Как подключить светодиод к 220В: резистор, конденсатор, способы подключения
На чтение 9 мин. Просмотров 622 Опубликовано Обновлено
Без светодиодов трудно обойтись при проектировании электронной аппаратуры, а также при изготовлении экономичных осветительных приборов. Их надежность, простота монтажа и относительная дешевизна привлекают внимание разработчиков бытовых и промышленных светильников. Поэтому многих пользователей интересуют схемные решения по включению светодиода, предполагающие прямую подачу на него фазного напряжения. Неспециалистам в области электроники и электрики полезно будет узнать, как подключить светодиод к 220В.
Технические особенности диода
По определению светодиод, схема которого схожа с обычным диодом, – это тот же полупроводник, пропускающий ток в одном направлении и излучающий свет при его протекании. Его рабочий переход не рассчитан на высокие напряжения, поэтому для загорания светодиодного элемента вполне достаточно всего нескольких вольт. Другой особенностью этого прибора является необходимость подачи на него постоянного напряжения, так как при переменных 220 Вольт светодиод будет мигать с частотой сети (50Герц). Считается, что глаз человека не реагирует на такие мигания и что они не причиняют ему вреда. Но все же согласно действующим стандартам для его работы нужно использовать постоянный потенциал. В противном случае приходится применять особые меры защиты от опасных обратных напряжений.
Большинство образцов осветительной техники, в которых диоды используются в качестве элементов освещения, включаются в сеть через специальные преобразователи – драйверы. Эти устройства необходимы для получения из исходного сетевого напряжения постоянных 12, 24, 36 или 48 Вольт. Несмотря на их широкое распространение в быту нередки ситуации, когда обстоятельства вынуждают обходиться без драйвера. В этом случае важно уметь включать светодиоды в 220 В.
Полюса светодиода
Полярность светодиодаЧтобы ознакомиться со схемами включения и распайкой диодного элемента, нужно узнать, как выглядит распиновка светодиода. В качестве его графического обозначения используется треугольник, к одному из углов которого примыкает короткая вертикальная полоса – на схеме она называется катодом. Он считается выходным для постоянного тока, втекающего с обратной стороны. Туда подается положительный потенциал от источника питания и поэтому входной контакт называется анодом (по аналогии с электронными лампами).
Выпускаемые промышленностью светодиоды имеют всего два вывода (реже – три или даже четыре). Известны три способа определения их полярности:
- визуальный метод, позволяющий определить анод элемента по характерному выступу на одной из ножек;
- с помощью мультиметра в режиме «Проверка диодов»;
- посредством блока питания с постоянным выходным напряжением.
Для определения полярности вторым способом плюсовой конец измерительного шнура тестера в красной изоляции подсоединяется к одному контактному выводу диода, а черный минусовой – к другому. Если прибор показывает прямое напряжение порядка полвольта, со стороны плюсового конца расположен анод. Если на табло индикации появляется знак бесконечности или «0L», с этого конца располагается катод.
При проверке от источника питания на 12 Вольт его плюс следует соединить с одним концом светодиода через ограничивающий резистор 1 кОм. Если диод загорается, его анод находится со стороны плюса блока питания, а если нет – с другого конца.
Способы подключения
Установка дополнительного резистора гасит излишки мощности электричестваПростейший подход к решению проблемы недопустимого для диода обратного напряжения – установка последовательно с ним дополнительного резистора, который способен ограничить 220 Вольт. Этот элемент получил название гасящего, так как он «рассеивает» на себе излишки мощности, оставляя светодиоду необходимые для его работы 12-24 Вольта.
Последовательная установка ограничивающего резистора также решает проблему обратного напряжения на переходе диода, которое снижается до тех же величин. В качестве модификации последовательного включения с ограничением напряжения рассматривается смешанная или комбинированная схема подключения светодиодов в 220 В. В ней на один резистор последовательный резистор приходится несколько параллельно соединенных диодов.
Подключение светодиода можно организовать по схеме, в которой вместо резистора используется обычный диод, имеющий высокое напряжение обратного пробоя (желательно – до 400 Вольт и более). Для этих целей удобнее всего взять типовое изделие марки 1N4007 с заявленным в характеристиках показателем до 1000 Вольт. При его установке в последовательную цепочку (при изготовлении гирлянды, например), обратная часть волны выпрямляется полупроводниковым диодом. Он в этом случае выполняет функцию шунта, защищающего чип светового элемента от пробоя.
Шунтирование светодиода обычным диодом (встречно-параллельное подключение)
Встречно-параллельное подключениеДругой распространенный вариант «нейтрализации» обратной полуволны состоит в использовании совместно с гасящим резистором еще одного светодиода, включаемого параллельно и навстречу первому элементу. В этой схеме обратное напряжение «замыкается» через параллельно подключенный диод и ограничивается дополнительным сопротивлением, включенным последовательно.
Такое соединение двух светодиодов напоминает предыдущий вариант, но с одним отличием. Каждый из них работает со «своей» частью синусоиды, обеспечивая другому элементу защиту от пробоя.
Существенный недостаток схемы подключения через гасящий резистор – значительная величина непроизводительно расходуемой мощности, выделяемой на нем вхолостую.
Подтверждением этому является следующий пример. Пусть используется гасящий резистор номиналом 24 кОм и светодиод с рабочим током 9 мА. Рассеиваемая на сопротивлении мощность будет равна 9х9х24=1944 мВт (после округления – порядка 2-х Ватт). Чтобы резистор работал в оптимальном режиме, он выбирается со значением P не менее 3 Вт. На самом светодиоде расходуется совсем ничтожная часть энергии.
С другой стороны, при использовании нескольких последовательно подключенных LED элементов ставить гасящий резистор из соображений оптимального режима их свечения нецелесообразно. Если выбрать очень маленькое по номиналу сопротивление, оно быстро сгорит из-за большого тока и значительной рассеиваемой мощности. Поэтому функцию токоограничивающего элемента в цепи переменного тока естественнее выполнять конденсатору, на котором энергия не теряется.
Ограничение с помощью конденсатора
Использование накопительного конденсатораПростейшая схема подключения светодиодов через ограничительный конденсатор C характеризуется следующими особенностями:
- предусматриваются цепочки заряда и разряда, обеспечивающие режимы работы реактивного элемента;
- потребуется еще один светодиод, необходимый для защиты основного от обратного напряжения;
- для расчета емкости конденсатора используется полученная опытным путем формула, в которую подставляются конкретные цифры.
Для вычисления значения номинала C нужно умножить силу тока в цепи на выведенный эмпирически путем коэффициент 4,45. После этого следует разделить полученное произведение на разницу между предельным напряжением (310 Вольт) и его падением на светодиоде.
В качестве примера рассмотрим подключение конденсатора к RGB или обычному LED-диоду с падением напряжения на его переходе, равным 3 Вольта и током через него в 9 мА. Согласно рассмотренной формуле его емкость составит 0,13 мкФ. Для введения поправки на ее точное значение следует учитывать, что на величину этого параметра в большей мере влияет токовая составляющая.
Выеденная опытным путем эмпирическая формула действительна лишь для расчета емкостей и параметров светодиодов на 220 В., установленных в сетях частотой 50 Гц. В других частотных диапазонах питающих напряжений (в преобразователях, например), коэффициент 4,45 нуждается в перерасчете.
Нюансы подключения к сети 220 Вольт
Схема подключения светодиода к сети 220ВПри использовании различных схем подключения светодиода к сети 220 В возможны некоторые нюансы, учет которых поможет избежать элементарных ошибок в коммутации электрических цепей. Они в основном связаны с величиной тока, протекающего через цепочку при подаче на нее питания. Для их понимания потребуется рассмотреть простейший прибор типа подсветки для декорирования, состоящий из целого набора светодиодных элементов или обычный светильник на их основе.
Значительное внимание обращается на особенности процессов, протекающих в выключателе в момент подачи питания. Для обеспечения «мягкого» режима включения к его контактам потребуется подпаять в параллель гасящий резистор и светодиод-индикатор, обозначающий включенное состояние.
Значение сопротивления подбирается по методикам, описанным ранее.
Только после выключателя с резистором в схеме располагается сама лента с чипами светодиодных элементов. В ней не предусмотрены защитные диоды, так что величина гасящего резистора подбирается из расчета протекающего по цепи тока, он не должен превышать значения порядка 1 мА.
Светодиодный индикатор-лампочка в этой схеме выполняет функцию нагрузки, еще больше ограничивающей ток. Из-за небольшой величины он будет светиться очень тускло, но этого вполне хватает для ночного режима. При действии обратной полуволны напряжение частично гасится на резисторе, что защищает диод от нежелательного пробоя.
Схема лед драйвера на 220 вольт
Более надежный способ, позволяющий запитать светодиоды от сети, – применение специального преобразователя или драйвера, понижающего напряжение до безопасного уровня. Основное назначение драйвера под светодиод 220 вольт – ограничить ток через него в рамках допустимого значения (согласно паспорту). В его состав входят формирователь напряжения, выпрямительный мостик и микросхема токового стабилизатора.
Вариант драйвера без стабилизатора тока
При желании собрать устройство питания светодиодов от 220 В своими руками потребуется знать следующее:
- при использовании выходного стабилизатора амплитуда пульсаций существенно снижается;
- в этом случае на самой микросхеме теряется часть мощности, что сказывается на яркости свечения излучающих приборов;
- при использовании вместо фирменного стабилизатора фильтрующего электролита большой емкости пульсации не полностью сглаживаются, но остаются в допустимых пределах.
При самостоятельном изготовлении драйвера схему можно упростить, поставив на место выходной микросхемы электролит.
Безопасность при подключении
Не следует устанавливать в цепь диодов полярные конденсаторыПри работе со схемой включения диодов в сеть 220 Вольт основную опасность представляет соединенный последовательно с ними ограничивающий конденсатор. Под воздействием сетевого напряжения он заряжается до опасного для человека потенциала. Чтобы избежать неприятностей в этой ситуации рекомендуется:
- предусмотреть в схеме специальную разрядную резисторную цепочку, управляемую отдельной кнопкой;
- если сделать это невозможно, перед началом настойки после отключения от сети следует разряжать конденсатор с помощью жала отвертки;
- не устанавливать в цепь питания диодов полярные конденсаторы, обратный ток которых достигает значений, способных «выжечь» схему.
Подключить светодиодные элементы на 220 Вольт удается лишь с помощью специальных элементов, вводимых в схему дополнительно. В этом случае можно обойтись без понижающего трансформатора и блока питания, традиционно используемых для подключения низковольтных осветителей. Основная задача добавочных элементов в схеме подключения светодиода в 220В – ограничить и выпрямить ток через него, а также защитить полупроводниковый переход от обратной полуволны.
Как подключить светодиод к 220 В ⋆ diodov.net
У многих начинающих радиолюбителей возникает мысль, как подключить светодиод к 220 В без применения трансформатора. Ведь габариты даже самого маломощного трансформатора сравнительно велики. Это в первую очередь вызвано высоким сетевым напряжением, в результате чего первичная обмотка трансформатора имеет большое число витков.
Основной проблемой подключения светодиода к 220 вольтам на прямую, без трансформатора является ограничение ток, протекающего через него вследствие проложенного напряжения. Оценим его величину для понимания сети происходящего.
Светодиод – это светоизлучающий полупроводниковый прибор, как и «обычный» диод пропускает ток лишь в одном направлении. Поскольку переменное напряжение изменяет свое направление дважды за период, то в один полупериод ток протекает, а во второй – нет. Поэтому, чтобы определить средний ток, протекающий через светодиод, следует действующее напряжения
Сопротивление любого полупроводника нелинейное, т.е. нелинейно зависит от величины приложенного напряжения. Не вникая в подробности, с приемлемой точностью примем 1,7 Ом. Тогда ток, протекающий через полупроводниковый кристалл равен 110/1,7 = 65 А! Естественно, такой огромный ток сожжёт полупроводниковый прибор. Поэтому обязательно нужно последовательно со светодиодом включать какое-либо сопротивление.
Если в цепи постоянного напряжения в качестве сопротивления можно использовать только резистор, то на переменном напряжении есть возможность применять еще и конденсатор или катушку индуктивности. Их еще называют реактивными элементами. В один полупериод времени они накапливают энергию (в виде электрического или магнитного поля), а в следующий полупериод возвращают ее в направлении источника питания. При этом электрическая энергия практически не потребляется.
Применение катушки индуктивности не рассматривается, по ряду причин, связанных с ее нагревом.
Как подключить светодиод к 220 В с помощью резистораДля большей наглядности изобразим расчетную схему.
Такая схема очень распространена в цепях индикации работы электротехнических устройств, например, подсветки выключателя или кнопки электрического чайника. Главным достоинством данной схемы является ее простота, а отсюда и надежность.
С целью сравнения полученных результатов возьмем два светодиода. Один индикаторного типа, а второй более мощный.
Определим сопротивление R1, необходимое для первого светодиода:
Сетевое напряжение делим на два по уже указанной выше причине.
Мощность рассеивания резистор равна:
Принимаем 2 ватта, поскольку такой номинал является ближайшим в сторону увеличения из стандартного ряда мощностей.
Теперь определим сопротивление резистора, соединенного последовательно со вторым светодиодом:
Мощность рассеивания равна:
Резисторы с такой мощностью рассеивания имеют значительные размеры и немалую стоимость, поэтому не рационально их применение в цепи с мощными светодиодами. Более эффективным будет замена его конденсатором.
Для защиты полупроводникового прибора встречно-параллельно подсоединяют диод.
Его назначение состоит в следующем. В проводящий полупериод на светодиоде падает напряжения порядка 2…3 В. В не проводящий полупериод он заперт и к его выводам прикладывается обратное полное действующее напряжение 220 В, амплитуда которого достигает 310 В. Поэтому существует вероятность пробоя полупроводникового прибора. Однако если создать путь для протекания тока в этот непроводящий полупериод времени, то снизится амплитуда опасного обратного напряжения. Именно это достигается за счет применения шунтирующего диода.
Кстати, вместо него можно применять еще один светодиод, желательно со схожими параметрами.
Визуально нам будет казаться, что оба они светят все время, но на самом деле они мерцают с частотой 50 Гц. Причем, когда первый светит, второй гаснет и наоборот, т.е. работают в противофазе.
В этом случае необходимо учесть, что через резистор ток протекает в оба полупериода времени, поэтому его сопротивление нужно снизить вдвое. Далее в последующих расчетах мы будем пользоваться схемой без шунтирующего диода.
Как подключить светодиод к 220 В с помощью конденсатораВыше уже было сказано, что конденсатор обладает реактивным сопротивлением переменному току, т.е. он не потребляет активную мощность, как резистор, поэтому практически не нагревается. Постоянный ток он не пропускает и является для него огромным сопротивлением, которое можно приравнять к разрыву цепи.
Если же на конденсатор подать переменное напряжение, то через него будет, упрощенно говоря протекать ток. Причем сопротивление этого реактивного элемента обратно пропорционально зависит от частоты f, т.е. с ростом f оно снижается. Таким же образом сопротивление зависит и от емкости:
Из приведенной формулы нам необходимо найти значение емкости:
Сопротивления Xс мы принимаем аналогично ранее найденным для резисторов: XС1 = R1 = 11000 Ом; XС2 = R2 = 306 Ом.
Подставляем данные значения и находим емкости:
Внимание! Все конденсаторы, подключаемые в сеть 220 В, должны быть рассчитаны на напряжение не менее 400 В!!!
Главным и очень существенным недостатком такой схемы является протекание значительного тока в момент подключения к сети. При этом величина его может превышать в несколько раз номинальный ток светодиода, в результате последний может выйти из строя.
Следует учитывать, что чем больше емкость конденсатора, тем выше значение тока в момент включения. Поэтому для защиты полупроводникового прибора рекомендуется последовательно с конденсатором включать резистор.
Исходя из тех соображений, что резистор с мощностью рассеивания P = 5 Вт имеет небольшие габариты, то рассчитаем величину его сопротивления при данных ограничениях для схемы с более мощным светодиодом:
Из номинального ряда сопротивлений выбираем ближайшее значение 39 Ом.
Конечно, коэффициент полезного действия данной схемы очень снизится, поскольку для питания светодиода мощностью 1 Вт необходимо затратить 6 Вт с источника питания.
Еще статьи по данной теме
способы интеграции, схемы питания и особенности подключения
Светодиоды — неотъемлемая часть электроники, позволяющая осуществлять индикацию состояния приборов. В зависимости от цвета и расположения на корпусе светоизлучающие диоды сигнализируют о состоянии зарядки, подключении гаджета к сети и т. п. Но бывают ситуации, когда в приборе отсутствует штатная сигнализация, а человеку она нужна. Тогда и встаёт вопрос о том, как включить светодиод в 220 В, не используя понижающих напряжение трансформаторных устройств.
Технические особенности диода
Светодиод представляет собой радиотехнический элемент, пропускающий ток, как и стандартный диод, только в одном направлении, но при этом излучающий электромагнитные волны в видимом диапазоне. Если осуществлять интеграцию такого диода в сеть с постоянным током, то важно не перепутать «плюс» и «минус». Внедрение же светового диода в переменную сеть и решение вопроса о том, как запитать светодиод от сети 220 В, где периодически (с частотой 50 Гц) происходит изменение направления тока и напряжения, потребует дополнительных расчётов.
Чтобы определить среднее значение тока и подключить светодиод к сети 220 вольт, необходимо разделить напряжение действующей сети пополам, то есть 220 В / 2 = 110 В. Это значение берут за основу для последующих расчётов.
Электрическое сопротивление светодиода, как и любого полупроводникового элемента, не линейно и зависит от величины разности потенциалов, приложенной к нему. Для сети с переменным током и напряжением 220 В с приемлемой точностью можно взять усреднённое значение в 1,7 Ом. Тогда, согласно закону Ома, величина тока, который будет проходить через полупроводниковый кристалл диода, если его подключить напрямую к сети, будет примерно равна 65 ампер (110/1,7).
Такой показатель просто приведёт к сжиганию прибора. Для уменьшения величины тока, проходящего через полупроводник, потребуется последовательное включение в цепь рядом со световым диодом сопротивления.
Для этой цели применяют исключительно резисторы в цепях с постоянным напряжением, а с переменным током есть возможность применять так называемые реактивные сопротивления — конденсаторы и катушки индуктивности. Сопротивление они создают благодаря накапливанию электромагнитной энергии в первый полупериод (ток протекает в одном направлении) и возвращению её в сеть во втором полупериоде (при обратном течении электрического тока).
Подключение через резистор
Подобная схема обычно реализуется для индикации работы электротехнических устройств. Она используется в световом сигнале, свидетельствующем о включении в сеть электрочайника, в подсветке кнопки выключателя и т. д. Главными достоинствами этого варианта интеграции светящегося диода в сеть считаются относительная дешевизна, простота и надёжность.
Но есть в этой схеме один нюанс. Он заключается в необходимости гашения обратного напряжения, так как его избыток может привести к выходу из строя полупроводникового прибора. С этой задачей легко справляются кремниевые диоды, которые способны пропускать ток по величине не меньше того, что проходит в сети. Подключить их можно в цепь двумя способами:
- последовательно, то есть после резистора и перед светодиодом, но соблюдая полярность;
- параллельно со светящимся диодом, но изменив полярность на 180 градусов.
Некоторые специалисты считают, что использование гасящих диодов необязательно, но практика показывает, что обратный ток в некоторых случаях вызывает тепловой пробой p-n перехода. Поэтому дополнительные затраты на приобретение кремниевых диодов вполне оправданы для реализации подключения светодиода к сети 220 В, схема которого содержит гасящий резистор.
Применение конденсатора
Негативной стороной использования резистора для уменьшения тока при включении в цепь 220 В светодиода является довольно существенное рассеивание мощности. Эта проблема становится заметной при нагрузке с большим током потребления. Решением является схема подключения светодиода к 220 В, где реализуется интеграция неполярного конденсатора вместо резистора. Сопротивление конденсаторов имеет реактивный характер, что исключает рассеивание мощности.
Подключение конденсатора в схему светодиода с целью токоограничения имеет один нюанс, который может привести к выходу из строя светового диода, — сохранение накопленного заряда после отключения питания сети. Из-за этого в схему с неполярным конденсатором добавляют:
- два резистора;
- диод, подключённый параллельно светодиоду, но в обратном направлении.
Резисторы (один — параллельно с конденсатором, а второй — последовательно) защищают всю схему от бросков напряжения при подаче напряжения из сети, а диод является защитой светодиода от разности потенциалов с обратной полярностью.
Эти способы подключения применимы к маломощным светодиодам, которые используются для индикации или подсветки. Подключение мощных диодных элементов, предназначенных для светодиодных ламп освещения, осуществляется схемами с использованием спецблоков питания (драйверов).
Варианты схем как подключить светодиод к 220 вольтам (для световой индикации).
_v_
Порой возникает необходимость в подключении обычного, маломощного светодиода к переменному, сетевому напряжению 220 вольт в роли светового индикатора. Казалось бы нет ничего проще, чем взять и поставить последовательно светодиоду обычный резистор, который бы ограничивал силу тока в данной цепи. Но не все так просто. В этой статье давайте с вами рассмотрим наиболее распространенные варианты такого подключения, после чего можно будет выбрать наиболее лучшую схему с учетом имеющихся достоинств и недостатков.
Вариант №1 » последовательное включение светодиода и резистора.
Итак, первым вариантом все же будет схема, где последовательно к светодиоду подключается обычный резистор с нужным сопротивлением. Величину сопротивления можно вычислить по закону ома. Допустим у нас светодиод, рассчитанный на напряжение 3 вольта и потребляющий 9 миллиампер. Напряжение питания (220 В) разделится между резистором и светодиодом. Если на светодиоде осядет 3 вольта, то на резисторе осядет около 217 вольт. Ток в последовательных цепях во всех точках одинаковый (в нашем случае он будет равен 9 мА). И чтобы узнать сопротивление резистора мы 217 вольт делим на 9 миллиампер и получаем 24 килоома (24000 ом).
Теоретически эта схема подключения светодиода к сети 220 вольт рабочая, но практически она скорее всего сгорит сразу при включении. Почему это так. Дело в том, что большинство обычных светодиодов рассчитаны на напряжение питания (при прямом своем включении, то есть плюс светодиода к плюсу источника питания и минус светодиода к минусу источника питания), где-то в пределах от 2,5 до 4,5 вольта. При прямом включении на светодиоде будет его рабочее напряжение (пусть 3 вольта), а излишек (217 вольт) осядет на резисторе. Обратное напряжение у светодиодов не такое уж и высокое (где-то около 30 вольт). И когда обратная полуволна переменного напряжения подается на светодиод, то светодиод просто выйдет из строя из-за слишком большого обратного напряжения, поданного на него. Напомню, что полупроводники при обратном включении имеют очень большое внутреннее сопротивление (гораздо большее чем стоящий в цепи резистор). Следовательно все сетевое напряжение осядет именно на светодиоде.
Вариант №2 » подключение светодиода с защитой от обратного напряжения.
В этом варианте схемы подключения индикаторного светодиода к сетевому напряжению 220 вольт имеется защита от чрезмерного высокого напряжения обратной полуволны, что подается на светодиод. То есть, в цепь добавлен обычный диод, который включен той же полярностью, что и светодиод. В итоге все излишнее высокое напряжение оседает на полупроводниках (при обратном включении питания, обратной полуволне переменного тока). Тот ток, что возникает в цепи при обратной полуволне настолько настолько мал, что его не хватает для пробития светодиода при обратном его включении. Таким образом данная схема уже будет нормально работать. Хотя в этом варианте все же имеются свои недостатки, а именно будет достаточно сильно греться резистор. Его мощность должна быть не менее 2 Вт. Этот нагрев приводит к тому, что схема весьма не экономна, у нее низкий КПД. Помимо этого поскольку светодиод будет светить только при одной полуволне, то рабочая частота светодиода будет равна 25 Гц. Свечение светодиода при такой частоте будет восприниматься глазом с эффектом мерцания.
Вариант №3 » альтернативная схема подключения светодиода к 220 с защитой от обратного напряжения.
Эта схема похожа не предидущую. Она также имеет защиту от чрезмерного напряжения обратной полуволны переменного напряжения. Если в первой схеме защитный диод стоял последовательно со светодиодом, то в данной схеме диод подключен параллельно, и имеет уже обратное включение относительно светодиоду. При одной полуволне переменного напряжения будет гореть индикаторный светодиод (на котором будет падение напряжения до рабочей величины светодиода), а при обратной полуволне диод будет находится в открытом состоянии и на нем также будет падение напряжения до величины (порядка 1 вольта) недостаточной для пробоя светодиода. Как и в предыдущей схеме недостатками будет значительный нагрев резистора и видимое мерцание светодиода, вдобавок эта схема будет больше потреблять электроэнергии из-за прямого включения диода.
Хотя вместо обычного диода можно поставить еще один светодиод.
Тогда в одну полуволну будет гореть один светодиод, ну а в обратную второй. Хотя в этом случае и будут светодиоды обезопасены от высокого обратного напряжения, но гореть каждый из них будет все равно с частотой 25 герц (будут оба мерцать).
Вариант №4 » лучшая схема с токоограничительным кондесатором, резистором и выпрямительным мостом.
Данный вариант схемы подключения индикаторного светодиода к сети 220 вольт считаю наиболее лучшим. Единственным недостатком (если можно так сказать) этой схемы является то, что в ней больше всего деталей. К достоинствам же можно отнести то, что в ней нет элементов, которые чрезмерно нагревались, поскольку стоит диодный мост, то светодиод работает с двумя полупериодами переменного напряжения, следовательно нет заметных для глаза мерцаний. Потребляет эта схема меньше всего электроэнергии (экономная).
Работает данная схема следующим образом. Вместо токоограничительного резистора (который был в предыдущих схемах на 24 кОм) стоит конденсатор, что исключает нагрев данного элемента. Этот конденсатор обязательно должен быть пленочного типа (не электролит) и рассчитан на напряжение не менее 250 вольт (лучше ставить на 400 вольт). Именно подбором его емкости можно регулировать величину силы тока в схеме. В таблице на рисунке приведены емкости конденсатора и соответствующие им токи. Параллельно конденсатору стоит резистор, задача которого сводится всего лишь к разряду конденсатора после отключения схемы от сети 220 вольт. Активной роли в самой схеме запитки индикаторного светодиода от 220 В он не принимает.
Далее стоит обычный выпрямительный диодный мост, который из переменного тока делает постоянный. Подойдут любые диоды (готовый диодный мост), у которых максимальная сила тока будет больше тока, потребляемого самим индикаторным светодиодом. Ну и обратное напряжение этих диодов должно быть не менее 400 вольт. Можно поставить наиболее популярные диоды серии 1N4007. Они дешево стоят, малы по размерам, рассчитаны на ток до 1 ампера и обратное напряжение 1000 вольт.
В схеме есть еще один резистор, токоограничительный, но он нужен для ограничения тока, который возникает от случайных всплесков напряжения, идущие от самой сети 220 вольт. Допусти если кто-то по соседству использует мощные устройства, содержащие катушки (индуктивный элемент, способствующий кратковременным всплескам напряжения), то в сети образуется кратковременное увеличение сетевого напряжения. Конденсатор данный всплеск напряжения пропускает беспрепятственно. А поскольку величина тока этого всплеска достаточна для того, чтобы вывести из строя индикаторный светодиод в схеме предусмотрен токоограничительный резистор, защищающий схему от подобный перепадов напряжения в электрической сети. Этот резистор нагревается незначительно, в сравнении с резисторами в предыдущих схемах. Ну и сам индикаторный светодиод. Его вы выбираете уже сами, его яркость, цвет, размеры. После выбора светодиода подбирайте соответствующий конденсатор нужной емкости руководствуясь таблицей на рисунке.
P.S. Альтернативным вариантом электрической светодиодной подсветки может быть классическая схема подключения неоновой лампочки (параллельно которой ставится резистор где-то на 500кОм-2мОм). Если сравнивать по яркости, то все таки она больше у светодиодной подсветки, ну а если особая яркость не требуется, то вполне можно обойтись данным вариантом схемы на неоновой лампе.
Светодиод от 220 вольт схема
Подключение светодиода к 220 вольтам, схемы, примеры (видео, калькулятор)
При конструировании радиоаппаратуры часто встает вопрос о индикации питания. Век ламп накаливания для индикации уже давно прошел, современным и надежным радиоэлементом индикации на настоящий момент является светодиод. В данной статье будет предложена схема подключения светодиода к 220 вольтам, то есть рассмотрена возможность запитать светодиод от бытовой сети переменного тока — розетки, которая есть в любой благоустроенной квартире.Если вам необходимо будет запитать несколько светодиодов одновременно, то об этом мы также упомянем в нашей статье. Фактически такие схемы применяются для светодиодных гирлянд или ламп, это немного другое. Фактически здесь необходимо реализовать так называемый драйвер для светодиодов. Итак, давайте не будем все валить в одну кучу. Попробуем разобраться по порядку.
Принцип понижения напряжения питания для светодиода
Для питания низковольтной нагрузки может быть выбрана два пути питания. Первый, это так скажем классический вариант, когда питание снижается за счет резистора. Второй, вариант, который часто используется для зарядных устройств, это гасящий конденсатор. В этом случае напряжение и ток идут словно импульсами, и эти самые импульсы и должны быть точно подобраны, дабы светодиод, нагрузка не сгорела. Здесь необходимо более детальный расчет чем с резистором. Третий вариант, это комбинированное питание, когда применяется и тот и другой способ понижения напряжения. Что же, теперь обо всех этих вариантах по порядку.
Схема подключения светодиода к напряжению 220 вольт (гасящий конденсатор)
Схема подключения светодиода к 220 вольтам на вид не сложная, принцип ее работы прост. Алгоритм следующий. При подаче напряжения начинает заряжаться конденсатор С1, при этом фактически с одной стороны он заряжается напрямую, а со второй через стабилитрон. Стабилитрон должен соответствовать напряжению свечения светодиода. Так в итоге полностью заряжается конденсатор. Далее приходит вторая полуволна, когда конденсатор начинает разряжаться. В этом случае напряжение также идет через стабилитрон, который теперь работает в своем штатном режиме и через светодиод. В итоге на светодиод в это время подается напряжение равное напряжению стабилизации стабилитрона. Здесь важно подобрать стабилитрон с тем же номиналом, что и светодиод.
Здесь все вроде как просто и теоретически реализуется нормально. Однако точные расчеты не столь просты. Ведь по сути надо рассчитать емкость конденсатора, который будет являться в данном случае гасящим. Делается это по формуле.
Прикинем: 3200*0,02/√(220*220-3*3)=0,29 мКФ. Вот какой должен быть конденсатор при напряжении для светодиода 3 вольта, а токе 0,02 А. Вы же можете подставить свои значения и рассчитать свой вариант.
Радиодетали для подключения светодиода к 220 вольтам
Мощность резистора может быть минимальной вполне подойдет 0.25 Вт (номинал на схеме в омах).
Конденсатор (емкость указана в микрофарадах) лучше подобрать с запасом, то есть с рабочим напряжением в 300 вольт.
Светодиод может быть любой, например с напряжением свечения от 2 вольт АЛ307 БМ или АЛ 307Б и до 5.5 воль — это КЛ101А или КЛ101Б.
Стабилитрон как мы уже упоминали должен соответствовать напряжению питания светодиода, так для 2 вольт это КС130Д1 или КС133А (напряжение стабилизации 3 и 3.3 вольта соответственно), а для 5.5 вольт КС156А или КС156Г
Такой способ имеет свои недостатки, так как при незначительном скачке напряжения или отклонении в работе конденсатора, можем получить напряжения куда более высокое нежели 3 вольта. Светодиод сгорит в один момент. Плюсом является экономичность схемы, так как она импульсная. Скажем так, не высокая надежность, но экономичность. Теперь о варианте комбинированном.
Схема подключения светодиода к напряжению 220 вольт (гасящий конденсатор + резистор)
Здесь все тоже самое, за исключением того, что в цепочку добавили резистор. В целом влияние резистора способно сделать всю схему более предсказуемое, более надежной. Здесь будет меньше импульсных токов с высоким напряжением. Это хорошо!
(. как и н на схеме выше использован гасящий конденсатор + резистор)
Все плюсы и минусы сродни варианту с гасящим конденсатором, но надежности здесь тоже нет. Даже более, того, использование диода, а не стабилитрона, скажется на защите светодиода при разрядке конденсатора. То есть весь ток потечет именно через светодиод, а не как в предыдущем случае через светодиод и стабилитрон. Вариант этот так себе. И вот последний случай, с применением резистора.
Схема подключения светодиода к напряжению 220 вольт (резистор)
Именно эти схемы мы вам рекомендуем к сборке. Здесь все по классическим принципам, закону Ома и формуле расчета мощности. Первое, рассчитаем сопротивление. При расчете сопротивления будет пренебрегать внутренним сопротивлением светодиода и падением напряжения на нем. В этом случае получим небольшой запас, так как фактическое падение напряжения на нем, позволит ему работать в режиме чуть более щадящем, нежели предписано характеристиками. Итак, скажем у нас ток светодиода 0,01 А и 3 вольта.
R=U/I=220/0,01=22000 Ом=22 кОм. В схеме же 15 кОм, то есть ток приняли 0,014666 А, что вполне допустимо. Вот так и рассчитываются резисторы для этих случаев. Единственное здесь все будет зависеть от того, сколько резисторов вы применяете. Если два как на первой схеме, то делим получившийся результат пополам.
Если один, то само собой все напряжение будет падать только на нем.
Ну, как и положено, скажем о плюсах и минусах. Плюс один и очень большой, схема очень надежная. Минус тоже один, то что все напряжение будет падать на 1-2 резисторе, а значит он будет рассеивать большую мощность. Давайте прикинем. P=U*I=220*0,02=4,4 Ватта. То есть аж 4 Ватта должен быть резистор, если ток будет 0,02 А. В этом случае стоит щепетильно подойти к выбору резистора, он должен быть не менее 3-4 Ватт. Ну и сами понимаете, что об экономичности в этом случае речи не идет, когда на резисторе рассеивается 4 Ватта, а светодиодом можно пренебречь. Фактически это почти как маленькая светодиодная лампа, а горит всего лишь 1 светодиод.
Подключение нескольких светодиодов к 220 вольтам
Когда вам необходимо подключить сразу несколько светодиодов, это несколько друга история. Фактически такие вариации схемы, еще вернее схемы стабилизатора для светодиодов называют драйвером. Видимо от слова drive (англ.) в движении. То есть вроде как схема запускающая в работу группу светодиодов. Не будем говорить о корректности применения данного слова и о новых словах, которые мы постоянно заимствуем из других языков. Скажем лишь, что это несколько иной вариант, а значит и разбирать его мы будем в другой нашей статье «Драйвер для светодиодов (светодиодной лампы)».Видео о подключении светодиода к сети 220 вольт
А теперь тоже самое, но на видео, для тех кто видимо ленился читать;)
Итак, если хотите подключить светодиод надежно, но чуть с завышенными энергозатратами, то вам к сборке рекомендуется последних два варианта из статьи. Для всех ищущих приключений — первый вариант в самый раз!
Ну и напоследок калькулятор для тех, кто не в состоянии осилить подсчеты по формулам сам или лень;)
Подключение светодиода к сети 220в
Обычно светодиоды подключаются к 220В при помощи драйвера, рассчитанного под их характеристики. Но если требуется подключить только один маломощный светодиод, например, в качестве индикатора, то применение драйвера становится нецелесообразным. В таких случаях возникает вопрос — как подключить светодиод к 220 В без дополнительного блока питания.
Основы подключения к 220 В
В отличие от драйвера, который питает светодиод постоянным током и сравнительно небольшим напряжением (единицы-десятки вольт), сеть выдает переменное синусоподобное напряжение с частотой 50 Гц и средним значением 220 В. Поскольку светодиод пропускает ток только в одну сторону, то светиться он будет только на определенных полуволнах:
То есть led при таком питании светится не постоянно, а мигает с частотой 50 Гц. Но из-за инерционности человеческого зрения это не так заметно.
В то же время напряжение обратной полярности, хотя и не заставляет led светиться, все же прикладывается к нему и может вывести из строя, если не предпринять никаких защитных мер.
Способы подключения светодиода к сети 220 В
Самый простой способ (читайте про все возможные способы подключения led) – подключение при помощи гасящего резистора, включенного последовательно со светодиодом. При этом нужно учесть, что 220 В – это среднеквадратичное значение U в сети. Амплитудное значение составляет 310 В, и его нужно учитывать при расчете сопротивления резистора.
Кроме того, необходимо обеспечить защиту светоизлучающего диода от обратного напряжения той же величины. Это можно сделать несколькими способами.
Последовательное подключение диода с высоким напряжением обратного пробоя (400 В и более).
Рассмотрим схему подключения более подробно.
В схеме используется выпрямительный диод 1N4007 с обратным напряжением 1000 В. При изменении полярности все напряжение будет приложено именно к нему, и led оказывается защищенным от пробоя.
Такой вариант подключения наглядно показан в этом ролике:
Также здесь описывается, как определить расположение анода и катода у стандартного маломощного светодиода и рассчитать сопротивление гасящего резистора.
Шунтирование светодиода обычным диодом.
Здесь подойдет любой маломощный диод, включенный встречно-параллельно с led. Обратное напряжение при этом будет приложено к гасящему резистору, т.к. диод оказывается включенным в прямом направлении.
Встречно-параллельное подключение двух светодиодов:
Схема подключения выглядит следующим образом:
Принцип аналогичен предыдущему, только здесь светоизлучающие диоды горят каждый на своем участке синусоиды, защищая друг друга от пробоя.
Обратите внимание, что подключение светодиода к питанию 220В без защиты ведет к быстрому выходу его из строя.
Схемы подключения к 220В при помощи гасящего резистора обладают одним серьезным недостатком: на резисторе выделяется большая мощность.
Например, в рассмотренных случаях используется резистор сопротивлением 24 Ком, что при напряжении 220 В обеспечивает ток около 9 мА. Таким образом, мощность, рассеиваемая на резисторе, составляет:
9 * 9 * 24 = 1944 мВт, приблизительно 2 Вт.
То есть для оптимального режима работы потребуется резистор мощностью не менее 3 Вт.
Если же светодиодов будет несколько, и они будут потреблять больший ток, то мощность будет расти пропорционально квадрату тока, что сделает применение резистора нецелесообразным.
Применение резистора недостаточной мощности ведет к его быстрому перегреву и выходу из строя, что может вызвать короткое замыкание в сети.
В таких случаях в качестве токоограничивающего элемента можно использовать конденсатор. Преимущество этого способа в том, что на конденсаторе не рассеивается мощность, поскольку его сопротивление носит реактивный характер.
Здесь показана типовая схема подключения светоизлучающего диода в сеть 220В при помощи конденсатора. Поскольку конденсатор после отключения питания может хранить в себе остаточный заряд, представляющий опасность для человека, его необходимо разряжать при помощи резистора R1. R2 защищает всю схему от бросков тока через конденсатор при включении питания. VD1 защищает светодиод от напряжения обратной полярности.
Конденсатор должен быть неполярным, рассчитанным на напряжение не менее 400 В.
Применение полярных конденсаторов (электролит, тантал) в сети переменного тока недопустимо, т.к. ток, проходящий через них в обратном направлении, разрушает их конструкцию.
Емкость конденсатора рассчитывается по эмпирической формуле:
где U – амплитудное напряжение сети (310 В),
I – ток, проходящий через светодиод (в миллиамперах),
Uд – падение напряжения на led в прямом направлении.
Допустим, нужно подключить светодиод с падением напряжения 2 В при токе 9 мА. Исходя из этого, рассчитаем емкость конденсатора при подключении одного такого led к сети:
Данная формула действительна только для частоты колебаний напряжения в сети 50 Гц. На других частотах потребуется пересчет коэффициента 4,45.
Нюансы подключения к сети 220 В
При подключении led к сети 220В существуют некоторые особенности, связанные с величиной проходящего тока. Например, в распространенных выключателях освещения с подсветкой, светодиод включается по схеме, изображенной ниже:
Как видно, здесь отсутствуют защитные диоды, а сопротивление резистора выбрано таким образом, чтобы ограничить прямой ток led на уровне около 1 мА. Нагрузка в виде лампы также служит ограничителем тока. При такой схеме подключения светодиод будет светиться тускло, но достаточно для того, чтобы разглядеть выключатель в комнате в ночное время. Кроме того, обратное напряжение будет приложено в основном к резистору при разомкнутом ключе, и светоизлучающий диод оказывается защищенным от пробоя.
Если требуется подключить к 220В несколько светодиодов, можно включить их последовательно на основе схемы с гасящим конденсатором:
При этом все led должны быть рассчитаны на одинаковый ток для равномерного свечения.
Можно заменить шунтирующий диод встречно-параллельным подключением светодиодов:
В обоих случаях нужно будет пересчитать величину емкости конденсатора, т.к. возрастет напряжение на светодиодах.
Параллельное (не встречно-параллельное) подключение led в сеть недопустимо, поскольку при выходе одной цепи из строя через другую потечет удвоенный ток, что вызовет перегорание светодиодов и последующее короткое замыкание.
Еще несколько вариантов недопустимого подключения светоизлучающих диодов в сеть 220В описаны в этом видео:
Здесь показано, почему нельзя:
- включать светодиод напрямую;
- последовательно соединять светодиоды, рассчитанные на разный ток;
- включать led без защиты от обратного напряжения.
Безопасность при подключении
При подключении к 220В следует учитывать, что выключатель освещения обычно размыкает фазный провод. Ноль при этом проводится общим по всему помещению. Кроме того, электросеть зачастую не имеет защитного заземления, поэтому даже на нулевом проводе присутствует некоторое напряжение относительно земли. Также следует иметь в виду, что в некоторых случаях провод заземления подключается к батареям отопления или водопроводным трубам. Поэтому при одновременном контакте человека с фазой и батареей, особенно при монтажных работах в ванной комнате, есть риск попасть под напряжение между фазой и землей.
В связи с этим, при подключении в сеть лучше отключать и ноль, и фазу при помощи пакетного автомата во избежание поражения током при прикосновении к токоведущим проводам сети.
Заключение
Описанные здесь способы подключения светодиодов в сеть 220В целесообразно применять только при использовании маломощных светоизлучающих диодов в целях подсветки или индикации. Мощные led так подключать нельзя, поскольку нестабильность сетевого напряжения приводит к их быстрой деградации и выходу из строя. В таких случаях нужно применять специализированные блоки питания светодиодов – драйверы.
Варианты схем как подключить светодиод к 220 вольтам (для световой индикации). Включение светодиода к сети 220 В.
Порой возникает необходимость в подключении обычного, маломощного светодиода к переменному, сетевому напряжению 220 вольт в роли светового индикатора. Казалось бы нет ничего проще, чем взять и поставить последовательно светодиоду обычный резистор, который бы ограничивал силу тока в данной цепи. Но не все так просто. В этой статье давайте с вами рассмотрим наиболее распространенные варианты такого подключения, после чего можно будет выбрать наиболее лучшую схему с учетом имеющихся достоинств и недостатков.
Вариант №1 » последовательное включение светодиода и резистора.
Итак, первым вариантом все же будет схема, где последовательно к светодиоду подключается обычный резистор с нужным сопротивлением. Величину сопротивления можно вычислить по закону ома. Допустим у нас светодиод, рассчитанный на напряжение 3 вольта и потребляющий 9 миллиампер. Напряжение питания (220 В) разделится между резистором и светодиодом. Если на светодиоде осядет 3 вольта, то на резисторе осядет около 217 вольт. Ток в последовательных цепях во всех точках одинаковый (в нашем случае он будет равен 9 мА). И чтобы узнать сопротивление резистора мы 217 вольт делим на 9 миллиампер и получаем 24 килоома (24000 ом).
Теоретически эта схема подключения светодиода к сети 220 вольт рабочая, но практически она скорее всего сгорит сразу при включении. Почему это так. Дело в том, что большинство обычных светодиодов рассчитаны на напряжение питания (при прямом своем включении, то есть плюс светодиода к плюсу источника питания и минус светодиода к минусу источника питания), где-то в пределах от 2,5 до 4,5 вольта. При прямом включении на светодиоде будет его рабочее напряжение (пусть 3 вольта), а излишек (217 вольт) осядет на резисторе. Обратное напряжение у светодиодов не такое уж и высокое (где-то около 30 вольт). И когда обратная полуволна переменного напряжения подается на светодиод, то светодиод просто выйдет из строя из-за слишком большого обратного напряжения, поданного на него. Напомню, что полупроводники при обратном включении имеют очень большое внутреннее сопротивление (гораздо большее чем стоящий в цепи резистор). Следовательно все сетевое напряжение осядет именно на светодиоде.
Вариант №2 » подключение светодиода с защитой от обратного напряжения.
В этом варианте схемы подключения индикаторного светодиода к сетевому напряжению 220 вольт имеется защита от чрезмерного высокого напряжения обратной полуволны, что подается на светодиод. То есть, в цепь добавлен обычный диод, который включен той же полярностью, что и светодиод. В итоге все излишнее высокое напряжение оседает на полупроводниках (при обратном включении питания, обратной полуволне переменного тока). Тот ток, что возникает в цепи при обратной полуволне настолько настолько мал, что его не хватает для пробития светодиода при обратном его включении. Таким образом данная схема уже будет нормально работать. Хотя в этом варианте все же имеются свои недостатки, а именно будет достаточно сильно греться резистор. Его мощность должна быть не менее 2 Вт. Этот нагрев приводит к тому, что схема весьма не экономна, у нее низкий КПД. Помимо этого поскольку светодиод будет светить только при одной полуволне, то рабочая частота светодиода будет равна 25 Гц. Свечение светодиода при такой частоте будет восприниматься глазом с эффектом мерцания.
Вариант №3 » альтернативная схема подключения светодиода к 220 с защитой от обратного напряжения.
Эта схема похожа не предидущую. Она также имеет защиту от чрезмерного напряжения обратной полуволны переменного напряжения. Если в первой схеме защитный диод стоял последовательно со светодиодом, то в данной схеме диод подключен параллельно, и имеет уже обратное включение относительно светодиоду. При одной полуволне переменного напряжения будет гореть индикаторный светодиод (на котором будет падение напряжения до рабочей величины светодиода), а при обратной полуволне диод будет находится в открытом состоянии и на нем также будет падение напряжения до величины (порядка 1 вольта) недостаточной для пробоя светодиода. Как и в предыдущей схеме недостатками будет значительный нагрев резистора и видимое мерцание светодиода, вдобавок эта схема будет больше потреблять электроэнергии из-за прямого включения диода.
Хотя вместо обычного диода можно поставить еще один светодиод.
Тогда в одну полуволну будет гореть один светодиод, ну а в обратную второй. Хотя в этом случае и будут светодиоды обезопасены от высокого обратного напряжения, но гореть каждый из них будет все равно с частотой 25 герц (будут оба мерцать).
Вариант №4 » лучшая схема с токоограничительным кондесатором, резистором и выпрямительным мостом.
Данный вариант схемы подключения индикаторного светодиода к сети 220 вольт считаю наиболее лучшим. Единственным недостатком (если можно так сказать) этой схемы является то, что в ней больше всего деталей. К достоинствам же можно отнести то, что в ней нет элементов, которые чрезмерно нагревались, поскольку стоит диодный мост, то светодиод работает с двумя полупериодами переменного напряжения, следовательно нет заметных для глаза мерцаний. Потребляет эта схема меньше всего электроэнергии (экономная).
Работает данная схема следующим образом. Вместо токоограничительного резистора (который был в предыдущих схемах на 24 кОм) стоит конденсатор, что исключает нагрев данного элемента. Этот конденсатор обязательно должен быть пленочного типа (не электролит) и рассчитан на напряжение не менее 250 вольт (лучше ставить на 400 вольт). Именно подбором его емкости можно регулировать величину силы тока в схеме. В таблице на рисунке приведены емкости конденсатора и соответствующие им токи. Параллельно конденсатору стоит резистор, задача которого сводится всего лишь к разряду конденсатора после отключения схемы от сети 220 вольт. Активной роли в самой схеме запитки индикаторного светодиода от 220 В он не принимает.
Далее стоит обычный выпрямительный диодный мост, который из переменного тока делает постоянный. Подойдут любые диоды (готовый диодный мост), у которых максимальная сила тока будет больше тока, потребляемого самим индикаторным светодиодом. Ну и обратное напряжение этих диодов должно быть не менее 400 вольт. Можно поставить наиболее популярные диоды серии 1N4007. Они дешево стоят, малы по размерам, рассчитаны на ток до 1 ампера и обратное напряжение 1000 вольт.
В схеме есть еще один резистор, токоограничительный, но он нужен для ограничения тока, который возникает от случайных всплесков напряжения, идущие от самой сети 220 вольт. Допусти если кто-то по соседству использует мощные устройства, содержащие катушки (индуктивный элемент, способствующий кратковременным всплескам напряжения), то в сети образуется кратковременное увеличение сетевого напряжения. Конденсатор данный всплеск напряжения пропускает беспрепятственно. А поскольку величина тока этого всплеска достаточна для того, чтобы вывести из строя индикаторный светодиод в схеме предусмотрен токоограничительный резистор, защищающий схему от подобный перепадов напряжения в электрической сети. Этот резистор нагревается незначительно, в сравнении с резисторами в предыдущих схемах. Ну и сам индикаторный светодиод. Его вы выбираете уже сами, его яркость, цвет, размеры. После выбора светодиода подбирайте соответствующий конденсатор нужной емкости руководствуясь таблицей на рисунке.
Питание светодиодов от 220В своими руками — схема подключения
Без светодиодов трудно обойтись при проектировании электронной аппаратуры, а также при изготовлении экономичных осветительных приборов. Их надежность, простота монтажа и относительная дешевизна привлекают внимание разработчиков бытовых и промышленных светильников. Поэтому многих пользователей интересуют схемные решения по включению светодиода, предполагающие прямую подачу на него фазного напряжения. Неспециалистам в области электроники и электрики полезно будет узнать, как подключить светодиод к 220В.
Технические особенности диода
По определению светодиод, схема которого схожа с обычным диодом, – это тот же полупроводник, пропускающий ток в одном направлении и излучающий свет при его протекании. Его рабочий переход не рассчитан на высокие напряжения, поэтому для загорания светодиодного элемента вполне достаточно всего нескольких вольт. Другой особенностью этого прибора является необходимость подачи на него постоянного напряжения, так как при переменных 220 Вольт светодиод будет мигать с частотой сети (50Герц). Считается, что глаз человека не реагирует на такие мигания и что они не причиняют ему вреда. Но все же согласно действующим стандартам для его работы нужно использовать постоянный потенциал. В противном случае приходится применять особые меры защиты от опасных обратных напряжений.
Большинство образцов осветительной техники, в которых диоды используются в качестве элементов освещения, включаются в сеть через специальные преобразователи – драйверы. Эти устройства необходимы для получения из исходного сетевого напряжения постоянных 12, 24, 36 или 48 Вольт. Несмотря на их широкое распространение в быту нередки ситуации, когда обстоятельства вынуждают обходиться без драйвера. В этом случае важно уметь включать светодиоды в 220 В.
Полюса светодиода
Чтобы ознакомиться со схемами включения и распайкой диодного элемента, нужно узнать, как выглядит распиновка светодиода. В качестве его графического обозначения используется треугольник, к одному из углов которого примыкает короткая вертикальная полоса – на схеме она называется катодом. Он считается выходным для постоянного тока, втекающего с обратной стороны. Туда подается положительный потенциал от источника питания и поэтому входной контакт называется анодом (по аналогии с электронными лампами).
Выпускаемые промышленностью светодиоды имеют всего два вывода (реже – три или даже четыре). Известны три способа определения их полярности:
- визуальный метод, позволяющий определить анод элемента по характерному выступу на одной из ножек;
- с помощью мультиметра в режиме «Проверка диодов»;
- посредством блока питания с постоянным выходным напряжением.
Для определения полярности вторым способом плюсовой конец измерительного шнура тестера в красной изоляции подсоединяется к одному контактному выводу диода, а черный минусовой – к другому. Если прибор показывает прямое напряжение порядка полвольта, со стороны плюсового конца расположен анод. Если на табло индикации появляется знак бесконечности или «0L», с этого конца располагается катод.
При проверке от источника питания на 12 Вольт его плюс следует соединить с одним концом светодиода через ограничивающий резистор 1 кОм. Если диод загорается, его анод находится со стороны плюса блока питания, а если нет – с другого конца.
Способы подключения
Простейший подход к решению проблемы недопустимого для диода обратного напряжения – установка последовательно с ним дополнительного резистора, который способен ограничить 220 Вольт. Этот элемент получил название гасящего, так как он «рассеивает» на себе излишки мощности, оставляя светодиоду необходимые для его работы 12-24 Вольта.
Последовательная установка ограничивающего резистора также решает проблему обратного напряжения на переходе диода, которое снижается до тех же величин. В качестве модификации последовательного включения с ограничением напряжения рассматривается смешанная или комбинированная схема подключения светодиодов в 220 В. В ней на один резистор последовательный резистор приходится несколько параллельно соединенных диодов.
Подключение светодиода можно организовать по схеме, в которой вместо резистора используется обычный диод, имеющий высокое напряжение обратного пробоя (желательно – до 400 Вольт и более). Для этих целей удобнее всего взять типовое изделие марки 1N4007 с заявленным в характеристиках показателем до 1000 Вольт. При его установке в последовательную цепочку (при изготовлении гирлянды, например), обратная часть волны выпрямляется полупроводниковым диодом. Он в этом случае выполняет функцию шунта, защищающего чип светового элемента от пробоя.
Шунтирование светодиода обычным диодом (встречно-параллельное подключение)
Другой распространенный вариант «нейтрализации» обратной полуволны состоит в использовании совместно с гасящим резистором еще одного светодиода, включаемого параллельно и навстречу первому элементу. В этой схеме обратное напряжение «замыкается» через параллельно подключенный диод и ограничивается дополнительным сопротивлением, включенным последовательно.
Такое соединение двух светодиодов напоминает предыдущий вариант, но с одним отличием. Каждый из них работает со «своей» частью синусоиды, обеспечивая другому элементу защиту от пробоя.
Существенный недостаток схемы подключения через гасящий резистор – значительная величина непроизводительно расходуемой мощности, выделяемой на нем вхолостую.
Подтверждением этому является следующий пример. Пусть используется гасящий резистор номиналом 24 кОм и светодиод с рабочим током 9 мА. Рассеиваемая на сопротивлении мощность будет равна 9х9х24=1944 мВт (после округления – порядка 2-х Ватт). Чтобы резистор работал в оптимальном режиме, он выбирается со значением P не менее 3 Вт. На самом светодиоде расходуется совсем ничтожная часть энергии.
С другой стороны, при использовании нескольких последовательно подключенных LED элементов ставить гасящий резистор из соображений оптимального режима их свечения нецелесообразно. Если выбрать очень маленькое по номиналу сопротивление, оно быстро сгорит из-за большого тока и значительной рассеиваемой мощности. Поэтому функцию токоограничивающего элемента в цепи переменного тока естественнее выполнять конденсатору, на котором энергия не теряется.
Ограничение с помощью конденсатора
Простейшая схема подключения светодиодов через ограничительный конденсатор C характеризуется следующими особенностями:
- предусматриваются цепочки заряда и разряда, обеспечивающие режимы работы реактивного элемента;
- потребуется еще один светодиод, необходимый для защиты основного от обратного напряжения;
- для расчета емкости конденсатора используется полученная опытным путем формула, в которую подставляются конкретные цифры.
Для вычисления значения номинала C нужно умножить силу тока в цепи на выведенный эмпирически путем коэффициент 4,45. После этого следует разделить полученное произведение на разницу между предельным напряжением (310 Вольт) и его падением на светодиоде.
В качестве примера рассмотрим подключение конденсатора к RGB или обычному LED-диоду с падением напряжения на его переходе, равным 3 Вольта и током через него в 9 мА. Согласно рассмотренной формуле его емкость составит 0,13 мкФ. Для введения поправки на ее точное значение следует учитывать, что на величину этого параметра в большей мере влияет токовая составляющая.
Выеденная опытным путем эмпирическая формула действительна лишь для расчета емкостей и параметров светодиодов на 220 В., установленных в сетях частотой 50 Гц. В других частотных диапазонах питающих напряжений (в преобразователях, например), коэффициент 4,45 нуждается в перерасчете.
Нюансы подключения к сети 220 Вольт
При использовании различных схем подключения светодиода к сети 220 В возможны некоторые нюансы, учет которых поможет избежать элементарных ошибок в коммутации электрических цепей. Они в основном связаны с величиной тока, протекающего через цепочку при подаче на нее питания. Для их понимания потребуется рассмотреть простейший прибор типа подсветки для декорирования, состоящий из целого набора светодиодных элементов или обычный светильник на их основе.
Значительное внимание обращается на особенности процессов, протекающих в выключателе в момент подачи питания. Для обеспечения «мягкого» режима включения к его контактам потребуется подпаять в параллель гасящий резистор и светодиод-индикатор, обозначающий включенное состояние.
Значение сопротивления подбирается по методикам, описанным ранее.
Только после выключателя с резистором в схеме располагается сама лента с чипами светодиодных элементов. В ней не предусмотрены защитные диоды, так что величина гасящего резистора подбирается из расчета протекающего по цепи тока, он не должен превышать значения порядка 1 мА.
Светодиодный индикатор-лампочка в этой схеме выполняет функцию нагрузки, еще больше ограничивающей ток. Из-за небольшой величины он будет светиться очень тускло, но этого вполне хватает для ночного режима. При действии обратной полуволны напряжение частично гасится на резисторе, что защищает диод от нежелательного пробоя.
Схема лед драйвера на 220 вольт
Более надежный способ, позволяющий запитать светодиоды от сети, – применение специального преобразователя или драйвера, понижающего напряжение до безопасного уровня. Основное назначение драйвера под светодиод 220 вольт – ограничить ток через него в рамках допустимого значения (согласно паспорту). В его состав входят формирователь напряжения, выпрямительный мостик и микросхема токового стабилизатора.
Вариант драйвера без стабилизатора тока
При желании собрать устройство питания светодиодов от 220 В своими руками потребуется знать следующее:- при использовании выходного стабилизатора амплитуда пульсаций существенно снижается;
- в этом случае на самой микросхеме теряется часть мощности, что сказывается на яркости свечения излучающих приборов;
- при использовании вместо фирменного стабилизатора фильтрующего электролита большой емкости пульсации не полностью сглаживаются, но остаются в допустимых пределах.
При самостоятельном изготовлении драйвера схему можно упростить, поставив на место выходной микросхемы электролит.
Безопасность при подключении
При работе со схемой включения диодов в сеть 220 Вольт основную опасность представляет соединенный последовательно с ними ограничивающий конденсатор. Под воздействием сетевого напряжения он заряжается до опасного для человека потенциала. Чтобы избежать неприятностей в этой ситуации рекомендуется:
- предусмотреть в схеме специальную разрядную резисторную цепочку, управляемую отдельной кнопкой;
- если сделать это невозможно, перед началом настойки после отключения от сети следует разряжать конденсатор с помощью жала отвертки;
- не устанавливать в цепь питания диодов полярные конденсаторы, обратный ток которых достигает значений, способных «выжечь» схему.
Подключить светодиодные элементы на 220 Вольт удается лишь с помощью специальных элементов, вводимых в схему дополнительно. В этом случае можно обойтись без понижающего трансформатора и блока питания, традиционно используемых для подключения низковольтных осветителей. Основная задача добавочных элементов в схеме подключения светодиода в 220В – ограничить и выпрямить ток через него, а также защитить полупроводниковый переход от обратной полуволны.
Как подключить светодиод к 220 В
У многих начинающих радиолюбителей возникает мысль, как подключить светодиод к 220 В без применения трансформатора. Ведь габариты даже самого маломощного трансформатора сравнительно велики. Это в первую очередь вызвано высоким сетевым напряжением, в результате чего первичная обмотка трансформатора имеет большое число витков.
Основной проблемой подключения светодиода к 220 вольтам на прямую, без трансформатора является ограничение ток, протекающего через него вследствие проложенного напряжения. Оценим его величину для понимания сети происходящего.
Светодиод – это светоизлучающий полупроводниковый прибор, как и «обычный» диод пропускает ток лишь в одном направлении. Поскольку переменное напряжение изменяет свое направление дважды за период, то в один полупериод ток протекает, а во второй – нет. Поэтому, чтобы определить средний ток, протекающий через светодиод, следует действующее напряжения 220 В разделить на два. Получим 110 В. Эту величину возьмем за основу при дальнейших расчетах.
Сопротивление любого полупроводника нелинейное, т.е. нелинейно зависит от величины приложенного напряжения. Не вникая в подробности, с приемлемой точностью примем 1,7 Ом. Тогда ток, протекающий через полупроводниковый кристалл равен 110/1,7 = 65 А! Естественно, такой огромный ток сожжёт полупроводниковый прибор. Поэтому обязательно нужно последовательно со светодиодом включать какое-либо сопротивление.
Если в цепи постоянного напряжения в качестве сопротивления можно использовать только резистор, то на переменном напряжении есть возможность применять еще и конденсатор или катушку индуктивности. Их еще называют реактивными элементами. В один полупериод времени они накапливают энергию (в виде электрического или магнитного поля), а в следующий полупериод возвращают ее в направлении источника питания. При этом электрическая энергия практически не потребляется.
Применение катушки индуктивности не рассматривается, по ряду причин, связанных с ее нагревом.
Как подключить светодиод к 220 В с помощью резистораДля большей наглядности изобразим расчетную схему.
Такая схема очень распространена в цепях индикации работы электротехнических устройств, например, подсветки выключателя или кнопки электрического чайника. Главным достоинством данной схемы является ее простота, а отсюда и надежность.
С целью сравнения полученных результатов возьмем два светодиода. Один индикаторного типа, а второй более мощный.
Определим сопротивление R1, необходимое для первого светодиода:
Сетевое напряжение делим на два по уже указанной выше причине.
Мощность рассеивания резистор равна:
Принимаем 2 ватта, поскольку такой номинал является ближайшим в сторону увеличения из стандартного ряда мощностей.
Теперь определим сопротивление резистора, соединенного последовательно со вторым светодиодом:
Мощность рассеивания равна:
Резисторы с такой мощностью рассеивания имеют значительные размеры и немалую стоимость, поэтому не рационально их применение в цепи с мощными светодиодами. Более эффективным будет замена его конденсатором.
Для защиты полупроводникового прибора встречно-параллельно подсоединяют диод.
Его назначение состоит в следующем. В проводящий полупериод на светодиоде падает напряжения порядка 2…3 В. В не проводящий полупериод он заперт и к его выводам прикладывается обратное полное действующее напряжение 220 В, амплитуда которого достигает 310 В. Поэтому существует вероятность пробоя полупроводникового прибора. Однако если создать путь для протекания тока в этот непроводящий полупериод времени, то снизится амплитуда опасного обратного напряжения. Именно это достигается за счет применения шунтирующего диода.
Кстати, вместо него можно применять еще один светодиод, желательно со схожими параметрами.
Визуально нам будет казаться, что оба они светят все время, но на самом деле они мерцают с частотой 50 Гц. Причем, когда первый светит, второй гаснет и наоборот, т.е. работают в противофазе.
В этом случае необходимо учесть, что через резистор ток протекает в оба полупериода времени, поэтому его сопротивление нужно снизить вдвое. Далее в последующих расчетах мы будем пользоваться схемой без шунтирующего диода.
Как подключить светодиод к 220 В с помощью конденсатораВыше уже было сказано, что конденсатор обладает реактивным сопротивлением переменному току, т.е. он не потребляет активную мощность, как резистор, поэтому практически не нагревается. Постоянный ток он не пропускает и является для него огромным сопротивлением, которое можно приравнять к разрыву цепи.
Если же на конденсатор подать переменное напряжение, то через него будет, упрощенно говоря протекать ток. Причем сопротивление этого реактивного элемента обратно пропорционально зависит от частоты f, т.е. с ростом f оно снижается. Таким же образом сопротивление зависит и от емкости:
Из приведенной формулы нам необходимо найти значение емкости:
Подставляем данные значения и находим емкости:
Внимание! Все конденсаторы, подключаемые в сеть 220 В, должны быть рассчитаны на напряжение не менее 400 В.
Главным и очень существенным недостатком такой схемы является протекание значительного тока в момент подключения к сети. При этом величина его может превышать в несколько раз номинальный ток светодиода, в результате последний может выйти из строя.
Следует учитывать, что чем больше емкость конденсатора, тем выше значение тока в момент включения. Поэтому для защиты полупроводникового прибора рекомендуется последовательно с конденсатором включать резистор.
Исходя из тех соображений, что резистор с мощностью рассеивания P = 5 Вт имеет небольшие габариты, то рассчитаем величину его сопротивления при данных ограничениях для схемы с более мощным светодиодом:
Из номинального ряда сопротивлений выбираем ближайшее значение 39 Ом.
Конечно, коэффициент полезного действия данной схемы очень снизится, поскольку для питания светодиода мощностью 1 Вт необходимо затратить 6 Вт с источника питания. 5 ватт будут попросту греть резистор.
Сообщества › Сделай Сам › Блог › Светодиоды в сети 220 вольт или LED ночник своими руками.
Так как многих интересует, как включить светодиоды в сеть 220 в, решил написать об этом. Схем в интернете очень много, но некоторые сложноваты для такого несерьезного изделия, некоторые не так надежны в работе. В результате нескольких экспериментов я выбрал эту.
А заодно решил на ее базе сделать ночник дабы не таранить лбом мебель в темноте ночью и не будить домочадцев, включая свет.
Конечно очень много таких девайсов сейчас в продаже, и стоят они копейки. Но…
Сколько я не смотрел мимоходом такие изделия в магазинах, не стал ничего покупать по следующим причинам.
1. Они в упаковке, и нельзя посмотреть, как светят. Тускло ли, ярко ли, да и каким цветом непонятно.
2. Гламурный вид многих из них меня реально бесит.
Так что, не просто найти нужный ночник, по крайней мере для меня оказалось.
Купил когда-то давно ночник из «Икеа» (фото 1). Который так и валялся без дела, потому как он светит так, что в темноте видно только его дурацкую улыбочку и ничего больше. Разобрав его, увидел под почти непрозрачным желтым пластиковым плафоном… Две неоновые лампочки! О как! На моих часах лимб и стрелки ярче светятся в темноте.
Смотрите также
Метки: светодиоды в сети 220 вольт.
Комментарии 50
а я проще сделал: взял старый манометр, диаметром 10 см. выпотрошил его, на дно положил старый сд-диск подрезанный, светодиодную ленту 12 В наклеил на борт, затонировал стекло зеркальной пленкой, все собрал, запитал от старого блока питания 9В и вот, что получилось
прочитал «в розетке холла», много думал… Датчик знаю, розетку нет 🙂 Потом осознал
Схема простейшая и работать будет долго (Главное не перебрать с мощностью на диодах — у меня со временем дохли такие даже на токе 10 мА) Только диод vd1 неважно на какое напряжение: на нем не более 6В в этой схеме. А в целом запись поучительная для начинаний!
Почитал. Долго думал. В итоге понял что иностранные матершинные слова все равно не смогу перевести ??? А ночник прикольный.
ночник светодиодный стоит от 50-80р? зачем его делать, разве что руки подразмять
Удивляюсь, как пишут комментарии даже не прочитав материал. Там все сказано. Зачем и почему. И что копейки это стоит в магазинах, кстати тоже.
Ну вот, пришли поручики Ржевские и все опошлили.
Да все нормально там, не выгорят. Я оставил запас им по напряжению (току) процентов 40. Можно конечно было напихать туда импульсный блок питания, и стабилизатор, и конденсаторы, и плафон взять с кастрюлю размером. Только вы советуете, а он горит каждую ночь. И включался-выключался за его короткую жизнь пока уже раз 150, не умер еще от страстей ваших.
А про мерцание я уже трижды сказал здесь, — его практически незаметно. И «любоваться на мерцание в темноте» мне, как-то в отличие от товарисча, который меня поучал снисходительно и на «ты» выше, как-то в голову не приходило.
Нужно параллельно диоду подключить электролитический конденсатор и не будет мерцания, схема без стабилизатора, будут часто гореть светодиоды.
Надо было встречно-параллельно включать светодиоды.
Ты бы хоть туда стабилитрон поставил что ли, чтоб Сд твои не выгорели от броска в момент включения и электролит в параллель . . и охота любоваться на мерцание сд в темноте?! Схема овно.
Господин, уважаемый, неоднократно замечал, что «критикуют» с употреблением мощного термина в оценке чужого, а именно «говно», обычно те, кто сам ничего не делает. Убедился в этом в очередной раз, зайдя на вашу пустую страничку, где вы в одной записи живописуете, как и сколько на своей газели кирпичей возите. Вот и возите кирпичи.
И извольте на «вы» с незнакомыми людьми. Как-то не довелось мне бухать с вами и на вашей газели под бухло по девочкам кататься. Физкультпривет, мастер.
Хочешь чтоб не критиковали и не советовали? -так это не в этом случае. форум или сообщество это публичное место, так что, придется тебе потерпеть чутка, да и выставляй свои детские поделия напоказ, мне-то что, хотя и взрослый мущщина ). Просто начинающие люди на это клюют и заведомо будут делать неправильные решения, а ты прежде чем выпучиваться, сперва почитал бы соответствующую техлитературу что ли, или просто спросить-как вы думаете, как надежнее и правильнее сделать то-то и то-то ?! но видать самолюбие при этом у тя сильно зашкаливает, чтобы я да в свои года что-то спросил еще . . . Никогда.А учиться никогда не поздно. Вот ты и застыл на уровне начальных классов.Удачи кулиппин, да и меньше шарься по чужим профилям, твоему делу это точно не поможет.
Ты хамло. давайдосвидания.
обзывать человека тебе права никто не давал вообще-то.Забанить тебя можно конкретно за это, на улице б давно схватить успел бы
Иди лесом. И метлу привяжи. Чешешь с незнакомыми людьми по-хамски. Жаль, схватить ты еще не успел. Но у таких все впереди, я их видел не раз. Конец связи.
эх Адрюша, болеешь ты самолюбием сильно . . .И справедливые замечания как дополнения не хочешь воспринимать, а обид выше неба. Не сердись и не обижайся.Все по делу. Удач тебе на паяльном фронте, больше радостей и меньше разочарований.)
Я тебе не Андрюша. Ты, бес, попутал меня с кем-то. Обиженных ты еще не видел походу. Понимай речь людскую. И кончай здесь базар свой попугайский. Издалека такие как ты хамством свою самооценку поднимают, это понятно. Только часто они берега теряют и потом все плохо случается.
А «паяльный фронт» это баловство для меня, там удач мне не надо.
Каждый сам за себя знает, что он внутри из себя представляет по пути тому, что за спиной оставил.
Я тут грешным делом подумал сбросить базар твой глумливый моему старинному приятелю столичному, да опасаюсь спросит с тебя не по-детски. Потому тормознул. Надеюсь понималка твоя сработает правильно. Так что не буди лихо… И не путай обмен мнениями в этом публичном месте, как ты выразился, с хамством бычьим.
Жизнь тебя еще поучит за язык твой отвязный, походу пока еще недосуг ей было. Это последнее, что скажу тебе, Юрок.
да конечно бэмэвэ хе5 это конечно не Соболь, тягаться мне с тобой разве что по уму, но в этом ты не сильно преуспел, а пугать меня не надо, за это можно и в полиции оказаться и веди себя прилично и держи как подобает порядочному человеку а не блатной свой жаргон выпячивать, иначе сюда забудешь дорогу навсегда. Умей выслушивать и противную сторону, даже если она тебе противна ).Не пиши-не отвечу.
Мне твои ответы, — как в бане гудок. Умным себя считаешь? Ну, ну. Смешной ты, заяц тряпошный.
Умный человек никогда не начнет разговор на «ты» и в хамском тоне, тем более с незнакомым человеком и тем более на людях. Говорил уже, что видел достаточно таких. Только им чуть на кадык наступишь, — визжат свиньей и полицию зовут в спасители. А дел то всего — веди себя по людски с людьми, и будет тебе мир и здоровье на долгие годы.
Тягаться тебе вообще ни с кем не стоит. Ты нечто и более ничего. Машины приплел здесь. Это не при чем. Я знаю много достойных людей на скромных бюджетных тачках. Это для тебя хороший автомобиль — блестящая мечта на горизонте, а для меня и многих людей здесь это нечто вроде удобной обуви, которую носишь не думая о ней.
Не тебе учить, как вести себя порядочному человеку, ибо где он, этот порядочный человек, а где ты (эпитеты применять не стану, а то про полицию опять заголосишь)?
Такие «умные», как ты всегда впадают в ступор от взрыва остатков мозга при одном вопросе, который часто задают в Одессе таким умникам евреи, — раз ты такой умный, что ж ты такой бедный?
И последнее. Я довольно много сказал тебе здесь, чем уже против себя пошел. Обычно с такими я не говорю. Но ты (не я, а ты) на людях этот гнилой базар начал. Другой бы понял давно, тот кто умный, что тебе донести в приличной форме пытаются элементарные вещи, но ты не догоняешь, масла в голове недостаточно.
Про таких я говорю, — их горе в том, что родились такими.
Будь здоров, вози свои кирпичи на своем соболе и почаще включай мозги, хотя для тебя это и трудно.
Индикаторы сети 220В на светодиодах, замена индикаторным неонкам
Принципиальные схемы простых индикаторов наличия сети 220В на светодиодах, меняем старые неоновые индикаторные лампы на светодиоды. В электрооборудовании повсеместно применяются индикаторные неоновые лампы для индикации включения аппаратуры.
В большинстве случаев схема как на рисунке 1. То есть, неоновая лампа через резистор сопротивлением 150-200 киолом подключается к сети переменного тока. Порог пробоя неоновой лампы ниже 220V, потому она легко пробивается и светится. А резистор ограничивает ток через неё, чтобы она не взорвалась от превышения тока.
Бывают и неоновые лампы со встроенными токоограничительными резисторами, в таких схемах кажется как будто неоновая лампа включена в сеть без резистора. На самом деле резистор спрятан в её цоколе или в её проволочном выводе.
Недостаток неоновых индикаторных ламп в слабом свечении и только розовом цвете свечения, ну и еще в том что это стекло. Плюс, неоновые лампы сейчас в продаже встречаются реже светодиодов. Понятно, что есть соблазн сделать аналогичный индикатор включения, но на светодиоде, тем более светодиоды бывают разных цветов и значительно более яркие чем «неонки», ну и нет стекла.
Но, светодиод низковольтный прибор. Прямое напряжение обычно не более ЗV, да и обратное тоже весьма низкое. Даже если светодиодом заменить неоновую лампу, он выйдет из строя за счет превышения обратного напряжения при отрицательной полуволне сетевого напряжения.
Рис. 1. Типовая схема подключения неоновой лампы к сети 220В.
Впрочем, есть двухцветные двухвыводные светодиоды. В корпусе такого светодиода есть два разноцветных светодиода, включенных встречно-параллельно. Такой светодиод можно подключить практически так же, как неоновую лампу (рис.2), только резистор взять сопротивлением поменьше, потому что для хорошей яркости через светодиод должен протекать ток больше чем через неоновую лампу.
Рис. 2. Схема индикатора сети 220В на двухцветном светодиоде.
В этой схеме одна половина двухцветного светодиода HL1 работает на одной полуволне, а вторая – на другой полуволне сетевого напряжения. В результате обратное напряжение на светодиоде не превышает прямого. Единственный недостаток – цвет. Он желтый. Потому что обычно два цвета – красный и зеленый, но горят они почти одновременно, потому зрительно выглядит как желтый цвет.
Резистор R1 в схеме на рисунке 2 сопротивлением ниже, чем с неоновой лампой, и на нем выделяется больше тепловой мощности. Полностью избавится от паразитной тепловой мощности можно, если заменить резистор конденсатором (рис. 3). Прямой ток через светодиод ограничивается реактивным емкостным сопротивлением конденсатора, а на нем тепло не выделяется.
Рис. 3. Схема индикатора сети 220В на двухцветном светодиоде и конденсаторе.
На рисунках 4 и 5 показана схема индикатора включения на двух светодиодах, включенных встречно-параллельно. Это почти то же, что на рис. 3 и 4, но светодиоды отдельные для каждого полупериода сетевого напряжения. Светодиоды могут быть как одного цвета, так и разного.
Рис. 4. Схема индикатора сети 220В с двумя светодиодами.
Рис. 5. Схема индикатора сети 220В с двумя светодиодами и конденсатором.
Но, если нужен только один светодиод, -второй можно заменить обычным диодом, например, 1N4148 (рис.6 и 7). И нет ничего страшного в том, что этот светодиод не рассчитан на напряжение электросети. Потому что обратное напряжение на нем не превысит прямого напряжения светодиода.
Рис. 6. Схема индикатора сети 220В со светодиодом и диодом.
Рис. 2. Схема индикатора сети 220В с одним светодиодом и конденсатором.
В схемах испытывались светодиоды, двухцветные типа L-53SRGW и одно-цветные типа АЛ307. Конечно же можно применить и любые другие аналогичные индикаторные светодиоды. Резисторы и конденсаторы так же могут быть других величин, – все зависит от того, какую силу тока нужно пустить через светодиод.
Андронов В. РК-2017-02.
СХЕМА ПОДКЛЮЧЕНИЯ СВЕТОДИОДОВ К 220 В
Для того, чтобы полностью понять как работает схема подключения светодиодов к 220 в, стоит немного вспомнить школьную программу физики.
Для начала, вспомним, что I=U/R и P=U*I
Разберемся, что значит в схема подключения светодиодов к 220 В «Светодиод с крутой ВАХ».
Допустим, подаем на диод 5 В. Если в паспорте светодиода задано падение напряжения 3,2 В
( рис.1
Схема подключения светодиодов к 220 В)то напряжение на светодиоде пока не вырастет до 3,2 В, то соответственно и ток через него течь не будет. Светодиод начнет светиться, если напряжение будет выше и погаснет если станет напряжение меньше допустимого. Красной кривой обозначается мощность, выделенная на светодиоде, относительно полуволны переменного напряжения.
Рисунок 2.
Схема подключения светодиодов к 220 ВЗдесь желтым цветом показано именно время горения светодиода, относительно полуволны напряжения.
Проанализировав данные рисунков 1 и 2 можно сделать вывод: светодиод используется кроме подсветки как стабилитрон с напряжением 3,2 В или выпрямительный диод.
Рис.4 Схема подключения светодиодов к 220 В – индикатор переменного и постоянного напряжения. Рассчитываем балластное сопротивление.
Берем ток 40ма. Отсюда R=220B/0,04A=5500Om. На схеме подключения светодиодов к 220 В есть 2 резистора = 220*0,04=8,8 Вт. Берем два резистора мощностью 1 Вт и 2,4 кОм. Измерение проводим при 1, 2 секундах, иначе светодиоды сгорят. Если подключать один светодиод, то он сгорит сразу, так как напряжение будет более 5В.
Рассчитаем резистор балластный на схеме подключения светодиодов к 220 В на рис.3
Дано: 44 светодиода и падение напряжения до 3,1 В при токе 18 ма, питающиеся от 220 В мостового выпрямителя.
Легкие подсчеты, согласно схеме подключения светодиодов к 220В:
44 светодиода загорятся при 44*3,1=136 Вольта
Балластный резистор гасит: 220-136=84 В
Его номинал будет ( согласно схеме подключения светодиодов к 220В ) 84В\0,018А=4650Ом.
Мощность равна 84*0,018А=1,5 Вт.
Теперь проверим нашу схему подключения светодиодов к 220В.
Схема светодиода 220 В – Драйвер светодиода с питанием от сети переменного тока – Схемы DIY
Эффективное управление светодиодами – непростая задача, вы должны заботиться как о напряжении, так и о токе светодиода.
Вот трансформатор без 220В, схема на светодиодах , не очень эффективный, но очень простой и быстрый.
В этом драйвере светодиодов используется всего несколько деталей, он по-прежнему может работать с светодиодами от 150 В до 230 В , но главное – это простота и низкая стоимость.
Электрическая схема светодиода 220 В и перечень деталей
Прежде всего, ознакомьтесь со списком запчастей.
- 9 ярких белых светодиодов, 500 мВт, 45-55 люмен
- 1x 10 мкФ 63V конденсатор электролитический
- 2x 470 Ом резисторы 1/4 Вт
- 1x 47 мкФ 50 В конденсатор электролитический
- 1x 45 вольт стабилитрон, как 1N4755A
- 4x 1N4007 диод или любой мостовой выпрямительный модуль, например MB6S
- 1x 1 мкФ до 1,5 мкФ, 400 В, полиэфирный пленочный конденсатор
- 1x 470 кОм резистор 1/4 ватта
Наконец, принципиальная схема, она довольно проста, взгляните.
Обратите внимание, что вы можете заменить все компоненты их ближайшими аналогами. Подобно тому, как мостовой выпрямитель IC не нужен, вы можете легко использовать четыре диода 1N4007 в мостовой конфигурации.
Кроме того, вы также можете удалить электролитический конденсатор 10 мкФ-63 В и стабилитрон на 45 В. Я добавил их в качестве меры предосторожности, чтобы защитить светодиоды от внезапных скачков напряжения.
Детали установки
Эта светодиодная схема 220 В настолько же опасна, насколько и проста, потому что она напрямую подключена к сети переменного тока.Никогда ни к чему не прикасайтесь при подключении к сети переменного тока, только не будьте настолько глупы, чтобы убить себя электрическим током.
Не имеет значения, как вы подключаете входы к линии переменного тока, если вы ничего не пытаетесь прикоснуться!
Вся установка легко доступна для покупки в красивом корпусе. Рекомендуется покупать одну, очень фишку. Примеры изображений ниже.
Тыльная сторона платы светодиодной лампы.
Заключение
Хотя эта схема с питанием от сети достаточно проста и дешева, но ее эффективность невысока, вероятно, менее 40%, а может быть, даже ниже.
Таким образом, эта схема вообще не рекомендуется для увеличения масштаба, вы потеряете больше энергии, чем на самом деле.
Здесь вы можете найти гораздо более эффективную, но немного сложную схему драйвера светодиода 100-220 В , она может включать несколько 5-ваттных светодиодов.
Какой должна быть мощность моего резистора, чтобы светодиод работал на 240 В переменного тока?
Вам необходимо поддерживать обратное напряжение светодиода на уровне менее 5 вольт, и простой способ сделать это – подключить диод параллельно светодиоду напротив светодиода.
Есть несколько способов сделать это с помощью резистивного сброса.
В (b) ниже частота мерцания будет вдвое больше, чем (а), что может быть выгодно в некоторых приложениях.
В (c) ниже используется двухполупериодный мост вместо параллельного диода, частота мерцания будет вдвое больше частоты сети, а (d) – пример реактивного капельницы, где емкостное реактивное сопротивление C1 используется для понизить сетевое напряжение более или менее без потерь до напряжения, которое может использовать светодиод.
V5 и S1 используются для генерации переходного процесса включения на первом пике V4 в целях тестирования, а список схем LTspice добавляется на всякий случай, если вы хотите поиграть со схемами
Версия 4
ЛИСТ 1 1172 680
ПРОВОД -432 192-480 192
ПРОВОД -272 192-352 192
ПРОВОД -96 192-272 192
ПРОВОД 128 192 32 192
ПРОВОД 256 192 208 192
ПРОВОД 336 192 320 192
ПРОВОД 480192 416 192
ПРОВОД 528 192 480 192
ПРОВОД 672 192 608 192
ПРОВОД 848 192 672 192
ПРОВОД -272 224 -272 192
ПРОВОД -96 224-96 192
ПРОВОД 672 224 672 192
ПРОВОД 848 224 848 192
ПРОВОД 480 256 480 192
ПРОВОД -480 288-480 192
ПРОВОД 32 288 32 192
ПРОВОД 144 288 144 240
ПРОВОД -272320 -272 288
ПРОВОД -224320 -272 320
ПРОВОД -96 320-96 288
ПРОВОД -96 320-160 320
ПРОВОД 672320672288
ПРОВОД 720 320 672320
ПРОВОД 848320 848 288
ПРОВОД 848 320 784 320
ПРОВОД -272 352 -272 320
ПРОВОД -96 352-96 320
ПРОВОД 480 352480320
ПРОВОД 672 352 672 320
ПРОВОД 848 352 848 320
ПРОВОД -480 464-480 368
ПРОВОД -432 464-480 464
ПРОВОД -272464-272416
ПРОВОД -272464-352464
ПРОВОД -96 464-96 416
ПРОВОД -96 464-272464
ПРОВОД 32 464 32 368
ПРОВОД 144 464 144 368
ПРОВОД 144 464 32 464
ПРОВОД 192 464 192 240
ПРОВОД 192 464 144 464
ПРОВОД 480 464 480 416
ПРОВОД 480 464 192 464
ПРОВОД 672464 672 416
ПРОВОД 672464 480 464
ПРОВОД 848 464 848 416
ПРОВОД 848 464 672 464
ПРОВОД -480 512-480 464
ПРОВОД 32 560 32 464
ФЛАГ -480 512 0
ФЛАГ 32 560 0
СИМВОЛ res -336 176 R90
ОКНО 0 0 56 V Низ 2
ОКНО 3 32 56 VTop 2
SYMATTR InstName R5
SYMATTR Значение 9100
СИМВОЛ res -336 448 R90
ОКНО 0 0 56 V Низ 2
ОКНО 3 32 56 VTop 2
SYMATTR InstName R6
SYMATTR Значение 9100
СИМВОЛ напряжение -480 272 R0
ОКНО 3 24 96 Невидимое 2
ОКНО 123 0 0 Влево 2
ОКНО 39 0 0 Влево 2
SYMATTR InstName V3
SYMATTR Значение SINE (0 340 50)
СИМВОЛ СВЕТОДИОД -224 336 R270
ОКНО 0 24 66 VTop 2
ОКНО 3 0 32 V Низ 2
SYMATTR InstName D6
SYMATTR Значение NSCW100
СИМВОЛ диод -256224 M0
ОКНО 0 46 33 Слева 2
SYMATTR InstName D5
SYMATTR Значение 1N4148
СИМВОЛ диод -256416 R180
ОКНО 0 48 31 Влево 2
ОКНО 3 24 0 Левое 2
SYMATTR InstName D7
SYMATTR Значение 1N4148
СИМВОЛ диод -80 288 R180
ОКНО 0 43 31 Слева 2
ОКНО 3 21 64 Слева 2
SYMATTR InstName D9
SYMATTR Значение 1N4148
СИМВОЛ диод -112 352 R0
ОКНО 0-53 34 Левое 2
ОКНО 3-51 71 Левое 2
SYMATTR InstName D10
SYMATTR Значение 1N4148
СИМВОЛ res 624176 R90
ОКНО 0 0 56 V Низ 2
ОКНО 3 32 56 VTop 2
SYMATTR InstName R7
SYMATTR Значение 100
СИМВОЛ напряжение 32 272 R0
ОКНО 0 4 6 Влево 2
ОКНО 3 24 96 Невидимое 2
ОКНО 123 0 0 Влево 2
ОКНО 39 0 0 Влево 2
SYMATTR InstName V4
SYMATTR Значение SINE (0 340 50 0 0)
СИМВОЛ LED 720336 R270
ОКНО 0 72 32 VTop 2
ОКНО 3 0 32 V Низ 2
SYMATTR InstName D8
SYMATTR Значение NSCW100
СИМВОЛ диод 688 224 M0
ОКНО 0 42 33 Слева 2
SYMATTR InstName D11
SYMATTR Значение 1N4148
СИМВОЛ диод 688416 R180
ОКНО 0-52 32 Влево 2
ОКНО 3-78-3 Левое 2
SYMATTR InstName D12
SYMATTR Значение 1N4148
СИМВОЛ диод 864288 R180
ОКНО 0-53 33 Левое 2
ОКНО 3-76-2 Левое 2
SYMATTR InstName D13
SYMATTR Значение 1N4148
СИМВОЛ диод 832352 R0
ОКНО 0 39 33 Слева 2
SYMATTR InstName D14
SYMATTR Значение 1N4148
Заглушка SYMBOL 320176 R90
ОКНО 0 0 32 V Низ 2
ОКНО 3 32 32 VTop 2
SYMATTR InstName C1
SYMATTR Значение 180n
СИМВОЛ SW 224192 M270
SYMATTR InstName S1
СИМВОЛ напряжение 144 272 R0
ОКНО 0-42 3 Левое 2
ОКНО 3 24 96 Невидимое 2
ОКНО 123 0 0 Влево 2
ОКНО 39 0 0 Влево 2
SYMATTR InstName V5
SYMATTR Значение ИМПУЛЬС (0 1 5 м)
СИМВОЛ стабилитрон 464 256 R0
ОКНО 0-52 33 Слева 2
ОКНО 3-92 69 Левое 2
SYMATTR InstName D16
SYMATTR Значение KDZ6_2B
СИМВОЛ стабилитрон 496416 R180
ОКНО 0 46 31 Слева 2
ОКНО 3 24 0 Левое 2
SYMATTR InstName D15
SYMATTR Значение KDZ6_2B
СИМВОЛ res 432 176 R90
ОКНО 0 0 56 V Низ 2
ОКНО 3 32 56 VTop 2
SYMATTR InstName R8
SYMATTR Значение 510
ТЕКСТ 46 492 Слева 2!.тран 100м
ТЕКСТ -408 248 Левый 2; 5 Вт
ТЕКСТ -416 520 Левый 2; 5 Вт
ТЕКСТ 48 520 Left 2! .Model SW SW (Ron = 0,01 Roff = 1G Vt = 0,5Vh = 0)
ТЕКСТ -280 568 Слева 3; (c)
ТЕКСТ 488576 Слева 3; (d)
Могу ли я сэкономить деньги, используя светодиодные лампы для выращивания растений на 220/240 В вместо 110 В?
Распространенное заблуждение относительно светодиодных светильников для выращивания растений состоит в том, что их использование на 220 или 240 В позволит сэкономить на счете за электроэнергию. Использование ламп для выращивания растений на 220/240 В не снизит мощность и не сэкономит денег на счетах за электроэнергию.
Работа при 220/240 В снизит силу тока примерно наполовину, но потребляемая мощность останется прежней.
Закон Ома утверждает, что V = I * R, а формула мощности утверждает, что P = I * V.
В – напряжение (вольт) количество доступной электрической энергии
I – ток (амперы) количество электричества, проходящего через провод
R – сопротивление (Ом), способность материала сопротивляться току
P – мощность (ватт) сколько работы выполняет электричество
Следовательно, удвоение напряжения (В-вольт) уменьшит ток (I-ампер) вдвое, но потребляемая мощность (P-ватт) останется прежней.Количество потребляемой электроэнергии, измеряемое в ваттах, будет одинаковым при 110 В или 220 В. Коммунальная компания не взимает плату за силу тока, они взимают плату за мощность, поэтому на счетах за электроэнергию не будет экономии при работе от сети 220 В.
Пример – Закон Ома для светодиодных ламп для выращиванияG8-900 Свет для овощей / цветов
P = I * V
Энергопотребление – 540 Вт (0,544 кВт)
при 110 / 120В ток (I) равен 4.6 А
При 220/240 В ток (I) составляет 2,3 А
Количество потребляемой мощности, измеренное в ваттах, одинаково в обоих случаях – 540 Вт (0,544 кВт) в час.
В чем преимущество работы от сети 220В?Преимущество работы при 220 В состоит в том, что сила тока будет вдвое меньше, а это означает, что вы можете подключить к цепи больше устройств. Хотя вы не сэкономите на электроэнергии, использование более высокого напряжения для работы оборудования в некоторых случаях может быть выгодным.Одна из основных причин использования 240-вольтного питания – недостаточная электрическая сила тока для работы всего оборудования при более низком напряжении.
Цепь ограничена автоматическими выключателями в электрической панели для предотвращения перегрева проводов и возникновения пожара. Автоматические выключатели регулируют силу тока, которая может протекать через цепь, независимо от напряжения. При более низкой силе тока к данной комнате для выращивания можно подключить больше источников света. Однако помните, что ваш счет за электроэнергию рассчитывается по потребляемым ваттам, а не по напряжению или силе тока.
|
Цепь светодиодного мигающего индикатора 220 В переменного тока
Цепь LED Flasher выдает мигание светодиода в режиме триггера.В схеме используется микросхема таймера NE555 вместе с мостовым выпрямителем для выпрямления основного источника переменного тока.
Компоненты оборудования
S.no | Компонент | Кол-во | ||||
1. | Источник питания переменного тока | 1 | ||||
2. | IC NE555 | 1 | 90 | 4 | ||
4. | Стабилитрон 12 В / 1 Вт | 1 | ||||
5. | Светодиоды | 12 | ||||
6. | Резистор 62 Ом, 10 кОм, 1 МОм / 1 Вт | 4,1 | ||||
7. | Переменный резистор 100 кОм | 1 | 901 9011 | 901 конденсатор 330 мкФ / 25 В, 10 мкФ1,1 | ||
9. | Конденсатор 330 нФ / 400 В, 0,01 мкФ | 1,1 |
Дайграмма цепи
Описание цепей
В этой схеме питание берется напрямую от сети переменного тока. основной.Напряжение от сети переменного тока понижается конденсатором емкостью 330 нФ. Кроме того, четыре диода 1N4007 подключены как мостовой выпрямитель, выпрямляет сигнал низкого напряжения, поступающий от конденсатора. Кроме того, 330 мкФ Электролитический конденсатор дополнительно фильтрует этот сигнал и отправляет его на стабилитрон. Стабилитрон ограничивает выпрямленное и отфильтрованное напряжение до 12 В для работы Микросхема NE555.
Теперь в схему светодиодного мигалки входят микросхема таймера NE555 и дюжина светодиодов. Микросхема таймера NE555 работает в нестабильном режиме мультивибратора, при этом генерирует регулярные прямоугольные импульсы заданной длительности.В этом случае Светодиоды работают в режиме триггера, который мигает ВКЛ / ВЫКЛ в течение определенного времени. продолжительность. Кроме того, переменный резистор 100 кОм, подключенный к контактам PIN06 и PIN02 IC, контролирует скорость мигания или продолжительность включения / выключения светодиодов.
При работе с проектом требуется дополнительная осторожность, так как он работает от основного источника переменного тока.
Приложение
- Система освещения событий
- Украшение дома
Трехпроводное освещение на 240 В (разделенная фаза) Проводка байпаса балласта
Трехпроводное соединение на 240 В (разделенная фаза) Проводка байпаса балласта
Итак, вы пытаетесь перейти на светодиодное освещение с напряжением 240 В, но сейчас у вас есть 2 провода под напряжением и нейтраль / земля, выходящие из здания.Как это вообще работает? Где мое возвращение? К чему подключиться? У нас есть для вас несколько ответов.Что такое разделенная фаза 240 В переменного тока?
В США для 120 и 277 вольт используются 3 классических провода. Горячий, нейтральный и заземленный. Это электричество, о котором нас всех учат. 240vac (v = -volt, ac = переменный ток) бросает вам вызов. В нем используются 2 провода под напряжением по 120 В каждый, которые чередуются с плюсом, чтобы генерировать полные 240 В, и заземление, которое действует как нейтраль (а не обычная нейтраль, как будто это вас не запутывает). Объединив 2 провода по 120 В, вы получите 240 В переменного тока.Мы избавим вас от технических подробностей о 240v, его преимуществах и недостатках, но Википедия хорошо объясняет это, отправляйтесь туда. Мы собираемся сосредоточиться на выполнении работы и установке светодиодных лампочек, огней парковки и т. Д.Черный, красный и зеленый провод? Черный, черный и зеленый (или другой случайный цвет)?
Да, в настройке с разделенной фазой у вас обычно черный = горячий, красный = горячий и зеленый = нейтраль / земля. Иногда вы видите два горячих провода, оба как черные.Итак, это черный = горячий, черный = горячий и зеленый (или что угодно) = нейтральный / заземленный, но это менее распространено.
Есть балласт, как подключить 240 В переменного тока к розетке или драйверу светодиода?
Да, в большинстве случаев при установке светодиодных ламп вам придется обходить балласт и подключать провода прямо к розетке. Это связано с тем, что для ламп с более высоким световым потоком, таких как галогенид металла, HID или CFL, для правильной работы требуется балласт. Светодиоды используют драйвер, а не балласт. Если вы заменяете лампу накаливания, в этом нет необходимости.Хорошая новость в том, что перенастройку выполнить легко. Вы буквально вырезаете балласт из системы и выбрасываете. Затем возьмем эти провода и подключим к розетке или драйверу.Как подключить трехпроводную розетку на 240 В?
Будь то классическая лампочка E26 или более крупная лампочка E39, мы рекомендуем одно и то же. Красный провод считается горячим, а черный – нейтральным. Подключите их прямо к розетке. Теоретически у вас действительно будет 120 В на розетку, а не полные 240 В, но это нормально для светодиодов.Разве он не работает лучше на 240в или 277в?
Нет, на светодиоды пофиг. В отличие от металлогалогенидов, которые лучше работали с большим количеством сока и даже требовали настройки импульсного запуска для оптимальной производительности, светодиоды в этом просто не нуждаются. Фактически, светодиодный драйвер внутри LED Corn Buulbs понижает мощность с переменного на постоянный ток для каждого из светодиодов.Что делать, если есть отдельный драйвер? Или просто провода с коричневой, синей и желтой полосой?
Если вы модернизируете не патрон лампочки, а целый светодиодный светильник для высоких пролетов или светодиодный комплект для модернизации с драйвером, вы делаете то же самое.Соедините красный с коричневым и черный с синим. Если они используют американскую проводку вместо международной, то ее красный к черному и черный к белому. Земля всегда одна и та же.Как выглядит проводка?
Вот технический;
Схема светодиодного драйвера 230 В, работа и применение
В этом проекте мы разработали простую схему драйвера светодиодов 230 В, которая может управлять светодиодом непосредственно от сети.
Светодиод – это диод особого типа, используемый в качестве оптоэлектронного устройства.Как и диод с PN-переходом, он проводит при прямом смещении. Однако особенностью этого устройства является его способность излучать энергию в видимой полосе электромагнитного спектра, то есть в видимом свете.
Основной задачей при управлении светодиодом является обеспечение почти постоянного тока на входе. Часто светодиод управляется с помощью батарей или устройств управления, таких как микроконтроллеры. Однако у них есть свои недостатки, например, низкий заряд батареи и т. Д.
Возможный подход – управлять светодиодом от источника переменного тока в постоянный.Хотя источник питания переменного тока в постоянный с использованием трансформатора довольно популярен и широко используется для таких приложений, как управление нагрузками, такими как светодиоды, он оказывается довольно дорогостоящим, и, кроме того, невозможно создать слаботочный сигнал с помощью трансформатора.
Принимая во внимание все факторы, мы разработали простую схему, управляющую светодиодом от 230 В переменного тока. Это достигается с помощью источника питания на основе конденсатора. Это недорогая и эффективная схема, которую можно использовать дома.
Связанный пост: Схема биполярного драйвера светодиода
Принцип схемы светодиодного драйвера 230 В
Основным принципом схемы драйвера светодиода 230 В является бестрансформаторный источник питания.Основным компонентом является конденсатор переменного тока класса Х, который может снизить ток питания до подходящей величины. Эти конденсаторы подключаются между линиями и предназначены для цепей переменного тока высокого напряжения.
Конденсатор с номиналом X уменьшает только ток, а напряжение переменного тока может выпрямляться и регулироваться в последующих частях схемы. Переменный ток высокого и низкого напряжения преобразуется в постоянный высокий напряжение с помощью мостового выпрямителя. Этот постоянный ток высокого напряжения дополнительно выпрямляется с помощью стабилитрона до постоянного низкого напряжения.
Наконец, на светодиод подается постоянный ток низкого напряжения и низкого тока.
Схема светодиодного драйвера230 В
Необходимые компоненты
- Конденсатор из полиэфирной пленки 2,2 мкФ (225 Дж – 400 В)
- Резистор 390 кОм (1/4 Вт)
- Резистор 10 Ом (1/4 Вт)
- Мостовой выпрямитель (W10M)
- Резистор 22 кОм (5 Вт)
- Поляризованный конденсатор 4,7 мкФ / 400 В
- Резистор 10 кОм (1/4 Вт)
- 4.Стабилитрон 7 В (1N4732A) (1/4 Вт)
- Поляризованный конденсатор 47 мкФ / 25 В
- 5мм светодиод (красный – рассеянный)
Как спроектировать схему драйвера светодиода 230 В?
Во-первых, конденсатор 2,2 мкФ / 400 В с номиналом X подключается к источнику питания. Важно выбрать конденсатор с номинальным напряжением выше, чем напряжение питания. В нашем случае напряжение питания 230 В переменного тока. Следовательно, мы использовали конденсатор на 400 В.
Резистор 390 кОм подключен параллельно этому конденсатору для его разряда при отключении питания.Резистор 10 Ом, который действует как предохранитель, подключен между источником питания и мостовым выпрямителем.
Следующая часть схемы – двухполупериодный мостовой выпрямитель. Мы использовали однокристальный выпрямитель W10M. Он способен выдерживать токи до 1,5 Ампер. Выход мостового выпрямителя фильтруется с помощью конденсатора 4,7 мкФ / 400 В.
Для регулирования выхода постоянного тока мостового выпрямителя мы используем стабилитрон. Для этого используется стабилитрон 4,7 В (1N4732A). Перед стабилитроном мы подключили последовательный резистор 22 кОм (5 Вт) для ограничения тока.
Стабилизированный постоянный ток подается на светодиод после его фильтрации с помощью конденсатора 47 мкФ / 25 В.
Как работает схема драйвера светодиода 230 В?
В этом проекте построена простая схема драйвера светодиода 230 В без трансформатора. Основными компонентами этого проекта являются конденсатор с номиналом X, стабилитрон и резистор, ограничивающий ток в стабилитроне. Давайте посмотрим, как работает этот проект.
Во-первых, конденсатор 2,2 мкФ с номиналом X (225 Дж – 400 В) ограничивает переменный ток от сети.Чтобы рассчитать этот ток, вы должны использовать емкостное сопротивление конденсатора X-рейтинга.
Формула для расчета емкостного реактивного сопротивления приведена ниже.
Итак, для конденсатора 2,2 мкФ X C можно рассчитать следующим образом.
Итак, согласно закону Ома ток, который допускает конденсатор, определяется выражением I = V / R.
Следовательно, ток через конденсатор равен = 230 / 1447,59 = 0,158 Ампер = 158 мА.
Это полный ток, который поступает на мостовой выпрямитель.Теперь выходной сигнал мостового выпрямителя фильтруется с помощью конденсатора. Важно выбрать подходящее номинальное напряжение для этого конденсатора.
Вход для мостового выпрямителя – 230 В переменного тока, что является среднеквадратичным напряжением. Но максимальное напряжение на входе мостового выпрямителя составляет
.В МАКС = В RMS x √2 = 230 x 1,414 = 325,26 В.
Следовательно, вам необходимо использовать конденсатор фильтра с номинальным напряжением 400 В. Выпрямленное напряжение постоянного тока составляет около 305 В. Это должно быть уменьшено до полезного диапазона для включения светодиода.Следовательно, в проекте используется стабилитрон.
Для этого используется стабилитрон 4,7 В. С стабилитроном, который действует как регулятор, связаны три важных фактора: последовательный резистор, номинальная мощность этого резистора и номинальная мощность стабилитрона.
Во-первых, последовательный резистор. Этот резистор ограничивает ток, протекающий через стабилитрон. При выборе последовательного резистора можно использовать следующую формулу.
Здесь V IN – это входное напряжение стабилитрона, равное 305 В.
В Z – это напряжение стабилитрона (которое совпадает с напряжением нагрузки V L ) = 4,7 В.
I L – это ток нагрузки, т.е. ток через светодиод, он равен 5 мА.
I Z – ток через стабилитрон = 10 мА.
Следовательно, значение последовательного резистора R S можно рассчитать следующим образом.
Теперь номинальная мощность этого резистора. Номинальная мощность последовательного резистора очень важна, поскольку она определяет мощность, которую резистор может рассеять.