Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Схемы соединения резисторов

Последовательное соединение резисторов

Последовательное соединение резисторов

 

 

Iобщ = I1 = I2 = I3

Uобщ = U1 + U2 + U3

 

Параллельное соединение резисторов

Параллельное соединение резисторов

 

 

Iобщ = I1 + I2 + I3

Uобщ = U1 = U2 = U3

 

Реостат

Реостат – это переменный резистор, который включается в цепь последовательно с потребителем нагрузки.

Изменяя положение ползунка, в цепи меняется ток от 0 до max.

Реостат применяется для изменения тока в цепи.

В электрических схемах встречается понятие – реостатное включение нагрузки.

Реостатное включение нагрузки

 

T1   I =

Uист

Rр + Rн

→ max

 

RP = 0

 

T2   I =

Uист

Rр + Rн

→ min

Гасящий резистор

В радиосхемах возникает необходимость подавать на потребитель напряжение меньше чем развивает источник, тогда между источником и нагрузкой включается гасящий резистор.

Применение – в схеме создания напряжения смещения на участке эмиттер-база транзистора.

Гасящий резистор

 

 

 

Uгас = Uист – U

 

 

PRгас = I2 – Rгас

Делитель напряжения

Делитель напряжения

 

 

Делитель напряжения – это цепь, состоящая из нескольких последовательно соединённых резисторов обеспечивающих подачу на потребитель некоторой части напряжения источника.

Потенциометр

Потенциометр – это переменный резистор, с части которого снимается напряжения источника.

Потенциометр

 

 

Применение – регулировка громкости на входе усилителя низкой частоты.

Схемы защиты ТН от феррорезонанса

Скачать опросные листы на трансформаторы напряжения

Скачать каталог на трансформаторы (pdf; 32 Мб)

Скачать каталог на трансформаторы ТВ (pdf; 3,5 Мб)

Скачать каталог “Трансформаторы для железных дорог” (pdf; 4,8 Мб)

 

Варианты схем, разработанных конструкторами ОАО «СЗТТ» для защиты трансформаторов напряжения от феррорезонанса.

 

№ п/п

Схема защиты от феррорезонанса

Схема включения

Краткое описание и преимущества применения

1

Антирезонансная трехфазная группа 3хЗНОЛ(П) однофазных, заземляемых трансформаторов с заземлением нейтрали через высокоомные резисторы.

 

Антирезонансная трехфазная группа 3хЗНОЛ(П) с заземлением нейтрали через высокоомные резисторы – это самая распространенная схема защиты трансформаторов напряжения от феррорезонанса, которая применяется в сетях на класс напряжения (6-10) кВ.

Для повышения устойчивости к феррорезонансу и воздействию перемежающейся дуги в дополнительные обмотки, соединенные в разомкнутый треугольник, используемые для контроля изоляции сети, рекомендуется включать резистор сопротивлением 25 Ом, рассчитанный на длительное протекание тока 4 А.

Также трехфазные группы выпускаются со встроенным защитным предохранителем, что обеспечивает дополнительную защиту обмоток ВН от сверхтоков при феррорезонансе.

Применяется как стандартное решение для защиты трансформаторов напряжения от феррорезонанса в сети.

2

Антирезонансная трехфазная группа 3хЗНОЛ(П) однофазных, заземляемых трансформаторов с заземлением нейтрали через высокоомные резисторы и устройством СЗТн.

 

Антирезонансная трехфазная группа 3хЗНОЛ(П) с заземлением нейтрали через высокоомные резисторы и устройством СЗТн практически не имеет отличий от предыдущего варианта. Отличие лишь в том, что в дополнительные обмотки  соединенные в разомкнутый треугольник, используемые для контроля изоляции сети, включаются устройство СЗТн . Устройство можно применять одновременно с защитным реле и сопротивлением 25 Ом. Параллельное подключение не влияет на защитные функции СЗТн.

Применение устройства СЗТн значительно повышает антирезонансные свойства трехфазной группы.

Применяется как стандартное решение для защиты трансформаторов напряжения от феррорезонанса в сети.

3

Антирезонансная трехфазная группа 3хЗНОЛ.04(П) однофазных, заземляемых трансформаторов с заземлением нейтрали через дополнительный трансформатор напряжения нулевой последовательности.

 

Антирезонансная трехфазная группа 3хЗНОЛ.04(П) с заземлением нейтрали через реактор состоит из трех однофазных заземляемых трансформаторов напряжения, соединенных в звезду с выведенной нейтралью, и дополнительного трансформатора напряжения нулевой последовательности (ТНП), который включается между нейтралью звезды и землей. Вывод «Х» ТН, входящих в звезду, рассчитан на полную изоляцию, что позволяет испытывать внутреннюю изоляцию ТН полным уровнем приложенного напряжения промышленной частоты.

ТНП позволяет измерять напряжение нулевой последовательности , а его большое реактивное сопротивление эффективно предотвращает возникновение устойчивого феррорезонанса.

Данная схема для защиты от феррорезонанса является наиболее эффективной, универсальной и может применяться в широком диапазоне ëмкостных параметров сетей, класса напряжения (6-35) кВ.

 

4

Антирезонансная трехфазная группа 3хНОЛ(П) на базе однофазных  незаземляемых трансформаторов напряжения.

 

Для решения всех вопросов, связанных с эксплуатацией заземляемых трансформаторов напряжения в сетях с изолированной нейтралью разработана трехфазная  группа 3хНОЛ-6(10), состоящая из трех незаземляемых трансформаторов, соединенных по схеме треугольник/треугольник. Основное преимущество 3хНОЛ-6(10) – отсутствие заземляемого вывода с ослабленной изоляцией. Это значит, что трансформатор не подвержен влиянию феррорезонанса и не требует дополнительных защит от его воздействия. Внутреннюю

изоляцию трансформаторов можно испытывать приложенным одноминутным напряжением промышленной частоты.

Возможно изготовление трансформаторов с основной и дополнительной вторичной обмоткой. Дополнительная обмотка предназначена для питания цепей собственных нужд и не является измерительной.

5

 

Антирезонансная схема с R/C –гасителями.

 

Антирезонансная схема с R/C – гасителями. В схеме могут быть использованы заземляемые или незаземляемые трансформаторы напряжения. В случае использования заземляемых трансформаторов напряжения,  R/C – гасители и трансформаторы напряжения включаются параллельно в сеть, по схеме звезда / звезда. В случае с использованием незаземляемых трансформаторов, R/C – гасители включаются по схеме звезда, трансформаторы напряжения по схеме открытого или полного треугольника.

Схемы с R/C – гасителями применяются, как правило, для защиты трансформаторов напряжения от воздействия перенапряжений, низкого качества электрической энергии и других негативных факторов влияющих на надежность трансформаторов напряжения. 

Версия для печати (pdf) 

Схема 5 разработана совместно с партнером – ООО “Экспертный центр технологических решений” г. Екатеринбург. Подробная информация по ссылке.

 Вариант исполнения шкафов с трансформаторами напряжения и RC-гасителями.

При выборе схемы 5 обязательно заполнение опросного листа.

Переменный резистор | Электроника для всех

Вроде бы простая деталька, чего тут может быть сложного? Ан нет! Есть в использовании этой штуки пара хитростей. Конструктивно переменный резистор устроен также как и нарисован на схеме — полоска из материала с сопротивлением, к краям припаяны контакты, но есть еще подвижный третий вывод, который может принимать любое положение на этой полоске, деля сопротивление на части. Может служить как перестариваемым делителем напряжения (потенциометром) так и переменным резистором — если нужно просто менять сопротивление.

Хитрость конструктивная:
Допустим, нам надо сделать переменное сопротивление. Выводов нам надо два, а у девайса их три. Вроде бы напрашивается очевидная вещь — не использовать один крайний вывод, а пользоваться только средним и вторым крайним.

Плохая идея! Почему? Да просто в момент движения по полоске подвижный контакт может подпрыгивать, подрагивать и всячески терять контакт с поверхностью. При этом сопротивление нашего переменного резистора становится под бесконечность, вызывая помехи при настройке, искрение и выгорание графитовой дорожки резистора, вывод настраимого девайса из допустимого режима настройки, что может быть фатально.
Решение? Соединить крайний вывод с средним. В этом случае, худшее что ждет девайс — кратковременное появление максимального сопротивления, но не обрыв.

Борьба с предельными значениями.
Если переменным резистором регулируется ток, например питание светодиода, то при выведении в крайнее положение мы можем вывести сопротивление в ноль, а это по сути дела отстутствие резистора — светодиод обуглится и сгорит. Так что нужно вводить дополнительный резистор, задающий минимально допустимое сопротивление. Причем тут есть два решения — очевидное и красивое 🙂 Очевидное понятно в своей простоте, а красивое замечательно тем, что у нас не меняется максимально возможное сопротивление, при невозможности вывести движок на ноль. При крайне верхнем положении движка сопротивление будет равно (R1*R2)/(R1+R2) — минимальное сопротивление. А в крайне нижнем будет равно R1 — тому которое мы и рассчитали, и не надо делать поправку на добавочный резистор. Красиво же! 🙂

Если надо воткнуть ограничение по обеим сторонам, то просто вставляем по постоянному резистору сверху и снизу. Просто и эффективно. Заодно можно и получить увеличение точности, по принципу приведенному ниже.

Повышение точности.
Порой бывает нужно регулировать сопротивление на много кОм, но регулировать совсем чуть чуть — на доли процента. Чтобы не ловить отверткой эти микроградусы поворта движка на большом резисторе, то ставят два переменника. Один на большое сопротивление, а второй на маленькое, равное величине предполагаемой регулировки. В итоге мы имеем две крутилки — одна «Грубо» вторая «Точно» Большой выставляем примерное значение, а потом мелкой добиваем его до кондиции.

Переменный резистор с ДУ » S-Led.Ru


Система дистанционного управления является неотъемлемым атрибутом любого современного аудиоцентра. Но так было не всегда. У многих любителей музыки остаются в эксплуатации аудиоцентры, усилители ЗЧ, радиолы, магнитофоны, произведенные (или сделанные самостоятельно) не один десяток лет назад. В те времена такое понятие как электронная регулировка было достаточно редким явлением.

В большинстве случаев регуляторы громкости, тембра, баланса строились по пассивным схемам, на переменных резисторах. Обладая очень хорошим качеством звука (не в пример многим современным аппаратам), такая аппаратура практически не пригодна для введения в неё системы дистанционного управления, Дело в том, что система дистанционного управления управляет функциями аппарата либо по цифровой шине, либо изменяя постоянные напряжения.

В обеих случаях требуется какой-то усилитель, имеющий либо цифровой вход управления, либо электронную регулировку усиления путем изменения постоянного напряжения. Сейчас в продаже можно встретить множество импортных и отечественных микросхем с такими усилителями. Но, это хорошо только в том случае, если вы конструируете аппарат “с нуля”.

Любое введение дополнительных регулируемых усилителей в уже готовый и отлаженный тракт, в котором применяются пассивные механические регуляторы, приводит к его полной разладке, и требует существенной переделки схемы предварительного усиления (фактически, её замены). Разумеется, “портить”, таким образом, хороший и “любимый” усилитель захочется не каждому, тем более, что нет уверенности в том, что новый предусилитель или старый, но настроенный другим образом, будет работать не хуже прежнего.

В этой связи, реальным выходом из положения, не нарушающим работу прежнего предусилителя, может быть применение электронных аналогов переменных резисторов, представляющих собой цепь постоянных резисторов, точка подключения к которым переключается при помощи аналого-цифровых мультиплексоров.

Такая схема не только полностью имитирует работу переменного резистора, но и путем установки различных сопротивлений на разных ступенях регулировки позволяет задать практически любой закон регулировки, наиболее приемлемый в конкретной схеме предусилителя.

В любительских условиях проще всего за основу для системы дистанционного управления взять комплект модулей ДУ, предназначенный для модернизации советских телевизоров серии УСЦТ. Такие комплекты сейчас часто можно встретить в продаже, они неоднократно описывались в разной литературе и, поэтому, их схемотехника широко известна радиолюбителям.

Выходные сигналы такой системы ДУ, это выходы ЦАП, на которых меняются постоянные напряжения при нажатии кнопок регулировки, выход выключателя сетевого питания и восемь выходов для переключения программ телевизора. Нам нужны именно эти восемь выходов. Они дадут возможность управлять четырьмя электронными переменными резисторами, по два выхода “уменьшить” и “увеличить” на каждый. В связи с тем, что эти выходы системы ДУ телевизора должны работать совместно с восьмипрограммной системой переключения программ УСУ-1-15, они сделаны так, что на каждом из выходов появляется логическая единица только во время нажатия соответствующей кнопки пульта, и переходит в высокоомное состояние при отпускании кнопки пульта.

Переменные и подстроечные резисторы. Реостат.

В одной из предыдущих статей мы обсудили основные аспекты, касающиеся работы с резисторами, так вот сегодня мы продолжим эту тему. Все, что мы обсуждали ранее, касалось, в первую очередь, постоянных резисторов, сопротивление которых представляет из себя не изменяющуюся величину. Но это не единственный существующий вид резисторов, поэтому в данной статье мы уделим внимание элементам, имеющим переменное сопротивление, в частности, переменным резисторам.

Переменный резистор.

Итак, чем же отличается переменный резистор от постоянного? Собственно, здесь ответ прямо следует из названия этих элементов 🙂 Величину сопротивления переменного резистора, в отличие от постоянного, можно изменить. Каким способом? А вот это мы как раз и выясним! Для начала давайте рассмотрим условную схему переменного резистора:

Сразу же можно отметить, что тут в отличие от резисторов с постоянным сопротивлением в наличии имеется три вывода, а не два. Сейчас разберемся зачем они нужны и как все это работает…

Итак, основной частью переменного резистора является резистивный слой, имеющий определенное сопротивление. Точки 1 и 3 на рисунке являются концами резистивного слоя. Также важной частью резистора является ползунок, который может изменять свое положение (он может занять любое промежуточное положение между точками 1 и 3, например, он может оказаться в точке 2 как на схеме).

Таким образом, в итоге мы получаем следующее. Сопротивление между левым и центральным выводами резистора будет равно сопротивлению участка 1-2 резистивного слоя. Аналогично сопротивление между центральным и правым выводами будет численно равно сопротивление участка 2-3 резистивного слоя. Получается, что перемещая ползунок мы можем получить любое значение сопротивления от нуля до R_{max}. А R_{max} — это ни что иное как полное сопротивление резистивного слоя.

Конструктивно переменные резисторы бывают поворотные, то есть для изменения положения ползунка необходимо крутить специальную ручку (такая конструкция подходит для резистора, который изображен на нашей схеме). Также резистивный слой может быть выполнен в виде прямой линии, соответственно, ползунок будет перемещаться прямо. Такие устройства называют движковыми или ползунковыми перемененными резисторами. Поворотные резисторы очень часто можно встретить в аудио-аппаратуре, где они используются для регулировки громкости/баса и т. д. Вот как они выглядят:

Переменный резистор ползункового типа выглядит несколько иначе:

Часто при использовании поворотных резисторов в качестве регуляторов громкости используют резисторы с выключателем. Наверняка вы не раз сталкивались с таким регулятором — к примеру на радиоприемниках. Если резистор находится в крайнем положении (минимальная громкость/устройство выключено), то если его начать вращать, раздастся ощутимый щелчок, после которого приемник включится. А при дальнейшем вращении громкость будет увеличиваться. Аналогично и при уменьшении громкости — при приближении к крайнему положению снова будет щелчок, после которого устройство выключится. Щелчок в данном случае говорит о том, что питание приемника было включено/отключено. Выглядит  такой резистор так:

Как видите, здесь есть два дополнительных вывода. Они то как раз и подключаются в цепь питания таким образом, чтобы при вращении ползунка цепь питания размыкалась и замыкалась.

Есть еще один большой класс резисторов, имеющих переменное сопротивление, которое можно изменять механически — это подстроечные резисторы. Давайте уделим немного времени и им!

Подстроечный резистор.

Только для начала уточним терминологию… По сути подстроечный резистор является переменным, ведь его сопротивление можно изменить, но давайте условимся, что при обсуждении подстроечных резисторов под переменными резисторами мы будем иметь ввиду те, которые мы уже обсудили в этой статье (поворотные, ползунковые и т. д). Это упростит изложение, поскольку мы будем противопоставлять эти типы резисторов друг другу. Да и, к слову, в литературе зачастую под подстроечными резисторами и переменными понимаются разные элементы цепи, хотя, строго говоря, любой подстроечный резистор также является и переменным в силу того факта, что его сопротивление можно изменить.

Итак, отличие подстроечных резисторов от переменных, которые мы уже обсудили, в первую очередь, заключается в количестве циклов перемещения ползунка. Если для переменных это число может составлять и 50000, и даже 100000 (то есть ручку громкости можно крутить практически сколько угодно 🙂 ), то для подстроечных резисторов эта величина намного меньше. Поэтому подстроечные резисторы чаще всего используются непосредственно на плате, где их сопротивление меняется только один раз, при настройке прибора, а при эксплуатации значение сопротивления уже не меняется. Внешне подстроечный резистор выглядит совсем не так как упомянутые переменные:

Из-за небольшой износоустойчивости не рекомендуется применять подстроечные резисторы вместо переменных — в цепях, в которых регулировка сопротивления будет производиться довольно часто.

Обозначение переменных резисторов немного отличается от обозначения постоянных:

Собственно, мы обсудили все основные моменты, касающиеся переменных и подстроечных резисторов, но есть еще один очень важный момент, который невозможно обойти стороной.

Часто в литературе или в различных статьях вы можете встретить термины потенциометр и реостат. В некоторых источниках так называют переменные резисторы, в других в эти термины может вкладываться какой-нибудь иной смысл. На самом деле, корректная трактовка терминов потенциометр и реостат есть только одна. Если все термины, которые мы уже упоминали в этой статье относились,в первую очередь, к конструктивному исполнению переменных резисторов, то потенциометр и реостат — это разные схемы включения (!) переменных резисторов. То есть, к примеру, поворотный переменный резистор может выступать и в роли потенциометра и в роли реостата — все зависит от схемы включения. Начнем с реостата.

Реостат.

Реостат (переменный резистор, включенный по схеме реостата) в основном используется для регулировки силы тока. Если мы включим последовательно с реостатом амперметр, то при перемещении ползунка будем видеть меняющееся значение силы тока. Резистор R_1 в этой схеме исполняет роль нагрузки, ток через которую мы и собираемся регулировать переменным резистором. Пусть максимальное сопротивление реостата равно R_{max}, тогда по закону Ома максимальный ток через нагрузку будет равен:

I = \frac{U}{R_1 + 0}

Здесь мы учли то, что ток будет максимальным при минимальном значении сопротивления в цепи, то есть когда ползунок в крайнем левом положении. Минимальный ток будет равен:

I = \frac{U}{R_1 + R_{max}}

Вот и получается, что реостат выполняет роль регулировщика тока, протекающего через нагрузку. В данной схеме есть одна проблема — при потере контакта между ползунком и резистивным слоем цепь окажется разомкнутой и через нее перестанет протекать ток. Решить эту проблему можно следующим образом:

Отличие от предыдущей схемы заключается в том, что дополнительно соединены точки 1 и 2. Что это дает в обычном режиме работы? Да ничего, никаких изменений 🙂 Поскольку между ползунком резистора и точкой 1 ненулевое сопротивление, то весь ток потечет напрямую на ползунок, как и при отсутствии контакта между точками 1 и 2. А что же произойдет при потере контакта между ползунком и резистивным слоем? А эта ситуация абсолютно идентична отсутствию прямого соединения ползунка с точкой 2. Тогда ток потечет через реостат (от точки 1 к точке 3), и величина его будет равна:

I = \frac{U}{R_1 + R_{max}}

То есть при потере контакта в данной схеме будет всего лишь уменьшение силы тока, а не полный разрыв цепи как в предыдущем случае.

С реостатом мы разобрались, давайте рассмотрим переменный резистор, включенный по схеме потенциометра.

Потенциометр.

Не пропустите статью про измерительные приборы в электрических цепях — ссылка.

Потенциометр, в отличие от реостата, используется для регулировки напряжения. Именно по этой причине на нашей схеме вы видите целых два вольтметра! Ток протекающий через потенциометр, от точки 3 к точке 1, при перемещении ползунка остается неизменным, но меняется величины сопротивления между точками 2-3 и 2-1. А поскольку напряжение прямо пропорционально силе тока и сопротивлению, то оно будет меняться.

При перемещении ползунка вниз сопротивление 2-1 будет уменьшаться, соответственно, уменьшаться будут и показания вольтметра 2. А сопротивление участка 2-3 вырастет, а вместе с ним и напряжение на вольтметре 1. При этом в сумме показания вольтметров будут равны напряжению источника питания, то есть 12 В. В крайнем верхнем положении на вольтметре 1 будет 0 В, а на вольтметре 2 — 12 В. На рисунке ползунок расположен в среднем положении, и показания вольтметров, что абсолютно логично, равны 🙂

На этом мы заканчиваем рассматривать переменные резисторы, в следующей статье речь пойдет о возможных соединениях резисторов между собой, спасибо за внимание, рад буду видеть вас на нашем сайте! 🙂

Резисторы переменные, постоянные вся истина!

Друзья, всем привет! На дворе зима а календарь говорит мне, что будни перетекают в приятные праздничные выходные, так что самое время для  новой статьи.   Для тех кто меня не знает, скажу, что меня зовут Владимир Васильев и я веду вот  этот  самый радиолюбительский блог, так что добро пожаловать!

В прошлой статье мы разбирались с понятием электрического тока и напряжения. В ней буквально на пальцах я постарался объяснить  что представляет собой электричество. В помощь применял некие «сантехнические аналогии».

Боле того, я наметил для себя написать ряд обучающих статей для совсем начинающих   радиолюбителей- электронщиков, так что дальше будет больше  — [urlspan]не пропустите.[/urlspan]


Содержание статьи


Сегодняшняя статья будет не исключением, сегодня я постараюсь как можно подробнее осветить тему резисторов. Резисторы хоть и являются, наверно самыми простыми радиокомпонентами, но у начинающих  могут вызвать массу вопросов. А отсутствие  ответов на них может привести к полному бардаку в голове и привести к отсутствию мотивации и желанию развиваться.

Что такое сопротивление?

Резистор — это пассивный элемент электрической цепи, обладающий фиксированным или переменным значением электрического сопротивления.

Резисторы обладают сопротивление, а что такое сопротивление? Постараемся с этим разобраться.

Чтобы ответить на этот вопрос, давайте вернемся снова к нашей сантехнической аналогии. Под действием силы тяжести или под действием давления насоса, вода устремляется от точки большего давления в точку с меньшим давлением. Так и электрический ток под действием напряжения течет из точки большего потенциала в точку с меньшим потенциалом.

Что может помешать движению воды по трубам? Движению воды может помешать состояние труб, по которым она бежит. Трубы могут быть широкими и чистыми, а могут быть загажены и вообще представлять собой печальное зрелище. В каком случае скорость водного потока будет больше? Естественно, что вода будет течь быстрее если ее движению не будет оказываться никакого сопротивления.

В случае с чистым трубопроводом так и будет, воде будет оказываться наименьшее сопротивление и ее скорость будет практически неизменной. В загаженной трубе сопротивление на водный поток будет значительным, и соответственно скорость движения воды будет не очень.

Хорошо, теперь переносимся из нашей водопроводной модели в реальный мир электричества. Теперь становится понятно, что скорость воды в наших реалиях представляет собой силу тока измеряемую в амперах. Сопротивление которое оказывали трубы на воду, в реальной токоведущей системе будет сопротивление проводов измеряемое в омах.

Как и трубы, провода могут оказывать сопротивление на ток. Сопротивление напрямую зависит от материала из которого сделаны провода. Поэтому совсем не случайно провода часто изготавливают из меди, так как медь имеет небольшое сопротивление.

Другие металлы могут оказывать очень большое сопротивление электрическому току. Так для примера, удельное сопротивление (Ом*мм²) нихрома составляет 1.1Ом*мм². Величину сопротивления нетрудно оценить сравнив с медью у которой удельное сопротивление 0,0175Ом*мм². Неплохо да?

При пропускании тока через материал с высоким сопротивлением, мы можем убедиться, что ток в цепи будет меньше, достаточно провести несложные замеры.

Как выглядит резистор?

В природе встречаются абсолютно различные резисторы. Есть резисторы с постоянным сопротивление, есть резисторы с переменным сопротивлением. И каждый вид резисторов находит свое применение. Так давайте остановимся и постараемся уделить вниманием некоторые из них.

Постоянные резисторы.

Само название говорит о том, что они обладают постоянным фиксированным сопротивлением.  Каждый такой резистор изготавливается с определенным сопротивлением, определенной рассеиваемой мощностью.

Рассеиваемая мощность — это еще одна характеристика резисторов, так же как и сопротивление. Мощность рассеяний говорит о том, какую мощность может рассеять резистор в виде тепла (вы наверное замечали, что резистор во время работы может значительно нагреваться).

Естественно, что на заводе не могут изготавливать резисторы абсолютно любые. Поэтому постоянные резисторы имеют определенную точность указываемую в процентах. Эта величина показывает в каких пределах будет гулять результирующее сопротивление.И естественно, чем точнее резистор, тем дороже он будет. Так зачем переплачивать?

Также сама величина сопротивления не может быть любой. Обычно сопротивление постоянных резисторов соответствует определенному номинальному ряду сопротивлений. Эти сопротивления обычно выбираются из рядов типо Е3, Е6, Е12,Е24

Как видите резисторы из ряда Е24 имеют более богатый набор сопротивлений. Но это еще не предел так как существуют номинальные ряды E48, E96, E192.

На электрических схемах постоянные резисторы обозначаются эдаким прямоугольником с выводами. На самом условном графическом обозначении может надписываться мощность рассеяния.

Переменные резисторы

Вы когда-нибудь обращали внимание на различные «крутилки» в старой аналоговой технике. Например, задумывались ли о том что вы крутите, прибавляя громкость в старом, возможно даже ламповом телевизоре?

Многие регуляторы и различные «крутилки»представляют  собой переменные резисторы. Так же как и постоянные резисторы, переменные также имеют различную рассеивающую мощность. Однако их сопротивление может меняться в широких пределах.

Переменные резисторы служат для регулирования напряжения или тока в уже готовом изделии. Как я уже упоминал этим резистором может регулироваться сопротивление в схеме формирования звука. Тогда громкость звука будет меняться пропорционально углу поворота ручки резистора.  Так сам корпус находится внутри устройства, а та самая крутилка остается на поверхности.

Более того, бывают еще и сдвоенные , строенные , счетверенные и так далее переменные резисторы. Обычно их  применяют, когда нужно параллельное изменение сопротивления сразу в нескольких участках схемы.

 Условное графическое изображение резистора на электрических схемах.

Подстроечные резисторы.

Переменный резистор это очень хорошо, но что если нам нужно изменение или подстройка сопротивления лишь на этапе сборки изделия?

Переменный резистор нам в этом  не очень подходит. Переменный резистор обладает меньшей точностью нежели постоянный. Это плата за возможность регулировки, в результате которой сопротивление может гулять в некоторых пределах.

Конечно на этапе налаживания изделия может применяться так называемый подборочный резистор. Это обычный постоянный резистор, только при монтаже он подбирается из кучки резисторов с близкими номиналами.

 Подбор резисторов имеет место быть когда требуется регулировка параметров изделия и при этом требуется высокая точность работы (чтобы требуемый параметр как можно меньше плавал). Таким образом  нужно чтобы резистор был как можно большей точностью  1% или даже 0,5%.

Так для подстройки параметров схемы чаще всего применяют подстроечные резисторы. Эти резисторы специально придуманы для этих целей.  Подстройка осуществляется посредством тоненькой часовой отвертки, причем после достижения  требуемой величины сопротивления ползунок резистора часто фиксируют краской или клеем.

 Условное графическое изображение подстроечного резистора

Формулы и свойства

При выборе резистора, помимо его конструктивной особенности, следует обращать внимания на основные его характеристики. А основными его характеристиками, как я уже упоминал, являются сопротивление и мощность рассеяния.

Между этими двумя характеристиками есть взаимосвязь. Что это значит? Вот допустим в схеме у нас стоит резистор с определенной величиной сопротивления. Но по каким-либо причинам мы выясняем, что сопротивление резистора должно быть значительно меньше того, что есть сейчас. 

И вот что получается,  мы ставим резистор с значительно меньшим сопротивлением и в соответствии с законом Ома мы можем получить небольшое западло.

Так как сопротивление резистора было большим, а напряжение в цепи у нас фиксированное, то вот что получилось. При уменьшении номинала резистора общее сопротивление в цепи упало, следовательно ток в проводах возрос.

Но что если мы поставили резистор  с прежней мощностью рассеяния? При возросшем токе , новый резистор может и не выдержать нагрузки и умереть, его душа улетит вместе с клубком дыма из бездыханного тельца резистора 🙂

Выходит, что при номинале резистора 10 Ом, в цепи будет течь ток равный 1 А.  Мощность которая будет рассеиваться на резисторе будет равняться

Видите какие грабли могут подстерегать на пути.  Поэтому при выборе резистора, обязательно нужно  смотреть его допустимую мощность рассеяния.

Последовательное соединение резисторов

А давайте теперь  посмотрим как будут меняться свойства цепи при последовательном расположении резисторов. Итак у нас есть источник питания и далее стоят  последовательно три резистора с различным сопротивлением.

 

Попробуем определить какой ток протекает в цепи.

Здесь хочется упомянуть, для тех кто не в теме, что электрический ток в цепи только один.  Есть правило Кирхгофа, которое гласит что сумма токов втекающих в узел равно сумме токов вытекающих из узла. А так как в данной схеме у нас последовательное расположение резисторов и никаких узлов и в помине нет , то ясно, что ток будет один.

Для  определения тока, нам нужно определить полное сопротивление цепи. Находим сумму всех резисторов показанных на схеме. 

Здесь я приведу формулу  полного сопротивления  при последовательном расположении резисторов.

Полное сопротивление получилось равным 1101 Ом. Теперь зная что полное напряжение (напряжение источника питания)равно 10 В, а полное сопротивление равно 1101 Ом, тогда ток в цепи равняется I=U/R=10В/1101 Ом=0,009 А =9 мА

Зная ток мы можем определить напряжение, высаживаемое на каждом резисторе. Для этого также воспользуемся законом Ома. И получается напряжение на резисторе R1 будет равно U1=I*R1=0.009А*1000Ом=9В. Ну и тогда для остальных резисторов U2=0.9В, U3=0.09В. Теперь можно и проверить сложив все эти напряжения, ну и получив в результате значенье близкое напряжению питания.

Ах да вот вам и делитель напряжения. Если сделать отвод после каждого резистора то можно убедиться в наличии еще некоторого набора напряжений. Если при этом использовать равные сопротивления то эффект делителя напряжения будет еще более очевиден.

Кликните для увеличения

 

На изображении видно как меняется напряжение между разными точками -потенциалами.

Так как резисторы сами по себе являются хорошими потребителями тока, то понятно, что при использовании делителя напряжения, стоит выбирать резисторы с минимальными сопротивлениями. Кстати мощность расходуемая на каждом резисторе будет одинаковой.

Для резистора R1 мощность будет равняться P=I*R1=3.33A*3.33В=11,0889Вт.  Округляем и получаем 11Вт. И каждый резистор естественно должен быть на это рассчитан. Потребляемая мощность всей цепи будет P=I*U=3.33A*10В=33,3Вт.

Сейчас я вам покажу какая  мощность будет для резисторов имеющих разное сопротивление.

Кликните для увеличения

Мощность потребляемая всей цепочкой,  изображенной на рисунке, будет равняться P=I*U=0. 09A*10В=0,9Вт.

Теперь рассчитаем мощность потребляемую каждым резистором:
Для резистора R1: P=I*U=0.09A*0.9В=0,081Вт;

Для  резистора R2: P=I*U=0.09A*0.09В=0,0081Вт;

Для резистора R3: P=I*U=0.09A*9В=0,81Вт.

Из этих наших расчетов становится понятной закономерность:

  • Чем больше общее сопротивление цепочки резисторов, тем меньше будет ток в цепи
  • Чем больше сопротивление конкретного резистора в цепи, тем большая мощность будет на нем выделяться и тем больше он будет греться.

Поэтому становится понятной необходимость подбирать номиналы резисторов в соответствии с их потребляемой мощностью.

Параллельное соединение резисторов

С последовательным расположение резисторов думаю более менее понятно. Так давайте рассмотрим параллельное соединение резисторов.

Здесь на этом изображении схемы показано различное расположение резисторов. Хотя в заголовке я упомянул о параллельном соединении, думаю наличие  последовательно соединенного резистора R1 позволит нам разобраться в некоторых тонкостях.

Итак суть заключается в том что последовательная схема соединения резисторов  является делителем напряжения, а вот параллельное соединение представляет собой делитель тока.

Рассмотрим это подробнее.

Ток течет от точки с большим потенциалом к точке с меньшим потенциалом. Естественно, что ток из точки с потенциалом 10В стремится к точке нулевого потенциала — земле.  Маршрут тока будет : Точка10В —>>точка А—>>точка В—>>Земля.

На участке пути Точка 10 —Точка А, ток будет максимальным, ну просто потому, что ток бежит по прямой и не разделяется на развилках.

Далее по правилу Кирхгофа, ток будет раздваиваться. Получается ток в цепи резисторов R2 и R4 будет одним а в цепи с резистором R3 другим. Сумма токов этих двух участков будет равняться току  на самом первом отрезке (от источника питания до точки А).

Давайте рассчитаем эту схему и узнаем  значение тока на каждом участке.

Для начала узнаем  сопротивление участка цепи резисторов R2, R4

 

Значение резистора R3 нам известен и равен 100Ом.

Теперь находим сопротивления участка АВ. Сопротивление цепи резисторов, соединенных параллельно будет вычислено по формуле:

Ага, подставили в формулу наши значения для суммы резисторов R2 и R4 (Сумма равна 30 Ом и подставляется вместо формульной R1) и значение резистора R3 равное 100 Ом (Подставляется вместо формульной R2). Вычисленное значение сопротивления на участке АВ равняется 23 Ом.

Как видите выполнив несложные вычисления наша схема упростилась и свернулась и стала нам уже более знакомой.

Ну и полное сопротивление цепи будет равняться R=R1+R2=23Ом+1Ом=24Ом. Это мы нашли уже по формуле для последовательного соединения. Мы это рассматривали так что на этом останавливаться не будем.

Теперь ток на участке до разветвлений (участок Точка 10В —>>Точка А)  мы сможем найти по формуле Ома.

I=U/R=10В/24Ом=0,42A . Получилось 0,42 ампера.  Как мы уже обсуждали этот ток будет один на всем пути от точки максимального потенциала, до точки А. На участке А В, значение тока будет равно сумме токов с участков полученных после разделения.

 Чтобы определить ток на каждом участке между точками А и В, нам нужно найти напряжение между точками А и В.

Оно как уже известно  будет меньше  напряжения питания 10В. Его мы найдем по формуле U=I*R=0.42A*23Ом=9,66В.

Как вы могли заметить полный ток в точе А (равный сумме токов параллельных участков) умножается на результирующее сопротивление  запараллеленных (сопротивление резистора R1 мы не учитываем) участков цепи.

Теперь мы можем найти ток в цепи резисторов R2, R4. Для этого напряжение между точками А и В разделим на сумму этих двух резисторов. I=U/(R2+R4)=9.66В/ 30Ом=0,322А.

Ток в цепи резистора R3 тоже найти не сложно. I=U/R3=9.66В/100Ом=0,097А.

Как видите при параллельно соединении резисторов ток делится пропорционально значениям сопротивлений. Чем больше сопротивление резистора, тем меньше будет ток на этом участке цепи.

В тоже время напряжение между точками А и В, будет относиться  к каждому из параллельных участков (напряжение U=9. 66В мы использовали для расчетов и там и там ).

Здесь хочется сказать как напряжение и ток  распределяются  по схеме.

Как я уже говорил ток до разветвления равен сумме токов после развилки. Впрочем умный мужик Кирхгоф нам это уже рассказывал.

Получается следующее: Ток I на развилке разделится на три I1, I2, I3, а затем снова воссоединится  в I как было и в самом начале, получаем I=I1+I2+I3.

Для напряжения или разности потенциалов, что есть одно и тоже будет следующее. Разность потенциалов между точками А и С (далее буду говорить напряжение  AC), не равна  напряжениям BE, CF,DG. В тоже время напряжения BE, CF,DG , будут равны между собой. Напряжение на участке FH вообще равно нулю, так как напряжению просто не на чем высаживаться (нет резисторов).

Думаю тему параллельного соединения резисторов я раскрыл, но если есть еще какие-то вопросы то пишите в комментариях, чем смогу помогу 🙂

Преобразование звезды в треугольник и обратно

Существуют схемы, в которых резисторы соединены так, что не совсем понятно где есть последовательное соединение а где параллельное. И как же с этим быть?

Для этих ситуаций есть способы упрощения схем и вот одни из них это преобразование треугольника в эквивалентную звезду или наоборот, если это необходимо.

 

Для преобразования треугольника в звезду считать будем по формулам:

Для того чтобы совершить обратное преобразование нужно воспользоваться несколько другими формулами:

С вашего позволения я не буду приводить конкретные примеры, все что требуется это только подставить в формулы конкретные значения и получить результат.

Этот метод эквивалентного преобразования будет служить хорошим подспорьем в мутных случаях, когда не совсем понятно с какой стороны подступиться к схеме. А тут порой поменяв звезду на треугольник ситуация проясняется и становится более знакомой.

Ну чтож дорогие друзья вот и все, что я хотел вам сегодня рассказать. Мне кажется эта информация будет полезной для вас и принесет свои плоды.

Хочу еще добавить, что многое из того что я здесь выложил очень хорошо расписано в книгах «Искусство схемотехники» и «Занимательная микроэлектроника», так что рекомендую прочитать обзорные статьи и скачать себе эти книжки. А будет еще лучше, если вы их раздобудете где-нибудь в бумажном варианте.

P.S. У меня на днях возникла одна идея о том как можно получить интересный способ заработка на знаниях электроники и вообще радиолюбительском хобби так что обязательно [urlspan]подпишитесь на обновления.[/urlspan]

Кроме того относительно недавно появился еще один прогрессивный способ подписки через форму  сервиса Email рассылок, так что люди подписываются и получают некие приятные бонусы, так что добро пожаловать.

 

А на этом у меня действительно все, я желаю вам успехов во всем , прекрасного настроения и до новых встреч.

С н/п Владимир Васильев.

Конструктор ЗНАТОК 320-Znat «320 схем»

Конструктор ЗНАТОК 320-Znat «320 схем» — это инструмент, который позволит получить знания в области электроники и электротехники а также достичь понимания процессов происходящих в проводниках.

САМАЯ ПРОСТАЯ ЦЕПЬ:

САМАЯ ПРОСТАЯ ЦЕПЬ:

ЗАКОН ОМА

САМАЯ ПРОСТАЯ ЦЕПЬ:

Мы можем заставить ток течь по кругу (цепи) соединяя клеммы аккумулятора вместе.Это растопит провод, разжигай искры и, возможно, разжигай огонь, так что не делай этого. Вместо этого подключите что-нибудь для управления током. Способность к управляющий ток называется сопротивлением, и все материалы имеют его в некоторой степени – на самом деле мы классифицируем материалы в соответствии с их сопротивление: с очень низким сопротивлением – проводники, с много сопротивления – изоляторы. Есть устройства, называемые резисторами которые используются в электронных гаджетах – у них есть сопротивление, которое что-то среднее между проводимостью и изоляцией и предсказуемо.Так вот безопасная цепь:

Батарея имеет определенное нажатие, называется электродвижущей силой или ЭДС. Это измеряется в единицах, называемых вольт . Обозначаем ЭДС (часто называемую напряжением) в формулах буквой E . Напряжение необходимо измерять между двумя точками цепи в таким же образом измеряется высота между двумя точками на сторона горы. Нет такого понятия, как «0 вольт», за исключением того, что напряжение между двумя точками равно 0, если они соединены вместе.

Резистор имеет определенную величину Сопротивление, измеренное в единицах, называется Ом . Мы указываем сопротивление в формулах с буквой R .

Когда ток течет, мы измеряем его в единицы называют ампер , и обозначают его буквой I .

Эти три связаны простой формулой называется законом Ома:

I = E / R

Также написано E = IR или R = E / I.

Это говорит нам ток, если мы знаем напряжение и сопротивление, или напряжение, если мы знаем ток и сопротивление, или сопротивление, если мы знаем ток и напряжение. Если вам это кажется немного замкнутым, вы правы. Мы можем измерить ток силой магнитного поля, которое он будет генерировать, но там не является критерием для измерения напряжения, кроме как увидеть, сколько тока течет через известное сопротивление. А как узнать сопротивление? Мы применяем известное напряжение и посмотрите, сколько тока течет.

Определение единиц также круглое: 1 ампер – это количество тока, протекающего через резистор сопротивлением 1 Ом. если приложено 1 вольт.


Два резистора последовательно:

Будет немного сложнее, если есть два резистора:

Какой бы ни был ток, он такой же в A, B и C. (Больше некуда течь ток).

Напряжение между A и C равно этому между A и B добавляется к тому, что между B и C.

E AC = E AB + E BC

Напряжения складываются, как и высота Дом – это сумма высот его этажей.

Напряжение на каждом резисторе равно пропорционально сопротивлению каждого резистора.

E AB / R 1 = E BC / рэнд 2

Видите ли, закон Ома верен для каждой части схема, а также схема в целом.Какой бы ток ни тек, на каждом резисторе оно одинаковое, поэтому напряжения будут регулироваться самих себя.

Суммарное сопротивление R 1 + р 2


Два параллельных резистора

Ток через А равен току через B плюс ток через C. Ток разделяется и идет вместе, как вода, текущая вокруг острова.

Напряжение на R 1 такое же, как на напряжение на R 2.

E AB = E AC, так I B R 1 = I C R 2 и I B / рэнд 2 = I C / R 1

Другими словами, ток через каждый резистор обратно пропорционален номиналам резисторов. Также важно помнить резистор высокого номинала проходит через небольшой Текущий.

Мы можем решить вышеуказанную проблему для полного тока ( I B + I C) и получите эквивалент сопротивление для двух резисторов:

В частном случае, когда резисторы То же, эквивалентное сопротивление составляет R 1 /2. Это появляется чаще, чем вы можно было ожидать.

В другом особом случае, когда R2 больше, чем 100-кратное значение R1, R2 составляет такую ​​небольшую часть ток, который мы не удосужились включать в расчеты. Тогда мы говорим, что R2 не загружает схему.


Вот более сложный пример:

R1 – специальный тип резистора с регулируемым краном посередине.Это действительно заставляет R1 вести себя как два последовательно включенных резистора. Если мы скажем, что R2 в 100 раз больше R1, мы можем оставим это в расчетах и ​​обнаружим, что напряжение E2 будет напрямую зависит от положения крана.

Если бы R2 было сопоставимо с R1 по стоимости, мы бы нужно вычислить, сначала решив R2 и нижнюю часть R1 как два резистора параллельно, и используя результат этого последовательно расчет, чтобы найти напряжение E2 и полный ток. В результирующая кривая напряжения (то, что вы получили бы, если бы построили E2 для различных положения крана) довольно беспорядочно, поэтому мы действительно предпочитаем R2, который не нагружает цепь.

Вернуться к темам Mu126

Резисторы

Что такое сопротивление?

Ограничение потока электронов или электрического ток до определенного уровня называется сопротивлением, а устройство или компонент, используемый для ограничения электрического тока, называется резистор.

Величина электрического тока, ограниченная резистор определяется с помощью уравнение закона.

Где R = сопротивление, V = напряжение, I = Электрический ток

Электрический ток, протекающий через резистор обратно пропорционален сопротивлению резистор и прямо пропорциональный напряжению приложенный к резистору.

В другими словами, количество электрического тока, протекающего через резистор уменьшается с увеличением сопротивления резистора (если напряжение, приложенное к резистору, остается постоянным) и увеличивается с увеличением напряжения, приложенного к резистор (если сопротивление резистора остается постоянным).

Что такое резистор?

Резисторы

– наиболее часто используемые электронные компоненты. в схемах. Резистор – это электронный компонент, который уменьшает или ограничивает поток электронов или электрического тока до определенного уровня.

Сколько электрического тока делает резистор блоков зависит от сопротивления резистора. Резисторы с большим сопротивлением блокирует большое количество электрического тока и пропускает очень небольшое количество электрического тока.Резисторы с меньшим сопротивлением блокирует очень небольшое количество электрического ток и допускает большое количество электрического тока. В электрический ток, блокируемый резистором, теряется в виде тепла.

Резисторы – это пассивные компоненты. Следовательно, они не могут контролировать поток электронов или электрический ток через них. Однако они могут ограничивать электрический ток до определенный уровень.

Резистор условное обозначение

Условное обозначение резистора показано на рисунок ниже. Резистор состоит из двух выводов. В клеммы резисторов используются для подключения к другим компоненты через электрический провод.

квартир резистора

Количество электрического тока, заблокированного резистор измеряется в омах и обозначается символом Ω.Ом – количество электрического тока, блокируемого резистором, и допустимый один ампер электрического тока при приложенном напряжении одного вольта остается постоянным.

Резистор относится к какая категория: изоляторы или проводники

Мы знаем, что материалы в основном засекречены на два типа: Изоляторы и проводники

Изоляторы блокируют большое количество электрических ток и допускает очень небольшое количество электрического тока, тогда как проводников позволяет электрический ток и блокирует очень небольшое количество электрический ток.

Резисторы с большим сопротивлением действуют как изоляторы, тогда как резисторы с меньшим сопротивлением действуют как проводники.

Сопротивление резистора в основном зависит от двух факторов: длины и площади поперечного сечения

Длина резистора

Сопротивление резистора напрямую пропорционально длине резистора.Длинная длина резисторы обладают высоким сопротивлением, потому что свободные электроны имеют путешествовать на большие расстояния. Следовательно, большое количество свободных электронов сталкиваются с атомами. Поэтому большое количество энергия или электрический ток будут потрачены впустую в виде нагревать.

Резисторы малой длины обеспечивают низкое сопротивление, потому что свободные электроны должны пройти только короткая дистанция.Следовательно, небольшое количество свободных электронов сталкивается атомы. Следовательно, только небольшое количество электрического тока впустую в виде тепла.

Площадь сечения резистора

Сопротивление резистора обратно пропорционально пропорционально площади поперечного сечения резистора. В резисторы с большой площадью поперечного сечения обеспечивают больше места для свободные электроны свободно перемещаются.Следовательно, столкновение свободных электронов с атомами меньше. Поэтому очень небольшое количество электрического тока тратится впустую.

Резисторы с малой площадью поперечного сечения обеспечивают очень маленькое пространство для свободных электронов. Следовательно столкновение свободных электронов с атомами больше. Следовательно, теряется большое количество электрического тока.

Преимущества и недостатки резисторов

Преимущества резисторов

Резисторы очень маленькие.Следовательно, это очень легко переносить их из одного места в другое.

Резисторы

очень дешевы. Следовательно, легко заменить их.

Резисторы не зависят от внешнего источник напряжения. Следовательно, внешнее напряжение или энергия не необходим для работы резисторов.

Недостатки резисторов

Резисторы с высоким сопротивлением будут противодействовать большое количество электрического тока.Следовательно, большое количество энергии тратится впустую в виде тепла.

Краткое руководство по электронике

УРОК 2 – РЕЗИСТОРЫ

При приложении напряжения электроны проходят через одни материалы легче, чем через другие.В металлах электроны удерживаются настолько свободно, что движутся почти беспрепятственно. Мы измеряем сопротивление электрическому току как сопротивление .

Резисторы

находятся где-то между проводниками, которые легко проводят, и изоляторами, которые вообще не проводят. Сопротивление измеряется в Ом после , открывшего закон, связывающий напряжение с током. Ом представлены греческой буквой омега.

Вернитесь к модели воды, текущей в трубе.Толщина трубы должна отражать сопротивление. Чем уже труба, тем труднее проходить воде и, следовательно, тем выше сопротивление. Для конкретного насоса время, необходимое для заполнения пруда, напрямую зависит от толщины трубы. Увеличьте трубу вдвое, и скорость потока увеличится вдвое, и пруд наполняется вдвое быстрее.

Резисторы, используемые в наборах MadLab, изготовлены из тонкой пленки углерода, нанесенной на керамический стержень. Чем меньше углерода, тем выше сопротивление.Затем на них наносят прочное внешнее покрытие и наносят цветные полосы.

Основная функция резисторов в цепи – контролировать прохождение тока к другим компонентам. Возьмем, к примеру, светодиод (свет). Если через светодиод проходит слишком большой ток, он разрушается. Таким образом, резистор используется для ограничения тока.

Когда через резистор протекает ток, энергия тратится и резистор нагревается. Чем больше сопротивление, тем горячее становится. Батарея должна выполнять работу, чтобы заставить электроны проходить через резистор, и эта работа превращается в тепловую энергию в резисторе.

Важное свойство резистора – это то, сколько тепловой энергии он может выдержать до того, как будет поврежден. Резисторы MadLab могут рассеивать около 1/4 Вт тепла (сравните это с бытовым чайником, который использует до 3000 Вт для кипячения воды).

Трудно сделать резистор на точное значение (да и в большинстве схем это все равно не критично). Сопротивления даны с определенной точностью или допуск . Это выражается как положительное или отрицательное значение процента.10% резистор с заявленным значением 100 Ом может иметь сопротивление в пределах от 90 до 110 Ом. Резисторы MadLab составляют 5% (это то, что означает золотая полоса), что более чем достаточно точности.

Реальные сопротивления варьируются в огромном диапазоне. В детекторе лжи есть резистор на 1 000 000 Ом рядом с резистором на 470 Ом. На принципиальных схемах вы часто видите букву «R» вместо омега для обозначения сопротивления. Это соглашение возникло еще до появления компьютеров и лазерных принтеров, когда греческие буквы редко можно было встретить на пишущих машинках.Буква «k» означает тысячу, а ее позиция показывает положение десятичной точки.

Вот несколько примеров:

     10R = 10 Ом
     10 кОм = 10 кОм = 10 000 Ом
     4k7 = 4,7 кОм = 4700 Ом
 

Закон Ома

Закон Ома на самом деле очень прост. Это говорит о том, что чем больше напряжения приложено к резистору, тем больше тока проходит через него. Если напряжение удваивается, то ток удваивается, если напряжение утроится, то увеличивается ток и т. Д.Для конкретного резистора всегда существует постоянное соотношение между напряжением и током. Это значение сопротивления, измеренное в Ом.

Чтобы определить сопротивление чего-либо, просто измерьте напряжение на нем и ток через него. Разделите первую цифру на вторую, и вы получите сопротивление.

Если вы знаете сопротивление и напряжение, вы можете рассчитать ток. Или, если вы знаете сопротивление и ток, вы можете рассчитать напряжение. Это делает закон Ома очень полезным.

Цветовой код резистора

Цветовой код резистора – это способ показать номинал резистора. Вместо обозначения сопротивления на его корпусе, которое часто было бы слишком мало для чтения, используется цветовой код. Десять разных цветов представляют числа от 0 до 9. Первые две цветные полосы на теле – это первые две цифры сопротивления, а третья полоса – «множитель». Множитель просто означает количество нулей, добавляемых после первых двух цифр. Красный представляет собой цифру 2, поэтому резистор с красными, красными и красными полосами имеет сопротивление 2, за которым следуют 2, за которыми следуют 2 нуля, что составляет 2 200 Ом или 2.2 кОм.

Последняя полоса – это допуск (точность). Все резисторы MadLab составляют 5%, что показано золотой полосой.

Вот полный список цветов:

  1-я полоса 2-я полоса 3-я полоса 
     Черный 0 0 x 1
     Коричневый 1 1 x 10
     Красный 2 2 x 100
     Апельсин 3 3 x 1000
     Желтый 4 4 x 10000
     Зеленый 5 5 x 100000
     Синий 6 6 x 1000000
     Фиолетовый 7 7
     Серый 8 8
     Белый 9 9
 

Вот несколько примеров:

     Желтый, фиолетовый, красный, золотой = 47 x 100 = 4700 Ом = 4.7 кОм
     Коричневый, черный, желтый, золотой = 10 х 10 000 = 100 кОм
     Желтый, фиолетовый, черный, золотой = 47 x 1 = 47 Ом
     Коричневый, черный, красный, золотой = 10 x 100 = 1000 Ом = 1 кОм
     Коричневый, черный, зеленый, золотой = 10 x 100 000 = 1 000 кОм = 1 МОм
     Все +/- 5%
 

Переменные резисторы

Неудивительно, что переменные резисторы – это резисторы, сопротивление которых можно изменять. Переменные резисторы MadLab (называемые пресетами ) имеют металлический стеклоочиститель, покоящийся на круговой дорожке из углерода.Стеклоочиститель движется по дорожке при повороте предустановки. Ток проходит через стеклоочиститель, а затем через часть углеродистой дорожки. Чем больше трасса должна пройти, тем больше сопротивление.

Пресеты

MadLab имеют три ножки. Верхняя опора соединяется со стеклоочистителем, а две другие опоры – с двумя концами гусеницы. Обычно фактически используется только одна из опор гусеницы.

Переменные резисторы используются в схемах для изменения вещей, которые нужно изменить, например, громкости и т. Д.


СЛЕДУЮЩИЙ УРОК | СОДЕРЖАНИЕ Цепи серии

Представьте себе электрический ток, выходящий из батареи. Если резисторы подключены в такой способ, которым часть тока может проходить через один резистор, а остальная часть ток может проходить через другой резистор, тогда цепь параллельна Схема .

I T – полный ток параллельной цепи.Вы бы измерили этот ток в любом месте до или после трехканального разветвителя, ведущего к трем резисторам. В между перекрестком и R 1 , вы бы измерили I 1 . Между перекрестком и R 2 , вы бы измерили I 2 и т. д.

Поскольку общий ток I T делится на три разные группы электронов, путешествующих каждый своим путем,

I T = I 1 + I 2 + I 3 +.

В параллельных цепях все резисторы, независимо от их сопротивления, испытывают одинаковое падение напряжения или разность потенциалов, потому что все они имеют одинаковые точки входа и выхода (переходы).

V T = V 1 = V 2 = V 3 = V n

Если разделить формулу тока по соотношению напряжений получаем:

или рэнд T = [ 1 -1 + 2 -1 + 3 -1 +] -1

Пример 1

а. Какое полное сопротивление цепи?

R T = [ 1 -1 + R 2 -1 + R 3 -1 ] -1

R T = [12 –1 + 12 –1 +12 –1 ] –1 = 4 Вт

г. Какой общий ток?

I T = V / R T = 12/4 = 3 A

г.Какое напряжение ( В 1 ) будет измеряется на каждом отдельном резисторе?

12 В (напряжение постоянно параллельно.)

г. Какой ток отводится каждый резистор?

I 1 = V / R 1 = 12/12 = 1A. Остальные тоже нарисуйте по 1 А, всего 3 А.

Пример 2

рисунок кажется запутанным, но обратите внимание, что это параллельная схема, потому что у электронов есть выбор.На стыке (показано красной точкой) электроны следуйте либо зеленому маршруту, либо оранжевому маршруту.

Используйте I

1 = 1A; I 2 = 0,5 А; рэнд 1 = 10Вт.

  1. Найдите V 2 .

Помните, что параллельное напряжение постоянно. Итак, если мы найдем V 1 , мы будем знать V 2 .

В 1 = I 1 R 1 = 1 (10) = 10 В.

В 2 = В 1 = 10 В.

  1. Найдите R 2 .

R 2 = V / I 2 = 10 / 0,5 = 20 Вт.

  1. Используйте два метода, чтобы получить R T .

(1) R T = [R 1 -1 + R 2 –1 ] –1 = [20 –1 + 10 –1 ] -1 = 6.7 Вт.

(2) я т = I 3 = I 1 + I 2 = 1 + 0,5 = 1,5 А.

R T = V / I T = 10 / 1,5 = 6,7 W.

Пример 3

В параллельной цепи какой эффект дает добавление еще резисторов иметь по общему току?

Ток увеличивается !

В цепи серии добавление резисторов увеличивает общее сопротивление и, таким образом, снижает ток.Но в случае с параллельная схема, потому что добавление дополнительных резисторов параллельно создает больше вариантов а снижает общее сопротивление . Если такая же батарея подключена к резисторы, ток увеличится. Не убежден? Попробуйте:

[10 -1 + 10 -1 ] -1 = 5 Вт, но добавьте подключите резистор параллельно, и вы получите [10 -1 + 10 -1 + 10 -1 ] -1 = всего 3,3 Вт. чем меньше сопротивление, тем выше общий ток.

Еще одна интересная особенность параллельных цепей заключается в том, что если один компонент отключен, другие пути все еще жизнеспособны, так что электроны могут продолжать течь по цепи.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *