Что такое ШИМ-контроллер PWM и для чего он нужен
Любой радиолюбитель, начинающий телемастер или электрик рано или поздно столкнётся с такой штукой, как ШИМ-контроллер. За рубежом он маркируется как PWM. Поэтому сегодня я хочу остановиться на вопросе что такое ШИМ-контроллер, как он работает и для чего нужен. Даже если Вы не планируете заниматься ремонтом электронной техники, всё равно эта статья будет интересна для общего ознакомления.
Широтно-импульсный модулятор — принцип работы
Аббревиатура ШИМ расшифровывается, как широтно-импульсный модулятор. На английском это будет так — pulse-width modulation или PWM. В теле- и радио-технике ШИМ-контроллеры используются для преобразования напряжения, их можно встетить даже в качестве узлов системы управления скоростью электроприводов в бытовых приборах, меняя скорость электродвигателя. PWM-контроллер есть даже в обычных импульсных блоках питания.
Там постоянное напряжение на входе преобразуется в импульсы прямоугольной формы, которые формируются с определенной частотой и с определённой скважностью. На выходе, с помощью управляющих сигналов, получается регулировать работу целого транзисторного модуля большой мощности. Таким образом разработчики получили блок управления напряжением регулируемого типа, который значительно меньше и удобнее старых, которые используют понижающий трансформатор, диодный мост и фильтр помех.
Главные плюсы ШИМ:
- маленькие габариты; - отличное быстродействие; - высокая надёжность; - низкая стоимость.
В Интернете Вы можете встретить ШИМ-контроллер на Arduino или NE555. Это не совсем контроллер, а скорее уже генератор ШИМ-импульсов, в которых нет возможности подключения цепи обратной связи. Такие устройства подходят больше для регуляторов напряжения, чем для обеспечения стабильного питания приборов, ведь они могут использоваться только для регулирования выходных параметров, но не для их стабилизации.
Выходы ШИМ-контроллера
Стандартная схема ШИМ-контроллера, который используется в теле-, радио- и иной электронной аппаратуре, характеризуется наличием нескольких выходов.
Общий вывод (GND) — контакт подключается к общему проводу схемы питания контролера. Он соединен с аналогичным контактом схемы подачи питания модуля и контроллирует напряжение на выходе схемы, отключая ее при снижении значения ниже пороговой величины.
Вывод питания (VC) — этот вывод ШИМ-контроллера отвечает за энергоснабжение схемы и подключение питания. Как правило, вывод контроля питания и вывод питания располагаются рядом друг с другом. Не перепутайте его с выводом VCC.
Вывод контроля питания (VCC) — следит, чтобы напряжение питания микросхемы было выше определенного значения. Обычно этот контакт соединяют с VC. Если напряжение на этом выводе падает ниже заданного порогового значения для данного PWM-контроллера, то контроллер выключается. Если этого не делать, то при снижении напряжение на выходе схемы, то транзисторы начнут открываться не полностью и будут быстро нагреваться, что приведёт к поломке.
Выход контроллера OUT – это выходное управляющее напряжение, другими словами отсюда подаётся управляющий ШИМ-сигнал для силовых ключей. Тут надо отметить, что микросхемы бывают разные. Например, есть с друмя выходами — двухтактные, которые применяются для управления двухплечевыми каскадами. Да и сам выходной каскад может быть одно- и двухтактным. Тут главное не запутаться!
Вывод VREF — Опорное напряжение. Обеспечивает работу функции формирования стабильно опорного напряжения. Как правило, екомендуется соединять его с общим проводом конденсатором 1 мкФ для повышения качества и стабильности опорного напряжения.
Вывод ILIM
— Ограничитель выходного тока. Это сигнал с датчика тока. Если напряжение на этом выводе превышает заданный порог (как правило, это 1 Вольт), то ШИМ-контроллер закрывает силовые ключи. Если же превышается ещё больший порог (обычно 1.5 Вольта), то PWM-контроллер сбрасывает напряжение на ножке мягкого старта и импульсы на выходе прекращаются.Вывод ILIMREF — задаёт значение ограничения выходного тока на выводе ILIM.
Вывод SS — так называемый «мягкий старт». Напряжение на этом контакте ограничивает максимально возможную ширину импульсов. Сюда ШИМ-контроллер подает ток фиксированной силы.
Вывод RtCt – используется для подключения времязадающей RC-цепи, используемой для определения частоты ШИМ-сигнала.
Вывод RAMP – это ввод сравнения. Рабоает это так. На контакт подаётся пилообразное напряжение. Как только оно превышает значение напряжение на выходе усиления ошибки, вывод OUT появляется отключающий сигнал. Это основа ШИМ-регулирования.
Вывод CLOCK – тактовые импульсы. Используются для синхронизации между собой сразу нескольких ШИМ-контроллеров. В этом случае RC-цепь подключается только к ведущему контроллеру, RT ведомых соединяется с Vref, а CT ведомых соединяюся с общим.
Вывод INV — это инвертирующий вход компаратора. На нём построен усилитель ошибки. Чем больше напряжение на INV, тем длиннее выходные импульсы.
Вывод NONINV – это неинвертирующий вход компаратора. Его обычно подключают к общему проводу — GND.
Вывод EAOUT — выход усилителя ошибки — Error Amplifier Output. С этого вывода осуществляется частотная коррекция усилителя ошибки, путём подачи сигналов на INV через частотозависимые цепи. Дело в том, что PWM-контроллер достаточно медленно реагирует на воздействие через вход усилителя ошибки и потому схема может сгореть из-за возбуждения. Поэтому и применяется вывод EAOUT.
Как проверить ШИМ-контроллер
Есть несколько способов как сделать проверку ШИМ-контроллера. Можно, конечно это сделать без мультиметра, но зачем так мучаться, если можно воспользоваться нормальным прибором.
Прежде, чем проверять работу ШИМ-контроллера, необходимо выполнить базовую диагностику самого блока питания. Она выполняется так:
Шаг 1. Внимательно осмотреть в выключенном состоянии сам источник питания, в котором установлен PWM. В частности надо тщательно осмотреть электролитические конденсаторы на предмет вздутости.
Шаг 2. Провести проверку предохранителя и элементов входного фильтра блока питания на исправность.
Шаг 3. Провести проверку на короткое замыкание или обрыв диодов выпрямительного моста. Прозвонить их можно не выпаивая из платы. При этом надо быть уверенным, что проверяемая цепь не шунтируется обмотками трансформатора или резистором. Если есть на это подозрение, то всё таки придётся выпаивать элементы и проверять уже по отдельности.
Шаг 4. Провести проверку исправностм выходных цепей, а именно электролитических конденсаторов низкочастотных фильтров, выпрямительных диодов, диодных сборок и т.п.
Шаг 5. Провести проверку силовых транзисторов высокочастотного преобразователя и транзисторов каскада управления. При этом в обязательном порядке проверьте возвратные диоды, которые включенны параллельно электродам коллектор-эмиттер силовых транзисторов.
Проверка ШИМ-контроллера — видео инструкции:
set-os.ru
Шим — контроллеры. Принцип его работы и проверка мультиметром. ШИМ, PWM контроллер. Схема. Микросхема. Принцип работы. Описание, выводы. Опорное напряжение. Ограничение тока. Мягкий старт
Вот приспичило вам сделать себе могучую светодиодную хреновину, чтобы моргала и переливалась. Да еще в RGB и плавненько так. Собрали вы это дело, поглядели на количество каналов которыми нужно рулить и призадумались…
▌А что не так с ШИМ?
Да все с ним хорошо, только аппаратных каналов обычно всего несколько штук. А программный ШИМ имеет ряд недостатков. Да, можно взять и на базе , используя всего один таймер собрать многоканальный ШИМ, но сколько у нас будет вызовов прерываний?
Каждый отдельный фронт потребует своего прерывания на смену уровня. А представьте, что у нас этих каналов будет не 4, а 40? Или 400? Да контроллер из прерываний вылезать не будет. Прерывания будут налезать друг на друга, порождая джиттер. Не говоря уже о том, что все эти каналы надо будет при любом изменении скважности заново сортировать по длительности. В общем, тупилово будет еще то.
▌Нас спасет BAM
Но решение есть. Зовется этот метод BAM. Суть его в том, что мы включаем нагрузку импульсами, поразрядно, с длительностью равной весу разряда.
В результате мы имеем высокую дискретность, но при этом у нас всего 7 прерываний на любое число каналов. Соответственно разрядам.
Интегрируется все аналогично обычному ШИМу. Но есть ряд нюансов:
- Частота плавает и на малых разрядах она повышается. Для светодиода или грелки это наплевать. А вот двигатель или еще какую нагрузку с реактивными элементами вроде обмоток или емкостей я бы таким сигналом питать не стал.
- При переходе с малых весов к одному большому наблюдается мерцание. Но с этим можно бороться, подробности ниже.
- Выдавать вес лучше с большего к меньшему, так меньше заметно влияние второго пункта.
Микросхемы для импульсных источников питания. Справочник.
Издательство: Додэка.
Переведенных даташитов там тьма, один только перечень в четыре колонки занимает десяток страниц. Все импульсные микросхемы которые знал там нашел! А что особенно радует, так это то, что есть документация на отечественную комплектуху. С коей вечно проблемы. Если аналог не подберешь, и не дернешь бумагу на него — пиши пропало.
DC-DC преобразование
Для изменения напряжения постоянного тока с минимальными потерями используются DC-DC преобразователи, работающие по принципу Широтно-Импульсной Модуляции (ШИМ , она же PWM по басурмански). Если не читал мои прошлые статьи, где я подробно разжевал принцип работы ШИМ , то я кратенько тебе напомню. Основной принцип тут в том, что напряжение подается не сплошным потоком, как в линейных стабилизаторах, а краткими импульсами и с большой частотой.
То есть у тебя на выходе ШИМ контроллера, например, сначала в течении десяти микросекунд напряжение, к примеру, двенадцать вольт, потом идет пауза. Скажем, те же десять микросекунд, когда на выходе напряжения вообще нет. Затем все повторяется, словно мы быстро-быстро включаем и выключаем рубильник.
Таким образом у нас получаются прямоугольные импульсы. Если вспомнить матан, а конкретно интегрирование, то после интегрирования этих импульсов мы получим площадь под фигурой очерченной импульсами. Таким образом, меняя ширину импульсов и пропуская их через интегратор, можно плавно менять напряжения от нуля до максимума с любым шагом и практически без потерь.
В качестве интегратора служит конденсатор, он заряжается на пике, а на паузах будет отдавать энергию в цепь. Также туда всегда последовательно ставят дроссель, который тоже служит источником энергии, только он запасает и отдает ток. Поэтому такие преобразователи при небольших габаритах легко питают мощную нагрузку и при этом почти не расходуют энергию на лишний нагрев.
Если не догнал, то я
thesaker.ru
Atmega конвертер напряжение шим. ШИМ-контроллер: схема, принцип работы, управление
Цифровые устройства, например, микроконтроллер может работать только с двумя уровнями сигнала, т.е. ноль и единица или выключено и включено. Таким образом, вы можете легко использовать его для контроля состояния нагрузки, например включит или выключить светодиод. Так же вы можете использовать его для управления любым электрическим прибором, используя соответствующие драйверы (транзистор, симистор, реле и т.д.).Но иногда нужно больше, чем просто “включить” и “выключить” устройство. Поэтому, если вы хотите контролировать яркость светодиода (или лампы) или скорости двигателя постоянного тока, то цифровые сигналы просто не могу этого сделать. Эта ситуация очень часто встречается в цифровой технике и называется Широтно-Импульсной Модуляцией(PWM).
Почти все современные микроконтроллеры имеют специализированные аппаратные средства для генерации ШИМ-сигнала. В этом уроке мы будем изучать основы техники ШИМ и в дальнейшем мы увидим, как реализовать ШИМ с помощью микроконтроллеров AVR.
Цифровые устройства, как микроконтроллер может генерировать только два уровня на выходных линиях, высокий = 5В и низкий = 0В. Но что, если мы хотим получить 2,5 или 3,1 или любое напряжение в пределах 0-5В? Для этого, вместо создания постоянного напряжения постоянного тока на выходе мы будем генерировать меандр, который имеет высокий = 5В и низкий = 0V уровни (см. рисунок 1).
Рис.1
Из рисунка видно что сигнал на некоторое время остается поочередно на низком и высоком уровне. Т0 – низкий уровень, Т1 – высокий уровень. Период сигнала будет равен Т = Т0+Т1 . Период импульсов – это промежуток времени, между двумя характерными точками двух соседних импульсов. Обычно период измеряют между двух фронтов или двух спадов соседних импульсов и обозначают заглавной латинской буквой T.
Период следования импульсов напрямую связан с частотой импульсной последовательности, и его можно вычислить по формуле: Т = 1/F
Если длина импульса T1 точно равна половине периода T, то такой сигнал часто называют “меандр”.
Скважностью импульсов называется отношение периода следования импульсов к их длительности и обозначается буквой S: S = T/T1
Скважность – безразмерная величина и не имеет единиц измерения, но может быть выражена в процентах. Часто в англоязычных текстах встречается термин Duty cycle , это так называемый коэффициент заполнения или величина рабочего цикла ШИМ. Коэффициент заполнения D является величиной, обратной скважности.
Коэффициент заполнения обычно выражается в процентах и вычисляется по формуле: D=1/S или так D = T1/T*100%
На рисунке выше (рис. 1) можно увидеть, что T1 = T0, это равно половине периода времени. Так величина рабочего цикла ШИМ составляет 50%. Если частота таких импульсов достаточно велика (скажем, 5000 Гц), то мы получаем половину от 5В т.е. 2,5В. Таким образом, если выход контроллера связан с двигателем (с помощью соответствующих драйверов) он будет работать на 50% его полной скорости. Техника ШИМ использует этот факт для создания любого напряжения между двумя уровнями (например, между 0-12В). Весь фокус в том,что при изменении величины рабочего цикла между 0-100% получаем тот же процент входного напряжения на выходе. Ниже приведены некоторые примеры ШИМ сигнала различной скважности.
Если на выходе поставить R/С фильтр, то можно получить чистый DC уровень сигнала, а не квадратные волны. Но это не требуется для коллекторных двигателей или для управления яркостью светодиодов. Для этого можно подавать ШИМ сигнал непосредственно на драйвер (например, биполярный транзистор, MOSFET и т.д.).
Под режимом работы 16-разр. таймера понимается его алгоритм счета и поведение связанного с ним выхода формирователя импульсов, что определяется комбинацией бит, задающих режим работы таймера (WGMn3-0) и режим формирования выходного сигнала (COMnx1:0). При этом биты задания режима формирования выходного сигнала не влияют на алгоритм счета, т.к. алгоритм счета зависит только от состояния бит задания режима работы таймера. В режимах с ШИМ биты COMnx1:0 позволяют включить/отключить инверсию на генерируемом ШИМ-выходе (т.е. выбрать ШИМ с инверсией или ШИМ без инверсии). Для режимов без ШИМ биты COMnx1:0 определяют, какое действие необходимо выполнить при возникновении совпадения: сбросить, установить или инвертировать выход (см. также “Блок формирования выходного сигнала” и “Временные диаграммы 16-разр. таймеров-счетчиков”).
Нормальный режим работы
Самым прост
comuedu.ru