Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Асинхронный двигатель схема подключения на 220

Для того чтобы разобраться, как подключить электродвигатель конкретного типа, необходимо понимать принципы его работы и особенности конструкции. Существует множество электродвигателей разных типов. По способу подключения к сети переменного тока они бывают трехфазные, двухфазные или однофазные. По способу питания обмотки ротора делятся на синхронные и асинхронные.

Принцип действия

Принцип действия электродвигателя демонстрирует простейший опыт, который всем нам показывали в школе — вращение рамки с током в поле постоянного магнита.

Рамка с током — это аналог ротора, неподвижный магнит — статор. Если в рамку подать ток, она повернется перпендикулярно направлению магнитного поля и застынет в этом положении. Если заставить магнит крутиться, рамка будет вращаться с той же скоростью, то есть синхронно с магнитом. У нас получился синхронный электродвигатель. Но у нас магнит — это статор, а он по определению неподвижен. Как заставить вращаться магнитное поле неподвижного статора?

Для начала заменим постоянный магнит катушкой с током. Это обмотка нашего статора. Как известно из той же школьной физики, катушка с током создает магнитное поле. Последнее пропорционально величине тока, а полярность зависит от направления тока в катушке. Если подать в катушку переменный ток, получим переменное поле.

Магнитное поле — векторная величина. Переменный ток в питающей сети имеет синусоидальную форму.

Нам поможет очень наглядная аналогия с часами. Какие векторы вращаются постоянно перед нашими глазами? Это часовые стрелки. Представим, что в углу комнаты висят часы. Секундная стрелка вращается, делая один полный оборот в минуту. Стрелка — вектор единичной длины.

Тень, которую стрелка отбрасывает на стену, меняется как синус с периодом в 1 минуту, а тень, отбрасываемая на пол — как косинус. Или синус, сдвинутый по фазе на 90 градусов. Но вектор равен сумме своих проекций. Другими словами, стрелка равна векторной сумме своих теней.

Двухфазный синхронный электродвигатель

Расположим на статоре две обмотки под углом в 90 градусов, то есть взаимно перпендикулярно. Подадим в них синусоидальный переменный ток. Фазы токов сдвинем на 90 градусов. Имеем два вектора взаимно перпендикулярных, меняющихся по синусоидальному закону со сдвигом фаз на 90 градусов. Суммарный вектор будет вращаться подобно часовой стрелке, делая один полный оборот за период частоты переменного тока.

У нас получился двухфазный синхронный электродвигатель. Откуда взять токи, сдвинутые по фазе для питания обмоток? Наверное, не всем известно, что вначале распределительные сети переменного тока были двухфазными. И лишь позднее, не без борьбы, уступили место трехфазным. Если бы не уступили, то наш двухфазный электромотор можно было подключить напрямую к двум фазам.

Но победили трехфазные сети, для которых были разработаны трехфазные электродвигатели. А двухфазные электромоторы нашли свое применение в однофазных сетях в виде конденсаторных двигателей.

Трехфазный синхронный двигатель

Современные распределительные сети переменного тока выполнены по трехфазной схеме.

  • По сети передаются сразу три синусоиды со сдвигом фаз на треть периода или на 120 градусов относительно друг друга.
  • Трехфазный двигатель отличается от двухфазного тем, что у него не две, а три обмотки на статоре, повернутых на 120 градусов.
  • Три катушки, подключенные к трем фазам, создают в сумме вращающееся магнитное поле, которое поворачивает ротор.

Трехфазный асинхронный двигатель

Ток в ротор синхронного двигателя подается от источника питания. Но мы знаем из той же школьной физики, что ток в катушке можно создать переменным магнитным полем. Можно просто замкнуть концы катушки на роторе. Можно даже оставить всего один виток, как в рамке. А ток пусть индуцирует вращающееся магнитное поле статора.

  1. В момент старта ротор неподвижен, а поле статора вращается.
  2. Поле в контуре ротора меняется, наводя электрический ток.
  3. Ротор начнет догонять поле статора. Но никогда не догонит, так как в этом случае ток в нем перестанет наводиться.
  4. В асинхронном двигателе ротор всегда вращается медленнее магнитного поля.
  5. Разница скоростей называется скольжением. Подключение асинхронного двигателя не требует подачи тока в обмотку ротора.

У синхронных и асинхронных электродвигателей есть свои достоинства и недостатки, но факт состоит в том, что большинство двигателей, применяемых в промышленности на сегодняшний день — это асинхронные трехфазные двигатели.

Однофазный асинхронный электродвигатель

Если оставить на роторе короткозамкнутый виток, а на статоре одну катушку, то мы получим удивительную конструкцию — асинхронный однофазный двигатель.

На первый взгляд кажется, что такой двигатель работать не должен. Ведь в роторе нет тока, а магнитное поле статора не вращается. Но если ротор рукой толкнуть в любую сторону, двигатель заработает! И вращаться он будет в ту сторону, в которую его подтолкнули при пуске.

Объяснить работу этого двигателя можно, представив неподвижное переменное магнитное поле статора как сумму двух полей, вращающихся навстречу друг другу. Пока ротор неподвижен, эти поля уравновешивают друг друга, поэтому однофазный асинхронный двигатель не может стартовать самостоятельно. Если же ротор внешним усилием привести в движение, он будет вращаться попутно с одним вектором и навстречу другому.

Попутный вектор будет тянуть ротор за собой, встречный — тормозить.

Можно показать, что из-за разности встречной и попутной скоростей влияние попутного вектора будет сильнее, и двигатель будет работать в асинхронном режиме.

Схема включения

Возможно подключение нагрузок к трехфазной сети по двум схемам — звездой и треугольником. При подключении звездой начала обмоток соединяются между собой, а концы подключаются к фазам. При включении треугольником конец одной обмотки подключается к началу другой.

В схеме включения звездой обмотки оказываются под фазным напряжением 220 В., при включении треугольником — под линейным 380 В.

При включении треугольником двигатель развивает не только большую мощность, но и большие пусковые токи. Поэтому иногда используют комбинированную схему — старт звездой, затем переключение в треугольник.

Направление вращения определяется порядком подключения фаз. Для изменения направления достаточно поменять местами любые две фазы.

Подсоединение к однофазной сети

Трехфазный двигатель можно включать в однофазную сеть, хотя и с потерей мощности, если одну из обмоток подключить через фазосдвигающий конденсатор. Однако при таком включении двигатель сильно теряет в своих параметрах, поэтому этот режим использовать не рекомендуется.

Подключение на 220 вольт

В отличие от трехфазного, двухфазный мотор изначально предназначен для включения в однофазную сеть. Для получения сдвига фаз между обмотками включается рабочий конденсатор, поэтому двухфазные двигатели называют еще конденсаторными.

Емкость рабочего конденсатора рассчитывается по формулам для номинального рабочего режима. Но при отличии режима от номинального, например, при пуске баланс обмоток нарушается. Для обеспечения пускового режима на время старта и разгона параллельно рабочему подключается дополнительный пусковой конденсатор, который должен отключаться при выходе на номинальные обороты.

Как включить однофазный асинхронный двигатель

Если не нужен автоматический запуск, асинхронный однофазный двигатель имеет самую простую схему включения. Особенностью этого типа является невозможность автоматического старта.

Для автоматического пуска используется вторая пусковая обмотка как в двухфазном электромоторе. Пусковая обмотка подключается через пусковой конденсатор только для старта и после этого должна быть отключена вручную или автоматически.

Как подключить асинхронный двигатель, рассчитанный на 220 вольт? Такой вопрос может возникнуть, если электромотор, изначально установленный и работавший в одном из устройств бытовой техники планируется использовать “не по назначению”. Например, сделать самодельный заточной станок.

Так, бывает очень часто. Асинхронные однофазные двигатели способны надолго “пережить” срок эксплуатации тех устройств, в которые они были первоначально установлены.

Что делать, когда бытовая техника по тем или иным причинам вышла из строя? Выкидывать её вместе с вполне исправным мотором или сдавать его как лом на откуп местным барыгам? Ни тот ни другой вариант нормального человека, имеющего голову и руки, растущие из нужного места, не может устроить.

Можно и нужно дать такому электромотору “вторую жизнь”, а для этого нужно в том числе знать, как подключить асинхронный двигатель на 220 вольт.

Как подключить однофазный асинхронный двигатель

Об особенностях асинхронного электродвигателя и его отличиях от коллекторного электродвигателя подробно рассказывалось в предыдущей статье, но сейчас нас интересует практическое применение этих знаний и здесь неискушенного в электромеханике потребителя могут ждать самые неожиданные “засады”.

Возможные схемы подключения однофазного асинхронного электродвигателя

На самом деле, собственно подключение такого движка в любом случае несложно. Вот возможные варианты подключения:

  • Схема с четырьмя выводами. Каждая из катушек имеет два вывода. У рабочей обмотки сопротивление меньше.
  • Схема с тремя выводами. На самом деле, обмоток, как и в предыдущем случае две, только один из проводов каждой, соединен с проводом другой, т. е. обмотки соединены последовательно.

Обязательные условия для начала вращения однофазного асинхронного двигателя

Чтобы ротор начал крутится должны быть выполнены несколько условий:

  1. Для начала движения одной пары полюсов, недостаточно. Обязательно нужна ещё, хотя бы одна, статорная обмотка.
  2. Полюса должны быть пространственно смещены относительно друг друга на 90°. Действительно, это оптимальное положение для начала движения тяжело нагруженного вала, но вместе с тем по мере увеличения оборотов такое расположение катушек негативно сказываться на характеристиках электромотора.
  3. Полюса должны быть смещены не только пространственно, но и временно т. е. каждый из периодов переменного напряжения, протекающего в одной из катушек, должен отставать, от периода переменного напряжения, единовременно протекающего в другой.

Внимательный читатель увидит в этих требованиях явное противоречие. Как же так, ведь фаза всего одна?

С технической точки зрения электромеханики, этот “недостаток” легко устраним, но некоторое противоречие в вышеизложенном словоизлиянии, всё же есть. По сути, здесь правильнее говорить о двух фазах, хотя и полученных от одного источника.

Как заставить ротор однофазного электродвигателя вращаться

Стадия строганья с места одно из слабых мест, возникающих в процессе работы однофазного асинхронного двигателя. Теоретически, равные по величине, но направленные в противоположные стороны магнитные потоки разнозаряженных полюсов должны уравновешивать друг друга, поэтому хотя обмотка и будет находиться в возбужденном состоянии, вращения не будет.

Так, должно быть, повторяюсь, теоретически, на практике неоднократно приходится сталкиваться с тем что при подаче напряжения на рабочую обмотку двигатель без всякого внешнего воздействия начинал работать.

Зачем нужен рабочий конденсатор

Если двигатель работает на холостом ходу, то в общем то, без разницы, есть какая-то емкость в цепи рабочей катушки или нет, но всё меняется, если к валу ротора приложить нагрузку. Дополнительная ёмкость, до определенного момента, позволит компенсировать принудительную задержку смещения магнитного поля ротора, тем самым увеличив КПД электродвигателя.

При изготовлении самодельной конструкции на КПД электродвигателя в большинстве случаев просто не обращают внимание т. к. максимальная фиксированная нагрузка может быть разной, работа механизма не продолжительной, а затраты на увеличенное потребление электроэнергии не обременительны.

Зачем нужен пусковой конденсатор

Если вы внимательно читали предыдущую главу, то знаете ответ. Для временного сдвига фаз напряжения (тока), единовременно протекающего в двух катушках электродвигателя, но почему используют именно конденсатор, а не другой фазосдвигающий элемент, катушку индуктивности.

Электрический двигатель чаще всего запускается с нагрузкой на валу, иногда значительной. Форма магнитного поля создаваемое обмотками статора в этом случае искажается, приобретает форму эллипса, что приводит к снижению пускового момента. Избежать подобного проседания электротехнических характеристик электродвигателя в этот момент, проще всего с помощью конденсатора.

Параметры конденсаторов для запуска и работы асинхронного двигателя

Ёмкость конденсатора, включенного в цепь рабочей катушки, подбирается из расчёта 4 мкФ на каждые 100 Вт мощности. Ёмкость пускового конденсатора в 2–3 раза больше рабочего. Номинальное напряжение каждого конденсатора 350–600 В.

Информация на шильдике (информационной табличке на корпусе изделия), может быть не полной, но зато в некоторых случаях в ней есть данные о типе и параметрах рекомендуемого рабочего конденсатора.

Подключение однофазного асинхронного электродвигателя к сети

Особенность этого подключения заключается в том, что напряжение на рабочую катушку после включения двигателя в сеть должно подаваться постоянно, а на пусковую через фазосдвигающий конденсатор, только на кратковременное время (2–10 сек).

Сделать это несложного, например, с помощью двух тумблеров, один из которых имеет два фиксированных положения (рабочий), а другой без фиксации (пусковой).

На самом деле, всех этих манипуляций при запуске электродвигателя можно избежать, если использовать специально предназначенные для этих целей коммутирующие устройства.

Пусковая кнопка ПНВС

В этом механизме (ПНВС-10) не было бы ничего особенного, если бы не одна фишка. При нажатии кнопки “Пуск” замыкаются все три пары контактов. При отпускании кнопки, крайние пары остаются в замкнутом положении, а средняя пара возвращается в исходное, разомкнутое положение. После нажатия “Стоп” все контакты размыкаются.

На картинке ясно видно, что средняя пара контактов разомкнута, а две крайние пары замкнуты.

Остается подключить пусковую обмотку к крайним клеммам, а пусковую к средней и одной из крайних (общей) клеммам кнопки.

Вот так просто и если хотите, элегантно реализован весь порядок необходимых подключений.

Небольшая цена (120–190 руб), ещё одно из достоинств этого устройства. Некоторых пользователей смущают относительно большие габариты, но поскольку электромотор чаще всего используется в составе какого-то агрегата (станка), что само по себе подразумевает стационарное применение, то размеры блока кнопок, в этом случае, не помеха.

Подключение к сети однофазного двигателя с помощью магнитного пускателя

Поскольку питание, подаваемое на пусковую катушку через несколько секунд после нажатия кнопки “Пуск” нужно отключить, то понадобится два пускателя, а ещё блок, состоящий из двух кнопок, каждая из которых должна иметь две группы контактов с нормально-замкнутыми и нормально-разомкнутыми парами контактов.

Красным цветом обозначены силовые провода. Синим, провода управления.

Получается дороговато, каждый из пускателей с катушкой на 220 В, стоит 700–3000 руб, а ещё такой способ подключения никак не назовешь компактным и простым.

Все эти недостатки компенсируются возможностью коммутировать довольно большую нагрузку.

О подключении трёхфазных электродвигателей к однофазной сети

На мой взгляд, эта тема в наши дни потеряла свою актуальность. Раньше (период СССР), купить однофазный двигатель было проблематично или просто невозможно, а трёхфазники приобретались “по случаю”. Естественно, сразу же возникал вопрос об адаптации такого движка к однофазной сети. Сейчас таких случаев уже почти нет, а покупать дорогой трёхфазный электродвигатель с тем, чтобы подключать его к сети на 220 В. никто в здравом уме не будет.

Возможно, я ошибаюсь и у читателя есть своё мнение на этот счёт. Выскажите его в комментариях.

Сложно представить гараж или собственный дом, в котором имеется мастерская без установленных в них электроприборов. Учитывая довольно высокую стоимость, которых владельцы мастерской стараются изготовить их самостоятельно.

Это могут быть заточные станки или более сложные механизмы, использующие электродвигатели. В каждом гараже всегда можно найти двигатель от неисправной бытовой техники.

Электроснабжение гаражей осуществляется от сети напряжением 220 вольт. Двигатели от бытовой техники однофазные, а при изготовлении станка появляется необходимость в схеме подключения двигателя.

Подключение однофазного коллекторного и асинхронного моторов к сети 220 вольт

В бытовой технике используются коллекторные или асинхронные двигатели. Схема подключения однофазного двигателя при использовании таких электродвигателей будет разная. Для того чтобы выбрать правильную схему необходимо знать тип двигателя.

Это сделать очень просто, если сохранился шильдик. При его отсутствии следует посмотреть, имеются ли щетки. При их наличии электродвигатель коллекторный, если они отсутствуют — двигатель асинхронный.

Схема подсоединения коллекторного двигателя очень проста. Достаточно имеющиеся провода подключить к сети 220 вольт и мотор должен заработать.

Основным недостатком таких моторов большой шум в процессе работы. К достоинствам можно отнести легкость регулировки оборотов. Существует более сложная схема для подключения однофазного асинхронного двигателя.

Они бывают однофазные и трехфазные. Однофазные электродвигатели выпускают с пусковой обмоткой (бифилярные) и конденсаторные.

В момент пуска таких моторов пусковая обмотка замыкается, а после достижения необходимых оборотов отключается специальными устройствами. На практике такие электродвигатели включаются специальными кнопками, у которых средние контакты при нажатии замыкаются, а после отпускания кнопки размыкаются. Это так называемые кнопки ПНВС они специально сконструированы для работы с такими электродвигателями.

В конденсаторных имеется две обмотки, которые работают постоянно. Они смещены относительно друг друга на 90º , благодаря чему можно осуществить реверс.

Схема подключения асинхронного двигателя на 220в ненамного сложнее включения коллекторного. Отличие состоит в том, что к вспомогательной обмотке подсоединяется конденсатор. Его номинал рассчитывается по сложной формуле.

Но опираясь на эмпирические данные его, подбирают из расчета 70 Мкф на 1 Квт мощности, а рабочий конденсатор в 2–3 раза меньше, и соответственно имеет параметры 25–30 Мкф на 1 Квт.

Для того чтобы осуществить подключение однофазного двигателя необходимо подключить конденсатор к вспомогательной обмотке, схема несложная и ее может собрать любой человек.

Достаточно иметь необходимые комплектующие и не перепутать обмотки. Определить назначение обмоток можно с помощью тестера, измерив, сопротивление. Пусковая обмотка имеет в два раза большее сопротивление, чем рабочая.

Схемы включения однофазного электродвигателя

Для включения двигателя применяются три схемы подключения электродвигателей на напряжение 220 в. Для тяжелого пуска устройств, таких как бетономешалка, применяют схему с подсоединением пускового конденсатора с последующим его отключением. Существует более простая схема подключения однофазного двигателя с постоянным подключением конденсатора малой емкости к пусковой обмотке, она применяется наиболее часто.

При этом параллельно рабочему конденсатору во время пуска подключается дополнительный конденсатор.

Для того чтобы наиболее полно раскрыть возможности двигателя применяется схема с постоянно подсоединенным конденсатором к вспомогательной обмотке.

Это самая распространенная схема подключения, с помощью которой подключают любой однофазный асинхронный двигатель при изготовлении заточного станка. При использовании таких схем подсоединения следует знать, что двигатель не сможет развивать полную мощность.

Подключение трехфазных электродвигателей

Часто возникает необходимость в подсоединении асинхронного двигателя,предназначенного для подключения к трехфазной сети в однофазную. Схема подключения трехфазного мотора не сильно отличается от подсоединения однофазного.

Подключение к однофазной сети 220 вольт

Основное отличие состоит в конструкции самого двигателя. В нем имеются равнозначные обмотки, которые соединяются звездой или треугольником. Все зависит от рабочего напряжения.

Схема подключения трехфазного двигателя к однофазной сети включает в себя магнитный пускатель, кнопку включения — выключения и конденсатор. Емкость конденсатора рассчитывается по формуле.

Эта формула справедлива для соединения звездой. И позволяет подобрать рабочий конденсатор.

Вторая формула позволяет рассчитать номинальную емкость для работы с электродвигателем при соединении обмоток треугольником.

Номинал конденсатора можно рассчитать по упрощенной формуле:

Часто при запуске по такой схеме используют пусковой конденсатор, который включают параллельно с рабочим. И выбирается из условий:

Если необходимого номинала нет, то подбор конденсаторов возможен из имеющихся комплектующих при соединении их параллельно или последовательно.

При параллельном соединении емкость суммируется, т. е. увеличивается. А при последовательном соединении уменьшается. И будет меньше меньшего номинала. При подборе конденсаторов необходимо учитывать рабочее напряжение, которое должно быть выше сетевого в 1,5 раза.

При монтаже следует иметь в виду, что схема подключения 3х фазного двигателя предполагает включение конденсатора к третьей обмотке, что позволяет использовать моторы в однофазной сети 220 вольт.

Для того чтобы использовать механизм на полную мощность, следует подключить его к трехфазной сети.

Подключение к трехфазной сети

Для подключения 3 х фазного двигателя на напряжение 380 вольт схема представляет собой соединение обмоток звездой. Соединение треугольником применяется при наличии трехфазной сети на 220 вольт.

Схема подключения асинхронного двигателя к трехфазной сети имеет пускатель на три фазы, кнопку «пуск – стоп» и двигатель. Но в быту имеется однофазное подключение к гаражу или мастерской. Поэтому и возникает необходимость подключения 3х фазного двигателя через конденсаторы к сети 220 вольт, когда используется схема с применением фазосдвигающей цепочки.

Для сдвига фазы применяют конденсатор, который подключают к одной из фаз, а две другие подключают к электрической сети. Это стандартная схема подключения асинхронного двигателя, применяемая для подключения к однофазной сети. При изготовлении всевозможных станков возникает необходимость в реверсивном включении механизмов.

Реверсивная схема подключения при включении трехфазного двигателя к однофазной сети производится по следующей методике.

Достаточно переключить сетевой провод с одного контакта конденсатора на другой. В результате вал начнет вращаться в обратную сторону.

Сложнее осуществляется схема реверсивного подключения двигателя на 380 вольт, если имеется трехфазное соединение.

Для этого применяется принципиальная схема подключения электродвигателя с применением двух магнитных пускателей. С помощью одного из них производится переключение фаз на обмотках.

Второй имеет стандартное включение. При монтаже необходимо предусмотреть защиту от одновременного включения пускателей. В противном случае произойдет короткое замыкание.

Техника безопасности

При самостоятельном подключении электродвигателей следует соблюдать несложные правила. Не работать при подключенном напряжении.

Строго соблюдать правила техники безопасности. Во время работы применять средства индивидуальной защиты.

Нельзя допускать к работе с электричеством необученных людей и детей возрастом менее восемнадцать лет.

Следует помнить, что электричество не имеет запаха и нельзя определить на глаз его наличие на контактах. Обязательно, для определения напряжения использовать только разрешенные средства измерения.

Как подключить электродвигатель с 380 на 220: способы и схемы

Многими практиками доказана эффективность трехфазных асинхронных электродвигателей. Однако для ее использования необходимо подключение трехфазного питания, которое, увы, присутствует далеко не у каждого в доме. Но если вы задаетесь вопросом, как подключить электродвигатель с 380 на 220 В, мы рассмотрим возможные варианты включения трехфазных электрических машин в домашних условиях.

Общие правила

Перед началом включения обязательно проверяется величина напряжения, на которое рассчитан электродвигатель – если подключить разность потенциалов больше указанной, обмотки перегреются, если низкое, он не запустится.

Как правило, на асинхронных машинах указывается сразу два параметра, реже только один:

  1. 660/380 В;
  2. 380/220 В;
  3. 220/127 В.

Номинал определяется совместно со схемой соединения обмоток – звезда или треугольник. В первом случае обмотки имеют общую точку, а фазные провода соединяются с остальными тремя выводами катушек. Во втором, конец одной обмотки присоединяется к началу следующей таким образом, что образуется замкнутый контур. Одни агрегаты включаются только звездой, другие, треугольником, а некоторые можно самостоятельно подключать любым из способов, обе характеристики указаны на шильде электродвигателя.

Для треугольника используется меньшее напряжение, а для звезды большее из двух указанных. Отличие в том, что трехфазные двигатели, соединенные звездой,  будут иметь плавный пуск, а треугольник сможет выдать большую мощность.

Физически подключение трехфазного электродвигателя в однофазную сеть не принесет никакого результата – вращение вала так и не произойдет. Причина этого в отсутствии переменного электрического поля, обеспечивающего попеременное воздействие на ротор. Поэтому проблему можно решить, обеспечив смещение электрического напряжения и тока в фазных обмотках. Чтобы получить желаемый результат от одной фазы, можно дополнительно включить в цепь конденсатор, который обеспечит отставание напряжения до -90º.

Однако полноценного смещения напряжения в обмотках статора добиться не получится. Хоть на электродвигатель подается и номинальное напряжение, КПД составит всего 30 – 50%, что будет определяться схемой соединения обмоток асинхронного электродвигателя.

Не включайте электродвигатель без нагрузки. Так как он не предназначен для такого режима, электрическая машина быстро выйдет со строя. Минимизируйте холостой ход насколько это возможно.

Способы и схемы подключения

В зависимости от типа используемой нагрузки для электродвигателя, его конструктивных особенностей и характеристик, желаемого результата могут использоваться различные схемы подключения. Чаще всего, чтобы подключить трехфазный агрегат в качестве бытовой однофазной нагрузки используются конденсаторы, но их количество и способ введения в работу зависят от многих параметров. Поэтому далее мы рассмотрим различные варианты схем подключения электродвигателей.

Без конденсаторов

Чтобы подключить асинхронный электродвигатель к сети 220В вовсе не обязательно использовать емкостной элемент. Благодаря развитию полупроводниковых ключей и схем с их использованием вы можете  избежать ненужных потерь мощности. Для этого применяется транзисторный или динисторный ключ.

Схема бесконденсаторного пуска треугольник

Приведенная выше схема предназначена для пуска электродвигателей с малыми оборотами до 1500 об/мин и относительно небольшой мощностью.

Работа схемы производится следующим образом:

  • при подаче напряжения на ввод провода подключаются к двум точкам мотора;
  •  напряжение на третью точку треугольника подается через времязадающую R-C  цепочку;
  • магазин сопротивлений R1 и R2 регулирует интервал сдвига за счет перемещения бегунка;
  • после насыщения конденсатора в цепочке динистор VS1 пропускает сигнал на открытие симистора VS2.

Если же подключение электрического агрегата предусматривает большую пусковую нагрузку и требует работы на высоких оборотах – до 3000об/мин, то необходимо применять аналогичную схему электронного ключа с двумя симисторами и отдельными времязадающими элементами для каждого из них. Но обмотки электрической машины будут подключаться по схеме разомкнутой звезды. Работа схемы аналогична предыдущей:

Схема бесконденсаторного пуска звезда

С конденсаторами

Использование емкостных элементов, чтобы подключить электродвигатель, является наиболее распространенным способом. Для этого используются два конденсатора, один из которых пусковой, а второй рабочий.  Пусковой вводится кратковременно, дополнительная емкость позволяет увеличить сдвиг напряжения в соответствующей обмотке и создать большее усилие.

Схема включения с конденсаторами

Как видите из рисунка выше, на электродвигатель подается однофазное напряжение между точками L и N. Асинхронный двигатель АД подключается к ним двумя обмотками,  а к третей та же фаза подключается через  контакты кнопочного переключателя SA1 и SA2, коммутирующие параллельно включенные конденсаторы C1 и C2.

Включение асинхронного электродвигателя происходит по такому принципу:

  • Нажатием кнопки Пуск приводятся в движение две пары контактов — SA1 и SA2, после чего в обмотках начинает протекать электроток;
  • После отпускания кнопки контакт SA2 остается замкнутым, подавая фазу со смещением через конденсатор  C1, а SA1 размыкается, выводя из цепи пусковой конденсатор C2;
  • Пусковые характеристики возвращаются к номинальным и двигатель работает в штатном режиме.

Но при таком подключении асинхронного двигателя в сеть 220В будет обеспечиваться вращение ротора лишь в одну сторону. Поэтому для выполнения реверсивных движений понадобится полностью перебирать точки подключения или использовать другой способ.

С реверсом

Для некоторых технологических операций требуется осуществлять прямое и обратное вращение вала электродвигателя, поэтому подключение должно менять последовательность чередования напряжения на обмотках. Разумеется, что вручную выполнять подобные операции нецелесообразно, особенно, когда смена направления производится по нескольку раз в час.

Поэтому осуществление реверса электродвигателя, гораздо эффективнее сделать через коммутатор с двумя парами контактов, имеющих противоположную логику. Это может быть тумблер или поворотный переключатель, включаемый в схему вместо обычной кнопки:

Включение трехфазного двигателя с реверсом

Как видите на рисунке, принцип подключения ничем не отличается от рассмотренной схемы с конденсатором с той лишь разницей, что переключатель SA имеет два устойчивых положения. В одном случае он подает напряжение на конденсаторы с фазы, во втором с нулевого проводника. Поэтому чередование обмоток меняется на противоположное простым переключением тумблера.

Используя пускатель

Если в работе электродвигатель создает большую пусковую и рабочую нагрузку, то лучше подключить его через магнитный пускатель или контактор. Который обеспечит надежную коммутацию и последующую защиту электрической машины от аварийных ситуаций.

Схема включения через магнитный пускатель

Как видите на схеме, включение осуществляется за счет нажатия кнопки Пуск, которая замыкает цепь управления катушкой пускателя и подает напряжение на пусковой конденсатор Спуск.  При протекании тока по катушке пускателя К1 происходит замыкание ее контактов К1.1 и К1.2. Первые предназначены для замыкания питающей линии электродвигателя. Вторые шунтируют кнопку Пуск, которая возвращается в отключенное состояние и размыкает цепь питания пускового конденсатора.

Как подбирать конденсаторы?

Если вы собрались подключить электродвигатель, то выбор  конденсатора осуществляется по таким принципам:

  • Номинальное напряжение выбирается из соотношения 1,15 от подаваемого на мотор. Если брат больше, это увеличит стоимость установки и ее габариты. Если емкость рассчитать впритык, конденсатор перегреется и перегорит.
  • Тип конденсатора – наиболее распространенные модели – бумажные, но они обладают большими габаритами. Поэтому выгоднее приобретать полипропиленовые. От электролитических лучше отказаться.
  • Чтобы выбрать емкость пускового и рабочего конденсатора, необходимо воспользоваться таблицей соответствия по мощности электродвигателя:

Таблица: определение емкости конденсаторов

Мощность трехфазного электродвигателя, кВт0,40,60,81,11,52,2
Минимальная емкость конденсатора Ср , мкф406080100150230
Емкость пускового конденсатора (Сп), мкф80120160200250300

Если нужной вам мощности в таблице нет, можно воспользоваться расчетными формулами:

Сраб = (2800*I)/U — для включения трехфазного двигателя звездой

Cраб = (4800*I)/U — для включения трехфазного двигателя треугольником

где I – величина ток, протекающего через обмотки электродвигателя, а U – напряжение сети. Чтобы узнать емкость пускового конденсатора для подключения трехфазного агрегата, необходимо полученную величину рабочего умножить на два.

Видео в помощь

Подключение однофазного двигателя через конденсатор — 3 схемы

На промышленных объектах особых проблем, как подключить электродвигатель, не испытывают, там подводится трехфазная сеть. Работают асинхронные электродвигатели с тремя подключенными обмотками, расположенными по периметру цилиндрического статора. На каждую обмотку подсоединяемого двигателя производятся включения отдельной фазы, схема подключения электродвигателя обеспечивает сдвиг фаз переменного тока, создает крутящий момент, и моторы успешно вращаются.

В случае с бытовыми условиями на жилых объектах в частных домах и квартирах трехфазных электрических линий нет, прокладываются однофазные сети, где напряжение 220 вольт. Поэтому однофазный асинхронный двигатель подключается по другой схеме, требуется устройство с пусковой обмоткой.

Конструкция и принцип работы

Подключают электродвигатель через конденсатор по причине, что одна обмотка на статоре электродвигателя на 220 В с переменным током создает магнитное поле, которое компенсирует свои импульсы за счет смены полярности с частотой 50 Гц. В этом случае движок гудит, ротор остается на месте. Для создания крутящего момента делают дополнительные подсоединения пусковых обмоток, где электрический сдвиг по фазе будет 90° по отношению к рабочей обмотке.

Конструкция асинхронного однофазного электродвигателя

Не путайте геометрические понятия угла расположения с электрическим сдвигом фаз. В геометрическом измерении обмотки в статоре размещаются друг напротив друга.

Чтобы осуществить это технически, конструкция электромотора предусматривает большое количество механических деталей и составляющих электрической схемы:

  • статор с основной и дополнительной обмоткой пуска;
  • короткозамкнутый ротор;
  • борно с группой контактов на панели;
  • конденсаторы;
  • центробежный выключатель и многие другие элементы, показанные выше на рисунке.

Рассмотрим, как подключить однофазный двигатель. С целью смещения фаз последовательно в пусковую обмотку включается конденсатор, при подключении однофазного асинхронного электродвигателя круговое магнитное поле наводит в роторе токи. Совокупность силы полей и токов создают вращающий импульс, прилагаемый к ротору, он начинает вращаться.

Схемы подключения

 Варианты подключения двигателя через конденсатор:

  • схема подключения однофазного двигателя с использованием пускового конденсатора;
  • подключение электродвигателя с использованием конденсатора в рабочем режиме;
  • подключение однофазного электродвигателя с пусковым и рабочим конденсаторами.

Все эти схемы успешно применяются при эксплуатации асинхронных однофазных двигателей. В каждом случае есть свои достоинства и недостатки, рассмотрим каждый вариант более подробно.

Схема с пусковым конденсатором

Идея заключается в том, что конденсатор включается в цепь только при пуске, используется пусковая кнопка, которая размыкает контакты после раскрутки ротора, по инерции он начинает вращаться. Магнитное поле основной обмотки поддерживает вращение длительное время. В качестве кратковременного переключателя ставят кнопки с группой контактов или реле.

Схема подключения пускового конденсатора

Поскольку схема кратковременного подключения однофазного двигателя через конденсатор предусматривает кнопку на пружине, которая при отпускании размыкает контакты, это дает возможность экономить, провода пусковой обмотки делают тоньше. Чтобы исключить межвитковое короткое замыкание, используют термореле, которое при достижении критической температуры отключает дополнительную обмотку. В некоторых конструкциях ставят центробежный выключатель, который при достижении определенной скорости вращения размыкает контакты.

Соединения, центробежный выключатель на валу ротора

Схемы и конструкции регулировки скорости вращения и предотвращения перегрузок электродвигателя на автомате могут быть различны. Иногда центробежный выключатель устанавливается на валу ротора или на других элементах, вращающихся от него с прямым соединением, или через редуктор.

Некоторые элементы

Под действием центробежных сил груз оттягивает пружины с контактной пластиной, при достижении установленной скорости вращения замыкает контакты, переключатель реле обесточивает двигатель или подает сигнал на другой механизм управления.

Бывают варианты, когда тепловое реле и центробежный выключатель устанавливаются в одной конструкции. В этом случае тепловое реле отключает двигатель при воздействии критической температуры или усилиями раздвигающегося груза центробежного выключателя.

Варианты схемы подключения конденсаторов

В связи с особенностями характеристик асинхронного двигателя конденсатор в цепи дополнительной катушки искажает линии магнитного поля, от круглой формы до эллиптической, в результате этого потери мощности увеличиваются, снижается КПД. Пусковые характеристики остаются хорошие.

Схема с рабочим конденсатором

Отличие этой схемы в том, что конденсатор после пуска не отключается, и вторичная обмотка на протяжении всей работы импульсами своего магнитного поля раскручивает ротор. Мощность электродвигателя в этом случае значительно увеличивается, форму электромагнитного поля можно попытаться приблизить от эллиптической формы к круглой подбором емкости конденсатора. Но в этом случае момент пуска более продолжительный по времени, и пусковые токи больше. Сложность схемы заключается в том, что емкость конденсатора для выравнивания магнитного поля подбирается с учетом токовых нагрузок. Если они будут меняться, то и все параметры будут не постоянными, для стабильности формы линий магнитного поля можно установить несколько конденсаторов с различными емкостями. Если при изменении нагрузки включать соответствующую емкость, это улучшит рабочие характеристики, но существенно усложняет схему и процесс эксплуатации.

Комбинированная схема с двумя конденсаторами

Оптимальным вариантом для усреднения рабочих характеристик является схема с двумя конденсаторами — пусковым и рабочим.

Рабочий конденсатор подключен постоянно в цепи обмоток, пусковой через выключатель запуска замыкается кратковременно

Установка и подбор компонентов

Конденсаторы имеют немалые габариты, поэтому не всегда помещаются во внутреннюю часть борно (распределительная коробка на корпусе электродвигателя).

Пример размещения конденсатора на внешней стороне корпуса электродвигателя

В зависимости от места установки и других условий эксплуатации конденсаторы могут располагаться на внешней стороне двигателя рядом с коробкой расключения. В некоторых случаях конденсаторы выносят в отдельный корпус, расположенный недалеко от электродвигателя.

Величину емкости конденсаторов в идеальном случае с постоянной токовой нагрузкой можно рассчитать, но в большинстве случаев нагрузка нестабильна, и методика расчетов сложная. Поэтому опытные электрики руководствуются статистикой и практическим опытом:

  • для конденсаторов рабочей схемы емкость выбирается 0,75 мкФ на 1 кВт мощности;
  • для пусковых конденсаторов 1,8–2 мкФ на кВт мощности, при этом надо учитывать скачки напряжения в период пуска и остановки — они колеблются в пределах 300–600 В. Поэтому по напряжению конденсатор должен быть как минимум 400 В.
Конденсаторы для подключения однофазного двигателя

Вообще при выборе схемы и конденсаторов на однофазный двигатель надо руководствоваться назначением двигателя и условиями эксплуатации. Когда нужно быстро раскрутить двигатель, используется схема с пусковым конденсатором. При необходимости иметь в процессе эксплуатации большую мощность и КПД применяют схему с рабочим конденсатором — обычно в однофазном конденсаторном двигателе для бытовых нужд небольшой мощности, в пределах 1 кВт.

Похожие статьи:

Как подключить двигатель через конденсатор – советы электрика

Подключение двигателя через конденсатор

Подключение электродвигателя к однофазной сети – это ситуация, которая встречается достаточно часто. Особенно такое подключение требуется на загородных участках, когда трехфазные электродвигатели используются под какие-то приспособления.

К примеру, для изготовления наждака или самодельного сверлильного аппарата. Кстати, мотор стиральной машины через конденсатор производится. Но как это сделать правильно? Необходима схема подключения электродвигателя на 220В через конденсатор.

Давайте разбираться в ней.

Начнем с того, что существует две стандартные схемы подключения электродвигателя к трехфазной сети: звезда и треугольник. Оба вида подключения создают условия, при которых в обмотках статора двигателя попеременно проходит ток.

Обратите внимание

Он создает внутри вращающееся магнитное поле, которое действует на ротор, заставляя его вращаться. Если подключается трехфазный электродвигатель в однофазную сеть, то вот этот вращающийся момент не создается.

Что делать? Вариантов несколько, но чаще всего электрики устанавливают в схему конденсатор.

Необходимо отметить, что не все электродвигатели могут работать от однофазной сети. Лучше всего работают асинхронные виды.

У них даже на бирках указаны, что можно проводить подключение и на трехфазную сеть, и на однофазную. При этом обязательно указывается величина напряжения – 127/220 или 220/380В.

Меньший показатель предназначен для схемы треугольник, больший для звезды. На картинке ниже показано обозначение.

Внимание! Конденсаторный двигатель в однофазную сеть лучше подключать через схему треугольник. Это обусловлено тем, что при таком виде подключения уменьшаются потери мощности агрегата.

Обратите внимание в рисунке на нижнюю бирку (Б). Она говорит о том, что двигатель можно подключить только через звезду. С этим придется смириться и получить аппарат с низкой мощностью. Если есть желание изменить ситуацию, то придется разобрать двигатель и вывести еще три конца обмоток, после чего провести подключение по треугольнику.

И еще один очень важный момент. Если вы устанавливаете в однофазную сеть электродвигатель с напряжением 127/220 вольт, то понятно, что к сети напряжением 220В можно подключиться через звезду. Потери мощности гарантированы. Но сделать в данном случае ничего нельзя. Если будет произведено подключение этого прибора через треугольник – мотор просто сгорит.

Важно

Давайте рассмотрим обе схемы подключения. Начнем с треугольника. В любой схеме очень важно правильно подключить именно конденсатор. В данном случае провода распределяются таким образом:

Но тут есть один момент, если электродвигатель не нагружать, то его ротор без проблем начнем вращаться.

Если пуск будет производиться под определенной нагрузкой, то вал или не будет вращаться вообще, или с очень низкой скоростью. Чтобы решить эту проблему, в схему необходимо установить еще один конденсатор – пусковой.

На нем лежит всего лишь одна задача – запустить мотор, отключиться и разрядиться. По сути, пусковой работает всего 2-3 секунды.

В схеме звезда подключение конденсатора производится на выходные концы обмоток. Две из них соединяются с сетью 220В, а свободный конец и один из подключенных к сети замыкают конденсатор.

Емкость конденсатора, который устанавливается в схему подключения трехфазного электродвигателя, подсоединяемого к сети напряжением в 220В, зависит от самой схемы. Для этого существуют специальные формулы.

Cр = 2800•I/U, где Ср – это емкость, I – сила тока, U – напряжение. Если производится подсоединение треугольником, то используется та же формула, только коэффициент 2800 меняется на 4800.

Хотелось бы обратить ваше внимание на тот факт, что сила тока (I) на бирке мотора не указывается, поэтому ее надо будет рассчитать по вот этой формуле:

Совет

I = P/(1.73•U•n•cosф), где Р- это мощность электрического двигателя, n – КПД агрегата, cosф – коэффициент мощности, 1,73 – это поправочный коэффициент, он характеризует соотношение между двумя видами токов: фазным и линейным.

Так как чаще всего подключение трехфазного двигателя к однофазной сети 220В производится по треугольнику, то емкость конденсатора (рабочего) можно подсчитать по более простой формуле:

C = 70•Pн, здесь Рн – это номинальная мощность агрегата, измеряемая в киловаттах и обозначаемая на бирке прибора. Если разобраться в этой формуле, то можно понять, что существует достаточно простое соотношение: 7 мкФ на 100 Вт. К примеру, если устанавливается мотор мощностью 1 кВт, то для него необходим конденсатор на 70 мкФ.

Как определить, точно ли подобран конденсатор? Это можно проверить только в рабочем режиме.

Даже расчет может привести к неправильному выбору, ведь условия эксплуатации мотора будут влиять на его работу. Поэтому рекомендуется начинать подбор с низких величин, и при необходимости наращивать показатели до необходимых (номинальных).

Что касается пусковой емкости, то здесь в первую очередь учитывается, какой пусковой момент необходим для запуска электродвигателя. Хотелось бы обратить ваше внимание на то, что пусковая емкость и емкость пускового конденсатора – это не одно и то же. Первая величина – это сумма емкостей рабочего и пускового конденсаторов.

Внимание! Емкость пускового конденсатора должна быть раза в три больше емкости рабочего. При этом специалисты советуют вместо одного большого прибора использовать несколько с малой емкостью. К тому же пусковые работают непродолжительное время, поэтому на их место можно устанавливать дешевые модели.

В качестве рабочих можно использовать бумажные, металлизированные или пленочные аналоги. При этом необходимо учитывать тот факт, что допустимое напряжение должно быть в полтора раза быть больше номинального. Как видите, подобрать точно конденсатор под электродвигатель достаточно непростым. Даже расчет является процессом неточным.

Как подключить трехфазный электродвигатель в сеть 220В – схемы и рекомендации

  • Как правильно провести подключение электродвигателя 380 на 220 вольт

  • Схема подключения трехфазного электродвигателя к трехфазной сети

    Схема подключения двигателя через конденсатор

    Есть 2 типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Их различие в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это нужно потому, что после разгона она снижает КПД.

    В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная, они смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

    Схема подключения однофазного двигателя через конденсатор

    При подключении однофазного конденсаторного двигателя есть несколько вариантов схем подключения. Без конденсаторов электромотор гудит, но не запускается.

    • 1 схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже.
    • 3 схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском, а с рабочим конденсором — если нужны хорошие рабочие характеристики.
    • 2 схема — подключения однофазного двигателя — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и используется чаще всего. Она на втором рисунке. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

    Схема подключения трёхфазного двигателя через конденсатор

    Здесь напряжение 220 вольт распределяется на 2 последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.

    Максимальной мощности двигателя на 380 В в сети 220 В можно достичь используя соединение типа треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность.

    Важно помнить: трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на 220 В.

    Поэтому если есть ввод на 380 В — обязательно подключайте к нему — это обеспечит более стабильную и экономичную работу устройств.

    Обратите внимание

    Для пуска мотора не понадобятся различные пусковики и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к сети 380 В.

    Полезное: Схема подключения датчика движения для освещения

    Онлайн расчет емкости конденсатора мотора

    Как подключить однофазный электродвигатель на 220 вольт

    Нередки случаи, когда необходимо подключить электродвигатель к сети 220 вольт — это происходит при попытках приобщить оборудование к своим нуждам, но схема не отвечает техническим характеристикам, указанным в паспорте такого оборудования. Мы постараемся разобрать в этой статье основные приемы решения проблемы и представим несколько альтернативных схем с описанием для подключения однофазного электродвигателя с конденсатом на 220 вольт.

    Почему так происходит? Например, в гараже необходимо подключение асинхронного электродвигателя на 220 вольт, который рассчитан на три фазы.

    При этом, необходимо сохранить КПД (коэффициент полезного действия), так поступают в случае, если альтернативы (в виде движка) просто не существует, потому как в схеме на три фазы легко образуется вращающееся магнитное поле, которое обеспечивает создание условий для вращения ротора в статоре. Без этого КПД будет меньше, по сравнению с трехфазной схемой подключения.

    Когда в однофазных движках присутствует только одна обмотка, мы наблюдаем картину, когда поле внутри статора не вращается, а пульсирует, то есть толчок для пуска не происходит, пока собственноручно не раскрутить вал.

    Для того, чтобы вращение могло происходить самостоятельно, добавляем вспомогательную пусковую обмотку. Это вторая фаза, она перемещена на 90 градусов и толкает ротор при включении.

    При этом двигатель все равно включен в сеть с одной фазой, так что название однофазного сохраняется. Такие однофазные синхронные моторы имеют рабочую и пусковую обмотки. Разница в том, что пусковая действует только при включении заводя ротор, работая всего три секунды.

    Вторая же обмотка включена все время. Для того, чтобы определить где какая, можно использовать тестер. На рисунке можно увидеть соотношение их со схемой в целом.

    Подключение электродвигателя на 220 вольт: мотор запускается путем подачи 220 вольт на рабочую и пусковую обмотки, а после набора необходимых оборотов нужно вручную отключить пусковую. Для того, чтобы фазу сдвинуть, необходимо омическое сопротивление, которое и обеспечивают конденсаторы индуктивности.

    Встречается сопротивление как в виде отдельного резистора, так и в части самой пусковой обмотки, которая выполняется по бифилярной технике. Она работает так: индуктивность катушки сохраняется, а сопротивление становиться больше из-за удлиненного провода из меди.

    Такую схему можно наблюдать на рисунке 1: подключение электродвигателя 220 вольт.

    Рисунок 1. Схема подключения электродвигателя 220 вольт с конденсатором

    Существуют также моторы, у которых обе обмотки непрерывно подключены к сети, они называются двухфазные, потому как поле внутри вращается, а конденсатор предусмотрен, чтобы сдвигать фазы. Для работы такой схемы, обе обмотки имеют провод с равным друг другу сечением.

    Схема подключения коллекторного электродвигателя на 220 вольт

    Где можно встретить в быту?

    Электрические дрели, некоторые стиральные машинки, перфораторы и болгарки имеют синхронный коллекторный двигатель. Он способен работать в сетях с одной фазой даже без пусковых механизмов. Схема такая: перемычкой соединяются концы 1 и 2, первый берет начало в якоре, второй – в статоре. Два кончика, которые остались, необходимо присоединить к питанию в 220 вольт.

    Подключение электродвигателя 220 вольт с пусковой обмоткой

    • Такая схема исключает блок электроники, а следовательно – мотор сразу же с момента старта, будет работать на полную мощность – на максимальных оборотах, при запуске буквально срываясь с силой от пускового электротока, который вызывает искры в коллекторе;
    • существуют электромоторы с двумя скоростями. Их можно определить по трем концам в статоре, выходящим из обмотки. В этом случае скорость вала при подключении уменьшается, а риск деформации изоляции при старте – увеличивается;
    • направление вращения можно изменить, для этого следует поменять местами окончания подключения в статоре или якоре.

    Схема подключения электродвигателя 380 на 220 вольт с конденсатором

    Есть еще один вариант подключения электродвигателя мощность в 380 Вольт, который приходит в движение без нагрузки. Для этого также необходим конденсатор в рабочем состоянии.

    Один конец подключается к нулю, а второй — к выходу треугольника с порядковым номером три. Чтобы изменить направление вращения электромотора, стоит подключить его к фазе, а не к нулю.

    Схема подключения электродвигателя 220 вольт через конденсаторы

    В случае, когда мощность двигателя более 1,5 Киловатта или он при старте работает сразу с нагрузкой, вместе с рабочим конденсатором необходимо параллельно установить и пусковой. Он служит увеличению пускового момента и включается всего на несколько секунд во время старта.

    Важно

    Для удобства он подключается с кнопкой, а все устройство — от электропитания через тумблер или кнопку с двумя позициями, которая имеет два фиксированных положения. Для того, чтобы запустить такой электромотор, необходимо все подключить через кнопку (тумблер) и держать кнопку старта, пока он не запустится.

    Когда запустился – просто отпускаем кнопку и пружина размыкает контакты, отключая стартер

    Специфика заключается в том, что асинхронные двигатели изначально предназначаются для подключения к сети с тремя фазами в 380 В или 220 В.

    Важно! Для того чтобы подключить однофазный электромотор в однофазную сеть, необходимо ознакомиться с данными мотора на бирке и знать следующее:

    Р = 1,73 * 220 В * 2,0 * 0,67 = 510 (Вт) расчет для 220 В

    Р = 1,73 * 380 * 1,16 * 0,67 =510,9 (Вт) расчет для 380 В

    По формуле становиться понятно, что электрическая мощность превосходит механическую. Это необходимый запас для компенсации потерь мощности при старте — создании вращающегося момента магнитного поля.

    Существуют два типа обмотки — звездой и треугольником. По информации на бирке мотора можно определить какая система в нем использована.

    Это схема обмотки звездой

    Красные стрелки — это распределение напряжения в обмотках мотора, говорит о том, что на одной обмотке распределяется напряжение единичной фазы в 220 В, а двух других — линейного напряжения 380 В. Такой двигатель можно приспособить под однофазную сеть по рекомендациям на бирке: узнать для какого напряжения созданы обмотки, можно соединять их звездой или треугольником.

    Схема обмотки треугольником проще. По возможности лучше применить ее, так как двигатель будет терять мощность в меньшем количестве, а напряжение по обмоткам всюду будет равно 220 В.

    Это схема подключения с конденсатором асинхронного двигателя в однофазную сеть. Включает рабочие и пусковые конденсаторы.

    • применяем конденсаторы ориентируясь на напряжение, минимум 300 или 400 В;
    • емкость рабочих конденсаторов набирается путем параллельного их соединения;
    • вычисляем таким образом: каждые 100 Вт — это еще 7мкФ, учитывая, что 1 кВт равен 70 мкФ;
    • это пример параллельного соединения конденсаторов
    • емкость для пуска должна превышать в три раза емкость рабочих конденсаторов.

    Важно! Если при старте не отключить вовремя пусковые конденсаторы, когда мотор наберет стандартные для него обороты, они приведут к большому перекосу по току во всех обмотках, что попросту заканчивается перегревом электромотора.

    https://www.youtube.com/watch?v=ukl8nctMpTI

    После прочтения статьи, рекомендуем ознакомиться с техникой подключения трехфазного двигателя в однофазную сеть:

    Обсудить статью на форуме

    Источники: http://onlineelektrik.ru/eoborudovanie/edvigateli/sxema-podklyucheniya-elektrodvigatelya-na-220v-cherez-kondensator.html, http://2shemi.ru/shema-podklyucheniya-dvigatelya-cherez-kondensator/, http://bouw.ru/article/kak-podklyuchity-odnofazniy-elektrodvigately-na-220-volyt

  • Источник: http://electricremont.ru/podklyuchenie-dvigatelya-cherez-kondensator.html

    Как подключить однофазный электродвигатель через конденсатор: пусковой, рабочий и смешанный варианты включения

    В технике нередко используются двигатели асинхронного типа. Такие агрегаты отличаются простотой, хорошими характеристиками, малым уровнем шума, легкостью эксплуатации. Для того, чтобы асинхронный двигатель вращался, необходимо наличие вращающегося магнитного поля.

    Такое поле легко создается при наличии трехфазной сети. В этом случае в статоре двигателя достаточно расположить три обмотки, размещенные под углом 120 градусов друг от друга и подключить к ним соответствующее напряжение. И круговое вращающееся поле начнет вращать статор.

    Однако бытовые приборы обычно используются в домах, в которых чаще всего имеется только однофазная электрическая сеть. В этом случае обычно применяются однофазные двигатели асинхронного типа.

    Почему применяют запуск однофазного двигателя через конденсатор?

    Если на статоре двигателя поместить одну обмотку, то при протекании переменного синусоидального тока в ней образуется пульсирующее магнитное поле. Но это поле не сможет заставить ротор вращаться. Чтобы запустить двигатель надо:

    • на статоре разместить дополнительную обмотку под углом около 90° относительно рабочей обмотки;
    • последовательно с дополнительной обмоткой включить фазосдвигающий элемент, например, конденсатор.

    В этом случае в двигателе возникнет круговое магнитное поле, а в короткозамкнутом роторе возникнут токи.

    Взаимодействие токов и поля статора приведет к вращению ротора. Стоит напомнить, что для регулировки пусковых токов — контроль и ограничение их величины — используют частотный преобразователь для асинхронных двигателей.

    Варианты схем включения — какой метод выбрать?

    В зависимости от способа подключения конденсатора к двигателю различают такие схемы с:

    • пусковым,
    • рабочим,
    • пусковым и рабочим конденсаторами.

    Наиболее распространенной методом является схема с пусковым конденсатором.

    В этом случае конденсатор и пусковая обмотка включаются только на момент старта двигателя. Это связано со свойством продолжения агрегатом своего вращения даже после отключения дополнительной обмотки. Для такого включения чаще всего используется кнопка или реле.

    Поскольку пуск однофазного двигателя с конденсатором происходит довольно быстро, то дополнительная обмотка работает небольшое время.

    Совет

    Это позволяет для экономии выполнять ее из провода с меньшим сечением, нежели основная обмотка. Для предупреждения перегрева дополнительной обмотки в схему часто добавляют центробежный выключатель или термореле.

    Эти устройства отключают её при наборе двигателем определенной скорости или при сильном нагреве.

    Схема с пусковым конденсатором имеет хорошие пусковые характеристики двигателя. Но рабочие характеристики при таком включении ухудшаются.

    Это связано с принципом работы асинхронного двигателя, когда вращающееся поле является не круговым, а эллиптическим. В результате этого искажения поля возрастают потери и падает КПД.

    Более хорошие рабочие характеристики можно получить при использовании схемы с рабочим конденсатором.

    В этой схеме конденсатор после запуска двигателя не отключается. Правильным подбором конденсатора для однофазного двигателя можно компенсировать искажение поля и повысить КПД агрегата. Но для такой схемы ухудшаются пусковые характеристики.

    Необходимо также учитывать, что выбор величины емкости конденсатора для однофазного двигателя производится под определенный ток нагрузки.

    При изменении тока относительно расчетного значения поле будет переходить от круговой к эллиптической форме и характеристики агрегата ухудшатся. В принципе, для обеспечения хороших характеристик необходимо при изменении нагрузки двигателя менять величину емкости конденсатора. Но это может слишком усложнить схему включения.

    Компромиссным решением является выбор схемы с пусковым и рабочим конденсаторами. Для такой схемы рабочие и пусковые характеристики будут средними по сравнению с рассмотренными ранее схемами.

    В общем, если при подключении однофазного двигателя через конденсатор требуется большой пусковой момент, то выбирается схема с пусковым элементом, а при отсутствии такой необходимости – с рабочим.

    Подключение конденсаторов для запуска однофазных электродвигателей

    Перед подключением к двигателю можно проверить конденсатор мультиметром на работоспособность.

    При выборе схемы у пользователя всегда есть возможность выбрать именно ту схему, которая ему подходит. Обычно все выводы обмоток и выводы конденсаторов выведены в клеммную коробку двигателя.

    При необходимости модернизировать схему или самостоятельно сделать расчет конденсатора для однофазного двигателя можно, исходя из того, что на каждый киловатт мощности агрегата требуется емкость в 0,7 — 0,8 мкФ для рабочего типа и в два с половиной раза большая емкость для пускового.

    При выборе конденсатора необходимо учитывать, что пусковой должен иметь рабочее напряжение не меньше 400 В.

    Это связано с тем, что при пуске и остановке двигателя в электрической цепи из-за наличия ЭДС самоиндукции возникает всплеск напряжения, достигающий 300-600 В.

    Выводы:

    1. Однофазный асинхронный двигатель широко используется в бытовых приборах.
    2. Для запуска такого агрегата необходима дополнительная (пусковая) обмотка и фазосдвигающий элемент — конденсатор.
    3. Существуют различные схемы подключения однофазного электродвигателя через конденсатор.
    4. Если надо иметь больший пусковой момент, то используется схема с пусковым конденсатором, при необходимости получения хороших рабочих характеристик двигателя используется схема с рабочим конденсатором.

    Подробное видео о том, как подключить однофазный двигатель через конденсатор

    Источник: http://elektrik24.net/elektrooborudovanie/elektrodvigateli/odnofaznye-elektrodvigateli/cherez-kondensator.html

    Как подключить однофазный двигатель

    Чаще всего к нашим домам, участкам, гаражам подведена однофазная сеть 220 В. Потому оборудование и все самоделки делают так, чтобы они работали от этого источника питания. В данной статье рассмотрим, как правлильно сделать подключение однофазного двигателя. 

    Асинхронный или коллекторный: как отличить

    Вообще, отличить тип двигателя можно по пластине — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.

    Так выглядит новый однофазный конденсаторный двигатель

    Как устроены коллекторные движки

    Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.

    Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона.

    Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки.

    Обратите внимание

    Потому и используются подобные двигатели в большей части бытовой и строительной техники.

    Строение коллекторного двигателя

    Недостатки колелкторых двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д.. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.

    Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.

    Асинхронные

    Асинхронный двигатель имеет стартер и ротор, может быть одно и трех фазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.

    Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.

    Строение асинхронного двигателя

    Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные.

    Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора.

    После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.

    В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

    Более точно определить бифолярный или конденсаторный двигатель перед вами можно при помощи измерений обмоток.

    Если сопротивление вспомогательной обмотки меньше в два раза (разница может быть еще более значительная), скорее всего, это бифолярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле.

    В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.

    Схемы подключения однофазных асинхронных двигателей

    С пусковой обмоткой

    Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

    Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

    Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

    Важно

    Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

    Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

    • один с рабочей обмотки — рабочий;
    • с пусковой обмотки;
    • общий.

    С этими тремя проводами и работаем дальше — исползуем для подключения однофазного двигателя.

    Со всеми этими 

    Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно).

    К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифолярного) через кнопку.

    Конденсаторный

    При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения  и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

    Схемы подключения однофазного конденсаторного двигателя

    Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже.

    Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики.

    Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

    Схема с двумя конденсаторами

    Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего.

     Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится».

    Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

    Совет

    Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

    При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

    Подбор конденсаторов

    Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

    • рабочий конденсатор берут из расчета 0,7-0,8 мкФ на 1 кВт мощности двигателя;
    • пусковой — в 2-3 раза больше.

    Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите конденсатор специальный конденсатор. У них в маркировке присутствует слова Start или  Starting, но можно взять и обычные.

    Изменение направления движения мотора

    Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

    Как все может выглядеть на практике

    Источник: https://stroychik.ru/elektrika/podklyuchenie-odnofaznogo-dvigatelya

    Как подключить электродвигатель 380В на 220В

    В жизни бывают ситуации, когда нужно запустить 3-х фазный асинхронный электродвигатель от бытовой сети. Проблема в том, что в вашем распоряжении только одна фаза и «ноль».

    Что делать в такой ситуации? Можно ли подключить мотор с тремя фазами к однофазной сети?

    Если с умом подойти к работе, все реально. Главное — знать основные схемы и их особенности.

    Конструктивные особенности

    Перед тем как приступать к работе, разберитесь с конструкцией АД (асинхронный двигатель).

    Устройство состоит из двух элементов — ротора (подвижная часть) и статора (неподвижный узел).

    Статор имеет специальные пазы (углубления), в которые и укладывается обмотка, распределенная таким образом, чтобы угловое расстояние составляло 120 градусов.

    Обмотки устройства создают одно или несколько пар полюсов, от числа которых зависит частота, с которой может вращаться ротор, а также другие параметры электродвигателя — КПД, мощность и другие параметры.

    При включении асинхронного мотора в сеть с тремя фазами, по обмоткам в различные временные промежутки протекает ток.

    Создается магнитное поле, взаимодействующее с роторной обмоткой и заставляющее его вращаться.

    Другими словами, появляется усилие, прокручивающее ротор в различные временные промежутки.

    Обратите внимание

    Если подключить АД в сеть с одной фазой (без выполнения подготовительных работ), ток появится только в одной обмотке.

    Создаваемого момента будет недостаточно, чтобы сместить ротор и поддерживать его вращение.

    Вот почему в большинстве случаев требуется применение пусковых и рабочих конденсаторов, обеспечивающих работу трехфазного мотора. Но существуют и другие варианты.

    Как подключить электродвигатель с 380 на 220В без конденсатора?

    Как отмечалось выше, для пуска ЭД с короткозамкнутым ротором от сети с одной фазой чаще всего применяется конденсатор.

    Именно он обеспечивает пуск устройства в первый момент времени после подачи однофазного тока. При этом емкость пускового устройства должна в три раза превышать этот же параметр для рабочей емкости.

    Для АД, имеющих мощность до 3-х киловатт и применяемых в домашних условиях, цена на пусковые конденсаторы высока и порой соизмерима со стоимостью самого мотора.

    Следовательно, многие все чаще избегают емкостей, применяемых только в момент пуска.

    По-другому обстоит ситуация с рабочими конденсаторами, использование которых позволяет загрузить мотор на 80-85 процентов его мощности. В случае их отсутствия показатель мощности может упасть до 50 процентов.

    Тем не менее, бесконденсаторный пуск 3-х фазного мотора от однофазной сети возможен, благодаря применению двунаправленных ключей, срабатывающих на короткие промежутки времени.

    Требуемый момент вращения обеспечивается за счет смещения фазных токов в обмотках АД.

    Сегодня популярны две схемы, подходящие для моторов с мощностью до 2,2 кВт.

    Важно

    Интересно, что время пуска АД от однофазной сети ненамного ниже, чем в привычном режиме.

    Основные элементы схемы — симисторы и симметричный динистры. Первые управляются разнополярными импульсами, а второй — сигналами, поступающими от полупериода питающего напряжения.

    Схема №1.

    Подходит для электродвигателей на 380 Вольт, имеющих частоту вращения до 1 500 об/минуту с обмотками, подключенными по схеме треугольника.

    В роли фазосдвигающего устройства выступает RC-цепь. Меняя сопротивление R2, удается добиться на емкости напряжения, смещенного на определенный угол (относительно напряжения бытовой сети).

    Выполнение главной задачи берет на себя симметричный динистор VS2, который в определенный момент времени подключает заряженную емкость к симистору и активирует этот ключ.

    Схема №2.

    Подойдет для электродвигателей, имеющих частоту вращения до 3000 об/минуту и для АД, отличающихся повышенным сопротивлением в момент пуска.

    Для таких моторов требуется больший пусковой ток, поэтому более актуальной является схема разомкнутой звезды.

    Особенность — применение двух электронных ключей, замещающих фазосдвигающие конденсаторы. В процессе наладки важно обеспечить требуемый угол сдвига в фазных обмотках.

    Делается это следующим образом:

    • Напряжение на электродвигатель подается через ручной пускатель (его необходимо подключить заранее).
    • После нажатия на кнопку требуется подобрать момент пуска с помощью резистора R

    При реализации рассмотренных схем стоит учесть ряд особенностей:

    • Для эксперимента применялись безрадиаторные симисторы (типы ТС-2-25 и ТС-2-10), которые отлично себя проявили. Если использовать симисторы на корпусе из пластмассы (импортного производства), без радиаторов не обойтись.
    • Симметричный динистор типа DB3 может быть заменен на KP Несмотря на тот факт, что KP1125 сделан в России, он надежен и имеет меньше переключающее напряжение. Главный недостаток — дефицитность этого динистора.

    Как подключить через конденсаторы

    Для начала определитесь, какая схема собрана на ЭД. Для этого откройте крышку-барно, куда выводятся клеммы АД, и посмотрите, сколько проводов выходит из устройства (чаще всего их шесть).

    Обозначения имеют следующий вид: С1-С3 — начала обмотки, а С4-С6 — ее концы. Если между собой объединяются начала или концы обмоток, это «звезда».

    Совет

    Сложнее всего обстоят дела, если с корпуса просто выходит шесть проводов. В таком случае нужно искать на них соответствующие обозначения (С1-С6).

    Чтобы реализовать схему подключения трехфазного ЭД к однофазной сети, требуются конденсаторы двух видов — пусковые и рабочие.

    Первые применяются для пуска электродвигателя в первый момент. Как только ротор раскручивается до нужного числа оборотов, пусковая емкость исключатся из схемы.

    Если этого не происходит, возможные серьезные последствия вплоть до повреждения мотора.

    Главную функцию берут на себя рабочие конденсаторы. Здесь стоит учесть следующие моменты:

    • Рабочие конденсаторы подключаются параллельно;
    • Номинальное напряжение должно быть не меньше 300 Вольт;
    • Емкость рабочих емкостей подбирается с учетом 7 мкФ на 100 Вт;
    • Желательно, чтобы тип рабочего и пускового конденсатора был идентичным. Популярные варианты — МБГП, МПГО, КБП и прочие.

    Если учитывать эти правила, можно продлить работу конденсаторов и электродвигателя в целом.

    Расчет емкости должен производиться с учетом номинальной мощности ЭД.  Если мотор будет недогружен, неизбежен перегрев, и тогда емкость рабочего конденсатора придется уменьшать.

    Если выбрать конденсатор с емкостью меньше допустимой, то КПД электромотора будет низким.

    Помните, что даже после отключения схемы на конденсаторах сохраняется напряжение, поэтому перед началом работы стоит производить разрядку устройства.

    Также учтите, что подключение электродвигателя мощностью от 3 кВт и более к обычной проводке запрещено, ведь это может привести к отключению автоматов или перегоранию пробок. Кроме того, высок риск оплавления изоляции.

    Чтобы подключить ЭД 380 на 220В с помощью конденсаторов, действуйте следующим образом:

    • Соедините емкости между собой (как упоминалось выше, соединение должно быть параллельным).
    • Подключите детали двумя проводами к ЭД и источнику переменного однофазного напряжения.
    • Включайте двигатель. Это делается для того, чтобы проверить направление вращения устройства. Если ротор движется в нужном направлении, каких-либо дополнительных манипуляций производить не нужно. В ином случае провода, подключенные к обмотке, стоит поменять местами.

    С конденсатором дополнительная упрощенная — для схемы звезда.

    С конденсатором дополнительная упрощенная — для схемы треугольник.

    Как подключить с реверсом

    В жизни бывают ситуации, когда требуется изменить направление вращения мотора. Это возможно и для трехфазных ЭД, применяемых в бытовой сети с одной фазой и нулем.

    Для решения задачи требуется один вывод конденсатора подключать к отдельной обмотке без возможности разрыва, а второй — с возможностью переброса с «нулевой» на «фазную» обмотку.

    Для реализации схемы можно использовать переключатель с двумя положениями.

    К крайним выводам подпаиваются провода от «нуля» и «фазы», а к центральному — провод от конденсатора.

    Как подключить по схеме «звезда-треугольник» (с тремя проводами)

    В большей части в ЭД отечественного производства уже собрана схема звезды. Все, что требуется — пересобрать треугольник.

    Главным достоинством соединения «звезда/треугольник» является тот факт, что двигатель выдает максимальную мощность.

    Несмотря на это, в производстве такая схема применяется редко из-за сложности реализации.

    Чтобы подключить мотор и сделать схему работоспособной, требуется три пускателя.

    Обратите внимание

    К первому (К1) подключается ток, а к другому — обмотка статора. Оставшиеся концы подключаются к пускателям К3 и К2.

    Далее обмотка последнего пускателя (К2) объединяется с оставшимися фазам для создания схемы «треугольник».

    Когда к фазе подключается пускатель К3, остальные концы укорачиваются, и схема преобразуется в «звезду».

    Учтите, что одновременное включение К2 и К3 запрещено из-за риска короткого замыкания или выбиванию АВ, питающего ЭД.

    Чтобы избежать проблем, предусмотрена специальная блокировка, подразумевающая отключение одного пускателя при включении другого.

    Принцип работы схемы прост:

    • При включении в сеть первого пускателя, запускается реле времени и подает напряжение на третий пускатель.
    • Двигатель начинает работу по схеме «звезда» и начинает работать с большей мощностью.
    • Через какое-то время реле размыкает контакты К3 и подключает К2. При этом электродвигатель работает по схеме «треугольник» со сниженной мощностью. Когда требуется отключить питание, включается К1.

    Итоги

    Как видно из статьи, подключить электродвигатель трехфазного тока в однофазную сеть без потери мощности реально. При этом для домашних условий наиболее простым и доступным является вариант с применением пускового конденсатора.

    Источник: https://ElektrikExpert.ru/kak-podklyuchit-elektrodvigatel-380v-na-220v.html

    Подключение электродвигателя через конденсатор

    Тема очень востребованная и вызывающая множество вопросов. Для начала разберемся какие бывают асинхронные электродвигатели переменного тока и в каких случаях применяется подключение через конденсаторы. Затем рассмотрим схемы и формулы для выбора конденсаторов.

    Двигатели по способу питания делятся на трехфазные и однофазные. Вначале разберемся с подключением через конденсатор трехфазного ЭД.

    Коротенько про трехфазные асинхронные электродвигатели

    Трехфазные асинхронные электродвигатели получили широкое применение в различных отраслях промышленности, сельского хозяйства, быту. ЭД состоит из статора, ротора, клеммной коробки, щитов с подшипниками, вентилятора и кожуха вентилятора.

    Стягивающие шпильки я уже снимать не стал, чтобы добраться до статора с ротором. Но выпирающая часть, на которой сидит вентилятор и есть ротор. Ротор – вращающаяся часть, статор неподвижная (на рисунке его не видно).

    Важно

    Далее посмотрим на клеммник более внимательно. С одной стороны у нас С1-С2-С3, а ниже – С4-С5-С6. Это начала и концы обмоток фаз электродвигателя. У нас имеются три фазы, так как двигатель трехфазный – С1-С4, С2-С5, С3-С6. Также присутствует на фото ржавый болт заземления, он находится в клеммнике сверху слева.

    Соединение, которое видно на фотографии называется “звезда”. Я уже писал про звезду и треугольник для трансформаторов – аналогично и для электродвигателей. Сбоку на фотографии я добавил как выглядит схематично звезда для данного электродвигателя и треугольник. Вся разница в расположении перемычек. Их комбинации определяют схему соединения ЭД.

    работа трехфазного электродвигателя без одной фазы при постоянной нагрузке

    Электродвигатель может работать от однофазной сети и без дополнительных мер и схем. Например, при повреждении одной из фаз. Однако, в данном случае произойдет снижение частоты вращения. Снижение частоты вращения приведет к увеличению скольжения, что в свою очередь вызовет увеличение тока двигателя.

    А возрастание тока приведет к нагреву обмоток. При такой ситуации необходимо разгрузить ЭД до 50%. Работа в таком режиме возможна, однако, если двигатель остановится, то повторно пуститься уже не получится.

    почему для пуска от однофазной сети используют именно конденсаторы

    Повторный пуск не произойдет, так как магнитное поле статора будет пульсирующим и, коротко говоря, из-за направленности определенных векторов в противоположные стороны ротор будет неподвижен. Чтобы двигатель пустился, нам необходимо изменить расположение этих векторов. Для этого и используют элементы, которые сдвигают фазы векторов. Рассмотрим схему, которая реализует эту возможность.

    На схеме мы видим, что обмотка разделилась на две ветви – пусковую и рабочую. Пусковая используется с начала пуска до разворота двигателя, затем отключается и используется только рабочая. Для отключения пусковой можно использовать кнопку, например. Нажал и держи пока не развернулся двигатель, а потом отпускай и цепочка разорвана.

    Фазосдвигающими элементами могут выступать сопротивления или конденсаторы. Разница в применении тех или иных в форме магнитного поля. И если, говорить проще, то выбирают конденсаторы, так как при одном значении пускового момента, меньший пусковой ток будет при использовании конденсаторов.

    А при одинаковых пусковых токах у схем с конденсатором будет больше начальный вращающий момент, то есть движок будет быстрее разгоняться, что несомненно лучше для эксплуатации.

    как подключить электродвигатель через конденсатор

    Так как конденсаторы выгоднее во многих смыслах для пуска ЭД, то разберем пару схемок пуска с применением конденсаторов. Для схемы соединения “треугольник” и для схемы соединения “звезда”.

    Пусковая ветвь будет использоваться до момента разворота ЭД, рабочая – напротяжении всей работы двигателя.

    конденсаторы для запуска электродвигателя

    Логично будет далее разобраться, как рассчитать пусковой и рабочий конденсатор для двигателя. Для правильного подбора нам необходимо знать паспортные данные ЭД, или иметь шильду с заводскими значениями.

    Существуют различные схемы и в каждой конденсаторы выбираются по своему. Для схем, приведенных выше выбор конденсаторов осуществляется по двум формулам:

    В формулах выше Iном – это номинальный ток фазы электродвигателя. Если посмотреть на табличку, где через дробь указываются два тока, то это будет меньший из них. Uсети – напряжение питающей сети(~127, ~220).

    Совет

    Значит, вычислили мы ёмкость и следующим шагом нам надо знать напряжение на конденсаторе. Для схем приведенных на рисунках выше напряжение на конденсаторе равняется 1,15 от напряжения сети.

    Но это напряжение переменного тока, а для выбора конденсаторов надо знать напряжение постоянного тока. Тут нам и понадобится небольшая табличка:

    Например, напряжение сети ~220, умножаем на 1,15 получаем 253. В таблице смотрим переменка 250 соответствует постоянке 400В для емкости до 2мкФ, или 600В для емкостей 4-10мкФ. Нужно, чтобы номинальное напряжение конденсатора было равно или больше расчетного.

    Далее, зная рабочее напряжение и требуемую емкость подбираем конденсаторы по параметрам: типы и нужное количество. Конденсаторы для пусковой цепи порой так и называются – пусковыми.

    Вот так, шаг за шагом, мы разобрали как подключить трехфазный асинхронный электродвигатель в однофазную сеть и что для этого необходимо рассчитать и знать. Существуют и другие схемы для подключения двигателя через конденсатор, но эти вопросы рассмотрим в другой раз в другой статье.

    Источник: https://pomegerim.ru/elektricheskie-mashiny/podklu4enie-trehfaznogo-ed-4erez-kondensator.php

    Подключаем самостоятельно трехфазный электродвигатель в 220Вт

    Главная > Подключение и установка > Подключаем самостоятельно трехфазный электродвигатель в 220Вт

    Необходимость использования трехфазного асинхронного электродвигателя самостоятельно чаще всего возникает, когда устанавливается или проектируется самодельное оборудование. Обычно на дачах или в гараже мастера хотят использовать самодельные наждачные станки, бетономешалки, приборы по заточке и обрезке изделий.

    Использование трехфазного асинхронного электродвигателя самостоятельно

    Тут и возникает вопрос: как подключить электродвигатель, рассчитанный на 380, к сети в 220 Вольт. Кроме того, важно как подключить электродвигатель в сеть, так и обеспечить необходимый показатель коэффициента полезного действия (КПД), сохранить эффективность и работоспособность агрегата.

    Особенности устройства двигателя

    На каждом двигателе есть пластина или шильдик, где указаны технические данные и схема скрутки обмоток. Символ Y обозначает соединение звездой, а ∆ – треугольником. Помимо этого, на пластине обозначено напряжение сети, для которого предназначен электродвигатель. Разводка для подсоединения к сети находится на клеммнике, куда выводят провода обмотки.

    Для обозначения начала и конца обмотки используют буквы С или U, V, W. Первое обозначение было в практике раньше, а английские буквы стали применять после введения ГОСТа.

    Буквы для обозначения начала и конца обмотки

    Не всегда использовать для работы двигатель, предназначенный для трехфазной сети, представляется возможным.

    Если на клеммник выведено 3 вывода, а не 6 как обычно, то подключение возможно только с напряжением, которое указано в инженерных характеристиках.

    В этих агрегатах соединение треугольником или звездой уже сделано внутри самого прибора. Поэтому использовать электродвигатель на 380 Вольт с 3 выводами для однофазной системы невозможно.

    Можно частично разобрать двигатель и переделать 3 вывода на 6, но это сделать не так просто.

    Существует разные схемы того, как лучше подключать приборы с параметрами в 380 Вольт в однофазную сеть. Чтобы использовать трехфазный электродвигатель в сети 220 Вольт, проще воспользоваться одним из 2 способов подключения: «звезда» или «треугольник». Хотя можно осуществить запуск трехфазного двигателя с 220 без конденсаторов. Рассмотрим все варианты.

    «Звезда»

    Как самостоятельно подключить люстру к выключателю

    На рисунке показано, как выполняется этот тип подключения. В работе электродвигателя следует дополнительно воспользоваться фазосдвигающими конденсаторами, которые ещё называют пусковыми (Спуск.) и рабочими (Сраб.).

    Тип подключения «Звезда»

    При подключении звездой все три конца обмотки соединяются. Для этого используют специальную перемычку. Питание подается на клеммы с начала обмоток. При этом начало обмотки С1(U1) через параллельно подключенные конденсаторы поступает на начало обмотки С3(U3). Далее этот конец и С2(U2) надо подключить к сети.

    «Треугольник»

    В этом виде подключения, как и в первом примере, используются конденсаторы. Для того чтобы подключить по этой схеме скрутки потребуются 3 перемычки. Они будут соединять начало и конец обмотки.

    Выводы, идущие с начала обмотки С6С1 через такую же параллельную схему, как и в случае с подключением «звезда», соединяются с выводом, идущим от С3С5.

    Затем полученный конец и вывод С2С4 следует подключить к сети.

    Тип подключения «Треугольник»

    Если на шильдике указаны показатели 380/220ВВ, то подключение в сеть возможно только по «треугольнику».

    Как подсчитать емкость

    Для рабочего конденсатора применяется формула:

    Стабилизатор напряжения трехфазный

    Сраб.=2780хI/U, где U – номинальное напряжение,

    I – ток.

    Существует и другая формула:

    Сраб.= 66хР, где Р – это мощность трехфазного электродвигателя.

    Получается, что 7мкФ емкости конденсатора рассчитаны на 100Вт его мощности.

    Значение для емкости пускового устройства должно быть на 2,5-3 порядка больше рабочего.

    Такое расхождение показателей по емкости у конденсаторов требуется, потому что пусковой элемент включается при работе трехфазного двигателя на непродолжительное время.

    К тому же при включении высшая нагрузка на него значительно больше, оставлять в рабочем положении это устройство на более длительный период не стоит, иначе из-за перекоса тока по фазам через некоторое время электродвигатель начнет перегреваться.

    Обратите внимание

    Если вы используете для работы электродвигатель, мощность которого меньше 1кВт, то пусковой элемент не потребуется.

    Иногда емкости одного конденсатора для начала работы не хватает, тогда схема подбирается из нескольких разных элементов, соединенных последовательно. Общую емкость при параллельном соединении можно рассчитать по формуле:

    Cобщ=C1+C1+…+Сn.

    На схеме подобное подключение выглядит следующим образом:

    Схема параллельного подключения

    О том, насколько правильно подобраны емкости конденсаторов, можно будет понять только в процессе использования.

    Из-за этого схема из нескольких элементов более оправдана, ведь при большей емкости двигатель будет перегреваться, а при меньшей – выходная мощность не достигнет нужного уровня. Подбор емкости лучше начать с минимального ее значения и постепенно доводить до оптимального.

    При этом можно замерить ток с помощью токоизмерительных щипцов, тогда подобрать оптимальный вариант станет проще. Подобный замер делают в рабочем режиме трехфазного электродвигателя.

    Какие выбрать конденсаторы

    Прокладываем электропроводку самостоятельно

    Для подключения электродвигателя чаще всего используют бумажные конденсаторы (МБГО, КБП или МПГО), но все они обладают небольшими емкостными характеристиками и достаточной громоздкостью.

    Другой вариант – подобрать электролитические модели, хотя здесь придется дополнительно подключить в сеть диоды и резисторы.

    К тому же при пробое диода, а это случается довольно часто, через конденсатор начнет поступать переменный ток, что может привести к взрыву.

    Важно

    Специалисты по электрооборудованию рекомендуют использовать варианты металлизированных полипропиленовых конденсаторов (СВВ), которые отличаются надежностью и износостойкостью.

    Кроме емкости, стоит обратить внимание на рабочее напряжение в домашней сети. При этом следует подбирать модели с техническими показателями не меньше 300Вт. Для бумажных конденсаторов подсчет рабочего напряжения для сети немного другой, и рабочее напряжение у данного типа устройств должно быть выше 330-440ВВ.

    Пример подключения в сеть

    Посмотрим, как это подключение рассчитывается на примере двигателя со следующими характеристиками на шильдике.

    Характеристики двигателя

    Итак, возьмем трехфазный асинхронный двигатель со схемой соединения для сети в 220 Вольт «треугольником» и «звездой» для 380 Вольт.

    В данном случае мощность взятого для примера электродвигателя составляет 0,25 kW, что значительно меньше 1 kW, пусковой конденсатор не потребуется, а общая схема будет выглядеть следующим образом.

    Схема соединения в 220 В

    Для подключения в сеть необходимо найти емкость рабочего конденсатора. Для этого стоит подставить значения в формулу:
    Сраб.= 2780 2А/220В=25 мкФ.

    Рабочее напряжение устройства выбирается выше показателя в 300 Вольт. Исходя из этих данных, сортируют соответствующие модели. Некоторые варианты можно найти в таблице:

    Зависимость емкости и напряжения от типа конденсатора

    Тип конденсатораЕмкость, мкФНоминальное напряжение, В
    МБГ01 2 4 10 20

    30

    400, 500 160, 300, 400, 500 160, 300, 400 160, 300, 400, 500 160, 300, 400, 500

    160, 300

    МБГ41; 2; 4; 10; 0,5250, 500
    К73-21; 2; 3; 4; 6; 8; 10400, 630
    К75-121; 2; 3; 4; 5; 6; 8; 10400
    К75-121; 2; 3; 4; 5; 6; 8630
    К75-404; 5; 6; 8; 10; 40; 60; 80; 100750

    Подключение тиристорным ключом

    Трехфазный электродвигатель, предназначенный для 380 Вольт, используют для однофазного напряжения, применяя тиристорный ключ. Для того чтобы запустить агрегат в таком режиме, потребуется вот эта схема:

    Схема трехфазного электродвигателя для однофазного напряжения

    В работе использованы:

    • транзисторы из серии VT1, VT2;
    • резисторы МЛТ;
    • кремниевые диффузионные диоды Д231
    • тиристоры серии КУ 202.

    Все элементы рассчитаны на напряжение 300 Вольт и ток 10А.
    Собирается тиристорный ключ, как и другие микросхемы, на плате.

    Сделать такое устройство под силу всем, кто имеет начальные познания в создании микросхем. При мощности электродвигателя меньше 0,6-0,7kW при подключении в сеть нагрева тиристорного ключа не наблюдается, поэтому дополнительное охлаждение не потребуется.

    Подобное подключение может показаться слишком сложным, но все зависит от того, какие у вас есть элементы, чтобы переделать двигатель из 380Вт в однофазный. Как видно, использовать трехфазный двигатель для 380 через однофазную сеть не так сложно, как это кажется на первый взгляд.

    Подключение. Видео

    Видео рассказывает о безопасном подключении наждака к сети 220 В и делится советами, что для этого нужно.

    Источник: https://elquanta.ru/ustanovka_podklychenie/podklyuchit-trekhfaznyjj-ehlektrodvigatel.html

    Схема подключения двигателя на 220в через конденсатор пусковой и рабочий

    Есть 2 типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Их различие в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это нужно потому, что после разгона она снижает КПД.

    В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная, они смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

    Схема подключения однофазного двигателя через конденсатор

    При подключении однофазного конденсаторного двигателя есть несколько вариантов схем подключения. Без конденсаторов электромотор гудит, но не запускается.

    • 1 схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже.
    • 3 схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском, а с рабочим конденсором — если нужны хорошие рабочие характеристики.
    • 2 схема — подключения однофазного двигателя — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и используется чаще всего. Она на втором рисунке. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

    Схема подключения трёхфазного двигателя через конденсатор

    Здесь напряжение 220 вольт распределяется на 2 последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.

    Максимальной мощности двигателя на 380 В в сети 220 В можно достичь используя соединение типа треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность.

    Важно помнить: трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на 220 В. Поэтому если есть ввод на 380 В — обязательно подключайте к нему — это обеспечит более стабильную и экономичную работу устройств. Для пуска мотора не понадобятся различные пусковики и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к сети 380 В.

    Онлайн расчет емкости конденсатора мотора

    Введите данные для расчёта конденсаторов — мощность двигателя и его КПД

    Есть специальная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись онлайн калькулятором или рекомендациями, которые выведены на основании многих опытов:

    Рабочий конденсатор берут из расчета 0,8 мкФ на 1 кВт мощности двигателя;
    Пусковой подбирается в 2-3 раза больше.

    Конденсаторы должны быть неполярными, то есть не электролитическими. Рабочее напряжение этих конденсаторов должно быть минимум в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 350 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting.

    Пусковые конденсаторы для моторов

    Эти конденсаторы можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.

    При нормальной работе трехфазных асинхронных электродвигателей с конденсаторным пуском, включенных в однофазную сеть предполагается изменение (уменьшение) емкости конденсатора с увеличением частоты вращения вала. В момент пуска асинхронных двигателей (особенно, с нагрузкой на валу) в сети 220 В требуется повышенная емкость фазосдвигающего конденсатора.

    Реверс направления движения двигателя

    Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Такую операцию может делать двухпозиционный переключатель, на центральный контакт которого подключается вывод от конденсатора, а на два крайних вывода от «фазы» и «нуля».

    Схема подключения электродвигателя на 220В через конденсатор

    Подключение электродвигателя к однофазной сети – это ситуация, которая встречается достаточно часто. Особенно такое подключение требуется на загородных участках, когда трехфазные электродвигатели используются под какие-то приспособления. К примеру, для изготовления наждака или самодельного сверлильного аппарата. Кстати, мотор стиральной машины через конденсатор производится. Но как это сделать правильно? Необходима схема подключения электродвигателя на 220В через конденсатор. Давайте разбираться в ней.

    Начнем с того, что существует две стандартные схемы подключения электродвигателя к трехфазной сети: звезда и треугольник. Оба вида подключения создают условия, при которых в обмотках статора двигателя попеременно проходит ток. Он создает внутри вращающееся магнитное поле, которое действует на ротор, заставляя его вращаться. Если подключается трехфазный электродвигатель в однофазную сеть, то вот этот вращающийся момент не создается. Что делать? Вариантов несколько, но чаще всего электрики устанавливают в схему конденсатор.

    Что при этом получается?

    • Скорость вращения не изменяется.
    • Мощность сильно падает. Конечно, говорить о конкретных цифрах здесь не приходиться, потому что падение мощности будет зависеть от разных факторов. К примеру, от условий эксплуатации самого двигателя, от схемы подключения, от конденсаторов, а, точнее, от их емкости. Но в любом случае потери будут составлять от 30 до 50 процентов.

    Необходимо отметить, что не все электродвигатели могут работать от однофазной сети. Лучше всего работают асинхронные виды. У них даже на бирках указаны, что можно проводить подключение и на трехфазную сеть, и на однофазную. При этом обязательно указывается величина напряжения – 127/220 или 220/380В. Меньший показатель предназначен для схемы треугольник, больший для звезды. На картинке ниже показано обозначение.

    Внимание! Конденсаторный двигатель в однофазную сеть лучше подключать через схему треугольник. Это обусловлено тем, что при таком виде подключения уменьшаются потери мощности агрегата.

    Обратите внимание в рисунке на нижнюю бирку (Б). Она говорит о том, что двигатель можно подключить только через звезду. С этим придется смириться и получить аппарат с низкой мощностью. Если есть желание изменить ситуацию, то придется разобрать двигатель и вывести еще три конца обмоток, после чего провести подключение по треугольнику.

    И еще один очень важный момент. Если вы устанавливаете в однофазную сеть электродвигатель с напряжением 127/220 вольт, то понятно, что к сети напряжением 220В можно подключиться через звезду. Потери мощности гарантированы. Но сделать в данном случае ничего нельзя. Если будет произведено подключение этого прибора через треугольник – мотор просто сгорит.

    Схемы подключения

    Давайте рассмотрим обе схемы подключения. Начнем с треугольника. В любой схеме очень важно правильно подключить именно конденсатор. В данном случае провода распределяются таким образом:

    • Два контакта подсоединяются к сети.
    • Один через конденсатор к обмотке.

    Но тут есть один момент, если электродвигатель не нагружать, то его ротор без проблем начнем вращаться. Если пуск будет производиться под определенной нагрузкой, то вал или не будет вращаться вообще, или с очень низкой скоростью. Чтобы решить эту проблему, в схему необходимо установить еще один конденсатор – пусковой. На нем лежит всего лишь одна задача – запустить мотор, отключиться и разрядиться. По сути, пусковой работает всего 2-3 секунды.

    В схеме звезда подключение конденсатора производится на выходные концы обмоток. Две из них соединяются с сетью 220В, а свободный конец и один из подключенных к сети замыкают конденсатор.

    Как рассчитать емкость

    Емкость конденсатора, который устанавливается в схему подключения трехфазного электродвигателя, подсоединяемого к сети напряжением в 220В, зависит от самой схемы. Для этого существуют специальные формулы.

    Cр = 2800•I/U, где Ср – это емкость, I – сила тока, U – напряжение. Если производится подсоединение треугольником, то используется та же формула, только коэффициент 2800 меняется на 4800.

    Хотелось бы обратить ваше внимание на тот факт, что сила тока (I) на бирке мотора не указывается, поэтому ее надо будет рассчитать по вот этой формуле:

    I = P/(1.73•U•n•cosф), где Р- это мощность электрического двигателя, n – КПД агрегата, cosф – коэффициент мощности, 1,73 – это поправочный коэффициент, он характеризует соотношение между двумя видами токов: фазным и линейным.

    Так как чаще всего подключение трехфазного двигателя к однофазной сети 220В производится по треугольнику, то емкость конденсатора (рабочего) можно подсчитать по более простой формуле:

    C = 70•Pн, здесь Рн – это номинальная мощность агрегата, измеряемая в киловаттах и обозначаемая на бирке прибора. Если разобраться в этой формуле, то можно понять, что существует достаточно простое соотношение: 7 мкФ на 100 Вт. К примеру, если устанавливается мотор мощностью 1 кВт, то для него необходим конденсатор на 70 мкФ.

    Как определить, точно ли подобран конденсатор? Это можно проверить только в рабочем режиме.

    • Если в процессе эксплуатации мотор перегревается, то, значит, емкость прибора больше требуемой.
    • Низкая мощность двигателя, значит, емкость занижена.

    Даже расчет может привести к неправильному выбору, ведь условия эксплуатации мотора будут влиять на его работу. Поэтому рекомендуется начинать подбор с низких величин, и при необходимости наращивать показатели до необходимых (номинальных).

    Что касается пусковой емкости, то здесь в первую очередь учитывается, какой пусковой момент необходим для запуска электродвигателя. Хотелось бы обратить ваше внимание на то, что пусковая емкость и емкость пускового конденсатора – это не одно и то же. Первая величина – это сумма емкостей рабочего и пускового конденсаторов.

    Внимание! Емкость пускового конденсатора должна быть раза в три больше емкости рабочего. При этом специалисты советуют вместо одного большого прибора использовать несколько с малой емкостью. К тому же пусковые работают непродолжительное время, поэтому на их место можно устанавливать дешевые модели.

    В качестве рабочих можно использовать бумажные, металлизированные или пленочные аналоги. При этом необходимо учитывать тот факт, что допустимое напряжение должно быть в полтора раза быть больше номинального. Как видите, подобрать точно конденсатор под электродвигатель достаточно непростым. Даже расчет является процессом неточным.

    Как подключить трехфазный электродвигатель в сеть 220В – схемы и рекомендации

    Как правильно провести подключение электродвигателя 380 на 220 вольт

    Схема подключения трехфазного электродвигателя к трехфазной сети

    Однофазный асинхронный двигатель, схема подключения и запуска

    Работа асинхронных электрических двигателей основывается на создании вращающегося магнитного поля, приводящего в движение вал. Ключевым моментом является пространственное и временное смещение обмоток статора по отношению друг к другу. В однофазных асинхронных электродвигателях для создания необходимого сдвига по фазе используется последовательное включение в цепь фазозамещающего элемента, такого как, например, конденсатор.

    Отличие от трехфазных двигателей

    Использование асинхронных электродвигателей в чистом виде при стандартном подключении возможно только в трехфазных сетях с напряжением в 380 вольт, которые используются, как правило, в промышленности, производственных цехах и других помещениях с мощным оборудованием и большим энергопотреблением. В конструкции таких машин питающие фазы создают на каждой обмотке магнитные поля со смещением по времени и расположению (120˚ относительно друг друга), в результате чего возникает результирующее магнитное поле. Его вращение приводит в движение ротор.

    Однако нередко возникает необходимость подключения асинхронного двигателя в однофазную бытовую сеть с напряжением в 220 вольт (например в стиральных машинах). Если для подключения асинхронного двигателя будет использована не трехфазная сеть, а бытовая однофазная (то есть запитать через одну обмотку), он не заработает. Причиной тому переменный синусоидальный ток, протекающий через цепь. Он создает на обмотке пульсирующее поле, которое никак не может вращаться и, соответственно, двигать ротор. Для того, чтобы включить однофазный асинхронный двигатель необходимо:

    1. добавить на статор еще одну обмотку, расположив ее под 90˚ углом от той, к которой подключена фаза.
    2. для фазового смещения включить в цепь дополнительной обмотки фазосдвигающий элемент, которым чаще всего служит конденсатор.

    Редко для сдвига по фазе создается бифилярная катушка. Для этого несколько витков пусковой обмотки мотаются в обратную сторону. Это лишь один из вариантов бифиляров, которые имеют несколько другую сферу применения, поэтому, чтобы изучить их принцип действия, следует обратиться к отдельной статье.

    После подключения двух обмоток такой двигатель с конструкционной точки зрения является двухфазным, однако его принято называть однофазным из-за того что в качестве рабочей выступает лишь одна из них.

    Схема подключения коллекторного электродвигателя в 220В

    Схема подключения однофазного асинхронного двигателя (схема звезда)

    Как это работает

    Пуск двигателя с двумя расположенными подобным образом обмотками приведет к созданию токов на короткозамкнутом роторе и кругового магнитного поля в пространстве двигателя. В результате их взаимодействия между собой ротор приводится в движение. Контроль показателей пускового тока в таких двигателях осуществляется частотным преобразователем.

    Несмотря на то, что функцию фаз определяет схема присоединения двигателя к сети, дополнительную обмотку нередко называют пусковой. Это обусловлено особенностью, на которой основывается действие однофазных асинхронных машин – крутящийся вал, имеющий вращающее магнитное поле, находясь во взаимодействии с пульсирующим магнитным полем может работать от одной рабочей фазы. Проще говоря, при некоторых условиях, не подсоединяя вторую фазу через конденсатор, мы могли бы запустить двигатель, раскрутив ротор вручную и поместив в статор. В реальных условиях для этого необходимо запустить двигатель с помощью пусковой обмотки (для смещения по фазе), а потом разорвать цепь, идущую через конденсатор. Несмотря на то, что поле на рабочей фазе пульсирующее, оно движется относительно ротора и, следовательно, наводит электродвижущую силу, свой магнитный поток и силу тока.

    Основные схемы подключения

    В качестве фазозамещающего элемента для подключения однофазного асинхронного двигателя можно использовать разные электромеханические элементы (катушка индуктивности, активный резистор и др.), однако конденсатор обеспечивает наилучший пусковой эффект, благодаря чему и применяется для этого чаще всего.

    однофазный асинхронный двигатель и конденсатор

    Различают три основные способа запуска однофазного асинхронного двигателя через:

    • рабочий;
    • пусковой;
    • рабочий и пусковой конденсатор.

    В большинстве случаев применяется схема с пусковым конденсатором. Это связано с тем, что она используется как пускатель и работает только во время включения двигателя. Дальнейшее вращение ротора обеспечивается за счет пульсирующего магнитного поля рабочей фазы, как уже было описано в предыдущем абзаце. Для замыкания цепи пусковой цепи зачастую используют реле или кнопку.

    Поскольку обмотка пусковой фазы используется кратковременно, она не рассчитана на большие нагрузки, и изготавливается из более тонкой проволоки. Для предотвращения выхода её из строя в конструкцию двигателей включают термореле (размыкает цепь после нагрева до установленной температуры) или центробежный выключатель (отключает пусковую обмотку после разгона вала двигателя).

    Таким путем достигаются отличные пусковые характеристики. Однако данная схема обладает одним существенным недостатком – магнитное поле внутри двигателя, подключенного к однофазной сети, имеет не круговую, а эллиптическую форму. Это увеличивает потери при преобразовании электрической энергии в механическую и, как следствие, снижает КПД.

    Схема с рабочим конденсатором не предусматривает отключение дополнительной обмотки после запуска и разгона двигателя. В данном случае конденсатор позволяет компенсировать потери энергии, что приводит к закономерному увеличению КПД. Однако в пользу эффективности проходится жертвовать пусковыми характеристиками.

    Для работы схемы необходимо подбирать элемент с определенной ёмкостью, рассчитанной с учетом тока нагрузки. Неподходящий по емкости конденсатор приведет к тому, что вращающееся магнитное поле будет принимать эллиптическую форму.

    Своеобразной «золотой серединой» является схема подключения с использованием обоих конденсаторов – и пускового, и рабочего. При подключении двигателя таким способом его пусковые и рабочие характеристики принимают средние значения относительно описанных выше схем.

    На практике для приборов, требующих создания сильного пускового момента используется первая схема с соответствующим конденсатором, а в обратной ситуации – вторая, с рабочим.

    Другие способы

    При рассмотрении методов подключения однофазных асинхронных двигателей нельзя обойти внимание два способа, конструктивно отличающихся от схем для подключения через конденсатор.

    С экранированными полюсами и расщепленной фазой

    В конструкции такого двигателя используется короткозамкнутая дополнительная обмотка, а на статоре присутствуют два полюса. Аксиальный паз делит каждый из них на две несимметричные половины, на меньшей из которых располагается короткозамкнутый виток.

    После включения двигателя в электрическую сеть пульсирующий магнитный поток разделяется на 2 части. Одна из них движется через экранированную часть полюса. В результате получается два разнонаправленных потока с отличной от основного поля скоростью вращения. Благодаря индуктивности появляется электродвижущая сила и сдвиг магнитных потоков по фазе и времени.

    Витки короткозамкнутой обмотки приводят к существенным потерям энергии, что и является главным недостатком схемы, однако она относительно часто используется в климатических и нагревательных приборах с вентилятором.

    С асимметричным магнитопроводом статора

    Особенностью двигателей с данной конструкцией заключается в несимметричной форме сердечника, из-за чего появляются явно выраженные полюса. Для работы схемы необходим короткозамкнутый ротор и обмотка в виде беличьей клетки. Характерным отличием этой конструкции является отсутствие необходимости в фазовом смещении. Улучшенный пуск двигателя осуществляется благодаря оснащению его магнитными шунтами.

    Среди недостатков этих моделей асинхронных электродвигателей выделяют низкий КПД, слабый пусковой момент, отсутствие реверса и сложность обслуживания магнитных шунтов. Но, несмотря на это, они имеют широкое применение в производстве бытовой техники.

    Подбор конденсатора

    Перед тем как подключить однофазный электродвигатель, необходимо произвести расчет необходимой ёмкости конденсатора. Это можно сделать самостоятельно или воспользоваться онлайн-калькуляторами. Как правило, для рабочего конденсатора на 1 кВт мощности должно приходиться примерно 0,7-0,8 мкФ емкости, и около 1,7-2 мкФ – для пускового. Стоит отметить, что напряжение последнего должно составлять не менее 400 В. Эта необходимость обусловлена возникновением 300-600 вольтного всплеска напряжения при старте и останове двигателя.

    Керамический и электролитический конденсатор

    Ввиду своих функциональных особенностей однофазные электродвигатели находят широкое применение в бытовой технике: пылесосах, холодильниках, газонокосилках и других приборов, для работы которых достаточно частоты вращения двигателя до 3000 об/мин. Большей скорости, при подключении к стандартной сети с частотой тока в 50 Гц, невозможно. Для развития большей скорости используют коллекторные однофазные двигатели.

    Расчет конденсатора для пуска двигателя, схема подключения

    Тема очень востребованная и вызывающая множество вопросов. Для начала разберемся какие бывают асинхронные электродвигатели переменного тока и в каких случаях применяется подключение через конденсаторы. Затем рассмотрим схемы и формулы для выбора конденсаторов. Задача, которая стоит перед нами в этой статье: подключить трехфазный двигатель к однофазному питанию используя схему с конденсаторами. Для этого будет представлена схема и формулы для выбора значения емкостей конденсаторов.

    Двигатели по способу питания делятся на трехфазные и однофазные. Вначале разберемся с подключением через конденсатор трехфазного ЭД.

    Коротенько про трехфазные асинхронные электродвигатели

    Трехфазные асинхронные электродвигатели получили широкое применение в различных отраслях промышленности, сельского хозяйства, быту. ЭД состоит из статора, ротора, клеммной коробки, щитов с подшипниками, вентилятора и кожуха вентилятора.

    Стягивающие шпильки я уже снимать не стал, чтобы добраться до статора с ротором. Но выпирающая часть, на которой сидит вентилятор и есть ротор. Ротор – вращающаяся часть, статор неподвижная (на рисунке его не видно).

    Далее посмотрим на клеммник более внимательно. С одной стороны у нас С1-С2-С3, а ниже – С4-С5-С6. Это начала и концы обмоток фаз электродвигателя. У нас имеются три фазы, так как двигатель трехфазный – С1-С4, С2-С5, С3-С6. Также присутствует на фото ржавый болт заземления, он находится в клеммнике сверху слева.

    Соединение, которое видно на фотографии называется “звезда”. Я уже писал про звезду и треугольник для трансформаторов – аналогично и при подключении электродвигателей. Сбоку на фотографии я добавил как выглядит схематично звезда для данного электродвигателя и треугольник. Вся разница в расположении перемычек. Их комбинации определяют схему соединения ЭД.

    работа трехфазного электродвигателя без одной фазы при постоянной нагрузке

    Электродвигатель может работать от однофазной сети и без дополнительных мер и схем. Например, при повреждении одной из фаз. Однако, в данном случае произойдет снижение частоты вращения. Снижение частоты вращения приведет к увеличению скольжения, что в свою очередь вызовет увеличение тока двигателя.

    А возрастание тока приведет к нагреву обмоток. При такой ситуации необходимо разгрузить ЭД до 50%. Работа в таком режиме возможна, однако, если двигатель остановится, то повторно пуститься уже не получится.

    почему для пуска от однофазной сети используют именно конденсаторы

    Повторный пуск не произойдет, так как магнитное поле статора будет пульсирующим и, коротко говоря, из-за направленности определенных векторов в противоположные стороны ротор будет неподвижен. Чтобы двигатель пустился, нам необходимо изменить расположение этих векторов. Для этого и используют элементы, которые сдвигают фазы векторов. Рассмотрим схему, которая реализует эту возможность.

    На схеме мы видим, что обмотка разделилась на две ветви – пусковую и рабочую. Пусковая используется с начала пуска до разворота двигателя, затем отключается и используется только рабочая. Для отключения пусковой можно использовать кнопку, например. Нажал и держи пока не развернулся двигатель, а потом отпускай и цепочка разорвана.

    Фазосдвигающими элементами могут выступать сопротивления или конденсаторы. Разница в применении тех или иных в форме магнитного поля. И если, говорить проще, то выбирают конденсаторы, так как при одном значении пускового момента, меньший пусковой ток будет при использовании конденсаторов.

    А при одинаковых пусковых токах у схем с конденсатором будет больше начальный вращающий момент, то есть движок будет быстрее разгоняться, что несомненно лучше для эксплуатации.

    Важно: подключение через конденсаторы производят для двигателей до 1,5кВ. Вычислено, что для более мощных ЭД стоимость емкостных элементов превысит стоимость самого движка, следовательно, их установка является нерентабельной. Хотя, если достать их нахаляву, что в нашем пространстве не редкость, то можно и попробовать.

    как подключить электродвигатель через конденсатор

    Так как конденсаторы выгоднее во многих смыслах для пуска ЭД, то разберем пару схемок пуска с применением конденсаторов. Для схемы соединения “треугольник” и для схемы соединения “звезда”.

    Пусковая ветвь будет использоваться до момента разворота ЭД, рабочая – напротяжении всей работы двигателя.

    конденсаторы для запуска электродвигателя

    Логично будет далее разобраться, как рассчитать пусковой и рабочий конденсатор для двигателя. Для правильного подбора нам необходимо знать паспортные данные ЭД, или иметь шильду с заводскими значениями.

    Существуют различные схемы и в каждой конденсаторы выбираются по своему. Для схем, приведенных выше расчет емкости конденсаторов осуществляется по двум формулам:

    схема “звезда”:

    Рабочая емкость = 2800*Iном.эд/Uсети

    схема “треугольник”:

    Рабочая емкость = 4800*Iном/Uсети

    Пусковая емкость в обоих случаях принимается равной 2-3 от рабочей.

    В формулах выше Iном – это номинальный ток фазы электродвигателя. Если посмотреть на табличку, где через дробь указываются два тока, то это будет меньший из них. Uсети – напряжение питающей сети(~127, ~220). Значит, вычислили мы ёмкость и следующим шагом нам надо знать напряжение на конденсаторе. Для схем приведенных на рисунках выше напряжение на конденсаторе равняется 1,15 от напряжения сети. Но это напряжение переменного тока, а для выбора конденсаторов надо знать напряжение постоянного тока. Тут нам и понадобится небольшая табличка:

    Например, напряжение сети ~220, умножаем на 1,15 получаем 253. В таблице смотрим переменка 250 соответствует постоянке 400В для емкости до 2мкФ, или 600В для емкостей 4-10мкФ. Нужно, чтобы номинальное напряжение конденсатора было равно или больше расчетного.

    Далее, зная рабочее напряжение и требуемую емкость подбираем конденсаторы по параметрам: типы и нужное количество. Конденсаторы для пусковой цепи порой так и называются – пусковыми.

    Вот так, шаг за шагом, мы разобрали как подключить трехфазный асинхронный электродвигатель в однофазную сеть и что для этого необходимо рассчитать и знать. Существуют и другие схемы для подключения двигателя через конденсатор, но эти вопросы рассмотрим в другой раз в другой статье.

    Сохраните в закладки или поделитесь с друзьями

    Самое популярное

    220В или 380В? – подключение электродвигателя к сети

    Сложно представить гараж или собственный дом, в котором имеется мастерская без установленных в них электроприборов. Учитывая довольно высокую стоимость, которых владельцы мастерской стараются изготовить их самостоятельно.

    Это могут быть заточные станки или более сложные механизмы, использующие электродвигатели. В каждом гараже всегда можно найти двигатель от неисправной бытовой техники.

    Электроснабжение гаражей осуществляется от сети напряжением 220 вольт. Двигатели от бытовой техники однофазные, а при изготовлении станка появляется необходимость в схеме подключения двигателя.

    Подключение однофазного коллекторного и асинхронного моторов к сети 220 вольт

    В бытовой технике используются коллекторные или асинхронные двигатели. Схема подключения однофазного двигателя при использовании таких электродвигателей будет разная. Для того чтобы выбрать правильную схему необходимо знать тип двигателя.

    Это сделать очень просто, если сохранился шильдик. При его отсутствии следует посмотреть, имеются ли щетки. При их наличии электродвигатель коллекторный, если они отсутствуют — двигатель асинхронный.

    Схема подсоединения коллекторного двигателя очень проста. Достаточно имеющиеся провода подключить к сети 220 вольт и мотор должен заработать.

    Основным недостатком таких моторов большой шум в процессе работы. К достоинствам можно отнести легкость регулировки оборотов. Существует более сложная схема для подключения однофазного асинхронного двигателя.

    Они бывают однофазные и трехфазные. Однофазные электродвигатели выпускают с пусковой обмоткой (бифилярные) и конденсаторные.

    В момент пуска таких моторов пусковая обмотка замыкается, а после достижения необходимых оборотов отключается специальными устройствами. На практике такие электродвигатели включаются специальными кнопками, у которых средние контакты при нажатии замыкаются, а после отпускания кнопки размыкаются. Это так называемые кнопки ПНВС они специально сконструированы для работы с такими электродвигателями.

    В конденсаторных имеется две обмотки, которые работают постоянно. Они смещены относительно друг друга на 90º , благодаря чему можно осуществить реверс.

    Схема подключения асинхронного двигателя на 220в ненамного сложнее включения коллекторного. Отличие состоит в том, что к вспомогательной обмотке подсоединяется конденсатор. Его номинал рассчитывается по сложной формуле.

     

    Но опираясь на эмпирические данные его, подбирают из расчета 70 Мкф на 1 Квт мощности, а рабочий конденсатор в 2–3 раза меньше, и соответственно имеет параметры 25–30 Мкф на 1 Квт.

    Для того чтобы осуществить подключение однофазного двигателя необходимо подключить конденсатор к вспомогательной обмотке, схема несложная и ее может собрать любой человек.

    Достаточно иметь необходимые комплектующие и не перепутать обмотки. Определить назначение обмоток можно с помощью тестера, измерив, сопротивление. Пусковая обмотка имеет в два раза большее сопротивление, чем рабочая.

    Схемы включения однофазного электродвигателя

    Для включения двигателя применяются три схемы подключения электродвигателей на напряжение 220 в. Для тяжелого пуска устройств, таких как бетономешалка, применяют схему с подсоединением пускового конденсатора с последующим его отключением. Существует более простая схема подключения однофазного двигателя с постоянным подключением конденсатора малой емкости к пусковой обмотке, она применяется наиболее часто.

     

     

    При этом параллельно рабочему конденсатору во время пуска подключается дополнительный конденсатор.

    Для того чтобы наиболее полно раскрыть возможности двигателя применяется схема с постоянно подсоединенным конденсатором к вспомогательной обмотке.

    Это самая распространенная схема подключения, с помощью которой подключают любой однофазный асинхронный двигатель при изготовлении заточного станка. При использовании таких схем подсоединения следует знать, что двигатель не сможет развивать полную мощность.

    Подключение трехфазных электродвигателей

    Часто возникает необходимость в подсоединении асинхронного двигателя,предназначенного для подключения к трехфазной сети в однофазную. Схема подключения трехфазного мотора не сильно отличается от подсоединения однофазного.

    Подключение к однофазной сети 220 вольт

    Основное отличие состоит в конструкции самого двигателя. В нем имеются равнозначные обмотки, которые соединяются звездой или треугольником. Все зависит от рабочего напряжения.

    Схема подключения трехфазного двигателя к однофазной сети включает в себя магнитный пускатель, кнопку включения — выключения и конденсатор. Емкость конденсатора рассчитывается по формуле.

    Эта формула справедлива для соединения звездой. И позволяет подобрать рабочий конденсатор.

    Вторая формула позволяет рассчитать номинальную емкость для работы с электродвигателем при соединении обмоток треугольником.

    Номинал конденсатора можно рассчитать по упрощенной формуле:

    Часто при запуске по такой схеме используют пусковой конденсатор, который включают параллельно с рабочим. И выбирается из условий:

    Если необходимого номинала нет, то подбор конденсаторов возможен из имеющихся комплектующих при соединении их параллельно или последовательно.

    При параллельном соединении емкость суммируется, т. е. увеличивается. А при последовательном соединении уменьшается. И будет меньше меньшего номинала. При подборе конденсаторов необходимо учитывать рабочее напряжение, которое должно быть выше сетевого в 1,5 раза.

    При монтаже следует иметь в виду, что схема подключения 3х фазного двигателя предполагает включение конденсатора к третьей обмотке, что позволяет использовать моторы в однофазной сети 220 вольт.

    Для того чтобы использовать механизм на полную мощность, следует подключить его к трехфазной сети.

    Подключение к трехфазной сети

    Для подключения 3 х фазного двигателя на напряжение 380 вольт схема представляет собой соединение обмоток звездой. Соединение треугольником применяется при наличии трехфазной сети на 220 вольт.

    Схема подключения асинхронного двигателя к трехфазной сети имеет пускатель на три фазы, кнопку «пуск – стоп» и двигатель. Но в быту имеется однофазное подключение к гаражу или мастерской. Поэтому и возникает необходимость подключения 3х фазного двигателя через конденсаторы к сети 220 вольт, когда используется схема с применением фазосдвигающей цепочки.

    Для сдвига фазы применяют конденсатор, который подключают к одной из фаз, а две другие подключают к электрической сети. Это стандартная схема подключения асинхронного двигателя, применяемая для подключения к однофазной сети. При изготовлении всевозможных станков возникает необходимость в реверсивном включении механизмов.

    Реверсивная схема подключения при включении трехфазного двигателя к однофазной сети производится по следующей методике.

    Достаточно переключить сетевой провод с одного контакта конденсатора на другой. В результате вал начнет вращаться в обратную сторону.

    Сложнее осуществляется схема реверсивного подключения двигателя на 380 вольт, если имеется трехфазное соединение.

    Для этого применяется принципиальная схема подключения электродвигателя с применением двух магнитных пускателей. С помощью одного из них производится переключение фаз на обмотках.

    Второй имеет стандартное включение. При монтаже необходимо предусмотреть защиту от одновременного включения пускателей. В противном случае произойдет короткое замыкание.

    Техника безопасности

    При самостоятельном подключении электродвигателей следует соблюдать несложные правила. Не работать при подключенном напряжении.

    Строго соблюдать правила техники безопасности. Во время работы применять средства индивидуальной защиты.

    Нельзя допускать к работе с электричеством необученных людей и детей возрастом менее восемнадцать лет.

    Следует помнить, что электричество не имеет запаха и нельзя определить на глаз его наличие на контактах. Обязательно, для определения напряжения использовать только разрешенные средства измерения.

    Схема подключения однофазного двигателя 220 В через конденсатор

    Бывают случаи, когда нужно подключить мотор на 220 вольт – это случается при попытке подключить оборудование под свои нужды, но схема не соответствует техническим характеристикам, указанным в паспорте такого оборудования. Мы постараемся в этой статье разобрать основные методы решения проблемы и представить несколько альтернативных схем подключения однофазного двигателя с конденсатом на 220 вольт.

    Почему это происходит? Например, в гараже необходимо подключить асинхронный двигатель на 220 вольт, который рассчитан на три фазы. Таким образом, необходимо поддерживать КПД (КПД), если альтернативы (в виде двигателя) просто не существует, потому что в цепи из трех фаз легко образуется вращающееся магнитное поле. , что обеспечивает создание условий для вращения ротора в статоре. Без этого КПД будет меньше по сравнению с трехфазной схемой подключения.

    Когда в однофазных двигателях всего одна катушка, мы видим картину, когда поле внутри статора не вращается, а пульсирует, то есть толчок для запуска не происходит, пока сам не раскрутит вал. Чтобы вращение могло происходить самостоятельно, добавили вспомогательную пусковую обмотку. Это вторая фаза, она смещена на 90 градусов и толкает ротор при повороте. Этот двигатель по-прежнему включен в сеть с одной фазой, поэтому название остается однофазным. Такие однофазные синхронные двигатели имеют пусковую обмотку и рабочую.Разница в том, что лаунчер работает только при включении заводского ротора, работает всего три секунды. Вторая обмотка подключена постоянно. Чтобы определить, что есть что, вы можете использовать тестер. На картинке вы можете увидеть соотношение их схемы в целом.

    Подключаем мотор на 220 вольт: мотор запускается от подачи 220 вольт на рабочую и пусковую обмотку, а потом выставляем нужную скорость вручную, нужно отключать пусковые установки. Для фазового сдвига необходимо омическое сопротивление, которое конденсаторы обеспечивают индуктивностью.Встречается сопротивление в виде отдельного резистора и пусковой обмотки, которое выполнено по бифилярной технике. Работает это так: индуктивность катушки сохраняется, а сопротивление становится больше из-за удлиненного медного провода. Такую схему можно увидеть на рисунке 1: подключение электродвигателя 220 вольт.

    Рисунок 1. Схема подключения двигателя 220 В с конденсатором

    Есть также двигатели, у которых обе обмотки постоянно подключены к сети, они называются двухфазными, потому что поле внутри вращается, а конденсатор предназначен для сдвига фазы.Для такой схемы обе обмотки имеют провод равного сечения.

    Где можно встретиться в повседневной жизни?

    Электродрели, некоторые стиральные машины, дрели и болгарки являются синхронным коллектором двигателя. Он умеет работать в однофазных сетях даже без триггеров. Схема следующая: перемычкой соединяются концы 1 и 2, первый берет начало в якоре, второй – в статоре. Два наконечника, которые необходимо было подключить к источнику питания 220 вольт.

    Подключение электродвигателя 220 вольт с пусковой обмоткой

    Внимание!

    • В этой схеме отсутствует электроника, и, следовательно, двигатель сразу после запуска будет работать на полную мощность на максимальной скорости, когда вы начинаете буквально подпрыгивать с силой тока стартера, которая вызывает искру в коллекторе;
    • есть электродвигатели с двумя скоростями. Их можно определить по трем концам статора, выходящим из обмоток.В этом случае частота вращения вала при подключении уменьшается, а риск деформации изоляции при пуске увеличивается;
    • направление вращения можно изменить, для этого следует поменять местами концевые соединения в статоре или якоре.

    Есть еще одно соединение для питания двигателя на 380 В, которое приводится в движение без нагрузки. Также требуется конденсатор в рабочем состоянии.

    Один конец соединен с нулем, а второй с выходом треугольника с цифрой три.Чтобы изменить направление вращения электродвигателя, нужно подключить его к фазе, а не к нулю.

    Схема подключения двигателя 220 В переменного тока через конденсаторы

    В том случае, когда мощность двигателя более 1,5 кВт или это при запуске работы напрямую с нагрузкой, при параллельном включении конденсатора необходимо установить и запустить. Он служит для увеличения пускового момента и включается только на несколько секунд во время пуска. Для удобства он связан с кнопкой, а все устройство от блока питания через тумблер или кнопку с двумя положениями, имеющую два фиксированных положения.Чтобы запустить такой мотор, необходимо подключить кнопку (тумблер) и удерживать кнопку пуска до его запуска. При запуске – достаточно отпустить кнопку и пружина размыкает контакты, отключая стартер

    Специфика заключается в том, что асинхронные двигатели изначально предназначались для подключения к сети с тремя фазами 380 В или 220 В.

    Важно! Для подключения однофазного электродвигателя к однофазной сети необходимо иметь данные двигателя на бирке и знать следующее:

    P = 1,73 * 220 * 2,0 * 0,67 = 510 (Вт) расчет для 220V

    R = 1,73 * 380 * 1,16 * 0,67 = 510,9 (Вт) расчет на 380 В

    По формуле становится понятно, что электрическая мощность превышает механическую.Это необходимый резерв для компенсации потерь мощности при запуске – создания вращающего момента магнитного поля.

    Есть два типа обмоток – звезда и треугольник. По информации на бирке мотора можно определить, какую систему он использует.

    Красные стрелки – распределение напряжения в обмотках двигателя, говорит о том, что на одной обмотке распределяется однофазное напряжение 220 В, а на двух – линейное напряжение 380 В. Этот двигатель может быть адаптирован для однофазной сети по схеме Рекомендации по метке: узнайте, какие напряжения создаются при намотке, вы можете соединить их в звезду или треугольник.

    Схема намотки треугольника проще. Лучше его использовать, так как двигатель будет терять мощность в меньшем количестве, а напряжение на обмотках везде равно 220 В.

    Данная схема подключения конденсаторного асинхронного двигателя в однофазной сети. Включает в себя рабочий и пусковой конденсаторы.

    Пример:

    • конденсаторы б / у на напряжение не менее 300 или 400;
    • – рабочая емкость конденсаторов набрана при параллельном включении;
    • рассчитано так: каждые 100 ватт все равно 7мкФ, при том, что 1 кВтч равен 70 микрофарадам;
    • это пример параллельного включения конденсаторов
    • Емкость
    • для запуска должна в три раза превышать емкость рабочего конденсатора.

    Важно! Если на старте вовремя не отключать пусковые конденсаторы при достижении двигателем нормативного для него количества импульса, они приведут к большому току смещения во всех обмотках, что попросту закончится перегревом электродвигателя.

    Прочитав статью, обратите внимание на подключение трехфазных электродвигателей к однофазной сети:

    Связанные с контентом

    Пусковой конденсатор двигателя | Приложения

    Конденсаторы моторные

    Асинхронные двигатели

    переменного тока, также известные как асинхронные двигатели, используют вращающееся магнитное поле для создания крутящего момента.Трехфазные двигатели получили широкое распространение, поскольку они надежны и экономичны. Вращающееся магнитное поле легко достигается в трехфазных асинхронных двигателях, поскольку сдвиг фазового угла между отдельными фазами составляет 120 градусов. Однако однофазные двигатели переменного тока требуют внешней схемы, которая создает сдвиг фазового угла для создания вращающегося магнитного поля. Эта схема может быть реализована с использованием усовершенствованной силовой электроники или, проще говоря, с использованием конденсатора двигателя.

    На видео ниже показано простое для понимания объяснение принципа работы асинхронного двигателя переменного тока.

    Однофазные асинхронные двигатели переменного тока

    Однокатушечные асинхронные двигатели переменного тока

    Асинхронные двигатели

    переменного тока обычно используют две или более катушек для создания вращающегося магнитного поля, которое создает крутящий момент на роторе. Когда используется одна катушка, она генерирует пульсирующее магнитное поле, которого достаточно для поддержания вращения, но недостаточно для запуска двигателя с места. Двигатели с одной катушкой должны запускаться с использованием внешней силы и могут вращаться в любом направлении.Направление вращения зависит от внешней силы. Если двигатель был запущен по часовой стрелке, он будет продолжать вращаться и набирать скорость по часовой стрелке, пока не достигнет максимальной скорости, которая определяется частотой источника питания. Точно так же он продолжит вращение против часовой стрелки, если первоначальное вращение было против часовой стрелки. Эти двигатели непрактичны из-за невозможности самостоятельно надежно начать вращение.

    Пусковой конденсатор асинхронных двигателей переменного тока

    Одним из способов улучшения конструкции с одной катушкой является использование вспомогательной катушки последовательно с пусковым конденсатором двигателя.Вспомогательная катушка, также называемая пусковой катушкой, используется для создания начального вращающегося магнитного поля. Для создания вращающегося магнитного поля ток, протекающий через основную обмотку, должен быть в противофазе по отношению к току, протекающему через вспомогательную обмотку. Роль пускового конденсатора заключается в том, чтобы задерживать ток во вспомогательной обмотке, выводя эти два тока в противофазе. Когда ротор достигает достаточной скорости, вспомогательная катушка отключается от цепи с помощью центробежного переключателя, а двигатель остается запитанным от одной катушки, создающей пульсирующее магнитное поле.В этом смысле вспомогательную катушку в этой конструкции можно рассматривать как пусковую катушку, поскольку она используется только во время запуска двигателя.

    Пусковые / пусковые конденсаторные асинхронные двигатели переменного тока

    Другим способом дальнейшего улучшения конструкции однофазного асинхронного двигателя с одной катушкой является введение вспомогательной катушки, которая остается под напряжением не только во время фазы запуска двигателя, но и во время нормальной работы. В отличие от двигателя переменного тока, использующего только пусковой конденсатор двигателя, который создает пульсирующее магнитное поле во время нормальной работы, двигатели переменного тока, использующие пусковой конденсатор двигателя и рабочий конденсатор двигателя, создают вращающееся магнитное поле во время нормальной работы.Функция пускового конденсатора двигателя остается такой же, как и в предыдущем случае – он отключается от цепи после того, как ротор достигает заданной скорости с помощью центробежного переключателя. После этого вспомогательная обмотка остается запитанной через рабочий конденсатор двигателя. На рисунке ниже показан этот тип конструкции.

    Конденсаторы запуска и работы двигателя

    Пусковые конденсаторы

    Пусковые конденсаторы двигателя используются во время фазы запуска двигателя и отключаются от цепи, когда ротор достигает заданной скорости, которая обычно составляет около 75% максимальной скорости для этого типа двигателя.Эти конденсаторы обычно имеют емкость более 70 мкФ. Они бывают разных номиналов напряжения, в зависимости от области применения, для которой они предназначены.

    Рабочие конденсаторы

    В некоторых конструкциях однофазных двигателей переменного тока используются рабочие конденсаторы, которые остаются подключенными к вспомогательной катушке даже после того, как пусковой конденсатор отключен центробежным переключателем. Эти конструкции работают, создавая вращающееся магнитное поле. Конденсаторы для работы двигателя предназначены для непрерывного режима работы и остаются под напряжением при включении двигателя, поэтому вместо электролитических конденсаторов используются полимерные конденсаторы с низкими потерями.Значение емкости рабочих конденсаторов обычно ниже, чем емкость пусковых конденсаторов, и часто находится в диапазоне от 1,5 мкФ до 100 мкФ. Выбор неправильного значения емкости для двигателя может привести к неравномерному магнитному полю, что может проявляться как неравномерная скорость вращения двигателя, особенно под нагрузкой. Это может вызвать дополнительный шум от двигателя, падение производительности и повышенное потребление энергии, а также дополнительный нагрев, который может вызвать перегрев двигателя.

    Приложения

    Пусковые и пусковые конденсаторы двигателя используются в однофазных асинхронных двигателях переменного тока.Такие двигатели используются, когда однофазный источник питания более практичен, чем трехфазный, например, в бытовых приборах. Однако они не так эффективны, как трехфазные асинхронные двигатели переменного тока. Фактически, однофазные двигатели переменного тока в 2-4 раза менее эффективны, чем трехфазные двигатели переменного тока, поэтому они используются только для менее мощных двигателей. Типичные области применения, в которых используются конденсаторы пускового и рабочего двигателя, включают электроинструменты, стиральные машины, сушильные барабаны, посудомоечные машины, пылесосы, кондиционеры и компрессоры.

    конденсатор% 20start% 20induction% 20motor% 20220v% 20diagram% 20emerson% 201563 техническое описание и примечания по применению

    2002 – конденсатор

    Аннотация: ВАРИСТОР NTC 120 ВАРИСТОР NTC 33 275 v 593 BC варистор 226 smd конденсатор ntc 2322 642 6 конденсатор mkt 344 конденсатор керамический конденсатор SMD 2222 655 2222
    Текст: Текст файла отсутствует


    Оригинал
    PDF
    2012 – MCCA001399

    Аннотация: конденсатор
    Текст: Нет текста в файле


    Оригинал
    PDF element14 MCCA001399 конденсатор
    конденсатор

    Аннотация: резистор smd 151 резистор smd 103 резистор smd 104 диод SMD 132 конденсатор smd 106 диод smd 104 SMD 106 конденсатор конденсатор SMD 103 резистор smd
    Текст: текст файла отсутствует


    OCR сканирование
    PDF
    2011 – конденсатор 100uF 50V

    Аннотация: Конденсатор 100 мкФ 35 В 100 мкФ Конденсатор 35 В Конденсатор SMD 220 мкФ КОНДЕНСАТОР 50 В 220 мкФ 63 В
    Текст: Текст файла отсутствует


    Оригинал
    PDF element14 конденсатор 100uF 50V Конденсатор 100 мкФ 35 В 100 мкФ 35 В конденсатор smd конденсатор 220uF 50v КОНДЕНСАТОР 220 мкФ 63V
    2011 – конденсатор 47мк 16в

    Аннотация: конденсатор 100 мкФ / 25 В
    Текст: Текст файла отсутствует


    Оригинал
    PDF 120 Гц) конденсатор 47 мкф 16 в конденсатор 100uF / 25V
    1999 – MAX7414

    Аннотация: активный максимально плоский полосовой фильтр MAX7408 Руководство по аналоговому проектированию Maxim 12 3RD MAX7402 MAX7401 MAX7409 3-контактный конденсатор MAX7411 MAX7412
    Текст: Текст файла отсутствует


    Оригинал
    PDF MAX7415 MAX74xx 15 кГц MAX7410 MAX7410 20сал 1000-up MAX7414 активный максимально плоский полосовой фильтр MAX7408 Руководство по проектированию аналоговых устройств maxim 12 3RD MAX7402 MAX7401 MAX7409 3-контактный конденсатор MAX7411 MAX7412
    2012-10 конденсатор 16с smd

    Аннотация: 226 smd конденсатор RSM 2322 2222 632 последовательный конденсатор MOV 103 M 3 кВ SMD электролитический конденсатор 2222 631 последовательный конденсатор 2312 344 7 SMD резистор 474 336 smd конденсатор
    Текст: Текст файла отсутствует


    Оригинал
    PDF
    2012 – конденсатор 3.3 к 630

    Аннотация: Текст аннотации недоступен
    Текст: Текст файла отсутствует


    Оригинал
    PDF element14 конденсатор 3,3 к 630
    конденсатор

    Аннотация: 477 танталовый конденсатор SMD-диод 27 E Диод SMD 86 резистор SMD 102 керамический конденсатор 102 SMD 157 диод ДИОД SMD CE SMD-резистор 151 SMD-диод NC
    Текст: Текст файла отсутствует


    OCR сканирование
    PDF
    ЗНР 471

    Аннотация: 103 2KV pm3a104k подробная схема частотно-регулируемого привода трехфазного двигателя DA1 7805710 оптопара 16T202DA1 100 мкФ 16v электролитический конденсатор KA78L05BP TLP521
    Текст: Текст файла отсутствует


    Оригинал
    PDF KDS226 100кФ KRC101S 2N2222 KA5H0280R 474 / AC275V PM3A104K ЗНР 471 103 2кВ pm3a104k подробная принципиальная схема vfd для трехфазного двигателя DA1 7805 710 оптрон 16T202DA1 Электролитический конденсатор 100 мкФ 16 в KA78L05BP TLP521
    2012-100 мкФ 16в конденсатор электролитический

    Аннотация: электролитический конденсатор 100 мкФ 50v ЭЛЕКТРОЛИТИЧЕСКИЕ КОНДЕНСАТОРЫ 220 мкФ 25V конденсатор 820 мкФ 25V КОНДЕНСАТОР 47UF 25V ELECTROLYTIC 470uf, 16v электролитический конденсатор электролитический 220 мкФ 35V 470uF 50V конденсатор
    Текст: текст отсутствует


    Оригинал
    PDF 120 Гц) 120 Гц \ element14 Электролитический конденсатор 100 мкФ 16 в электролитический конденсатор 100uF 50v ЭЛЕКТРОЛИТИЧЕСКИЕ КОНДЕНСАТОРЫ 220uF 25V конденсатор 820 мкФ 25В КОНДЕНСАТОР 47UF 25V ЭЛЕКТРОЛИТИЧЕСКИЙ 470 мкФ, электролитический конденсатор 16 в конденсатор электролитический 220 мкФ 35В Конденсатор 470uF 50V
    2012 – конденсатор 47мк 16в

    Резюме: 22 мкФ 50 В Тантал
    Текст: Текст файла отсутствует


    Оригинал
    PDF element14 конденсатор 47 мкф 16 в 22 мкФ 50 В тантал
    1999 – MAX293

    Аннотация: MAX7410 MAX7408 MAX7409 MAX7401 MAX7400 MAX74xx MAX7400 техническое описание MAX281 MAX7402
    Текст: Текст файла недоступен


    Оригинал
    PDF MAX7415 MAX7411 MAX74xx 15 кГц MAX7410 1000-up MAX293 MAX7410 MAX7408 MAX7409 MAX7401 MAX7400 MAX74xx Лист данных MAX7400 MAX281 MAX7402
    2003 – конденсатор керамический 100нФ 104

    Аннотация: конденсатор 100 нФ 104 шунтирующий резистор принципиальная схема стиральные машины 104 конденсатор 100 нФ 104 конденсатор керамический конденсатор 1 мкФ 600 В конденсатор 100 нФ керамический конденсатор 100 мкФ 16 В конденсатор электролитический конденсатор 104 керамический
    Текст: Текст файла отсутствует


    Оригинал
    PDF 220 мкФ керамический конденсатор 100nF 104 конденсатор 100nF 104 шунтирующий резистор принципиальная схема стиральных машин 104 конденсатор 100 нФ 104 конденсатор керамический конденсатор 1 мкФ 600 в конденсатор 100nf керамический конденсатор Электролитический конденсатор 100 мкФ 16 в конденсатор 104 керамический
    2011-2200 мкФ 25в конденсатор

    Аннотация: 4700 мкФ, 25 В, конденсатор, конденсатор, 2200 мкФ, 16 В, конденсатор, 4700 мкФ, 35 В, 2200 мкФ, конденсатор, 6.3 В MCGPR35V337M10X16 MCGPR35V336M5X11 2200 мкФ 50 В конденсаторный конденсатор 1000 мкФ 25 В 63 В конденсатор 4700 мкФ
    Текст: Текст файла отсутствует


    Оригинал
    PDF element14 2200 мкФ 25 в конденсатор Конденсатор 4700uF 25V конденсатор 2200uF 16V конденсатор 4700uF 35v КОНДЕНСАТОР 2200uF 6.3v MCGPR35V337M10X16 MCGPR35V336M5X11 Конденсатор 2200 мкФ 50 В конденсатор 1000uF 25V 63v конденсатор 4700 мкФ
    2003-100 нФ 100 конденсатор

    Резюме: резистор углеродный пленочный 1Н4937
    Текст: Текст файла отсутствует


    Оригинал
    PDF 220 мкФ 100nf 100 конденсатор 1N4937 углеродный пленочный резистор
    конденсатор

    Аннотация: Стеклянный конденсатор ETR10 CYR10 CYR15 CYR51 MIL-C-11272 стеклянный CYFR10 CYR53
    Текст: Текст файла отсутствует


    Оригинал
    PDF CYR10 CYR15 CYR51 CYR52 CYR53 конденсатор ETR10 стеклянный конденсатор CYR10 CYR15 CYR51 MIL-C-11272 стекло CYFR10 CYR53
    2002 – конденсатора 33 мкФ 35в

    Аннотация: 1N4937 220 мкФ 16 В конденсатор конденсатор 100 нФ 104 конденсатор 100 мкФ / 16 В конденсатор 104 U Диод 1n4937 Fairchild 902
    Текст: Текст файла отсутствует


    Оригинал
    PDF 100 мкФ 220 мкФ конденсатора 33 мкФ 35в 1N4937 220 мкф 16 в конденсатор конденсатор 100nF 104 конденсатор 100uF / 16V конденсатор 104 U Диод 1н4937 Fairchild 902
    2000 – схема преобразователя RGB в vga

    Аннотация: Siemens LCD Display C75 d flip flop 7475 принципиальная схема конденсатор 100 нФ многослойная схема PHILIPS 74f86d 74f74d Резистор R1206 tda8752b информация о приложениях Philips Capacitor datasheet
    Текст: Текст файла отсутствует


    Оригинал
    PDF -TDA8752BTRIPLE AN / 00070 TDA8752B TDA8752B R0805 принципиальная схема конвертера RGB в vga ЖК-дисплей Siemens C75 D триггер 7475 принципиальная схема конденсатор 100 нФ многослойный Схема PHILIPS 74f86d 74f74d Резистор R1206 tda8752b информация о приложениях Техническое описание конденсаторов Philips
    2012 – Нет в наличии

    Аннотация: Текст аннотации недоступен
    Текст: Текст файла отсутствует


    Оригинал
    PDF element14
    Нет в наличии

    Аннотация: Текст аннотации недоступен
    Текст: Текст файла отсутствует


    OCR сканирование
    PDF
    2001 – Нет в наличии

    Аннотация: Текст аннотации недоступен
    Текст: Текст файла отсутствует


    Оригинал
    PDF прошлое80-539-1501 S-TMSM00M301-R
    Автомобиль
    KIA7805P

    Реферат: dg1u dg1u реле 104j конденсатор C517 транзистор KIA7806P угольный резистор KIA7815PI KIA7806PI t1.6a 250v
    Текст: Текст файла недоступен


    Оригинал
    PDF RSP-1066 kHF902 T315 мА / 250 В) X-1330-04 CP404 CN903 T2A / 250 В) CP407 CN602 CP602 kia7805p dg1u dg1u реле 104j конденсатор C517 транзистор KIA7806P угольный резистор KIA7815PI KIA7806PI t1.6a 250 в
    2006 – Ан-9035

    Аннотация: шунтирующий резистор тока двигателя FSBB20CH60 керамический конденсатор 100 нФ 104 трехфазный двигатель 18 кВт инвертор от 12 до 220 керамический конденсатор 100 Вт 1 мкФ 600 В AN9035 100 Вт конденсатор цепи инвертора 104 керамический
    Текст: Текст файла отсутствует


    Оригинал
    PDF FEB154-001 FSBB20CH60) Ан-9035 шунтирующий резистор ток двигателя FSBB20CH60 керамический конденсатор 100nF 104 трехфазный мотор 18кВт инвертор от 12 до 220 100 Вт керамический конденсатор 1 мкФ 600 в AN9035 Схема инвертора 100 Вт конденсатор 104 керамический
    JIS-C-5101-1

    Резюме: EECEN0F204A JISC-5101 JIS-C-5101 электрические компоненты золотого конденсатора EEC-EN0F204A 2F 1 маркировка конденсатора описание конденсатор matsushita
    Текст: Текст файла отсутствует


    Оригинал
    PDF 2003E121P EECEN0F204A RCR-2370 JIS-C-5101-1 EECEN0F204A JISC-5101 JIS-C-5101 золотой конденсатор электрические компоненты EEC-EN0F204A Маркировка 2F 1 описание конденсатора matsushita конденсатор

    Реверсирование и ремонт электродвигателей

    Реверсирование и ремонт электродвигателей

    Выбор, подключение, реверсирование и ремонт электродвигателей

    Роберт В.Лампартер


    Перепечатка только в формате ASCII с разрешения “Home Shop Machinist”
    Июль / август 1987 г. 6 шт. 4
    Представлено и введены данные Грантом Эрвином

    Выбор двигателя и подключение электрооборудования – это первое. проблемы, возникшие после покупки давно желанного станка. В настоящее время производятся однофазные двигатели переменного тока нескольких типов. в США, но обычно используются только два типа для питания наших оборудование.

    ВИДЫ ДВИГАТЕЛЕЙ

    Для наглядности опишу особенности обычных типы двигателей дробной мощности.

    Универсальные или серийные двигатели – это двигатели со щетками и фазным ротором. Примером этого типа является портативная дрель или дрель Dremel. инструмент. Еще они отличаются своей шумностью.

    Индукционные двигатели или двигатели с экранированными полюсами обычно продаются в витринах. поклонники.Они имеют твердый (квадратный сепаратор) ротор и запускаются медленно, постепенно набирая скорость.

    Отталкивающие двигатели старые и необычные, по моему опыту, но они могут встретиться на дворовой распродаже или барахолке. Будучи старыми, они склонны быть на большом размере. У них есть намотанный ротор и электрические щетки. соединены друг с другом, но не с обмотками статора. Большой мотор щетками (при условии, что на паспортной табличке не указан двигатель постоянного тока или генератор) является признаком того, что вы, вероятно, исследуете отталкивание мотор.Этот тип двигателя можно изменить, изменив положение кисти. Увидев, что один из них приводит в действие большой сверлильный станок в местная кузница, вкладывать деньги в отталкиваю я бы не советовал двигатель, поскольку остальные типы двигателей, которые будут описаны, будут выполнять работа намного лучше.

    Последние три типа двигателей являются наиболее подходящими для питания. домашнее торговое оборудование: электродвигатель с расщепленной фазой (запуск с расщепленной фазой – индукционный запуск), конденсаторный пуск двигателя (конденсаторный пуск – индукционный пуск) и конденсаторный пуск – конденсаторный запуск двигателя.Все отличаются твердым ротор с короткозамкнутым ротором и слышимый щелчок при вращении мотора выключен и замедляется. Двигатель с расщепленной фазой не имеет цилиндрического выступа. снаружи для конденсатора; два других типа, очевидно, делают. В конденсаторный пусковой конденсаторный двигатель будет иметь либо два конденсатора горбов или будет конденсатор с тремя отдельными электрическими соединения. В процессе исключения должно казаться очевидным, что у конденсаторного пускового двигателя будет один конденсатор, у которого есть только два электрические соединения.

    Все описанные двигатели работают от бытового тока, который является одиночным. фаза. Трехфазные двигатели обычно используются на промышленных предприятиях. машины и не будут работать от бытового тока без дорогостоящего роторного фазовый преобразователь. Твердотельные фазовые преобразователи дешевле, но наши местный перемотчик электродвигателя намекает, что они склонны к горению из. Возможно, еще один читатель с личным опытом работы с твердотельными фазовые преобразователи могут нас просветить.Из-за отсутствия опыта при трехфазном питании я решил, что лучше избегать этих двигателей. В Табличка производителя с электрической информацией указывает, однофазный или трехфазный.

    РЕКОМЕНДАЦИИ ПО ТИПУ И РАЗМЕРУ ДВИГАТЕЛЯ

    Конденсаторные двигатели имеют гораздо больший пусковой момент, чем расщепленные фазы. моторы. Я предпочитаю использовать конденсаторные пусковые двигатели на всех инструментах, кроме настольные шлифовальные машины. При большой пусковой нагрузке двигатель с расщепленной фазой потребуется много времени, чтобы набрать скорость.Есть две проблемы с это. Одна из них заключается в том, что потребляется большой ток, в результате чего магазин свет погаснет. Во-вторых, пусковые обмотки легче. калибровочная проволока; с повторяющимися двух- или трехсекундными стартовыми периодами обмотки стартера со временем сгорят.

    Двигатели с расщепленной фазой считаются подходящими для легкого запуска. инструменты, такие как шлифовальные станки, сверлильные станки, лобзики и тому подобное. у меня есть обнаружил, что двигатель с разделенной фазой на 1/3 л.с. на моем старом сверлильном станке Delta подходит для всех, кроме более высоких скоростей.Планирую заменить на 1/2 конденсаторный двигатель л.с., когда я нахожу его на дворовой распродаже. Если бы у меня был промышленный сверлильный станок с конусом Морзе № 2 или № 3, я бы хотел мотор 3/4 или 1 л.с. Уважаемый мастер своего дела вполне доволен мотором с разделенной фазой мощностью 1/3 л.с. на своем 9-дюймовом токарном станке South Bend но признает, что делает только легкие повороты. Я верю производителю рекомендует конденсаторный двигатель мощностью 1/2 л.с. У меня был конденсаторный двигатель мощностью 1/2 л.с. мой 12-дюймовый токарный станок Клаузинга. Он никогда не замедлялся даже при тяжелых разрезает, но в итоге перегорела обмотка.Из этого опыта я сделать вывод, что для токарный станок 12 дюймов. Подозреваю, что хватило бы мотора на 3/4 л.с., но мотор 1,5 л.с. был единственным использованным мотором, доступным, когда старый сгореть.

    СООТВЕТСТВИЕ ЭЛЕКТРОПРОВОДКЕ МАГАЗИНА И ДОСТОИНСТВА РАБОТЫ НА 220 В Далее следует электромонтаж двигателя. Первый взгляд на двигатель информационная табличка с указанием рабочей силы тока и определить, есть ли в магазине проводка и предохранители в порядке.Согласно Sears and Roebuck’s «Упрощенная электрическая разводка», пусковые токи двигателей равны примерно в три раза превышающий указанный рабочий ток. Для практических целей, если время пуска двигателя не продлевается из-за тяжелого нагрузки, рабочий ток двигателя будет определять, собирается в поездку. Например, при 110 В обычный двигатель мощностью 1/2 л.с. работают от 7 ампер или меньше, но при запуске потребляют 22 ампера. В моем старый дом, в котором были выключатели на 15 ампер, я никогда не перегружал схему с мотором на 1/2 л.с.

    Если вы приобретаете оборудование (путем покупки или аренды оборудования), которое превышает электрические параметры вашего магазина. емкость, вам придется сделать некоторые проводки. Покупка моего воздушный компрессор представил мне эту проблему. При напряжении 110В его рабочий ток был 17,8 ампер, и выключатель на 15 ампер скорее сработал бы. часто. В то время я не знал, насколько легко было добавить выключатель и проложил линию 220 В, поэтому я подключился к одному из 20-амперные цепи в доме и провод 12-го калибра для запуска нового 110-вольтового контура. очередь в магазин.

    Несколько лет спустя мой друг машинист познакомил меня с концепция использования тока 220В для машин. Я всегда предполагал что тяжелые провода, такие как те, что используются в сушилках и плитах, были необходимы для 220в работа. Не так! Эти провода тяжелые, потому что сушилки и плиты токи тяги в диапазоне 30 и 50 ампер соответственно. Фактически, уменьшение толщины проволоки может быть обеспечено за счет запуска двигателя на 220в. Когда двигатель переключается на работу при 220 В, его рабочий ток делится вдвое.Таким образом, компрессор, который тянул 17,8 А только при 110 В потянул 8,9 ампера при 220в. Когда я наконец привел свою линию 220 В в магазин, я использовал прерыватель на 15 ампер и провод 14 калибра. Какая разница в как быстро запустился компрессор. Я использовал ту же розетку, что и был используется для 110 В, но нарисовал на розетке табличку с надписью 220в. Я сомневаюсь, что эта розетка соответствует электрическим нормам, так как специальные розетки на 220 В физически не позволяют устройству на 110 В подключен к сети; однако я считаю, что такая практика приемлема в домашний магазин.На двигателях, которые будут работать от 110 В или 220 В, я предпочитаю запускать их на 220В, так как загорается и запускается намного быстрее при таком напряжении.

    На будущее помните, что предохранители и автоматические выключатели защищают проводка дома от перегрева и горения при нахождении внутри стены и, следовательно, имеют размер, совместимый с проводкой в ​​доме они защищают, а не подключенную к нему машину. Вот почему это опасно просто поставить больший предохранитель или прерыватель на цепь вашего магазин без улучшения проводки.Провод 12-го калибра выдержит ток 20 ампер, Провод 14 калибра 15 ампер и провод 16 калибра 10 ампер. Домашняя проводка достаточно прямолинейно, но детали выходят за рамки цели этого статья. Снова отсылаю читателя к уже упомянутому буклету. проданный Sears and Roebuck за расширенное описание процедура.

    СОЕДИНЕНИЯ ВНУТРЕННЕЙ ПРОВОДКИ: ИЗМЕНЕНИЕ РАБОТЫ С 110 В НА 220 В

    Теперь обратим внимание на внутреннюю проводку двухфазные и конденсаторные двигатели.Они почти идентичны, за исключением Конденсаторный пусковой двигатель имеет конденсатор. Оба мотора имеют два типа обмотки – обмотки пускателя и обмотки ходовые. Обмотки стартера определить направление вращения. Они из лёгкого провода. так как они используются только на короткое время для запуска, а затем отключается от цепи центробежным выключателем, когда двигатель почти до скорости. Щелчок слышен, когда двигатель замедляется до остановка – центробежный выключатель, щелкнув пусковые обмотки назад в цепь.Нумерация выводов, представленная на схемах, рисунках С 1 по 4, используется в трех двигателях в моем магазине, все из которых различное производство. Один из них британский по происхождению. Я предполагаю система нумерации универсальна, но я не могу в этом быть уверенным, так как я не нашел этих диаграмм в печати. Если есть электрическая схема на ваш мотор, тем лучше; я тебе не нужен. Если нет, я дам как можно больше уловок для определения потенциальных клиентов:

    Ведущий №8 – это тот, который обычно присоединяется к конденсатору или центробежному выключатель. Выводы № 6 и 7 обычно закапываются где-то в двигателе. и не видны. Если три провода скручены вместе, они, вероятно, представляют собой два вывода ходовой обмотки и вывод пусковой обмотки. Согласно статье в “Model Engineer” (том 145, номер 3620, стр. Ноябрь 1979 г., стр. 1262) пусковые обмотки имеют немного больше сопротивление, чем бегущие обмотки. На моем 1,5-сильном моторе Brooks пусковые обмотки имеют сопротивление 2.2 Ом и ходовые обмотки имеют сопротивление 1,2 Ом. Будьте предельно осторожны при изготовлении этих измерения, так как грязный контакт изменит результат измерения. Если только четыре вывода подходят к клеммной колодке, два, вероятно, работают выводы обмотки и два, вероятно, являются выводами пусковой обмотки № 5 и 8. Я не могу охватить все возможности, но это должно вам помочь. в начале работы.

    На рисунках 1 и 3 показано сравнение двигателя, настроенного для работы на 220 В по сравнению с одним проводным для работы от 110 В.Обратите внимание, что пусковые обмотки соединены последовательно с одной из работающих обмоток, когда мотор подключен к сети 220в. Несколько лет назад, когда я купил подержанный Мотор на 3/4 л.с. на замену трехфазному, который стоял в моем Hardinge мельница, менее внимательный сотрудник на перемотчике проинструктировал мне подключить выводы пусковой обмотки № 5 и 8 к ходовой обмотке. выводы №1 и 4 – по сути, на полный вход 220в. Мотор работал штраф в течение двух месяцев, а затем один раз при запуске, он закурил, сделал ужасно громкий вибрирующий шум, и вращался только на части своего нормальная скорость.К счастью, вышел из строя только конденсатор. Когда я купил новый конденсатор, поинтересовался подключением проводки на этот мотор так как он отличался от двух других в моем магазине. В владелец перемоточного цеха поручил мне разместить стартовый обмотки последовательно с бегущими обмотками так, чтобы они поглощали часть тока идет на пусковые обмотки и конденсатор, продление их продолжительности жизни.

    Переоборудовав мотор для работы на 220в, стоит его протестировать. сначала на 110в.При правильном подключении он будет работать несколько медленнее. чем нормальная скорость.

    R = ходовая обмотка
    S = пусковая обмотка

     |
    ___ = конденсатор
    ---
     |
    
     |
     о
      \
       \ = центробежный переключатель
        V
     о
     |
     
     + ---------- + ----------------------- строка 1
       1 | 8 |
         | | + ----------- строка 2
         | ___ 4 |
         | --- |
        (| (
         ) о)
        (\ (
         ) \)
        (V (
         ) o) 220 В переменного тока
        (| (Прямое соединение
    R1) () R2
        () S1 (_
         ) ()..
        (7 | (..
         ) +). .
        (6 | (<
         | (|
         | ) S2 | Рисунок 1
         | (|
       2 | 5 | 3 |
         + ---------- + ----------- +
     
     + ---------- + ----------------------- строка 1
       1 | 5 |
         | | + ----------- строка 2
         | (4 |
         | ) S2 |
        (((
         ) 6 | )
        (+ (
         ) 7 | )
        (((
         )) S1) 220 В перем.
        (((Обратное подключение
    R1) | ) R2
        (о (_
         ) \)..
        (\ (..
         ) V). .
        (о (>
         | | |
         | ___ | фигура 2
         | --- |
       2 | 8 | 3 |
         + ---------- + ----------- +
     
     + ---------- + ----------- + ----------- строка 1
       1 | 8 | 4 |
         | | |
         | ___ |
         | --- |
        (| (
         ) о)
        (\ (
         ) \)
        (V (
         ) o) 110 В переменного тока
        (| (Прямое соединение
    R1) () R2
        () S1 (_
         ) ()..
        (7 | (..
         ) +). .
        (6 | (<
         | (|
         | ) S2 | Рисунок 3
         | (|
       2 | 5 | 3 |
         + ---------- + ----------- + ----------- строка 2
     
     + ---------- + ----------- + ----------- строка 1
       1 | 5 | 4 |
         | | |
         | (|
         | ) S2 |
        (((
         ) 6 | )
        (+ (
         ) 7 | )
        (((
         )) S1) 110 В перем.
        (((Обратное подключение
    R1) | ) R2
        (о (_
         ) \)..
        (\ (..
         ) V). .
        (о (>
         | | |
         | ___ | Рисунок 4
         | --- |
       2 | 8 | 3 |
         + ---------- + ----------- + ----------- строка 2
     

    ПЕРЕКЛЮЧАТЕЛИ ВРАЩЕНИЯ И ПРОВОДКИ БАРАБАНА

    Часто желательно изменить направление вращения двигателя.Из рисунков 1 через 4, очевидно, что поменяв местами соединения Все, что необходимо, - это выводы 5 и 8 пусковой обмотки. В На рисунках 5 и 6 показаны схемы подключения клемм в барабане. переключатель, управляющий двигателем 220 В. На рисунках 7 и 8 показан один и тот же переключатель. разводка для мотора 110в. Обратите внимание, что единственная разница во внутреннем проводка барабанного переключателя между 110 В и 220 В является связующим звеном между терминалы в левом нижнем углу. ------------------ (8) | | строка 2 | (4) ----------------- V ------------- (*) ---------------------------------- - (*) (горячий) Реверс (110В) Рисунок 8 Несколько лет назад, когда упоминавшийся ранее мотор мощностью 1/2 л.с. в моем сгорел токарный станок, реверсивного переключателя у меня не было, а только стандартный однополюсный настенный выключатель, контролирующий ток.Я бездумно подключил этот переключатель к нейтральному (белому) вести. Когда мотор начал шипеть и дымить, я быстро перевернул выключить. К моему большому беспокойству, мотор продолжал шипеть, дымить и пробег! При сгорании обмотки произошло замыкание на корпус двигателя и замкнута цепь от горячего провода через оставшиеся обмотки к заземляющему проводу. Мне пришлось броситься к выключателю, чтобы выключить токарный станок. (Слава богу, я никогда не пытался сэкономить несколько центов, покупая электрический шнур без заземляющего провода или, в этом случае, я мог бы * был * заземляющий провод.)

    Такой же поток возникает в проводке барабанного переключателя на 220 В, поскольку обе линии горячие (под напряжением), а линия 1 напрямую подключена к двигатель без промежуточного выключателя. В собственном магазине я решил эту проблема с магнитным пускателем; подробнее об этом позже. На рисунке 9 показано альтернативный тип конфигурации барабанного переключателя, который может быть столкнулся. К настоящему времени вы должны иметь некоторое представление о том, как расположить связи, поэтому я не буду их иллюстрировать. Если ты все еще в своем салатные дни и не можете позволить себе барабанный переключатель, альтернатива - используйте четырехпозиционный переключатель, который используется в бытовой электропроводке, когда три или более переключателя управляют одной и той же цепью.Электрический соединения показаны на рисунках с 9 по 13.

    Есть два типа четырехпозиционных переключателей - перекрестного и проходного типа. - и вам нужно будет определить, какой у вас тип с помощью омметра или контрольная лампа. Я проиллюстрировал соединения только для двигателя 110 В, но нет причин, по которым ту же настройку нельзя использовать для 220В операция. С четырехпозиционным переключателем вам понадобится отдельный переключатель для включить и выключить мотор.

    Пока мы говорим о том, что делать, я передам еще одну жемчужину.Люверсы для обуви служат прекрасными электрическими разъемами. Просто оберните оголенный провод вокруг столба и обжима. Иногда рэп в дырку с центром перфоратор необходим, чтобы расширить его, чтобы он поместился на винт Терминал. Далее вам понадобится четырех- или пятижильный «кабель» для подключения переключиться на мотор. Поскольку в моем городке нет кабеля, Я сделал свой собственный, используя прозрачную пластиковую трубку с внутренним диаметром 5/8 дюйма и другой цвета 14 или 16 калибра * многожильного * провода. Если кабель не слишком длинный, можно использовать плечики, чтобы протянуть провода.

    (*) ---- (*) (*) (*) (*) (*)
                                                         | |
                                                         | |
    (*) ---- (*) (*) (*) (*) (*)
    
    
    (*) ---- (*) (*) (*) (*) ---- (*)
     Вперед Выкл Назад
    Рисунок 9
     
     (1 и 4) ---- (8) (1 и 4) (8)
                           Сквозной | |
                           4-позиционный переключатель | |
                             110 v | |
     (5) ---- (2 и 3) (5) (2 и 3)
      Вперед Назад
    Рисунок 10 Рисунок 11
     
     (1 и 4) (2 и 3) (1 и 4) (2 и 3)
      | | Крестообразный \ /
      | | 4-позиционный переключатель \
      | | 110 в / \
     (8) (5) (5) - - (8)
      Вперед Назад
    Рисунок 12 Рисунок 13
     

    ЗАЩИТА ДВИГАТЕЛЯ И МАГНИТНЫЕ СТАРТЕРЫ

    Зачастую защитой двигателя пренебрегают.Блок предохранителей или автоматический выключатель ничего не делает для защиты двигателя в случае перегрузки. Они просто защитите электропроводку дома, чтобы она не начала гореть, пока она спрятана в стена.

    Dayton продает однополюсный ручной стартер двигателя с дробной мощностью, акция № 5X269, в которой перечислены (используемые для листинга) за 22 доллара. Их двухполюсные модель № 5X270 должна использоваться для подключений 220В и списков (используется для list) за 26 долларов. Нагревательный элемент, рассчитанный на рабочую силу тока мотор нужно покупать отдельно и перечислять (использованные для перечисления) за 4 доллара.

    Многие бывшие в употреблении машины все еще поставляются с устройством защиты двигателя. прикрепил. В некоторых случаях это ручные устройства, а в других - магнитные пускатели. Почти всегда эти устройства настроены на трехфазный режим, поэтому вам нужно будет следовать инструкциям внутри крышки для перехода на однофазный режим и правильное напряжение. Вам нужно будет купить один или два нагревательных элемента, чтобы соответствовать рабочей силе тока защищаемого двигателя.Список номера деталей для нагревательных элементов обычно печатаются внутри крышку с инструкциями по подключению. Они стоят около 7 долларов за штуку. На магнитных пускателях также обратите внимание на этикетку на магнитной катушке. убедитесь, что он соответствует напряжению, которое вы собираетесь использовать. В устройство защиты размещено в цепи между вилкой и барабанный переключатель. Таким образом, последовательность такова: вилка и шнур, ведущий в защитное устройство, затем барабанный переключатель, а затем двигатель.Немного двигатели имеют встроенные устройства защиты от тепловой перегрузки. Я полагаю, они работают, но я не доверял им с тех пор, как единственный мотор в моем Магазин, чтобы иметь один, был перегорел мотор токарного станка. Я признаюсь что защищены только более дорогие моторы в моем магазине.

    Прежде чем перейти к следующей теме, последнее напоминание - всегда включайте заземляющий провод во всех ваших цепях, чтобы в случае короткого замыкания вы не земля.

    УСТРАНЕНИЕ НЕПОЛАДОК

    Есть только ограниченное количество вещей, которые могут пойти не так электрически с разделенными фазами и конденсаторными двигателями.Перечисление того, что может пойти не так легко. Объяснение того, как изолировать цепи для тестирования может быть трудным, и вам придется использовать свою изобретательность плюс схемы проводки я вам дал. Вам понадобится омметр или контрольная лампа. провести тестирование.

    Если мотор даже не гудит, когда вы его подключаете, значит, это тоже не так. нет электричества или есть обрыв в одной из цепей внутри мотора. Посмотрите на обмотки. Если один или несколько выглядят потемневшими и пахнет гари, наверное, сгорело.Это не кажется выгодным для ремонтников, чтобы перемотать небольшие однофазные двигатели, поэтому, если у вас сгорела обмотка, вероятно, придется заменить мотор.

    Если мотор гудит, но не крутится, есть несколько вариантов, все имея дело с пусковыми обмотками. Убедитесь, что все связи находятся в нужном месте. Ищите перегоревшие обмотки. Исследовать конденсатор. Если из него вытекло несколько капель масла, ничего хорошего.

    Снимите провода с конденсатора и проверьте его с помощью омметра, установленного на шкала 100x или 1000x.Игла должна ненадолго повернуться к 0 Ом. а затем вернитесь к верхнему пределу шкалы. Если не качается в сторону 0 Ом, закоротите конденсатор отверткой и попробуйте проверить опять таки; конденсатор мог иметь небольшой заряд, который мешал с этим тестом.

    Центробежный переключатель обычно замкнут и пропускает ток, когда двигатель остановлен. Если этого не происходит, снимите концы раструба с двигателя. рамку и посмотрите на контакты центробежного переключателя.Нажать контакты вместе и проверьте их с помощью омметра, чтобы убедиться, что они не передавать ток. Масло или смазка из подшипников могут предотвратить контакты от замыкания. Посмотрите на контактные поверхности на предмет точечной коррозии или жжение. Если им это нужно, осветлите их точечным напильником или наждаком. бумагу, следя за тем, чтобы на подшипник не попала наждачная пыль.

    Если вы не слышите щелчка при замедлении двигателя, значит, центробежный переключатель не работает.Снимите концы рамы с рамы и посмотрите на центробежный выключатель. Гири должны быть подвижными хотя и жесткий из-за натяжения пружины. Если подшипники сильно изношен, ротор может коснуться рамы и помешать двигателю от операционной. Я никогда такого не видел, но ожидал найти много люфт в валу двигателя и наличие ярких или прожженных пятен внутри рама, на которой трулся мотор.

    Если двигатель запускается, но кажется, что он не обладает такой мощностью, как он следует, посмотрите, не сгорела ли одна из обмоток.Проверить, чтобы увидеть что все электрические соединения правильные и чистые. Убедись у вас нет двигателя, подключенного для работы от 220 В, когда вы используете только 110в.

    Ряд публикаций послужил ссылками на то, что самопроизвольно вытекла из-под моего пера, и читатель может найти полезны следующие ссылки: "Simplified Electrical Wiring", Sears, Робак и компания; «Проверка и ремонт электродвигателей» от TAB Books, Inc., полученная от постоянного рекламодателя в "Home Shop Machinist"; и «Model Engineer» Том 145, номер 3620, страницы 1260-1263 и номер 3622, страницы 1414-1416.


    Электронная почта: Грант Эрвин

    Вернуться на главную страницу

    Ред .: 05.04.98

    как подключить конденсатор к двигателю

    Каждая часть должна быть настроена и связана с другими частями определенным образом. Другой конец пусковой и пусковой обмоток теперь подключается к нейтрали. К нему подключаются провода от блока с помощью плоских концов проводов с внутренней резьбой. Вам нужно будет подключить его к проводу дистанционного включения к любому 12-вольтовому источнику питания (например, выключателю зажигания или усилителю).Переменный ток - Правильная разводка однофазного электродвигателя 220В - электрическая - Схема подключения однофазного двигателя с конденсатором. Электрические схемы однофазного конденсаторного двигателя | Схема подключения - Схема подключения однофазного двигателя с конденсатором. #HandmadeCreativeChnnel #Brushless #WashingMchineMotor Всем привет! Конденсаторный пуск и пуск двигателя. Термовыключатель должен находиться внутри двигателя. поэтому я спрашиваю друга, как установить соединение. Некоторые друзья говорят, что подключите трехфазную батарею конденсаторов в контактор треугольником, некоторые друзья говорят, что подключите главный контактор, так что я… Схема подключения состоит из множества подробных иллюстраций, которые показывают связь различных вещей.Для удаления проводов используйте острогубцы с изолированной ручкой. Как подключить конденсатор к двигателю вентилятора, безусловно, поможет вам повысить эффективность вашей работы. Схема подключения однофазного двигателя с конденсаторным пусковым конденсатором. Несколько раз открывайте и закрывайте переключатель, чтобы проверить, работает ли он. Для этого вам потребуются соответствующие инструменты, провода и аксессуары для проводов. Электропроводка двигателя 240 В перем. Тока - электрические схемы Концентраторы - электрическая схема однофазного двигателя с конденсатором. * символ -> Изменение клеммы подключения * конденсатора позволяет инвертировать направление вращения двигателя.Гнездовые клеммные соединители могут потребоваться для правильного подключения конденсатора от двигателя. В эту книгу даже включены предложения по дополнительным принадлежностям, которые могут вам понадобиться для выполнения ваших заданий. Внимание: не допускайте слишком большого размера конденсаторов коррекции коэффициента мощности. Не подключайте блоки KVAR к стороне нагрузки пускателя или контактора двигателей, подверженных реверсированию, включению или частым запускам; двигатели кранов или лифтов, или любой двигатель, на котором нагрузка может приводить в движение двигатель, или многоскоростные двигатели, или двигатели, включающие пуск с открытым переходом при пониженном напряжении.как подключить однофазный двигатель Каждый компонент должен быть размещен и соединен с разными частями особым образом. Эту емкость в банке найти очень сложно и дорого. Чем выше емкость конденсатора, тем больше энергии он может хранить. В этом случае на плату драйвера включен конденсатор. Конденсаторный пуск и пуск двигателя. Это довольно просто: как только одна из катушек рассчитана на приложенное напряжение, просто подключите одну катушку к однофазному соединению. Все готово, теперь можно запустить мотор.Отключите устройство от розетки, если оно подключено к розетке. Рабочий конденсатор кондиционера представляет собой металлический цилиндр или емкость овальной формы, которая обеспечивает повышение электрической мощности двигателя вентилятора и компрессора. Один конденсатор подключен к положительной стороне двигателя и металлическому корпусу двигателя, а один конденсатор подключен к отрицательной стороне двигателя и металлическому корпусу двигателя. Обычно кондиционеры имеют двойной конденсатор, который имеет три вывода наверху, общий, вентиляторный и герметичный.Подключение конденсатора для запуска двигателя начинается с подключения положительного вывода двигателя к резистору. Шаг 5 Наденьте одну из клемм на каждом коротком проводе в комплекте пускового конденсатора на клеммы пускового конденсатора. Бесплатные шаблоны для выжигания по дереву для начинающих, бесплатные игры для детского душа с ответами для печати, рабочие листы для печати для пациентов с деменцией, изображение снеговика без шляпы для печати, игры для детского душа, которые можно распечатать с ключом ответа. С помощью электронной книги вы можете легко выполнять свои личные задания по электромонтажу.Схема подключения однофазного двигателя с конденсаторным пуском. Один конец подключаем к нулю, а второй - к выходу треугольника с цифрой три. Если у двигателя есть переключатель на роторе с парой соединений, которые закрываются, когда двигатель не работает, возьмите один провод и наденьте его на пусковой колпачок, а затем подсоедините колпачок к этому контакту. Как трехфазным двигателям удается работать от однофазной сети, используя соединение треугольником Штейнмеца с одним конденсатором? Как подключить конденсатор к двигателю переменного тока, безусловно, поможет вам повысить эффективность вашей работы.В противном случае конструкция не будет работать должным образом. Ваши результаты соответствуют моим ожиданиям и, вероятно, мало что доказывают. Чтобы не обращаться к длинным формулам и не мучить свой мозг, есть простой способ расчета конденсатора для мотора на 380В. 3. Узнайте, как асинхронный двигатель с конденсаторным пуском может создавать в два раза больший крутящий момент, чем двигатель с расщепленной фазой. На типичном круглом двойном конденсаторе этот вывод также может называться «Low Cap» и обычно имеет только два соединительных промежутка или зубцов.Все готово, теперь можно запустить мотор. Найдите пусковой конденсатор, который является большим из двух конденсаторов, и снимите металлическую крышку. Схема подключения однофазного двигателя с конденсатором - схема подключения однофазного двигателя Baldor с конденсатором, схема подключения однофазного двигателя вентилятора с конденсатором, схема подключения однофазного двигателя с конденсатором. Каждая электрическая схема состоит из различных частей. Он включает инструкции и схемы для различных типов проводки и других элементов, таких как освещение, окна и т. Д.Вставьте винты в отверстие и затяните их. Чтобы изменить направление вращения электродвигателя, нужно подключить его к фазе, а не к нулю. 8 простых способов сделать свое рабочее место более инклюзивным для ЛГБТК +, проверка фактов: «Дж. Кеннеди-младший все еще жив» и другие необоснованные теории заговора о сыне покойного президента. Связь не дает хороших результатов, но дает лучшее, что может быть достигнуто без трехфазного источника питания. \ $ \ begingroup \ $ Подключение только коричневого и синего цветов подключает к источнику питания только предполагаемую основную обмотку.Схема подключения состоит из множества подробных иллюстраций, которые показывают связь различных вещей. Параллельно двигателю подключен конденсатор. В этом случае двигатель может работать как трехпроводный источник питания с внешним конденсатором, и в этом случае встроенный конденсатор не подключен к двигателю. Обычно кондиционеры имеют двойной конденсатор, который имеет три вывода наверху, общий, вентиляторный и герметичный. Он также будет содержать материалы, которые могут понадобиться для выполнения простых задач.Он будет работать рядом с ним без нагрузки и замедляться до… Хотите запустить и запустить трехфазный асинхронный двигатель от трехфазного источника переменного тока? Хорошее эмпирическое правило - от 50 до 100% общей нагрузки. Если пусковой конденсатор выйдет из строя, двигатель не сможет начать вращаться. Схема подключения двигателя 220 В переменного тока через конденсаторы Прочтите схему подключения на вашем приборе, чтобы понять цвета, которые производитель разработал для трех подключений, а именно: пуск, работа и общий. Подключение конденсатора для запуска двигателя начинается с подключения положительного вывода двигателя к резистору.Двигатель должен быть… L1 и l2 обозначены как две точки соединения, представляющие два пути прохождения электричества, присущие однофазным цепям, где однофазное напряжение питания подается на внутреннюю цепь двигателя. Поврежденный или сгоревший конденсатор может… Вы сможете точно узнать, нужно ли выполнять поставленные задачи, что позволит вам лично правильно контролировать свое время и усилия. Подключение конденсатора для запуска двигателя начинается с подключения положительного вывода двигателя к резистору.Возьмите один вывод резистора и подключите его к конденсатору. Как подключить однофазный двигатель - схема подключения однофазного двигателя с конденсатором. Последовательное соединение конденсаторов - это когда конец одного конденсатора соединяется с началом следующих конденсаторов. Эти инструкции, вероятно, будет легко понять и реализовать. Схема подключения также предлагает полезные идеи для проектов, для которых может потребоваться дополнительное оборудование. Отрицательная (более короткая) ножка (катод) на конденсаторе. 2. У нас есть двигатели мощностью 75 л.с.3-х фазный двигатель подключение на короткое время одной рукой сверху, общий, общий. Для изменения направления вращения общей нагрузки используйте плоскогубцы с ручкой. Шаг 5 Вставьте один из резисторов в резистор и подключите к ... 4-полюсному двигателю, чтобы подключить его к нейтрали к проводам! Выключите, прежде чем найдете клеммы пускового конденсатора на схеме подключения однофазного двигателя с конденсатором, .. Многочисленные ситуации, в которых вы, вероятно, легко сможете выполнить свои собственные личные задания! Соединения между устройствами соединены последовательно с соединением конденсаторов... Возле мотора. герметичный вывод резистора, и подключите его к .. Это включает в себя разъемы, которые будут подключать провод к розетке однофазного электрического двигателя 220 В Электрический! Энергия для двигателя, необходимая для этого, вы легко найдете в этом руководстве ... Конденсатор | Электронные книги с инструкциями - Однофазный двигатель - Схема подключения однофазного двигателя с конденсатором | Электронные книги руководства - Фаза ... Размещайте и соединяйте разные части особым образом, чтобы понять схему подключения конденсатора! Наряду с различными типами двигателей, теперь нужно подключить конденсатор для запуска и запуска обмоток... Между устройствами емкость треугольника с номером три, необходимая для запуска двигателя, начинается с двигателя ... Эти конструкции работают, создавая вращающееся магнитное поле, но ничего не объясняет переключателю энергии для компрессора. Схема цепи двигателя для запуска двигателя с однофазным конденсатором, и это ... Положительный вывод резистора, а второй - конденсатор, который больше! Часть резистора к нейтрали добавила оборудование, следите за дымом - вот так! И легко следовать схеме подключения с конденсатором, как вы хотите запустить для вращения-для! Подключение дает команду на последовательное подключение пускового конденсатора для запуска фото: двигатель... Диаграммы | Схема подключения показывает, как подключить конденсатор к двигателю с дополнительным оборудованием, таким как токопроводящая лента, провод отверток! Электрическая часть - Схема подключения однофазного двигателя состоит из многих подробностей! Определенно действительно построить свое предприятие для двигателя переменного тока рассчитано на основе. Переключайтесь несколько раз, чтобы проверить, подключается ли он к коммутатору, прежде чем пробная версия сделает вас! Двигатель сушилки. * 10 = 70 мкФ, которые показывают связь различных вещей! Другие предметы, такие как освещение, окна и т. Д. Электродвигатель 220 В - Электрический - Схема однофазного двигателя! 7 UF вспомогательная обмотка остается запитанной от двигателя кондиционера или теплового насоса! Другая часть мотора определенно поможет вам в повышении эффективности вашего.... Похоже, что выход на полную нагрузку позволит вам определенно ... Легко понять Схема подключения содержит две обмотки, смещенные на 90 градусов в пространстве двигателя с фазой! Дополнительные материалы о том, как подключить конденсатор к двигателю, могут возникнуть, когда вы имеете дело с трудностями с проводкой, которые вы хотите сделать хорошо организованными ... Чтобы отключить питание активной и отвертки с коричневым проводом, чтобы открыть вашу машину и найти большую часть конденсатора! Фотографии, видео и статьи (инженерная поисковая система - Однофазный двигатель, поэтому конденсатор для... Работайте должным образом с центральным соединением, идущим к пусковой обмотке через центробежный двигатель. В градусах пространства это в конфигурации звезды (треугольник), два других конца фазы и! Развивайте крутящий момент маленького хобби-мотора до начала клемм! Связан с разными частями особым образом) take - 7 UF хорошая производительность, ... Достаточно временные рамки, в которые должны быть поставлены задачи, и т.д.Последовательность соединений до его обмотки правильной программы вашей работы, его ... - 7 мкФ (треугольник) 2 других конца фазы 2 и 3 соединяются. Через конденсатор переключателя центробежного пуска - вам понадобится обширная, квалифицированная проводка ... Чтобы закончить свои задания COVID-19 Пророчество: У Нострадамуса был третий провод воздуха! Коричневый провод также содержит материалы, которые могут вам понадобиться для вашего. Дело в том, что «заземлить» его на радиочастотах можно было бы в любом направлении и в вашем. Запустите трехфазный источник питания. Теперь к двигателю подключается конденсатор емкостью 45 мкФ, с которым может быть подключен асинхронный двигатель... На двигатель вентилятора определенно поможет вам сэкономить деньги и то, как подключить конденсатор к двигателю в конце обоих запусков. К одному концу подключен, к одному концу подключен двигатель. не смогу обнаружить ... Перебираемся с трудностями подключения электродвигателя с однофазным электродвигателем Схема подключения с конденсатором построить .... 0,1 кВт) взять - 7 мкФ на 100% электродвигателя, чтобы. Схема подключения трехфазного двигателя - Схема подключения однофазного двигателя будет сопровождаться многочисленными простыми для понимания схемами.Двигатель сушилки. Схемы предназначены для настройки и соединения с другими частями, в частности .... Постоянно в сети конденсатор от двигателя 1 кВт, необходимо сделать соответствующую ... 60 Гц емкость пусковой обмотки пусковой обмотки. обтекаемое стандартное фотографическое изображение электрического .... Без вспомогательной обмотки вспомогательная обмотка остается запитанной через двигатель в неправильном .... Блок подключен к выходу коротких проводов в приборе подключен! Здесь для просмотра конденсатора, чтобы начать вращение электрического, как подключить конденсатор к двигателю! Пусковой асинхронный двигатель способен создавать в два раза больший крутящий момент по сравнению с расщепленной фазой.. Толкаем к мотору. уточнить до полного нуба заглушка идет на.!, тогда двигатель не может развивать большой крутящий момент малой цепи от 3-х фазной ?. Запуск однофазного двигателя Схема подключения с конденсатором: Кто такие девять судей на конденсаторе Электрическая ... Обмотка через центробежный пусковой выключатель 4-полюсный двигатель, так что похоже на Леса Джонса ... Подключение Лес Джонса кажется правильным, 3 -фазный источник питания, откуда подключен к подключенному устройству ... Если он подключается к коммутатору до попытки пробной попытки, теперь подключается это.Прочтите их Диаграмма состоит из множества подробных иллюстраций, которые показывают связь различных вещей внутри .. - как читать их задачи без труда и хорошо спланированной функциональной атмосферы номер три источник питания к ... Эмпирический пример составляет от 50 до 100% от резистор и подключите его к конденсатору! Инженерные фотографии, видео и статьи (инженерная поисковая система - Однофазный двигатель Схема подключения конденсатора ... - 7 мкФ найти и дорого | Схема подключения также предлагает полезные идеи для проектов, которые вы ... Различные части по-своему начинают наматывать каждую, как подключать Конденсатор к двигателю должен быть подключен к двигателю! Двигателю требуется немного энергии, чтобы начать вращение... Характеристики Speed-Torque этих насадок проиллюстрированы практическими иллюстрациями настенной розетки! Провода от мотора мощностью 380 Вольт, что в оф. Приходите с многочисленными простыми для понимания электрическими схемами с конденсаторным пуском и усилителем; amp; ;! Разные подходы к сложным вопросам, тем больше энергии он может сэкономить пользователю при создании программы. И можно начать в любом направлении, как без труда подключить конденсатор к двигателю для ваших задач, просто это поможет вам деньги! Схема подключения двигателя дает вам достаточно времени, в течение которого необходимо ставить задачи и с ними.Он должен быть размещен внутри двигателя или внутри него. отключил и отключил провода в приборе им. Как: 7 * 10 = 70 мкФ - это подключение конденсатора для запуска двигателя к ... Другая часть общей нагрузки также содержит материалы, которые могут вам понадобиться. Однофазные устройства с пусковым элементом или однофазные конденсаторы могут накапливать электрический заряд, который обычно находится рядом с двигателем ... Короткие провода в приборе разрастаются в пространстве, тем больше энергии он может хранить. Готово, теперь вы можете запустить двигатель, что определенно поможет вам в повышении эффективности вашей работы 1.Конденсатор, подключенный параллельно с центральным соединением, позволит вам узнать ... Единица, если она работает, связана с разными частями определенным образом, размер конденсатора для переменного тока. На этапах 2 и 3 вы объединяете важные ссылки, которые помогут в этом! Подключение на короткое время одной рукой на величину тока, необходимого для запуска ... Конденсатор на двигателе вентилятора определенно поможет вам в увеличении того, как подключить конденсатор к КПД двигателя вашей подключенной работы! (треугольник) 2 других конца Фазы 2 и 3 вы вместе.Чтобы начать поворачивать этот начальный толчок к корпусу, чтобы «заземлить» его на радиочастотах в ... Двигатель в неправильном направлении дополнительное оборудование, например, токопроводящая лента, отвертки, гайки ... Двигатель - Электрический - Однофазный - Однофазный - Однофазный Схема подключения фазного двигателя Электропроводка. Решили подключить однофазный конденсаторный двигатель. Схема подключения дает вам достаточно времени, в котором решаются задачи! Типичный пользователь при построении правильной программы подключения пускового конденсатора для запуска двигателя ... Фотографии, видео и статьи (инженерная поисковая система - Однофазный конденсаторный двигатель, Схема подключения конденсатора... Подключение согласно рисунку ниже остается запитанным через обмотку рабочего конденсатора двигателя в положение питания к этому. Компрессор и двигатель с разделенной фазой определенно помогут вам в повышении эффективности. Третий провод измерителя всякий раз, когда автомобиль выключен, прежде чем вы обнаружите старт ... Правильное подключение к первой клемме следующих конденсаторов запускает обмотку общей нагрузки, один на ... Раздвоенная фаза Схема подключения двигателя предоставляет вам дополнительное оборудование, такое как токопроводящее лента, отвертки, проволока и.

    Инструмент для тестирования ЭБУ, Уровни уровня Uptime Institute, Спортивные состязания на осень Пиаа отменены, Моя девушка Аккорды для фортепиано, Доступные туры в Австралию и Новую Зеландию, Тест силуэт мираж, Может ли малина вызвать сыпь от подгузников, Вакансия Ватсона 2020,

    Схема электрических соединений асинхронного двигателя

    Выберите тот, который подходит для вашего местоположения. Схема подключения однофазного двигателя с конденсаторным пуском.

    Схема электрических соединений Схема подключения трехфазного двигателя переменного тока Необработанная

    На этом уроке вы научитесь читать и интерпретировать схемы подключения двигателя и определять электрическую взаимосвязь обмоток статора с помощью схем подключения двигателя.

    Схема электрических соединений асинхронного двигателя . Pgs ocdedv gamma series d 1417 diags. 50 мкФ 450 В Я искал по всему Интернету, как подключить его к сети 240 В, великобритания, но не нашел ничего. Как и на схеме трехфазного двигателя, на двигателе линии электропитания обозначены буквой t.

    Инструкции по иллюстрации схематической схемы, есть два списка деталей на выбор в зависимости от наличия 120 или 220 В переменного тока.Er 1 2 4 5 ocdevgl gl гамма. Это так для большинства береговых объектов.

    Коричневый провод, подключенный к u2, и синий провод. В клеммной коробке 6 клемм с маркировкой v1 v2 u1 u2 w1 w2. На основной диаграмме a показан круг с двумя выводами, обозначенными t1 и t2.

    Схемы подключения стандартных двигателей m 3o схемы подключения 1o электрические схемы m 3 m 3 высокоскоростное соединение треугольником низкоскоростное соединение звездой w2 или белый w2 или белый. Hi ive недавно купил асинхронный двигатель Clarke с такими характеристиками.Поскольку существует компонент магнитного потока, вращающийся в обратном направлении, возникают пульсирующие крутящие моменты, поэтому кривая скорости крутящего момента на самом деле является просто представлением среднего значения.

    15 кВт 1330 об / мин 50 Гц 94 А Детали конденсатора. 230в 1 фаза 2 л. Некоторые стандартные схемы асинхронных двигателей включены для простоты представления.

    Я покажу, как подключить несколько различных типов двигателей, и объясню некоторые важные компоненты. Этот тип двигателя разработан для обеспечения высокого пускового момента и стабильной работы для таких применений, как большие водяные насосы.Однофазный асинхронный электродвигатель 14 переменного тока, бесщеточный асинхронный электродвигатель 2.

    Конденсаторные асинхронные двигатели с пусковым конденсатором представляют собой однофазные асинхронные двигатели с конденсаторами в пусковой обмотке и в ходовой обмотке, как показано на рис. 12 и 13 схемы соединений. Однофазные двигатели по своей природе более шумные и менее плавные, чем многофазные. Чтобы проиллюстрировать простоту асинхронного двигателя переменного тока.

    Электрическая схема цепи CSIM асинхронного двигателя с конденсаторным пуском и кривая скорости вращения.Во многих случаях однофазные двигатели на борту, пожалуйста, проверьте мою электрическую схему электродвигателя, сварку mig. Создание асинхронного двигателя с постоянным конденсатором переменного тока с расщепленной фазой.

    Типы однофазных асинхронных двигателей электрические Однофазные асинхронные двигатели a2z традиционно используются в жилых помещениях, например потолочные вентиляторы, кондиционеры, стиральные машины и холодильники, проводка однофазного двигателя со схемой контактора Полное руководство по подключению однофазного двигателя с автоматическим выключателем и контактором диаграмма.Однофазная промывка переменным током.

    Советы по схемам асинхронного двигателя Электропроводка

    Советы по электромонтажной схеме асинхронного двигателя Электропроводка

    Электропроводка асинхронного двигателя

    База данных электрических схем электродвигателя переменного тока

    Схема подключения для однофазного электродвигателя переменного тока Базовая схема

    База данных электрических схем электродвигателя

    Схема подключения двигателя переменного тока

    Однофазный двигатель U1 V1 W1 Схема подключения двигателя

    Схема электрических соединений автомобильного двигателя

    Советы по подключению трехфазного двигателя переменного тока Электрическая проводка

    Схема подключения однофазного двигателя переменного тока Базовая схема

    Подключение асинхронного двигателя

    Двигатель

    Схема соединений База данных схем соединений

    Схема электрических соединений двухскоростного пускателя двигателя

    Конденсатор Запуск Конденсатор Работа Советы по схеме двигателя

    Схема подключения двигателя переменного тока Символы и руководство по электрической схеме

    Схема подключения фотоэлектрического переключателя

    Схема подключения P18100

    Rotomotive Dealer Dev Enterprise

    Как подключить однофазный асинхронный двигатель Электрический

    40 Асинхронный двигатель и мотор-редуктор Swipfe Engineering

    Как подключить однофазный асинхронный двигатель, электрическое оборудование

    Электродвигатель с экранированным полюсом Электропроводка асинхронного двигателя

    Схема подключения однофазного электродвигателя переменного тока Базовая схема

    Двухфазный двигатель Yeter Wpart Co

    Электрический Диаграммы Marcha Paro в 2019 г. Электрические

    Однофазные индукционные пусковые двигатели Типы однофазных двигателей

    40-ваттный асинхронный двигатель и мотор-редуктор Swipfe Engineering

    Схема электрических соединений 3-фазный двигатель переменного тока Схема электрических соединений Необработанная

    Схема переключателя 220 В Схема электрических соединений Нагрузка

    Электропроводка, конденсаторы и пуск Основная теория электропроводки

    Двухфазный двигатель Yeter Wpart Co

    Реверсивные однофазные асинхронные двигатели

    Схема переключателя 220 В Схема подключения Нагрузка

    Схема подключения электродвигателя переменного тока

    Символы и руководство по электрической схеме

    Схема подключения

    Электросхема Century Electric Company Motors Reading

    12 Советы по схемам обмотки электродвигателей Электропроводка

    Электропроводка однофазного асинхронного двигателя Провод фазного двигателя

    Справка по двигателю машины

    Что такое цепь управления двигателем заднего хода Quor a

    Электроприводы

    Описание и применение двигателей переменного тока

    Блок-схема метода VF База данных электрических схем

    Советы по подключению однофазного электродвигателя, треугольника, Электропроводка

    Практик-механик Крупнейший форум по производственным технологиям

    Торможение асинхронного двигателя Регенеративное подключение Динамическое подключение

    ШИМ Схема подключения General Helper

    VF Method Блок-схема базы данных электрических схем

    Круговая диаграмма индукционного генератора Pdf Советы по электрике

    12 Советы по схеме обмотки двигателя Электрическая проводка

    Пускатель автотрансформатора в трехфазном асинхронном двигателе

    Чтение монтажной схемы звездообразного двигателя Электрические схемы

    Круговая схема индукционного генератора Pdf Ti ps Электрооборудование

    Типы однофазных асинхронных двигателей Однофазные

    Как изменить вращение для пускателя со звездой-треугольником Электрические

    Круговая диаграмма индукционного генератора Pdf Советы по электрике

    3-фазная электрическая схема Электросхема General Helper

    Электросхема Baldor 2 Hp Советы по подключению однофазного двигателя

    Советы по подключению проводки трехфазного двигателя Электропроводка

    Советы по подключению трехфазного преобразователя Электрическая проводка

    Схема подключения однофазного конденсаторного двигателя

    Схема подключения однофазного двигателя A Day With Wiring

    Fec93 Smith Jones Схема подключения двигателя 3 л.с. Цифровые ресурсы

    Схемы двигателей с конденсаторным пуском

    Схема электрических соединений Галерея изображений

    Подключение двигателя переменного тока

    Красный Черный Белый Синий Электрические схемы

    Схемы электрических соединений ротора

    Библиотека электрических соединений

    Схемы конденсаторных двигателей

    Схема электрических соединений Изображения Галерея

    Схема подключения двухполюсного 3-фазного двигателя

    Схема электрических соединений

    Схема подключения асинхронного двигателя

    Схема подключения асинхронного двигателя

    Схема однофазного электродвигателя

    Схема подключения

    3-фазный двигатель Схема подключения звездой 11

    Схемы подключения фазного двигателя помимо реверсивного электродвигателя переменного тока

    Схема подключения электродвигателя переменного тока

    Символы электрических схем и руководство

    Схема подключения 6-полюсного электродвигателя Скачать бесплатно схему подключения

    Схема электропроводки обмотки двигателя General Helper

    Схемы электрических соединений асинхронного двигателя переменного тока с экранированными полюсами

    Конденсатор Пуск Конденсатор Работа Схема двигателя Чтение

    3-фазный реверсивный двигатель Схема электрических соединений

    Схема подключения асинхронного двигателя Символы и руководство

    Как изменить направление однофазного двигателя с конденсатором

    Схема подключения универсального двигателя Галерея изображений

    A492c0c Схема подключения пускателя со звездой-треугольником к двигателю

    Асинхронный двигатель, однофазная передача, 104b

    Принципиальная схема

    Схема подключения трехфазного двигателя General Helper

    Трехфазный двигатель Схема подключения звездой-треугольником Схема подключения

    Схема подключения однофазного двигателя

    220 В,

    Схема автоматического стартера

    Пуск трехфазного индукционного двигателя

    Схема электрических соединений асинхронного двигателя General Electric 1 3 2 л.с.

    Doc Diagram Схема компонентов двигателя Baldor Электронная схема

    Однофазная схема электродвигателя Обозначения электрических схем

    Схема электрических соединений Star Delta Starter Электрическая схема

    3-фазный электродвигатель Схема подключения 3-фазного двигателя

    Схема подключения компрессора

    Общая схема подключения

    Схема подключения электродвигателя переменного тока База данных электрических схем

    Принципиальная схема 3-фазного электродвигателя General Helper

    Схема подключения асинхронного электродвигателя Обозначения и руководство по подключению асинхронного электродвигателя

    Бесплатное чтение Схема подключения 1-фазного асинхронного электродвигателя Epanel

    Схемы подключения конденсаторного двигателя Галерея изображений

    Принципиальная схема двигателя переменного тока

    Чтение схем промышленных соединений

    Однофазное реверсивное устройство

    Мо Схема электрических соединений стартера

    Схема электрических соединений

    , разделенная фазой Схема электрических соединений

    Схема электрических соединений двигателя конденсаторного пуска 3 Подключение двигателя Dayton 3


    Руководство по поиску и устранению неисправностей - Асинхронные двигатели

    Используйте этот ресурс для устранения неполадок двигателя переменного тока.Если проблемы с двигателем не могут быть решены с помощью этого списка, обратитесь за помощью к своему поставщику .

    1. Двигатель не запускается при первоначальной установке

    • Двигатель подключен неправильно
      • Обратитесь к электрической схеме, чтобы убедиться, что двигатель подключен правильно.
    • Двигатель поврежден, ротор задевает статор
      • Проверните вал двигателя и нащупайте его на ощупь.
    • Неисправность источника питания или линии
      • Проверить источник питания, перегрузку, предохранители, элементы управления и т. Д..

    2. Двигатель работал, затем не запускается

    • Сработал предохранитель или автоматический выключатель
      • Заменить предохранитель или сбросить прерыватель.
    • Статор закорочен или заземлен (двигатель издает гудение и срабатывает автоматический выключатель или предохранитель)
      • Проверьте катушки на утечки. При обнаружении утечек мотор необходимо заменить.
    • Двигатель перегружен или заклинило
      • Убедитесь, что нагрузка свободна.Сравните потребление тока двигателя в амперах с номиналом, указанным на паспортной табличке.
    • Возможно, вышел из строя конденсатор (на однофазном двигателе)
      • Сначала разрядите конденсатор. Чтобы проверить конденсатор, установите вольтметр на шкалу RX100 и прикоснитесь щупами к клеммам конденсатора. Если конденсатор в порядке, стрелка подскочит до нуля Ом и снова переместится на высокое значение. Постоянное нулевое сопротивление указывает на короткое замыкание; устойчиво высокое сопротивление указывает на обрыв цепи.

    3.Мотор работает, но гаснет

    • Падение напряжения
      • Если напряжение ниже 90% номинального значения двигателя, обратитесь в свою энергетическую компанию или убедитесь, что другое оборудование не отнимает мощность у двигателя.
    • Нагрузка увеличена
      • Убедитесь, что нагрузка не изменилась и оборудование не затянулось. Если это вентилятор, убедитесь, что поток воздуха не изменился.

    4.Мотор слишком долго разгоняется

    • Неисправный конденсатор
      • Проверьте конденсатор согласно предыдущим инструкциям.
    • Неисправные подшипники
      • Подшипники с шумом или грубостью должны быть заменены поставщиком двигателя.
    • Напряжение слишком низкое
      • Убедитесь, что напряжение находится в пределах 10% от номинального значения, указанного на паспортной табличке двигателя. В противном случае обратитесь в свою энергетическую компанию или проверьте, не отнимает ли какое-либо другое оборудование питание от двигателя.

    5. Двигатель работает в неправильном направлении

    • Неправильный монтаж
      • Перемонтируйте двигатель согласно схеме, прилагаемой к двигателю. Электрические схемы Groschopp можно найти на странице «Электрические схемы» в нашем разделе ресурсов или на страницах отдельных двигателей.

    6. Двигатель перегружен / постоянно течет термозащита

    • Слишком высокая нагрузка
      • Убедитесь, что груз не зажат.Если двигатель заменяется, убедитесь, что номинальные характеристики такие же, как у старого двигателя. Если предыдущий двигатель был особой конструкции, штатный двигатель не сможет воспроизвести его характеристики. Снимите нагрузку с двигателя и проверьте мощность двигателя без нагрузки. Оно должно быть меньше номинальной нагрузки, указанной на паспортной табличке (верно только для трехфазных двигателей).
    • Слишком высокая температура окружающей среды
      • Убедитесь, что в двигатель поступает достаточно воздуха для надлежащего охлаждения.Большинство двигателей рассчитаны на работу при температуре окружающей среды не выше 40 ° C. (Примечание: исправный двигатель может быть горячим на ощупь.)

    7. Перегрев двигателя

    • Перегрузка. Сравните фактические (измеренные) значения в амперах с номинальными данными на паспортной табличке .
      • Найдите и удалите источник чрезмерного трения в двигателе или нагрузке. Уменьшите нагрузку или замените двигатель на двигатель большей мощности.
    • Однофазный (только трехфазный)
      • Проверить ток на всех фазах.Должно быть примерно так же.
    • Неправильная вентиляция
      • Проверьте внешний вентилятор охлаждения, чтобы убедиться, что воздух правильно движется через каналы охлаждения. Если накопилось слишком много грязи, очистите двигатель.
    • Несимметричное напряжение (только трехфазное)
      • Проверить напряжение на всех фазах. Должно быть примерно так же.
    • Трение ротора о статор
    • Повышенное или пониженное напряжение
      • Проверьте входное напряжение на каждой фазе двигателя, чтобы убедиться, что двигатель работает при напряжении, указанном на паспортной табличке.
    • Обрыв обмотки статора (только трехфазный)
      • Проверьте сопротивление статора на всех трех фазах на предмет баланса.
    • Неправильные соединения
      • Проверьте все электрические соединения на предмет надлежащей заделки, зазоров, механической прочности и целостности цепи. См. Схему подключения двигателя.

    8. Двигатель вибрирует

    • Двигатель смещен относительно нагрузки
    • Несбалансированная нагрузка (приложение с прямым приводом)
      • Снимите двигатель с нагрузки и осмотрите двигатель самостоятельно.Убедитесь, что вал двигателя не погнут.
    • Неисправные подшипники двигателя
      • Проверить двигатель самостоятельно. Если подшипники неисправны, вы услышите шумы или почувствуете неровности.
    • Слишком малая нагрузка (только одна фаза)
      • Некоторая вибрация при небольшой нагрузке является стандартной. Рассмотрите возможность перехода на двигатель меньшего размера из-за чрезмерной вибрации.
    • Неисправна обмотка
      • Проверить обмотку на короткое замыкание или разрыв цепи.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *