FAQ по TDA7293/7294
В данном FAQ мы постараемся рассмотреть все вопросы связанные с популярной в последнее время микросхемой УНЧ TDA7293/7294. Информация взята с одноименной темы форума сайта Паяльник. Всю информацию собрал воедино и оформил ~D’Evil~, за что ему огромное спасибо. Параметры микросхемы, схема включения, печатная плата, все это находится здесь. Datasheet микросхемы TDA7293 и TDA7294 можно скачать здесь.
1) Блок питания
Как ни странно, но у многих проблемы начинаются уже здесь. Две самых распространенных ошибки:
– Однополярное питание
– Ориентирование на напряжение вторичной обмотки трансформатора (действующее значение).
Вот схема блока питания:
Что мы здесь видим?
1.1 Трансформатор – должен иметь ДВЕ ВТОРИЧНЫЕ ОБМОТКИ. Либо одна вторичная обмотка с отводом от средней точки (встречается очень редко). Итак, если у вас трансформатор с двумя вторичными обмотками, то их необходимо соединить как показано на схеме.
Теперь вторая ошибка: В даташите (тех. описание микросхемы) на микросхему TDA7294 указано: для нагрузки 4Ома рекомендуется питание +/-27. Ошибка в том, что люди часто берут трансформатор с двумя обмотками 27В, ЭТОГО ДЕЛАТЬ НЕЛЬЗЯ !!! Когда вы покупаете трансформатор, на нем пишут действующее значение, и вольтметр вам тоже показывает действующее значение. После того, как напряжение выпрямляется, им заряжаются конденсаторы. А заряжаются они уже до амплитудного значения которое в 1. 41 (корень из 2ух) раза больше действующего значения. Стало быть, чтобы на микросхеме было напряжение 27В, то обмотки трансформатора должны быть на 20В (27 / 1,41 = 19,14 Т.к. на такое напряжение трансформаторы не делают, то возьмем ближайшее: 20В). Суть думаю ясна.
Теперь о мощности: для того, чтобы TDA выдала свои 70Вт, ей необходим трансформатор мощностью минимум 106Вт (КПД у микросхемы 66%), желательно больше. Например для стерео усилителя на TDA7294 очень хорошо подойдет трансформатор мощностью 250Вт
1.2 Выпрямительный мостик – Тут как правило вопросов не возникает, но все же. Я лично предпочитаю ставить выпрямительные мосты, т.к. не надо возиться с 4мя диодами, так удобнее. Мостик должен обладать следующими характеристиками: обратное напряжение 100В, прямой ток 20А. Ставим такой мостик и не паримся, что в один “прекрасный” день он сгорит. Такого мостика хватает на две микросхемы и емкость конденсаторов в БП 60’000мкФ (когда конденсаторы заряжаются, через мостик проходит очень высокий ток)
1. 3 Конденсаторы – Как видно, в схеме БП используется 2 типа конденсаторов: полярные (электролитические) и неполярные (пленочные). Неполярные (С2, С3) необходимы для подавления ВЧ помех. По емкости ставьте что будет: от 0,33мкФ до 4мкФ. Желательно ставить наши К73-17, довольно неплохие конденсаторы. Полярные (С4-С7) необходимы для подавления пульсации напряжения, да и к тому же отдают свою энергию при пиках нагрузки усилителя (когда трансформатор не может обеспечить требуемый ток). По емкости до сих пор люди спорят, сколько все таки нужно. Я на опыте понял, что на одну микросхему, достаточно 10000 мкФ в плечо. Напряжение конденсаторов: выбирайте сами, в зависимости от питания. Если у вас трансформатор на 20В, то выпрямленное напряжение будет 28,2В (20 х 1,41 = 28,2), конденсаторы можно поставить на 35В. С неполярными то же самое. Вроде бы ничего не упустил…
2) Микросхемы TDA7294 и TDA7293
2. 1.1 Описание выводов микросхемы TDA7294
1 – Сигнальная земля
2 – Инверсный вход микросхемы (в стандартной схеме сюда подключается ОС)
3 – Неинверсный вход микросхемы, сюда подаем аудиосигнал, через разделительный конденсатор С1
4 – Тоже сигнальная земля
5 – Вывод не используется, можете его смело отламывать (главное не перепутайте !!!)
6 – Вольтодобавка (Bootstrap)
7 – “+” питания
9 – Вывод St-By. Предназначен для перевода микросхемы в дежурный режим (т.е. грубо говоря усилительная часть микросхемы отключается от питания)
10 – Вывод Mute. Предназначен для ослабления входного сигнала (грубо говоря, отключается вход микросхемы)
11 – Не используется
12 – Не используется
13 – “+” питания
14 – Выход микросхемы
15 – “-” питания
2.1.2 Описание выводов микросхемы TDA7293
1 – Сигнальная земля
2 – Инверсный вход микросхемы (в стандартной схеме сюда подключается ОС)
3 – Неинверсный вход микросхемы, сюда подаем аудиосигнал, через разделительный конденсатор С1
4 – Тоже сигнальная земля
5 – Клиппметр, в принципе абсолютно ненужная функция
6 – Вольтодобавка (Bootstrap)
7 – “+” питания
8 – “-” питания
9 – Вывод St-By. Предназначен для перевода микросхемы в дежурный режим (т.е. грубо говоря усилительная часть микросхемы отключается от питания)
11 – Вход оконечного каскада усиления (используется при каскадировании микросхем TDA7293)
12 – Сюда подключается конденсатор ПОС (С5) когда напряжение питания превышает +/-40В
13 – “+” питания
14 – Выход микросхемы
15 – “-” питания
2.2 Разница между микросхемами TDA7293 и TDA7294
Такие вопросы встречаются постоянно, итак, вот основные отличия TDA7293:
– Возможность параллельного включения (фигня полная, нужен мощный усилитель – собирайте на транзисторах и будет вам счастье)
– Повышенная мощность (на пару десятков ватт)
– Повышенное напряжение питания (иначе предыдущий пункт был бы не актуален )
– Еще вроде говорят что она вся сделана на полевых транзисторах (а толку то?)
Вот вроде бы все отличия, от себя лишь добавлю что у всех TDA7293 наблюдается повышенная глючность – слишком часто горят.
Еще один распространенный вопрос: Можно ли заменить TDA7294 на TDA7293?
Ответ: Можно, но:
– При напряжении питания <40В заменять можно спокойно (конденсатор ПОС между 14ой и 6ой лапами как был, так и остается)
– При напряжении питания >40В, только необходимо изменить местоположение конденсатора ПОС. Он должен быть между 12ой и 6ой лапами микросхемы, иначе возможны глюки в виде возбуда и т.д.
Вот как это выглядит в даташите на микросхему TDA7293:
Как видно из схемы, конденсатор подключается либо между 6ой и 14ой лапами (напряжение питания <40В) либо между 6ой и 12ой лапами (напряжение питания >40В)
2.3 Напряжение питания
Есть такие экстремалы, запитывают TDA7294 от 45В, потом удивляются: а че горит? Горит потому, что микросхема работает на пределе. Сейчас тут мне скажут: “У меня +/-50В и все работает, не гони!!!”, ответ прост: “Вруби на максимальную громкость и засеки время секундомером”
Если у вас нагрузка 4 Ома, то оптимальное питание будет +/- 27В (обмотки трансформатора на 20В)
Если у вас нагрузка 8 Ом, то оптимальное питание будет +/- 35В (обмотки трансформатора на 25В)
С таким напряжением питания микросхема будет работать долго и без глюков (у меня выдерживала КЗ выхода в течение минуты, и ничего не сгорело, как обстоят дела с этим у товарищей экстремалов я не знаю, они молчат )
И еще: если вы все таки решили сделать напряжение питания больше нормы, то не забывайте: от искажений вы все равно никуда не денетесь Больше 70Вт (напряжение питания +/-27В) с микросхемы выжимать бесполезно, т. к. слушать этот скрежет невозможно !!!
Вот график зависимости искажений (THD) от выходной мощности (Pout):
Как мы видим, при выходной мощности 70Вт искажения у нас в районе 0,3-0,8% – это вполне приемлемо и на слух не заметно. При мощности 85Вт искажения уже 10%, это уже хрип и скрежет, в общем слушать звук при таких искажениях невозможно. Отсюда получается, что увеличивая напряжение питания, вы увеличиваете выходную мощность микросхемы, а толку то? Все равно после 70Вт слушать не возможно!!! Так что примите к сведению, плюсов тут никаких нет.
2.4.1 Схемы включения – оригинальная (обычная)
Вот схемка (взята из даташита):
C1 – Лучше ставить пленочный конденсатор К73-17, емкость от 0,33мкФ и выше (чем больше емкость, тем меньше ослабляется низкая частота т.е. всеми любимые басы).
С2 – Лучше ставить 220мкФ 50В – опять таки, басы станут лучше
С3, С4 – 22мкФ 50В – определяют время включения микросхемы (чем больше емкость, тем дольше длительность включения)
С7, С9 – Пленочные, номинал любой: 0,33мкФ и выше на напряжение 50В и выше
С6, С8 – Можно не ставить, у нас в БП уже стоят конденсаторы
R2, R3 – Определяют коэффициент усиления. По умолчанию он равен 32 (R3 / R2), лучше не менять
R4, R5 – По сути та же функция, что и у C3, С4
На схеме есть непонятные клеммы VM и VSTBY – их необходимо подключить к ПЛЮСУ питания, иначе ничего работать не будет.
2.4.2. Схемы включения – мостовая
Схема тоже взята из даташита:
По сути эта схема представляет из себя 2 простых усилителя, с той лишь разницей, что колонка (нагрузка) включена между выходами усилителя. Есть еще пара нюансов, о них чуть позже. Такая схема может использоваться когда у вас нагрузка 8Ом (Оптимальное питание микросхем +/-25В) или 16Ом (Оптимальное питание +/-33В). Для нагрузки 4Ома делать мостовую схему бессмысленно, микросхемы не выдержат ток – результат думаю известен.
Как я сказал выше, мостовая схема собирается из 2ух обычных усилителей. При этом, вход второго усилителя подключается к земле. Еще прошу обратить внимание на резистор который подключен между 14й “ногой” первой микросхемы (на схеме: вверху) и 2ой “ногой” второй микросхемы (на схеме: внизу). Это резистор обратной связи, если его не подключить, усилитель работать не будет.
Еще здесь изменены цепи Mute (10я “нога”) и Stand-By (9я “нога”). Это не принципиально, делайте так, как вам нравится. Главное чтобы на лапах Mute и St-By было напряжение больше 5В, тогда микросхема будет работать.
2.4.3 Схемы включения – умощнение микросхемы
Мой вам совет: не страдайте фигней, нужна большая мощность – делайте на транзисторах
Возможно позже напишу как умощнение делается.
2.5 Пара слов о функциях Mute и Stand-By
– Mute – По своей сути, эта функция микросхемы позволяет отключить вход. Когда на выводе Mute (10я лапа микросхемы) напряжение от 0В до 2,3В производится ослабление входного сигнала на 80дБ. При напряжении на 10й лапе более 3,5В ослабления не происходит
– Stand-By – Перевод усилителя в дежурный режим. Эта функция отключает питание выходных каскадов микросхемы. При напряжении на 9-ом выводе микросхемы более 3ех вольт, выходные каскады работают в своем нормальном режиме.
Реализовать управление этими функциями можно двумя способами:
Раздельное управление | Единое управление |
В чем разница? По сути своей ни в чем, делайте так, как вам удобно. Я лично выбрал первый вариант (раздельное управление)
Выводы обоих схем должны быть подключены либо к “+” питания (в этом случае микросхема включена, звук есть), либо к “общему” (микросхема выключена, звука нет).
3) Печатная плата
Вот печатная плата для TDA7294 (TDA7293 тоже можно ставить, при условии что напряжение питания не превышает 40В) в формате Sprint-Layout: скачать.
Плата нарисована со стороны дорожек, т.е. при печати надо зеркалить (для лазерно-утюжного метода изготовления печатных плат)
Печатную плату я делал универсальную, на ней можно собрать как простую схему, так и мостовую. Для просмотра необходима программа Sprint Layout 4.0.
Пробежимся по плате и разберем что к чему относится:
3.1 Основная плата (в самом верху) – содержит 4 простых схемы с возможностью объединения их в мостовые. Т.е. на этой плате можно собрать либо 4 канала, либо 2 мостовых канала, либо 2 простых канала и один мостовой. Универсал одним словом.
Обратите внимание на резистор 22к обведенный красным квадратом, его необходимо впаивать если вы планируете делать мостовую схемы, так же необходимо впаять входной конденсатор как показано на разводке (крестик и стрелочка). Радиатор можно купить в магазине Чип и Дип, продается там такой 10х30см, плата делалась как раз под него.
3.2 Плата Mute/St-By – Так уж получилось что для этих функций я сделал отдельную плату. Все подключать по схеме. Mute (St-By) Switch – это переключатель (тумблер), на разводке показано какие контакты замыкать чтобы микросхема работала.
Сигнальные провода от платы Mute/St-By на основной плате подключать так:
Провода питания (+V и GND) подключать в блок питания.
Конденсаторы можно поставить 22мкФ 50В (не 5 штук в ряд, а одну штуку. Количество конденсаторов зависит от количества микросхем, управляемых этой платой)
3.3 Платы БП. Тут все просто, впаиваем мостик, электролитические конденсаторы, подключаем провода, НЕ ПУТАЕМ ПОЛЯРНОСТЬ !!!
Надеюсь сборка не вызовет затруднений. Печатная плата проверена, все работает. При правильной сборке усилитель запускается сразу.
4) Усилитель не заработал с первого раза
Ну что же, бывает. Отключаем усилитель от сети и начинаем искать ошибку в монтаже, как правило в 80% случаев ошибка в неправильном монтаже. Если ничего не найдено, то снова включаем усилитель в сеть, берем вольтметр и проверяем напряжения:
– Начнем с напряжения питания: на 7ой и 13ой лапе должен быть “+” питания; На 8ой и 15ой лапах должен быть “-” питания. Напряжения должны быть одинаковой величины (По крайне мере разброс должен быть не больше 0,5В).
– На 9ой и 10ой лапах должно быть напряжение больше 5В. Если напряжение меньше, значит вы ошиблись в плате Mute/St-By (перепутали полярность, тумблер не так поставили)
– При замкнутом на землю входе, на выходе усилителя должно быть 0В. Если там напряжение больше 1В, то тут уже что-то с микросхемой (возможно брак или левая микросхема)
Если все пункты в порядке, то микросхема обязана работать. Проверьте уровень громкости источника звука. Я когда только собрал этот усилитель, включаю его в сеть…звука нет…через 2 секунды все заиграло, знаете почему? Момент включения усилителя пришелся на паузу между треками, вот так вот бывает.
Другие советы с форума:
Умощнение. TDA7293/94 вполне заточена для подключения нескольких корпусов в параллель, правда есть один ньюансик – выхода надо соединять через 3…5 сек после подачи напряжения питания, иначе могут потребоваться новые м/с.
Все интересующие вас вопросы можно задать на форуме сайта Паяльник.
Тема “Печ. плата TDA7294”
Тема “TDA 7294 и всё что с ней связанно”
(С) Михаил aka ~D’Evil~ Санкт-Петербург, 2006г.
Список радиоэлементов
Обозначение | Тип | Номинал | Количество | Примечание | Магазин | Мой блокнот | |
---|---|---|---|---|---|---|---|
Схема блока питания. | |||||||
Br1 | Диодный мост | 1 | Поиск в магазине Отрон | В блокнот | |||
С1-С3 | Конденсатор | 0.68 мкФ | 3 | Поиск в магазине Отрон | В блокнот | ||
С4-С7 | Электролитический конденсатор | 10000 мкФ | 4 | Поиск в магазине Отрон | В блокнот | ||
Tr1 | Трансформатор | 1 | Поиск в магазине Отрон | В блокнот | |||
Схема включения – оригинальная (обычная) | |||||||
Аудио усилитель | TDA7294 | 1 | Поиск в магазине Отрон | В блокнот | |||
С1 | Конденсатор | 0. 47 мкФ | 1 | Поиск в магазине Отрон | В блокнот | ||
С2, С5 | Электролитический конденсатор | 22 мкФ | 2 | Поиск в магазине Отрон | В блокнот | ||
С3, С4 | Электролитический конденсатор | 10 мкФ | 2 | Поиск в магазине Отрон | В блокнот | ||
С6, С8 | Электролитический конденсатор | 100 мкФ | 2 | Поиск в магазине Отрон | В блокнот | ||
С7, С9 | Конденсатор | 0.1 мкФ | 2 | Поиск в магазине Отрон | В блокнот | ||
R1, R3, R4 | Резистор | 22 кОм | 3 | Поиск в магазине Отрон | В блокнот | ||
R2 | Резистор | 680 Ом | 1 | Поиск в магазине Отрон | В блокнот | ||
R5 | Резистор | 10 кОм | 1 | Поиск в магазине Отрон | В блокнот | ||
VM, VSTBY | Выключатель | 2 | Поиск в магазине Отрон | В блокнот | |||
Источник аудиосигнала | 1 | Поиск в магазине Отрон | В блокнот | ||||
Динамик | 1 | Поиск в магазине Отрон | В блокнот | ||||
Схема включения – мостовая. | |||||||
Аудио усилитель | TDA7294 | 2 | Поиск в магазине Отрон | В блокнот | |||
Выпрямительный диод | 1N4148 | 1 | Поиск в магазине Отрон | В блокнот | |||
Конденсатор | 0.22 мкФ | 2 | Поиск в магазине Отрон | В блокнот | |||
Конденсатор | 0.56 мкФ | 2 | Поиск в магазине Отрон | В блокнот | |||
Электролитический конденсатор | 22 мкФ | 4 | Поиск в магазине Отрон | В блокнот | |||
Электролитический конденсатор | 2200 мкФ | 2 | Поиск в магазине Отрон | В блокнот | |||
Резистор | 680 Ом | 2 | Поиск в магазине Отрон | В блокнот | |||
Резистор | 10 кОм | 1 | Поиск в магазине Отрон | В блокнот | |||
Резистор | 20 кОм | 1 | Поиск в магазине Отрон | В блокнот | |||
Резистор | 22 кОм | 4 | Поиск в магазине Отрон | В блокнот | |||
Резистор | 30 кОм | 1 | Поиск в магазине Отрон | В блокнот | |||
Динамик | 1 | Поиск в магазине Отрон | В блокнот | ||||
Дополнение к схеме для раздельного управления. | |||||||
С3, С4 | Электролитический конденсатор | 10 мкФ | 2 | Поиск в магазине Отрон | В блокнот | ||
R4 | Резистор | 22 кОм | 1 | Поиск в магазине Отрон | В блокнот | ||
R5 | Резистор | 10 кОм | 1 | Поиск в магазине Отрон | В блокнот | ||
Дополнение к схеме для единого управления. | |||||||
Выпрямительный диод | 1N4148 | 1 | Поиск в магазине Отрон | В блокнот | |||
Электролитический конденсатор | 10 мкФ | 2 | Поиск в магазине Отрон | В блокнот | |||
Резистор | 10 кОм | 1 | Поиск в магазине Отрон | В блокнот | |||
Резистор | 20 кОм | 1 | Поиск в магазине Отрон | В блокнот | |||
Резистор | 30 кОм | 1 | Поиск в магазине Отрон | В блокнот | |||
Добавить все |
Скачать список элементов (PDF)
Теги:
- УНЧ
Даташит, характеристики и схема включения
Судя по характеристикам в даташит от ST Microelectronics, TDA7293 является одноканальным аудиоусилителем класса AB. Эта микросхема применяется в HI-Fi-оборудовании для усиления звука: домашних музыкальных центрах, в том числе с автономным питанием, телевизорах и др. Благодаря широкому диапазону напряжений и высоким выходным токам она способна обеспечить хорошую мощность (до 100 Вт) в нагрузке 4 или 8 Ом.
Данная микросхема обладает функциями: подавление шумов на выходе при включении/выключении (No switch on/off noise), ослабление выходного сигнала до 80 дБ (Mute), спящий режим (Stand-By), клип-детектор (Clip detector). Для усиления очень слабых сигналов возможно параллельное подключение нескольких устройств. Оснащена встроенной защитой от КЗ, перегрева и статического разряда.
К сожалению, особенно в последнее время, на российском рынке встречаются подделки рассматриваемого полупроводникового устройства. Поэтому у многих радиолюбителей сложилось негативное отношение к ней. Однако небольшая цена (от 200 до 400 р) и хорошее качество звучания, сделали её массовым и популярным решением даже в современной бытовой акустике. В продаже встречаются уже готовые усилительные модули, собранные на основе tda7293 по типовым схемам включения.
Цоколевка
TDA7293 производится в пластиковом корпусе MULTIWATT15, который имеет 15 контактов. Бывает в двух исполнениях: для вертикальной (MULTIWATT15V) или горизонтальной (MULTIWATT15Н) установки на плату. Подложка имеет физическое соединение с восьмой ножкой (минусом). Назначение каждого из выводов микросхемы приведено на рисунке ниже.
В связи с тем, что на подложке у TDA7293 находится «минус» — установка на радиатор допускается только через слюдяную прокладку с термопастой. Иначе ток короткого замыкания повредит микросхему.
Технические характеристики
Усилитель TDA7293 обеспечивают небольшие уровни шумов и искажений на выходе. Согласно техническому описания (datasheet) с её помощью можно добиться максимальной мощности звучания в 100Вт, при нагрузке (RL) в 8 Ом и предельном напряжении питания (VS) в ± 40 В. С такими параметрами получают чистыми 50-60 Вт и более, если параллельно подключаются несколько устройств. Суммарный коэффициент гармонических искажений (THD) не превышает 10 %. Это обусловлено наличием встроенных полевых транзисторов в предварительном и выходном каскадах усиления у данной микросхемы.
Максимальные значения
Приведём максимальные характеристики TDA7293:
- предельное питающее напряжение VS (при отсутствии сигнала) ± 60 В;
- импульсный ток на выходе I O = 10 А;
- рассеивания мощность (при Tcase = 70 ОС) Ptot = 50 Вт;
- диапазон рабочих температур от 0 до 70 ОС;
- температура: кристалла T j до +150 ОС; при хранении до +150 ОС.
Это максимальные значение параметров. Превышение любого из них может привести к повреждению устройства. При этом рассеиваемая мощность ограничивается температурой корпуса, поэтому чем больше будет радиатор, тем лучше.
Аналоги
Единственным, и наиболее близким аналогом рассматриваемой микросхемы является TDA7294. Из технических характеристик известно, что у TDA7293 выше напряжение питания и мощность рассеивания. Поэтому при замене нужно быть аккуратным и убедиться, что действующие значения не превысят максимальных для TDA7294. Например, напряжение питания не должно превышать 40 В. Кроме этого, в TDA7294 нет функций вольтдобавки и клипдетектора. Однако среди радиолюбителей распространено мнение, что TDA7294 более надёжна и не такая глючная.
Схемы включения
Достаточно большой диапазон питающих напряжений TDA7293 позволяет конструировать на ней усилители с мощностью от 20 до 100 Вт. Основные схемы включения рассмотрены в статье про TDA7294, на которую она очень похожа. Вместе с тем, многочисленные эксперименты с данным устройством позволяют создавать на нём и более совершенную акустику.
В видео рассмотрена tda7293 и схема универсального усилителя с инвертирующим и неинверитирующим подключением. Использование потенциометра, предусматривает возможность плавной регулировки силы тока с помощью напряжения. Данное решение значительно улучшает качество звучания системы в целом, особенно с применением широкополосных динамиков.
Параллельное включение
Как уже говорилось ранее, TDA7293 допускает параллельное включение двух микросхем (схема есть в даташит). Оно позволяет повысить ток в акустической нагрузке и добиться выходной мощности в 100-120 Вт. При таком подключении одно из устройств работает в режиме мастер (master), а другое – раб (slave). На slave будет работать только выходной каскад, который получает усиленный сигнал от master.
Параллельное подключение рекомендуется только для схем с повышенным питанием (до ± 40 В) с низкоомной нагрузкой 4 или 8 Ом. Подобным образом возможно соединить даже более двух микросхем, где одна будет выполнять роль master, а остальные slave. Но такое решение считается нецелесообразным, так как питающее напряжение необходимо будет увеличивать (нужен хороший блок питания), а прирост выходной мощности на выходе схемы будет незначительным.
Кроме того в таких схемах желательно предусмотреть поэтапное включение каждого из slave примерно через 1-2 сек, для смягчения возможных последствий после подачи напряжения на master. Дело в том, что в момент появления питания на выходах каждой из микросхем формируется бросок сигнала, который может повредить подключённые к ним slave-устройства, работающие в режиме slave. Задержку можно организовать с помощь дополнительных таймеров и управляющих реле.
При параллельном включении желательно, чтобы все микросхемы были от одного производителя, лучше из одной партии. Стоит учитывать, что с увеличением их числа в выходном результирующем каскаде неминуемо будут расти звуковые искажения. Указанные проблемы, необходимость применения мощного блока питания, а также усложнение схемы усиления, делают это решение непопулярным у радиолюбителей.
Инвертирующий усилитель на TDA 7293/7294 (с Т-образной ООС)
Зачем оно нужно – инвертирующее включение? Тут две причины: во-первых избавиться от электролитического конденсатора в цепи ООС, который на звук нехорошо влияет; во-вторых ослабить влияние неидеальности входного дифкаскада микросхемы (в нем сигнал ООС вычитается из входного сигнала и если дифкаскад плохой, то и ООС работает плохо). В интегральном исполнении дифференциальный усилитель на самом деле получается очень хорошим: из-за того, что транзисторы, расположенные на кристалле на расстоянии 0,05…0,2 мм друг от друга имеют практически одинаковые характеристики, и из-за того, что можно не бояться использовать хорошую схему на двадцати транзисторах. Тем не менее, даже с таким дифкаскадом инвертирующее включение позволит выжать максимум из качества звучания, избавившись от всех его погрешностей вообще.
Схема усилителя подходит для любой из микросхем, как TDA7294, так и TDA7293:
Очень важно! Резистор разделения земель R10 может ухудшить работу усилителя, если он неправильного сопротивления! Постоянка на выходе, неустойчивая работа, повышенный шум – признаки неправильного сопротивления. Наиболее частые проблемы – плохой контакт в пайке; неправильный резистор (1кОм вместо 1 Ом). Довольно часто случается, что на резисторе написано 1,5 Ома, а реальное сопротивление у него не такое. Или при пайке перегрели. Резистор можно заменить перемычкой, это ухудшит звучание совсем-совсем капельку (а если повезет, то никак не ухудшит, но следите за земляными петлями в усилителе в целом!), но если сопротивление велико, или плохая пайка – это будет намного хуже!!!
Усилитель получился просто класс (выжал из микросхемы все, что можно)! Все электролиты шунтированы пленочными конденсаторами, улучшающими их работу на высоких частотах. Входной фильтр R1С1 ослабляет влияние высокочастотных помех (которые есть всегда и везде!), а выходная цепочка R9С4 повышает устойчивость усилителя при работе на реальную нагрузку. Тип микросхемы (TDA7293 или TDA7294) выбирается установкой перемычки, идущей от конденсаторов С5С6.
Почему я рекомендую микросхему TDA7293? Потому, что она немного лучше, чем TDA7294. Кроме того, что у нее больше допустимое напряжение питания и выходная мощность, у нее более сложная схема, дающая бОльшие возможности. Например, специальный усилитель для вольтодобавки, который отключает эту цепь от выхода и снижает искажения. Еще очень полезная цепь – клип-детектор, дающий информацию о перегрузке, когда на слух ее еще не заметно.
Важный момент: входной конденсатор С2 задает нижнюю рабочую частоту усилителя по уровню -3 дБ. Выбирайте такую, как хотите. Хоть 5 Гц! Но помните, что такую частоту не воспроизведет ни одна колонка. И если на колонки подать очень низкие частоты даже небольшой величины (а они есть в реальном сигнале, особенно идущем с LP-плеера виниловых пластинок), то колонки будут перегружаться и создавать большие искажения. Так что С2 работает как сабсоник-фильтр, обрезая те частоты, которые уже не воспроизводятся. Обычно входной конденсатор настраивается на частоту в 2…3 раза ниже реальной нижней рабочей частоты колонок.
У вывода 5 сделана контактная площадка для подключения клип-детектора.
Несколько слов по поводу Т-образной ООС. Если бы я зарабатывал на всем этом деньги, я бы рассказал, какая это волшебная ООС, какой чудесный звук она дает, и как ее нужно правильно заклинать (в полночь у амбара с кузнецом!. . пардон, это, кажется, из другой оперы!). Т-образная ООС – это такая же обратная связь, как и всякая другая, в ней нет ничего необыкновенного. И ее применение здесь не самоцель – она позволяет в данном конкретном случае получить немного лучшие параметры усилителя, чем “обычная”. На самом деле, идея проста. В инвертирующем усилителе входное сопротивление определяется резистором R2 (цепь R1C1 я отбрасываю для простоты, да и влияет она очень мало). Если бы ООС была обыкновенной, то резисторов R4,R5 небыло бы, а правый по схеме вывод R3 был бы подключен к выходу усилителя. Тогда коэффициент усиления Ку=R3/R2. Поскольку Ку=25…30, то для его получения потребовалось бы либо уменьшать R2, а значит и входное сопротивления (т.е. заметно нагружать источник сигнала), либо сильно повышать R3. Но при большом значении R3 возникает много плохого: лезут помехи, начинает влиять влажность и запыленность воздуха (если плата не залита лаком), влияет емкость монтажа и близкорасположенных предметов. А делать усиление меньше, чем 20…25 раз нельзя – микросхема может возбуждаться, т. к. она скорректирована именно под такое усиление.
Для того, чтобы и нужное усиление получить, и сопротивление резистора не увеличивать и добавляются R4 и R5, которые образуют делитель и ослабляют сигнал ООС перед подачей его на R3. Теперь R3 должен обработать (ослабить) более слабый сигнал, а значит не должен быть таким большим. Вот и получается Т-обраная схема: резисторы R3,R4,R5 на вид образуют перевернутую букву Т. Недостаток этой схемы – несколько большее выходное постоянное напряжение смещения, потому что теперь глубина ООС по постоянному току не 100%, как в “обычной” ООС, а немного меньнше. Насколько это плохо? Примерно в двух десятках экземпляров усилителя оно было на уровне 60…160 мВ. Это значит, что на колонки придется по 1…6 милливатт мощности постоянного тока. Вам страшно? Мне – нет!
Итак, по сравнению с “обычным” инвертирующим включением мы получили “правильную” величину входного сопротивления и избавились от высокоомных резисторов. По сравнению с распространенной неинвертирующей схемой мы избавились от электролитического конденсатора в цепи сигнала и от неидеальности входного дифференциального усилителя.
Некоторое время спустя (примерно через год, после изготовления нескольких десятков таких усилителей), я придумал как чуть-чуть улучшить эту схему. На самом деле в этой схеме улучшать и нечего – все и так очень хорошо. Но всегда хочется сделать систему хоть чуть-чуть, но лучше. Это очень небольшая доработка и на слух изменения в звучании абсолютно незаметно. Но все же я предлагаю сделать это, потому что с такой доработкой микросхема будет чуть-чуть лучше работать. Что улучшится:
1. Улучшатся переходные процессы в микросхеме.
2. Увеличится устойчивость при работе на трудную нагрузку.
3. Микросхему станет труднее перегрузить по скорости нарастания. Теперь (совместно с цепочкой R1C1) никакой реальный сигнал не вызовет динамических искажений – мы от них застрахованы совершенно! (Но это не значит, что теперь можно будет напускать в усилитель кучу помех!)
Вся доработка сводится к установке небольшого керамического конденсатора на 47 пикофарад (допустимо от 33 до 68 пФ) параллельно резистору R3 в цепи ООС. На схеме это конденсатор Сх. О качестве конденсатора можно не бесспокоиться – такие конденсаторы обычно делают из хорошего диэлектрика и искажений они не вносят. Этот конденсатор увеличивает глубину ООС и линейность микросхемы на самых высоких частотах (выше 20 кГц). На слух абсолютно незаметно, но работать будет чуть-чуть лучше, что приятно осознавать. Вот как изменяются амплитуды гармоник и Кг при усилении синусоиды 15 кГц.
Без конденсатора:
С конденсатором:
И интермодуляционные искажения при подаче двух частот 18 кГц и 19 кГц. Это очень жесткий тест для усилителя, на Западе обычно пользуются более щадащим тестом, он дает “более красивые цифирки”, которые удобнее использовать для рекламы. Зато приведенный тест – это практически “испытание на выживание”, он позволяет увидеть все огрехи работы усилителя на самых высоких частотах (где усилителю работать труднее всего и он дает наибольшие искажения). Кстати, искажения довольно маленькие, такими интермодуляционными искажениями не всякий дорогой усилитель может похвастаться (я конечно не имею ввиду усилители за $100 000).
Без конденсатора:
С конденсатором:
Тут интермодуляция на частоте 1 кГц не изменилась (еще бы, конденсатор начинает работать на частотах выше 50 кГц), а вот на частотах 35…38 кГц уменьшилась более чем вдвое. Это означает, что в реальном мнногочастотном музыкальном сигнале высокочастотные продукты интермодуляций будут самую капельку меньше влиять на звук (имеется ввиду взаимодействие этих вот частот 35…38 кГц с сигналом). В результате получаем уменьшение перегрузки микросхемы высокими частотами.
Обратите внимание – и без конденсатора усилитель демонстрирует отличные параметры. Но всегда хочется самого-самого, вот я этот конденсатор и добавил.
Важное дополнение. В инвертирующей схеме нет смысла включать режим Mute, поскольку он замыкает на землю неинвертирующий вход, который здесь и так заземлен. Управление питанием производится режимом StdBy, см. Режимы Mute и StandBy в микросхеме TDA7294 (7293). И тут есть маленький мерзкий нюанс – включение этого режима сопровождается небольшими помехами на выходе микросхемы (почему-то когда включен Mute их нет). Поэтому емкость конденсатора С3, задающего длительность включения/выключения лучше не увеличивать (также как и сопротивления резисторов R6, R7) – тогда помехи будут непродолжительными и малозаметными.
Внешний вид усилителя: компоновка и разводка платы очень-преочень хорошая и правильная (практически идеальная).
Вход максимально отдален от выхода и с обеих сторон “прикрыт” земляными проводниками (т.е. практически экранирован). Вся силовая земля соединяется в одной точке (в которую подводится питание). А к ней через резистор разделения земли подключена сигнальная земля. Широкие и короткие дорожки имеют мизерное сопротивление и индуктивность (особенно это важно для проводников питания). Кроме того они хорошо держат тяжелые детали.
В плате есть несколько “лишних” отверстий, чтобы можно было устанавливать конденсаторы разных габаритов. При монтаже сначала устанавливаются перемычки, причем при установке микросхемы не замкните ее выводы с перемычкой!
Дополнительный конденсатор Сх припаивается на плату с обратной стороны, при этом он не должен касаться корпусом дорожки или пайки:
Звучание усилителя – просто замечательное! Это максимум, что можно из нее выжать, а микросхема-то – неплохая!
Печатная плата в формате lay
TDA 7293 datasheet
TDA 7294 datasheet
Автор работы: AudioKiller electroclub. info
2009
TDA7293 – Пайка разума
TDA7293 представляет собой монолитную интегральную схему в корпусе MultiWatt15, предназначенную для использования в качестве высокопроизводительного усилителя мощности звука. Это двухканальный усилитель, предназначенный для использования в Hi-Fi-приложениях, и он может обеспечить до 100 Вт непрерывной средней выходной мощности на канал при нагрузке 4 Ом или до 68 Вт на канал при нагрузке 8 Ом. нагрузка.
Содержание
- Распиновка микросхемы Tda7293
- Схема усилителя TDA7293
TDA7293 имеет защиту от перегрева и короткого замыкания, а также функции диагностики выходного импеданса и тока нагрузки. Он также имеет очень низкий уровень искажений и широкий диапазон напряжений (40–100 В) и токов. TDA7293 также включает в себя различные функции, такие как:
- Дифференциальный входной каскад
- Внутренняя защита от тепловой перегрузки
- Защита от короткого замыкания на выходе
- Функция приглушения
- Сервопривод постоянного тока
- Функция ожидания
- Диагностический выход
Для правильной настройки усилителя требуется несколько внешних компонентов, таких как входной конденсатор, конденсатор блокировки постоянного тока, резистор обратной связи и конденсатор связи для динамика.
TDA7293 Распиновка микросхемы
TDA7293 представляет собой многоваттный 15-контактный корпус с 15 контактами. Распиновка следующая:
- GND: Заземление
- VEE: Отрицательное напряжение питания
- IN-: Отрицательный вход канала 1
- IN+: Положительный вход канала 1
- VCC: Положительное напряжение питания
- OUT-: Отрицательный выход канала 1
- OUT+: Положительный выход канала 1
- GND: Заземление
- VEE: Отрицательное напряжение питания
- IN-: отрицательный вход канала 2
- IN+: Положительный вход канала 2
- VCC: Положительное напряжение питания
- OUT-: Отрицательный выход канала 2
- OUT+: Положительный выход канала 2
- ST-BY: контакт режима ожидания, активный низкий уровень
Вы должны обратиться к техническому описанию TDA7293 для правильного использования, такого как абсолютные максимальные номиналы, рекомендуемые условия эксплуатации, подробные электрические характеристики и примеры схем применения.
Схема усилителя TDA7293
Схема усилителя TDA7293. Для типичной схемы TDA7293 потребуется –
- Источник питания (Vcc и Gnd)
- Входные конденсаторы (Cin)
- Конденсатор блокировки постоянного тока (Cdc)
- Резистор обратной связи (Rf)
- Конденсатор связи (Cout)
- нагрузка на динамик
соединения будут следующими:
- Vcc подключается к контактам 5 и 12
- Gnd подключается к контактам 1, 8 и 14
- Входной сигнал подключается к контактам 3 и 10 (для каналов 1 и 2 соответственно)
- Cin подключается между входными контактами и Gnd
- Cdc подключается между входными контактами и Vcc
- Rf подключается между входными контактами и выходными контактами
- Cout подключается между выходными контактами и динамиком Динамик
- подключается к выходным контактам 6,7 и 13,14
- дополнительный резервный штифт соединен с выключателем для включения и выключения
Стоит отметить, что это базовая схема, а фактическая схема будет зависеть от конкретного приложения и желаемого результата, поэтому вам всегда следует обращаться к спецификации от производителя для получения рекомендуемых принципиальных схем и номиналов компонентов.
Схема усилителяУсилитель звукаTda7293Tda7293 принципиальная схема
HID2AMI HID MOUSE AND GAMEPAD to AMIGA ADAPTER (REV 2.0 board)Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public Licensehttps://github.com/EmberHeavyIndustries/HID2AMIHID2A…
HID2AMI v2.0 с поддержкой колесика мыши
5619 0 11
EmberHeavyIndustries
ЭмберХэвиИндастриз
ИТАЛИЯ
Превращает Raspberry PI в 3-канальный монитор напряжения и тока для других устройств. Этот HAT содержит три микросхемы INA219, подключенные к шине I2C и измеряющие ток по трем независимым каналам. Шу…
Шляпа монитора мощности RaspberryPI
2781 2 3
Рафал Витчак
Рафал Витчак
ПОЛЬША
TL; DR Модуль представляет собой простой способ подключения широко используемого (по крайней мере, в Германии) блока управления Buderus Logamatic 2107M для систем отопления на жидком топливе к вашей домашней сети и вашей домашней автоматизации. Этот…
KM271 Модуль связи Buderus Logamatic Wi-Fi
2625 0 4
Глейзер
Глазер
ГЕРМАНИЯ
Watchible — это дополнительная плата NB-IOT для Raspberry Pi Pico. Это низкая стоимость и низкая мощность. Он предназначен для мониторинга любого триггера с интерфейсом с низким импедансом. Как Pico, так и Quectel BCC-66…
Наблюдаемая плата NB-IOT
2171 6 0
Дума
Дума
СОЕДИНЕННЫЕ ШТАТЫ АМЕРИКИ
WheelOfJoy — это открытый аппаратный адаптер джойстика для 8 игроков для Commodore 16 и Plus/4. Первоначальная цель состояла в том, чтобы выяснить, как работает адаптер Solder для 3 джойстиков. Это было довольно легко, как только я понял…
WheelOfJoy — адаптер для джойстика Commodore 16/116/+4 на 8 игроков
1586 2 4
СуккоПера
СуккоПера
ИТАЛИЯ
https://martin-piper. itch.io/bomb-jack-display-hardwareМодульное аудио- и видеооборудование для ретро-машин, таких как Commodore 64. Разработано для использования интегральных схем TTL серии 74, доступных еще в 1…
MegaWang 2000 Turbo Edition – Аудио V9.2
2188 2 2
Пайпер
Пайпер
СИНГАПУР
Картриджная плата для 8-разрядных компьютеров ATARI 65XE/130XE/800XE/800XL на базе универсальной микросхемы флэш-памяти SST39SF040 CMOS. В проекте не используются микросхемы программируемой логики, такие как GAL-чипы.
Картридж SXEGS для ATARI 65XE/130XE/800XE
3184 1 5
продюсер
кодер
РОССИЙСКАЯ ФЕДЕРАЦИЯ,
LittleSixteen — это римейк домашнего компьютера Commodore 16 с открытым оборудованием, отличающийся множеством улучшений по сравнению с исходным дизайном. В V3 мы начали вносить улучшения в плату: перешли на внешний …
LittleSixteen V3 — улучшенная материнская плата Commodore 16
3163 6 5
СуккоПера
СуккоПера
ИТАЛИЯ
Привет, ребята, в чем дело? Итак, это PALPi, портативная игровая консоль в стиле ретро на базе Raspberry Pi Zero W, которая может запускать практически все ретро-игры, от SNES до PS1. Мозгом этого проекта является RECAL…
Портативная ретро игровая консоль PALPi V5
4472 1 4
Арнов шарма
Арнов шарма
ИНДИЯ
В течение 3 лет я пробовал несколько ножных механизмов, сначала я решил сделать простую конструкцию с большеберцовым двигателем, размещенным на бедренном суставе. У этой конструкции было несколько проблем, так как она была не очень…
Создание динамически эффективной роботизированной ноги.
3078 1 7
Мигель Асд
Мигель Асд
ИСПАНИЯ
ESP32-S в форм-факторе Arduino ESP32-S, по крайней мере, на мой взгляд, является одним из самых универсальных микроконтроллеров, доступных производителям на данный момент. Он отвечает почти всем моим требованиям по функциям, требуемым …
Плата для разработки ESP32-S в форм-факторе «Arduino Uno»
3207 4 10
СоздательIoT2020
MakerIoT2020
ТАИЛАНД
Аналоговые усилители звука достаточно мощны, чтобы издавать высокий уровень шума со стабильной добротностью.