Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Микросхема PC111

  • Главная
  • Каталог
  • Разработка и производство
  • Печатные платы
  • Прайс лист
  • О нас
  • Как купить
  • Карта
Главная Радиокомпоненты активные Микросхемы Микросхема PC111

Каталог

Радиокомпоненты активные (11958)    Диод (293)    Диодные мосты, модули (70)    Микросхемы (6902)    Отечественные активные компоненты (441)    Отечественные компоненты завода Кремний(г.Брянск) (51)    Светодиодные и ЖКИ индикаторы (90)    Светодиодные приборы разные, фотоприемники разные (83)    Светодиоды COB (27)    Светодиоды SMD (134)    Светодиоды выводные BRILLIANT (93)    Светодиоды выводные, держатели (292)    Светодиоды мощные 1-15W, линзы и радиаторы (87)    Стабилитроны 0.5W (71)    Стабилитроны 1-3W (68)    Стабилитроны 5W (45)    Стабилитроны SMD (89)    Супрессоры (153)    Транзисторы биполярные (1740)    Транзисторы полевые 2N, 2SJ, 2SK… (184)    Транзисторы полевые, IGBT 1N…- 120N… (208)    Транзисторы полевые, IGBT AO…-IRF…- ZXM… (686)    Триаки (151) Радиокомпоненты пассивные (5822)
Простое устройство зависимого включения нагрузки РадиоКот >Схемы >Аналоговые схемы >Бытовая техника >

Простое устройство зависимого включения нагрузки

           В статье описано простое и несложное в изготовлении устройство зависимого включения маломощной нагрузки. Основная область применения данного устройства – автоматическое включение блока питания антенного усилителя при включении телевизора в рабочий режим. Данное устройство, во-первых, уменьшает старение и деградацию деталей блока питания и кристаллов транзисторов антенного усилителя, возникающую при их круглосуточной непрерывной работе, когда блок питания постоянно подключен к сети. Во-вторых, позволяет экономить электроэнергию, включая питание антенного усилителя только во время работы телевизора. В-третьих, повышает пожарную безопасность при эксплуатации электрических устройств хоть и с небольшим, но все-таки  тепловыделением, к каковым относятся блоки питания.

            Как-то понадобилось автору изготовить несложное устройство для автоматического включения блока питания (БП) антенного усилителя при включении телевизора в рабочий режим. Для удобства было решено собрать его непосредственно в корпусе сетевого удлинителя, куда собственно, и подключаются БП антенного усилителя и телевизор. Просмотрев около десятка разных схем в журналах и на радиолюбительских сайтах, отбросив громоздкие схемы с трансформаторами и реле, выбор пал на следующую схему [1], показанную на

рис.1:

Рисунок 1

            В качестве датчика тока в этой схеме используются три последовательно включенных диода VD2-VD4, пульсации напряжения на которых выпрямляются однополупериодным выпрямителем на диоде Шоттки VD5 и сглаживаются конденсатором C1. Через ограничительный резистор R1 напряжение с C1 подается на вход оптосимистора A1, который в свою очередь открывает мощный симистор VS1, коммутирующий ведомую нагрузку.

            Учитывая малую потребляемую мощность БП антенного усилителя, схему было решено немного переделать.

            400-вольтовый оптосимистор MOC3020 был заменен на более совершенный 600-вольтовый MOC3063-M со встроенной схемой контроля перехода через ноль. Поскольку пиковый повторяющийся ток нагрузки MOC3063-M по datasheet составляет 1 А и с многократным запасом перекрывает потребляемый ток БП антенного усилителя (несколько десятков мА), было решено мощный симистор из схемы исключить. Автору ранее ни разу не встречалась схема подключения нагрузки непосредственно к выходу оптосимисторов серий MOC30xx, поэтому представлял интерес проверить работоспособность такой схемы включения на трансформаторную нагрузку.

            Схема была собрана навесным монтажом непосредственно в корпусе сетевого удлинителя. Мощные диоды 1N5408 были заменены на более распространенные мощные FR506, а диод Шоттки BAT46 на 1N5819.

           Как показали испытания, при работе с телевизором в качестве главной нагрузки необходимо учитывать, что в дежурном режиме потребляемая мощность составляет несколько Вт. Поскольку величина падения напряжения на трех последовательно включенных диодах VD2-VD4 не имеет резко выраженной зависимости от величины протекающего тока, открывание оптосимистора происходило как в дежурном, так и в рабочем режимах телевизора.

          Для того, чтобы включение ведомой нагрузки происходило только в рабочем режиме телевизора, цепочка из трех последовательно включенных диодов была заменена на диод и два резистора. Это позволило получить значительную разницу падения напряжения на R1, R2 и VD2 в дежурном и рабочем режимах телевизора. Окончательный вариант переделанной схемы показан на  рис. 2:

Рисунок 2

 

            Монтаж элементов устройства в корпусе удлинителя показан на рис.3:

                                                                                                                                                                         Рисунок 3

 

            Внешний вид переделанного удлинителя на 6 розеток показан на рис.4:

                                                                                                                                                                            Рисунок 4

             Две крайних слева розетки запитаны напрямую от сети, розетка с маркировкой “ТВ” предназначена для подключения телевизора, управляющего маломощной нагрузкой, подключаемой к трём крайним слева розеткам с маркировкой “БП”. Учитывая, что таких нагрузок может быть не одна, и что из-за своих габаритов два блока питания в рядом расположенные розетки могут не поместиться, под маломощную нагрузку зарезервировано 3 розетки.

            При указанных на схеме номиналах работоспособность схемы была проверена на кинескопных телевизорах с потребляемой мощностью от 60 до 100 Вт. Было замечено кратковременное срабатывание схемы в момент включения телевизора сетевой кнопкой. После заряда конденсатора фильтра и размагничивания кинескопа включение/выключение телевизора с пульта вызывало четкое включение/выключение БП антенного усилителя. Было измерено напряжение на выходе БП антенного усилителя под нагрузкой при подключении к данному устройству и непосредственно к сети. Результаты оказались одинаковы.

                Элементная база.

            Резисторы R1 и R2 применены из имеющихся в наличии импортных малогабаритных мощностью 2 Вт и сопротивлением 2 Ом. При потребляемой мощности телевизора около 80 Вт размах импульса напряжения на одном резисторе составил около 1,25 В. При этом напряжение на конденсаторе C1 составило около 3 В, а ток через светодиод оптосимистора DA1 – около 17,5 мА (по datasheet допускается 5-60мА) при сопротивлении резистора R3=100 Ом.

            Нагрев резисторов R1, R2 в рабочем режиме незначительный, но учитывая, что при включении телевизора сетевой кнопкой возникает кратковременный бросок тока зарядки конденсаторов фильтра и ток размагничивания кинескопа, мощность резисторов выбрана с многократным запасом. Диоды VD1, VD2 для надежности также лучше использовать с запасом на ток не менее 5 А и обратное рабочее напряжение не менее 600 В, например серий FR506-FR507, HER506-HER508 или аналогичные.

            Оптосимистор MOC3063-M можно заменить на MOC3163-M или аналогичный.

            Резистор R3 может быть любой малогабаритный мощностью 0,125 Вт.

            В качестве резисторов R1, R2 можно использовать резисторы типа МЛТ, С2-23 или импортные мощностью 1…2 Вт. Сопротивление резисторов при необходимости нужно подобрать таким образом, чтобы в рабочем режиме телевизора на конденсаторе C1 напряжение составляло около 3 В.

              Внимание! Устройство имеет гальваническую связь с питающей сетью. Все подключения необходимо производить только при отключенном сетевом питании устройства.

                         

 

          Литература.

          1) Каравкин В. Зависимое включение нагрузок. Радиоконструктор №4-2009.

 



Все вопросы в Форум.


Как вам эта статья?

Заработало ли это устройство у вас?

Схема высоковольтного стабилизатора напряжения – РАДИОСХЕМЫ

В настоящее время существуют интегральные микросхемы, применяя которые можно создавать высоковольтные стабилизаторы напряжения компенсационного типа на выходное напряжение от 70 до 140 В. Это микросхемы типов SE070N, SE080N, SE090N, SE105N, SE110N, SE120N, SE125N, SE130N, SE135N, SE140N – они предназначены для контроля и регулировки напряжения постоянного тока. На рисунке показан один из возможных вариантов линейного стабилизатора на выходное напряжение 115 В постоянного тока. Источником напряжения для стабилизатора служит сеть переменного тока 220 В. В других конструкциях источником напряжения может быть, например, вторичная обмотка силового трансформатора, выход выпрямителя преобразователя напряжения. Стабилизатор выполнен на интегральной микросхеме SE115N, представляющей собой детектор напряжения на 115 В. Контролируемое напряжение с выхода стабилизатора поступает на вход DA1 — вывод 1.

 

Если напряжение на выходе стабилизатора стремится увеличиться свыше рабочего напряжения DA1, то открывается выходной п-p-n транзистор микросхемы, коллектор которого выведен на вывод 2 DA1. Это приводит к тому, что понижается напряжение затвор-исток VT1 что приводит к понижению выходного напряжения стабилизатора. На мощном высоковольтном полевом n-канальном транзисторе VT1 выполнен истоковый повторитель напряжения. Сетевое напряжение переменного тока поступает на мостовой диодный выпрямитель VD1 – VD4. Конденсатор С1 сглаживает пульсации выпрямленного напряжения. Резистор R1 уменьшает бросок тока через выпрямительные диоды и разряженный конденсатор С1, возникающий при включении устройства в сеть. Стабилитрон VD5 защищает полевой транзистор от пробоя высоким напряжением затвор-исток. Светящийся светодиод HL1 сигнализирует о наличии выходного напряжения, кроме того, цепь R3HL1 разряжает оксидные конденсаторы при отключенной нагрузке. Резистор R1 должен быть проволочным. Его сопротивление и мощность выбирают исходя из параметров подключенной к стабилизатору нагрузки. Остальные резисторы любые из С2-33, МЛТ, РПМ соответствующей мощности. Сопротивление резистора R2 выбирают исходя из входного напряжения стабилизатора, при этом следует учитывать, что максимальный втекающий ток DA1 по выводу 2 не должен превышать 20 мА. Конденсаторы типа К50-68 или импортные аналоги. Вместо стабилитрона BZV55C-12 подойдёт BZV55C-13, 1N4743A, 2С212Ц, КС212Ц. Светодиод подойдёт любого типа непрерывного свечения, желательно с повышенной светоотдачей. Полевой МДП транзистор HV82 рассчитан на максимальный ток стока 6,5 А, напряжение сток-исток 800 В и максимальную рассеиваемую мощность 150 Вт. В этой конструкции его можно заменить, например, на IRF350, IRF352 или другой, подходящий по параметрам. Следует учитывать, что если, например, к выходу стабилизатора подключена нагрузка мощностью 30 Вт, то при питании устройства от сети 220 В, на транзисторе VT1 будет рассеиваться мощность около 80 Вт. Если же входным напряжением для стабилизатора будет, например, напряжение +180 В (выход выпрямителя «лампового» трансформатора), то при выходном напряжении 115 В и токе нагрузки 0,5 А установленный на теплоотвод транзистор будет рассеивать около 33 Вт тепловой мощности. Это немало, поэтому, линейные высоковольтные стабилизаторы напряжения целесообразно применять для питания слаботочной нагрузки, например, лампового активного щупа для осциллографа и в других местах, где применение импульсных высоковольтных стабилизаторов напряжения нежелательно. Источник: Радио-конструктор 11 – 2010.

СХЕМА ПЛАВНОГО ВКЛЮЧЕНИЯ

   В ходе непрекращающейся борьбы с перегоранием ламп на лестничной площадке было реализовано несколько схем защиты ламп. Их применение дало положительный результат – лампы приходится менять гораздо реже. Однако не все реализованные схемы устройств работали «как есть» – в процессе эксплуатации приходилось производить подбор оптимального набора элементов. Параллельно производился поиск других интересных схем. Результатом изысканий в глубинах интернета стала статья И. Нечаева из г. Курска в журнале «Радио». Поскольку указанный журнал (как и сайт Радиосхемы) – издание, вызывающее доверие, и вряд ли размещающее на своих страницах непроверенные схемы, то решено было воплотить разработку автора в радиоэлементах. Как известно, плавное включение ламп накаливания увеличивает срок их службы и исключает броски тока и помехи в сети. В устройстве, которое реализует такой режим, удобно использовать мощные полевые переключательные транзисторы. Среди них можно выбрать высоковольтные, с рабочим напряжением на стоке не менее 300 В и сопротивлением канала не более 1 Ом.

Схема плавного включения ламп – 1

Схема плавного включения ламп - 1

   Автор приводит две схемы плавного пуска ламп. Однако, здесь хочу предложить только схему с оптимальных режимом работы полевого транзистора, что позволяет его использовать без радиатора при мощности лампы до 250 Ватт. Но вы можете изучить и первую – которая проще тем, что включается в разрыв одного из проводов. Тут по окончании зарядки конденсатора напряжение на стоке составит примерно 4…4,5 В, а остальное напряжение сети будет падать на лампе. На транзисторе при этом будет выделяться мощность, пропорциональная току, потребляемому лампой накаливания. Поэтому при токе более 0,5 А (мощность лампы 100 Вт и больше) транзистор придется установить на радиатор. Для существенного уменьшения мощности, рассеиваемой на транзисторе, автомат необходимо собрать по схеме, приведенной далее.

Схема плавного включения ламп – 2

Схема плавного включения ламп накаливания

   Схема устройства, которое включается последовательно с лампой накаливания, приведена на рисунке. Полевой транзистор включен в диагональ диодного моста, поэтому на него поступает пульсирующее напряжение. В начальный момент транзистор закрыт и все напряжение падает на нем, поэтому лампа не горит. Через диод VD1 и резистор R1 начинается зарядка конденсатора С1. Напряжение на конденсаторе не превысит 9,1 В, потому что оно ограничено стабилитроном VD2. Когда напряжение на нем достигнет 9,1 В, транзистор начнет плавно открываться, ток будет возрастать, а напряжение на стоке уменьшаться. Это приведет к тому, что лампа начнет плавно зажигаться.

Печатная плата блока ПЛАВНОГО ВКЛЮЧЕНИЯ

   Но следует учесть, что лампа начнет зажигаться не сразу, а через некоторое время после замыкания контактов выключателя, пока напряжение на конденсаторе не достигнет указанного значения. Резистор R2 служит для разрядки конденсатора С1 после выключения лампы. Напряжение на стоке будет незначительным и при токе 1 А не превысит 0,85 В.

СХЕМА ПЛАВНОГО ВКЛЮЧЕНИЯ ЛАМП

   При сборке устройства были использованы диоды 1N4007 из отработавших свое энергосберегающих ламп. Стабилитрон может быть любой маломощный с напряжением стабилизации 7…12 В. Под рукой нашелся BZX55-C11. Конденсаторы — К50-35 или аналогичные импортные, резисторы — МЛТ, С2-33. Налаживание устройства сводится к подбору конденсатора для получения требуемого режима зажигания лампы. Я использовал конденсатор на 100 мкф – результатом стала пауза от момента включения до момента зажигания лампы в 2 секунды.

БЛОК ПЛАВНОГО ВКЛЮЧЕНИЯ

   Немаловажным является отсутствие мерцания лампы, как это наблюдалось при реализации других схем. Для облегчения жизни другим заинтересованным самодельщикам выкладываю фото готового гаджета и печатную плату в Sprint-Layout 6.0 (перед нанесением на текстолит делать зеркальное отражение не нужно).

Самодельная СХЕМА ПЛАВНОГО ВКЛЮЧЕНИЯ

   Это устройство работает уже долгое время и лампы накаливания пока менять не пришлось. Автор статьи и фото – Николай Кондратьев (позывной на сайте Николай5739), г.Донецк. Украина.

   Форум по автоматике

   Обсудить статью СХЕМА ПЛАВНОГО ВКЛЮЧЕНИЯ


СХЕМА И ПОДКЛЮЧЕНИЕ ДАТЧИКА ДВИЖЕНИЯ

Функции прибора просты: при наличии человека в зоне действия теплового датчика срабатывает реле и включается освещение. Заявленная производителем устройства коммутируемая мощность нагрузки до 200 Вт. Причём заменой реле на более мощное, можно нагрузку повысить и до нескольких киловатт.

Обзор китайского ИК датчика движения

Разборка датчика движения

описание ИК датчика движения

Ремонт платы датчика движения

Зона обнаружения датчика заявлена от 3 до 8 метров и меняется в зависимости от интенсивности освещения встроенного в датчик фоторезистора. Соответственно, при включенном в схему фоторезисторе в дневное время прибор не сработает.

Схема принципиальная и подключение

СХЕМА ДАТЧИКА ДВИЖЕНИЯ 1

СХЕМА ДАТЧИКА ДВИЖЕНИЯ 2

Датчик движения -- подключение

Тут 2 варианта – с управлением нагрузкой через симистор и через электромагнитное реле. В схеме предоставлена таблица изменения подборкой сопротивления временного интервала работы прибора на включение нагрузки.

микросхема LP8072C

Основа схемы – специализированная микросхема LP8072C, краткое описание на которую приводится выше.

Плата печатная ДАТЧИКА ДВИЖЕНИЯ

Печатная плата срисована с рабочего оригинала в масштабе 1:1. Все обозначения и номиналы элементов проверены и соответствуют установленным на оригинальной плате, но имеют незначительные отличия в целях усовершенствования от предоставленной в материале схемы. Необходимая документация, в том числе разводка платы для тех, кто захочет самостоятельно спаять конструкцию – в общем архиве. Автор статьи Igoran.

   Форум

   Обсудить статью СХЕМА И ПОДКЛЮЧЕНИЕ ДАТЧИКА ДВИЖЕНИЯ


Использование драйвера ключей нижнего и верхнего уровней IR2110 — объяснение и примеры схем

Быть может, после прочтения этой статьи вам не придётся ставить такие же по размерам радиаторы на транзисторы.
Перевод этой статьи.

Небольшое обращение от переводчика:Во-первых, в данном переводе могут быть серьёзные проблемы с переводом терминов, я не занимался электротехникой и схемотехникой достаточно, но всё же что-то знаю; также я пытался перевести всё максимально понятно, поэтому не использовал такие понятия, как бутсрепный, МОП-транзистор и т.п. Во-вторых, если орфографически сейчас уже сложно сделать ошибку (хвала текстовым процессорам с указанием ошибок), то ошибку в пунктуации сделать довольно-таки просто.
И вот по этим двум пунктам прошу пинать меня в комментариях как можно сильнее.

Теперь поговорим уже больше о теме статьи — при всём многообразии статей о построении различных транспортных средств наземного вида (машинок) на МК, на Arduino, на <вставить название>, само проектирование схемы, а тем более схемы подключения двигателя не описывается достаточно подробно. Обычно это выглядит так:
— берём двигатель
— берём компоненты
— подсоединяем компоненты и двигатель
— …
— PROFIT!1!

Но для построения более сложных схем, чем для простого кручения моторчика с ШИМ в одну сторону через L239x, обычно требуется знание о полных мостах (или H-мостах), о полевых транзисторах (или MOSFET), ну и о драйверах для них. Если ничто не ограничивает, то можно использовать для полного моста p-канальные и n-канальные транзисторы, но если двигатель достаточно мощный, то p-канальные транзисторы придётся сначала обвешивать большим количеством радиаторов, потом добавлять кулеры, ну а если совсем их жалко выкидывать, то можно попробовать и другие виды охлаждения, либо просто использовать в схеме лишь n-канальные транзисторы. Но с n-канальными транзисторами есть небольшая проблема — открыть их «по-хорошему» подчас бывает довольно сложно.

Поэтому я искал что-нибудь, что мне поможет с составлением правильной схемы, и я нашёл статью в блоге одного молодого человека, которого зовут Syed Tahmid Mahbub. Этой статьёй я и решил поделится.


Во многих ситуациях мы должны использовать полевые транзисторы как ключи верхнего уровня. Также во многих ситуациях мы должны использовать полевые транзисторы как ключи как и верхнего, так и нижнего уровней. Например, в мостовых схемах. В неполных мостовых схемах у нас есть 1 MOSFET верхнего уровня и 1 MOSFET нижнего уровня. В полных мостовых схемах мы имеем 2 MOSFETа верхнего уровня и 2 MOSFETа нижнего уровня. В таких ситуациях нам понадобится использовать драйвера как высокого, так и низкого уровней вместе. Наиболее распространённым способом управления полевыми транзисторами в таких случаях является использование драйвера ключей нижнего и верхнего уровней для MOSFET. Несомненно, самым популярным микросхемой-драйвером является IR2110. И в этой статье/учебнике я буду говорить о именно о нём.

Вы можете загрузить документацию для IR2110 с сайта IR. Вот ссылка для загрузки: http://www.irf.com/product-info/datasheets/data/ir2110.pdf

Давайте для начала взглянем на блок-схему, а также описание и расположение контактов:


Рисунок 1 — Функциональная блок-схема IR2110


Рисунок 2 — Распиновка IR2110


Рисунок 3 — Описание пинов IR2110

Также стоит упомянуть, что IR2110 выпускается в двух корпусах — в виде 14-контактного PDIP для выводного монтажа и 16-контактного SOIC для поверхностного монтажа.

Теперь поговорим о различных контактах.

VCC — это питание нижнего уровня, должно быть между 10В и 20В. VDD — это логическое питание для IR2110, оно должно быть между +3В и +20В (по отношению к VSS). Фактическое напряжение, которое вы выберете для использования, зависит от уровня напряжения входных сигналов. Вот график:


Рисунок 4 — Зависимость логической 1 от питания

Обычно используется VDD равное +5В. При VDD = +5В, входной порог логической 1 немного выше, чем 3В. Таким образом, когда напряжение VDD = +5В, IR2110 может быть использован для управления нагрузкой, когда вход «1» выше, чем 3 (сколько-то) вольт. Это означает, что IR2110 может быть использован почти для всех схем, так как большинство схем, как правило, имеют питание примерно 5В. Когда вы используете микроконтроллеры, выходное напряжение будет выше, чем 4В (ведь микроконтроллер довольно часто имеет VDD = +5В). Когда используется SG3525 или TL494 или другой ШИМ-контроллер, то, вероятно, придётся их запитывать напряжением большим, чем 10В, значит на выходах будет больше, чем 8В, при логической единице. Таким образом, IR2110 может быть использован практически везде.

Вы также можете снизить VDD примерно до +4В, если используете микроконтроллер или любой чип, который даёт на выходе 3.3В (например, dsPIC33). При проектировании схем с IR2110, я заметил, что иногда схема не работает должным образом, когда VDD у IR2110 был выбран менее + 4В. Поэтому я не рекомендую использовать VDD ниже +4В. В большинстве моих схем уровни сигнала не имеют напряжение меньше, чем 4В как «1», и поэтому я использую VDD = +5V.

Если по каким-либо причинам в схеме уровень сигнала логической «1» имеет напряжение меньшее, чем 3В, то вам нужно использовать преобразователь уровней/транслятор уровней, он будет поднимать напряжение до приемлемых пределов. В таких ситуациях я рекомендую повышение до 4В или 5В и использование у IR2110 VDD = +5В.

Теперь давайте поговорим о VSS и COM. VSS это земля для логики. COM это «возврат низкого уровня» — в основном, заземление низкого уровня драйвера. Это может выглядеть так, что они являются независимыми, и можно подумать что, пожалуй, было бы возможно изолировать выходы драйвера и сигнальную логику драйвера. Тем не менее, это было бы неправильно. Несмотря на то что внутренне они не связаны, IR2110 является неизолированным драйвером, и это означает, что VSS и COM должны быть оба подключены к земле.

HIN и LIN это логические входы. Высокий сигнал на HIN означает, что мы хотим управлять верхним ключом, то есть на HO осуществляется вывод высокого уровня. Низкий сигнал на HIN означает, что мы хотим отключить MOSFET верхнего уровня, то есть на HO осуществляется вывод низкого уровня. Выход в HO, высокий или низкий, считается не по отношению к земле, а по отношению к VS. Мы скоро увидим, как усилительные схемы (диод + конденсатор), используя VCC, VB и VS, обеспечивают плавающее питания для управления MOSFETом. VS это плавающий возврат питания. При высоком уровне, уровень на HO равен уровню на VB, по отношению к VS. При низком уровне, уровень на HO равнен VS, по отношению к VS, фактически нулю.

Высокий сигнал LIN означает, что мы хотим управлять нижним ключом, то есть на LO осуществляется вывод высокого уровня. Низкий сигнал LIN означает, что мы хотим отключить MOSFET нижнего уровня, то есть на LO осуществляется вывод низкого уровня. Выход в LO считается относительно земли. Когда сигнал высокий, уровень в LO такой же как и в VCC, относительно VSS, фактически земля. Когда сигнал низкий, уровень в LO такой же как и в VSS, относительно VSS, фактически нуль.

SD используется в качестве контроля останова. Когда уровень низкий, IR2110 включен — функция останова отключена. Когда этот вывод является высоким, выходы выключены, отключая управление IR2110.
Теперь давайте взглянем на частые конфигурации с IR2110 для управления MOSFETами как верхних и нижних ключей — на полумостовые схемы.


Рисунок 5 — Базовая схема на IR2110 для управления полумостом

D1, C1 и C2 совместно с IR2110 формируют усилительную цепь. Когда LIN = 1 и Q2 включен, то C1 и С2 заряжаются до уровня VB, так как один диод расположен ниже +VCC. Когда LIN = 0 и HIN = 1, заряд на C1 и С2 используется для добавления дополнительного напряжения, VB в данном случае, выше уровня источника Q1 для управления Q1 в конфигурации верхнего ключа. Достаточно большая ёмкость должна быть выбрана у C1 для того чтобы её хватило для обеспечения необходимого заряда для Q1, чтобы Q1 был включён всё это время. C1 также не должен иметь слишком большую ёмкость, так как процесс заряда будет проходить долго и уровень напряжения не будет увеличиваться в достаточной степени чтобы сохранить MOSFET включённым. Чем большее время требуется во включённом состоянии, тем большая требуется ёмкость. Таким образом меньшая частота требует большую ёмкость C1. Больший коэффициент заполнения требует большую ёмкость C1. Конечно есть формулы для расчёта ёмкости, но для этого нужно знать множество параметров, а некоторые из них мы может не знать, например ток утечки конденсатора. Поэтому я просто оценил примерную ёмкость. Для низких частот, таких как 50Гц, я использую ёмкость от 47мкФ до 68мкФ. Для высоких частот, таких как 30-50кГц, я использую ёмкость от 4.7мкФ до 22мкФ. Так как мы используем электролитический конденсатор, то керамический конденсатор должен быть использован параллельно с этим конденсатором. Керамический конденсатор не обязателен, если усилительный конденсатор — танталовый.

D2 и D3 разряжают затвор MOSFETов быстро, минуя затворные резисторы и уменьшая время отключения. R1 и R2 это токоограничивающие затворные резисторы.

+MOSV может быть максимум 500В.

+VCC должен идти с источника без помех. Вы должны установить фильтрующие и развязочные конденсаторы от +VCC к земле для фильтрации.

Давайте теперь рассмотрим несколько примеров схем с IR2110.


Рисунок 6 — Схема с IR2110 для высоковольтного полумоста


Рисунок 7 — Схема с IR2110 для высоковольтного полного моста с независимым управлением ключами (кликабельно)

На рисунке 7 мы видим IR2110, использованный для управления полным мостом. В ней нет ничего сложного и, я думаю, уже сейчас вы это понимаете. Также тут можно применить достаточно популярное упрощение: HIN1 мы соединяем с LIN2, а HIN2 мы соединяем с LIN1, тем самым мы получаем управление всеми 4 ключами используя всего 2 входных сигнала, вместо 4, это показано на рисунке 8.


Рисунок 8 — Схема с IR2110 для высоковольтного полного моста с управлением ключами двумя входами (кликабельно)


Рисунок 9 — Схема с IR2110 как высоковольтного драйвера верхнего уровня

На рисунке 9 мы видим IR2110 использованный как драйвер верхнего уровня. Схема достаточно проста и имеет такую же функциональность как было описано выше. Есть вещь которую нужно учесть — так как мы больше не имеем ключа нижнего уровня, то должна быть нагрузка подключённая с OUT на землю. Иначе усилительный конденсатор не сможет зарядится.


Рисунок 10 — Схема с IR2110 как драйвера нижнего уровня


Рисунок 11 — Схема с IR2110 как двойного драйвера нижнего уровня


Если у вас проблемы с IR2110 и всё постоянно выходит из строя, горит или взрывается, то я уверен, что это из-за того, что вы не используете резисторы на затвор-исток, при условии, конечно, что вы всё спроектировали тщательно. НИКОГДА НЕ ЗАБЫВАЙТЕ О РЕЗИСТОРАХ НА ЗАТВОР-ИСТОК. Если вам интересно, вы можете прочитать о моем опыте с ними здесь (я также объясняю причину, по которой резисторы предотвращают повреждения): http://tahmidmc.blogspot.com/2012/10/magic-of-knowledge.html

Для дальнейшего чтения я рекомендую это: http://www.irf.com/technical-info/appnotes/an-978.pdf

Я видел как на многих форумах, люди бьются с проектированием схем на IR2110. У меня тоже было много трудностей прежде чем я cмог уверенно и последовательно строить успешные схемы драйвера на IR2110. Я попытался объяснить применение и использование IR2110 довольно тщательно, попутно всё объясняя и используя большое количество примеров, и я надеюсь, что это поможет вам в ваших начинаниях с IR2110.

простая схема включения и выключения своими руками Давно искал какое то простое устройство, чтобы ограничить время работы различных приборов. Таймеров продается много, в том же Китае, с реле и всякими опциями. Даже купил один такой, но хотелось простоты. И попался мне на глаза вот этот — C005.
Размеры платки 12 на 12 миллиметров.Информации по таймеру не так много, но кое что нашел и кратко здесь приведу. Напряжение питания от 2 до 5 вольт. Ток на выходе до 30мА. Ток потребления в ждущем режиме зафиксировать не удалось. В работе примерно 120 мкА. Вариант схемы включения.
Время задается внешним резистором Rt. Работает просто, управляется TTL уровнями. Запускается спадом (переход 1-0) на входе запуска — Trigger. Процесс запуска сопровождается появлением низкого уровня на выходе — Out, а после отработки заданного времени возвращается к высокому состоянию. В процессе работы состояния входа запуска на время таймера не влияет, он не перезапускается и отрабатывает заданное время. Даже сохранение низкого уровня на входе запуска, после отработки заданного времени, вновь таймер не запускает. Зависимость времени от сопротивления представлена в таблице.
От напряжения питания время немного меняется. Максимальное время примерно 2 часа. Таблица довольно точно соответствует действительности, проверил с несколькими сопротивлениями. На плате есть еще два контакта обозначенные как P1 и P2. Если замкнуть P1, то время увеличится в 8 раз, если P2 в 64 раза и если оба то 512 раз. Это, как не сложно подсчитать, около 40 дней.
Несколько слов для чего хочу использовать. Первым делом хочу ограничить время работы уличного самодельного прожектора на даче. Для управления купил радиопульт. В блоке управления там есть реле и в принципе можно прожектор подключить к нему напрямую, но я же хотел ограничить время работы. Вдруг кто забудет выключить. Так же некоторая защита от случайного срабатывания.
Схема примерно будет такая.

Дополнительная информация


В заключение хочу сказать, что за такие деньги таймер очень хорош. Минимум навесных деталей и широкий временной диапазон. Вариантов использования можно придумать разных, каждый решает сам.
Из минусов — контакты покрыты какой то гадостью и не паяются, пришлось чистить шкуркой.

Ford Wiring Diagrams Скачать бесплатно

Смотри также:

Ford Wiring Diagrams

Вот электрические схемы для Ford Escort, F-серии, Fiesta, Focus, Mustang, Ranger, Kuga и многих других.

Электрические схемы Электрическая схема Электрические схемы
Заголовок Размер файла Ссылка для скачивания
Ford Escort 1990-1999 Электрические схемы + электрические схемы.pdf 8,6Mb Загрузить
Ford Escort 1991-1999 Схема подключения.pdf 2Mb Загрузить
Ford Escort ewd Электрические схемы.jpg 1,3Mb Загрузить
Ford F-250 2002 Схемы электрических соединений PDF.pdf 5,8 МБ Загрузить
Ford F-350 2002 Схемы электрических соединений PDF.pdf 5,8 МБ Загрузить
Ford F-350 2002 PDF.pdf 8,4Mb Загрузить
Ford F-450 2002 Схемы электрических соединений PDF.pdf 5,8 МБ Загрузить
Ford F-550 2002 Схемы электрических соединений PDF.pdf 5,8 МБ Загрузить
Ford F250 2011.JPG 460,2kb Загрузить
Ford Fiesta 2003 электрическая схема.pdf 328,5kb Загрузить
Ford Fiesta Electric электрическая схема.pdf 14,1Mb Загрузить
Ford Focus 2001 SE. PDF 14,8Mb Загрузить
Ford Focus 2002 Электрические схемы.pdf 3Mb Загрузить
Ford Focus 2010 Руководство по техническому обслуживанию + электрические схемы.pdf 6,4Mb Загрузить

Электрические схемы Электрические схемы Электрическая схема Электрические схемы электрических соединений Ford E-series Схема подключения выключателя зажигания Ford
Ford Focus 2010 PDF.pdf 6,5Mb Загрузить
Ford Focus ewd Электрическая схема.jpg 76,5kb Загрузить
Ford Focus PDF.pdf 6,4Mb Загрузить
Схемы соединений Ford Focus.jpg 291.8kb Загрузить
Ford Mustang 1966 Внешнее освещение.jpg 240,2 КБ Загрузить
Ford Mustang 2000 Radio Wiring Diagram.png 214,8 КБ Загрузить
Ford Mustang 1968.GIF 184,7кб Загрузить
Ford 6 (1958) Электрические схемы.jpg 347,5kb Загрузить
PDF.pdf 6,3 Мб Загрузить
Электрические схемы Ford Escape.pdf 9,2Mb Загрузить
Ford Excursion 2002 Электрические электрические схемы PDF.pdf 5,8 МБ Загрузить
Ford Galaxy 2006 Электрические схемы.rar 81,3Mb Загрузить
Ford Granada ewd.pdf 1,9Mb Загрузить
.gif 10,1kb Загрузить
Руководство по ремонту Ford Kuga Mk1 + электрические схемы (PDF).pdf 76,1Mb Загрузить

Электрическая схема Руководство по монтажным схемам Электрическая схема
Ford Orion 1990-1999 г.г. Электрическая схема .pdf 8,6Mb Загрузить
Ford S-MAX 2006 Электрическая схема .rar 81,3Mb Загрузить
Ford Sierra.pdf 2,5Mb Загрузить
Ford Super Duty Series 2002 Схемы электрических соединений PDF.pdf 5,8 МБ Загрузить
Схема подключения Ford Taurus для системы зарядки.jpg 39,7kb Загрузить
Ford Torino Montego 1973 Wire Diagram Руководство пользователя.pdf 1,2Mb Загрузить
Ford Truck 1956 схема подключения.jpeg.jpg 81,7кб Загрузить
Ford Truck 1973-1979 Электрические схемы усилителя Схемы.JPG 994,3kb Загрузить
(PDF) .pdf 8,4Mb Загрузить
Ford Ranger 2010 Diagrama de Cableado EWD.pdf 1,7 Мб Загрузить
Ford Ranger Diagramas de cableado EWD.pdf 12,3Mb Загрузить
Ford Ranger Diagramas Eléctricos.pdf 3,8 МБ Загрузить
Ford Ranger EV 2001 Руководство по электромонтажу.pdf 3,5Mb Загрузить
Ford Ranger PX 2015.rar 39,3Mb Загрузить
,

279 Komatsu Сервис мануалы скачать бесплатно

Komatsu D37PX-21_M_EEAM024300_D31_37_39_EX_PX_21_0509 Руководство по ремонту бульдозеров

Komatsu D37PX-21_S_SEBM025607 Руководство по ремонту бульдозеров

Komatsu D55S_3_S_BE2 Руководство по ремонту бульдозеров

Komatsu D65EX, PX-15_69UP_M_ Руководство по ремонту бульдозеров

Komatsu d65ex15 руководство по ремонту бульдозеров

Komatsu D65PX-12_M_SEAD001202 Руководство по ремонту бульдозеров

Komatsu D68-E8_M_0107154637_001 Руководство по ремонту бульдозеров

Komatsu D85EX-15_M_EEAM022804_D85EX_PX-15_0509 Руководство по ремонту бульдозеров

Инструкции по ремонту бульдозеров Komatsu D85EX-15_S_SEBM029101_D85EX-15

Komatsu D155A-1_S_SEBM0170A07R_0403 Руководство по ремонту бульдозеров

Komatsu D155AX-5_M_EEAM020802_D155AX-5 Бульдозеры Руководство по ремонту

Komatsu D155AX-5_S_SEBM016204_% 20D155AX-5_0407 Руководство по ремонту бульдозеров

Komatsu D155AX-5_S_SEBM016205_D155AX-5_0407 Руководство по ремонту бульдозеров

Komatsu D155AX-6_S_SEN00596-02 Руководство по ремонту бульдозеров

Komatsu D155AX-6-_M_0602 Руководство по ремонту бульдозеров

Komatsu D155AX-76UP_M_EEAM020802_D155AX-5 Бульдозеры Руководство по ремонту

Бульдозер Komatsu D31EX-D37EX-D39EX, PX-21 Руководство по эксплуатации и техническому обслуживанию

Бульдозер Komatsu D65E, P-12 D65EX, PX-12 руководство по ремонту

Komatsu D155AX-5 Бульдозеры Руководство по ремонту

KOMATSU D355A-3 сервис мануал

Komatsu d85ex15 tier2 Бульдозеры Руководство по ремонту

Komatsu d155ax6 Бульдозеры Руководство по ремонту

Komatsu Galeo HM300-2 руководство по ремонту

Komatsu Galeo HM350-1 Самосвал Руководство по ремонту

Komatsu HD320, 325-3 Самосвал Руководство по ремонту

Komatsu HD785-7 сервис мануал

Komatsu HM400 Руководство пользователя

Komatsu D155_S_ENGINE_SEBM022209_140-3% 20SERIES_0410

Komatsu FAI_80_P_Transmission 80DT

Комацу FAI_P_axle_Transmission

Komatsu FAI226_P_1_Transmission

Komatsu FAI226_P_Transmission

Komatsu 6D170 сервис мануал

KOMATSU 155 4-series дизельный двигатель Руководство по обслуживанию

Руководство по эксплуатации двигателей Komatsu серии M11

Komatsu S4D102E-1_S_ engine Руководство по техническому обслуживанию

Komatsu S4D106_S_WEBMTNV000 двигатель Руководство по обслуживанию

Komatsu S6D108_S_SEBE62210104_ENGINES_108_1_0504 Руководство по техническому обслуживанию

Komatsu S6D170E-1_S_SEBES6161000 двигатель Руководство по обслуживанию

Komatsu SA6D102E-1 двигатель Руководство по обслуживанию

Komatsu SA6D102E-1_S_ engine Руководство по техническому обслуживанию

Komatsu SA6D125-2 двигатель Руководство по обслуживанию

Базовая проводка для управления двигателем – Руководство по техническим данным

Электрические схемы

Электрические схемы показывают соединения с контроллером. Электрические схемы, иногда называемые « main » или « construction » , схемы , показывают фактические точки подключения проводов к компонентам и клеммам контроллера.

Basic wiring for motor control - Technical data Базовая проводка для управления двигателем – Технические данные

Они показывают относительное расположение компонентов.Их можно использовать как руководство при подключении контроллера. Рисунок 1 – это типичная схема подключения для трехфазного магнитного пускателя двигателя .

Typical Wiring Diagram Рисунок 1 – Типичная схема подключения

Линейные диаграммы показывают схемы работы контроллера

На линейных диаграммах , также называемых « схема » или « элементарная » диаграммы , показаны схемы, которые формируют основную работу контроллера. Они не указывают физические отношения различных компонентов в контроллере.Они являются идеальным средством для устранения неисправностей цепи.

На рисунке 2 показана типичная линия или принципиальная схема.

Typical Line or Schematic Diagram Рисунок 2 – Типичная линия или принципиальная схема

Стандартизированные символы облегчают чтение диаграмм

Как линейные, так и монтажные схемы являются языком рисунков. Нетрудно выучить основные символы. Как только вы это сделаете, вы сможете быстро читать диаграммы и часто сможете сразу понять схему. Чем больше вы работаете с линейными и электрическими схемами, тем лучше вы будете анализировать их.

Американская ассоциация стандартов ( ASA ) и Национальная ассоциация производителей электрооборудования ( NEMA ) являются агентствами, отвечающими за разработку и поддержание стандартов на символы.

Благодаря этим стандартам вы сможете читать все диаграммы, которые встречаются на вашем рабочем месте.

Basic Wiring for Motor Contol Базовая проводка для мотора Contol ,
27 Detroit Diesel Engine Руководство по обслуживанию Скачать бесплатно

История Detroit Diesel началась в 1938 году. Именно тогда в составе известной корпорации General Motors появилось подразделение по производству дизельных двигателей «Diesel Division» был сформирован.

Компактные дизельные двигатели GM Diesel активно использовались на десантных кораблях, танках и на резервных генераторах во время Второй мировой войны.

В 1965 году произошли значительные изменения.Подразделение GM Diesel было преобразовано в подразделение Detroit Diesel Engine. И через пять лет в связи со слиянием с американцем Производитель Allison Division, производящий газовые турбины и трансмиссии, появился под названием Detroit Diesel Allison Division.

Сегодня Detroit Diesel Corporation активно развивается и входит в состав концерна DaimlerChrysler AG. Компания предлагает широкий ассортимент двигателей для различных областей: автобусы, энергетика, строительная техника, нефтедобывающее оборудование, автомобили, морской транспорт.Кроме того, компания занимает лидирующие позиции на рынке США, связанные с продажей двигателей для грузовики.

Шестицилиндровые дизельные двигатели серии S60, предназначенные для автобусов и грузовых автомобилей, хорошо себя зарекомендовали. Эти продукты характеризуются надежностью и неприхотливостью. Дизельные двигатели имеют рабочий объем 12,7 литра и развиваются от 380 до 450 лошадиных сил. Существуют также 14-литровые двигатели мощностью от 450 до 600 л.с.

Такая компания начала производство в 1987 году.В те времена это были первые двигатели этого класса, имеющие встроенную электронную систему управления DDEC (сокращение от Detroit Diesel). Электронное управление). Более того, этот комплекс не только контролирует работу двигателя, но и выполняет диагностические, защитные функции. В кабине водителя важная информация на специальном экране отображаются: уровень масла, расход топлива, пройденное расстояние, данные о неисправностях.

Спектр двигателей, которые производитель предлагает потребителям, широк:

На современном этапе производства всемирно известная компания производит высококачественные двигатели для тяжелых и средних грузовых автомобилей.Их мощность варьируется между 170-560 л.с. Серия 60 и MBE 4000 с 1992 год по праву считается лидером продаж.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *