Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Индикатор ВЧ поля своими руками

Добавил: STR2013,Дата: 01 мая 2018

В этой статье рассмотрены схемы простых индикаторов ВЧ поля. Простейший индикатор ВЧ излучения можно собрать всего из нескольких деталей и ему не нужен источник питания. Вторая схема собрана на нескольких транзисторах. 

Данные схемы можно использовать для контроля ВЧ поля, например передатчика, сотового телефона, при ремонте СВЧ печи и т.д.

Принципиальная схема простейшего индикатора поля


На рисунке, выше показана схема простого индикатора напряженно­сти поля.

Данный индикатор высокочастотного поля можно использовать как индикатор на­пряженности поля при согласовании выхода передатчика с сопротивлением из­лучения антенны, для обнаружения и измерения излучения передатчика, а также измерения частоты его колебаний, проградуировав ручку переменного конденсатора.

Индикатор представляет собой детекторный приемник, нагрузкой ко­торого служит микроамперметр. Ток полного отклонения прибора 100 мкА.

Основное достоинство этой схемы индикатора — это отсутствие питания. Стрелка индикаторной головки отклоняется от наводящего в антенне ВЧ поля, поэтому излучение должно быть достаточной величины.

Прибор собирают на изоляционной плате. Антенна — тонкий металлический штырь длиной 20 — 30 см. Для диапазона 25 — 31 МГц контурную катушку L1 заматывают на каркасе диаметром 12 мм. Она содержит 12 — 14 витков прово­да ПЭВ-1, Конденсатор С1 — подстроечный с воздушным диэлектриком. Ось ротора выводят на переднюю панель и снабжают лимбом с нанесенной шкалой, проградуированной в Мегагерцах.

Широкополосный индикатор ВЧ поля на транзисторах

Если его расположить не далеко от сотового телефона (до 1м), то в момент звонков (при включении передатчика телефона) будет загораться светодиод.

Если на выходе поставить реле — то данную схему можно использовать, например для удалённого полива цветов, включения света или включения какого нибудь другого потребителя.

Электрические характеристики индикатора

1. напряжение питания: от 3 до 12 В;
2. расстояние срабатывания: около 1 м;
3. печатная плата: 2,2 см х 2,8 см;
4. частоты срабатывания — мобильный телефон сигнал GSM.

Описание схемы

Сигнал с антенны усиливается транзисторным усилителем на трех S8050. Последний управляет светодиодом. Если сигнал не обнаружен (никаких звонков нет или нет GSM телефона рядом) — светодиод не светит.

Индуктивность (катушка). Проволока ф 0,25 — 0,5 мм эмалированная (ПЭЛ, ПЭВ) около 5-10 витков.

Если у Вас нет необходимых деталей, то данный набор можно купить: magazinchik-mastera.ru




П О П У Л Я Р Н О Е:

  • Доработка цифрового мультиметра М-830 (М-838)
  • Недорогой и простой цифровой мультиметр из серии М-83Х благодаря его широким функциональным возможнос­тям стал одним из  популярных измеритель­ных приборов у радиолюбителей.

    И при желании его можно ещё доработать. Для этого нужно доба­вить несложное электронное устройство на одной простой и недорогой микросхеме. Этим самым мы еще больше расширим его возможности: он теперь сможет измерять ёмкости конденсаторов, добавится звуковая сигнализация при прозвонке цепей (если такая отсутствует в этой модели), а также добавить  таймер для выключения питания мультиметра, который позволит продлить срок службы батарейке.

    Подробнее…

  • Простое автоматическое зарядное устройство
  • Кому некогда «заморачиваться» со всеми нюансами зарядки автомобильного аккумулятора, следить за током зарядки, вовремя отключить, чтоб не перезарядить и т.д., можно порекомендовать простую схему зарядки автомобильного АКБ с автоматическим отключением при полной зарядке аккумулятора. В этой схеме используется один не мощный транзистор для определения напряжения на аккумуляторе.

    Подробнее…

  • Всё про автоматическую коробку передач
  • Не так давно на современных легковых автомобилях высокого класса АКПП (автоматическая коробка переключения передач) с гидротрансформатором и гидроприводными фрикционами стала дополнятся двумя новыми функциями: функция Tiptronic (функция мгновенного переключения от легкого прикосновения к рычагу АКПП) и функция DSP (функцией адаптивного программного управления процессами переключения).

    Эти функции реализуются с применением средств электронного автоматического управления и придают АКПП совершенно новое свойство — способность адаптироваться к условиям движения и манере водителя управлять автомобилем.

    Подробнее…


– н а в и г а т о р –


Популярность: 2 870 просм.


ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ


www.mastervintik.ru

Индикаторы поля | Кое-что из радиотехники

  Индикатор высокочастотного радиоизлучения (индикатор поля) является нужным и полезным прибором, с помощью которого удобно контролировать состояние электронного изделия, а также обнаруживать источники радиоизлучения в помещениях ( например жучки, радиомикрофоны и т.д. ) и в  других местах. Из доступных для самостоятельного изготовления в этом случае будет пассивный индикатор электромагнитного высокочастотного поля. При минимуме деталей и отсутствии активных компонентов он показывает действительно уровень поля, а не возможные неполадки своей электронной схемы.

  Главным элементом для изготовления индикатора высокочастотного излучения является

сверхвысокочастотный детекторный диод. В качестве такого диода могут быть применены старые (скорее всего точечные) СВЧ диоды типа Д405,  Д602 или подобные, СВЧ детекторные диоды Шотки КА202 – КА207, импортные детекторные СВЧ диоды. В крайнем случае, для пробы можно взять германиевый диод вроде Д311, но его рабочая частота не превысит 100 МГц.

  Главным отличием детекторного диода является то, что прямая ветвь его вольтамперной характеристики начинает подниматься сразу от 0 В. Ни в коем случае не следует измерять СВЧ диоды тестером. В случае отсутствия характериографа можно снять характеристику вручную с использованием вольтамперметра, подавая на вход прямое напряжение с шагом 0,05 В и ограничивая постоянный ток через него величиной не более 0,5 мА.

  Когда диод найден, можно приступить к изготовлению индикатора (Рис.1). Собственно, самим индикатором выступает стрелочный микроамперметр РА1 с пределом измерения тока 30 – 50 мкА. Кремниевые диоды

VD1, VD2 защищают детектор и индикатор от перегрузки. Антенной WA1 могут служить “усы” из медного провода диаметром 1-2 мм длинной 200-300 мм или две телескопические антенны. Для большей чувствительности индикатора длинна антенны должна быть близка к полуволне измеряемого излучения.

  С помощью пассивного индикатора поля удобно исследовать поведение передатчиков, оценивать диаграммы направленности антенн, но для обследования помещений пассивный индикатор неудобен. Он имеет невысокую чувствительность, размахивая таким индикатором затруднительно увидеть изменение положения стрелки прибора, да и сам высокочувствительный стрелочный микроамперметр очень не любит сотрясений и ударов.

  Для удобства применения приходится окружить СВЧ детектор электронной схемой (Рис.2

). Схема осуществляет световую и звуковую индикацию уровня напряжённости поля. Изменение напряжённости поля можно оценивать по частоте следования звуковых сигналов длительностью 0,2 мс и частотой около 1 кГц или вспышек светодиода VD4.

  Количество сигналов меняется от одного за десятки секунд до непрерывного тона при большом уровне сигнала. Звуковая индикация позволяющая оценивать текущий уровень ВЧ излучения и регулятор чувствительности позволяют быстро и эффективно локализовать источник радиоизлучения.

  Первый ОУ DA1.1 является неинвертирующим усилителем постоянного тока, величина усиления которого регулируется резистором R3, совмещённым с выключателем. Следующие два каскада на DA1.2, DA1.3 построены по однотипной схеме управляемого мультивибратора на

ОУ. Повторитель на DA1.4 служит формирователем уровня “земли”. На DA1.3 собран мультивибратор, управляемый напряжением высокого уровня, его частота около 1000 Гц. Звуковой мультивибратор запускается от генератора управляемого напряжением, выполненного на DA1.2.

  Положительные импульсы генератора не зависят от уровня входного сигнала, их длительность около 0,2 с задаёт цепочка R8, C3. Длительность пауз между импульсами зависит от скорости разряда С3 через транзистор VT1 и резистор R6. А проводимость транзистора VT1 в свою очередь зависит от входного ВЧ напряжения выпрямленного детектором VD1 и увеличенного усилителем постоянного тока на DA1.1. В качестве

DA1 используется счетверённый операционный усилитель с диапазоном входных сигналов, включающим нулевое входное напряжение.

 

Если чувствительность индикатора покажется недостаточной, то перед VD1 можно включить широкополосный высокочастотный усилитель выполненный по схеме на Рис.3 или Рис. 4. Чтобы широкополосный УВЧ не возбуждался и имел равномерную частотную характеристику, он должен быть выполнен с соблюдением требований конструирования высокочастотных устройств. Транзисторы для УВЧ желательно брать с граничной частотой не менее 4 ГГ.

  Прибор снабжён телескопической антенной WA1 и питается от девятивольтовой батареи. Переменным резистором R3, совмещённым с выключателем питания SA1, регулируют чувствительность прибора. Его выставляют таким образом, чтобы увеличение уровня напряжённости поля вызывало наиболее резкое изменение частоты следования импульсов индикации.

В. Г. Белолапотков, А. П. Семьян  “ШПИОНСКИЕ ШТУЧКИ И НЕ ТОЛЬКО, 500 схем для радиолюбителей”,  Наука и техника, Санкт-Петербург, 2007г, стр. 148-151

 

 

Поделиться ссылкой:

Понравилось это:

Нравится Загрузка…

Похожее

Автор: Андрей Маркелов

Родился и вырос в Тульской области. После окончания средней школы поступил и закончил “Донской Техникум Механизации учёта” по специальности “техник-электромеханик”, потом учился в МИРЭА. С детства увлекаюсь радиотехникой. В данный момент работаю в одном ООО, выпускающей импульсные источники питания различного применения. Посмотреть все записи автора Андрей Маркелов

admarkelov.ru

Простые индикаторы СВЧ поля своими руками.

 Я был сильно удивлён, когда мой простенький самодельный детектор-индикатор, зашкалил рядом  с работающей СВЧ печкой в нашей рабочей столовой. Она же вся экранирована, может неисправность какая? Решил проверить свою, новую печь, ей практически не пользовались. Индикатор тоже отклонился на всю шкалу!

  Такой простенький индикатор я собираю за короткое время каждый раз, когда выезжаю на полевые испытания приемно-передающей аппаратуры. Очень помогает в работе, не надо таскать за собой массу приборов, простой самоделкой работоспособность передатчика всегда легко проверить, (где антенный разъём не до конца довернули, или питание забыли включить). Заказчикам такой стиль ретро-индикатора очень нравится, приходится оставлять в подарок.

 Достоинство – это простота конструкции и отсутствие питания. Вечный прибор.

 Делается легко, намного проще, чем точно такой же «Детектор из сетевого удлинителя и тазика для варенья» средневолнового диапазона. Вместо сетевого удлинителя (катушки индуктивности) – кусок медного провода, по аналогии можно несколько проводов параллельно, хуже не будет.    Сам провод в виде окружности длиной 17 см, толщиной  не менее 0,5 мм (для большей гибкости использую три таких провода) является как колебательным контуром внизу, так и рамочной антенной верхней части диапазона, который составляет от 900 до 2450 МГц (выше не проверял работоспособность). Можно применить более сложную направленную антенну и согласование с входом, но такое отступление не будет соответствовать названию темы.  Переменный, построечный  или просто конденсатор (он же тазик) не нужен, на СВЧ – два соединения рядом, уже конденсатор.

 Германиевый диод искать не надо, его заменит PIN диод HSMP: 3880, 3802, 3810, 3812 и т.д., или HSHS 2812, (я его использовал). Хотите продвинуться выше частоты СВЧ печки (2450 МГц), выбирайте диоды с меньшей ёмкостью (0,2 пФ), возможно подойдут диоды HSMP-3860 – 3864. При монтаже не перегрейте. Паять надо точечно-быстро, за 1 сек.

Вместо высокоомных наушников – стрелочный индикатор.  Магнитоэлектрическая система имеет преимущество – инерционность. Помогает плавно двигаться стрелке конденсатор фильтра (0,1 мкФ). Чем выше сопротивление индикатора, тем чувствительнее измеритель поля (сопротивления моих индикаторов составляет от 0,5 до 1,75 кОм). Заложенная в отклоняющейся или подёргивающейся стрелке информация действует на присутствующих магически.

 Такой индикатор поля, установленный рядом с головой разговаривающей по мобильному телефону, сначала вызовет на лице изумление, возможно, вернёт человека к действительности, спасёт от возможных заболеваний.

 Если есть ещё силы и здоровье обязательно ткните мышкой в одну из этих статей.

Вместо стрелочного прибора можно использовать тестер, который будет измерять постоянное напряжение на самом чувствительном пределе.
Схема индикатора СВЧ со светодиодом.
Индикатор СВЧ со светодиодом.

  Попробовал в качестве индикатора светодиод. Такую конструкцию можно оформить в виде брелка, используя плоскую 3-х вольтовою батарейку, или вставить в пустой корпус мобильного телефона.  Дежурный ток устройства 0,25 мА, рабочий ток напрямую зависит от яркости светодиода и составит около 5 мА. Напряжение, выпрямленное диодом, усиливается операционным усилителем,  накапливается на конденсаторе и открывает ключевое устройство на транзисторе, который включает светодиод.

 Если стрелочный индикатор без батарейки отклонялся в радиусе 0,5 – 1 метра, то цветомузыка на диоде отодвинулась до 5 метров, как от сотового телефона, так и от СВЧ печки. Насчёт цветомузыки не ошибся, сами убедитесь, что максимальная мощность будет только при разговоре по мобильному телефону и при постороннем громком шуме.
                                       Регулировка.
 Я собирал несколько таких индикаторов, и заработали они сразу. Но всё же нюансы бывают. Во включённом состоянии на всех выводах микросхемы, кроме пятого, напряжение должно быть равно 0. Если это условие не выполнено, соедините первый вывод микросхемы через резистор 39 кОм с минусом (землёй). Встречается, что конфигурация СВЧ диодов в сборке не совпадает с чертежом, поэтому надо придерживаться электрической схемы, а перед установкой я бы советовал прозвонить диоды на их соответствие.  Для удобства пользования можно ухудшить чувствительность, уменьшив резистор 1мОм, или уменьшить длину витка провода. С приведёнными номиналами поля СВЧ базовых телефонных станций чувствует в радиусе 50 – 100 м.
 С таким индикатором можно составить экологическую карту своего района и выделить места, где нельзя зависать с колясками или долго засиживаться с детьми.
Та же фотография, что слева, но сделана два месяца
спустя, в  первой декада июля. Под воздействием
СВЧ излучения гибнут деревья.
Растения тоже являются индикатором СВЧ поля.
Находиться под антеннами базовых станций
безопаснее, чем в радиусе 10 – 100 метров от них.
Благодаря этому прибору я пришёл к выводу,какие мобильные телефоны лучше, то есть имеют меньшее излучение. Поскольку это не реклама, то скажу сугубо конфиденциально, шёпотом. Лучшие телефоны – это современные, с выходом в Интернет, чем дороже, тем лучше.

                            Аналоговый индикатор уровня.

 Я решил попробовать чуть усложнить индикатор СВЧ, для чего добавил в него аналоговый измеритель уровня.  Для удобства использовал  ту же элементную базу. На схеме три операционных  усилителя постоянного тока с разным коэффициентом усиления. В макете я остановился на 3-х каскадах, хотя запланировать можно и 4-е, используя микросхему LMV824 (4-е  ОУ в одном корпусе). Применив питание от 3, (3,7 телефонный аккумулятор) и 4,5 вольта пришёл к выводу, что можно обойтись без ключевого каскада на транзисторе. Таким образом, получилась одна микросхема, свч диод и 4-е светодиода. Учитывая условия сильных электромагнитных полей, в которых будет работать индикатор, использовал по всем входам, по цепям обратной связи и по питанию ОУ блокировочные  и фильтрующие конденсаторы.
                           Регулировка.
Во включённом состоянии на всех выводах микросхемы, кроме пятого, напряжение должно быть равно 0. Если это условие не выполнено, соедините первый вывод микросхемы через резистор 39 кОм с минусом (землёй). Встречается, что конфигурация СВЧ диодов в сборке не совпадает с чертежом, поэтому надо придерживаться электрической схемы, а перед установкой я бы советовал прозвонить диоды на их соответствие.                                        Данный макет уже прошёл испытания.
Макетная плата.
Макет индикатора поля.  

 Интервал от 3-х горящих светодиодов до полностью потушенных  составляет  около 20 дБ.

Питание от 3-х до 4,5 вольт.  Дежурный ток от 0,65 до 0,75 мА. Рабочий ток при загорании 1-го светодиода составляет от 3 до 5 мА.

Этот индикатор СВЧ поля на микросхеме  с 4-я ОУ собрал Николай.
                                    Вот его схема.

Электрическая схема индикатора СВЧ. Пока использованы 3-и ОУ на 3-и светодиода.
Питание от аккумулятора от 3,3 до 4,2 V.
Эскиз монтажной платы.
Размеры и маркировка выводов микросхемы LMV824.

Монтаж индикатора СВЧ
на микросхеме LMV824.
Обратная сторона.
Плата питается от аккумулятора.

Аналогичная по параметрам микросхема MC33174D, включающая в себя четыре операционных усилителя, выполненная в дип-корпусе имеет больший размер, а поэтому более удобна для радиолюбительского монтажа. Электрическая конфигурация выводов полностью совпадает с микросхемой LМV824. На микросхеме MC33174D я сделал макет СВЧ индикатора на четыре светодиода. Между выводами 6 и 7 микросхемы добавлен резистор 9,1 кОм и параллельно ему конденсатор 0,1 мкФ. Седьмой вывод  микросхемы, через резистор 680 Ом соединяется с 4-м светодиодом. Типоразмер деталей 06 03. Питание макета от литиевого элемента 3,3 – 4,2 вольта. 

Индикатор на микросхеме МС33174.
Оборотная сторона.

 Оригинальную конструкцию экономичного индикатора поля имеет сувенир сделанный в Китае. В этой недорогой игрушке есть: радиоприёмник, часы с датой, градусник и, наконец, индикатор поля. Бескорпусная, залитая микросхема потребляет ничтожно мало энергии, поскольку работает в режиме таймирования, на включение мобильного телефона реагирует с расстояния 1 метра, имитируя  несколько секунд светодиодной индикацией аварийную сигнализацию передними фарами. Такие схемы выполняются на программируемых микропроцессорах с минимальным количеством деталей.

                                               Дополнение к комментариям.

 Селективные измерители поля для любительского диапазона 430 – 440 МГц
                                           и для диапазона PMR (446 МГц).

 Индикаторы СВЧ полей для любительских диапазонов от 430 до 446 МГц можно сделать селективными, добавив дополнительный контур L к Ск, где Lк представляет собой виток провода диаметром 0,5 мм и длиной 3 см, а Ск – подстроечный конденсатор с номиналом 2 – 6 пФ. Сам виток провода, как вариант, можно изготовить в виде 3-х витковой катушки, с шагом намотанной на оправке диаметром 2 мм тем же проводом. К контуру необходимо подсоединить антенну в виде отрезка провода длиной 17 см через конденсатор связи 3.3 пФ.

Диапазон 430 – 446 МГц. Вместо витка катушка с шаговой намоткой.
Схема  на  диапазоны
430 – 446 МГц. 
Монтаж на частотный диапазон
430 – 446 МГц.

 Кстати, если серьёзно заниматься СВЧ измерением отдельных частот, то можно вместо контура использовать селективные фильтры на ПАВ-ах. В столичных радиомагазинах их ассортимент в настоящее время более чем достаточен. В схему необходимо будет добавить ВЧ трансформатор после фильтра.

                         Но это уже другая тема, не отвечающая названию поста.

dedclub.blogspot.com

Индикатор напряженности поля

Индикатор напряженности поля представлен на http://cxem.net/indicator/indicatorl2.php. Для налаживания антенно-фидерных трактов любительских радиостанций необходим индикатор напряженности высокочастотного электрического поля. Этот прибор отличается от обычно используемых, высокой чувствительностью и широкой полосой рабочих частот.

Традиционно индикатор напряженности поля представляет собой антенну (короткий штырь), амплитудный детектор (выпрямитель РЧ напряжений) и стрелочный измеритель (микроамперметр). Для повышения чувствительности индикатор делают активным, снабжая его усилителем РЧ или постоянного тока. Схема индикатора представлена на рисунке ниже:

В индикаторе отсутствует обычный амплитудным детектор, поскольку его функции выполняет микросхема К174ПС4 — перемножитель сигналов, широко используемый радиолюбителями в смесителях радиоприемников, конвертерах и т. д.

В выходном сигнале микросхемы присутствует:

  • постоянная составляющая;
  • переменная составляющая удвоенной частоты;
  • постоянная составляющая пропорциональна квадрату входного напряжения.

Поэтому показания микроамперметра РА1, подключенного к выходу микросхемы, будут пропорциональны мощности сигнала, излучаемой антенной. Переменную составляющую легко подавить, установив конденсатор С7 достаточной емкости. Диоды VD1, VD2 служат для защиты входных цепей микросхемы от мощных сигналов. Питается устройство от батареи напряжением 9 В (Крона) и потребляет ток примерно 1,5 мА. Работоспособность сохраняется при уменьшении напряжения питания до 6 В. Максимальный ток через микроамперметр РА1 ограничен резисторами R1, R2.

В устройстве можно применить практически любой малогабаритный стрелочный индикатор с током полного отклонения стрелки от 50 до 150 мкА. На частоте 28 МГц чувствительность устройства (минимальный регистрируемый сигнал) составлял 2—3 мВ, а зависимость показаний от входного напряжения имела квадратичный характер. Благодаря этому прибор более чувствителен к изменениям напряженности поля, что позволяет точнее настраивать антенно-фидерные тракты. Так, например, при изменении напряжения на входе устройства в 1,4 раза (3 дБ) показания индикатора увеличиваются вдвое.

Вместо указанной на схеме К174ПС4 можно применить микросхемы К174ПС1, К174ПС2. Кроме диодов КД510А, подойдут КД522Б, КД503Б. Конденсаторы — KЛC, КД, К10-17, КМ, резисторы — MЛT, С2-33, Выключатель — любой малогабаритный, лучше движковый на два положения.

Авторский материал размещен: http://cxem.net/indicator/indicatorl2.php

www.radiolub.ru

ИНДИКАТОР ВЧ ПОЛЯ

   Схема простого индикатора поля, основой которого является дешёвая распространённая микросхема ОУ LM358, имеет 2 уровня индикации на светодиодах. Для увеличения – клик на картинку.


   На чувствительность схемы влияют, прежде всего, антенна и диоды VD1, VD2. Подойдут такие диоды: «ГИ401А, Б; 1И401А, Б; АИ402, 3И402; 1И403, ГИ403». Так как у меня не было ни одного из перечисленных диодов, пришлось подбирать другие по наивысшей чувствительности. Подошли детекторные германиевые диоды «АА143». Напряжение работы ВЧ индикатора 6-12В. Ток потребления схемы 0,4-1 мА в режиме ожидания. Ток в режиме детекции зависит от потребляемого тока светодиодов и номиналов резисторов R4,R5. Светодиоды пришлось немного подшлифовать для рассеивания света.  


   Пороги индикации выставляются переменными резисторами R2,R3. Если нет резисторов R2,R3 номиналами как в схеме, то их можно подобрать таким способом: Если R2,R3~1к, то R1~30к; R2,R3~5к, то R1~150к; R2,R3~10к, то R1~300к и так далее соблюдая соотношение.


   Настраивать R2,R3 нужно после полной пайки всех компонентов (включая антенну), отчистки платы от флюса (в моем случае канифоль) и прочих загрязнений, так как ОУ очень чувствителен к таким факторам. Индикатор ВЧ поля реагирует на излучение мобильных телефонов (GSM, GPRS, EDGE, 3G, WiFi), радиопередатчиков, импульсных БП, экрана телевизора, ЛДС. Если применить терминологию металлоискателей, то устройство похоже на «пинпоинтер», только для электромагнитного излучения. Для наглядности работы устройства, фото с включенным радиопередатчиком:

Есть излучение


Мощное излучение


   От конденсатора С5 (от кружка) идет перемычка на минус питания схемы. Печатная плата под SMD детали формата Lay находится в архиве. 


   В общем получилось хорошее устройство для индикации практически любого высокочастотного поля с малыми размерами и токопотреблением. Схему собрал и испытал: BFG5000  

   Форум по ВЧ детекторам

   Обсудить статью ИНДИКАТОР ВЧ ПОЛЯ


radioskot.ru

Собираем индикатор напряженности поля | Записки программиста

Антенный моделировщик позволяет получить ответы на многие вопросы. Он способен предсказывать диаграмму направленности и поляризацию будущей антенны, распределение токов в ней, сравнивать несколько антенн (например, какая из них имеет больше усиление), и так далее. Но можем ли мы проделать нечто подобное для настоящих антенн, изготовленных нами в физическом мире? Оказывается, что можем, воспользовавшись индикатором напряженности поля. Это довольно незамысловатое устройство, и его легко сделать самостоятельно.

Схема была подсмотренна в видео Build a Simple Passive Field Strength Meter, снятом Kevin Loughin, KB9RLW:

Диоды D1 и D2 представляют собой выпрямитель, конденсатор C1 играет роль сглаживающего фильтра. На выходе получаем постоянное напряжение, которое зависит от того, насколько сильный сигнал принимает антенна. Чем больше это напряжение, тем больший ток пойдет через микроамперметр, и тем сильнее отклонится его стрелка. Потенциометр R1 работает как делитель напряжения и позволяет регулировать чувствительность индикатора. Устройство полностью пассивное и не требует источника питания.

В качестве D1 и D2 лучше использовать германиевые диоды. Поскольку они обладают напряжением смещения (voltage drop) около 0.3 В, при их использовании прибор будет более чувствительным. Для сравнения, напряжение смещения обычных кремниевых диодов составляет 0.7 В.

Чем меньше номинал микроамперметра, тем лучше. Мной была использована измерительная головка на 30 мкА. Микроамперметр на 50 или 100 мкА тоже подойдет, просто с ним прибор будет чуть менее чувствительным.

Полный список использованных мной компонентов, их стоимость и где они были приобретены:

Важно! Некоторые продавцы на AliExpress и eBay продают под видом германиевых диодов обычные кремниевые диоды. Отличить оригинал от подделки не сложно, измерив напряжение смещения при помощи мультиметра. При покупке по приведенной выше ссылке мне пришли подлинные диоды. Если сомневаетесь, покупайте диоды в проверенных магазинах (но там они обойдутся вам сильно дороже), или используйте отечественные аналоги, например, Д9Б, Д310 или Д311А.

Окончательный вид индикатора:

Внутри компоненты были соединены таким образом:

Устройство было проверено с куском провода длиной около одного метра в качестве антенны. Все работает как на КВ, так и на УКВ. Чем дальше прибор находится от антенны, тем слабее отклоняется стрелка. При вращении ручки потенциометра чувствительность прибора изменяется. При передаче трансивером несущей в интервале частот максимальное отклонение стрелки приходится на минимум КСВ. Отклонение стрелки изменяется в соответствии с изменением поляризации принимающей антенны. Направленная УКВ-антенна имеет существенно большее усиление, чем ненаправленная, а путем ее вращения можно оценить вид диаграммы направленности. В дельте можно найти места, на которые приходятся максимумы тока. А еще с помощью индикатора можно определить наличие синфазного тока в коаксиальном кабеле, а значит и эффективность используемого балуна.

Общая стоимость устройства составила 14.46$. Цены на готовые измерители напряженности поля начинаются где-то от 23$. Таким образом, проект вышел экономически выгодным.

Метки: Беспроводная связь, Любительское радио, Электроника.

eax.me

12.2. КАК НАСТРОИТЬ АНТЕННУ | Техническая библиотека lib.qrz.ru

12.2. КАК НАСТРОИТЬ АНТЕННУ

Среди антенн, в том числе и заводского изготовления, практически нет не требующих уточняющей настройки “по месту”. Настоящий раздел посвящен радиолюбительским приборам, с помощью которых можно настроить антенну на диапазон рабочих частот и согласовать ее с приемо-передающей аппаратурой.

Виноградов Ю. КСВ-метр с согласующим устройством. Радио, 1996, 11, с. XIV-XV.

На рис. 12.39 приведена принципиальная схема прибора, включающего в себя КСВ-метр, с помощью которого можно настроить Си-Би антенну, и согласующее устройство, позволяющее привести сопротивление настроенной антенны к Ra = 50 Ом.

Элементы КСВ-метра: Т1 – трансформатор антенного тока, намотанный на ферритовом кольце М50ВЧ2-24 12х5х4 мм. Его обмотка I – продетый в кольцо


проводник с антенным током, обмотка II – 20 витков провода в пластиковой изоляции, ее наматывают равномерно по всему кольцу. Конденсаторы С1 и С2 – типа КПК-МН, SA1 – любой тумблер, РА1 – микроамперметр на 100 мкА, например, М4248.

Элементы согласующего устройства: катушка L1 – 12 витков ПЭВ-2 0,8, внутренний диаметр – 6, длина – 18 мм. Конденсатор С7 – типа КПК-МН, С8 -любой керамический или слюдяной, рабочее напряжение не менее 50 В (для передатчиков мощностью не более 10 вт). Переключатель SA2 – ПГ2-5-12П1НВ.

Устройство монтируют, минимизируя паразитные индуктивности и емкости ВЧ проводников.

Для настройки КСВ-метра его выход отключают от согласующего контура (в т. А) и соединяют с 50-омным резистором (два параллельно включенных резистора МЛТ-2 100 Ом), а ко входу подключают Си-Би радиостанцию, работающую на передачу. В режиме измерения прямой волны – в указанном на рис. 12.39 положении SA1 – прибор должен показать 70…100 мкА. (Это для передатчика мощностью 4 Вт. Если он мощнее , то “100” на шкале РА1 выставляют иначе: подбором резистора, шунтирующего РА1 при закороченном резисторе R5.)

Переключив SA1 в другое положение (контроль отраженной волны), регулировкой С2 добиваются нулевых показаний РА1.

Затем вход и выход КСВ-метра меняют местами (КСВ-метр симметричен) и эту процедуру повторяют, устанавливая в “нулевое” положение С1.

На этом настройку КСВ-метра заканчивают, его выход подключают к седьмому витку катушки L1.

КСВ антенного тракта определяют по формуле: КСВ=(А1+А2)/(А1-А2), где А1 – показания РА1 в режиме измерения прямой волны, а А2 – обратной. Хотя вернее было бы говорить здесь не о КСВ, как таковом, а о величине и характере антенного импеданса, приведенного к антенному разъему станции, о его отличии от активного Ra = 50 Ом.

Антенный тракт будет настроен, если изменениями длины вибратора, противовесов, иногда – длины фидера, индуктивности удлиняющей катушки (если она есть) и др. будет получен минимально возможный КСВ.

Некоторая неточность настройки антенны может быть компенсирована расстройкой контура L1C7C8. Это можно сделать конденсатором С7 или изменением индуктивности контура – например, введением в L1 небольшого карбонильного сердечника.

Как показывает опыт настройки и согласования Си-Би антенн самых разных конфигураций и размеров (0,1…3L), под контролем и с помощью этого прибора нетрудно получить КСВ = 1… 1,2 в любом участке этого диапазона.

Ротхаммель К. Антенны. “Бояныч”, С-П., 1998, с. 567-570. Антенноскоп предназначен для измерения входного сопротивления антенно-фидерного тракта. Он представляет собой высокочастотный мост, в одно плечо которого включают исследуемый двухполюсник, а в другое – переменный безиндукционный резистор (рис. 12.40). Если сопротивление двухполюсника активно и равно Rx, то мост будет полностью сбалансирован при R3 = Rx и величина Rx может быть считана со шкалы проградуированного в омах резистора R3.

Номиналы резисторов R1=R2 (точность 1%) могут быть и другими, например, 150 или 240 Ом Нужную пару подбирают из 10- или 20%-ных резисторов по цифровому омметру.

Элементы антенноскопа разме щают в трех экранированных отсеках (экран показан штриховой). Все они должны иметь минимальную емкость (собственную и по отношению к экра ну) и индуктивность. Резистор R3=470 Ом устанавливают на опо рах-изоляторах. Его ось вводят в удлинитель, изготовленный из доста точно прочного диэлектрика, напри мер, стеклотекстолита, на конце кото рого крепят ручку-указатель.

Градуируют резистор R3 по циф ровому омметру. На его шкале реко мендуется отметить точки “50” и “75” – волновое сопротивление коаксиаль ных кабелей, с которыми обычно имеют дело. Если измерения предпо лагают вести лишь в низкоомных цепях, то сопротивление резистора R3 можно уменьшить до 100… 150 Ом. Это увеличит точность отсчета.

Микроамперметр М – типа М4248. Или какой-либо другой с током полного отклонения 50…200 мкА.

Антенноскоп питается от ВЧ генератора мощностью ~ 0,2 Вт. Это может

быть генератор стандартных сигналов, гетеродинный индикатор резонанса (ГИР) или радиостанция, работающая в режиме пониженной мощности. Диапазон частот – до 150…250 МГц.

Если антенноскоп не удается сбалансировать “под нуль”, это значит, что в контролируемой цепи есть реактивная составляющая, т.е. – антенна расстроена. В таком случае, изменяя частоту ВЧ генератора, ищут ее действительный резонанс. Затем тем или иным способом (удлинением-укорочением вибратора, противовесов и др.) антенну приводят в диапазон рабочих частот. И лишь тогда измеряют ее входное сопротивление. Если оно отличается от принятого в связной технике стандарта (обычно – 50 Ом), его приводят к этому нормативу тем или иным согласующим устройством – широкополосным трасформатором, П-контуром и др.

Настройку и согласование антенны ведут, как правило, методом последовательных приближений: после настройки и согласования уточняют настройку и согласование и так до точной настройки антенны в диапазон с достижением равных и возможно меньших значений КСВ на его краях.

Виноградов Ю. Проект “Незабудка”. Радио, 1997, 10, с. 6-7. Описанный здесь микромощный Си-Би передатчик после перевода его в


режим непрерывного излучения (рис. 12.41) может стать довольно удобным инструментом для сквозной настройки антенно-фидерного тракта (а при желании – и ВЧ каскадов приемника) и оценки “фигуры излучения” антенны – ее чувствительности к сигналам, приходящим с разных направлений.

Частоту кварцевого резонатора ZQ1 выбирают в середине диапазона рабочих частот. Важно, чтобы это была частота основного его резонанса (на корпусе такого резонатора частота будет указана в “кГц”, на гармониковом – в “МГц”).

Излучателем микропередатчика, его “магнитной” антенной, является дроссель L1 – 30…50 витков провода ПЭВШО 0,25…0,4, намотанные виток к витку или с шагом на пластине стеклотекстолита 40х10х2 мм. Если “дальнобойность” передатчика окажется недостаточной, дроссель можно намотать на пластине большего размера или подключить к коллектору транзистора VT1 15…30-сантиметровый отрезок монтажного провода.

Передатчик может работать и с гармониковым кварцем. Но в этом случае дроссель потребуется заменить настроенным на середину частотного диапазона колебательным контуром. Его включают автотрасфороматорно (1/2…1/4 по виткам катушки) в коллекторную цепь транзистора.

Для сохранения с настраиваемой антенной лишь “эфирной” связи, микропередатчик нужно отнести от нее не менее, чем на 10…15 длин волн.

1. Виноградов Ю. Антенный аттенюатор. Радио, 11, 1997, с. 80.

2. Рэд Э. Справочное пособие по высокочастотной схемотехнике. – “Мир”, М.,1990, с. 229.

При наладке антенно-фидерного тракта нередко возникает необходимость внести в него дозированное ослабление сигнала. Принципиальная схема высокочастотного аттенюатора, которым можно выставить любое ослабление в пределах 1…47 дб с шагом 1 дб, показана на рис. 12.42. Его входное и выходное сопротивление 50 Ом, диапазон рабочих частот – О…30 МГц.


Аттенюатор монтируют на полоске одностороннего фольгированного стеклотекстолита. Со стороны фольги устанавливают в ряд шесть сдвоенных тумблеров типа П2Т-1-18. Резисторы отбирают с помощью цифрового омметра. Монтаж навесной – выводы резисторов укорачивают до 3…4 мм и подпаивают непосредственно к выводам тумблеров и к фольге.

Аттенюатор можно поместить в металлическую коробку-экран или накрыть согнутой по месту жестяной накладкой. Хотя металлические “щеки” тумблеров выполняют здесь и функции межсекционных экранов, их, при необходимости, можно усилить, уложив между тумблерами зигзагообразную полоску из жести.

Конечно, ослабление, вносимое каждой Т-секцией (рис. 12.42, б), может быть и другим. Руководствуясь таблицей 12.3 [2], можно выбрать нужные для этого резисторы. Но не следует стремиться к большому ослаблению в одной секции – влияние паразитных емкостей может повести к потере заявленной точности.

С. Румянцев. Коаксиальный элемент нагрузки. Радио, 1983, 3, с. 17.

При настройке радиопередающей аппаратуры вместо антенны используют, как правило, антенный эквивалент – резистор, активное сопротивление

Таблица 12.3


которого равно активному сопротивлению антенно-фидерного тракта -обычно 50 Ом, а реактивное сведено к пренебрежимо малой величине.

Антенный эквивалент можно изготовить самому, составив его из резисторов типа МЛТ-2 100 Ом. Например, в виде трех последовательно включенных секций, каждая из которых состоит из шести параллельно

включенных резисторов. Общее сопротивления такого эквивалента составит Ra=R 3/6= 100 3/6 =50 Ом. Рассеиваемая им мощность достигает номинальных 2 18=36 Вт лишь при принудительной вентиляции – плотный монтаж и экранировка резисторов заметно ухудшают их теплоотдачу.

Выполненный в виде коаксиальной конструкции, антенный эквивалент может работать на частотах до 600 Мгц (КСВ <= 1,2).

В качестве антенного эквивалента мощностью до 50 Вт, способного работать в полосе частот до 4 ГГц, можно использовать резистор типа Р 1-3-50.

Для относительно низких частот антенный эквивалент может быть выполнен планарно, например, на пластине фольгированного стеклотекстолита. Другими в нем могут быть число секций, число резистров в секции, сопротивление каждого резистора. Но при соблюдении обязательного условия: проводящий слой резистора, входящего в эквивалент, не должен иметь вид спирали. Такой резистор внесет в общее сопротивление индуктивную составляющую и может ухудшить КСВ эквивалента до совершенно неприемлемой величины.

В Си-Би в планарной технике могут быть выполнены не только антенные эквиваленты, но и 600…800-омные антенные нагрузки – те же “поглотители обратных лепестков” в антеннах бегущей волны (см. рис. 12.2).

Мешковец А. Высокочастотный амперметр. Радио, 1980, 5, с. 23. На рис. 12.43 приведена принципиальная схема амперметра для измерения токов высокой частоты. В его основе мост, измеряющий элемент которого -терморезистор R4 – изменяет свое сопротивление под действием тока высокой частоты. Степень разбалансировки моста, показанная включенным в его диагональ микроамперметром РА1, позволяет оценить величину этого тока.

Терморезистор R4 представляет собой железную проволоку диаметром 0,15 мм и длиной ~ 5 см, натянутую по центру стеклянной трубки – так, как это делают в плавких предохранителях.


Если измеряемый ток может содержать постоянную составляющую, вход амперметра шунтируют дросселем L2.

РА1 – микроамперметр с током полного отклонения 100 мкА и сопротивлением рамки 1 кОм. При использовании другого прибора потребуется подобрать резистор R2.

Если последовательно с амперметром (между ним и “землей”) включить резистор сопротивлением 0,1 Ом с пренебрежимо малой реактивной составляющей, то его можно проградуировать по осциллографу, имеющему достаточную полосу пропускания и калиброванную шкалу.

Амперметр способен измерять токи до 1 А в полосе частот 2…30 Мгц.

Резонансные системы из коаксиального кабеля. Радио, 1981 5-6, с.25.

Высокодобротный контур, подключенный к антенному входу радиоприемника, способен существенно ослабить воздействие на него мощных радиостанций, работающих на близких частотах, снизить и даже полностью устранить интермодуляционные помехи.

Такой контур можно изготовить из двух отрезков коаксиального кабеля. Их включение и эквивалентная схема такого преселектора показаны на рис. 12.44. Добротность Q контура, выполненного из коаксиального кабеля типа РК-50-2-11, составит: на частоте 144 МГц -150, на частоте 432 МГц – около 400.

Подстроечные конденсаторы С1 и С2 – типа КПК-МН; их емкость на частоте 144 МГц – 5…25 пФ, на частоте 432 МГц – 2…7 пФ.

Суммарная длина кабеля, имеющего сплошную полиэтиленовую изоляцию, должна быть:

Измерители напряженности поля. KB журнал, 1996, 3, с. 31. Безразмерная, индикаторная оценка напряженности поля, создаваемого излучателем, дает возможность настроить и согласовать ВЧ тракт передающего устройства, выбрать лучшую линию передачи, выяснить способность антенны концентрировать излучение в нужном направлении и многое другое.


Принципиальная схема индикатора напряженности поля с диапазонной селекцией сигналов показана на рис. 12.45.

Катушки индуктивности индикатора наматывают проводом ПЭВ-2 диаметром 0,2 мм на каркасах диаметром 5 мм, имеющих отверстия с резьбой под подстроенные сердечники из карбонильного железа или высокочастотного феррита (n=100). Их данные для различных частотных диапазонов приведены в таблице 12.4.

Транзистор VT1 – практически любой не слишком низкочастотный n-р-n-транзистор. Если это будет кремниевый транзистор, например, КТ325, КТ3102,

Таблица 12.4


КТ315 (буквы любые) и др., то сопротивление резистора R2 следует уменьшить до ~150 кОм. Чувствительность индикатора увеличивается с увеличением ¦h31э¦ транзистора.

Диод VD1 – обязательно германиевый – Д9Б, Д20 и др.

Дроссель L11 – типа Д0,1 и др. индуктивностью 100…200 мкГн.

Антенна – штырь длиной 1 м.

Настройку индикатора на середину каждого частотного диапазона (их может быть и меньше) производят в режиме максимальной его чувствительности (движок R1 – в крайнем правом положении, R6 – в верхнем).

lib.qrz.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *