая, избежать ложных срабатываний не удастся. Со средними и мелкими животными это вполне возможно. Порядок настройки такой: выставляете на минимум, проверяете, как срабатывает на вас и на обитателей меньшего роста. Если необходимо, понемногу чувствительность увеличиваете.

    Время задержки

    У разных моделей диапазон задержки выключения разный — от 3 секунд до 15 минут. Вставлять его надо все также — поворотом регулировочного колеса. Подписано обычно Time (в переводе с английского «время»).

    Время свечения или время задержки — выбираете как вам больше нравится

    Тут все относительно легко — зная минимум и максимум вашей модели, примерно выбираете положение. После включения фонаря замираете и засекаете время, по истечении которого он отключится. Далее меняете положение регулятора в нужную сторону.

    Уровень освещенности

    Эта регулировка относится к фотореле, которое, как мы договорились, встроено в наш датчик движения для включения света. Если встроенного фотореле нет, ее просто не будет. Эта регулировка подписывается LUX, крайние положения подписаны min и max.

    При подключении регулятор выставляете в максимальное положение. А вечером, при том уровне освещенности, когда вы считаете должен уже включаться свет, поворачиваете регулятор медленно к положению min до тез пор, пока лампа/фонарь включатся.

    Датчик освещения LXP-02 и LXP-03. Монтаж

    В статье рассмотрим вопросы монтажа и подключения датчика освещенности. Также приведены электрические схемы наиболее популярных моделей датчиков света.

    Напоминаю, что это устройство широко применяется в сфере домашней автоматики для включения/выключения электрического освещения в зависимости от уровня освещенности на улице. Названия могут быть разные – датчик света, датчик освещенности, светоконтролирующим выключателем или фотореле, но суть одна.

    Подробно о таком датчике я рассказал в первой части статьи – . Там подробно рассмотрено его устройство, работа и характеристики.

    Поэтому – сразу перехожу к делу:

    Подключение датчика освещенности

    Приведу три варианта схемы подключения, все они идентичны, разница только в способе отображения.

    1. Схема по аналогии с датчиком движения

    Схема подключения датчика освещенности полностью совпадает со . Отличается только “начинка” датчиков.

    Схема взята из статьи про датчик движения, ссылка выше.

    2. Схема подключения датчика света из инструкции

    Вот как схема подключения датчика света приведена в инструкции:

    Датчик освещения LXP. Схема подключения из инструкции

    3. Подключение на основе фото датчика

    Для тех, кто любит, чтобы всё было “на пальцах”, привожу такую картинку:

    Небольшое пояснение по схемам подключения:

    • На коричневый провод приходит фаза.
    • На синий провод подключается ноль.
    • На красный провод подключается нагрузка (первый вывод светильника).
    • Второй вывод светильника подключается к нулю (туда же, куда и синий провод датчика)

    Стоит добавить, что датчики света могут быть подключены так же, как и обычные выключатели – последовательно и параллельно, если есть необходимость. Пример можно увидеть в статье про .

    Итак, с подключением разобрались, теперь

    Монтаж датчика освещения

    Казалось бы, чего тут премудрого? Прикрутил (см.картинку в начале статьи), подключил, настроил, и всё! Но бывает, место установки выбрано неудачно, и начинаются проблемы.

    У нас на улице одно время уличные светильники вечером включались замысловато. Включатся, потухнут, опять включатся, и так с периодом около 1 минуты. Потом, с наступлением хорошей темноты, включались окончательно.

    Почему так? Просто датчик освещения ошибочно был установлен в зону освещения включаемого фонаря. Получается: стало темно – датчик сработал – фонарь загорелся – стало светло – датчик выключился – стало темно… И так далее, замкнутый круг.

    Настройка и калибровка

    При настройке датчика освещенности важно использовать черный пакетик, который идёт в комплекте с датчиком. Этот пакетик служит для имитации ночи.

    Кулечек для настройки датчика освещения

    Из органов настройки в датчике освещенности – только регулятор уровня освещения (LUX). Он устанавливает уровень, про котором срабатывает внутреннее реле датчика.

    Подробнее настройка уровня описывается в описании принципиальной схемы, ниже.

    Есть простейшие датчики освещения (например, LXP-01), в котором вообще нет никаких регулировок. Есть продвинутые, где ещё есть регулятор времени задержки включения/выключения.

    Ну, а теперь самое интересное –

    Схемы датчиков освещения

    Несомненно, для быстрого и легкого ремонта датчика освещенности нужна его схема, по которой сразу станет понятно, что куда подключено и как работает. Ниже привожу парочку схем датчиков и рекомендации по ремонту. Будут вопросы по ремонту – задавайте в комментариях.

    Схема срисована именно с той платы, которая показана по ссылке в начале статьи. Стоит отметить, что производитель постоянно работает над улучшением своего устройства (цена/качество), поэтому схема может меняться.

    Датчик освещения LXP-02. Схема электрическая принципиальная

    Но принцип остается тот же:

    Напряжение питания 220 Вольт поступает через клеммы L (фаза) и N (ноль).

    Фазу и ноль можно “перепутать”, как в принципе можно (но не рекомендуется) выключать ноль, а не фазу в обычных выключателях. Страдает только безопасность и здравый смысл.

    Напряжение выпрямляется диодным мостом (4 диода типа 1N4007), фильтруется (сглаживается) электролитическим конденсатором, и стабилизируется на уровне +22…24 Вольта стабилитроном типа 1N4748.

    Далее постоянное напряжение питает остальную схему, которая работает так. На выходе резистивного делителя 68к – VR – Фоторезистор формируется напряжение, обратно пропорциональное освещённости. Подстроечный резистор VR с сопротивлением 1 МОм – это та самая “крутилка”, с помощью которой устанавливается желаемый уровень срабатывания.

    Не факт, что в таких схемах ставят фоторезистор, может стоять и фотодиод, но принцип тот же.

    Хотите экономить электроэнергию – ставьте максимальное сопротивление, крутите его по часовой (LUX- ), и он будет срабатывать тогда, когда будет уже совсем темно.

    А хотите, чтобы освещение на улице включалось от малейшей тучки – крутите регулятор в другую сторону (LUX+ ).

    При наступлении темноты освещенность падает, сопротивление фоторезистора растёт, напряжение на базе транзистора растёт. И достигает такого уровня, что транзистор открывается, через коллектор протекает ток, достаточный для включения реле КА . Реле своими контактами включает нагрузку, которая подключается через вывод LOAD .

    При этом загорается светодиод, а конденсатор 47 мкФ в цепи базы сглаживает все процессы, чтобы реле слишком быстро не щёлкало, например, если его перекрывает ветка дерева, колеблющаяся от ветра.

    В заключение – схема более мощной модели, LXP-03:

    По принципу работы, датчик освещения устроен так : фоточувствительный элемент, который установлен в датчики, способен изменять свое сопротивление , в зависимости от освещения. В виде этого элемента, обычно выступает фоторезистор.

    Потом, в действие вступает схема калибровки, через которую сигнал от фоторезистора переходит на транзистор.

    В цепи транзистора имеется реле. Транзистор, с помощью реле замыкает сеть и лампа или прожектор, который подключен к сети, начинает светиться. В статье, принцип работы, будет описан более подробно.

    Как подключить датчик освещения.

    Стоит отметить, что схема подключения датчика освещения, идентична схеме подключения датчика движения.

    Правильный монтаж датчика освещения.

    Конечно, подключить и настроить дело не трудно, куда труднее, определить правильно место для установки датчика. Рассказывал мне знакомый историю, как у него в районе уличный фонарь, то включался, то выключался.

    А после наступления полной темноты на улице, он, наконец, начинал нормально работать. Знаете, в чем было дело?

    Датчик освещенности установили прямо под фонарь. Из-за этого, при наступлении темноты, он включал фонарь, распознавал, что светло и выключал. Подобная ситуация может случиться у всех. Но, чтобы такого не было, нужно не устанавливать датчики освещенности, рядом с источником света.

    Настройка датчика движения.

    Когда будете калибровать датчик, то используй черный мешочек, он идет в комплекте.

    Единственное, что можно настроить у этого датчика, это регулятор освещенности. Им можно установить уровень, когда будет срабатывать реле. Подробности регулировки и настройки описываются ниже.

    Датчик освещенности LXP-01, можно отнести к простейшим. Он не дает возможности ничего в нем изменить и настроить. Существуют более продвинутые датчики, в них можно настроить задержку срабатывания.

    Внешний вид датчика движения.

    Датчик LXP-02.

    Назначения выходов датчика:

    1. Красный нужен для подведения нагрузки

    2. Синий, может быть зеленым, это ноль

    3. Коричневый (черный) – датчик питания.

    Если убрать белый корпус, то под ним увидим схему датчика, расположенную на печатной плате.

    Для простого расчета необходимого числа ламп воспользуйтесь Калькулятором расчета количества ламп .

    В датчике расположено реле DE3F-N-A на 24 VDC. Ток контактов 10А. Это значение определяет максимальную нагрузки, на которую способен датчик. То есть, 10 на 220, будет 2,2кВт. Точно также заявлено в инструкции.

    Но мое мнение: к этому датчику, не стоит подключать больше 4 ампер. Все, что выше, только через промежуточный пускатель.

    Фотография платы датчика движения.

    Вот этим дорожки, со слоем припоя на них, именно они – чаще остальных горят при перегрузке, неправильно подключенного K3. Если такое произойдет, то заменять придется и реле.

    По инструкции, датчик освещения LXP-03 в состоянии коммутировать токи 25А. На плате указано, что ток реле 30А, скорее всего производители решили перестраховаться, и я, в этом плане, от них не далеко ушел. Решил ограничить ток на 16А.

    Для освещения – это ещё и с запасом.

    Ну и на десерт – все самое интересное:

    Представленная схема взята именно с той платы, которая показана в начале статьи. Сейчас производитель активно улучшает и изменяет свое устройство, поэтому некоторые данные могут измениться.

    В принципе, все одинаково:

    Напряжение питания 220V поступает через ноль и клеммы. Ноль – N, клеммы – L.

    Если вы измените местами фазу и ноль , или вообще выключите ноль, а не фазы, то ничего страшного не случится. Но делать это крайне не рекомендуется, безопасность ещё некто не отменял.

    Выпрямляется напряжение при помощи диодного моста, 4 диода типа 1N4007. За фильтрование напряжения отвечает электролитический конденсатор, стабилизация происходит на уровне +22…24V, для этого, установлен стабилитрон типа 1N4748.

    Оставшаяся часть схемы питается от постоянного напряжения. Устроена она следующим образом: На выходе резистивного делителя 68к — VR — Фоторезистор создается напряжение, которое полностью обратно идентично уровню освещения. То устройство, которым настраивается уровень срабатывания – это подстроечный резистор VR с сопротивлением 1 МОм.

    Что именно ставят в такие схемы: фоторезистор или фотодиод – неизвестно. Вероятнее фоторезистор, но похожий фотодиод тоже может там стоять.

    Если вы хотите экономно и эффективно расходовать электроэнергию, то крутите контролер по часовой стрелке до максимума, так датчик освещения будет срабатывать только при наступлении полной темноте. Выкрутив регулятор в обратную сторону, то будьте готовы кто тому, что свет будет включаться даже днем, если над вами нависнет большая туча.

    Вот, как проходит процесс выключения света при наступлении темноты: уровень освещения падает, начинает расти сопротивление фоторезисторов, напряжение на базе транзистора растет. Когда напряжение достигает определенного уровня, транзистор открывается и через коллектор начинает протекать ток, который активирует реле К1. Контактами реле включает нагрузку. Нагрузка подключается через вывод LOAD.

    Для обозначения рабочего состояния загорается светодиод . Чтобы реле слишком часто не переключало датчик, например, от колеблющейся ветки дерева, на схеме установлен конденсатор 47 мкФ, который сглаживает все процессы.

    Более мощная схема датчик освещения LXP-03:

    Она идентична первой схеме в статье, отличия перечислю:

    1. Схема питания в состоянии ограничивать напряжение в фазной цепи.

    2. Тут диодный мост с фильтрами. Такой же и в предыдущей схеме, просто я не очень удачно её изобразил.

    3. Вместо одного стабилитрона, как на первой схеме, тут их установлено два последовательно. Притом, напряжение осталось прежнее – +24В.

    4. Здесь установлено более мощное реле, с соответственно более мощным током катушки. Также, здесь используется составная схема на два комплементарных транзистора.

    Если вы знаете, как работает схема, то её будет легко отремонтировать.

    Подключение освещения через датчик движения позволяет не только экономить электроэнергию, но и добавить комфорта и удобств в наши жилища. Выбор места установки, схемы подключения и проверка не требуют высокого уровня квалификации, поэтому сделать это сможет практически каждый домашний мастер.

    Потолочные датчики с круговым обзором монтируются обычно в центре помещения, или в наиболее высокой его точке. Куда больше имеется вариантов установки для настенных приборов.

    Для освещения лестничной клетки

    В многоквартирном жилом доме лучше всего договориться со всеми жильцами подъезда и установить общую систему освещения для всех его пролётов. Если такого согласия добиться не удалось, можно сделать персональное освещение входной двери в квартиру, установив над ней датчик и настроив его на минимальную чувствительность срабатывания, только при непосредственном приближении.

    В загородном доме или коттедже можно смонтировать систему освещения лестницы, последовательно включающей светильники при движении по ней. В минимальном варианте требуется всего два устройства: внизу и вверху.

    В подсобном помещении

    В техническом помещении дома, в гараже, кладовке или других подобных местах наиболее целесообразно установить выключатель освещения, совмещённый с датчиком движения, который лучше всего монтировать напротив входной двери, чтобы он срабатывал уже на её открытие.
    При входе в помещение освещение будет включаться на время, достаточное для переключения его на постоянный режим. Можно организовать раздельные системы: от датчика включается дежурный светильник небольшой мощности, а основное освещение включается независимо своим выключателем.

    Для уличного освещения

    Снаружи датчики и осветительные приборы можно установить над въездными воротами, входом в дом, гараж, баню, беседку или другие помещения. Можно поставить отдельные датчики для каждого уличного фонаря в саду или на тропинке около дома. Для целей уличного освещения следует использовать датчики, имеющие анализатор наружной яркости, действующие только при наступлении сумерек.

    Сейчас на рынке осветительных приборов можно найти варианты светодиодных ламп для наружного освещения, совмещённых с солнечными панелями и датчиками движения. Они не требуют подведения внешних питающих электрических линий. Существуют также и беспроводные модели, работающие от батареек или аккумуляторов. В этих же целях рационального использования электроэнергии в домашних условиях устанавливают .

    Датчики имеют пластиковые корпуса, которые нужно беречь от ударов или других повреждений. Особенно бережно следует обращаться с пластиковой линзой Френеля, которая является важным составным элементом оптической системы прибора.

    При наружной установке необходимо следить, чтобы устройства не подвергались действию прямого солнечного света и атмосферных осадков. Лучше в таких случаях предусмотреть для них монтаж защитных козырьков. Также следует учитывать, что сенсоры в ветреную погоду могут срабатывать от движения ветвей расположенных вблизи деревьев.

    Внутри помещений эти приборы не рекомендуется размещать вблизи отопительных приборов. Желательно, чтобы горячие батареи или печки также не попадали в поле их зрения. Для этого можно соответствующим образом отрегулировать высоту и вертикальный угол наклона устройства.

    При любых работах с сетевым напряжением следует неукоснительно соблюдать правила техники безопасности. Во время подключения питающих проводов к приборам, необходимо их обесточить выключателем на силовом щите или, вывернув пробки-предохранители. Если нет полной уверенности в правильном, точном и безопасном выполнении всех процедур по монтажу приборов, лучше доверить это мастерам-профессионалам.

    Как подключить инфракрасный датчик движения — подробная инструкция

    Для монтажа прибора необходимо выбрать место, обеспечивающее наилучшие углы обзора как по горизонтали, так и по вертикали с максимальной по площади зоной охвата. Большинство инфракрасных датчиков движения имеют мёртвую зону, расположение которой следует учитывать при выборе высоты их размещения и угла наклона. Если датчик выполнен в неподвижном корпусе и не имеет регулировки позиционирования, то необходимо свериться с техническим паспортом, для правильного размещения устройства. Крепление прибора на стене должно быть надёжным, допускающим последующую ориентацию его в пространстве.
    Перед тем, как подключить датчик движения на свет, следует открутить заднюю крышку и внимательно изучить прилагаемую схему подключения. В отличие от обычной электролампочки этот прибор обычно требует наличия не только фазного, но и нулевого провода.

    Знаете ли вы, что ответ на вопрос, не так уж однозначен.
    А с виду очень несложный процесс подключения выключателя к обычной лампочке требует учитывать много различных нюансов — начиная от монтажа электропроводки и заканчивая установкой лампочки в стене. Все детали можно изучить .

    А если внутри есть клемма подсоединения защитного заземления, то необходимо обеспечить и его наличие в месте монтажа. Следовательно, для подключения устройства не годится обычная проводка осветительной сети. Необходимо произвести перекоммутацию проводов в распределительной коробке либо подвести дополнительный провод от коробки или розетки.

    Определяемся с подходящей схемой установки датчика движения

    Внутри устройства обычно имеется клеммная колодка, на которую выведены стандартно раскрашенные и обозначенные контакты:

      • L, коричневый или чёрный – фазный провод.
      • N, синий – нулевой провод.
      • A, Ls или L’, красный – возврат фазы на лампы освещения.
      • ⊥, жёлто-зелёный – защитное заземление.

    Подключение осветительных приборов следует выполнять между контактами A и N. Питание электрической сети подавать на L и N, строго соблюдая фазность подключения.

    Одного датчика


    Классическая стандартная схема включения.

    С выключателем


    Позволяет обойти датчик, подав напряжение непосредственно на осветительный прибор.

    Нескольких датчиков


    Обычно используется для сложных по конфигурации помещений, длинных коридоров и проходов, лестничных клеток.

    Кроме контактов подключения, многие модели инфракрасных датчиков имеют органы регулировки:

    • DAY LIGHT или LUX – порог чувствительности по освещённости.
    • TIME – таймер срабатывания.
    • SENSE – чувствительность.

    Как проверить правильно ли подключены приборы

    Работоспособность этих приборов лучше всего проверить до их установки, подключив по временной схеме. Особенно это касается простых моделей, не имеющих никаких органов регулировки. Если после установки они не срабатывают как полагается, скорее всего, дело в неправильно выполненном монтаже.

    Более сложные образцы приборов также можно проверить на их исправность, собрав временную схему подключения и установив регулятор порога освещённости в максимальное положение, а таймер – в минимальное.
    Если прибор имеет индикаторный светодиод, то нет необходимости даже подключать нагрузку, его включение при обнаружении движения сенсором, будет свидетельствовать о работоспособности устройства. Если коммутатором в устройстве является электромагнитное реле, то его щёлканье также будет говорить об исправности аппарата. После выполнения монтажных работ обязательно необходимо провести процедуру регулировки датчика движения для освещения.

    Настройка и регулировка датчиков движения для освещения

    Все настраиваемые параметры выставляются в каждом конкретном помещении строго индивидуально. Как правило, после первичной установки требуется более точная подстройка параметров в процессе эксплуатации, пока не определятся наиболее подходящие значения.

    Обычные пределы регулировки времени срабатывания таймера устанавливаются в большинстве приборов от нескольких секунд до десяти минут. Порог срабатывания светочувствительности можно установить только в приборах, имеющих соответствующий датчик освещённости. Он определяет яркость дневного света, при которой устройство перестаёт подавать напряжение на осветительные приборы.

    Установка чувствительности сенсора – наиболее тонкая и капризная настройка. В любом случае датчик должен реагировать на появление в помещении человека, а не домашних животных. При изменении угла обзора устройства часто требуется также и подстройка его чувствительности.

    Видео о том, как правильно подключить датчик движения

    :

    Применение различных устройств для автоматического управления освещением наряду с использованием осветительных приборов с пониженным энергопотреблением преследует цель экономного расходования электроэнергии. Другая сторона использования датчиков движения для включения освещения состоит в повышении комфорта и безопасности человека. Применение автоматики для управления освещением входит в концепцию построения систем «умного дома». Наибольшее распространение получили детекторы освещенности, которые управляют включением осветительных приборов в зависимости от уровня светового потока, и датчики движения для включения света, реагирующие на нахождение человека в зоне контролируемого пространства, вне зависимости от уровня освещенности, или комбинация устройств обоих типов.

    Применение

    Изначально бесконтактные сенсоры движения разрабатывались для применения в охранных системах. Сложность конструкции, установки, регулировки и, как следствие, высокая стоимость делали их использование в системах управления освещенности не рациональным. Развитие микроэлектроники, снижение стоимости комплектующих послужили поводом для широкого распространения датчиков не только на промышленных предприятиях, но и в быту.

    Использовать детектор движения возможно не только самостоятельно, но и в комплексе с обычной коммутационной аппаратурой, расширяя, таким образом, возможности и удобство управления освещением.

    Наиболее распространенные области применения датчиков движения для освещения:

    • Подъезды и входы в помещение;
    • Лестничные площадки;
    • Территория возле домов и промышленных объектов;
    • Длинные проходные помещения;
    • Места, где пользование обычными устройствами выключения затруднено по каким-либо причинам, к примеру, из-за высокой влажности.

    Самый доступный и понятный пример – освещение лестничных площадок. Не секрет, что в многоэтажных домах старой постройки уровень освещения лестничных площадок даже в дневное время оставляет желать лучшего, не говоря о темном времени суток. С другой стороны, непрерывное горение ламп, даже с низким энергопотреблением, совершенно не рационально, а ручное включение освещения затруднено по понятным причинам.

    Использование автоматического бесконтактного контроля движения для дома позволяет включать освещение только при передвижении человека в зоне контроля. При покидании контролируемого участка лампы выключаются автоматически сразу же или по истечении заданного промежутка времени.

    К сведению. Одна из особенностей датчиков движения – возможность одновременного их задействования в охранных системах.

    Типы и особенности

    Для автоматического управления освещением используется три типа датчиков движения, основанных на различных принципах реагирования:

    • Инфракрасный;
    • Ультразвуковой;
    • Микроволновый (радиодатчик).

    Какой датчик движения выбрать? Все зависит от текущих требований, поскольку все три типа хоть и выполняют одинаковую функцию контроля освещённости, но имеют различные характеристики и особенности.

    Инфракрасные датчики

    Инфракрасные датчики движения для включения света имеют наиболее простую конструкцию и представляют собой направленный дистанционный термометр. Как известно, нагретые тела являются источником излучения в инфракрасном диапазоне. В зависимости от температуры, изменяется длина волны излучения и его интенсивность. Система с сенсорами, настроенными на температуру человеческого тела, включается в присутствии человека вблизи датчика. По сути, это тот же датчик света, только реагирующий на инфракрасный свет (тепловое излучение).

    Устройства подобного типа имеют следующие недостатки:

    • Большая вероятность ложного срабатывания при наличии в зоне контроля нагретых устройств и предметов, к примеру, отопительных устройств;
    • Отсутствие срабатываний при экранировке теплового излучения. Войдя в помещение после морозной улицы в теплой одежде, человек с большой вероятностью обнаружен не будет;
    • Зависимость от уровня излучения. Взрослый человек и ребенок имеют различную излучающую поверхность.

    У инфракрасных систем контроля есть и достоинства:

    • Абсолютная безопасность для окружающих;
    • Минимальная стоимость оборудования;
    • Возможность использования в устройствах пожарной сигнализации.

    Ультразвуковые устройства

    На ином принципе работает ультразвуковой датчик включения. Схема датчика движения имеет в своем составе две составляющих: излучатель ультразвуковых колебаний и приемник. Колебания ультразвуковой частоты распространяются в пространстве и, отражаясь от предметов, возвращаются в приемник. Оба сигнала одновременно поступают на сравнивающее устройство, которое использует эффект Доплера. Согласно ему, звуковые волны, отражаясь от движущихся предметов, изменяют свою длину. Если предмет приближается, то длина волны уменьшается, то есть увеличивается частота колебаний. При удалении предмета все происходит наоборот. Сравнивающее устройство вырабатывает сигнал рассогласования, пропорциональный разности частот излучателя и приемника. Таким образом, если в зоне контроля ультразвукового детектора все предметы неподвижны, сигнал рассогласования равен нулю, и датчик находится в неактивном состоянии. При появлении движущегося объекта (в нашем случае человека) сигнал рассогласования получает некоторое значение, которое вызывает срабатывание устройства.

    Достоинства ультразвуковых датчиков:

    • Возможность точной настройки на минимальную скорость перемещения для срабатывания. При этом также возможна регулировка уровня чувствительности в зависимости от площади отражающей поверхности;
    • Широкое использование в системах охранной и пожарной сигнализации в качестве извещателя, поскольку наличие очага горения вызывает перемещение воздуха, достаточное для срабатывания. Ультразвуковой датчик движения для освещения совершенно нечувствителен к температуре.

    Широкому распространению ультразвуковых устройств препятствуют несколько существенных недостатков:

    • Диапазон колебаний находится в зоне слышимости для большинства животных, особенно кошек и собак. Это может вызывать их беспокойство и даже провоцировать агрессию. Это отмечают все установившие себе такие устройства;
    • Невозможность использования вне помещений, поскольку возможны ложные срабатывания от порывов ветра, пролетающих птиц и крупных насекомых, абсолютная неработоспособность во время сильного дождя. Ультразвуковые датчики движения для включения света на улице не применяются;
    • Низкий радиус действия и реакция только на движущихся людей. Неподвижно стоящие люди не вызовут срабатываний.

    Микроволновые датчики

    Такие устройства несколько подобны ультразвуковым с тем отличием, что передача и прием ведутся в радиодиапазоне по тому же принципу, что и радиолокаторы. При этом реакция осуществляется не на изменение частоты отраженного сигнала, а на его уровень. Регулировка микроволнового датчика заключается в установке уровня чувствительности в пустом помещении. При нахождении человека в зоне контроля увеличивается уровень отраженного сигнала, что вызывает срабатывание устройства. Можно сказать, что микроволновый датчик запоминает окружающую обстановку и реагирует на ее изменение. Наиболее часто такую конструкцию имеют уличные датчики движения.

    Достоинства микроволновых датчиков:

    • Высокая чувствительность;
    • Большая площадь зоны обслуживания;
    • Возможность срабатывания при перемещении даже за тонкими перегородками из материалов, пропускающих радиоволны;
    • Нечувствительность к погодным условиям.

    Есть и недостатки, которые сужают спектр применения датчиков такого типа:

    • Наличие электромагнитного излучения, способного вредно действовать на организм человека;
    • Высокая чувствительность может вызвать ложные срабатывания;
    • Самая высокая стоимость среди аналогичных устройств.

    Отдельный класс устройств представляют собой комбинированные системы, которые совмещают в себе несколько типов устройств. Такие конструкции призваны сохранить достоинства перечисленных устройств и нивелировать недостатки. Разумеется, такие конструкции имеют высокую сложность и достаточно дороги.

    Большинство датчиков движения для включения света совмещены с таймером, который позволяет производить задержку выключения после покидания человеком зоны контроля. Это очень удобно, поскольку после выхода из зоны освещения человека свет остается некоторое время включенным. Данная функция широко используется при освещении лестничных пролетов и позволяет сократить количество приборов.

    Монтаж и подключение

    Сама по себе установка датчиков движения для освещения не вызывает никаких сложностей. Наиболее часто на устройстве имеется две пары клемм, одна из которых служит для подключения к питающей сети, а другая – для коммутируемого источника освещения.

    Самую большую трудность представляет выбор места установки. Здесь нужно учитывать назначение датчика, его тип, конфигурацию помещения и его особенности. Порой приходится учитывать противоречивые факторы.

    Для начала нужно определиться с типом датчика. Перед тем, как выбрать датчик движения, обращается внимание на условия в контролируемом пространстве, где будет производиться монтаж: внутри помещения или для улицы, наличие нагревательных приборов, предметов, попадающих в зону контроля и способных повлиять на чувствительность.

    Теперь выбираем количество устройств, которое определяется размером обслуживаемого пространства. В документации на каждое устройство приведена диаграмма направленности чувствительного элемента, максимальная дальность обнаружения объекта. Для больших помещений может потребоваться установка нескольких сенсоров.

    Как установить датчик

    Место установки зависит и от конструкции выбранного датчика. Так, устройства, которые ставят на стену, имеют узконаправленную диаграмму, поэтому обычно их устанавливают на противоположной стене ближе к потолку. Таким образом, под контролем оказывается максимально доступная площадь. Потолочный датчик движения для включения света имеет круговую диаграмму и, будучи поставленным на потолке посередине помещения, способен отслеживать движения в любом участке. Датчики потолочной конструкции с круговой диаграммой наименее подвержены затенению посторонними предметами.

    Широко используются комбинированные системы освещения, когда монтаж датчиков осуществляется совместно с обыкновенными выключателями. Используя различные схемы при подключении, можно получить некоторые преимущества:

    • Датчик движения, подключенный последовательно с выключателем. При помощи выключателя обесточивается полностью вся линия освещения, таким образом, датчик полностью выключается из работы. Пример – освещение на даче. Если строение закрыто, и приезд хозяев не предвидится, то наличие датчика становится излишним;
    • Параллельное включение датчика и выключателя. Позволяет коммутировать освещение вручную, вне зависимости от состояния датчика. Если выключатель находится во включенном положении, то работа датчика не сказывается на освещении, которое включено постоянно. В ином случае датчик работает как обычно.

    Настройка

    Первоначальную проверку работоспособности датчика движения для освещения можно произвести, не устанавливая их на запланированное место. Временную схему можно собрать прямо на столе. Для проверки нужно установить датчик движения на максимальную чувствительность. Они должны срабатывать от движения руки. Время работы таймера проверяется по выключению контрольной лампы после срабатывания датчика.

    Окончательная регулировка производится уже после того, как выполнен монтаж на месте установки. Чувствительность нужно поставить таким образом, чтобы датчик уверенно срабатывал при нахождении людей в зоне контроля. Важно при этом не делать чувствительность излишне высокой, чтобы освещение не включалось от пробегающей кошки или собаки. После регулировки чувствительности устанавливаем при помощи таймера желаемое время задержки на отключение. Обычно пределы регулировки составляют от нескольких секунд до десятка минут.

    Видео

    Ничего не найдено для Wp Content Uploads 2020 06 File_20200527_101338_Acsusermanual1 1 1 Pdf

    Создание новой команды Solazone

    Мы создаем совершенно новую команду post-covid для управления обновленным Solazone по всей Австралии.

    У нас есть новые продукты, скоро откроется новый офис, и мы хотим, чтобы к нам присоединились новые увлеченные люди.

    Если вы хотите присоединиться к Solazone, проверьте нашу страницу вакансий или отправьте мне электронное письмо.

    Мы также ищем новых акционеров / владельцев, которые получат выгоду от бизнеса, и людей, которые будут определять новую траекторию роста.

    Свяжитесь со мной, если вы хотите принять участие […]

    Процветание, а не просто выживание во время изоляции от COVID

    Никто не хочет находиться в этой изоляции, но мы все хотим получить преимущества безопасного и здорового страна, в которой можно жить, без болезней и инфекций, разрушающих нашу жизнь.

    И мы все должны выжить и в этом экономическом плане, и австралийская солнечная промышленность не исключение. Вы знаете, что мы здесь делаем?

    В нашей стране есть производители солнечных панелей, инверторов и аккумуляторов, разработанных и изготовленных для австралийских условий, о которых почти никто не слышал.

    Так почему бы не взять […]

    Новый запас солнечных крышных вентиляторов на лето

    Только что прибыл! Новые, более мощные солнечные крышные вентиляторы для отвода тепла и сохранения прохлады в вашем доме или офисе в ближайшие летние месяцы.

    И теперь у вас может быть высокопроизводительный вентилятор на крыше с солнечной батареей, цветовой код которого соответствует цвету вашей крыши, и вы даже не увидите его.

    Итак, в этой установке от нас требовалось убрать гараж, швейную комнату, кабинет и заставить кондиционер работать более эффективно.

    Все это было достигнуто за счет тщательной установки солнечного вентилятора на крыше и трех потолочных вентиляционных отверстий, чтобы воздушный поток поглощал тепло […]

    Купите вентилятор для дровяной печи для обогрева вашего дома

    Новое, выше Расход воздуха 250 куб. Футов в минуту.

    Что это значит для вас?

    Еще больше тепла распространяется по комнате намного быстрее.

    Делает вашу комнату теплой и уютной, когда работает дровяной обогреватель.

    Без повышения цены
    Сейчас на складе Burwood
    2-летняя гарантия на полную замену.

    См. Все характеристики здесь […]

    Документы | Rain Bird

    Добро пожаловать

    Добро пожаловать в интерактивный тур CirrusIC! Мы покажем вам некоторые захватывающие новые функции в CirrusIC .

    1 из 12

    Dashboard

    Настраиваемая информационная панель CirrusIC была разработана с нуля для наших пользователей. Интерактивная карта позволяет быстро просматривать состояние всех станций и ориентироваться на любые интересующие области.Панель управления – это ваша персонализированная целевая страница, которая дает вам всю необходимую информацию с первого взгляда.

    2 из 12

    Быстрый доступ

    На панели инструментов быстрого доступа вы можете легко найти наиболее часто используемые действия. Хотите управлять своими программами? Просто нажмите ПРОГРАММЫ . Давай, щелкни по нему.

    3 из 12

    Программы

    Страница ПРОГРАММЫ дает вам обзор всех ваших программ и деталей программ. Добавление, редактирование и настройка программ еще никогда не были такими простыми.

    4 из 12

    Добавить программу

    Хотите добавить новую программу? Наша кнопка QUICKIRR ™ позволяет быстро настраивать простые или сложные программы. Нажмите кнопку QUICKIRR ™ , чтобы увидеть его в действии.

    5 из 12

    Конфигурация

    Быстро создайте программу полива, внесите изменения и многое другое. Создание новых программ интуитивно понятно, просто и быстро!

    6 из 12

    Добавить станции

    Наша технология QUICKIRR ™ используется в CirrusIC .Добавление новых станций происходит молниеносно и очень просто.

    7 из 12

    Batch-Edit

    Вам нужно отредактировать несколько программ или других элементов? CirrusIC доставляет. Просто выберите все элементы, которые вы хотите отредактировать, нажмите кнопку «Редактировать» и выберите настройки, которые вы хотите изменить. Нажмите «ГОТОВО», и все выбранные вами программы будут обновлены.

    8 из 12

    Предупреждения

    CirrusIC предупреждает вас о проблемах до их возникновения! Диагностика постоянно выполняется в фоновом режиме, проверяя признаки потенциальных проблем и автоматически предоставляя вам результаты.Нет необходимости самостоятельно проверять уровни напряжения или другие параметры. CirrusIC сделает это за вас и предупредит вас, когда что-то требует вашего внимания.

    9 из 12

    Персонализируйте

    Сделайте CirrusIC по-настоящему вашим. Настройте параметры для каждого пользователя, включая уровень доступа, единицы измерения, язык и многое другое!

    10 из 12

    Уникальных для каждого пользователя

    На этом настройка не заканчивается. Вернувшись на панель инструментов, все полностью настраивается для каждого пользователя.Поместите важную для вас информацию в центр внимания. Измените его в любое время по мере необходимости.

    11 из 12

    Что дальше?

    Вы видели лишь несколько функций, которые может предложить CirrusIC. CirrusIC – это кульминация опыта Rain Bird, ее технологий и особой направленности на то, чтобы предоставить вам решение централизованного управления, о котором вы просили. Нажмите ниже, чтобы увидеть полную демонстрацию того, как CirrusIC заново изобретает Central Control.

    12 из 12

    Bentley – Документация по продукту

    MicroStation

    Справка MicroStation

    Ознакомительные сведения о MicroStation

    Справка MicroStation PowerDraft

    Ознакомительные сведения о MicroStation PowerDraft

    Краткое руководство по началу работы с MicroStation

    Справка по синхронизатору iTwin

    ProjectWise

    Справка службы автоматизации Bentley

    Ознакомительные сведения об услуге Bentley Automation

    Bentley i-model Composition Server для PDF

    Подключаемый модуль службы разметки

    PDF для ProjectWise Explorer

    Справка администратора ProjectWise

    Справка службы загрузки данных ProjectWise Analytics

    Коннектор ProjectWise для ArcGIS – Справка по расширению администратора

    Коннектор ProjectWise для ArcGIS – Справка по расширению Explorer

    Коннектор ProjectWise для ArcGIS Справка

    Коннектор ProjectWise для Oracle – Справка по расширению администратора

    Коннектор ProjectWise для Oracle – Справка по расширению Explorer

    Коннектор ProjectWise для справки Oracle

    Коннектор управления результатами ProjectWise для ProjectWise

    Справка портала управления результатами ProjectWise

    Ознакомительные сведения по управлению поставками ProjectWise

    Справка ProjectWise Explorer

    Справка по управлению полевыми данными ProjectWise

    Справка администратора геопространственного управления ProjectWise

    Справка ProjectWise Geospatial Management Explorer

    Ознакомительные сведения об управлении геопространственными данными ProjectWise

    Модуль интеграции ProjectWise для Revit Readme

    Руководство по настройке управляемой конфигурации ProjectWise

    Справка по ProjectWise Project Insights

    ProjectWise Plug-in для Bentley Web Services Gateway Readme

    ProjectWise ReadMe

    Матрица поддержки версий ProjectWise

    Веб-справка ProjectWise

    Справка по ProjectWise Web View

    Справка портала цепочки поставок

    Управление эффективностью активов

    Справка по AssetWise 4D Analytics

    Справка по услугам AssetWise ALIM Linear Referencing Services

    AssetWise ALIM Web Help

    Руководство по внедрению AssetWise ALIM в Интернете

    AssetWise ALIM Web Краткое руководство, сравнительное руководство

    Справка по AssetWise CONNECT Edition

    AssetWise CONNECT Edition Руководство по внедрению

    Справка по AssetWise Director

    Руководство по внедрению AssetWise

    Справка консоли управления системой AssetWise

    Руководство администратора мобильной связи TMA

    Справка TMA Mobile

    Анализ моста

    Справка по OpenBridge Designer

    Справка по OpenBridge Modeler

    Строительный проект

    Справка проектировщика зданий AECOsim

    Ознакомительные сведения AECOsim Building Designer

    AECOsim Building Designer SDK Readme

    Генеративные компоненты для Building Designer Help

    Ознакомительные сведения о компонентах генерации

    Справка по OpenBuildings Designer

    Ознакомительные сведения о конструкторе OpenBuildings

    Руководство по настройке OpenBuildings Designer

    OpenBuildings Designer SDK Readme

    Справка по генеративным компонентам OpenBuildings

    OpenBuildings GenerativeComponents Readme

    Справка OpenBuildings Speedikon

    Ознакомительные сведения OpenBuildings Speedikon

    OpenBuildings StationDesigner Help

    OpenBuildings StationDesigner Readme

    Гражданское проектирование

    Дренаж и коммунальные услуги

    Справка OpenRail ConceptStation

    Ознакомительные сведения по OpenRail ConceptStation

    Справка по OpenRail Designer

    Ознакомительные сведения по OpenRail Designer

    Справка по конструктору надземных линий OpenRail

    Справка OpenRoads ConceptStation

    Ознакомительные сведения по OpenRoads ConceptStation

    Справка по OpenRoads Designer

    Ознакомительные сведения по OpenRoads Designer

    Справка по OpenSite Designer

    OpenSite Designer ReadMe

    Строительство

    ConstructSim Справка для руководителей

    ConstructSim Исполнительный ReadMe

    ConstructSim Справка издателя i-model

    Справка по планировщику ConstructSim

    ConstructSim Planner ReadMe

    Справка стандартного шаблона ConstructSim

    ConstructSim Work Package Server Client Руководство по установке

    Справка по серверу рабочих пакетов ConstructSim

    Руководство по установке сервера рабочих пакетов ConstructSim

    Справка управления SYNCHRO

    SYNCHRO Pro Readme

    Энергия

    Справка по Bentley Coax

    Справка по PowerView по Bentley Communications

    Ознакомительные сведения о Bentley Communications PowerView

    Справка по Bentley Copper

    Справка по Bentley Fiber

    Bentley Inside Plant Help

    Справка конструктора Bentley OpenUtilities

    Ознакомительные сведения о Bentley OpenUtilities Designer

    Справка по подстанции Bentley

    Ознакомительные сведения о подстанции Bentley

    Справка по OpenComms Designer

    Ознакомительные сведения о конструкторе OpenComms

    Справка OpenComms PowerView

    Ознакомительные сведения OpenComms PowerView

    Справка инженера OpenComms Workprint

    OpenComms Workprint Engineer Readme

    Справка подстанции OpenUtilities

    Ознакомительные сведения о подстанции OpenUtilities

    PlantSight AVEVA Diagrams Bridge Help

    Справка по мосту PlantSight AVEVA PID

    Справка по экстрактору мостов PlantSight E3D

    Справка по PlantSight Enterprise

    Справка по PlantSight Essentials

    PlantSight Открыть 3D-модель Справка по мосту

    Справка по PlantSight Smart 3D Bridge Extractor

    Справка по PlantSight SPPID Bridge

    Promis.e Справка

    Promis.e Readme

    Руководство по установке Promis.e – управляемая конфигурация ProjectWise

    Руководство пользователя sisNET

    Руководство по настройке подстанции

    – управляемая конфигурация ProjectWise

    Инженерное сотрудничество

    Справка рабочего стола Bentley Navigator

    Геотехнический анализ

    PLAXIS LE Readme

    Ознакомительные сведения о PLAXIS 2D

    Ознакомительные сведения о программе просмотра вывода 2D PLAXIS

    Ознакомительные сведения о PLAXIS 3D

    Ознакомительные сведения о программе просмотра 3D-вывода PLAXIS

    PLAXIS Monopile Designer Readme

    Управление геотехнической информацией

    Справка администратора gINT

    Справка gINT Civil Tools Pro

    Справка gINT Civil Tools Pro Plus

    Справка коллекционера gINT

    Справка по OpenGround Cloud

    Гидравлика и гидрология

    Справка по Bentley CivilStorm

    Справка Bentley HAMMER

    Справка по Bentley SewerCAD

    Справка Bentley SewerGEMS

    Справка Bentley StormCAD

    Справка Bentley WaterCAD

    Справка Bentley WaterGEMS

    Проектирование шахты

    Помощь по транспортировке материалов MineCycle

    Ознакомительные сведения по транспортировке материалов MineCycle

    Моделирование мобильности

    LEGION 3D Руководство пользователя

    Справка по подготовке САПР LEGION

    Справка по построителю моделей LEGION

    Справка API симулятора LEGION

    Ознакомительные сведения об API симулятора LEGION

    Справка по симулятору LEGION

    Моделирование

    Bentley Посмотреть справку

    Ознакомительные сведения о Bentley View

    Морской структурный анализ

    SACS Close the Collaboration Gap (электронная книга)

    Ознакомительные сведения о SACS

    Анализ напряжений труб и сосудов

    AutoPIPE Accelerated Pipe Design (электронная книга)

    Советы новым пользователям AutoPIPE

    Краткое руководство по AutoPIPE

    AutoPIPE & STAAD.Pro

    Завод Дизайн

    Ознакомительные сведения об экспортере завода Bentley

    Bentley Raceway and Cable Management Help

    Bentley Raceway and Cable Management Readme

    Bentley Raceway and Cable Management – Руководство по настройке управляемой конфигурации ProjectWise

    Справка по OpenPlant Isometrics Manager

    Ознакомительные сведения о диспетчере изометрических данных OpenPlant

    Справка OpenPlant Modeler

    Ознакомительные сведения для OpenPlant Modeler

    Справка по OpenPlant Orthographics Manager

    Ознакомительные сведения об OpenPlant Orthographics Manager

    Справка OpenPlant PID

    Ознакомительные сведения о PID OpenPlant

    Справка администратора проекта OpenPlant

    Ознакомительные сведения для администратора проекта OpenPlant

    Техническая поддержка OpenPlant Support

    Ознакомительные сведения о технической поддержке OpenPlant

    Справка по PlantWise

    Ознакомительные сведения о PlantWise

    Реальность и пространственное моделирование

    Справка по карте Bentley

    Справка по мобильной публикации Bentley Map

    Ознакомительные сведения о карте Bentley

    Справка консоли облачной обработки ContextCapture

    Справка редактора ContextCapture

    Файл ознакомительных сведений для редактора ContextCapture

    Мобильная справка ContextCapture

    Руководство пользователя ContextCapture

    Справка Декарта

    Ознакомительные сведения о Декарте

    Справка карты OpenCities

    Ознакомительные сведения о карте OpenCities

    OpenCities Map Ultimate для Финляндии Справка

    OpenCities Map Ultimate для Финляндии Readme

    Структурный анализ

    Справка OpenTower iQ

    Справка по концепции RAM

    Справка по структурной системе RAM

    STAAD Закройте пробел в сотрудничестве (электронная книга)

    STAAD.Pro Help

    Ознакомительные сведения о STAAD.Pro

    Программа физического моделирования STAAD.Pro

    Расширенная справка по STAAD Foundation

    Дополнительные сведения о STAAD Foundation

    Детализация конструкций

    Справка ProStructures

    Ознакомительные сведения о ProStructures

    ProStructures CONNECT Edition Руководство по внедрению конфигурации

    ProStructures CONNECT Edition Руководство по установке – Управляемая конфигурация ProjectWise

    Руководства и спецификации | SENCO

    PC1010N PC1010N PC1010N_MAN.pdf PC1010N_PC.pdf
    PC1010 PC1010 PC1010_MAN.pdf PC1010_PC.pdf
    PC0968 PC0968 PC0968_MAN.pdf PC0968_PC.pdf
    PC1280 PC1280 PC1280_MAN.pdf PC1280_PC.pdf
    PC1131 PC1131 PC1131_MAN.pdf PC1131_PC.pdf
    PC0947 PC0947 Комбинированный PC1010_MAN.pdf PC1010_PC.pdf
    8V0001N RoofPro ™ 445XP RoofPro445XP_MAN.pdf RoofPro445XP_PC.pdf
    5N0001N Фьюжн Ф-15 F-15_MAN.pdf F-15_PC.pdf
    6U0001N Фьюжн Ф-16С F-16S_MAN.pdf F-16S_PC.pdf
    6E0001N Фьюжн Ф-18 F-18_MAN.pdf F-18_PC.pdf
    4G0001N FinishPro®42XP FinishPro42XP_MAN.pdf FinishPro42XP_PC.pdf
    6G0001N FinishPro®35Mg FinishPro35Mg_MAN.pdf FinishPro35Mg_PC.pdf
    760102N FinishPro®25XP FinishPro25XP_MAN.pdf FinishPro25XP_PC.pdf
    430101N SLP20XP SLP20XP_MAN.pdf SLP20XP_PC.pdf
    1U0021N FinishPro®18Mg FinishPro18Mg_MAN.pdf FinishPro18Mg_PC.pdf
    8M0001N FinishPro®21LXP FinishPro21LXP_MAN.pdf FinishPro21LXP_PC.pdf
    8F0001N FinishPro®23SXP FinishPro23SXP_MAN.pdf FinishPro23SXP_PC.pdf
    8L0001N FinishPro®23LXP FinishPro23LXP_MAN.pdf FinishPro23LXP_PC.pdf
    4Z0101N FramePro®325XP FramePro325XP_MAN.pdf FramePro325XP_PC.pdf
    2H0133N FramePro®701XP FramePro701XP_MAN.pdf FramePro701XP_PC.pdf
    2K0103N FramePro®702XP FramePro702XP_MAN.pdf FramePro702XP_PC.pdf
    2F0103N FramePro®752XP FramePro752XP_MAN.pdf FramePro752XP_PC.pdf
    4H0101N FramePro®325FRHXP FramePro325FRHXP_MAN.pdf FramePro325FRHXP_PC.pdf
    PC1195 Ручной гвоздильщик Mini MiniHandNailer_MAN.pdf
    PC0781 A20 Гвоздезабиватель ручной A20HandNailer_MAN.pdf A20HandNailer_PC.pdf
    540104N SCN65XP SCN65XP_MAN.pdf SCN65XP_PC.pdf
    520101N SCN60XP SCN60XP_MAN.pdf SCN60XP_PC.pdf
    5J0001N SCN49XP SCN49XP_MAN.pdf SCN49XP_PC.pdf
    5L0001N PalletPro100XP PalletPro100XP_MAN.pdf PalletPro100XP_PC.pdf
    5M0001N PalletPro130XP PalletPro130XP_MAN.pdf PalletPro130XP_PC.pdf
    PC0700 A11 Молоток для скрепления скоб
    4C0001N SFW09 SFW09_MAN.pdf SFW09_PC.pdf
    1W0021N SLS18Mg SLS18Mg_MAN.pdf SLS18Mg_PC.pdf
    8C0001N SLS150Mg SLS150Mg_MAN.pdf SLS150Mg_PC.pdf
    4N SLS20XP-K SLS20XP_MAN.pdf SLS20XP_PC.pdf
    4

    N
    SLS20XP-L SLS20XP_MAN.pdf SLS20XP_PC.pdf
    4N SLS20XP-L Sencomatic SLS20XP_MAN.pdf SLS20XP_PC.pdf
    4N SLS20XP-M SLS20XP_MAN.pdf SLS20XP_PC.pdf
    4N SLS20XP-R SLS20XP_MAN.pdf SLS20XP_PC.pdf
    820103N SLS25XP-L SLS25XP_MAN.pdf SLS25XP_PC.pdf
    820107N SLS25XP-M SLS25XP_MAN.pdf SLS25XP_PC.pdf
    300120N SKSXP-L SKSXP_MAN.pdf SKSXP_PC.pdf
    300152N SKSXP-M SKSXP_MAN.pdf SKSXP_PC.pdf
    300184N SKSXP-N SKSXP_MAN.pdf SKSXP_PC.pdf
    3L0003N SNS41 SNS41_MAN.pdf SNS41_PC.pdf
    7B0001N SNS200XP SNS200XP_MAN.pdf SNS200XP_PC.pdf
    7C0001N SNS200XP-BST SNS200XP-BST_MAN.pdf SNS200XP-BST_PC.pdf
    660101N SQS55XP SQS55XP_MAN.pdf SQS55XP_PC.pdf
    4A0001N BC58 BC58_MAN.pdf BC58_PC.pdf
    6X0004N SG4100 SG4100_MAN.pdf
    6X0002N SG2510 SG2510_MAN.pdf
    470001N SC2 Sencor® SC2_MAN.pdf SC2_PC.pdf
    8D0001N ШФ200 SHF200_MAN.pdf SHF200_PC.pdf
    4

    N
    SLS20XP-HF SLS20XP-HF_MAN.pdf SLS20XP-HF_PC.pdf
    8J0001N F75SXP F75SXP_MAN.pdf F75SXP_PC.pdf
    8J0002N F75LXP F75LXP_MAN.pdf F75LXP_PC.pdf
    8H0001N DFPXP DFPXP_MAN.pdf DFPXP_PC.pdf
    7W0001N ДС215-18В DS215-18V_MAN.pdf DS215-18V_PC.pdf
    7X0001N ДС212-18В DS212-18V_MAN.pdf DS212-18V_PC.pdf
    7Y0001N ДС312-18В DS312-18V_MAN.pdf DS312-18V_PC.pdf
    7T0001N DS235-AC DS235-AC_MAN.pdf DS235-AC_PC.pdf
    7U0001N DS232-AC DS232-AC_MAN.pdf DS232-AC_PC.pdf
    7V0001N DS332-AC DS332-AC_MAN.pdf DS332-AC_PC.pdf
    8N0001N LS1XP LS1XP_MAN.pdf LS1XP_PC.pdf
    220101N SC1XP Senclamp® SC1XP_MAN.pdf SC1XP_PC.pdf
    7L0001N JoistPro ™ 150XP JoistPro150XP_MAN.pdf JoistPro150XP_PC.pdf
    6K0001N JoistPro ™ 250XP JoistPro250XP_MAN.pdf JoistPro250XP_PC.pdf
    6S0001N SFT10XP Сшиватель проводов аналогово-цифрового преобразователя SFT10XP_MAN.pdf SFT10XP_PC.pdf
    6S0101N SFT10XP A / D-Wire Автоматический степлер SFT10XP_MAN.pdf SFT10XP-Auto_PC.pdf
    6S0011N SFT10XP B-Wire Степлер SFT10XP_MAN.pdf SFT10XP_PC.pdf
    6S0211N SFT10XP B-Wire DL Степлер SFT10XP_MAN.pdf SFT10XP-Double_PC.pdf
    6S0311N SFT10XP B-Wire Автоматический степлер DL SFT10XP_MAN.pdf SFT10XP-Auto-Double_PC.pdf
    6S0021N SFT10XP Степлер C-Wire SFT10XP_MAN.pdf SFT10XP_PC.pdf
    6S0121N SFT10XP C-Wire Автоматический степлер SFT10XP_MAN.pdf SFT10XP-Auto_PC.pdf
    6S0221N SFT10XP C-Wire DL Степлер SFT10XP_MAN.pdf SFT10XP-Double_PC.pdf
    6S0321N SFT10XP C-Wire Автоматический степлер DL SFT10XP_MAN.pdf SFT10XP-Auto-Double_PC.pdf
    6S0421N SFT10XP C-Wire LN Степлер SFT10XP_MAN.pdf SFT10XP-Long_PC.pdf
    6S0031N SFT10XP Электронный степлер SFT10XP_MAN.pdf SFT10XP_PC.pdf
    6S0041N SFT10XP Степлер F-Wire SFT10XP_MAN.pdf SFT10XP_PC.pdf
    6S0341N SFT10XP F-Wire Auto DL Степлер SFT10XP_MAN.pdf SFT10XP-Auto-Double_PC.pdf
    6S0051N SFT10XP Степлер G-Wire SFT10XP_MAN.pdf SFT10XP_PC.pdf
    6S0251N SFT10XP G-Wire DL Степлер SFT10XP_MAN.pdf SFT10XP-Double_PC.pdf
    6S0351N SFT10XP G-Wire Автоматический степлер DL SFT10XP_MAN.pdf SFT10XP-Auto-Double_PC.pdf
    6S0361N SFT10XP H-Wire Auto DL Степлер SFT10XP_MAN.pdf SFT10XP-Auto-Double_PC.pdf
    9B0001N FinishPro®18BMg FinishPro18BMg_MAN.pdf FinishPro18BMg_PC.pdf
    4L0001N PalletPro57FXP PalletPro57FXP_MAN.pdf PalletPro57FXP_PC.pdf
    7J0001N SCP40XP SCP40XP_MAN.pdf SCP40XP_PC.pdf
    9G0001N SPBN18XP SPBN18XP_MAN.pdf SPBN18XP_PC.pdf
    9P0002N FinishPro®30XP ФиншПро30ХП_МАН.pdf FinishPro30XP_PC.pdf
    2J0103N FramePro® 751XP FramePro751XP_MAN.pdf FramePro751XP_PC.pdf
    9T0001N PS15XP PS15XP_MAN.pdf PS15XP_PC.pdf
    9U0001N PS15RXP PS15RXP_MAN.pdf PS15RXP_PC.pdf
    9S0001N FinishPro®16XP finishpro16xp_man.pdf finishpro16xp_pc.pdf
    9W0001N PS20XP PS20XP_MAN.pdf PS20XP_PC.pdf
    9X0001N NS20XP NS20XP_MAN.PDF NS20XP_PC
    9Y0001N NS20BXP NS20BXP_MAN.PDF NS20BXP_PC.PDF
    9Z0001N DS230-S1 DS230_MAN.pdf DS230_PC.pdf
    9Z0021N DS230-M1 DS230_MAN.pdf DS230_PC.pdf
    9Z0011N DS230-D1 DS230_MAN.pdf DS230_PC.pdf
    9Z0012N DS230-D2 DS230_MAN.pdf DS230_PC.pdf
    10B0001N ДС222-18В DS222-18V_MAN.pdf DS222-18V_PC.pdf
    10A0001N ДС225-18В DS225-18V_MAN.pdf DS225-18V_PC.pdf
    10C0001N ДС322-18В DS322-18V_MAN.pdf DS322-18V_PC.pdf
    10P0001N JoistPro ™ 150MXP JoistPro150MXP_MAN.pdf JoistPro150MXL_2019_10_23.pdf
    10R0001N JoistPro ™ 250MXP JoistPro250MXP_MAN.pdf JoistPro250MXP_PC.pdf
    10G0001N F-35XP F35XP_34Deg_7_3_20_Manual.pdf F35XP_Parts_A5_8_13_20.pdf
    10H0001N F-35FRHXP ops-manual-f35frhxp_12_31_20.pdf f35frhxp_parts_chart-1_7_21.pdf
    10D0001N DS245-AC ds2-5-ac-Integrated-man.pdf ds242_245-pc.pdf
    10F0001N DS342-AC ds2-5-ac-Integrated-man.pdf ds342-pc.pdf
    10E0001N DS242-AC ds2-5-ac-интегрированный человек.pdf ds242_245-pc.pdf
    10L0001N F-15XP FUSION_F-T_MAN.pdf F15XP_PC.pdf
    10N0001N F-16XP FUSION_F-T_MAN.pdf F16XP_PC.pdf
    10M0001N F-18XP FUSION_F-T_MAN.pdf F18XP_PC.pdf
    10Y0001N F-LXP FLXP_OPS.pdf FLXP_PC.pdf
    TN11G1 1 3/8 ”ШТИФТ 23 МЕР pin-nailers_ops.pdf TN11G1_NFG010Z_9_10_21.pdf
    TN11L1 2 ”ПИННЕР 23 МЕР pin-nailers_ops.pdf TN11L1_NFG011A_9_10_21.pdf
    TN21L1 2 ”ПИННЕР 21 МЕР pin-nailers_ops.pdf TN21L1_NFG011B_9_10_21.pdf
    10X0013N DS534-AC
    10X0003N DS532-AC
    10X0002N DS530-S1
    10X0012N DS530-D1
    10X0022N DS530-M1

    АВТОМОБИЛЬНЫЙ ИММОБИЛАЙЗЕР SMARTRA32 Документ руководства пользователя Robert Bosch (Австралия) Pty


















     Система иммобилайзера
    Принципиальная электрическая схема
    SHDBE6543L
    Описание
    Система иммобилайзера отключит автомобиль, если
    используется соответствующий ключ зажигания в дополнение к текущему
    доступные противоугонные системы, такие как автосигнализации,
    Система иммобилайзера направлена ​​на резкое снижение скорости
    угон авто.1. Зашифрованный иммобилайзер типа SMARTRA.
    Система SMARTRA состоит из пассивного
    вызов
    отклик
    (взаимный
    аутентификации) транспондер, расположенный в замке зажигания
    ключ, антенная катушка, кодированный блок SMARTRA,
    световой индикатор и PCM (ECM).
    SMARTRA обменивается данными с PCM (ECM)
    (Модуль управления двигателем) через специальный
    линия связи. Поскольку двигатель автомобиля
    система управления способна управлять двигателем
    мобилизация, это наиболее подходящая единица для управления
    СМАРТРА.
    Когда ключ вставлен в замок зажигания и
    повернутый в положение ON, антенная катушка посылает
    питание транспондера в ключе зажигания.В
    транспондер затем отправляет кодированный сигнал обратно
    через блок SMARTRA к PCM (ECM).
    Если использовался правильный ключ, PCM (ECM)
    включит систему подачи топлива. В
    контрольная лампа иммобилайзера в комбинации
    одновременно заходят более пяти
    секунд, указывая на то, что блок SMARTRA
    распознал код, отправленный транспондером.
    Если был использован неправильный ключ и код был
    не получил или не распознал PCM (ECM)
    индикатор будет продолжать мигать около пяти
    секунд до выключения зажигания.Если необходимо переписать PCM (ECM) на
    выучить новый ключ, дилеру нужен клиентский
    автомобиль, все его ключи и Hi-scan (pro)
    оснащен программной картой иммобилайзера. Любой
    ключ, который не был изучен во время перезаписи, не будет
    дольше заводить двигатель.
    Система иммобилайзера может хранить до восьми ключей
    коды.
    Если клиент потерял ключ и не может начать
    двигатель, обратитесь в автосервис Hyundai.
    связь с устройством SMARTRA. И
    полученные сообщения от PCM (ECM) преобразуются
    в РЧ-сигнал, который передается на транспондер
    антенной.SMARTRA не выполняет проверку действительности
    транспондер или расчет шифрования
    алгоритм. У этого устройства только продвинутый интерфейс,
    который преобразует поток данных RF транспондера в
    последовательная связь с PCM (ECM) и наоборот.
    SFDBE8404L
    Компоненты Операции
    PCM (модуль управления силовой передачей)
    1. PCM (ECM) (A) выполняет проверку зажигания.
    ключ с использованием специального алгоритма шифрования, который
    запрограммирован в транспондер, а также
    PCM (ECM) одновременно.Только если результаты
    равно, двигатель может быть запущен. Данные всех
    транспондеры, которые действительны для автомобиля,
    хранится в PCM (ECM).
    Значение ERN (зашифрованное число Рэндорна) между
    EMS и зашифрованный блок smartra проверяется и
    Срок действия закодированного ключа определяется EMS.
    SFDBE8221L
    ТРАНСПОНДЕР (встроенные ключи)
    Транспондер имеет усовершенствованный алгоритм шифрования.
    Во время ключевой процедуры обучения транспондер будет
    быть запрограммированным с данными конкретного автомобиля. Автомобиль
    конкретные данные записываются в память транспондера.Процедура записи выполняется только один раз; поэтому содержание
    транспондера нельзя модифицировать или изменять.
    SEDBE7547L
    ЗАПИСАННЫЙ блок SMARTRA (A)
    SMARTRA осуществляет связь с
    встроенный транспондер в ключ зажигания. Этот беспроводной
    связь идет по RF (Радиочастота 125
    кГц). SMARTRA устанавливается за подушкой безопасности.
    рядом с центральной поперечиной.
    РЧ-сигнал от транспондера, полученный
    антенная катушка, преобразуется в сообщения для последовательного
    SHDBE6540D
    Антенная катушка
    Антенная катушка (A) выполняет следующие функции.Катушка антенны подает энергию на транспондер.
    Антенна
    транспондер.
    Катушка антенны передает сигнал транспондера на
    СМАРТРА.
    катушка
    получает
    сигнал
    из
    в
    Он расположен прямо перед рулевой ручкой.
    замок.
    аутентификация, необходимая для подтверждения
    учебный процесс. Успешное программирование - это
    затем подтверждается сообщением для тестера.
    Если ключ уже известен PCM (ECM) из
    предыдущее обучение, аутентификация будет принята
    и данные EEPROM обновляются.Здесь нет
    изменено содержимое транспондера (это невозможно для
    узнал транспондер).
    Попытка многократно обучить ключ, который
    обучены уже в течение того же цикла обучения,
    распознается PCM (ECM). Это отвергает ключ
    и сообщение отправляется тестеру.
    PCM (ECM) отклоняет недействительные ключи, которые
    представлен для обучения. Сообщение отправлено на
    тестер. Ключ может быть недействительным из-за неисправностей в
    транспондер или другие причины, возникшие в результате
    неудачное программирование данных.Если PCM (ECM)
    обнаруживает различные аутентификаторы транспондера и
    PCM (ECM), ключ считается недействительным.
    SEDBE7541L
    Максимальное количество запрограммированных ключей - 8
    Процедуры обучения
    1. Основная процедура обучения
    Ключевое обучение должно быть выполнено после замены
    неисправен PCM (ECM) или при установке дополнительных
    ключи от владельца транспортного средства.
    Процедура начинается с запроса PCM (ECM) для
    данные о транспортном средстве (PIN-код: 6 цифр) из
    тестер. "Девственный" PCM (ECM) хранит автомобиль
    могут быть запущены определенные данные и ключевое обучение."Обученный" PCM (ECM) сравнивает автомобиль
    конкретные данные от тестера с сохраненными данными. Если
    данные верны, обучение можно продолжить.
    Если неверные данные о конкретном автомобиле были отправлены на
    PCM (ECM) три раза, PCM (ECM) отклонит
    запрос ключевого обучения на один час. Этот раз
    нельзя уменьшить, отключив аккумулятор или
    любые другие манипуляции. После повторного подключения
    аккумулятор, таймер снова запускается на один час.
    Обучение ключа осуществляется при включении зажигания ключом.
    и дополнительные команды тестера.PCM (ECM)
    хранит соответствующие данные в EEPROM и в
    транспондер. Затем PCM (ECM) запускает
    Если во время обслуживания иммобилайзера возникла ошибка
    Меню, статус PCM (ECM) остается без изменений и
    сохраняется конкретный код неисправности.
    Если состояние PCM (ECM) и состояние ключа не отображаются
    совпадение для обучения ключей, процедура тестера будет
    будет остановлен, и конкретный код неисправности будет сохранен в
    PCM (ECM).
    УВЕДОМЛЕНИЕ
    При обучении первой клавиши Smartra регистрируется в
    в то же время.
    SHDBE8002N
    SHDBE8003N
    SHDBE8004N
    SFDBE8405L
    1) Состояние обучения PCM (ECM).SHDBE8005N
    SHDBE8008N
    2) Девственный статус PCM (ECM).
    После замены на новый "PCM (ECM)" scantool
    показывает, что PCM (ECM) находится в чистом состоянии в Key
    Режим обучения.
    Статус "VIRGIN" означает, что PCM (ECM) не
    совпадал с любым PIN-кодом ранее.
    SHDBE8006N
    SHDBE8009N
    SHDBE8007N
    SHDBE8015N
    2. Процедура обучения паролю пользователя
    Пароль пользователя для безвыходного дома выдается на
    СТО. Владелец транспортного средства может выбрать
    номер из четырех цифр.
    Обучение пароля пользователя принимается только
    "выучил" PCM (ECM).Перед первым обучением пользователя
    пароль к PCM (ECM), статус
    пароль "девственный" Нет функции хромого дома
    возможный.
    SHDBE8010N
    Обучение начинается при включенном зажигании, с действующим
    key (запомненный ключ) и отправив пароль пользователя
    тестер. После успешного обучения статус
    пароль пользователя меняется с "девственный" на "выученный"
    Выученный пароль пользователя также можно изменить. Этот
    можно сделать, если статус пароля пользователя "изучен"
    и тестер отправляет авторизацию доступа, либо
    старый пароль пользователя или данные автомобиля.После правильной авторизации PCM (ECM) запрашивает
    новый пароль пользователя. Статус остается "изучен".
    и новый пароль пользователя будет действителен до следующего
    хромой домашний режим.
    SHDBE8016N
    Если неправильный пароль пользователя или неправильный автомобиль
    данные были отправлены в PCM (ECM) три раза
    постоянно или периодически, PCM (ECM) будет
    отклонить запрос на смену пароля на один
    час. Это время нельзя уменьшить, отключив
    аккумулятор или любые другие действия. После переподключения
    аккумулятор, таймер снова запускается на один час.1) Обучение паролю пользователя
    SHDBE8017N
    SHDBE8011N
    SHDBE8012N
    SHDBE8036N
    ※ В случае ввода неправильного пароля повторите попытку с
    первый шаг через 10 секунд.
    2) Смена пароля пользователя
    SHDBE8013N
    SHDBE8018N
    SHDBE8014N
    SHDBE8019N
    SHDBE8020N
    SHDBE8023N
    Функция Limp Home
    1. LIMP HOME С ПОМОЩЬЮ ТЕСТЕРА
    Если PCM (ECM) обнаруживает неисправность SMARTRA
    или транспондер, PCM (ECM) позволит хромать домой
    функция иммобилайзера. Безвольный дом - это только
    возможно, если пароль пользователя (4 цифры) был
    отдавал в PCM (ECM) раньше.Этот пароль может
    выбирается владельцем транспортного средства и запрограммирован
    на СТО.
    Пароль пользователя можно отправить в PCM (ECM) через
    специальное меню тестера.
    SHDBE8021N
    Только если PCM (ECM) находится в состоянии «изучен» и
    статус пароля пользователя "изучен", и пользователь
    пароль правильный, PCM (ECM) будет разблокирован
    на время (30 сек.). Двигатель может быть только
    началось за это время. По истечении времени
    запуск двигателя невозможен.
    Если отправлен неправильный пароль пользователя, PCM (ECM)
    отклонит просьбу хромать домой на один час.Отключение аккумулятора или любое другое действие не может
    сократить это время. После подключения АКБ к
    PCM (ECM), таймер снова запускается на один час.
    SHDBE8022N
    SHDBE8029N
    SHDBE8032N
    2. LIMP HOME ПО КЛЮЧУ ЗАЖИГАНИЯ
    Аварийный дом может быть активирован также при зажигании.
    ключ. Пароль пользователя можно ввести в
    PCM (ECM) по особой последовательности включения / выключения зажигания.
    Только если PCM (ECM) находится в состоянии «изучен» и
    статус пароля пользователя "изучен", и пользователь
    пароль правильный, PCM (ECM) будет разблокирован
    на время (30 сек.). Двигатель может быть
    началось за это время. По истечении времени
    запуск двигателя невозможен. После нового пароля
    был введен, таймер (30 секунд) запустится снова.
    SHDBE8030N
    SHDBE8031N
    После выключения зажигания PCM (ECM) блокируется, если таймер
    прошло 8 секунд. Для следующего запуска ввод
    пароля пользователя запрашивается снова.
    LTIF740N
    Замена
    Проблемы и запасные части:
    Проблема
    Сканировать в требуемый?
    Набор деталей
    Все ключи были пустыми (4)
    ост
    ДА
    Блок антенной катушки do Антенный блок катушки
    это не работает
    НЕТ
    ECM не работает
    ДА
    PCM (ECM)
    Замок зажигания переключает зажигание с
    не работает
    Блок антенной катушки
    ДА
    Неопознанный автомобиль
    Ключ, PCM (ECM)
    появляются конкретные данные
    ДА
    Подразделение SMARTRA делает
    Блок SMARTRA
    не работает
    ДА
    Замена Ecm и Smartra
    SEDBE7592L
    В случае неисправности блока управления двигателем необходимо заменить блок.
    с «девственным» или «нейтральным» ECM.Все ключи должны быть
    научили новому ECM. Ключи, которым не учат
    ECM, недействительны для нового ECM (см.
    процедура). Необходимо оставить данные о конкретном автомобиле.
    без изменений благодаря уникальному программированию
    транспондер.
    2. Что нужно помнить перед заменой (Ключи &
    Дополнительная регистрация)
    В случае неисправности SMARTRA необходимо обучить
    Смартра. Новое устройство SMARTRA заменяет старое
    и смартра нуждаются в обучении.
    1. Что нужно помнить
    (PCM (ECM))
    до
    замена
    SFDBE8406L
    УВЕДОМЛЕНИЕ
    1.Когда зарегистрирован только один ключ и вы
    желаете зарегистрировать еще один ключ, вам необходимо
    перерегистрировать уже зарегистрированный ключ.
    2. Когда ключ №1 зарегистрирован и мастер-ключ №2
    не прописан, поставить ключ # 1 в IG / ON или
    начальное положение и снимите его. Двигатель может
    запускаться с незарегистрированным ключом # 2.
    аккумулятор таймер снова запускается на один час.
    (Обратите внимание, что ключ №2 должен использоваться в пределах 10
    секунд удаления ключа # 1)
    •
    3. Если ключ №1 зарегистрирован, а ключ №2 нет.
    зарегистрирован, введите незарегистрированный мастер-ключ # 2 в
    IG / ON или начальное положение.Двигатель не запускается даже при
    зарегистрированный ключ №1.
    УВЕДОМЛЕНИЕ
    Условие настройки нейтрализации
    В случае статуса PCM (ECM) «Обучено» независимо
    пароля пользователя "Virgin or Learned"
    Введите правильный PIN-код с помощью сканера.
    Нейтрализующий смысл.
    4. При осмотре системы иммобилайзера обращайтесь к
    к пунктам 1, 2 и 3 выше.
    Всегда помните о 10-секундной зоне.
    5. Если пин-код
    пароль введен
    неправильно на трех последовательных входах,
    система будет заблокирована на один час.
    •
    : ПИН-код (6)
    удаление пароля пользователя (4).: Блокировка
    разрешение)
    ECM
    (Кроме
    ключ
    обучение
    Нейтрализующее значение:
    Удаление P / Word (4) пользователя
    ПИН-код (6)
    Блокировка EMS (кроме разрешения Key Learning)
    6. Будьте осторожны, чтобы не перекрывать транспондер.
    области.
    7. Проблемы могут возникнуть при регистрации ключей или автомобиля.
    запускается, если транспондеры должны перекрываться.
    Нейтрализация ECM
    PCM (ECM) может быть переведен в «нейтральный» статус с помощью
    тестер.
    SFDBE8407L
    Вставлен действующий ключ зажигания и после включения зажигания
    записывается, PCM (ECM) запрашивает конкретный автомобиль
    данные тестера.Коммуникационные сообщения
    описан в «Нейтральном режиме». После успешного получения
    данные, PCM (ECM) нейтрализован.
    ЕСМ остается заблокированным. Ни в безвыходном домашнем режиме
    ни функция "двойное зажигание" не принимается
    PCM (ECM).
    Обучение клавишам следует процедуре, описанной для
    девственный PCM (ECM). Специфические данные автомобиля должны быть
    быть неизменным благодаря уникальному программированию
    транспондер. Если данные должны быть изменены, новые ключи с
    запрашивается чистый транспондер.
    Эта функция предназначена для нейтрализации PCM (ECM) и ключа.Пример) при потере ключа нейтрализуйте PCM (ECM), затем обучите
    ключи.
    (См. Действия при нажатии клавиши & PIN-кода
    PCM (ECM) может быть переведен в «нейтральный» статус с помощью
    сканер.Если на адрес
    SMATRA трижды непрерывно или периодически,
    SMATRA отклонит запрос на переход в нейтральный режим на
    один час. Отключение аккумулятора или другое
    манипуляции не могут сократить это время. После подключения
    SHDBE8024N
    SHDBE8025N
    SEDBE7577L
    Нейтрализация Смартры
    СЭМ может быть переведена в состояние «нейтральный» тестером.
    Ключ зажигания (независимо от статуса ключа) вставлен и после
    ЗАЖИГАТЬ.Если вы получили правильный пароль автомобиля от
    GST, SMARTRA можно нейтрализовать.
    SMARTRA возможна, если DPN совпадает со значением
    введено GST.
    В случае нейтрального статуса SMARTRA EMS
    сохраняет состояние блокировки. И старт невозможен
    «двойное зажигание».
    SHDBE8026N
    В случае смены пароля автомобиля, новая девственница
    Следует использовать только транспондер. А в случае девственного ключа
    После того, как вы узнаете ключ или пароль автомобиля, его можно
    использовал.
    Если на адрес были отправлены неправильные данные о транспортном средстве.
    SMATRA трижды непрерывно или периодически,
    SMATRA отклонит запрос на переход в нейтральный режим на
    один час.Отключение аккумулятора или другое
    манипуляции не могут сократить это время. После подключения
    аккумулятор таймер снова запускается на один час.
    УВЕДОМЛЕНИЕ
    • Условие настройки нейтрализации:
    SHDBE8027N
    •
    В случае «Статус SMARTRA», «Изучено»
    Введите правильный PIN-код с помощью тестера
    Нейтрализующее значение:
    Пароль автомобиля (код DPN)
    удаление.
    Разрешение на изучение нового DPN.
    Код SEK
    SFDBE8408L
    SHDBE8039N
    SHDBE8037N
    SFDBE8412L
    SHDBE8038N
    Блок управления иммобилайзером
    Удаление
    Установка
    1. Отсоедините отрицательный (-) полюс аккумуляторной батареи.1. Установите блок управления иммобилайзером и кронштейн после
    подключение разъема блока.
    2. Снимите защитную подушку. (См. Группу "Кузов" "Аварийная площадка").
    3. Отсоедините 5-контактный разъем модуля SMARTRA.
    а затем снимите блок SMARTRA (A) и кронштейн
    (B) после ослабления срезного болта (C).
    УВЕДОМЛЕНИЕ
    Пробейте срезной болт центрирующим керном.
    И просверлите его головку сверлом.
    Следите за тем, чтобы не повредить модуль SMARTRA.
    SHDBE8041N
    УВЕДОМЛЕНИЕ
    Затягивайте срезной болт до тех пор, пока не сломается головка болта.
    выключенный.
    2.Установите защитную подушку.
    Антенная катушка
    Удаление
    Установка
    1. Отсоедините отрицательный (-) полюс аккумуляторной батареи.
    1. Установите рамочную антенну и подключите 6P
    разъем.
    2. Снимите верхний и нижний кожухи рулевой колонки.
    (А). (См. Группу ST - "Рулевая колонка и
    вал").
    2. Установите верхний и нижний кожухи рулевой колонки.
    SHDBE6590L
    3. Отсоедините 6-контактный разъем катушечной антенны и
    затем снимите рамочную антенну (A) после ослабления
    винт.
    Заявление о соответствии FCC
    Этот продукт был протестирован и признан соответствующим ограничениям для цифровых устройств класса A согласно части 15
    Правилами FCC.Эти ограничения разработаны для обеспечения разумной защиты от вредных помех при работе оборудования.
    работает в коммерческой среде.
    Этот продукт генерирует, использует и может излучать радиочастотную энергию, и, если он установлен и используется с нарушениями
    с инструкцией производителя, может вызвать недопустимые помехи для радиосвязи.
    Использование этого продукта в жилом районе может вызвать вредные помехи, и в этом случае вы будете
    требуется устранить помехи за свой счет.Это устройство соответствует части 15 правил FCC. Эксплуатация возможна при соблюдении следующих двух условий:
    1) Это устройство не должно вызывать вредных помех.
    2) Это устройство должно принимать любые помехи, включая помехи, которые могут вызвать сбои в работе.
    Примечание. Правила FCC предусматривают, что изменения или модификации, прямо не одобренные EMC Corporation
    может лишить вас права на эксплуатацию этого оборудования.
    Эти ограничения разработаны для обеспечения разумной защиты от вредных помех в нежилых помещениях.
    установка.Однако нет гарантии, что помехи не возникнут при конкретной установке. Если это оборудование
    создает недопустимые помехи для приема радио или телевидения, что можно определить, повернув оборудование
    время от времени рекомендуется попытаться устранить помехи одним или несколькими из следующих способов:
    SHDBE6591L
    •
    Переориентируйте или переместите антенну радио / телевизионного приемника.
    •
    Увеличьте расстояние между этим оборудованием и радио / телевизионным приемником.•
    Подключите оборудование к другой розетке, чтобы оборудование и радио / телевизионный приемник были включены.
    различные ответвления силовых сетей.
    •
    Проконсультируйтесь с представителем корпорации EMC или опытным радио / телевизионным техником для получения дополнительной информации.
    предложения. Для получения дополнительной информации о правилах FCC и их применимости к Smartra 3.2 (I001)
    Диагностика неисправностей иммобилайзера
    Коммуникация
    СМАРТРА.
    между
    в
    ECM
    а также
    в
    Функция SMARTRA и транспондера.
    Данные (хранящиеся в ECM, относящиеся к иммобилайзеру)
    функция.В следующей таблице показано назначение иммобилайзера.
    связанные неисправности к каждому типу:
    Неисправности, связанные с иммобилайзером
    Типы неисправностей
    PCM (ECM) неисправность
    1. Не-иммобилайзер-EMS, подключенный к иммобилайзеру.
    Неисправность ключа транспондера
    1. Транспондер не в режиме пароля
    2. Данные транспортировки транспондера были изменены.
    Диагностические коды
    P1610
    P1674
    (Ошибка статуса транспондера)
    Неисправность ключа транспондера
    1. Ошибка программирования транспондера.
    P1675
    (Программирование транспондера
    ошибка)
    Ошибка SMARTRA
    1. Неверное сообщение от SMARTRA к PCM (ECM)
    P1676
    (Ошибка сообщения SMARTRA)
    Ошибка SMARTRA
    1.2.
    3.
    4.
    Virgin SMARTRA в изученной EMS
    Нейтральная SMARTRA в изученной EMS
    Включите аутентификацию EMS и SMARTRA
    Блокировка SMARTRA
    P169A
    (Ошибка аутентификации SMARTRA)
    Ошибка SMARTRA
    1.
    2.
    3.
    4.
    Нет ответа от SMARTRA
    Ошибка антенной катушки
    Ошибка линии связи (обрыв / короткое замыкание и т. Д.)
    Неверное сообщение от SMARTRA к PCM (ECM)
    Неисправность антенной катушки
    1. Обрыв / короткое замыкание антенной катушки.
    Контрольная лампа иммобилайзера f1. Ошибка контрольной лампы иммобилайзера (комбинация)
    Ault
    P1690
    (SMARTRA нет ответа)
    P1691
    (Ошибка антенной катушки)
    P1692
    (Ошибка лампы иммобилайзера)
    Неисправность ключа транспондера
    1.Поврежденные данные с транспондера
    2. Более одного транспондера в магнитном поле (AnteP1693
    катушка nna)
    (Транспондер не отвечает
    3. Нет транспондера (ключ без транспондера) в сообщении magnerror / неверный ответ)
    Этическое поле (антенная катушка)
    PCM (ECM) неисправность
    1. Запрос от PCM (ECM) недействителен
    P1694
    (Нарушение уровня протокола - неверный запрос, ошибка контрольной суммы (ошибка сообщения PCM (ECM))
    или т. д.)
    1. Неисправность внутренней постоянной памяти (EEPROM) PCM (ECM)
    PCM (ECM) внутренний постоянный
    Ошибка памяти (EEPROM) 2. Неверная операция записи в постоянную память (EEPROM (ошибка памяти PCM (ECM))
    Ошибка неверного ключа
    1.Транспондер Virgin в состоянии PCM (ECM) "Изучен" Изучен
    (Недействительный) Транспондер в PCM (ECM), статус "Обучен" (Ошибка аутентификации)
    P1696
    (Ошибка аутентификации)
    Заблокировано таймером
    1. Превышение максимального предела двойного включения зажигания (⊇ 32 раза)
    P1699
    (Дважды IG ON по пробной версии)
     
    Схема и руководство по обслуживанию

    – Запчасти Vintage Synth

    РУКОВОДСТВО ПО ОБСЛУЖИВАНИЮ – СХЕМАТИКА

    На этих страницах вы бесплатно найдете руководство по обслуживанию и схемы

    для старинных электронных музыкальных инструментов

    Художник 707 Схемы Свяжитесь со мной
    Один барабанщик Схемы Свяжитесь со мной
    Drumstar 80 Схемы Скачать
    Ek22 Схемы Скачать
    ОМБ-5 Схемы Скачать
    Рапсодия 490 Схемы Свяжитесь со мной
    Рапсодия 610 Схемы Скачать
    Synthex Схемы Свяжитесь со мной
    Twin61 Схемы Свяжитесь со мной
    X605 Схемы Скачать
    X705 Руководство по обслуживанию Скачать
    Wilgamat Руководство по обслуживанию Свяжитесь со мной
    Барабан Руководство по обслуживанию Свяжитесь со мной
    Эмулятор I Руководство по обслуживанию Свяжитесь со мной
    Эмулятор II Схемы Скачать
    Эмулятор III Руководство по обслуживанию Скачать
    Сп12 Руководство по обслуживанию Скачать
    Сп1200 Руководство по обслуживанию Свяжитесь со мной
    XL-7 Схемы Свяжитесь со мной
    Быстро 3 Схемы Скачать
    Matador R Схемы Скачать
    Звуковая колонка Схемы Свяжитесь со мной
    Синторкестр Схемы Скачать
    VIP 202 Схемы Скачать
    Струнная мелодия I Схемы Скачать
    Струнная мелодия II Схемы Скачать
    Вокальный синтезатор Руководство по обслуживанию Свяжитесь со мной
    Вокалист Руководство по обслуживанию Скачать
    Cat SRM Руководство по обслуживанию Свяжитесь со мной
    Войетра 8 Руководство по техническому обслуживанию Скачать
    OSC – OXFORD SYNTHESIZER COMPANY
    S900 Схемы Свяжитесь со мной

    % PDF-1.3 % 181 0 объект > эндобдж xref 181 73 0000000016 00000 н. 0000001811 00000 н. 0000002899 00000 н. 0000003057 00000 н. 0000003394 00000 н. 0000003676 00000 н. 0000009737 00000 н. 0000010212 00000 п. 0000010704 00000 п. 0000010908 00000 п. 0000011159 00000 п. 0000011246 00000 п. 0000011897 00000 п. 0000012465 00000 п. 0000012705 00000 п. 0000012998 00000 н. 0000013139 00000 п. 0000013327 00000 п. 0000014809 00000 п. 0000015148 00000 п. 0000015189 00000 п. 0000017078 00000 п. 0000017119 00000 п. 0000019765 00000 п. 0000020035 00000 п. 0000020368 00000 п. 0000023729 00000 п. 0000027249 00000 н. 0000027515 00000 п. 0000027911 00000 п. 0000028309 00000 п. 0000028640 00000 п. 0000028827 00000 н. 0000029060 00000 н. 0000029127 00000 п. 0000029474 00000 п. 0000029915 00000 н. 0000030290 00000 п. 0000030615 00000 п. 0000034657 00000 п. 0000034989 00000 п. 0000035260 00000 п. 0000037662 00000 п. 0000037850 00000 п.

    Добавить комментарий

    Ваш адрес email не будет опубликован.