Простейшая схема автоматического управления уровнем воды
Устройство, сделанное своими руками на одном транзисторе, может изготовить практически любой, кто этого захочет и приложит небольшие усилия для закупки очень недорогих и не многочисленных комплектующих и спаяет их в схему. Применяется она для автоматического пополнения воды в расходных ёмкостях дома, на даче и везде, где присутствует вода, без ограничений. А таких мест очень много. Для начала рассмотрим схему этого устройства. Проще просто не бывает.Контроль уровня воды в автоматическом режиме с помощью простейшего электронного Схема контроля уровня воды.
Вся схема управления уровнем воды состоит из нескольких простых деталей и если без ошибок собрана из хороших деталей, то не нуждается в настройке и сразу заработает, как запланировано. У меня подобная схема без сбоев работает уже почти три года, и я ей очень доволен.
Схема автоматического управления уровнем воды
Список деталей
- Транзистор можно применить любой из этих: КТ815А или Б. TIP29A. TIP61A. BD139. BD167. BD815.
- ГК1 – геркон нижнего уровня.
- ГК2 – геркон верхнего уровня.
- ГК3 – геркон аварийного уровня.
- D1 – любой красный светодиод.
- R1 – резистор 3Ком 0.25 ватт.
- R2 – резистор 300 Ом 0.125 ватт.
- К1 – любое реле на 12 вольт с двумя парами нормально разомкнутыми контактами.
- К2 – любое реле на 12 вольт с одной парой нормально разомкнутых контактов.
- В качестве источников сигнала для пополнения воды в ёмкость, я применил поплавковые герконовые контакты. На схеме обозначаются ГК1, ГК2 и ГК3. Китайского производства, но очень приличного качества. Ни одного плохого слова сказать не могу. В ёмкости, где они стоят, у меня происходит обработка воды озоном и за годы работы на них ни малейшего повреждения. Озон является крайне агрессивным химическим элементом и многие пластики он растворяет совершенно без остатка.
Теперь рассмотрим работу схемы в автоматическом режиме.
При подаче питания на схему, срабатывает поплавок нижнего уровня ГК1 и через его контакт и резисторы R1и R2 подаётся питание на базу транзистора. Транзистор открывается и тем самым подаёт питание на катушку реле К1. Реле включается и своим контактом К1.1 блокирует ГК1 (нижний уровень), а контактом К1.2 подаёт питание на катушку реле К2, которое является исполнительным и включает своим контактом К2.1 исполнительный механизм. Исполнительным механизмом может быть насос для воды или электрический клапан, которые подают воду в ёмкость.
Вода пополняется и когда превысит нижний уровень, выключится ГК1, тем самым подготавливая следующий цикл работы. Достигнув верхнего уровня, вода поднимет поплавок и включит ГК2 (верхний уровень) тем самым замыкая цепочку через R1, К1.1, ГК2. Питание на базу транзистора прервётся, и он закроется, выключив реле К1, которое своими контактами разомкнёт К1.1 и выключит реле К2. Реле, в свою очередь выключит исполнительный механизм. Схема подготовлена к новому циклу работы. ГК3 является поплавком аварийного уровня и служит страховкой, если вдруг не сработает поплавок верхнего уровня. Диод D1 является индикатором работы устройства в режиме наполнения воды.
А теперь приступим к изготовлению этого очень полезного устройства.
Размещаем детали на плату.
Все детали размещаем на макетной плате, чтобы не делать печатную. При размещении деталей, нужно учитывать, чтобы паять как можно меньше перемычек. Нужно максимально использовать проводники самих элементов для монтажа.
Окончательный вид.
Схема управления уровнем воды запаяна.
Схема готова к испытаниям.
Подключаем к аккумулятору и имитируем срабатывание поплавков.
Всё работает нормально. Смотрите видео об испытаниях в работе этой системы.
Смотрите видео испытаний
Схема контроля за уровнем воды в резервуаре, баке на даче, доме. Сделать самому прибор.
Схема контроля уровня воды, схема реле уровня воды.
Описание.
- Предлагается схема для повторения простого и очень надежного прибора за контролем уровня воды в баке, емкости, резервуара. В устройстве используется 6 транзисторов, один таймер IC NE555 (аналог КР1006ВИ1), электромагнитное реле и несколько пассивных компонентов, оно полностью автоматическое, позволяет включать двигатель насоса, когда уровень воды в емкости бака опускается ниже заданного уровня и выключает насос, когда уровень воды в баке, емкости наполнится и достигнет максимальной отметки.
- Зонд D расположен в самом низу резервуара, в то же время, зонды В и С помещены в средней части резервуара, соответственно определяют заполнение водой наполовину и выше среднего уровня бака.
- Сенсорная часть схемы выполняется на транзисторах Q1, Q2 и Q3.
- Когда уровень воды находится ниже датчиков А, В и С, транзисторы Q1, Q2 и Q3 в закрытом состоянии. При повышении уровня воды зонды по очереди оказываются в воде, соответствующие транзисторы открываются. Резисторы R1, R2, R3 ограничивают ток базы данных транзисторов, а резисторы R4, R5, R6 ограничивают их ток коллекторов.
- Загорание соответствующих светодиодов D1, D2 и D3 сигнализируют об уровне воды.
Работа схемы
Когда уровень воды уменьшится и станет ниже датчика, транзистор Q2 переходит в закрытое состояние, и на его коллекторе появляется высокий положительный потенциал, коллектор Q2 подключен к базе транзистора Q6, в результате транзистор Q6 открывается. Транзистор Q5 остается в прежнем состоянии, т.к. база подключена к коллектору Q4 который в настоящее время закрыт. В тот момент, когда уровень воды опустится ниже датчика среднего уровня, реле К1 активизируется и насос запускается.
Включенные контакты реле замыкают эмиттер с коллектором Q6, чтобы отключить реле К1 необходимо закрыть транзистор Q5, это произойдет автоматически, когда уровень воды достигнет максимального уровня.
Коллектор транзистора Q1 подключен к выводу 2 триггера IC1. Когда уровень воды достигнет максимального уровня – транзистор Q1 открывается, в результате этого коллектор подтягивается к земле, тем самым запускается IC1, с вывода 3 в течении 1S напряжение высокого уровня открывает транзистор Q4 и закрывается Q5, в результате реле К1 выключается, двигатель останавливается. Это состояние продолжается до тех пор, пока уровень воды снова не опустится ниже среднего уровня.
Резистор R8 подключен к “+” источника, при подаче на вывод 4 напряжения низкого уровня (менее 0,7в) таймер переходит в исходное состояние. Электролитический конденсатор C3 формирует импульс, отрицательным фронтом запускается микросхема NE555 в режим моностабильного мультивибратора.
Резисторы R10 и R12 ограничивают ток коллектора транзисторов Q4 и Q5, а R9 и R11 ограничивает ток базы. R13 ограничивает ток базы Q6, диод D4 шунтирующий, который защищает транзистор при переключении.
<Принципиальная схема блока контроля уровня воды.
Зонды, стержни, щупы, датчики их действие основано на свойстве электропроводности воды. При размещении стержней учтите – они не должны касаться между собой и стенок емкости. Датчик С устанавливается на минимальный уровень воды, датчик А на максимальный уровень воды.
Вариант расположения датчиков показан на рисунке. В качестве щупов могут применяться металлические стержни. Зонды можно прикрепить к пластиковым опорам и установить вертикально внутри резервуара. Длину металлических проводников и пластиковой опорной штанги выбираются в зависимости от глубины резервуара.
Пояснения.
Питание прибора контроля уровня воды применяется источник постоянного тока 12V DC.
Электромагнитное реле на 5V с сопротивлением обмотки 220 Ом, поэтому последовательно включен резистор R12, если применить реле на 12V, то R12 исключается.
При выборе реле, используйте то, которое потребляет ток не более 500 мА, так как максимальная ток коллектора PN2222 составляет 600мА.
При монтаже возможно установление NE555 в панель.
К1 должно иметь два замыкающих контакта.
Нагрузочная способность реле должно быть в соответствии с установленным двигателем насоса.
К выбору транзисторов – подойдут любые подходящие по параметрам широко распространенные полупроводниковые приборы.
Схема блока питания.
Источник питания 12В постоянного тока
Классическая схема регулируемого источника питания на основе микросхемы 7812, устанавливаемая на дюралюминиевый радиатор, для индикации включения имеется светодиод, резистор R13 ограничивает ток протекающий через LED. Радиатор для корпуса типа ТО-220 или подобный, его свободно можно приобрести на рынке радиодеталей.
схемы датчиков воды
Устройство управления насосом воды
Одна из возможных схем управления насосом приведена на рис.5. Цепи управления тринисторами разделены и питаются от отдельных обмоток трансформатора Т1. Датчики Е1 и Е2 включены до выпрямителей, поэтому через них протекает переменный ток (без постоянной составляющей). Резервуар исключен из электрической цепи, поэтому может быть выполнен из материала, не проводящего ток.
Датчики уровня Е1 и Е2 удобно изготовить из бритвенных лезвий с хромовым антикоррозионным покрытием. Каждый датчик состоит из 2-х лезвий. Лезвия укрепляют на внутренних сторонах жесткой пластины из изоляционного матерриала, согнутой подобно букве П. Оптимальный зазор между лезвиями в датчике следует уточнить при налаживании устройства из-за того, что проводимость воды в разных местностях может существенно различаться.
Вообще говоря, взаимное положение лезвий в датчике и размещение его относительно поверхности воды некритично. Надо лишь экспериментально добиться наиболее четкой работы устройства в каждом конкретном случае.
Материал пластины не должен впитывать воду; годятся полиэтилен, фторопласт, органическое стекло. Соединительные проводники припаивают к лезвиям с применением нужного флюса. Крепить лезвия можно любым способом – проволочными скобами, винтами и т.п. Датчики устанавливают в резервуаре на соответствующих расстояниях ото дна.
В устройстве могут быть использованы любые диодные сборки, рассчитанные на прямой ток не менее 100мА. Тринисторы КУ202В можно заменить на КУ202Г – КУ202Е. Конденсатор С1 – К50-6. Реле К1 – РП21-003-04 (напряжение срабатывания 24В). Трансформатор Т1 – ТПП226-127/220-50 (или ТПП238-127/220-50). Можно использовать и любой другой сетевой трансформатор номинальной мощностью не менее 3Вт с напряжением на холостом ходу (т.е. без нагрузки) вторичных обмоток, близким к указанному на схеме.
Примечание: цепь управляющего электрода каждого из тринисторов можно дополнить включением в нее токоограничительного резистора – это предотвратит их от выхода из строя при случайном замыкании цепи того или иного датчика (или при работе в соленой воде). Сопротивление резистора должно быть таким, чтобы при замыкании цепи датчика ток через управляющий переход соответствующего тринистора не превышал паспортного максимально допустимого значения.
Индикатор уровня жидкости
Если ваши знания немного включают электроники и вам необходим индикатор уровня жидкости, то можно воспользоваться схемой на рис.6. Этот прибор предназначен для контроля уровня жидкости, например воды, в различных резервуарах. Он подает непрерывный звуковой сигнал, когда уровень жидкости достигает номинального значения, и прерывистый звуковой сигнал при превышении жидкостью критической отметки.Индикатор (рис.6) состоит из 2-х генераторов: первый собран на логических элементах DD1.1 и DD1.2, а второй – на элементах DD1.3 и DD1.4. Работой генераторов управляет датчик из сенсоров Е1-Е3, размещаемый в резервуаре на том уровне, на котором требуется контроль жидкости. Если жидкость ниже заданного уровня и, естественно не доходит до сенсоров, то через резисторы R2, R3 на входы элементов DD1.1-DD1.3 поступает уровень логической 1. Ни один из генераторов не работает. В таком режиме индикатор практически не потребляет тока от источника питания.
Когда жидкость достигнет сенсоров Е1, Е2 и “замкнет” их, то на выводе 12 элемента DD1.3 появится уровень логического нуля. Второй генератор начинает работать, и в телефоне BF1 раздается звуковой сигнал частотой около 1000Гц. Если поступление жидкости в резервуар не прекратится, ее уровень достигнет вскоре сенсора Е3. Уровень логического 0 окажется и на входах элементов DD1.1 и DD1.2. Начнет работать первый генератор и управлять включением второго генератора. Частота следования импульсов первого генератора сотавляет несколько Герц, поэтому в телефоне будут раздаваться прерывистые звуковые сигналы, извещающие о достижении жидкостью критического уровня.
Сенсоры могут быть выполнены в виде облуженных медных планок (рис.7), прикрепленных к пластине (А) из изоляционного материала. Подойдет также отрезок фольгированного стеклотекстолита с сенсорными токопроводящими площадками.. В этом варианте площадки облуживают или покрывают антикоррозийным токопроводящим покрытием, а участок А стеклотекстолита окрашивают лаком или краской.
Если жидкость агрессивная, сенсоры нужно изготовить из материала, не вступающего в химическую реакцию с жидкостью. Сопротивление между сенсорами додлжно быть не менее 10МОм. Если обеспечить его не удастся, придется уменьшить сопротивления резисторов R2 и R3.
Детали индикатора, кроме сенсорного датчика и головного телефона, размещаются на печатной плате (рис.7) из фольгированного стеклотекстолита. Плату соедииняют с датчиком проводами в хорошей изоляции. Для защиты от помех такой провод лучше взять экранированным, соединив экран с общим проводом индикатора (минус питания).
Поскольку в дежурном режиме индикаторо почти не потребляет энергии, выключателя питания нет, но при его желании легко ввести. Какого-либо специального налаживания индикатора не требуется, но в случае необходимости тональность сигнала можно изменить подбором конденсатора С2, а периодичность его подачи – подбором конденсатора С1.
электрическиая и монтажная схемы
Как сделать датчик контроля уровня воды в резервуаре своими руками
Всем привет. Сегодня речь пойдет об очень простом наборе для самостоятельной сборки прибора, для контроля уровень воды. Данный набор может с успехом распаять школьник 5-7 класса за один вечер. Можно конечно сделать и полностью самостоятельно, включая плату, но я решил сэкономить время, поэтому был заказан набор.Набор был приобретен с целью хоть как то автоматизировать набор воды в бочку на даче. При чем это не совсем бочка, а скорее труба, уходящая вниз на 2.5-3 метра, поэтому запасы воды там приличные (для простоты пусть будет бочка). Задумка была простая, пока нет регулярного водоснабжения электроклапан открывается и набирает в бочку воды по заданный уровень. Расход воды ведрами по необходимости и автоматический долив в бочку. Для того что бы клапан часто не срабатывал от колебаний воды, задумано несколько уровней. Нижний при котором включается клапан и верхний при котором выключается. Т.е. есть определенная мертвая зона при которой расход воды есть, а подача воды в бочку пока отсутствует. Кстати, эта мертвая зона и есть фактически такое понятие, как гистерезис.
В прошлом году эту функцию выполняло такое пардон устройство, как поплавковый механизм из бачка унитаза. Работало исправно, изредка засорялось, поскольку вода поступает по трубам прямиком из реки. Но в итоге зиму не пережило, поскольку было выполнено из пластмассы и развалилось от мороза.
Данный набор был призван заменить вышедший из строя механизм.
По мере хранения собранной платы и ожидании дачного сезона, была произведена попытка применить собранную плату на производстве, вот на такой установке.
Это просто большая кастрюля с нагревателем типа ТЭНов мощностью 27 КВт. Продукцию достают из холодильника целыми поддонами и закладывают в кострюлю. Надо все это нагреть до 90 С. Представляете сколько электроэнергии тратится ежесуточно?!
Для оценки объемов приложу пару фото:
Продукция между прочим представляет из себя свиные желудки и кудрявку (часть кишков).
Насколько я знаю желудки чем то набивают и употребляют в пищу, с кишками примерно то же самое — в том числе и колбасы с сосисками.
Это дело варится и повторно замораживается. Далее отправляется в Китай. Вот так вот, круговорот товара в природе. Мы им натуральные субпродукты, а в ответ электронику…
Назрел вопрос перевести нагрев кастрюли на пар. Так экономнее и мощность выше. Производительность вырастает в разы. Вот тут и потребовался датчик уровня, что бы никого паром не обварило и пар подавался только тогда, когда в емкости присутствует хотя бы минимальное количество воды.
Однако я вовремя спохватился и отказался от окончательной установки, хотя испытания показали работоспособность платы. Применять на производстве самоделки противопоказано. Поэтому нашли менее оперативно нужный прибор, который выполняет те же функции, но имеет еще и сертификат. Принцип работы заводского прибора практически соответствует набору с интернет магазина и в конкретном случае выполняет те же функции.
Этот прибор отечественного производства Овен САУ-М7.
Доставка и упаковка:
Бангуд весьма стабилен, малый пакет и несколько слоев вспененного полиэтилена.В небольшом пакетике «кучка» деталей, плата и провода.
По номиналам я не сортировал, просто разложил для наглядности.
Схема не простая, а очень простая. Используется 4 элемента 2И-НЕ, при чем два из них выполняют функцию триггера. Он нужен для формирования петли гистерезиса.
Контакты 1 и 2 разъема J3 дают сигнал о нижнем уровне и включают реле. Контакты J4 1 и 2 — верхний уровень и аварийный, при срабатывании любого из них реле выключается. Срабатывание реле дублируется зажиганием светодиода. Схема уверенно срабатывает на водопроводную воду и так же уверенно на воду после водоподготовки, в которой солей меньше.
Я собирал плату практически не глядя в схему, разве что номинал резисторов посмотрел.
Перепутать выводы маловероятно и даже установить такие детали, как разъемы или транзисторы неправильно помешает нанесенная шелкография.
Единственный минус при монтаже — я перепутал местами светодиоды. Но это так, мелочи, на работоспособность не влияют.
В качестве датчиков были применены самодельные датчики уровня кондуктометрического типа. Примерно вот так они выглядят в сборе:
На плате со стороны установки деталей нанесена шелкография, вполне качественная.
Процесс распайки деталей вам не будет интересен, поскольку я не являюсь сборщиком и не владею особенностями тех процесса по сборке плат. Что в руку попалось с краю, то и запаивал.
Печатная плата со стороны пайки покрыта защитной маской. Металлизации нет. Плата односторонняя.
Использовал припой типа ПОС 61 с канифолью. Насвинячил немного.
Провода питания зафиксировал герметиком, что бы не обломались на выходе из отверстий. Провода, что шли в комплекте, мне показались слишком короткими.
Плату помыл растворителем со спиртом и покрыл слоем Plastik 70. Сразу заметил разницу между моими прежними платами и этой. Поверхность блестит и контакты покрыты слоем пленки.
Выявился некоторое неудобство, которое на самом деле является плюсом. Хотел снять видео о работе платы с использованием мультиметра, а получил проблему в виде того, что цупы, банально не продавливают покрытие защитное. Поэтому в видео отсутствует мультиметр.
Видео демонстрации работы платы:
Upd: пока писал обзор, на страницу с товаром даже не обращал внимание, как обычно. И только после написания обзора обратил внимание на товар. Плата не совпадает с той, что мне прислали и судя по комментариям многим высылают два разных варианта платы. На функционале это не сказывается. Обе платы работоспособны.
Итоги: Простейший набор, доступен для школьников, так же имеет практическое применение. К покупке рекомендую. Осадок небольшой остался из за того, что плата пришла не та, которая в описании.
В моем случае оказались лишними провода. Вероятно они планировались для вывода из платы светодиодов на переднюю панель и подключения источника питания.
Автоматика контроля уровня воды | vserele.ru
Многие из Нас и не только заядлые дачники, сталкивались с проблемой автоматизации и контроля заполнения емкостей водой. Скорее всего эта статья именно для тех, кто решил сделать простейшую схему контроля наполнения емкости в бытовых условиях. Самый бюджетный способ построения автоматики – это использование реле контроля воды. Реле контроля уровня (воды) так же используются в более сложных системах водоснабжения частных домов, но в данной статье мы рассмотрим только бюджетные модели реле контроля уровня токопроводящей жидкости. К подконтрольным жидкостям относятся: вода (водопроводная, родниковая, дождевая), жидкости с низким содержанием алкоголя (пиво, вино и др.), молоко, кофе, сточные воды, жидкие удобрения. Номинальный ток контактов реле 8-10А, что позволяет коммутировать небольшие насосы без использования промежуточного реле или контактора, но производители все равно рекомендуют ставить промежуточные реле или контакторы для включения/выключения насосов. Температурный диапазон работы устройств от -10 до +50C, а максимально возможная длина провода (от реле до датчика) – 100 метров, на передней панели светодиодные индикаторы работы, вес не более 200 грамм, крепление на din-рейку, поэтому необходимо будет заранее продумать размещение системы контроля.
Принцип работы реле основан на измерении сопротивления жидкости, находящейся между двумя погруженными датчиками. Если измеренное сопротивление оказывается менее величины порога срабатывания, тогда состояние контактов реле меняется. Во избежание электролитического эффекта переменный ток протекает поперек датчиков. Напряжение питания датчика не более 10В. Потребляемая мощность не более 3Вт. Фиксированная чувствительность 50 кОм.
На рынке представлено множество однотипных реле, рассмотрим самые бюджетные модели от производителей «Реле и Автоматика» г.Москва и новинки «TDM» (Торгового Дома им.Морозова).
Реле контроля уровня РКУ-1М. (аналог РКУ-02 TDM)
Реле контроля уровня TDM представлено четырьмя моделями:
- РКУ-01 (SQ1507-0002) под разъем Р8Ц(SQ1503-0019) на дин-рейку
- РКУ-02 (SQ1507-0003) на дин-рейку (аналог РКУ-1М)
- РКУ-03 (SQ1507-0004) на дин-рейку
- РКУ-04 (SQ1507-0005) на дин-рейку
Корпуса реле выполнены из не поддерживающих горение материалов. Датчики контроля уровня изготовлены из нержавеющей стали. (ДКУ-01 SQ1507-0001).
Работа реле основана на кондуктометрическом методе определения наличия жидкости, который основан на электрической проводимости жидкостей и возникновении микротока между электродами. Реле имеют переключающие контакты, что позволяет использовать режим наполнения или слива. Напряжение питания РКУ-02, РКУ-03, РКУ-04 – 230В или 400В.
Схема управления насосом в резервуаре в режиме “наполнение или дренаж”.
Схема перекачки жидкости из скважины/резервуара в резервуар, контроль уровня в обоих средах, т.е. реле производит защитное отключение насоса в режиме сухого хода (при снижении уровня жидкости в скважине/резервуаре )
Схема поочередного или суммарного включения 2-х насосов. Используется реле РКУ-04 в местах, где недопустимо переполнение колодцев, котлованов, водосборных и прочих емкостей. Реле работает с 2-мя насосам, и, для равномерного использования их ресурса, реле производит их поочередное включение. В случае чрезвычайной ситуации оба насоса выключаются одновременно.
Реле нельзя использовать для следующих жидкостей: дистиллированная вода, бензин, керосин, масло, этиленгликоли, краски, сжиженный газ.
Сравнительная таблица аналогов по сериям:
*/ ]]>TDM | F&F | lovato | РиА |
---|---|---|---|
РКУ-01 | PZ-829 | LVM20 | РКУ-1М |
РКУ-02 | PZ-829 | LVM20 | РКУ-1М |
РКУ-03 | – | LVM20 | EBR-02 |
РКУ-04 | – | LVM20 | – |
Простая схема устройства для поддержания уровня воды в заданных пределах
Устройство предназначено для автоматического поддержания уровня воды в заданных пределах. Такой регулятор очень удобен для управления электрическим насосом, откачивающим грунтовую воду из подвалов и других заглубленных помещений.
В подвале, в наиболее глубоком месте вкапывают металлический резервуар и монтируют в нем два датчика уровня: один опускают почти до дна, второй устанавливают вблизи верхней кромки резервуара. Резервуар и датчики подключают к электронному блоку (смотрите схему). Сверху резервуар прикрывают решеткой.
Грунтовая вода, скапливаясь в резервуаре, через некоторое время достигнет нижнего конца датчика Е1. В этот момент на управляющем электроде тиристора VS1 появится открывающее напряжение, тиристор откроется и сработает реле К1. Контактами К1-1 оно подключит параллельно датчику Е1 второй датчик Е2. Контактами К 1.2 (на схеме не показаны) реле включит электродвигатель насоса, который начнет откачку воды из резервуара. Через некоторое время уровень воды опустится ниже датчика Е2 и открывающее напряжение с управляющего электрода тиристора будет снято. После этого в ближайший момент перехода через «нуль» сетевого напряжения тиристор закроется, отключив насос. Далее следует медленное накопление воды до уровня Е1 — и цикл повторяется.
Датчики представляют собой пластины из полосовой нержавеющей стали толщиной 2 мм, укрепленные на держателе из изоляционного материала с малой степенью поглощения влаги (эбонит, полиэтилен, фторопласт, резина и др.). Резервуар также желательно изготовить из нержавеющего металла.
Реле К1 — РЭС9, паспорт РС4.524.203 (или другое на подходящее напряжение срабатывания, желательно с более мощными контактами). Трансформатор Т1 — любой, мощностью 5…8 Вт с напряжением вторичной обмотки 15 В. VS1 – тиристор КУ201а. VD1 – КД202Б.
Описанный регулятор может быть использован для различных целей в народном хозяйстве, важно лишь, чтобы рабочая жидкость была электропроводна.
Радиотехника на Времонт.su:
Простая схема регулятора мощности для паяльника.
Датчик и регулятор уровня воды в баке
Предлагаем собрать простой датчик уровня воды и его контроллер. Как правило такие датчики работают с использованием электрической проводимости воды, так как не всегда получается использовать какой-либо плавающий переключатель. Здесь насос должен начинать качать каждый раз, когда вода достигает слишком низкого уровня, и должен прекращать накачку, когда вода достигает высокого уровня. Когда вода израсходована, а ее уровень немного ниже высокого уровня, схема должна снова включить насос и выключить его, когда поверхность воды снова коснется электрода, отвечающего за сигнализацию верхнего уровня воды. Этот процесс будет повторяться до тех пор, пока питание не будет отключено. Поэтому пришлось спроектировать электронную схему, которая была бы надежна и имела длительный срок службы.
Возможности схемы
- Поддерживать уровень воды между «высоким» и «низким», то есть между соответствующими электродами, установленными в баке.
- Защита насоса, если уровень воды в баке падает ниже уровня, обеспечивающего нормальную его работу.
- Использована простейшая схема управления на базе CD4001.
Тут микросхема CD4001 подключена как триггер SR:
А вот как она будет управлять насосом:
Небольшой трансформатор на 220 В переменного тока, понижающий в 12 вольт с силой тока 250 мА подключается к плате источника питания через разъемы X1-1 и X1-2. Трансформатор обеспечивает низкое напряжение необходимое для питания контроллера и обеспечивает гальваническую развязку между цепью управления и сетью. Чтобы свести к минимуму количество используемых компонентов, микросхема CD4001 использовалась для создания одного блока питания для обоих компонентов, цепи управления и реле.
Кроме того, контроллер содержит два светодиода, один зеленый — чтобы указать когда насос работает, а другой красный — чтоб сигнализировать когда насос находится в защитном режиме. Зеленый светодиод загорается при каждом включении реле. Этот LED вместе с токоограничивающим резистором подключен параллельно катушки реле. Если красный светодиод включен, насос с зеленым светодиодом останется выключенным. Когда красный светодиод гаснет, насос и зеленый светодиод могут включаться при необходимости.
Цепь, состоящая из транзисторов Q1 и Q2, предназначена для включения красного светодиода (защита насоса) каждый раз, когда уровень воды находится между уровнем электрода насоса и электродом, размещенным на дне. Q1 будет закрыт, пока уровень воды остается ниже защитного уровня. Ток базы Q1 слишком мал, менее 1 мкА. Q1 и Q2 собраны по схеме Дарлингтона, поэтому Q2 может активировать красный LED при необходимости.
IC1-B — это логический элемента «И», что означает каждый раз, когда необходимо заполнить резервуар и достичь уровня защиты насоса, он откроет транзистор Q3, который запустит водяной насос.
Список деталей
Резисторы:
- 3x — 2,2 мОм 1/4 Вт (R1, R2, R3)
- 1x — 4,7 кОм 1/4 Вт (R4)
- 1x — 120 кОм 1/4 Вт (R5)
- 2x — 470 Ом 1/2 Вт (R6, R7)
- 1x — 15 кОм 1/4 Вт (R8)
Конденсаторы:
- 1x — 330 мкФ 63 В (С1)
- 1x — 220 мкФ 25 В (С2)
- 1x — 1 мкФ 63 В (С3)
Полупроводники:
- 5x — 1N4004 (D1, D2, D3, D4, D5)
- 1x — CD4001 (IC1)
- 1x — 7812T (IC2)
- 1x — Зеленый светодиод (LED1)
- 1x — Красный светодиод (LED2)
- 2x — 2N3904 (Q1, Q3)
- 1x — 2N3906 (Q2)
Прочее:
- 1x — реле 12 В (RLY1) Jameco P/N: 144186
- 4x — 2 клеммных разъема (X1, X2, X3, X4)
- 1x — 14-контактный разъем для микросхемы
- 1x — 220 В / 12 В при токе 250 мА адаптер переменного тока.
При сборке сначала припаяйте пассивные компоненты, то есть резисторы и электролитические конденсаторы, обращая внимание на их полярность. Затем припаяйте компоненты блока питания, такие как диоды и стабилизаторы напряжения, также обращая внимание на цоколевку.
Установите 14-контактную панельку на печатной плате, а затем припаяйте ее. Наносите столько припоя, сколько нужно для пайки каждого провода. Слишком большое количество припоя может привести к тому, что отдельные контакты зальются.
Используйте для проверки внешний источник питания постоянного тока +15 В или две 9-вольтовые батареи, соединенные последовательно. Напряжение, измеренное между контактами 14 (Vdd) и 7 (GND), должно составлять +12 В +/- 2%. Если напряжение такое же, как указано выше, можете перейти к следующему шагу.
Установите транзисторы NPN 2N3904 в месте Q1 и Q3 следя за тем, чтобы все контакты вошли в соответствующие отверстия. Тщательно припаяйте каждый вывод. Установите транзистор Q2, то есть 2N3906 PNP, таким же образом. Установите зеленый светодиод в месте, обозначенном как LED1. Коротким концом является катод. Если светодиод установлен в обратном направлении, он не загорится. Сделайте то же самое с красным светодиодом, который должен быть установлен в месте, обозначенном как LED2.
Затем установите два двойных разъема. Установите один разъем в месте X1 и один в месте X4, а затем припаяйте их так, чтобы их выходы были обращены к краю печатной платы. Возьмите два других разъема и затем соедините их вместе, вдавив язычок одного из них в паз на другом. Такие собранные разъемы должны быть припаяны вместо X2 и X3, так же, как и прежде, обратите внимание, что их выходы направлены к краю платы.
Установите реле RLY1 и припаяйте его. После этого плата контроллера будет готова. Чтобы подготовить устройство к тестированию, поместите интегральную микросхему CD4001 в ранее припаянную панельку.
Поместите собранную печатную плату на непроводящую поверхность, чтобы предотвратить случайное закорачивание точек пайки проводящими ток предметами. Подключите пару проводов длиной около 30 сантиметров, а затем зачистите их концы. Вставьте один конец кабеля в разъем на плате контроллера с надписью «Земля», а затем поместите конец другого провода в разъем, описанный как «защита уровня насоса», оставляя другие концы свободными.
Подключите источник питания к схеме. Если блок питания правильно подключен к плате и вся печатная плата собрана без ошибок, должен загореться красный светодиод. Если соедините два провода вместе, красный светодиод должен погаснуть, а зеленый загореться. Вы также должны услышать тихий щелчок в реле. При размыкании концов кабеля выключится зеленый светодиод, красный светодиод загорится. Если все работает как описано выше, значит схема была собрана правильно.
Пластиковый контейнер наполните водой. Не отключайте питание от схемы. Красный светодиод должен гореть, а два изолированных провода не должны касаться друг друга. Поместите концы проводов в емкость с водой. Красный светодиод должен погаснуть, а зеленый загореться. Реле снова издаст тихий звук. Удалите проводники из воды, зеленый светодиод должен погаснуть, а красный загореться. Если этот тест также был успешным, значит схема работает нормально.
Тест питания
Теперь пришло время протестировать самодельный контроллер с питанием от трансформатора 220 В / 12 В. Подключите 12 В переменного тока от трансформатора к разъемам на плате контроллера, помеченным как 12 В AC. Подключите первичную обмотку трансформатора с помощью внешнего кабеля к сети. Схема должна вести себя так же, как при использовании постоянного напряжения. Если это так, можно перейти к следующему тесту.
Имитация работы насоса
Подготовьте другую пару проводов той же длины, что и те, которые уже подключены к плате контроллера, зачистите их и подключите первый провод к клемме «низкий уровень», а второй провод к клемме «высокий уровень». Когда концы защитного кабеля насоса и «Земля» погружены в емкость с водой, должен гореть зеленый светодиод. Теперь погрузите в тот же контейнер с водой, что и предыдущие кабели с кабелем «низкого уровня». Зеленый светодиод должен гореть, а затем погрузив провод «высокого уровня» в тот же контейнер с водой, зеленый светодиод должен погаснуть. Это испытание имитировало заполнение резервуара водой через насос. Чтобы смоделировать сбор воды из контейнера, можете удалить провод «высокого уровня» из контейнера для воды, схема должна вести себя одинаково все время. Теперь удалите кабель низкого уровня из воды. Зеленый светодиод должен гореть, а реле должно включать насос.
Если схема успешно прошла все тесты, то контроллер уровня воды готов к использованию — можете испытывать его на практике. Электроды которые действуют как датчики, должны располагаться вертикально сверху вниз в резервуаре для воды. Чтобы предотвратить коррозию электродов стоит сделать их из нержавеющего материала (для увеличения срока службы). Если электроды будут проходить через стенку резервуара, обязательно загерметизируйте отверстия, чтобы предотвратить утечку.
Простой вариант датчика
При необходимости схему можно ещё более упростить, исключив микросхему. Для подобных целей можно использовать и такую систему. Но тут нет защиты насоса от холостой работы, поэтому есть всего два уровня. Компоновка настолько проста, что собирается за час. Она тоже долгое время работала без проблем и в холодной, и кипящей воде. В качестве электродов использовались куски проволоки из нержавейки. Скачать файлы тут
Схема переключателя уровня жидкости / жидкости / воды / поплавка / бакас использованием реле
В этом руководстве мы проектируем реле уровня жидкости с использованием 3 транзисторов (BC107), некоторых пассивных компонентов, диода и пары реле. По сути, это схема измерения уровня, разработанная с использованием минимального количества компонентов. Если вы ищете эффективную схему измерения уровня, вам будет лучше с нашей схемой контроллера уровня .
ОписаниеВот простая схема переключателя уровня, которая включает одно реле и выключает другое реле, когда уровень жидкости превышает установленный предел. Эта схема является модификацией ранее размещенного простого индикатора уровня воды . Когда уровень воды соприкасается с датчиками, положительный источник питания подключается к основанию Q1 через жидкость. Это включает транзистор Q1. База Q2 подключается к коллектору. Q1 и база Q3 подключены к коллектору Q2. В результате Q1 будет включен, а Q2 будет выключен. Таким образом, K2 будет выключен, а K1 будет включен. В результате мы получим два реле, работающих в соответствии с уровнем, одно ВКЛ и другое ВЫКЛ. Контакты реле OP1 и OP2 могут использоваться в соответствии с вашими потребностями для управления любым устройством, таким как двигатель, насосы, электромагнитные клапаны, свет, сигнализация и т. Д.Когда уровень воды падает, K2 будет включен, а K1 выключен.
Принципиальная схема уровня жидкости со списком деталей. Схема цепи реле уровня жидкости Банкноты- Отрегулируйте R1, удерживая датчики в воде, чтобы включить реле K1. Затем выньте датчики из воды и увидите, что реле K1 выключится. В это время произойдет обратное с K2. Если вы не можете достичь настройки, замените R1 на 500K. POT и повторите процедуру. Этого достаточно.
- Для зондов отрежьте 2 алюминиевых листа размером 1 квадратный см и подключите их к качественным изолированным алюминиевым проводам. Расстояние между датчиками 2 см. Установите два датчика параллельно на желаемом уровне. Цепь готова.
- Одной из проблем этой схемы является коррозия датчиков из-за использования постоянного тока. В любом случае такая установка проработает без проблем в течение как минимум одного года. Мы разрабатываем антикоррозионную версию той же схемы, и она скоро будет здесь.
У нас есть более интересные схемы, на которые вы должны обратить внимание:
1. Цепь ИК-датчика
2. Схема переключателя фото
3. Цепь сенсорного переключателя
4. Цепь пожарной сигнализации
5.Цифровой датчик температуры
Похожие сообщения
Электронные схемы и проекты для хобби
Схема цифрового термометра
Проект контроля уровня воды| Jameco строит
Время сборки: 1-2 часа
Сложность: Средний
Дизайнер: rlarios
Разработайте простой контроллер воды, в котором электроды необходимы для определения высокого и низкого уровня воды в резервуаре.Когда уровень воды опускается ниже электрода низкого уровня, водяной насос запускается и останавливается, когда уровень воды касается электрода высокого уровня.
Есть третий электрод, который используется для определения уровня воды из бака всасывающего патрубка насоса. Если этот электрод не обнаруживает воду, то насос не может работать, защищая его от выгорания. Вы должны поставить свой собственный водяной насос для этого электронного проекта.
Этот комплект электроники предназначен для работы с таким оборудованием, как водяные насосы с сетевым приводом или реле стартера двигателя и / или контакторы при более низких управляющих напряжениях.Сетевое напряжение опасно и при неправильном обращении может привести к травмам или смерти. Если вы не знакомы или не работали с оборудованием, работающим от сети, попросите квалифицированного электрика выполнить за вас силовую проводку. Этот комплект носит образовательный характер и может использоваться с оборудованием, работающим от сети, если соблюдаются национальные правила в области электротехники.
Создайте собственный контроллер уровня воды
Необходимые инструменты и компоненты:Паяльник
Припой
Инструмент для снятия изоляции и резак
Игольчатые плоскогубцы
Рулон провода 24AWG
Настенный адаптер переменного тока в переменный
Маленькая плоская отвертка
Шаг 1 – Схема с номерами компонентов схемы
Шаг 2 – Проверить детали
Прежде чем паять что-либо на место, убедитесь, что у вас есть все необходимые детали. Детали для проверки Припаяйте пассивные компонентыШаг 3 – Припаиваем пассивные компоненты
Припаяйте R1, R2 и R3, которые являются частью входных сигнальных цепей. Эти резисторы имеют сопротивление 2,2 МОм. Затем припаяйте R4 (резистор 4,7 кОм), который является базовым резистором для транзистора Q3, задачей которого является включение-выключение реле RLY1.Далее припаиваем R5 (эмиттерный резистор 120 кОм) к Q1. R8 (резистор 15 кОм), который соединяет коллектор Q1 с базой Q2. Эти два транзистора предназначены для включения красного светодиода для визуальной индикации низкого уровня воды на всасывающем отверстии насоса.Припаяйте R6 и R7 (резисторы 470 Ом 1/2 Вт), которые являются ограничителями тока LED1 и LED2.
Теперь вставьте электролитические конденсаторы C1 (330 мкФ) и C2 (200 мкФ) в соответствующие отверстия, обращая внимание на маркированный отрицательный вывод конденсаторов для полярности перед пайкой на место. Вставьте развязывающий конденсатор C3 (1 мкФ), следуя тем же инструкциям, что и для C1 и C2.
Шаг 4 – Установите компоненты блока питания и гнездо IC.
Перед установкой диодов убедитесь, что они правильно ориентированы по полярности.Черная полоса на корпусе диода говорит о том, что катодом является свинец. На печатной плате также должна быть отметка, обозначающая катод.Вставьте выпрямительный диод D1 в предназначенное для него место и припаивайте по одному выводу за раз. Закрепите радиатор между паяным соединением и корпусом выпрямителя. Этот радиатор будет поглощать избыточное тепло и сохранять полупроводник в холодном состоянии, чтобы избежать преждевременного сокращения срока его службы.
Перед пайкой другого вывода того же полупроводника подождите примерно 15–30 секунд, чтобы выпрямитель остыл, прежде чем продолжить работу с другими выводами выпрямителя.Перед пайкой любого полупроводникового вывода всегда используйте прикрепляемый радиатор. То же самое проделайте с выпрямителями D2, D3 и D4.
Диод D5 не предназначен для работы в качестве выпрямителя источника питания, а является тем же устройством, что и ранее паяные выпрямители. Припаяйте диод к разъему D5, обращая внимание на то, куда идет катод. Функция D5 заключается в защите транзистора Q3 от обратного напряжения катушки реле, когда он обесточен.
Установите 7812T на место и перед пайкой его первого вывода используйте тот же зажимной радиатор между паяным соединением и корпусом регулятора.После пайки первого вывода подождите несколько секунд, чтобы устройство остыло. Коснитесь регулятора 7812T, чтобы убедиться, что он не слишком горячий, прежде чем переходить к следующему выводу, и так далее, пока не закончите с третьим и последним выводом регулятора.
Установите 14-контактный разъем IC и припаяйте его на место. Используйте ровно столько припоя для каждого контакта, чтобы соседние контакты не закорачивались вместе с излишками припоя. Обратите внимание на положение выемки на одной стороне.
Установите компоненты блока питания и гнездо IC Проверка работы источника питанияШаг 5 – Проверка работы источника питания
Используя внешний источник питания +15 В постоянного тока (или две батареи + 9 В последовательно) и пару зажимов типа «крокодил», подключите (+) выход этого источника питания к аноду D1, а выход GND источника питания к катоду. из D4.Измерьте напряжение между контактами 7 (gnd) и 14 (Vdd) разъема IC, которое должно быть +12 В ± 2%. Если этот тест напряжения окажется успешным, переходите к следующему шагу.Шаг 6 – Установка транзисторов и светодиодов
Установите транзисторы 2N3904 NPN в положения Q1 и Q3, убедившись, что все клеммы вошли в соответствующие отверстия. Прикрепите защелкивающийся радиатор перед пайкой каждого вывода нужным количеством припоя и подождите не менее 20-30 секунд, прежде чем переходить к следующему. поводок того же устройства.Сделайте то же самое с транзистором 2N3906 PNP в позиции Q2.Установите зеленый светодиод в положение LED1. Более короткий вывод – это катод, и он должен идти туда, где катодный вывод отмечен на печатной плате. Если светодиоды поменять местами, они не загорятся. Прикрепите зажимной радиатор к выводу, который вы будете паять первым, подождите 20-30 секунд, прежде чем пайка анода. Проделайте то же самое с красным светодиодом в положение LED2.
Установка транзисторов и светодиодов Завершение сборкиШаг 7 – Завершение сборки
Эти разъемы имеют две клеммы.Установите по одному разъему в положения X1 и X4 и припаяйте их так, чтобы клеммы были обращены к краю печатной платы. Эти разъемы имеют скользящую кромку с одной стороны и канавку с другой. Возьми оставшиеся два разъема и соедините их, вставив выступ одного разъема в паз другого разъема, чтобы они оставались прикрепленными, вставьте их в положения X2 и X3 и припаяйте на месте так, чтобы клеммы также были обращены к краю печатной платы. Установите реле в положение RLY1 и припаяйте его на место.На этом сборка комплекта завершена.Шаг 8 – Тестирование Тестирование Тестирование
Поместите собранный комплект на изолированную поверхность, чтобы избежать короткого замыкания паяных соединений токопроводящим материалом, который может находиться на вашей рабочей поверхности. Зачистите концы пары сегментов провода 24AWG длиной один фут. Вставьте один конец в клемму, помеченную как «Земля», затем вставьте другой провод в клемму, помеченную как «Защита уровня насоса», оставив другие концы свободными, не касаясь друг друга. Это тест с тем же источником питания постоянного тока, который использовался на шаге 4.Подключите его таким же образом, чтобы включить цепь.На этом этапе CD4001 уже должен быть вставлен в свое гнездо. После подачи питания на плату и при условии, что все было правильно собрано, должен загореться красный светодиод. Если вы соедините вместе два зачищенных конца ранее подключенных проводов, красный светодиод должен погаснуть, а зеленый светодиод должен включиться, и должен быть слышен один щелчок, исходящий от реле. Разделение концов проводов должно привести к выключению зеленого светодиода и включению красного светодиода, при этом будет слышен еще один щелчок реле, когда оно обесточивается.Это доказывает, что схема работает.
Наполните небольшой неглубокий контейнер водой. Когда цепь все еще находится под напряжением, красный светодиод включен и два провода не соприкасаются друг с другом, окуните оба зачищенных конца в емкость с водой. Красный светодиод должен погаснуть, а зеленый светодиод должен загореться с одним щелчком, услышанным от реле. Вытащите провода из воды и зеленый светодиод должен погаснуть, красный светодиод должен загореться со щелчком, слышимым от реле. Если все идет как указано, значит, все работает правильно.
Тест настенного адаптера переменного тока в переменный
Теперь пришло время проверить, будет ли комплект работать с напряжением 12 В переменного тока, поступающим от настенного адаптера переменного тока в переменный. В комплект нашего контроллера насоса не входит переходник с вилкой, поэтому отрежьте вилку от шнура сетевого адаптера и зачистите концы, которые должны быть выходом адаптера на 12 В переменного тока. Подключите эти выводы 12 В переменного тока к разъему, помеченному как вход 12 В переменного тока. Подключите настенный трансформатор к розетке, и плата должна работать так же, как с источником постоянного тока.Если это так, то пора перейти к следующему тесту.Тестовое моделирование: водяной насос
С другой парой проводов примерно такой же длины, как провода, уже подключенные к вашему комплекту, зачистите их концы и вставьте один в клемму «Низкий уровень», а другой – в клемму «Высокий уровень». С защитой насоса и заземляющими проводами, уже погруженными в емкость для воды, должен гореть зеленый светодиод. Окуните конец провода «низкого уровня» в ту же воду, и зеленый светодиод должен по-прежнему гореть, затем опустите провод «высокого уровня» также в тот же резервуар с водой, и зеленый светодиод должен погаснуть со щелчком, слышимым от реле. Это имитирует заполнение насосом резервуара для воды. Чтобы имитировать потребление воды при понижении уровня воды, снимите провод «Высокий уровень» с емкости для воды, и ничего не должно произойти. Затем отсоедините провод «низкого уровня» от емкости для воды, и зеленый светодиод должен загореться, а реле должно активировать водяной насос, и цикл повторится. Окончательная установкаШаг 9 – Окончательная установка
Теперь вам понадобится внешний настенный трансформатор на 12 В переменного тока для подачи питания на комплект.Вам также понадобится подходящий корпус, который можно найти в каталоге Jameco. Вам нужно будет протянуть провода между комплектом и резервуаром для воды и резервуаром для воды насоса, как показано на схеме. На этой схеме для простоты показаны тонкие металлические стержни, вставленные в стенки резервуаров. Вы можете как-то разместить стержни вертикально сверху резервуара, убедившись, что эти стержни не соприкасаются друг с другом. Если вы предпочитаете просверливать стенки резервуара, убедитесь, что используемые стержни или болты должным образом герметизированы, чтобы избежать утечек из-за давления воды на стенки резервуара.После выполнения соединений контроллер должен работать без проблем, показывая, когда насос работает или когда насос защищен из-за низкого уровня на всасывании насоса.
Как мне установить и подключить поплавковый выключатель? Где я могу найти электрическую схему поплавкового выключателя? Где я могу найти схему подключения поплавкового выключателя? Вы спросили, и сегодня мы отвечаем.
Подключить поплавковый выключатель не обязательно сложно, но это может немного сбить с толку, если у вас нет пары наглядных пособий. Помните, что то, что вы подключаете, – это средство включения и выключения. Тщательное обдумывание того, когда вы хотите что-то выключить и когда оно должно включиться, поможет вам при визуализации проводки и применении схемы к управлению в реальном мире.
Мы собираемся рассмотреть ряд простых механизмов управления насосом с использованием поплавковых выключателей.Мы рассмотрим устройства с одним и двумя переключателями и способы их подключения, а затем рассмотрим эквивалентные схемы с использованием поплавковых переключателей серии Kari.
Эти инструкции и схемы научат вас основам подключения управления поплавковым выключателем . Они определенно применимы не во всех сценариях, особенно когда требуется дополнительное управляющее оборудование для работы с большими двигателями. Однако, обладая небольшими основами, вы в кратчайшие сроки будете подключаться, как старый профессионал.
Подключение одиночного поплавкового выключателя
Схема управления
2
Схема управления
1
Начнем с самого простого поплавкового выключателя: двухпроводного, однополюсного, одноходового поплавкового выключателя.Поднимающееся действие поплавка может либо закрыть (т.е. включить) «нормально разомкнутую» цепь, либо открыть (выключить) «нормально замкнутую» цепь. Сценарии установки могут включать в себя нормально открытый поплавковый выключатель, включающий насос для опорожнения резервуара (схема управления 2), или нормально закрытый поплавковый выключатель, отключающий насос, наполняющий резервуар (схема управления 1). На обеих схемах клемма 1 в схеме управления представляет точку посадки для провода (+) поплавкового выключателя, а клемма 2 – для провода (-).Вот и все. Двухпроводной поплавковый выключатель, который можно легко использовать для включения или выключения насоса. Установите или подвесьте коммутатор на желаемом уровне, вставьте провода в водонепроницаемую распределительную коробку (или из области удержания жидкости, а затем в распределительную коробку), проверьте соединения обратно с вашим управляющим и силовым оборудованием, и вы ‘ повторно сделано.
Это очень простое решение, но оно также проблематично, поскольку колебания уровня вызывают дрожание поплавка, что приводит к быстрому включению и выключению двигателя насоса.И теперь ваше простое решение сгорело моторчик помпы. Итак, что мы можем сделать, чтобы защитить двигатель насоса?
Электропроводка для двух поплавковых выключателей
Мы можем добавить второй переключатель для создания гистерезиса.Хисте-что ??? Да, мы туда доберемся. Подожди.
Нам нужен способ включения и выключения реле уровня без одновременного включения и выключения двигателя насоса. Мы могли бы добавить временную задержку, но это не помогает отслеживать условия в резервуаре и реагировать на них; он только отменяет переключатель. Однако, если мы добавим второй переключатель, идентичный первому, и подключим запечатывающее реле к одному из них, мы получим необходимый элемент управления.
Схема управления 3
Давайте начнем с рассмотрения схемы управления 3 с двумя нормально замкнутыми переключателями.Этот контур можно использовать для управления насосом, наполняющим резервуар. Первый переключатель (L) установлен на минимальный желаемый уровень жидкости в резервуаре. Второй переключатель (H) переходит на максимальный желаемый уровень.Когда жидкость ниже обоих переключателей, они оба закрыты; насос работает, наполняя бак. Когда жидкость заполняет первый переключатель, он открывается. Однако запечатывающее реле A было активировано и замкнуто, минуя теперь открытый переключатель L (фактически «запечатывая его»), поэтому насос продолжает работать до тех пор, пока не откроется переключатель высокого уровня H.Когда переключатель верхнего уровня размыкается, реле P двигателя размыкается, останавливая двигатель, и реле A отключается.
Значит, жидкость из этого насоса больше не поступает в резервуар. Скажем, клапан за баком открыт, позволяя жидкости вытекать из бака. При падении уровня жидкости реле верхнего уровня H замыкается. Но поскольку и реле низкого уровня L, и запечатывающее реле A разомкнуты, двигатель насоса не запускается.
Фактически, уровень жидкости в резервуаре должен упасть ниже переключателя низкого уровня L, прежде чем двигатель запустится.В этот момент оба переключателя низкого и высокого уровня будут замкнуты, замыкая цепь и активируя реле двигателя P для запуска насоса. В то же время, запечатанное реле A будет активировано, замыкая байпас вокруг реле низкого уровня L. Таким образом, когда реле низкого уровня L размыкается, когда насос заполняет резервуар, запечатывающее реле удерживает цепь замкнутой. , и насос продолжает качать.
Это циклическое действие называется гистерезисом. Как только уровень жидкости упадет ниже реле низкого уровня, насос будет работать до тех пор, пока оба переключателя не разомкнуты.Уровень жидкости может колебаться вверх и вниз, реле низкого уровня может открываться и закрываться, и насос будет продолжать работать плавно. Точно так же, как только выключатель высокого уровня размыкается, насос не будет работать, пока оба переключателя не замкнуты. Независимо от колебаний уровня, двигатель насоса больше не будет работать.
Отлично! У нас есть контроль уровня, разумный срок службы насоса-мотора, все, что мы могли пожелать, верно? Давайте подключим его. Нам нужно подключить оба поплавковых переключателя обратно к нашей схеме управления, плюс мы должны добавить контакты и опломбированное реле A.Провода переключателя низкого уровня к клеммам 1 и 2, переключателя высокого уровня к клеммам 3 и 4, а контакты опломбированного реле A к клеммам 5 и 6.
Итак, это как минимум четыре, если не шесть, проводов, которые необходимо подключить к схеме управления. (Схема подключения запечатываемого реле и контактов будет зависеть от вашего управляющего оборудования.) Это не так уж и плохо: два поплавковых выключателя, дополнительное реле и четыре-шесть проводов. Но что, если я скажу вам, что вы можете сделать это всего с двумя проводами? Не два дополнительных провода, а два провода.
2-проводное управление насосом с поплавковым выключателем Kari
Верно. С поплавковым выключателем серии KARI 2L вы получаете такое же управление гистерезисом, используя один переключатель и два провода вместо двух переключаемых и четырех или шести проводов. «Что это за магия?» – спросите вы? Просто: каждый поплавковый выключатель серии KARI имеет несколько микропереключателей и схемы управления, встроенные в поплавок.
По мере того как поплавок серии KARI поднимается вместе с уровнем жидкости в резервуаре, он наклоняется в одну сторону. Микровыключатели внутри поплавка активируются с установленными на заводе углами при наклоне поплавка, и запрограммированная схема управления реагирует соответствующим образом.
Итак, что вам нужно для этого? Мы можем вернуться к схеме управления 1: всего два провода между переключателем и цепью управления двигателем, (+) провод к клемме 1 и (-) к клемме 2. Никаких запечатанных реле, никаких дополнительных переключателей, ничего больше.Два провода, и готово.
Бонус: 3-проводное управление насосом с поплавковым выключателем Kari
Схема управления
4
Поскольку это было так просто, давайте посмотрим, что вы можете сделать с трехпроводным поплавковым выключателем серии KARI: добавить сигнал тревоги! Вместо четырех проводов для простого двухуровневого гистерезиса поплавковый выключатель серии 3H KARI дает вам двухуровневый гистерезис и сигнализацию с использованием всего трех проводов.Взгляните на схему управления 4. В нижней строке у вас есть клеммы проводки для переключателей, обеспечивающих гистерезис (провода 1 и 2).Следующая строка предназначена для аварийного сигнала высокого уровня (т. Е. Более высокого уровня, чем гистерезисный переключатель высокого уровня). Как и в случае с запечатанным реле, описанным выше, проводка, необходимая для контакта аварийной сигнализации, будет зависеть от вашего управляющего оборудования. Все, что осталось, – это установить переключатель в соответствии с инструкциями производителя для желаемых уровней.
Запуск двигателя и управление двигателем
Мы потратили немало времени на обсуждение того, как можно использовать поплавковые выключатели для включения и выключения насосов, поэтому стоит уделить время, чтобы поговорить конкретно о запуске двигателя и управлении двигателем.Для небольших двигателей – двигателей постоянного тока, двигателей до 1 л.с. – контакторы с релейным управлением, показанные на схемах выше, вероятно, достаточны для запуска двигателя. Эти двигатели (или нагрузки, которыми они управляют) не пострадают от запуска и остановки через контактор, действующий как двухпозиционный выключатель.
Для более мощных двигателей пусковой ток (в шесть или восемь раз превышающий ток полной нагрузки) становится важным фактором при запуске и техническом обслуживании двигателя, делая контакторы недостаточными в качестве автономных пускателей двигателя.Такие двигатели нуждаются в встроенных контроллерах и защите от перегрузки для безопасного запуска и защиты при работе с полной нагрузкой. К счастью, большинством двигателей такого размера можно будет управлять либо через центр управления двигателями (MCC), либо через специальную панель управления, обе из которых полностью способны объединять схемы управления и инструменты, подобные показанным выше.
На самом деле, большинство насосов и двигателей, которыми вы управляете с помощью поплавкового выключателя, вероятно, достаточно велики, чтобы требовать этих встроенных средств управления.Хотя установка более сложна, чем схема подключения, представленная выше, подключение часто упрощается для конечного пользователя, потому что поставщик системы проделал большую часть работы.
Однако понимание основ проводки управления поплавковым выключателем поможет вам работать уверенно, независимо от того, насколько мощной или сложной является система. Все, от установки поплавкового выключателя до устранения неисправностей, станет проще. И, конечно же, мы всегда готовы помочь, если вы чувствуете в этом необходимость.
кредит на верхнюю фотографию: PEO ACWA через flickr cc обрезано
Автоматический регулятор уровня воды | Доступна подробная принципиальная схема
Вот простой автоматический контроллер уровня воды для верхних резервуаров, который включает / выключает двигатель насоса, когда вода в резервуаре опускается ниже / выше минимального / максимального уровня.Уровень воды определяется двумя поплавками, которые приводят в действие переключатели для управления двигателем насоса.
Схема автоматического регулятора уровня воды
Каждый поплавок датчиков подвешен сверху на алюминиевом стержне. Эта конструкция заключена в трубу из ПВХ и закреплена вертикально на внутренней стенке резервуара для воды. Такие датчики более надежны, чем датчики индукционного типа. Датчик 1 определяет минимальный уровень воды, а датчик 2 определяет максимальный уровень воды (см. Рисунок).
Схема автоматического регулятора уровня водыЛистовые переключатели S1 и S2 (используемые в магнитофонах) закреплены в верхней части блоков датчиков таким образом, что при подъеме поплавков прикрепленные датчики диаметром 5 мм.(приблизительно) алюминиевые стержни толкают подвижные контакты (P1 и P2) листовых переключателей S1 и S2 из нормально замкнутого (N / C) положения в нормально разомкнутое (N / O) положение. Точно так же, когда уровень воды понижается, подвижные контакты возвращаются в исходное положение.
Обычно замыкающий контакт переключателя S1 подключен к земле, а замыкающий контакт переключателя S2 подключен к источнику питания 12 В. IC 555 устроен так, что когда его пусковой вывод 2 заземлен, он срабатывает, а когда заземленный контакт 4 сброса – он сбрасывается.Пороговый вывод 6 и разрядный вывод 7 в схеме не используются.
Схема работы
Когда вода в баке опускается ниже минимального уровня, подвижные контакты (P1 и p2) обоих листовых переключателей будут в положении N / C. Это означает, что триггерный контакт 2 и контакт сброса 4 IC1 подключены к земле и 12 В соответственно. Это триггеры IC1 подключены к земле и 12В соответственно. Это запускает IC1, и его выход становится высоким, чтобы запитать реле RL1 через транзистор SL100 (T1).Электродвигатель насоса включается, и он начинает перекачивать воду в верхний бак, если переключатель S3 находится в положении «включено».
При повышении уровня воды в баке поплавок датчика 1 поднимается. Это перемещает подвижный контакт переключателя S1 в положение Н / О, и контакт 2 триггера IC1 подключается к 12 В. Это не влияет на IC1, и его выходная мощность остается высокой, чтобы двигатель насоса работал.
По мере того, как уровень воды повышается до максимального уровня, поплавок датчика 2 толкает подвижный контакт S2 в положение НО, и он подключается к земле.Теперь IC1 сброшен, и его выход становится низким, чтобы выключить насос.
По мере потребления его уровень в верхнем резервуаре понижается. Соответственно, расходуется, его уровень в верхнем баке понижается. Соответственно опускается и поплавок датчика 2. Это приводит к тому, что подвижный контакт переключателя S2 возвращается в положение NC, и вывод 4 сброса IC1 снова подключается к 12 В. Но IC1 не срабатывает, потому что его пусковой штифт 2 по-прежнему ограничен до 12 В переключателем S1. Таким образом, насос остается выключенным.
Когда уровень воды опускается ниже до минимального, подвижный контакт переключателя S1 возвращается в положение размыкания, чтобы подключить контакт 2 триггера IC1 к земле. Это запускает IC1, и насос включается.
Строительство и испытания
Блоки поплавковых датчиков можно собрать в домашних условиях. Оба устройства идентичны, за исключением того, что их длина различается. Глубину резервуара для воды от верха до выпускной водопроводной трубы можно принять за длину датчика минимального уровня.Глубина резервуара для воды от верха до уровня, до которого вы хотите наполнить резервуар, принимается за длину датчика максимального уровня. Листовые переключатели закреплены в верхней части резервуара, как показано на рисунке.
Каждая труба закрывается с обоих концов двумя заглушками. Диаметр 5 мм. В центре верхней крышки просверлено отверстие, чтобы алюминиевый стержень мог легко проходить через него для выбора контакта листовых переключателей. Аналогичным образом необходимо просверлить отверстие в нижней крышке трубы, чтобы вода могла проникать в трубу и поднимать поплавок.
Когда вода достигает максимального уровня, поплавки не должны подниматься более чем на расстояние, необходимое для перевода подвижного контакта листового переключателя в положение НО. В противном случае давление на поплавок может сломать сам листовой выключатель. Соответственно выбирается длина алюминиевого стержня. Его следует прикрепить к металлической / термоэлектрической поплавке с помощью клея (например, аралдита).
Статья была впервые опубликована в декабре 2004 г. и недавно была обновлена.
Схема контроллера уровня водыс использованием транзистора и реле
Эта простая схема контроллера уровня воды полезна для контроля уровня воды в резервуаре.Он делает это путем включения и выключения водяного насоса в зависимости от состояния датчиков. С NC (нормально замкнутым) или NO (нормально разомкнутым) контактами реле RL мы можем работать с любым типом пускателя.
Как работает схема регулятора уровня воды?
При первом включении цепи немедленно активируется водяной насос. В устойчивом состоянии.
- НЗ-контакт реле удерживает стартер включенным и, следовательно, водяной насос включен.
- НО контакт реле разомкнут на базе транзистора, тогда транзистор отключен.
При первом заполнении бака уровень воды достигнет первого датчика. После этого он всегда будет оставаться под водой. Когда уровень воды достигает второго датчика, ничего не происходит.
Когда уровень воды достигает третьего датчика (верхнего), транзистор переходит в насыщение, размыкая нормально замкнутый контакт реле, деактивируя стартер, и водяной насос останавливается.
НО контакт реле замыкается и блокирует транзистор в состоянии насыщения.
Когда уровень воды падает и верхний датчик больше не находится в воде, транзистор остается в состоянии насыщения, поскольку замыкающий контакт реле остается замкнутым, поддерживая ток на базе транзистора. (Водяной насос выключен)
NTE128 Распиновка транзистора NPN
Когда уровень воды ниже второго датчика:
- НО контакт реле размыкается, и транзистор переходит в отключение.
- Замыкается нормально замкнутый контакт реле, включается стартер и запускается водяной насос.
Как нетрудно догадаться, верхний датчик «останавливает» водяной насос, второй датчик «запускает» водяной насос.
Напряжение в воде от 12 до 15 В постоянного тока. Это напряжение безопасно для резервуаров с водой на открытом воздухе. Расстояние между контуром и резервуаром для воды может составлять до 50 метров. (150 футов).
Мы используем центральный трансформатор отвода 127/24 В переменного тока, чтобы получить 12 В переменного тока, мостовой выпрямитель на 1 А и электролитический конденсатор емкостью 470 мкФ. В конце мы получаем напряжение 16 В постоянного тока для питания схемы.
Список компонентов цепи контроллера уровня воды
- 1 Электролитический конденсатор 470 мкФ / 40 В (C1)
- 1 Транзистор NPN ECG128 / NTE128 (Q1)
- 1 Резистор 1 кОм (R1)
- Реле 12 В постоянного тока (можно использовать контактор Nema размером 0 для управления пускателем. Контактор может быть до 127 В, 220 В, 440 В переменного тока) (RL)
- Датчики уровня могут представлять собой стержни из нержавеющей стали 5/16 или 1/4 дюйма с гайкой для подключения одного конец и изолированную часть, откуда вы можете его схватить.
Полезная ссылка: Реле (магнитный переключатель)
Автоматический контроллер водяного насоса – Gadgetronicx
Потеря воды – обычная проблема среди домашних хозяйств. Существуют датчики уровня воды промышленного класса, которые контролируют уровень воды в резервуарах и включают или выключают двигатель в зависимости от уровня воды. Однако такое промышленное оборудование, как правило, дорого для домашнего использования. Для этой цели я разработал схему автоматического контроллера водяного насоса, которая может контролировать уровень воды в вашем резервуаре, и когда вода достигает максимального порогового значения резервуара, эта схема отключает двигатель.Точно так же, когда уровень воды опускается ниже, скажем, 10% от общей емкости бака, этот контур включает двигатель, позволяя воде заполнить бак. Цикл повторяется, тем самым автоматизируя и контролируя поток воды в бак.
МАГНИТНЫЙ ДАТЧИК ПОПЛАВКА:
В этом проекте используется магнитный датчик поплавка. Этот поплавковый датчик представляет собой простой переключатель, который замыкается, когда вода достигает своего уровня. Это перемещает магнит внутрь и притягивает металлический контакт внутри него, тем самым замыкая переключатель. Следовательно, это позволяет току проходить через датчик.Таким образом можно определить уровень воды.
В этой схеме используются два таких датчика уровня воды. Назовем их датчик верхнего поплавка или TFS и датчик нижнего поплавка или BFS. Высокий сигнал от TFS указывает, что вода достигла максимальной емкости резервуара, тогда как низкий сигнал от BFS указывает, что вода опустилась ниже 10% своей емкости.
Для полной автоматизации процесса перекачки воды необходимо соблюдать следующие условия
- Вода превышает максимальную мощность, и двигатель необходимо выключить.В этот момент и TFS, и BFS выдадут на выходе высокое состояние.
- Вода начинает потребляться, и ее уровень опускается ниже датчика TFS, но выше датчика BFS. На этом этапе двигатель все еще должен быть в выключенном состоянии.
- Дальнейшее использование воды приводит к тому, что уровень воды опускается ниже уровня датчика BFS, и в этот момент датчик BFS должен дать высокую мощность, и двигатель необходимо включить.
- Теперь, когда двигатель включен, вода начинает наполнять бак, и через некоторое время уровень воды поднимется выше датчика BFS.На этом этапе двигатель должен продолжать наполнять бак, пока уровень воды не достигнет датчика TFS. Затем система возвращается к первому состоянию. Цикл повторяется бесконечно, автоматизируя насосный механизм в зависимости от уровня воды в баке.
Вышеуказанные условия могут быть закодированы в приведенную ниже таблицу истинности
TL | BL | Двигатель |
1 | 1 | 0 |
0 | 1 | 0 |
0 | 0 | 1 |
0 | 1 | 1 |
СХЕМА АВТОМАТИЧЕСКОГО ВОДЯНОГО НАСОСА:
ПРИВОД ДВИГАТЕЛЯ И ВОДЯНОЙ НАСОС:
Разберем эту схему от двигателя и водяного насоса.Он состоит из резистора R8, Q2, D2 и реле. Выход из U1: B управляет этим драйвером двигателя, высокий выход из него активирует реле, а это, в свою очередь, активирует водяной насос, подключенный к нему. Низкий выходной сигнал от U1: B приведет к выключению реле, поэтому водяной насос также будет отключен. Давайте подумаем и исправим значения компонентов.
Водяной насос, который мы использовали здесь в схеме, работает при 220 В переменного тока и имеет номинальную мощность 0,5 л.с., что соответствует 372,85 Вт. Ток, потребляемый этим водяным насосом, составит
ед.I = 372.85/220 = 1,7 А
Нам нужно реле, которое может выдерживать этот ток при 220в. Я нашел реле HFD7012-M, которое подходит для этой цели, оно может выдерживать ток до 2А. Сопротивление катушки этого реле составляет 450 Ом и рассчитано на 12 В. Поэтому нам нужно подать ток
I = 12/450 = 27 мА
для активации реле.
Мы выбрали транзистор 2N2222A, который имеет коэффициент усиления hfe 10 в области насыщения. Таким образом, чтобы активировать реле, нам нужен ток коллектора 27 мА, а ток базы должен быть 2.7 мА. Мы используем его, чтобы закрепить базовый резистор для нашего транзистора
.Rb = (5 – 1,3) / 2,7 x 10-3 = 1,5k (приблизительно)
Теперь с приводом двигателя и водяной помпой в этой цепи разобрались, перейдем к управляющей части этой схемы.
СЕКЦИЯ УПРАВЛЕНИЯ:
Работа этой схемы начинается с магнитных датчиков уровня TFS и BFS. TFS должен быть установлен в верхней части резервуара, чтобы определять уровень воды при достижении максимальной емкости.Тем временем BFS опускается на дно резервуара и определяет, когда уровень воды опускается ниже 10% его вместимости из-за потребления. Оба этих датчика действуют как выключатели и замыкают электрическое соединение и проводят ток, когда вода достигает своего уровня. Один конец этого датчика идет на Vcc, тогда как другой конец подает вход на следующий этап. Этот вывод опускается с помощью резистора, иначе он будет в плавающем состоянии. Давайте проанализируем приведенную выше схему на основе условий, представленных в нашей таблице истинности.
Примечание: Цепь должна включаться только после заполнения бака до максимального уровня или на уровне, при котором оба датчика будут активны и выдают высокий выходной сигнал. Это гарантирует, что наша схема следует правильной последовательности и работает правильно.
1) TL = BL = 1 ИЛИ МАКСИМАЛЬНЫЙ УРОВЕНЬ ВОДЫ:
Когда контур включен, вода будет на максимальном уровне, а TL и BL выдадут логическую 1. В этот момент на выходе U5 будет низкий уровень. Вход для вывода Set будет 1, а вывод Reset будет 0 для SR Flip Flop.Следовательно, триггер дает низкий выход при Q ’. В результате выходной сигнал U1: B будет низким, что приведет к отключению водяного насоса.
2) TL = 0, BL = 1 ИЛИ ПОЛОВИНА УРОВНЯ ВОДЫ ПОСЛЕ ПОТРЕБЛЕНИЯ:
Вода будет израсходована, и уровень в баке упадет. Это приводит к отключению датчика TFS или TFS = 0, при этом активным остается только BFS или BFS = 1. В этом случае выход U5 будет высоким. Выводы Set и Reset триггера SR будут равны 0. Следовательно, логика вывода с Q ’не будет изменяться, и водяной насос будет по-прежнему в выключенном состоянии.
3) TL = 0, BL = 0 ИЛИ УРОВЕНЬ ВОДЫ ДОХОДИТ НИЖЕ 10% ПОСЛЕ РАСХОДА:
Дальнейшее потребление воды приведет к дальнейшему снижению уровня воды, и когда он упадет ниже 10% емкости бака, оба TFS и BFS выдадут логический 0 на выходе. В этот момент выход из U5 будет высоким. Датчики будут подавать 0 для установки контакта и 1 для сброса контакта SR Flip Flop. Это обеспечивает высокий выходной сигнал на выводе Q ’триггера. Это в совокупности увеличивает выходную мощность U1: B, управляя приводом двигателя, и включает водяной насос.Поэтому вода начнет наполнять резервуар.
4) TL = 0, BL = 1 ИЛИ УРОВЕНЬ ВОДЫ ПОВЫШАЕТСЯ БОЛЕЕ 10% ПОСЛЕ ВЫКАЧКИ ВОДЫ:
Когда вода начинает заполнять резервуар, сначала активируется BFS, в результате чего его выходная логика 1, в то время как выход TFS по-прежнему будет логическим 0. В этот момент выход U5 будет высоким. Оба вывода Set и Reset SR Flip Flop будут иметь логический 0. Таким образом, выходной сигнал с выходного контакта Q ’не изменится по сравнению с предыдущим состоянием, которое является высоким выходным сигналом. Высокий входной сигнал от U5 и Q ’также даст высокий выходной сигнал от U1: B.Это переходит к приводу мотора, и водяной насос остается включенным. И вода в бак по-прежнему будет пополняться.
Вышеупомянутые четыре условия повторяются, таким образом автоматизируя включение и выключение водяного насоса. Самым важным при использовании этой схемы является то, что нам необходимо включить ее после установки TFS и BFS на соответствующих уровнях и полностью заполнить резервуар водой.
Этот проект значительно сэкономит воду и автоматизирует процесс ежедневного наполнения резервуара для воды.При реализации этого проекта нужно помнить о нескольких вещах.
ПРИМЕЧАНИЕ:
- Различные двигатели имеют разную номинальную мощность, вам может потребоваться изменить такие компоненты, как базовый резистор R8, транзистор Q2 и реле, в зависимости от характеристик вашего двигателя.
- Вы должны выполнить расчеты в разделе «Драйвер двигателя» с номинальными характеристиками двигателя и использовать их в построенной вами схеме.
Надеюсь, этот проект был вам полезен. Постройте их и дайте нам знать об этом.Ознакомьтесь с другими электронными проектами на нашем сайте здесь. Если у вас есть какие-либо вопросы или отзывы, опубликуйте их в разделе комментариев ниже. Счастливый проект здание 000
Релейный переключатель датчика уровня воды или жидкости
В этом уроке мы делаем простой проект реле датчика уровня воды или жидкости. Этот контур будет включать или выключать электронные приборы при желаемом уровне воды. Он определяет уровень воды и активирует реле, когда вода достигает желаемого уровня или контейнер наполняется.Реле используется для подключения к цепи любой нагрузки или электронного устройства. Это недорогая схема, поскольку в ней используется всего несколько компонентов, таких как пробники, диодное реле, транзистор и переменный резистор.
Вы можете легко изготовить эту схему дома независимо от того, знакомы вы с электроникой или нет. Просто купите оборудование и следуйте этому руководству, и вы получите самодельный релейный переключатель датчика уровня воды.
Компоненты оборудования
S.no | Компоненты | Значение | Количество | |
1 | Датчики | – | 2 | |
2 | Переменный резистор | Диод | 1N4001 | 1 |
4 | Реле | 6В | 1 | |
5 | Транзистор | 2N222 | 9037 9037 9037 9038 | 1 |
Рабочее объяснение
Рабочее напряжение этой цепи – 6 вольт.Зонды используются для определения уровня воды. Желаемый уровень воды устанавливается переменным резистором 300К. Используется транзистор 2N2222 NPN, который работает как переключатель в этой схеме. На выходе этой схемы подключено реле 6В, чтобы к нему можно было подключить любую нагрузку (электронный прибор).
Когда зонды обнаруживают воду, они начинают проводить электричество и передавать напряжение в цепь. Транзистор получит необходимое напряжение и активируется, что приведет к активации реле.Теперь вам решать, хотите ли вы включить или выключить электронное устройство, подключенное к реле. Всегда используйте реле того же значения, что и входное напряжение питания.