Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Типы подключения ТЭНов типа ЗВЕЗДА или ТРЕУГОЛЬНИК для трехфазной сети: схемы и примеры :: информационная статья компании Полимернагрев

Трубчатые электронагреватели являются самым популярным типом нагревательных элементов как в промышленности, так и в бытовых приборах. Каждый электрический ТЭН, даже если он рассчитан на 220В, может подключаться как к однофазной, так и к трехфазной сети. Давайте подробно рассмотрим, какие типы подключения к трехфазной сети для нагревателей существуют и какие требования к характеристикам ТЭНов предъявляются для них.

Для подключения электронагревательных элементов к 3-фазной сети применяются такие виды схем:

Если мы имеем не специальные нагреватели, типа блок ТЭНов или сухие керамические ТЭНы, а обычные трубчатые ТЭНы, то для получения равномерной нагрузки необходимо иметь на каждой фазе трехкратное количество электронагревателей. То есть минимальное количество нагревателей будет равно 3. При этом в технических параметрах ТЭНов напряжение питания может быть как 380, так и 200 Вольт.

Для электронагревательных ТЭНов с параметрами напряжения электропитания 220 В нужно использовать тип подключения к 3-фазной сети типа ЗВЕЗДА. А для тех, которые производятся с характеристикой напряжения равной 380 Вольт, возможно применять обе схемы подключения: и вариант ЗВЕЗДА и вариант ТРЕУГОЛЬНИК.

Вариант подключения к трехфазной сети питания типа ЗВЕЗДА

Тип ЗВЕЗДА применяется в сухих ТЭНах от компании Полимернагрев в варианте подключения № 3 с четырьмя болтами в качестве типа токовывода. Также тип подключения «звезда» может применяться при подключении блок ТЭНов ТЭНБ. В данных случаях подключение нагревательных спиралей производится по следующей электрической схеме:

Давайте теперь рассмотрим, как можно подключить нагреватели по данной схеме, если у нас имеются в наличии не специальные, а стандартные электрические воздушные или водяные металлические ТЭНы.

К питающему напряжению должен подключаться только один вывод от каждого ТЭНа.

Именно поэтому для подключения к трехфазной сети у нас должно быть кратное трем количество электронагревателей. Остальные же контактные выводы, которые не подключены к напряжению, должны быть соединены в одну так называемую нулевую точку.  Таким образом, мы получаем трехпроводную соединенную нагрузку.

Давайте подробно рассмотрим схему трехпроводного соединения на 380 В для включения 3-х водяных ТЭНов. На первом рисунке вы можете рассмотреть описанную выше схему включения ТЭНов, а на втором к схеме добавляется специальное устройство для подачи напряжения на ТЭНы с защитными переключателями. Как четко видно на схеме, каждый второй токовывод нагревателя подается на фазы А, В и С, а остальные же соединяются вместе. 


Подключая ТЭНы таким образом мы получаем значение напряжения электропитания на каждом электротэне между подключением к сети и нейтральной точкой равное 220 В.

В приведенной схеме можно увидеть, что выводы нагревателей справа подсоединены к фазам А, В, С. Выводы, которые находятся слева — соединяются в общей нейтральной точке. Рабочее напряжение между выводами справа и нейтральной точкой равно 220 Вольт.

Также есть вариант подключения к трехфазной сети ЗВЕЗДА, который использует четырехпроводную схему. При таком способе применяют трехфазное питание с напряжением 230В, а нулевую точку подают на нейтраль источника электропитания.

Тут так же, как и в предыдущем случае, одни выводы соединяются в нулевую точку, а другие подводятся к трехфазной сети. Если соединение с нулевой точкой передавать на нулевую шину источника электропитания, мы получим на каждом нагревателе между питанием и нулем напряжение в 220-230В.

Когда возникает необходимость в полном отключении питания на нагреватели, нужно применять выключатели типа 3+n или же 3р+n, способные функционировать в автоматическом режиме. Автоматы данного типа могут использоваться для полного перевода всех силовых электроконтактов на полностью автоматический рабочий режим.

Давайте рассмотрим, как же на практике следует применять тип подключения ЗВЕЗДА, на примере монтажа ТЭНов в электрокотле.

Подключение нагревателей по схеме ЗВЕЗДА для электрокотла

В электрических нагревательных котлах ТЭНы могут подключаться различными способами, но для демонстранции схемы подключения по типу ЗВЕЗДА опишем вариант установки сухих ТЭНов к 3-фазной сети питания с напряжением 220В.

Высокая мощность водяных сухих ТЭНов накладывает определенные требования к качеству соединений. Надежность соединений должна быть обеспечена высоким качеством термостойких проводов и строгим соответствием всех действий описанной в инструкции схеме.


Первое, что нужно сделать, это при подключении фазных поводов произвести накрутку гайки M4. Далее вам необходимо наложить шайбу и установить кольцевой наконечник провода питания. Следующим шагом будет наложение еще одной такой же шайбы, поверх которой помещается еще одна специальная пружинная шайба гровер. И это все нужно надежно зафиксировать гайкой M4.

Провода, которые выводятся на нейтральную фазу, крепятся при помощи болта типа M8. Провод нейтрали нужно поместить в перемычку, которая находится между контактами отверстий ТЭНа.

Обязательно заземлите корпус нагревательного элемента и проводов питания после того, как подключите все провода на питающие и нулевые контакты ТЭНа. В большинстве случаев в стандартных электрокотлах болт заземления располагается с левой стороны около блока с ТЭНами. К нему мы и должны присоединить провод для заземления.

После подключения проводов следует провести заземление корпуса нагревателя и проводов подключения ТЭНа. Обычно у котлов для заземления с левой стороны у блока электронагревателей находится болт, к которому и следует подключать проводник заземления.

Вы можете использовать для заземления как отдельный провод уравнения потенциалов, так и провод с клеммника заземления блока управления.

Наглядно все вышеописанное вы можете посмотреть на рисунке ниже в виде схемы и фото подключения ТЭНа.


Если вы сделали все в четком соответствии инструкции, подключение блок Тэна электрокотла можно считать завершенным. Останется лишь вернуть защитный кожух на блок нагрева.

В электрических котлах управление нагревом осуществляется на основе данных от термодатчиков. Терморегулирующие устройства находятся на основной панели управления котла. На терморегулятор будут подаваться данные о температуре ТЭНа и температуре теплоносителя. На основе этих показаний и установленных на терморегуляторе настройках автоматикой принимается решение о подаче или отключении питания нагревательных элементов. Пока температура будет меньше установленной, будет подаваться питание, и Тэны будут производить нагрев, а при достижении или превышении порогового значения питание будет отключено и ТЭН прекратит нагреваться. При остывании до нижнего порога ТЭН опять включится.

Терморегулятор позволяет человеку всего один раз установить температуру (верхний и нижний порог) и потом работа электрокотла будет осуществляться в автоматическом режиме, а температура будет поддерживаться на нужном уровне.

Есть вариант использования терморегуляторов с несколькими типами термодатчиков, которые будут не только контролировать нагревание самого ТЭНа, но и температуру воздуха в помещении. Для этого термодатчик нужно установить на расстоянии от котла и теплоносителя.

Вариант подключения к трехфазной сети питания типа ТРЕУГОЛЬНИК

Рассмотрим на схеме второй вариант подключения нагревательных элементов к трехфазной сети под названием ТРЕУГОЛЬНИК. 

При данном варианте нагреватели соединяются между собой последовательно. У нас в итоге должно сформироваться три плеча для фазы А, В и С.  Для примера:

  1. Для А фазы – соединяем первый вывод ТЭНа №1 и первый вывод ТЭНа №2

  2. Для В фазы – соединяем второй вывод ТЭНа №2 и второй вывод ТЭНа №3

  3. Для С фазы – соединяем второй вывод  ТЭНа №1 и первый вывод ТЭНа №3

Теперь, когда мы познакомились с двумя типами подключения ТЭНов, можно рассмотреть зависимость мощности и температуры нагревателей от типа схемы подключения.

Зависимость температуры и мощности нагрева от варианта схемы подключения

Мощность нагревателя – это очень важный параметр, на который многие покупатели ориентируются при покупке ТЭНа. По сути же мощность ТЭНа зависит только от показателя сопротивления греющей спирали. Конечно же, если не использовать трансформаторы и питание от определенной сети будет постоянным. Данное свойство зависимости можно легко вычислить, воспользовавшись простой формулой из школьного курса физики:

Мощность (P) = Напряжение (U) * Сила тока (I)

В данном случае за величину напряжения берем разницу потенциалов между выводами электрического ТЭНа, а силу тока нужно измерять ту, которая будет протекать по греющей спирали.

Силу тока можно вычислить по формуле I=U/R, где R – электрическое сопротивление нагревательной спирали. Теперь подставим данное значение в формулу мощности, и получится, что мощность ТЭНа зависит только от напряжения и сопротивления.

Таким образом, делаем вывод, что при постоянном напряжении сети питания мощность электронагревателя будет меняться только при изменении сопротивления.

Значение сопротивления резистивного элемента в основной массе нагревателей имеет прямую зависимость от значения выделения температуры. Но в нагревателях с нихромовой или фехралевой спиралью, к примеру, в пределах сотни-другой градусов сопротивление практически не изменяется.

В ситуации с высокотемпературными нагревателями из карбида кремния или дисилицид молибдена картина будет совсем другой. В выскотемпературных нагревателях с увеличением температуры сопротивление падает очень значительно в пределах от 5 до 0,5 Ом, что делает их очень выгодными с точки зрения потребления электроэнергии в печах.

Но из-за данного качества высокотемпературных КЭНов их нельзя подключать напрямую даже к сети питания 220В, не говоря уже о 380В. Технически можно произвести подключение к 220в КЭНы, если соединить их последовательным образом. Однако при данном способе будет невозможно контролировать мощность и температурную выработку нагревателей в печи. Для подключения высокотмепературных нагревателей неметаллического типа следует использовать специальные регулируемые трансформаторы или же стандартные статистические ЭМ устройства.


В компании Полимернагрев вы можете купить электронагреватели, которые производятся специально с учетом подключения к трехфазной сети питания. Это сухие керамические ТЭНы, блок Тэны для воды и трехстержневые КЭНы. Тип подключения данных нагревателей зависит от показателя напряжения по схеме звезды или треугольника.

При подключении электрических Тэнов в соответствии со схемой ТРЕУГОЛЬНИК соединяются три нагревательных спирали, у которых равные значения сопротивления и на питание будет подано 380В. Подключение ТЭНов ЗВЕЗДА подразумевает наличие нулевого вывода, а на каждый элемент нагрева будет подаваться 220В. Нулевой провод позволяет подключать потребители с разным значением сопротивления.

Если у вас остались вопросы по типам подключения нагревателей к трехфазной сети, вы можете обратиться к нашим специалистам по телефону в Москве или задайте свой вопрос в форме ниже, мы постараемся подробно ответить вам в самые кратчайшие сроки.

Схема подключения УЗО в трехфазной сети: инструкция

Содержание

Принцип действия и сферы применения

Основной элемент устройства, проверяющий наличие тока утечки – дифференциальный трансформатор. Он измеряет величину тока на входе и выходе электрической разводки. Если они отличаются друг от друга, происходит отключение электросети. Для этого в конструкции присутствует электромагнитное реле. Для правильного выбора на корпусе модели указывают значения номинального тока, напряжения, частоты и дифференциального тока утечки.

Когда и где применяется УЗО:

  • жилые, общественные, производственные здания;
  • однофазные или трехфазные сети 220В и 380В;
  • обязательно наличие в системах заземления TN-C-S или TN-S;
  • в сетях для обеспечения быстрого отключения в течение 0,1-0,2 сек;
  • совместно с автоматами выключения при высокой токовой нагрузке.

Устройство нельзя интегрировать в схемы, не допускающие перерыва в электроснабжении. В таких случаях применяются другие методы защиты людей от поражения электрическим током.

Как работает УЗО

УЗО нашло применение как в однофазных квартирных сетях, так и в трехфазных промышленных. Оно предназначено для отключения электропитания в 2 случаях:

  1. Человек прикоснулся к токоведущей части. Защитное устройство исключает поражение электрическим током.
  2. Нарушение изоляции проводки и контакт токоведущих частей с землей или корпусом электрического аппарата. Например, стиральной машины, водонагревателя или холодильника.

Принцип действия УЗО

Работа УЗО основана на сравнении токов, протекающих по фазному и нулевому проводникам. Если они равны, все в порядке. Квартира находится под напряжением. Если прикоснуться к фазному проводу, часть тока потечет в землю через тело человека. Это создаст разницу между токами, идущими по L и N проводникам на вводе в квартиру. УЗО срабатывает, если появляются отличия.

УЗО зарекомендовало себя как противопожарное средство. Одна из причин возгорания проводки — это ток, протекающий через поврежденную изоляцию на землю. В месте пробоя выделяется тепло, приводящее к воспламенению кабеля. Если в квартире установлено УЗО, такая ситуация практически невозможна. Когда случится пробой изоляции и замыкание на землю, устройство зафиксирует разницу токов и отключит систему.

Важно! Следует отличать автоматический выключатель, УЗО и дифавтомат. Эти устройства защиты имеют похожий внешний вид, но выполняют различные задачи. Автоматический выключатель защищает проводку от коротких замыканий и перегрузок. УЗО служит для безопасности человека. Оно отключит напряжение, если прикоснуться к токоведущей части. Дифавтомат сочетает в себе функционал обоих устройств. Остерегает человека от удара током и предохраняет проводку от КЗ.

Типы ВДТ по принципу срабатывания

По принципу срабатывания УЗО подразделяют на электронные и электромеханические. Электронные УЗО на порядок дешевле, чем электромеханические УЗО. Это объясняется его меньшей надежностью и дешевизной производства. Электронное УЗО «питается» от сети, и работа электронного УЗО зависит от параметров и качества этой самой электросети.

Приведу такой пример, у нас отгорел ноль в этажном щитке, соответственно пропадет питание электронного УЗО и оно не будет работать. И если в этом время произойдет замыкание фазы на корпус прибора, а человек его коснется, то электронное УЗО не сработает, т.к. оно просто напросто не работает, нет питания электроники из-за обрыва нуля. Или если по-простому электроника – это электроника, а китайская электроника – это вдвойне «электроника», которая может отказать в любой момент. Поэтому электромеханическое УЗО, которое не зависит от состояния сети, намного надежнее, чем электронное УЗО.

В основе принципа действия лежит сравнение входящего и выходящего тока УЗО обычного дифференциального трансформатора тока, и если ток не равен и больше уставки (номинальный отключающий ток УЗО в мА), как уже указывалось выше, то УЗО отключается.


По этим схемам можно определить, электронное УЗО или электромеханическое, схемы наносят на корпуса УЗО. Известные производители, такие как ABB, Шнайдер Электрик, Хагер или Легранд не производят электронных УЗО, только электромеханические УЗО. Я ставлю в свои электрощиты электромеханические УЗО.
Для сравнения электронного и электромеханического УЗО предлагаю фото с их “внутренностями”. Я бы выложил электронное УЗО, какого-либо известного бренда, а не китайского, но, как писал выше, АББ, Шнайдер Электрик, Легранд и другие серьезные производители, не выпускают электронных УЗО.

Типы УЗО АС, А, В

В зависимости от типа, УЗО обязано отключаться от разного вида утечек тока, есть УЗО, которые отключают только переменный ток, есть УЗО которые переменный и пульсирующий ток:
УЗО тип АС реагирует на мгновенный переменный дифференциальный ток утечки, т.е. это обычные потребители: освещение,  теплые полы, холодильники, конвекторы и др. Тип УЗО АС обозначается на панели, это либо буквы АС, либо специальный символ (пиктограмма) или и то и другое вместе.

УЗО тип А реагирует, как на переменный, так и на пульсирующий ток утечки, который может медленно нарастать или возникать внезапно. Это приборы, в которых используются выпрямители и импульсные блоки питания: компьютеры, стиральные машинки, телевизоры, посудомойки, микроволновки, т.е. там, где всем управляет электроника. В некоторых инструкциях на современные электроприборы отдельно указывается, что необходима установка УЗО типа А.

Пиктограмма для УЗО тип А выглядит следующим образом.

УЗО тип А дороже, чем УЗО тип АС, т.к. «охватывает» бОльшую зону защиты. Но следует отметить, что уровень защиты с УЗО типа АС выше, чем если бы УЗО не было бы вообще.

ПУЭ 7.1.78. В зданиях могут применяться УЗО типа “А”, реагирующие как на переменные, так и на пульсирующие токи повреждений, или “АС”, реагирующие только на переменные токи утечки. Источником пульсирующего тока являются, например, стиральные машины с регуляторами скорости, регулируемые источники света, телевизоры, видеомагнитофоны, персональные компьютеры и др.

Часто у читателей возникает вопрос: “Какое УЗО поставить на холодильник, стиральную машинку, посудомойку, варочную панель и т.д.?”. Самый правильный ответ, вы найдете в инструкциях на бытовую технику. Но, например, в Европе разрешено устанавливать УЗО только тип А. УЗО тип АС запрещены.

УЗО тип В – редкость в России, их применяют в промышленности, где помимо прочих видов утечек, есть утечки выпрямленного тока, в быту УЗО тип В не применяют.

Задержка отключения (селективность) УЗО

По выдержке времени срабатывания УЗО разделяют на типы:

  1. УЗО без выдержки времени, применяют для защиты человека от поражения током и от возгораний вследствие неисправностей электропроводки. УЗО без выдержки времени устанавливают на линии электроприемников. И являются первой ступенью защиты.
  2. УЗО тип S (селективное), также его называют противопожарным. Данное УЗО тип S срабатывает с задержкой (0,2-0,5 сек), поэтому человека оно не защищает, а лишь защищает от возникновения пожаров. Противопожарное УЗО устанавливается в начале линии после вводного автомата и защищает вводной кабель и подключение автоматики в щитке, а также является второй ступенью диф. защиты всего дома от пожара.

Определить, что это УЗО селективное, можно по букве “S” на панели, которая и обозначает, что УЗО селективное с выдержкой времени на отключение.

Примеры однофазного селективного противопожарного УЗО ABB с током утечки на 100мА и трехфазного противопожарного УЗО на 300 мА от Шнейдер Электрик.

УЗО тип S выбирают с номинальным током утечки 100-300 мА.Протипожарное УЗО с уставкой 100-300 мА является второй ступенью защиты, а согласно правил, если в схеме установлены на одной линии несколько УЗО, то каждая последующая ступень должна быть с бОльшей выдержкой времени на срабатывание и уставкой по току.

СП31-110-2003 п.А.4.2 При установке УЗО последовательно должны выполняться требования селективности. При двух- и многоступенчатой схемах УЗО, расположенное ближе к источнику питания, должно иметь уставки тока срабатывания и время срабатывания не менее чем в три раза большие, чем у УЗО, расположенного ближе к потребителю.

Если бы не было выдержки времени, а на линии у нас стоит два УЗО, одно на 30 мА, другое на 100 мА, то при утечках тока срабатывали бы оба УЗО и УЗО на 100 мА обесточило бы весь дом. Поэтому, чтобы не выбегать в труселях по морозу на улицу и включать противопожарное УЗО в уличном щитке, противопожарное УЗО выбирается с уставкой, достаточной для предотвращения пожара.

УЗО тип G, тоже самое, что и тип S, только с меньшей выдержкой времени 0,06-0,08 сек. УЗО редкие, и ждать их «приезда» приходилось по 2-3 месяца, что для меня очень неудобно,т.к. электрощитки зависают на долгий срок.

Номинальный отключающий ток УЗО

Номинальный отключающий ток УЗО I∆n (уставка) – это ток при котором УЗО срабатывает (отключается). Величина уставок УЗО – 10 мА, 30 мА, 100 мА, 300 мА, 500 мА. Следует отметить, что ток неотпускания, когда человек уже не может самостоятельно разжать руки и отбросить провод, составляет 30 мА и выше. Поэтому для защиты человека от поражения тока, выбирают УЗО с отключающим током 10 мА или 30 мА.

Номинальный отключающий ток УЗО I∆nили ток утечки также указывается на лицевой панели УЗО.

УЗО 10 мА используют для защиты электроприемников во влажных помещениях или мокрых потребителей, т.е. стиральные и посудомоечные машинки, розетки которые находятся внутри ванны или туалета, свет в ванной, теплый пол в ванной или туалете, свет или розетки на балконах и лоджиях.

СП31-110-2003 п.А.4.15 Для сантехкабин, ванных и душевых рекомендуется устанавливать УЗО с номинальным дифференциальным отключающим током до 10 мА, если на них выделена отдельная линия, в остальных случаях, например при использовании одной линии для сантехкабины, кухни и коридора, следует использовать УЗО с номинальным дифференциальным током до 30 мА.

Т.е. УЗО с уставкой 10 мА устанавливают на отдельный кабель, к которому подключается только стиральная машинка. Но если от кабельной линии еще запитаны другие потребители, например, розетки коридора, кухни, то в этом случае устанавливают УЗО с током срабатывания (уставкой) в 30 мА.

УЗО с током утечки 10 мА у АВВ выпускают только на 16А. У Шнейдер Электрик и Хагер, есть в линейке продукции УЗО на 25/10 мА и 16/10 мА.

УЗО 30 мА устанавливают на стандартные линии, т.е. обычные бытовые розетки, свет в комнатах и т.д.

ПУЭ п.7.1.79.В групповых сетях, питающих штепсельные розетки, следует применять УЗО с номинальным током срабатывания не более 30 мА. Допускается присоединение к одному УЗО нескольких групповых линий через отдельные автоматические выключатели (предохранители).

УЗО 100, 300, 500 мА называют противопожарными, такие УЗО не спасут вас от смертельного удара током, но уберегут квартиру или частный дом от возникновения пожара из-за неисправностей в электропроводке. Такое УЗО на 100-500 мА устанавливаются в вводных щитках, т.е. в начале линии.

В США используют УЗО с номинальным отключающим током 6 мА, в Европе до 30 мА.

Следует отметить, что УЗО отключается в пределах уставки 50-100%, т. е. если у нас УЗО на 30 мА, то отключаться оно должно в пределах 15-30 мА.

Есть проектировщики, которые продвигают двойные диф. защиты “мокрых” потребителей. Это когда, например стиральная машинка, подключена к УЗО 16/10 мА, которое в свою очередь подключено к групповому УЗО 40/30 мА.

В итоге, что мы получим? При малейшем “чихе” стиральной машинки, мы отключаем всю группу автоматов (свет кухни, бойлер и свет комнаты), т.к. в большинстве случаев неизвестно, какое сработает УЗО 25/30 мА или 16/10 мА, либо сработают оба.

Согласно свода правил по проектированию электроустановок жилых и общественных зданий:

СП31-110-2003 п.А.4.2 При установке УЗО последовательно должны выполняться требования селективности. При двух- и многоступенчатой схемах УЗО, расположенное ближе к источнику питания, должно иметь уставки тока срабатывания и время срабатывания не менее чем в три раза большие, чем у УЗО, расположенного ближе к потребителю.

Но справедливости ради, следует отметить, что если электропродка смонтирована качественно, то УЗО не срабатывают годами. Поэтому в данном случае – последнее слово за заказчиком.

Как выбрать и не ошибиться

Независимо от назначения устройства подбираются по следующим параметрам:

  1. Нагрузочная способность. Для прибора важна величина тока, на который рассчитаны его силовые контакты. По номиналу чаще всего используются на 16А, 25А, 32А, 40А, 63А, 80А.
  2. Метод определения утечки. По типу определения утечки делятся на электронные, утечка в которых определяется электронным ключом, и на электромагнитные, значение утечки в которых снимается с магнитного сердечника. Электронные более доступны по цене, но имеют недостатки в работе в виде несрабатывания при пропадании одной из фаз.
  3. Чувствительность к току утечки. Чувствительность определяет способность устройства к срабатыванию. Самые чувствительные приборы на 10 мА тока утечки. Но их применение ограничено количеством потребителей из-за возможных ложных срабатываний и наличия естественных токов утечки.
  4. Тип тока цепи. По типу токов разделяются на срабатывающие от переменного тока и пульсирующего тока.

По количеству подключаемых фаз делятся на двухполюсные и четырехполюсные. Однополюсные для сети 220 В, трехполюсные для 380 В. В домах и частных домовладениях, по причине использования однофазной сети, используют однополюсные УЗО.

Для выбора устройства защиты необходимо определить его назначение. По назначению можно разделить на следующие типы:

  1. Бытовые – это однополюсные УЗО невысокой чувствительности с током нагрузки не более 50 А. Такие требования обусловлены большим количеством бытовых приборов и связанными с этим большими точками естественной утечки. Очень чувствительные будут постоянно ложно срабатывать. Нагрузочный ток в 50 А определяется параметрами счетчиков электроэнергии, устанавливаемыми в жилых помещениях, не превышающим этот номинал.
  2. Для промышленного применения – чувствительные четырехполюсные УЗО с большими номиналами тока. Эти требования обусловлены большими токами потребления промышленным оборудованием, использованием трехфазной сети и повышенными требованиями к его защите по причине его повышенной опасности и большой стоимости.
  3. Специализированные. К специализированным относятся противопожарные типа В. Они обладают высокой чувствительностью не только к утечкам переменного тока, но и к незначительным пульсациям постоянного тока.

Электронные УЗО более доступны по цене, но имеют недостатки в работе в виде несрабатывания при пропадании одной из фаз

Примеры, как правильно выбрать УЗО по номинальному току:

При этом запомните, что если “сверху” УЗО уже защищено автоматом, номинал которого меньше номинала УЗО, то после этого УЗО можно подключать автоматы, суммой номиналов хоть на 1000 А.

Подключение УЗО в 3 этапа

Принцип монтажа прост и доступен для человека, не обладающего знанием электромонтажных работ. Производитель к прибору всегда прилагает инструкцию по эксплуатации – паспорт оборудования, в котором указана схема для подключения.

Поиск и подключение нулевой фазы

Ниже на рисунке приведена схема подключения – аналогичные обозначения нанесены возле клемм. Нулевую фазу можно определить методом проб, взяв два провода и, подсоединив их концы к патрону лампочки, а другие концы к двум проводам. Подключение к нулю не приведет к загоранию лампы, в остальных случаях она будет загораться.

Внимание! Подключение лампочки к обеим рабочим фазам допустимо только на короткое время

Важно! Замыкать цепь с лампой и жилами можно только на короткое время, в противном случае сработает автоматический выключатель.

Рис. 6 Схема подключения УЗО к сети.

Подсоединение рабочих фаз

Когда ноль найден, выполняется его подключение к клеммам. Остальные три проводника рабочие фазы. Они могут подключаться к УЗО любым способом, это никак не повлияет на работу устройства.

Когда подключение завершено, осталось проверить работу схемы, запустив тестер, предусмотренный в приборе.

Параллельное подключение выходных устройств

Подсоединение нескольких розеток к одному УЗО возможно только параллельной схемой подключения. Для этого необходимо разделять каждую жилу на несколько более тонких проводников. В иных случаях прибор не будет полноценно работать и срабатывать при возникновении утечки – это третье правило.

Как правильно подключить УЗО

УЗО четырехполюсное

Вариант подключения трехфазного УЗО с тремя полюсами применяется на объектах, где используется напряжение 380В. От трехфазной схемы данный вид подключения отличается количеством задействованных проводов на входе и выходе устройства. Предварительно также следует разобраться в цветовой маркировке и назначении каждого проводника. Отдельно выделяется нулевой или нейтральный провод, подключаемый к отдельной клемме.

Выходящие провода соединяются с распределительной системой. Далее каждая отдельная фаза и нулевой провод могут обеспечить работы одной группы однофазных потребителей. При этом на всех таких линиях устанавливается собственное дополнительное УЗО. Подключение устройств с четырьмя полюсами возможно лишь при наличии системы TN-S с нулевым защитным и рабочим проводником. Во всех других случаях подключение четырехполюсного УЗО категорически запрещается.

Ошибки при выполнении монтажа УЗО

Пример неправильного подключения УЗО

Чтобы обеспечить стабильную и безопасную работу электросети, необходимо избегать следующих ошибок:

  • Входные клеммы УЗО подключаются к сети после специального автомата. Прямое присоединение категорически запрещено.
  • Необходимо правильно подключить и не перепутать нулевые и фазные контакты. Для облегчения этой задачи на корпусе устройств присутствуют специальные обозначения.
  • При отсутствии заземляющего проводника категорически запрещено заменять его проводом, накинутым на водопроводную трубу или радиатор.
  • При покупке устройств обращают внимание на их основные рабочие характеристики, величины токов. Если линия рассчитана на 50 А, прибор должен иметь минимум 63 А.

При выполнении монтажа крайне важно соблюдать правила электробезопасности. Перед началом установки УЗО обесточивают сеть. Перед запуском устройства проверяют правильность монтажа элементов системы.

Схемы для 3-фазной сети

В домах, производственных помещениях и прочих сооружениях может встречаться иной вариант обустройства электроснабжения.

Так, для квартир подключение 3-фазной сети нехарактерно, зато для оснащения частного дома такой вариант не редкость. Здесь будут использоваться иные схемы подключения аппарата защиты.

Вариант #1 – общее УЗО для 3-фазной сети + групповые УЗО.

Для сети 380 В 2-полюсного прибора мало, необходим 4-полюсный аналог: нужно подключить 1 нулевую жилу и 3 фазных. Схема усложнена оборудованием каждой электролинии отдельным прибором УЗО. Это необязательно, однако дублированную защиту рекомендуется делать для дополнительного предохранения от токов утечки

Важен вид проводов. Для 1-фазной сети подходит стандартный кабель ВВГ, тогда как для 3-фазной рекомендуется протягивать более стойкий к возгоранию ВВГнг. О выборе подходящего типа провода мы писали в другой нашей статье.

Вариант #2 – общее УЗО для 3-фазной сети + счетчик.

Это решение полностью повторяет предыдущее, но в схему добавлен счетчик электроэнергии. Групповые УЗО также включены в систему обслуживания отдельных линий. Из всех представленных схем эта самая объемная в буквальном смысле, то есть требует установки большого электрощита с множеством проводов и подключенных электроприборов

Существует нюанс, который относится к любой из представленных схем. Если в квартире или доме несколько осветительных и розеточных контуров, несколько мощных бытовых приборов, требующих обустройства отдельных электролиний, то есть смысл устанавливать двойную защиту с общим УЗО.

В обратном случае достаточно либо общего аппарата, или по одному на каждый контур.

Инструкция по установке УЗО

Сначала нужно выбрать место для монтажа устройства. Применяются 2 варианта: щит или шкаф. Первый напоминает металлическую коробку без крышки, закрепленную на высоте, удобной для обслуживания.

Шкаф оснащен дверцей, которую можно закрывать на замок. Некоторые виды шкафов имеют отверстия, чтобы можно было снимать показания прибора учета, не распахивая специально дверцу, и отключать устройства.

Защитные приборы фиксируют на монтажных DIN-рейках, расположенных горизонтально. Модульная конструкция автоматов, дифавтоматов и УЗО позволяет разместить на одной рейке несколько штук

К левым клеммам на входе и на выходе всегда подключают нулевой провод, к правым – фазный. Один из вариантов:

  • входная клемма N (верхняя левая) – от вводного автомата;
  • выход N (нижняя левая) – на отдельную нулевую шину;
  • входная клемма L (верхняя правая) – от вводного автомата;
  • выход L (нижняя правая) – к групповым автоматам.

К моменту установки защитного устройства на щите уже могут быть установлены автоматические выключатели. Чтобы упорядочить расположение приборов и проводов, возможно, придется переставить устройства в определенном порядке.

Представляем пример установки вводного УЗО в электрошкаф, где уже стоит счетчик, вводный автомат и несколько автоматических выключателей для отдельных контуров — осветительного, розеточного и др.

  • Размеры щита (ШУЭ, ЩУЭ, ШР) зависят от количества размещенных внутри устройств. Лучше подбирать изделие с небольшим запасом для установки новых автоматов и УЗО
  • На дин-рейке, в один ряд, предварительно установлены (слева направо) домашний прибор учета электроэнергии, затем один вводный выключатель и 5 групповых автоматов
  • Лучшее решение для установки, обоснованное работой приборов, – место между вводным автоматом и остальными устройствами, обслуживающими отдельные линии (розеточную и др.)
  • От нижней левой клеммы фазный проводник тянется к верхней клемме среднего автомата, а нуль – к заземляющей шине, которая расположена ниже. Верхняя фаза – от вводного автомата, ноль – от счетчика

Никогда не подключают УЗО на входе – оно всегда следует за общим вводным автоматическим выключателем. Если используют счетчик, то устройство защитного отключения переходит на третью позицию от входа.

Описание процесса подключения:

  • устанавливаем прибор на DIN-рейку справа от автомата –  достаточно приложить его и надавить с небольшим усилием до щелчка;
  • протягиваем разделанные и зачищенные провода от автомата и нулевой шины, вставляем в верхние клеммы согласно схеме, закручиваем крепежные винты;
  • таким же образом вставляем провода в нижние клеммы и закручиваем винты;
  • тестируем – сначала включаем общий автомат, затем УЗО, нажимаем кнопку «Тест»; при нажатии прибор должен отключиться.

Чтобы убедиться в правильности подключения, иногда инсценируют ток утечки. Берут два рабочих провода – «фазу» и «землю», одновременно подводят к цоколю электролампы. Появляется утечка, и прибор должен моментально сработать.

Как проверить УЗО за 30 секунд

После того как монтаж схемы подключения УЗО и автоматов выполнен, необходимо проверить работу защитных устройств. Чтобы проверить работу УЗО нажимаем на кнопку. Если при нажатии питание отключается, то все в порядке и устройство работает. Такую проверку рекомендуется выполнять периодически, чтобы быть уверенными в работе устройства.

Второй способ не рекомендуется применять самостоятельно. Его используют профессионалы. Фазу, через резистор, подключают к проводу заземления. Таким образом, проводится контролируемая утечка тока.

Не всегда есть возможность воспользоваться услугами профессионала электрика, и приходится выполнять работы самостоятельно. В этом случае помните, и строго соблюдайте правила техники безопасности.

Мы рассмотрели несколько основных схем подключения защитных устройств, на практике их может быть гораздо больше.

Видео: схемы подключения УЗО

Анализ цепи трехфазной системы — сбалансированное состояние

Электрическая система бывает двух типов: однофазная и трехфазная. Однофазная система имеет только один фазный провод и один обратный провод, поэтому она используется для передачи малой мощности.

Трехфазная система имеет три провода под напряжением и один обратный путь. Трехфазная система используется для передачи большого количества энергии. Трехфазная система в основном делится на два типа. Одна представляет собой сбалансированную трехфазную систему, а другая – несимметричную трехфазную систему.

Содержимое:

  • Анализ сбалансированной трехфазной цепи
  • Анализ несбалансированной трехфазной цепи
  • Соединение трехфазной системы
  • Подключение 3-фазных нагрузок в 3-фазной системе

Балансная система – это система, в которой нагрузка равномерно распределяется по всем трем фазам системы. Величина напряжения остается одинаковой во всех трех фазах и разделена углом 120º.

В несимметричной системе величина напряжения во всех трех фазах становится разной.

Анализ симметричной трехфазной цепи

Всегда лучше решать симметричные трехфазные цепи на основе каждой фазы. Если трехфазное напряжение питания указано без привязки к линейному или фазному значению, то учитывается именно линейное напряжение.

Следующие шаги приведены ниже для решения симметричных трехфазных цепей.

Шаг 1 – Прежде всего нарисуйте принципиальную схему.

Шаг 2 – Определить X LP = X L /фаза = 2πf L .

Шаг 3 – Определить X CP = X C /фаза = 1/2πf C .

Шаг 4 – Определить X P = X/ фаза = X L – X C

Шаг 5 – Определить Z P = Z/фаза = √R 2 P + X 2 P

Шаг 6 – Определить cosϕ = R Р /Z Р ; коэффициент мощности отстает, когда X LP > X CP , и опережает, когда X CP > X LP .

Шаг 7 – Определите фазу V.

Для соединения звездой V P = V L /√3 и для соединения треугольником V P = V L

Шаг 8 – Определение I P = В Р /Z Р .

Шаг 9 – Теперь определите линейный ток I л .

Для соединения звездой I L = I P и для соединения треугольником I L = √3 I P

Шаг 10 – Определение активного, реактивного и аппарного энт власть.

Анализ несбалансированной 3-фазной цепи

Анализ 3-фазной несбалансированной системы немного сложен, а нагрузка подключается либо по схеме «звезда», либо по схеме «треугольник». Эта тема подробно обсуждается в статье под названием «Преобразование звезды в дельту и дельты в звезду».

Соединение трехфазной системы

В трехфазном генераторе переменного тока есть три обмотки. Каждая обмотка имеет два вывода (начало и конец). Если к каждой фазной обмотке подключена отдельная нагрузка, как показано на рисунке ниже, то каждая фаза питается как независимая нагрузка через пару проводов. Таким образом, для подключения нагрузки к генератору потребуется шесть проводов. Это сделает всю систему сложной и дорогостоящей.

Поэтому для уменьшения количества линейных проводников трехфазные обмотки генератора переменного тока соединяют между собой. Соединение обмоток трехфазной системы может быть выполнено следующими двумя способами:

Соединение звездой или звездой (Y) См. также: Соединение звездой в 3-фазной системе

Сетчатое соединение или соединение треугольником (Δ). См. также : Соединение треугольником в 3-фазной системе

Соединение 3-фазной нагрузки в 3-фазной системе

Поскольку трехфазное питание подключается по схеме «звезда» и «треугольник». Точно так же трехфазные нагрузки также подключаются либо по схеме «звезда», либо по схеме «треугольник». Трехфазная нагрузка, соединенная в звезду, показана на рисунке ниже:

Соединение треугольником трехфазных нагрузок показано на рисунке ниже:

Трехфазные нагрузки могут быть сбалансированными или несбалансированными, как описано выше. Если три нагрузки Z 1 , Z 2 и Z 3 имеют одинаковую величину и фазовый угол, то говорят, что трехфазная нагрузка является сбалансированной нагрузкой. При таких соединениях все фазные или линейные токи и все фазные или линейные напряжения равны по величине.

Назад к основам (часть 10): как создать сетевую диаграмму проекта

Линь Тран , среда, 06 февраля 2019 г. | Время прочтения: неизвестно

ЛидерствоУправление проектамиПроизводительность

Что такое сетевая диаграмма проекта?

Глоссарий управления проектами InLoox определяет сетевую диаграмму проекта следующим образом:

В сети узлы (прямоугольники) представляют действия и события. Стрелки соединяют узлы друг с другом. Стрелки представляют зависимость между действиями или событиями.

Люди часто используют термины Структура распределения работ и сетевая диаграмма проекта как синонимы. Но между ними есть важное различие: структурная декомпозиция работ позволяет вам просматривать проект независимо от его расписания и визуализировать логические связи в иерархической древовидной диаграмме. Сетевая диаграмма также учитывает хронологический порядок действий и использует зависимости для их отображения. Гистограммы, такие как диаграммы Ганта, представляют собой особый тип сети.

Сетевой анализ позволяет руководителю проекта учитывать различные аспекты при создании плана проекта:

  • Зависимости между действиями
  • Время буферизации между действиями
  • Самая ранняя и самая поздняя даты начала и окончания, а также продолжительность деятельности
  • Критический путь

Как провести сетевой анализ

Мы много говорили о теории, но как на самом деле работает сетевой анализ и что для этого нужно делать? Мы покажем вам шаг за шагом, как это работает, на примере проекта — тимбилдинга.

Шаг 1: Определите действия, продолжительность и зависимости

Создайте список всех действий вашего проекта и оцените их продолжительность. Затем определите хронологический порядок действий, то есть зависимости между ними. Внесите все в таблицу:

Шаг 2: Отобразите все действия в узлах (прямоугольники) и введите продолжительность (d) в узел.

Каждый узел отображается следующим образом:

  • EST = Самое раннее время начала = Когда я могу начать действие как можно раньше?
  • EFT = Самое раннее время завершения = Когда я могу завершить действие в ближайшее время?
  • LST = Самое позднее время начала = Когда самая поздняя возможная дата начала действия, если я хочу завершить проект вовремя?
  • LFT = Самое позднее время завершения = Когда самая поздняя возможная дата завершения действия, если я хочу завершить проект вовремя?
  • d = продолжительность действия (здесь в часах)
  • CBT = совокупное буферное время = дополнительное время, которое вы можете использовать для выполнения действия без ущерба для даты окончания проекта
  • BT = свободное буферное время = дополнительное время, которое вы можете использовать для выполнения действия, не ставя под угрозу время завершения его прямого(ых) преемника(ов)
Шаг 3. Связывание действий

Определите зависимости между действиями. Действия-предшественники и действия-последователи связаны стрелкой — это позволяет увидеть, какие действия или действия необходимо выполнить, прежде чем можно будет приступить к следующему действию.

Шаг 4: Перспективное планирование

Перспективное планирование означает, что вы начинаете с первого действия и выполняете действия №1–№8 в хронологическом порядке. Добавьте EST (самое раннее время начала) и EFT (самое раннее время окончания). Вот как вы рассчитываете время:

  1. EST действия №1 всегда равно 0
  2. .
  3. EFT действия представляет собой сумму его EST и продолжительности >> EFT действия № 1: 0 + 1 ( EST = 0, d = 1)
  4. EFT действия автоматически становится EST его последующего действия
  5. Если узел имеет более одного предшествующего действия, используется НАИВЫСШИЙ EFT >> EST действия № 6: 26 (взято из EFT действия № 2)

Шаг 5: Планирование в обратном направлении

Этот шаг позволяет рассчитать самое позднее время начала ( LST ) и самое позднее время окончания ( LFT ). Начните с занятия № 8 и продолжайте, пока не дойдете до занятия № 1. Вот как вы рассчитываете время:

  1. LFT действия № 8 совпадает с его EFT и представляет собой начальную точку обратного планирования: EFT = 66 = LFT
  2. LST действия: LFT – продолжительность >> LST действия №8 = 66 – 5 = 61
  3. LST операции также всегда является LFT предшествующей операции >> LST операции № 8 = 61, поэтому LFT операции № 7 = 61
  4. Если узел имеет более одного действия-последователя, используется НАИМЕНЬШИЙ LST >> действие №1 имеет 3 действия-преемника (действие №2,3,4). Из трех последователей действие № 4 имеет самый низкий LST (= 1), поэтому LFT действия № 1 = 1.
  5. Вы можете проверить правильность обратного планирования, если LST = EST = 0 для действия №1.

Шаг 6: Расчет буферного времени

Следующим шагом является определение совокупного буферного времени ( CBT ) и свободного буферного времени ( BT ) для всех действий.

Совокупное буферное время

  • Формула для CBT : LST – EST ​​  >> Итак, CBT для действия № 6: 30 ( LST 9 0217) – 26 ( ЭСТ ) = 4

Совокупное буферное время показывает, насколько задержка может быть в завершении действия, прежде чем это поставит под угрозу завершение проекта.

Свободное буферное время

  • Формула для BT : EST последующего действия минус собственное EFT текущего действия . BT действия № 3: 26 – 16 = 10 ( EST действия № 4 = 26; EFT действия № 3 равно 16)
  • Если действие имеет более одного преемника, для расчета берется LOWEST EST . Например. У действия № 4 есть 2 преемника (действие № 5 и № 6). EST действия № 6 = 26, EST действия № 5 = 21 >> BT действия № 4 равен 21 – 21 = 0

Свободное буферное время указывает, насколько задержка может быть в завершении действия, прежде чем это повлияет на время завершения следующего действия.

Шаг 7. Определение критического пути

Критический путь — это самый длинный путь (т. е. путь с наибольшей продолжительностью) от начала проекта до конца. Действия и вехи на этом пути не имеют буферного времени. Это означает, что даже при малейшей задержке одного действия завершение проекта будет соответственно отложено.

  • На сетевой диаграмме каждое действие (узел) без кумулятивного или свободного буферного времени принадлежит критическому пути: CBT = BT = 0 . В нашем случае это действия №1, №4, №5, №7 и №8.

Таким образом, критический путь определяет минимальную продолжительность проекта и позволяет руководителю проекта определить наиболее рискованные действия в случае возникновения задержек. Это помогает им разработать контрмеры с самого начала. Важно, чтобы они внимательно следили за действиями на критическом пути. С другой стороны, если вам удастся завершить критическую операцию раньше, чем планировалось, вы можете соответственно сократить продолжительность проекта.

Вывод

Сетевой анализ — очень точный метод, но это означает, что он также довольно сложен. Для небольших проектов с меньшим количеством мероприятий, таких как наше тимбилдинговое мероприятие, это возможно. Но если у вас есть сложный план проекта с большим количеством действий, не только сложно создать сетевую диаграмму, но и сложно и долго поддерживать ее в актуальном состоянии. Вот почему большинство используют программное обеспечение для управления проектами для создания сетевой диаграммы. Хотя все же полезно знать, как проводить сетевой анализ вручную, поскольку это поможет вам лучше понять план вашего проекта. Самым большим преимуществом инструмента управления проектами является то, что он автоматически рассчитывает время окончания и начала в соответствии с определенными вами зависимостями и ограничениями, автоматически рассчитывает критический путь и, что наиболее важно, занимает значительно меньше времени и усилий для создания плана проекта.

Хотите быстро создать расписание проекта? Попробуйте наш шаблон планирования для примера проекта “Тимбилдинг”: 

>> Скачать шаблон планирования <<

Еще не пользуетесь InLoox? Получите бесплатную 30-дневную пробную версию — пробная версия заканчивается автоматически: https://www.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *