Как читать электрические схемы для новичков
Электрические схемы представляют собой графическое представление составных частей, взаимных соединений, связей электрических устройств, установок. Схемы помогают увидеть и понять, как работает электрическая установка или устройство. В случае ремонта, наличие схемы в разы облегчает поиск и устранение неисправности. Монтажные схемы не дают представления о работе устройства, они предназначены для его сборки. Умение читать различные электрические схемы важно как для новичков, так и для специалистов со стажем оно необходимо при сборке, монтаже и обслуживании, поиске неисправностей.
Блок: 1/5 | Кол-во символов: 601
Источник: https://electroadvice.ru/eto-interesno/kak-chitat-elektricheskie-sxemy-dlya-novichkov/
Виды электрических схем
Для того чтобы правильно пользоваться электрическими схемами, нужно заранее ознакомиться с основными понятиями и определениями, затрагивающими эту область.
Любая схема выполняется в виде графического изображения или чертежа, на котором вместе с оборудованием отображаются все связующие звенья электрической цепи.
К первичным относятся цепи, по которым подаются основные технологические напряжения непосредственно от источников к потребителям или приемникам электроэнергии. Первичные цепи вырабатывают, преобразовывают, передают и распределяют электрическую энергию. Они состоят из главной схемы и цепей, обеспечивающих собственные нужды. Цепи главной схемы вырабатывают, преобразуют и распределяют основной поток электроэнергии. Цепи для собственных нужд обеспечивают работу основного электрического оборудования. Через них напряжение поступает на электродвигатели установок, в систему освещения и на другие участки.
Вторичными считаются те цепи, в которых подаваемое напряжение не превышает 1 киловатта. Они обеспечивают выполнение функций автоматики, управления, защиты, диспетчерской службы. Через вторичные цепи осуществляется контроль, измерения и учет электроэнергии. Знание этих свойств поможет научиться читать электрические схемы.
Полнолинейные схемы используются в трехфазных цепях. Они отображают электрооборудование, подключенное ко всем трем фазам. На однолинейных схемах показывается оборудование, размещенное лишь на одной средней фазе. Данное отличие обязательно указывается на схеме.
На принципиальных схемах не указываются второстепенные элементы, которые не выполняют основных функций. За счет этого изображение становится проще, позволяя лучше понять принцип действия всего оборудования. Монтажные схемы, наоборот, выполняются более подробно, поскольку они применяются для практической установки всех элементов электрической сети. К ним относятся однолинейные схемы, отображаемые непосредственно на строительном плане объекта, а также схемы кабельных трасс вместе с трансформаторными подстанциями и распределительными пунктами, нанесенными на упрощенный генеральный план.
В процессе монтажа и наладки широкое распространение получили развернутые схемы с вторичными цепями. На них выделяются дополнительные функциональные подгруппы цепей, связанных с включением и выключением, индивидуальной защитой какого-либо участка и другие.
Блок: 2/4 | Кол-во символов: 2767
Источник: https://electric-220.ru/news/kak_chitat_ehlektricheskie_skhemy/2017-04-01-1217
Заключение по теме
Итак, вопрос, как научится читать схемы электрические, не самый простой. Вам потребуется не только знание УЗО, но и знание, касающиеся параметров каждого элемента, его структуры и конструкции, а также принципа работы, и для чего он необходим. То есть, придется учить все азы радио- и электротехники. Сложно? Не без этого. Но если вы поймете, как все работает, то для вас откроются горизонты, о которых вы и не мечтали.Блок: 3/3 | Кол-во символов: 464
Источник: http://OnlineElektrik.ru/eoborudovanie/kondensatori/kak-chitat-elektricheskie-sxemy-graficheskie-bukvennye-i-cifrovye-oboznacheniya. html
Любая радиоэлектронная аппаратура состоит из отдельных радиодеталей, спаянных (соединенных) между собой определенным образом. Все радиодетали, их соединения и дополнительные обозначения отображаются на специальном чертеже. Такой чертеж называется электрической схемой. Каждая радиодеталь имеет свое обозначение, которое правильно называется условное графическое обозначение, сокращенно – УГО. К УГО мы вернемся дальше в этой статье.
Принципиально можно выделить два этапа совершенствования чтения электрических схем. Первый этап характерен для монтажников радиоэлектронной аппаратуры. Они просто собирают (паяют) устройства не углубляясь в назначение и принцип работы основных его узлов. По сути дела – это скучная работа, хотя, хорошо паять, нужно еще поучиться. Лично мне гораздо интересней паять то, что я полностью понимаю, как оно работает. Появляются множества вариантов для маневров. Понимаешь какой номинал, например резистора или конденсатора критичный в данной случае, а каким можно пренебречь и заменить другим. Какой транзистор можно заменить аналогом, а где следует использовать транзистор только указанной серии. Поэтому лично мне ближе второй этап.
Второй этап присущ разработчикам радиоэлектронной аппаратуры. Такой этап является самый интересный и творческий, поскольку совершенствоваться в разработке электронных схем можно бесконечно.
По этому направлению написаны целые тома книг, наиболее известной из которых является «Искусство схемотехники». Именно к этому этапу мы будем стремиться подойти. Однако здесь уже потребуются и глубокие теоретические знания, но все оно того стоит.
Учиться читать электрические схемы мы будем из самых простых примеров и постепенно продвигаться дальше.
Блок: 2/8 | Кол-во символов: 1772
Источник: https://diodov.net/kak-chitat-elektricheskie-shemy/
Стандарты схем по ГОСТу
Начинать нужно с изучения условных графических обозначений (УГО). Обозначения на чертежах имеют стандартный вид и регламентируются ГОСТами, например, ГОСТ 21. 210—2014, ГОСТ 2.755-87, ГОСТ 2.721, ГОСТ 2.756-76 и рядом других. Стандарты изображений распространяются на все элементы, включая связи между ними, способы монтажа, прокладки и т.д.
В ряде случаев ГОСТ разрешает отклонения от стандартов. Например, при составлении структурных комбинированных схем, нередко применяют нестандартные, или приближённые к реальному изображения объектов, фотографии, сопровождая их описаниями с краткими пояснениями, как на схеме телефонного аппарата.
Но в целом, стандарты стараются соблюдать, чтобы не вносить разночтения и путаницу в документацию, особенно когда речь идёт о серьёзных проектах для промышленных предприятий.
Большие изображения разделяют на части, указывая ссылки на другие листы или обозначая связи. Начальное положение контактов реле, кнопок, катушек показано при отсутствии напряжения, это стандарт.
Рассмотрим сказанное выше на примере принципиальной релейной схемы управления конвейером.
Здесь имеются две функциональные части: силовая, состоящая из цепей питания двигателя и релейная, которая предназначена для управления силовой частью.
Силовая часть состоит из:
- Линии трёхфазного питания 380В 50Гц, с указанием ссылки на комплект чертежей «ЭМ», откуда это питание подаётся.
- Автоматического выключателя 2-QF.
- Контактора 2-КМ.
- Теплового реле 2-КК.
- Электродвигателя 2W.
Фазы обозначены латинскими буквами A, B, C. Поскольку используется трёхфазное питание, контакты автоматического выключателя и контактора соединены механически для одновременного включения/отключения всех трёх фаз.
Релейная часть содержит в себе:
- Автоматический выключатель питания 2-SF.
- Кнопки SB.
- Переключатель 2-SA.
- Реле времени 2-КТ.
- Реле 2-K1…2-K6.
- Источник питания 24В 2-GB.
- Сигнальные лампы 2-HL1… 2-HL4.
Соединительные линии обозначают электрические соединения между элементами. Пересекающиеся линии не соединены между собой. Как вариант отсутствие соединения обозначают символом дуги . На наличие соединения указывает точка в месте пересечения или примыкания .
Контакты реле, выключателей и других коммутационных устройств имеют два состояния:
- Нормально открытое, когда без включения реле контакт разомкнут.
- Нормально закрытое, когда без включения реле контакт замкнут.
Соответственно, когда на катушку реле или контактора будет подано напряжение, реле притянется и состояние контактов изменится на противоположное. Тоже самое произойдёт с кнопкой и автоматическим выключателем, при его включении, изменяется состояние контакта.
Блок: 3/5 | Кол-во символов: 2634
Источник: https://electroadvice.ru/eto-interesno/kak-chitat-elektricheskie-sxemy-dlya-novichkov/
Монтажные схемы
Выше была рассмотрена принципиальная схема. В частном случае, таком как монтаж, необязательно представлять, как она работает. С этой целью выпускаются специальные монтажные чертежи, на которых указано, какой провод какие выводы соединяет.
Провода с клеммами должны быть пронумерованы. При монтаже достаточно лишь внимательно следить, что с чем соединяется, чтобы правильно собрать устройство, установку.
Квалифицированный специалист должен уметь разбираться во всех типах чертежей. Несмотря на стандартизацию, существует огромное количество отличий и разнообразия правил построения электросхем, выпускаемых различными производителями, проектно-конструкторскими отделами. Очень важно знать принципы действия электрооборудования, устройств, из которых состоит схема. Умение читать и понимать схемы – процесс многогранный, требует терпения, времени.
Блок: 5/5 | Кол-во символов: 881
Источник: https://electroadvice.ru/eto-interesno/kak-chitat-elektricheskie-sxemy-dlya-novichkov/
Количество использованных доноров: 4
Информация по каждому донору:
- https://electric-220.ru/news/kak_chitat_ehlektricheskie_skhemy/2017-04-01-1217: использовано 1 блоков из 4, кол-во символов 2767 (30%)
- https://electroadvice.ru/eto-interesno/kak-chitat-elektricheskie-sxemy-dlya-novichkov/: использовано 3 блоков из 5, кол-во символов 4116 (45%)
- https://diodov. net/kak-chitat-elektricheskie-shemy/: использовано 1 блоков из 8, кол-во символов 1772 (19%)
- http://OnlineElektrik.ru/eoborudovanie/kondensatori/kak-chitat-elektricheskie-sxemy-graficheskie-bukvennye-i-cifrovye-oboznacheniya.html: использовано 1 блоков из 3, кол-во символов 464 (5%)
Составить электрическую схему онлайн. Как читать принципиальные схемы
Как научиться читать принципиальные схемы
Те, кто только начал изучение электроники сталкиваются с вопросом: «Как читать принципиальные схемы?» Умение читать принципиальные схемы необходимо при самостоятельной сборке электронного устройства и не только. Что же представляет собой принципиальная схема? Принципиальная схема – это графическое представление совокупности электронных компонентов, соединённых токоведущими проводниками. Разработка любого электронного устройства начинается с разработки его принципиальной схемы.
Именно на принципиальной схеме показано, как именно нужно соединять радиодетали, чтобы в итоге получить готовое электронное устройство, которое способно выполнять определённые функции. Чтобы понять, что же изображено на принципиальной схеме нужно, во-первых знать условное обозначение тех элементов, из которых состоит электронная схема. У любой радиодетали есть своё условное графическое обозначение – УГО . Как правило, оно отображает конструктивное устройство или назначение. Так, например, условное графическое обозначение динамика очень точно передаёт реальное устройство динамика . Вот так динамик обозначается на схеме.
Согласитесь, очень похоже. Вот так выглядит условное обозначение резистора .
Обычный прямоугольник, внутри которого может указываться его мощность (В данном случае резистор мощностью 2 Вт, о чём свидетельствует две вертикальные черты). А вот таким образом обозначается обычный конденсатор постоянной ёмкости.
Это достаточно простые элементы. А вот полупроводниковые электронные компоненты, вроде транзисторов, микросхем, симисторов имеют куда более изощрённое изображение. Так, например, у любого биполярного транзистора не менее трёх выводов: база, коллектор, эмиттер. На условном изображении биполярного транзистора эти выводы изображены особым образом. Чтобы отличать на схеме резистор от транзистора, во-первых надо знать условное изображение этого элемента и, желательно, его базовые свойства и характеристики. Поскольку каждая радиодеталь уникальна, то в условном изображении графически может быть зашифрована определённая информация. Так, например, известно, что биполярные транзисторы могут иметь разную структуру: p-n-p или n-p-n . Поэтому и УГО транзисторов разной структуры несколько отличаются. Взгляните…
Поэтому, перед тем, как начать разбираться в принципиальных схемах, желательно познакомиться с радиодеталями и их свойствами. Так будет легче разобраться, что же всё-таки изображено на схеме.
На нашем сайте уже было рассказано о многих радиодеталях и их свойствах, а также их условном обозначении на схеме. Если забыли – добро пожаловать в раздел «Старт» .
Кроме условных изображений радиодеталей на принципиальной схеме указывается и другая уточняющая информация. Если внимательно посмотреть на схему, то можно заметить, что рядом с каждым условным изображением радиодетали стоят несколько латинских букв, например, VT , BA , C и др. Это сокращённое буквенное обозначение радиодетали. Сделано это для того, чтобы при описании работы или настройки схемы можно было ссылаться на тот или иной элемент. Не трудно заметь, что они ещё и пронумерованы, например, вот так: VT1, C2, R33 и т.д.
Понятно, что однотипных радиодеталей в схеме может быть сколь угодно много. Поэтому, чтобы упорядочить всё это и применяется нумерация. Нумерация однотипных деталей, например резисторов, ведётся на принципиальных схемах согласно правилу «И». Это конечно, лишь аналогия, но довольно наглядная. Взгляните на любую схему, и вы увидите, что однотипные радиодетали на ней пронумерованы начиная с левого верхнего угла, затем по порядку нумерация идёт вниз, а затем снова нумерация начинается сверху, а затем вниз и так далее. А теперь вспомните, как вы пишите букву «И». Думаю, с этим всё понятно.
Что же ещё рассказать о принципиальной схеме? А вот что. На схеме радом с каждой радиодеталью указывается её основные параметры или типономинал. Иногда эта информация выносится в таблицу, чтобы упростить для восприятия принципиальную схему. Например, рядом с изображением конденсатора, как правило, указывается его номинальная ёмкость в микрофарадах или пикофарадах. Также может указываться и номинальное рабочее напряжение, если это важно.
Рядом с УГО транзистора обычно указывается типономинал транзистора, например, КТ3107, КТ315, TIP120 и т.д. Вообще для любых полупроводниковых электронных компонентов вроде микросхем, диодов, стабилитронов, транзисторов указывается типономинал компонента, который предполагается для использования в схеме.
Для резисторов обычно указывается всего лишь его номинальное сопротивление в килоомах, омах или мегаомах. Номинальная мощность резистора шифруется наклонными чёрточками внутри прямоугольника. Также мощность резистора на схеме и на его изображении может и не указываться. Это означает, что мощность резистора может быть любой, даже самой малой, поскольку рабочие токи в схеме незначительны и их может выдержать даже самый маломощный резистор, выпускаемый промышленностью.
Вот перед вами простейшая схема двухкаскадного усилителя звуковой частоты. На схеме изображены несколько элементов: батарея питания (или просто батарейка) GB1 ; постоянные резисторы R1 , R2 , R3 , R4 ; выключатель питания SA1 , электролитические конденсаторы С1 , С2 ; конденсатор постоянной ёмкости С3 ; высокоомный динамик BA1 ; биполярные транзисторы VT1 , VT2 структуры n-p-n . Как видите, с помощью латинских букв я ссылаюсь на конкретный элемент в схеме.
Что мы можем узнать, взглянув на эту схему?
Любая электроника работает от электрического тока, следовательно, на схеме должен указываться источник тока, от которого питается схема. Источником тока может быть и батарейка и электросеть переменного тока или же блок питания.
Итак. Так как схема усилителя питается от батареи постоянного тока GB1, то, следовательно, батарейка обладает полярностью: плюсом «+» и минусом «-». На условном изображении батареи питания мы видим, что рядом с её выводами указана полярность.
Полярность. О ней стоит упомянуть отдельно. Так, например, электролитические конденсаторы C1 и C2 обладают полярностью. Если взять реальный электролитический конденсатор , то на его корпусе указывается какой из его выводов плюсовой, а какой минусовой. А теперь, самое главное. При самостоятельной сборке электронных устройств необходимо соблюдать полярность подключения электронных деталей в схеме. Несоблюдение этого простого правила приведёт к неработоспособности устройства и, возможно, другим нежелательным последствиям. Поэтому не ленитесь время от времени поглядывать на принципиальную схему, по которой собираете устройство.
На схеме видно, что для сборки усилителя понадобятся постоянные резисторы R1 – R4 мощностью не менее 0,125 Вт. Это видно из их условного обозначения.
Также можно заметить, что резисторы R2* и R4* отмечены звёздочкой * . Это означает, что номинальное сопротивление этих резисторов нужно подобрать с целью налаживания оптимальной работы транзистора. Обычно в таких случаях вместо резисторов, номинал которых нужно подобрать, временно ставится переменный резистор с сопротивлением несколько больше, чем номинал резистора, указанного на схеме. Для определения оптимальной работы транзистора в данном случае в разрыв цепи коллектора подключается миллиамперметр. Место на схеме, куда необходимо подключить амперметр указано на схеме вот так. Тут же указан ток, который соответствует оптимальной работе транзистора.
Напомним, что для замера тока, амперметр включается в разрыв цепи.
Далее включают схему усилителя выключателем SA1 и начинают переменным резистором менять сопротивление R2* . При этом отслеживают показания амперметра и добиваются того, чтобы миллиамперметр показывал ток 0,4 – 0,6 миллиампер (мА). На этом настройка режима транзистора VT1 считается завершённой. Вместо переменного резистора R2*, который мы устанавливали в схему на время наладки, ставится резистор с таким номинальным сопротивлением, которое равно сопротивлению переменного резистора, полученного в результате наладки.
Каков вывод из всего этого длинного повествования о налаживании работы схемы? А вывод таков, что если на схеме вы видите какую-либо радиодеталь со звёздочкой (например, R5* ), то это значит, что в процессе сборки устройства по данной принципиальной схеме потребуется налаживать работу определённых участков схемы. О том, как налаживать работу устройства, как правило, упоминается в описании к самой принципиальной схеме.
Если взглянуть на схему усилителя, то также можно заметить, что на ней присутствует вот такое условное обозначение.
Этим обозначением показывают так называемый общий провод . В технической документации он называется корпусом. Как видим, общим проводом в показанной схеме усилителя является провод, который подключен к минусовому “-” выводу батареи питания GB1. Для других схем общим проводом может быть и тот провод, который подключен к плюсу источника питания. В схемах с двуполярным питанием, общий провод указывается обособленно и не подключен ни к плюсовому, ни к минусовому выводу источника питания.
Зачем “общий провод” или “корпус” указывается на схеме?
Относительно общего провода проводятся все измерения в схеме, за исключением тех, которые оговариваются отдельно, а также относительно его подключаются периферийные устройства. По общему проводу течёт общий ток, потребляемый всеми элементами схемы.
Общий провод схемы в реальности часто соединяют с металлическим корпусом электронного прибора или металлическим шасси, на котором крепятся печатные платы.
Стоит понимать, что общий провод это не то же самое, что и “земля”. “Земля ” – это заземление, то есть искусственное соединение с землёй посредством заземляющего устройства. Обозначается оно на схемах так.
В отдельных случаях общий провод устройства подключают к заземлению.
Как уже было сказано, все радиодетали на принципиальной схеме соединяются с помощью токоведущих проводников. Токоведущим проводником может быть медный провод или же дорожка из медной фольги на печатной плате. Токоведущий проводник на принципиальной схеме обозначается обычной линией. Вот так.
Места пайки (электрического соединения) этих проводников между собой, либо с выводами радиодеталей изображаются жирной точкой. Вот так.
Стоит понимать, что на принципиальной схеме точкой указывается только соединение трёх и более проводников или выводов. Если на схеме показывать соединение двух проводников, например, вывода радиодетали и проводника, то схема была бы перегружена ненужными изображениями и при этом потерялась бы её информативность и лаконичность. Поэтому, стоит понимать, что в реальной схеме могут присутствовать электрические соединения, которые не указаны на принципиальной схеме.
В следующей части речь пойдёт о соединениях и разъёмах, повторяющихся и механически связанных элементах, экранированных деталях и проводниках. Жмите “Далее “…
Инструкция
При изучении принципиальной схемы определите полюсы электрической цепи и установите направление тока – от «плюса» к «минусу». Выявите составляющие схемы: контакты, резисторы, диоды, конденсаторы и прочие элементы, входящие в цепь. Если схема содержит несколько цепей, читать их следует по одной, рассматривая каждую последовательно.
Вначале чтения схемы определите все включенные в цепь системы электропитания. Найдите источник энергии, реле, электромагниты, если они предусмотрены. Определите вид всех источников, используемый ток (постоянный или переменный), его фазу или полярность.
При изучении схемы вам нужно иметь представление о работе каждого элемента цепи отдельно, начиная с простейших составляющих. Резистор – пассивный элемент электрической цепи и предназначен, как правило, для рассеивания мощности, падения напряжения. На схемах он используется для обозначения функции сопротивления и отображается в виде прямоугольника. Конденсатор же, наоборот, накапливает электрическую энергию переменного тока, его знак – две параллельные линии .
Ознакомьтесь со всеми пояснениями и примечаниями , данными на схеме. При наличии в устройстве электродвигателей или иных электроприемников проведите их анализ. Рассмотрите все цепи данных элементов от одного полюса источника питания к другому. Заметьте в этих цепях расположение резисторов, диодов, конденсаторов и других составляющих схемы. Сделайте вывод о практическом значении каждого элемента схемы и о нарушении работы электроустройства при блокировке или отсутствии какой-либо из частей его цепи.
Уточните расположение защитных приборов: реле максимального тока, предохранителей и автоматических регуляторов, а также элементов коммутации. На принципиальной схеме электроустройства могут быть обозначены надписи, указывающие на зоны защиты каждого из элементов, найдите их и сопоставьте с другими данными цепи.
Основное назначение принципиальной электронной схемы в том, чтобы с достаточной наглядностью и полнотой отразить взаимные связи между отдельными элементами прибора (устройства). Принципиальная схема служит для изучения систем автоматизации, производства электронного оборудования и его правильной эксплуатации. Умение читать подобные схемы позволяет уяснить принцип действия системы и внести в нее при необходимости дополнения, уточнения или изменения.
Инструкция
Начните чтение принципиальной схемы с общего ознакомления с ней и с перечнем элементов, входящих в структуру изделия . Найдите на схеме каждый из элементов, уясните их взаимное расположение. Ознакомьтесь также со всеми пояснениями и примечаниями, которые прилагаются к электронной схеме.
Определите по схеме систему электропитания, обмотки магнитных пускателей, реле и электромагнитов (при их наличии). Отыщите все источники питания и определите род тока по каждому из них, параметры напряжения , фазировку (в цепях переменного тока) и полярность (в цепях постоянного тока). Сопоставьте полученные данные с номинальными данными аппаратуры, указанными в технической документации.
Отыщите по схеме коммутационные элементы и аппараты защиты. К ним относятся предохранители, автоматы, реле максимального тока и так далее. По надписям на принципиальной схеме, примечаниям и таблицам, прилагаемым к схеме, определите зону защиты каждого из этих элементов.
Изучите цепи электроприемников (электрического двигателя, обмоток магнитного пускателя и т.д.). Начните целенаправленный анализ с основного электроприемника, которым обычно является электрический двигатель (при его наличии в изделии). Проследите все цепи этого элемента от одного полюса к другому. Отметьте для себя все контакты, резисторы и диоды, входящие в цепь электроприемника.
Оцените назначение каждого из рассматриваемых элементов. При этом удобно исходить из предположения, что данный элемент (резистор, диод, конденсатор) в схеме отсутствует, задав вопрос: «К каким последствиям приведет удаление из схемы данного элемента?»
Читая электронную схему, всегда исходите из цели, которая перед вами стоит. Обычно изучение принципиальной схемы преследует цель выявления ошибок в монтаже, определения возможных причин отказа устройства, установления элементов, которые могут стать причиной сбоев в системе.
Если вам в руки попались листы с непонятыми чёрточками, ромбиками и другими письменами, которые человеку неосведомлённому напоминают египетские скрижали, готовьтесь – это электрические схемы.
Отметим, что подобные вещи редко попадают в руки к людям неосведомлённым. Для того чтобы научиться читать электрические схемы, мало просто разобраться. Как минимум вам нужно приобрести, или скачать из сети книгу по микросхематехнике. Как вариант можно позвать человека знающего, чтобы он рассказал хотя бы о назначении основных узлов и часто встречающихся обозначений.
Куда легче иметь дело с принципиальными схемами. Однако этот тип схем даёт представление только о принципе работы, а не о конкретном варианте прокладки и местонахождении тех или иных элементов.
Основные элементы распознать можно просто.
- Все провода обозначены просто линиями.
- Точки соединения обозначают точками .
- Небольшие прямоугольники, это резисторы.
- Круг с крестиком, это лампочки или светодиоды.
- Круг и внутри его ещё один, чаще всего обозначает двигатель.
- Ключи, это места где линия провода размыкается и как бы отклоняется в сторону.
- Реле изображают прямоугольниками с п-образным рисунком.
В целом электрическая грамота довольно сложна и имеет сложную специфику. Даже, если вы разберётесь во всех элементах и принципах их нанесения на схему, читать электрические схемы будет всё также сложно. Основная задача, не просто понять , что изображено на схеме, а как все эти элементы взаимодействуют между собой. К сожалению, чтение схем привязано не только к микросхематехнике, но и к электрике в целом. Кроме того, каждая схема имеет направленность в зависимости от того схема чего лежит перед вами.
Видео по теме
Когда сдаем анализы и получаем на руки бумажку с результатами, мы все пытаемся понять, что же скрывается за этими цифрами. И нам ничего непонятно. Зато стоит лечащему врачу посмотреть на результат, как ему сразу становится все понятно. И он объявляет: “Вы здоровы” или “Вы больны”. Но научиться самостоятельно “читать” анализы несложно.
Инструкция
На выписке рядом с получившимся значением находится значение нормы . Смотрим укладывается ли наш результат в эти рамки. Если укладывается, значит , вы здоровы. Если же у вас в организме идет воспалительный процесс, то будут повышены лейкоциты или показатель скорости оседания эритроцитов (СОЭ). При анемии будет снижен показатель гемоглобина и эритроцитов. Если повышаются тромбоциты – это признак заболеваний крови . А если в организме больше 5% эозонофилов, это значит, что у больного аллергия.
Но может быть так, что результат будет в рамках нормы, но находится либо ближе к первому значению, либо ко второму. И тогда это означает , что чего-то в вашем организме либо по нижней границе нормы слегка не хватает, либо по верхней границе перебор. Именно эти показатели можно корректировать, чтобы не допустить развития заболевания.
Параметры общего анализа мочи могут указывать на урологические заболевания (об этом вам сообщат повышенные лейкоциты в анализе). К таким относятся: пиелонефрит, цистит, нефрит, почечная недостаточность.
Появление глюкозы в анализе говорит о наличии сахарного диабета.
По цвету мочи, если она темного цвета , похожего на густозаваренный чай, можно определить заболевания печени. Ведь именно “лишний” билирубин окрашивает мочу в такой цвет. На мочекаменную болезнь в анализе мочи указывает появившийся кальций . А кровь в моче может говорить о наличии опухоли мочевого пузыря.
Видео по теме
Принципиальная электрическая схема устройства предназначена для полного и наглядного отражения связей между элементами прибора. Ее можно также использовать при изучении автоматизированных систем управления. Без умения разбираться в электрических схемах невозможно уяснить принцип действия того или иного устройства и внести в него требуемые изменения.
Инструкция
Ознакомьтесь со схемой и прилагающимся к ней перечнем элементов, составляющих структуру технической системы. Отыщите на схематичном изображении каждый из компонентов, отметьте для себя их взаимное расположение. Если к схеме прилагаются текстовые пояснения, также изучите их.
Начните изучение схемы и определения системы электропитания. Она включает источник энергии, обмотки магнитных пускателей, реле и электромагнитов, если таковые предусмотрены схемой. По каждому источнику питания определите его вид, род используемого тока, фазировку или полярность (в зависимости от того, используется ли в устройстве переменный или постоянный ток). Проверьте, соответствуют ли парамерты электронных приборов номинальным данным, указанным в техническом описании устройства.
Определите, где расположены элементы коммутации и защитные приборы. Речь идет об реле максимального тока, предохранителях и автоматических регуляторах. Используя надписи на электрической схеме, найдите зоны защиты каждого из таких элементов.
При наличии в устройстве электроприемников, например, электродвигателя, обмоток пускателя и так далее, проведите их анализ . Проследите все цепи указанных элементов от одного полюса источника питания к другому . Отметьте расположение в этих цепях диодов и резисторов.
Каждый из элементов цепи имеет свое предназначение, которое вам надлежит установить. Исходите при этом из предположения, что тот или иной резистор, конденсатор или диод в схеме отсутствует. К каким последствиям это приведет? Такое условное последовательное исключение элементов из схемы поможет вам установить функцию каждого отдельного прибора.
Изучая принципиальную схему , всегда помните о том, какова цель, стоящая перед вами. Чаще всего чтение схемы требуется для уяснения назначения всего устройства, внесения в его работу усовершенствований. Нередко принципиальная схема позволяет выявить ошибки в монтаже и установить возможные причины неисправности электрического прибора вследствие выхода из строя его элементов.
В связи с активным внедрением на предприятиях систем автоматизации широко распространены схемы, включающие электрические приводы. Процесс монтажа и наладки электроустановок требует умения разбираться в принципиальных и монтажных схемах устройств. Для этого необходим навык и определенная практика.
Инструкция
Уясните для себя общие принципы построения цепей, включающих в себя электроустановку. Основу системы составляет какой -либо механизм (станок, двигатель, пускорегулирующая аппаратура и так далее). Для условного изображения элементов системы используют различные виды схем: гидравлические, пневматические , кинематические, электрические и комбинированные. Для лучшего понимания электрической схемы изучите все остальные варианты изображений, прилагаемых к ней.
Новички, которые пытаются самостоятельно собрать какие-то электронные схемы и приборы, сталкиваются с самым первым в своей новой деятельности вопросе, как читать электрические схемы? Вопрос, на самом деле серьезный, ведь прежде, чем собрать схему, ее необходимо как-то обозначить на бумаге. Или найти готовый вариант для воплощения в жизнь. То есть, чтение электрических схем – основная задача любого радиолюбителя или электрика.
Что такое электрическая схема
Это графическое изображение, где указаны все электронные элементы, связанные между собой проводниками. Поэтому знание электрических цепочек – это залог правильно собранного электронного прибора. А, значит, основная задача сборщика – это знать, как на схеме обозначаются электронные компоненты, какими графическими значками и дополнительными буквенными или цифровыми значениями.
Все принципиальные электрические схемы состоят из электронных элементов, которые имеют условное графическое обозначение, короче УЗО.
Для примера дадим несколько самых простых элементов, которые в графическом исполнении очень похожи на оригинал. Вот так обозначается резистор:
Как видите, очень похоже на оригинал. А вот так обозначается динамик:
То же большое сходство. То есть, существуют некоторые позиции, которые сразу же можно опознать. И это очень удобно. Но есть и совершенно непохожие позиции, которые или надо запомнить, или надо знать их конструкции, чтобы легко определять на принципиальной схеме. К примеру, конденсатор на рисунке снизу.
Тот, кто давно разбирается в электротехнике, то знает, что конденсатор – это две пластинки, между которыми размещен диэлектрик. Поэтому в графическом изображении был и выбран этот значок, он в точности повторяет конструкцию самого элемента.
Самые сложные значки у полупроводниковых элементов. Давайте рассмотрим транзистор. Необходимо отметить, что у этого прибора три выхода: эмиттер, база и коллектор. Но и это еще не все. У биполярных транзисторов встречаются две структуры: «n – p – n» и «p – n – p». Поэтому и на схеме они обозначаются по-разному:
Как видите, транзистор по своему изображению на него-то и не похож. Хотя, если знать структуру самого элемента, то можно сообразить, что это именно он и есть.
Простые схемы для начинающих, зная несколько значков, можно читать без проблем. Но практика показывает, что простыми электросхемами в современных электронных приборах практически не обходятся. Так что придется учить все, что касается принципиальных схем. А, значит, необходимо разобраться не только со значками, но и с буквенными и цифровыми обозначениями.
Что обозначают буквы и цифры
Все цифры и буквы на схемах являются дополнительной информацией, это опять-таки к вопросу, как правильно читать электросхемы? Начнем с букв. Рядом с каждым УЗО всегда проставляется латинская буква. По сути, это буквенное обозначение элемента. Это сделано специально, чтобы при описании схемы или устройства электронного прибора, можно было бы обозначать его детали. То есть, не писать, что это резистор или конденсатор, а ставить условное обозначение. Это и проще, и удобнее.
Теперь цифровое обозначение. Понятно, что в любой электронной схеме всегда найдутся элементы одного значения, то есть, однотипных. Поэтому каждую такую деталь пронумеровывают. И вся эта цифровая нумерация идет от верхнего левого угла схемы, затем вниз, далее вверх и опять вниз.
Внимание! Специалисты называют такую нумерацию правилом «И». Если обратите внимание, то движение по схеме так и происходит.
И последнее. Все электронные элементы имеют определенные свои параметры. Их обычно также прописывают рядом со значком или выносят в отдельную таблицу. К примеру, рядом с конденсатором может быть указана его номинальная емкость в микро- или пикофарадах, а также номинальное его напряжение (если такая необходимость возникает). Вообще, все, что связано с полупроводниковыми деталями должно обязательно дополняться информацией. Это не только упрощает чтение схемы, но и позволяет не ошибиться при выборе самого элемента в процессе сборки.
Иногда цифровые обозначения на электросхемах отсутствуют. Что это значит? К примеру, взять резистор. Это говорит о том, что в данной электрической схеме показатель его мощности не имеет значения. То есть, можно установить даже самый маломощный вариант, который выдержит нагрузки схемы, потому что в ней течет ток малой силы.
И еще несколько обозначений. Проводники графически обозначаются прямой непрерывной линией, места пайки точкой. Но учтите, что точка ставиться только в том месте, где соединяются три или более проводников.
Заключение по теме
Итак, вопрос, как научится читать схемы электрические, не самый простой. Вам потребуется не только знание УЗО, но и знание, касающиеся параметров каждого элемента, его структуры и конструкции, а также принципа работы, и для чего он необходим. То есть, придется учить все азы радио- и электротехники. Сложно? Не без этого. Но если вы поймете, как все работает, то для вас откроются горизонты, о которых вы и не мечтали.
Похожие записи:
“Как читать электрические схемы?”. Пожалуй, это самый часто задаваемый вопрос в рунете. Если для того, чтобы научиться читать и писать, мы изучали азбуку, то здесь почти то же самое. Чтобы научиться читать схемы, первым делом, мы должны изучить как выглядит тот или иной радиоэлемент в схеме. В принципе ничего сложного в этом нет. Вся соль в том, что если в русской азбуке 33 буквы, то для того, чтобы выучить обозначения радиоэлементов, придется неплохо постараться. До сих пор весь мир не может договориться, как обозначать тот или иной радиоэлемент либо устройство. Поэтому, имейте это ввиду, когда будете собирать буржуйские схемы. В нашей статье мы будем рассматривать наш ГОСТ-вариант обозначения радиоэлементов.
Ладно, ближе к делу. Давайте рассмотрим простенькую электрическую схему блока питания, которая раньше мелькала в любом советском бумажном издании:
Если вы не первый день держите паяльник в руках, то для вас с первого взгляда сразу все станет понятно. Но среди моих читателей есть и те, кто впервые сталкивается с подобными чертежами. Поэтому, эта статья в основном именно для них.
Ну что же, давайте ее анализировать.
В основном, все схемы читаются слева-направо, точно также, как вы читаете книгу. Всякую разную схему можно представить в виде отдельного блока, на который мы что-то подаем и с которого мы что-то снимаем. Здесь у нас схема блока питания, на который мы подаем 220 Вольт из розетки вашего дома, а выходит уже с нашего блока постоянное напряжение . То есть вы должны понимать, какую основную функцию выполняет ваша схема . Это можно прочесть в описании к ней.
Итак, вроде бы определились с задачей этой схемы. Прямые линии – это проводочки, по которым будет бежать электрический ток . Их задача – соединять радиоэлементы.
Точка, где соединяются три и более проводочков, называется узлом . Можно сказать, в этом месте проводочки спаиваются:
Если пристально вглядеться в схему, то можно заметить пересечение двух проводочков
Такое пересечение будет часто мелькать в схемах. Запомните раз и навсегда: в этом месте проводочки не соединяются и они должны быть изолированы друг от друга . В современных схемах чаще всего можно увидеть вот такой вариант, который уже визуально показывает, что соединения между ними отсутствует:
Здесь как бы один проводок сверху огибает другой, и они никак не контактируют между собой.
Если бы между ними было соединение, то мы бы увидели вот такую картину:
Давайте еще раз рассмотрим нашу схему.
Как вы видите, схема состоит из каких-то непонятных значков. Давайте разберем один из них. Пусть это будет значок R2.
Итак, давайте первым делом разберемся с надписями. R – это значит резистор . Так как у нас он не единственный в схеме, то разработчик этой схемы дал ему порядковый номер “2”. В схеме их целых 7 штук. Радиоэлементы в основном нумеруются слева-направо и сверху-вниз. Прямоугольник с чертой внутри уже явно показывает, что это постоянный резистор с мощностью рассеивания в 0,25 Ватт. Также рядом с ним написано 10К, что означает его номинал в 10 КилоОм. Ну как-то вот так…
Как же обозначаются остальные радиоэлементы?
Для обозначения радиоэлементов используются однобуквенные и многобуквенные коды. Однобуквенные коды – это группа , к которой принадлежит тот или иной элемент. Вот основные группы радиоэлементов :
А – это различные устройства (например, усилители)
В – преобразователи неэлектрических величин в электрические и наоборот. Сюда могут относиться различные микрофоны, пьезоэлементы, динамики и тд. Генераторы и источники питания сюда не относятся .
С – конденсаторы
D – схемы интегральные и различные модули
E – разные элементы, которые не попадают ни в одну группу
F – разрядники, предохранители, защитные устройства
H – устройства индикации и сигнальные устройства, например, приборы звуковой и световой индикации
U – преобразователи электрических величин в электрические, устройства связи
V – полупроводниковые приборы
W – линии и элементы сверхвысокой частоты, антенны
X – контактные соединения
Y – механические устройства с электромагнитным приводом
Z – оконечные устройства, фильтры, ограничители
Для уточнения элемента после однобуквенного кода идет вторая буква, которая уже обозначает вид элемента . Ниже приведены основные виды элементов вместе с буквой группы:
BD – детектор ионизирующих излучений
BE – сельсин-приемник
BL – фотоэлемент
BQ – пьезоэлемент
BR – датчик частоты вращения
BS – звукосниматель
BV – датчик скорости
BA – громкоговоритель
BB – магнитострикционный элемент
BK – тепловой датчик
BM – микрофон
BP – датчик давления
BC – сельсин датчик
DA – схема интегральная аналоговая
DD – схема интегральная цифровая, логический элемент
DS – устройство хранения информации
DT – устройство задержки
EL – лампа осветительная
EK – нагревательный элемент
FA – элемент защиты по току мгновенного действия
FP – элемент защиты по току инерционнго действия
FU – плавкий предохранитель
FV – элемент защиты по напряжению
GB – батарея
HG – символьный индикатор
HL – прибор световой сигнализации
HA – прибор звуковой сигнализации
KV – реле напряжения
KA – реле токовое
KK – реле электротепловое
KM – магнитный пускатель
KT – реле времени
PC – счетчик импульсов
PF – частотомер
PI – счетчик активной энергии
PR – омметр
PS – регистрирующий прибор
PV – вольтметр
PW – ваттметр
PA – амперметр
PK – счетчик реактивной энергии
PT – часы
QF
QS – разъединитель
RK – терморезистор
RP – потенциометр
RS – шунт измерительный
RU – варистор
SA – выключатель или переключатель
SB – выключатель кнопочный
SF – выключатель автоматический
SK – выключатели, срабатывающие от температуры
SL – выключатели, срабатывающие от уровня
SP – выключатели, срабатывающие от давления
SQ – выключатели, срабатывающие от положения
SR – выключатели, срабатывающие от частоты вращения
TV – трансформатор напряжения
TA – трансформатор тока
UB – модулятор
UI – дискриминатор
UR – демодулятор
UZ – преобразователь частотный, инвертор, генератор частоты, выпрямитель
VD – диод , стабилитрон
VL – прибор электровакуумный
VS – тиристор
VT – транзистор
WA – антенна
WT – фазовращатель
WU – аттенюатор
XA – токосъемник, скользящий контакт
XP – штырь
XS – гнездо
XT – разборное соединение
XW – высокочастотный соединитель
YA – электромагнит
YB – тормоз с электромагнитным приводом
YC – муфта с электромагнитным приводом
YH – электромагнитная плита
ZQ – кварцевый фильтр
Ну а теперь самое интересное: графическое обозначение радиоэлементов.
Постараюсь привести самые ходовые обозначения элементов, используемые в схемах:
Резисторы постоянные
а ) общее обозначение
б ) мощностью рассеяния 0,125 Вт
в ) мощностью рассеяния 0,25 Вт
г ) мощностью рассеяния 0,5 Вт
д ) мощностью рассеяния 1 Вт
е ) мощностью рассеяния 2 Вт
ж ) мощностью рассеяния 5 Вт
з ) мощностью рассеяния 10 Вт
и ) мощностью рассеяния 50 Вт
Резисторы переменные
Терморезисторы
Тензорезисторы
Варистор
Шунт
Конденсаторы
a ) общее обозначение конденсатора
б ) вариконд
в ) полярный конденсатор
г ) подстроечный конденсатор
д ) переменный конденсатор
Акустика
a ) головной телефон
б ) громкоговоритель (динамик)
в ) общее обозначение микрофона
г ) электретный микрофон
Диоды
а ) диодный мост
б ) общее обозначение диода
в ) стабилитрон
г ) двусторонний стабилитрон
д ) двунаправленный диод
е ) диод Шоттки
ж ) туннельный диод
з ) обращенный диод
и ) варикап
к ) светодиод
л ) фотодиод
м ) излучающий диод в оптроне
н ) принимающий излучение диод в оптроне
Измерители электрических величин
а ) амперметр
б ) вольтметр
в ) вольтамперметр
г ) омметр
д ) частотомер
е ) ваттметр
ж ) фарадометр
з ) осциллограф
Катушки индуктивности
а ) катушка индуктивности без сердечника
б ) катушка индуктивности с сердечником
в ) подстроечная катушка индуктивности
Трансформаторы
а ) общее обозначение трансформатора
б ) трансформатор с выводом из обмотки
в ) трансформатор тока
г ) трансформатор с двумя вторичными обмотками (может быть и больше)
д ) трехфазный трансформатор
Устройства коммутации
а ) замыкающий
б ) размыкающий
в ) размыкающий с возвратом (кнопка)
г ) замыкающий с возвратом (кнопка)
д ) переключающий
е ) геркон
Электромагнитное реле с различными группами коммутационных контактов (коммутационные контакты могут быть разнесены в схеме от катушки реле)
Предохранители
а ) общее обозначение
б ) выделена сторона, которая остается под напряжением при перегорании предохранителя
в ) инерционный
г ) быстродействующий
д ) термическая катушка
е ) выключатель-разъединитель с плавким предохранителем
Тиристоры
Биполярный транзистор
Однопереходный транзистор
Полевой транзистор с управляющим P-N переходом
Как правильно читать электрические схемы
Наличие электрической схемы позволяет прочесть расположение основных элементов, понять принцип работы и установить причину неполадки. Для новичка разобраться с нуля в большом количестве запчастей слишком сложно. Нужно уметь правильно разбивать цепь на участки и блоки, а также понимать принцип действия каждого из них. Многие сталкиваются с проблемой, как читать электрические схемы правильно. Большинство книг по этой тематике стоят слишком дорого. Мы постараемся дать основы, а далее вам всё равно придётся пользоваться справочной информацией, имеющейся в открытом доступе во всемирной сети. Полученного уровня вам должно хватать для того, чтобы разобраться в простейшем радиоприёмнике или правильно трактовать топологию, используемую в вашем доме. Далее придётся развиваться под руководством опытного специалиста или по книгам.
Основные обозначения и порядок чтения
Вам придётся проявить большое количество терпения, чтобы научиться читать электрические схемы, ведь профильные специалисты получают образование в этой области. Самостоятельно обучение в этой сфере возможно по причине наличия большого количества различных источников информации в свободном доступе. Рекомендуем воспользоваться следующими советами для начала:
- Изучите обозначения всех основных элементов. Вам нужно знать как показано сопротивление, конденсатор, трансформатор, разъединитель, точки входа и выхода из схемы, полупроводники, катушки индуктивности. Существуют также прочие электронные компоненты, но их принцип функционирования и базовые преобразования тока будут слишком сложны для новичков.
- Обращайте внимание, что при прохождении тока через схему возможно использование различных размыкателей и замыкающих элементов электрической цепи. При их срабатывании цепь полностью меняет свою внутреннюю топологию. Переключение может выполняться при помощи реле или биметаллических элементов при нагреве. По ошибке новички часто рассматривают эти выключатели в качестве некого запасного варианта, пытаются пренебречь устройствами.
- Часто производители не выдают настоящую модификацию детали, а лишь определяют тип. Выходов в этом случае два. Необходимо попытаться прочесть маркировку детали, а затем найти её в базе данных, либо нужно, исходя из схемы и близлежащих компонентов, попытаться вычислить приблизительные характеристики искомого элемента. Сделать это можно по таблицам и справочникам. Вы будете удивлены, до какой степени велико количество выпускаемых в мире аналогов.
- Вход в систему обычно обозначается двумя стрелочками, а выход – проводами с двумя точками на концах. Стрелки показывают направление подачи питания. Нарушать его нельзя. Для электроприборов, работающих от источника постоянного тока важна полярность. Её смена может привести к полному выгоранию платы.
- Места пайки обязательно обозначаются жирными точками вне зависимости от того, наносил олово человек или робот. Эта информация предоставляется для возможной распайки в случае необходимости. Если точек нет, значит участок представляет собой цельнолитую конструкцию.
- Будьте готовы к тому, что при чтении схемы и рассмотрении реального изделия возможны расхождения. В современной технике часто в одну точку сходится 4-5 элементов, что невозможно изобразить на бумаге. Производитель надеется на компетентность специалиста, поэтому помечает только наиболее важные радиоэлектронные компоненты.
Составляйте схемы самостоятельно
Возьмите устройство, для которого уже есть принципиальная схема, а затем постарайтесь устроить для себя своеобразный экзамен. Нужно попробовать нарисовать всё самостоятельно, глядя только на плату. Это позволит точно разобраться, а затем провести работу над ошибками. Составление подобной документации стоит больших денег. Изучив всё до конца, вы сможете найти престижную работу. Научиться читать схемы с нуля несложно. Необходима усидчивость и желание поглощать новые знания. Обычно на весь процесс уходит не более 1-2 месяцев, зато после этого вы сможете легко починить практически любую технику и проводку в своём доме без обращения к мастеру.
Чтение схем и чертежей электроустановок
Методические указания.
Б. В. Гетлинг «Чтение схем и чертежей электроустановок» Высшая школа, 1980 год, 120 стр. (1,11 мб. djvu)
Научится читать схемы и чертежи электроустановок не так сложно, как это может показаться на первый взгляд. Для начала следует изучить теоретические основы электротехники (базовые понятия и основные электротехнические законы). Затем принцип работы и обозначения применяемые на схемах для электротехнических аппаратов и компонентов (пускатели, електродвигатели, контакторы, предохранители, трансформаторы и т.д). Рассмотреть структуры существующих типов схем (структурные, однолинейные, принципиальные, монтажные и т.д.). Узнать технологические особенности электрооборудования схемы которых предстоит изучать (схемы станков, тяговых и электросиловых устройств, котельных установок и т.д.). Изучить нормативную документацию в объеме необходимом для данной конкретной электроустановки. Эта небольшая по объему книга несмотря на то, что она издавалась в 1980 году содержит информацию необходимую для начального ознакомления с приемами чтения схем и чертежей электроустановок.
Оглавление книги
Глава первая Общие сведении о чертежи к правилах их выполнения 6Глава вторая. Электрические схемы 12
§ I. Назначение схем 12
§ 2. Условные обозначения, применяемые в схемах 13
§ 3. Содержание и назначение структурных схем 14
§ 4. Содержание и назначение функциональных схем 16
§ 5. Содержание и назначение принципиальных (полных) схем 16
§ 6. Принципиальные схемы энергетических устройств 18
§ 7. Принципиальные схемы электропривода 30
§ 8. Содержание и назначение схем соединений (монтажных) 44
§ 9. Методические указания по чтению схем вспомогательных цепей 48
§ 10. Содержание и назначение схем электрических цепей с элементами электроники 48
§ II. Методические указания по чтению схем цепей с элементами электроники 51
Глава третья. Чертежи электроустановок и электросетей 53
§ 12. Общая характеристика чертежей электрических устройств 53
§ 13. Чертежи трансформаторных подстанций и распределительных устройств напряжением выше 1000 В 53
§ 14. Монтажные чертежи н чертежи крепления различной аппаратуры 65
§ 15. Чертежи распределительных устройств до 1000 В 69
§ 16. Чертежи опор электрических линий до 1000 В я выше 71
§ 17. Методические указания по чтению чертежей электроустановок 75
§ 18. Общая характеристика и условные обозначения чертежей электрических сетей 77
§ 19. Чертежи силовых электросетей 79
§ 20. Чертежи электроосветительных сетей 82
§ 21. Методические указания по чтению чертежей электрических сетей 85
Приложения 65
Как читать электрические схемы. Видео
Похожая литература
1 520
https://www.htbook.ru/ehlektrotekhnika/ehlektrooborudovanie/chtenie-shem-i-chertezhej-elektroustanovokЧтение схем и чертежей электроустановокhttps://www.htbook.ru/wp-content/uploads/2016/01/Чтение-схем.jpghttps://www.htbook.ru/wp-content/uploads/2016/01/Чтение-схем.jpgЭлектрооборудованиеэлектросхемы,ЭлектротехникаМетодические указания. Б. В. Гетлинг ‘Чтение схем и чертежей электроустановок’ Высшая школа, 1980 год, 120 стр. (1,11 мб. djvu) Научится читать схемы и чертежи электроустановок не так сложно, как это может показаться на первый взгляд. Для начала следует изучить теоретические основы электротехники (базовые понятия и основные электротехнические законы). Затем принцип работы…YakovLukich [email protected]Техническая литератураОбщие сведения о электрических чертежах
Цели
1. Распознавайте символы, часто используемые на схемах двигателей и управления.
2. Прочтите и постройте лестничные диаграммы.
3. Прочитать электрические схемы, однолинейные и блок-схемы.
4. Ознакомьтесь с клеммными соединениями для различных типов. моторов.
5. Прочтите информацию, содержащуюся на паспортных табличках двигателя.
6.Ознакомьтесь с терминологией, используемой в цепях двигателей.
7. Ознакомьтесь с принципами работы ручных и магнитных пускателей двигателей.
При работе с двигателями используются разные типы электрических чертежей. и их схемы управления. Чтобы облегчить создание и чтение электрические чертежи, используются определенные стандартные символы.
Для чтения чертежей электродвигателя необходимо знать как значение символов и как работает оборудование.
Этот раздел поможет вам понять использование символов в электрических рисунки. В разделе также объясняется моторная терминология и поясняется это с практическим применением.
ЧАСТЬ 1 Символы – сокращения – лестничные диаграммы
Обозначения двигателей
Цепь управления двигателем может быть определена как средство подачи питания к и отключение питания от двигателя. Символы, используемые для обозначения различные компоненты системы управления двигателем можно рассматривать как тип технической стенографии.
Использование этих символов способствует упрощению схемотехнических схем. и легче читать и понимать.
В системах управления двигателями символы и соответствующие линии показывают, как цепи соединены друг с другом. К сожалению, не все электрические и электронные символы стандартизированы. Вы найдете немного разные символы, используемые разными производителями. Также символы иногда выглядят ничего похожего на настоящую вещь, поэтому вам нужно узнать, что означают символы.FGR. 1 показаны некоторые типичные символы, используемые в принципиальных схемах двигателей.
Сокращения терминов двигателя
Аббревиатура – это сокращенная форма слова или фазы. Заглавные буквы используются для большинства сокращений. Ниже приводится список некоторых сокращения, обычно используемые в принципиальных схемах двигателей.
Переменный ток Якорь ARM АВТО автоматический выключатель BKR COM общий Реле управления CR Трансформатор тока CT DC постоянный ток DB динамическое торможение Поле FLD FWD вперед GRD заземление Мощность в лошадиных силах L1, L2, L3 Соединения линии электропередачи Концевой выключатель LS MAN ручной двигатель MTR Пускатель двигателя M NEG отрицательный NC нормально замкнут NO нормально разомкнутый OL реле перегрузки PH фаза PL контрольная лампа POS положительная мощность PWR PRI первичная кнопка PB
REC выпрямитель REV обратный RH реостат SSW предохранительный выключатель SEC вторичный 1PH однофазный соленоид SOL SW-переключатель T1, T2, T3 клеммные соединения двигателя 3-фазный трехфазный трансформатор с выдержкой времени TD
Лестничные схемы двигателей
На чертежах управления двигателемпредставлена информация о работе цепи, устройства. расположение оборудования и инструкции по подключению.Символы, используемые для представления переключатели состоят из узловых точек (мест, где друг друга), контактные полосы и специальный символ, который идентифицирует конкретный тип переключателя, как показано в FGR. 2.
Хотя устройство управления может иметь более одного набора контактов, только Используемые в схеме контакты представлены на контрольных чертежах.
Для установки, обслуживания и ремонта используются различные схемы и чертежи управления. и устранение неисправностей в системах управления двигателем.К ним относятся лестничные диаграммы, электрические схемы, линейные схемы и блок-схемы. «Лестничная диаграмма» (считается некоторыми в виде схематической диаграммы) фокусируется на электрическом функционировании цепи, а не физическое расположение устройства. Например, два кнопки остановки могут физически находиться на противоположных концах длинного конвейера, но электрически рядом на лестничной диаграмме.
Лестничные диаграммы, например, показанная в FGR. 3, нарисованы двумя вертикальные линии и любое количество горизонтальных линий.Вертикальные линии (называемые рельсами) подключаются к источнику питания и обозначаются как линия 1 (L1) и линия 2 (L2). Горизонтальные линии (называемые ступенями) соединяются через L1 и L2 и содержат схему управления.
Лестничные диаграммы предназначены для чтения, как книгу, начиная с вверху слева и читать слева направо и сверху вниз.
Поскольку лестничные диаграммы легче читать, они часто используются при трассировке. через работу цепи.Большинство программируемых логических контроллеров (ПЛК) используют концепцию лестничных диаграмм в качестве основы для своего программирования. язык.
FGR. 1 Символы управления двигателем.
FGR. 2 Переключите компоненты символа.
FGR. 3 Типовая лестничная диаграмма.
FGR. 4 Электропроводка двигателя и цепи управления.
Большинство лестничных диаграмм иллюстрируют только однофазную цепь управления. подключен к L1 и L2, а не к трехфазной цепи питания мотор.FGR. 4 показана схема подключения силовой цепи и цепи управления.
На схемах, включающих проводку силовых цепей и цепей управления, вы можете увидеть как тяжелые, так и легкие проводники. Жирные линии используются для силовая цепь с более высоким током и более светлые линии для более слаботочной цепь управления.
Представлены проводники, которые пересекаются друг с другом, но не имеют электрического контакта. пересекающимися линиями без точки.
Проводники, которые входят в контакт, обозначены точкой на стыке.В большинстве случаев управляющее напряжение получается непосредственно от источника питания. цепи или от понижающего управляющего трансформатора, подключенного к источнику питания схема.
Использование трансформатора позволяет снизить напряжение (120 В переменного тока) для управления. цепи при питании цепи питания трехфазного двигателя с повышенным напряжение (480 В переменного тока) для более эффективной работы двигателя.
Лестничная диаграмма дает необходимую информацию для упрощения следования последовательность работы схемы.
Это отличный помощник в поиске и устранении неисправностей, поскольку он просто показывает, эффект, который открытие или закрытие различных контактов оказывает на других устройствах в схема. Все переключатели и релейные контакты классифицируются как обычные. открытый (NO) или нормально закрытый (NC). Позиции, изображенные на диаграммах, электрические характеристики каждого устройства, которые будут обнаружены, когда куплен и не подключен ни в какую цепь. Это иногда называют как «готовое» или обесточенное состояние.Это важно чтобы понять это, потому что он также может представлять положение обесточивания в цепи. Обесточенное положение относится к положению компонента. когда цепь обесточена или в цепи нет питания. Эта точка отсчета часто используется в качестве отправной точки в анализе. работы схемы.
FGR. 5 Идентификация катушек и связанных контактов.
Обычный метод, используемый для идентификации катушки реле и задействованных контактов им – поместить букву или буквы в круг, представляющий катушка (FGR.5). Каждый контакт, которым управляет эта катушка, будет иметь буква катушки или буквы, написанные рядом с символом контакта.
Иногда при наличии нескольких контактов, управляемых одной катушкой, число добавляется к письму для обозначения контактного номера. Хотя там являются стандартными значениями этих букв, большинство диаграмм содержат список ключей показать, что означают буквы; обычно они взяты из названия устройства.
Нагрузка – это компонент цепи, имеющий сопротивление и потребляющий электрическую энергию. питание подается от L1 к L2.Катушки управления, соленоиды, звуковые сигналы и пилот огни являются примерами нагрузок. Должно быть включено хотя бы одно загрузочное устройство. на каждой ступеньке лестничной диаграммы. Без загрузочного устройства управление устройства будут переключать разомкнутую цепь на короткое замыкание между L1 и L2. Контакты от устройств управления, таких как переключатели, кнопки, и реле считаются не имеющими сопротивления в замкнутом состоянии. Связь контактов параллельно с нагрузкой также может привести к короткому замыканию когда контакт замыкается.Ток в цепи будет минимальным. сопротивление через замкнутый контакт, замыкая нагрузку под напряжением.
Обычно нагрузки размещаются в правой части лестничной диаграммы рядом с к L2 и контактам с левой стороны рядом с L1. Одно исключение из этого Правило – размещение нормально замкнутых контактов, контролируемых устройство защиты двигателя от перегрузки. Эти контакты нарисованы справа сторона катушки стартера двигателя, как показано на FGR.6. Когда две и более загрузки должны быть запитаны одновременно, они должны быть подключены в параллельно. Это гарантирует, что полное линейное напряжение от L1 и L2 будет появляются при каждой загрузке. Если нагрузки подключены последовательно, ни получит все сетевое напряжение, необходимое для правильной работы. Отзывать что при последовательном соединении нагрузок приложенное напряжение делится между каждая из нагрузок. При параллельном подключении нагрузок напряжение на каждая нагрузка одинакова и равна приложенному напряжению.
Управляющие устройства, такие как переключатели, кнопки, концевые выключатели и давление переключатели управляют нагрузками. Обычно подключаются устройства, запускающие нагрузку. параллельно, а устройства, останавливающие нагрузку, подключаются последовательно. Для Например, несколько пусковых кнопок управляют одним и тем же пускателем двигателя. катушка будет подключена параллельно, а несколько кнопок останова будут подключены последовательно (FGR.7). Все устройства управления идентифицированы с соответствующей номенклатурой устройства (например,г., стоп, старт). Точно так же все нагрузки должны иметь аббревиатуры для обозначения тип нагрузки (например, M для катушки стартера). Часто дополнительный числовой суффикс используется для различения нескольких устройств одного типа. Для Например, цепь управления с двумя пускателями двигателя может идентифицировать катушки как M1 (контакты 1-M1, 2-M1 и т. д.) и M2 (контакты 1-M2, 2-M2 и т. д.).
FGR. 6 Нагрузки размещены справа, а контакты слева.
FGR. 7 Стопорные устройства подключаются последовательно, а пусковые устройства подключаются параллельно.
FGR. 8 Лестничная диаграмма с подробным описанием номеров ступеней.
По мере увеличения сложности схемы управления ее лестничная диаграмма увеличивается в размере, что затрудняет чтение и поиск контактов контролируются какой катушкой. «Нумерация звеньев» используется для помощи в чтении и понимании больших лестничных диаграмм. Каждая ступенька обозначена лестничная диаграмма (ступеньки 1, 2, 3 и т. д.).), начиная с верхней ступеньки и чтение вниз. Ступеньку можно определить как полный путь от L1 до L2, содержащий нагрузку. FGR. 8 иллюстрирует маркировку каждой ступени в линейная диаграмма с тремя отдельными ступенями:
• Путь для ступени 1 завершается нажатием кнопки реверса, цикл кнопка запуска, концевой выключатель 1LS и катушка 1CR.
• Путь для ступени 2 завершается с помощью кнопки реверса, реле контакт 1CR-1, концевой выключатель 1LS и катушка 1CR.Обратите внимание, что ступень 1 и ступень 2 идентифицируются как две отдельные ступени, даже если они контролируют одну и ту же ступеньку. нагрузка. Причина в том, что либо кнопка запуска цикла, либо контакт реле 1CR-1 завершает путь от L1 до L2.
• Путь для ступени 3 завершается через контакт реле 1CR-2 к и соленоид SOL A.
«Числовые перекрестные ссылки» используются вместе с нумерация звеньев для нахождения вспомогательных контактов, управляемых катушками в цепь управления.Иногда вспомогательные контакты не находятся в непосредственной близости на лестничной диаграмме к катушке, контролирующей их работу. Чтобы найти эти контакты, номера звеньев указаны справа от L2 в скобках. на звене катушки, контролирующей их работу.
В примере, показанном в FGR. 9:
• Контакты катушки 1CR появляются в двух разных местах в линии. диаграмма.
• Цифры в скобках справа от линейной диаграммы обозначают расположение линии и тип контактов, контролируемых катушкой.
• Цифры в скобках для нормально разомкнутых контактов имеют без специальной маркировки.
• Номера, используемые для нормально замкнутых контактов, обозначаются подчеркиванием. или завышение числа, чтобы отличить их от нормально разомкнутых контактов.
• В этой схеме катушка управляющего реле 1CR управляет двумя наборами контактов: 1CR-1 и 1CR-2. Это показано цифровым кодом 2, 3.
Для правильного подключите проводники цепи управления к их компонентам в цепи.Метод, используемый для идентификации проводов, зависит от производителя. FGR. 10 иллюстрирует один метод, в котором каждая общая точка в цепи присвоен справочный номер:
• Нумерация начинается со всех проводов, подключенных к стороне L1 устройства. блок питания обозначен номером 1.
• Продолжение в верхнем левом углу диаграммы со звеном 1, новый номер назначается последовательно для каждого провода, пересекающего компонент.
• Электрически общие провода обозначены одинаковыми номерами.
• После того, как был назначен первый провод, напрямую подключенный к L2 (в в этом случае 5) все остальные провода, напрямую подключенные к L2, будут помечены. с таким же номером.
• Количество компонентов в первой строке лестничной диаграммы определяет номер провода для проводников, напрямую подключенных к L2.
FGR. 9 Числовая система перекрестных ссылок.
FGR. 10 Нумерация проводов.
FGR. 11 Альтернативная идентификация проводки с документацией.
FGR. 12 Представление механических функций.
FGR. 13 Заземление управляющего трансформатора: (а) управляющий трансформатор
правильно заземлен на сторону L2 цепи; (б) управляющий трансформатор
неправильно заземлен на стороне L1 цепи.
FGR. 11 иллюстрирует альтернативный метод присвоения номеров проводов.В этом методе все провода, напрямую подключенные к L1, обозначаются 1, а все подключенные к L2 обозначены 2. После всех проводов с 1 и 2 отмечены, остальные номера присваиваются в последовательном порядке начиная с верхнего левого угла диаграммы.
Преимущество этого метода в том, что все провода подключаются напрямую. до L2 всегда обозначаются как 2. Лестничные диаграммы могут также содержать серию описаний, расположенных справа от L2, которые используются для документирования функция схемы, управляемая устройством вывода.
Пунктирная линия обычно указывает на механическое соединение. Не делают ошибка чтения ломаной линии как части электрической цепи. В FGR. 12 вертикальные пунктирные линии на кнопках прямого и обратного хода указывают, что их нормально замкнутые и нормально разомкнутые контакты механически связаны. Таким образом, нажатие на кнопку откроет один набор контактов. и закройте другой. Пунктирная линия между катушками F и R указывает что они механически взаимосвязаны.Следовательно, катушки F и R не могут одновременное закрытие контактов благодаря механическому блокирующему действию устройства.
Когда управляющий трансформатор должен иметь одну из вторичных линий заземлен, заземление должно быть выполнено так, чтобы случайное заземление в цепи управления не запустит двигатель или не сделает кнопку остановки или управление не работает. FGR. 13a иллюстрирует вторичный элемент управления. трансформатор должным образом заземлен на сторону L2 цепи.Когда цепь исправна, вся цепь слева от катушки M является Незаземленная цепь (это «горячая» нога). Путь неисправности к земле в незаземленной цепи вызовет короткое замыкание, вызывая предохранитель управляющего трансформатора разомкнут. FGR. 13b показывает ту же схему неправильно заземлен на L1. В этом случае короткое замыкание на массу на слева от катушки M возбудит катушку, неожиданно запустив двигатель. Предохранитель не сработает, чтобы размыкать цепь и нажимать стопор, но тонна не обесточила бы катушку М.Повреждение оборудования и травмы персонала было бы очень вероятно. Понятно, что выходные устройства должны быть подключены напрямую к заземленной стороне цепи.
ЧАСТЬ 1 ВИКТОРИНА
1. Определите, что означает термин «цепь управления двигателем».
2. Почему символы используются для обозначения компонентов на электрических схемах?
3. Электрическая цепь содержит три контрольных лампы. Что приемлемо можно ли использовать символ для обозначения каждого источника света?
4.Опишите базовую структуру принципиальной электрической схемы.
5. Линии используются для обозначения электрических проводов на схемах.
а. Чем провода, по которым проходит большой ток, отличаются от проводов, нести слабый ток?
г. Как провода, которые пересекаются, но не соединяются электрически, дифференцируются из тех, которые подключаются электрически?
6. Контакты кнопочного переключателя размыкаются при нажатии кнопки. К какому типу кнопок это относится? Почему?
7.Катушка реле с маркировкой TR содержит три контакта.
Какую приемлемую кодировку можно использовать для идентификации каждого из контактов?
8. Ступенька на лестничной диаграмме требует наличия двух нагрузок, каждая из которых рассчитана на полное линейное напряжение, запитывается, когда переключатель замкнут. Какая связь нагрузок необходимо использовать? Почему?
9. Одним из требований для конкретного двигателя является то, что шесть значений давления выключатели должны быть замкнуты до того, как двигатель будет запущен.Какие связи переключателей надо использовать?
10. Маркировка проводов на нескольких проводах электрического панели проверяются и обнаруживают, что имеют тот же номер. Что это значит?
11. Пунктирная линия, обозначающая механическую функцию на электрическом Схема ошибочно принята за проводник и подключена как таковая. Какие два типа проблем, к которым это могло привести?
ЧАСТЬ 2 Электромонтажные схемы – однолинейные блочные схемы
Схемы подключения
FGR.14 Типовая электрическая схема пускателя двигателя.
Этот материал и связанные с ним авторские права являются собственностью и используются с разрешения Schneider Electric.
Электрические схемы используются для демонстрации двухточечной проводки между компонентами. электрической системы, а иногда и их физического отношения друг к другу. Они могут включать идентификационные номера проводов, присвоенные проводникам в лестничная диаграмма и / или цветовое кодирование. Катушки, контакты, двигатели и как показано в фактическом положении, которое можно было бы найти на установке.Эти схемы полезны при подключении систем, потому что соединения могут делаться именно так, как показано на схеме. Схема подключения дает необходимая информация для фактического подключения устройства или группы устройств или для физического отслеживания проводов при поиске и устранении неисправностей. Тем не мение, По такому рисунку сложно определить работу схемы.
FGR. 15 Прокладка проводов в кабелях и коробах.
FGR.16 Электромонтаж с внутренними подключениями магнитного пускателя
опущено.
Схемы подключения представлены для большинства электрических устройств. FGR. 14 иллюстрирует типовая электрическая схема, предусмотренная для пускателя двигателя. На диаграмме показано, как можно точнее, фактическое расположение всех составных частей устройства. Открытые клеммы (отмечены открытым кружком) и стрелки представляют собой соединения, сделанные пользователем. Обратите внимание, что жирные линии обозначают цепь питания, а более тонкими линиями показана схема управления.
Прокладка проводов в кабелях и трубопроводах, как показано в FGR. 15, является важной частью электрической схемы. Схема компоновки кабелепровода указывает начало и конец электропроводки и показаны приблизительные путь, пройденный любым каналом при переходе от одной точки к другой. Интегрированный с чертежом такого рода – кабелепровод и спецификация кабеля, которые сводит в таблицу каждый канал по количеству, размеру, функциям и услугам, а также включает количество и размер проводов, проложенных в кабелепроводе.
На электрических схемах показаны подробности реальных подключений. Редко они попытаться показать полную информацию о монтажной плате или оборудовании. В схема подключения FGR. 15, приведенный к более простому виду, показан на FGR. 16 без внутренних соединений магнитного пускателя. Провода заключенные в кабелепровод C1, являются частью силовой цепи и рассчитаны на текущее требование двигателя. Провода, заключенные в кабелепровод C2, являются частью цепи управления нижнего напряжения и рассчитаны на текущие требования управляющего трансформатора.
FGR. 17 Комбинированная разводка и лестничная диаграмма.
FGR. 18 Однолинейная схема моторной установки.
FGR. 19 Однолинейная схема системы распределения электроэнергии.
Электрические схемы часто используются вместе с лестничными диаграммами для упростить понимание процесса управления. Примером этого является проиллюстрировано в FGR. 17. На схеме подключения показаны питание и управление. схемы.
Включена отдельная лестничная диаграмма цепи управления, чтобы более четкое понимание его работы. Следуя лестничной диаграмме видно, что контрольная лампа подключена так, что она будет гореть всякий раз, когда стартер находится под напряжением.
Силовая цепь опущена для наглядности, так как ее можно проследить. легко на монтажной схеме (жирные линии).
Однолинейные схемы
Однолинейная диаграмма (также называемая однострочной) использует символы вместе с единой линией, чтобы показать все основные компоненты электрической цепи.Некоторые производители оборудования для управления двигателем используют однолинейный рисунок, например тот, что показан в FGR. 18, как дорожная карта в изучении моторного контроля инсталляции. Установка сведена к максимально простой форме, тем не менее, он по-прежнему показывает основные требования и оборудование в цепи.
Энергетические системы – это чрезвычайно сложные электрические сети, которые могут географически распространяться на очень большие территории. По большей части они также трехфазные сети – каждая силовая цепь состоит из трех проводов и все устройства, такие как генераторы, трансформаторы, выключатели и разъединители и т.п.установлен во всех трех фазах. Эти системы могут быть настолько сложными, что полная стандартная схема, показывающая все соединения, непрактична. В этом случае использование однолинейной схемы – это краткий способ сообщение базовой компоновки компонента энергосистемы. FGR. 19 показана однолинейная схема малой системы распределения электроэнергии. Эти типы диаграмм также называют схемами «стояка мощности».
Блок-схемы
Блок-схема представляет основные функциональные части сложных электрических / электронных системы блоками, а не символами.Отдельные компоненты и провода не показаны. Вместо этого каждый блок представляет электрические цепи, которые выполнять определенные функции в системе. Функции, которые выполняют схемы написаны в каждом блоке.
Стрелки, соединяющие блоки, указывают общее направление тока пути.
FGR. 20 показана блок-схема частотно-регулируемого электродвигателя переменного тока. Частотно-регулируемый привод регулирует скорость двигателя переменного тока, изменяя частота, подаваемая на двигатель.Привод также регулирует мощность напряжение пропорционально выходной частоте, чтобы обеспечить относительно постоянное соотношение (вольт на герц; В / Гц) напряжения к частоте, если требуется характеристиками двигателя переменного тока для создания соответствующего крутящего момента. В Функция каждого блока резюмируется следующим образом:
• На выпрямительный блок подается трехфазное питание частотой 60 Гц.
• Блок выпрямителя – это схема, которая преобразует или выпрямляет трехфазную Переменное напряжение в постоянное.
• Блок инвертора – это схема, которая инвертирует или преобразует вход постоянного тока. напряжение обратно в напряжение переменного тока.
Инвертор состоит из электронных переключателей, которые переключают напряжение постоянного тока. включение и выключение для получения регулируемой выходной мощности переменного тока с желаемой частотой и напряжение.
FGR. 20 Структурная схема частотно-регулируемого привода переменного тока.
ЧАСТЬ 2 ВИКТОРИНА
1. Каково основное назначение электрической схемы?
2.Помимо цифр, какой еще метод можно использовать для идентификации провода на схеме подключения?
3. Какую роль может играть электрическая схема в поиске неисправностей двигателя? схема управления?
4. Перечислите фрагменты информации, которые, скорее всего, можно найти в канале. и перечень кабелей для установки двигателя.
5. Объясните цель использования электрической схемы двигателя вместе с с лестничной схемой цепи управления.
6. Каково основное назначение однолинейной схемы?
7. Каково основное назначение блок-схемы?
8. Объясните функцию выпрямительного и инверторного блоков переменной частоты. Привод переменного тока.
ЧАСТЬ 3 Клеммные соединения двигателя
Классификация двигателей
Электродвигатели были важным элементом нашей промышленной и коммерческая экономика более века.
Большинство используемых сегодня промышленных машин приводится в действие электродвигателями. Отрасли перестанут функционировать, если не будут должным образом спроектированы, установлены, и обслуживаемые системы управления двигателем. В целом моторы классифицируются в зависимости от типа используемой мощности (переменного или постоянного тока) и принципа действия двигателя операции. «Генеалогическое древо» моторных типов довольно обширно, как показано вверху следующей страницы:
В США Институт инженеров по электротехнике и электронике (IEEE) устанавливает стандарты моторного тестирования и методологий тестирования, в то время как Национальная ассоциация производителей электрооборудования (NEMA) готовит стандарты характеристик двигателя и классификации.
Дополнительно должны быть установлены двигатели в соответствии со статьей 430. Национального электротехнического кодекса (NEC).
Подключение двигателя постоянного тока
В промышленных приложениях используются двигатели постоянного тока, поскольку соотношение скорость-крутящий момент можно легко варьировать. Двигатели постоянного тока имеют регулируемую скорость. плавно спускаемся до нуля, сразу после чего разгон в обратном направление. В аварийных ситуациях двигатели постоянного тока могут подавать более пяти раз. номинальный крутящий момент без остановки.Динамическое торможение (энергия, генерируемая двигателем постоянного тока подается на резисторную сетку) или рекуперативное торможение (двигатель постоянного тока энергия возвращается в источник питания двигателя постоянного тока) может быть получено с двигателями постоянного тока в приложениях, требующих быстрой остановки, что устраняет необходимость в или уменьшение размеров механического тормоза.
FGR. 21 показаны символы, используемые для обозначения основных частей прямого составной двигатель постоянного тока.
FGR. 21 Детали составного двигателя постоянного тока.
Вращающаяся часть двигателя называется якорем; стационарный часть двигателя называется статором, который содержит серию обмотка возбуждения и шунтирующая обмотка возбуждения. В машинах постоянного тока A1 и A2 всегда указывают выводы якоря, S1 и S2 указывают последовательные выводы возбуждения, а Fl и F2 обозначают выводы шунтирующего поля.
Это вид возбуждения поля, обеспечиваемый полем, который отличает один тип двигателя постоянного тока от другого; конструкция арматуры ничего общего с классификацией мотора.Есть три основных типа двигателей постоянного тока, классифицируемых по способу возбуждения поля как следует:
• В шунтирующем двигателе постоянного тока (FGR. 22) используется шунт со сравнительно высоким сопротивлением. обмотка возбуждения, состоящая из множества витков тонкой проволоки, соединенных параллельно (шунт) с арматурой.
• В последовательном двигателе постоянного тока (FGR. 23) используется последовательное поле с очень низким сопротивлением. обмотка, состоящая из очень небольшого количества витков толстого провода, соединенных последовательно с арматурой.
• Составной двигатель постоянного тока (FGR. 24) использует комбинацию шунтирующего поля (многие витков тонкой проволоки) параллельно якорю, а последовательное поле (несколько витков толстой проволоки) последовательно с якорем.
FGR. 22 Стандартные шунтирующие соединения двигателя постоянного тока для вращения против часовой стрелки и
вращение по часовой стрелке.
FGR. 23 Стандартные соединения двигателя постоянного тока для вращения против часовой стрелки и
вращение по часовой стрелке.
FGR.24 стандартных соединения постоянного (кумулятивного) двигателя для счетчика часов
мудрое и правое вращение. Для дифференциального соединения, обратное
S1 и S2.
Все соединения, показанные на рисунках 22, 23 и 24, предназначены для вращения против часовой стрелки. и вращение по часовой стрелке, обращенное к концу, противоположному приводу (конец коллектора). Одна из целей нанесения маркировки на клеммы двигателей в соответствии с к стандарту, чтобы помочь в установлении соединений, когда предсказуемое вращение направление обязательно.Это может быть тот случай, когда неправильное вращение может привести к небезопасной эксплуатации или повреждению. Маркировка клемм обычно используется пометить только те клеммы, к которым нужно подключать извне схемы.
Направление вращения двигателя постоянного тока зависит от направления магнитное поле и направление тока в якоре. Если либо направление поля или направление тока, протекающего через якорь реверсируется, двигатель вращается в обратном направлении.Тем не мение, если оба этих фактора поменять местами одновременно, двигатель будет продолжайте вращаться в том же направлении.
Подключение двигателя переменного тока
Асинхронный двигатель переменного тока является доминирующей технологией двигателей, используемых сегодня, что составляет более 90 процентов установленной мощности двигателей. Индукция двигатели доступны в однофазной (1?) и трехфазной (3?) конфигурациях, размерами от долей лошадиных сил до десятков тысяч Лошадиные силы.Они могут работать с фиксированной скоростью – обычно 900, 1200, 1800, или 3600 об / мин – или быть оснащенным регулируемым приводом.
Наиболее часто используемые двигатели переменного тока имеют конфигурацию с короткозамкнутым ротором. (FGR.25), названный так из-за вставленной в него алюминиевой или медной беличьей клетки. внутри железных пластин ротора. Нет физического электрического подключение к беличьей клетке. Ток в роторе индуцируется вращающееся магнитное поле статора.
Роторные модели, у которых витки проволоки вращают обмотки ротора, так же доступно. Это дорого, но обеспечивает больший контроль над двигателем. эксплуатационные характеристики, поэтому их чаще всего используют для особого крутящего момента приложений для ускорения и для приложений с регулируемой скоростью.
FGR. 25 Трехфазный асинхронный двигатель переменного тока с короткозамкнутым ротором.
FGR. 26 Асинхронный двигатель переменного тока с разделением фаз.
FGR.27 Соединения статора двухфазного двигателя с двойным напряжением.
ПОДКЛЮЧЕНИЯ ДЛЯ ОДНОФАЗНЫХ ДВИГАТЕЛЕЙ
Большинство однофазных асинхронных двигателей переменного мощности для источников питания от 120 до 240 В, 60 Гц. Хотя там это несколько типов однофазных двигателей, они в основном идентичны кроме средств запуска. “Двухфазный двигатель” наиболее широко используется для приложений со средним запуском (FGR.26). Операция сплит-двигателя кратко описывается следующим образом:
• Двигатель имеет пусковую и основную или рабочую обмотки, которые находятся под напряжением. при запуске мотора.
• Пусковая обмотка создает разность фаз для запуска двигателя. и отключается центробежным переключателем при приближении к рабочей скорости. Когда двигатель достигает примерно 75 процентов своей номинальной скорости при полной нагрузке, пусковая обмотка отключена от цепи.
• Мощность двигателя с расщепленной фазой составляет примерно ½ лошадиных сил. Популярные приложения включают вентиляторы, нагнетатели, бытовую технику, такую как стиральные машины и сушилки, и инструменты, такие как небольшие пилы или сверлильные станки, к которым нагрузка прилагается после двигатель набрал свою рабочую скорость.
• Двигатель можно реверсировать, переставив провода к пусковой обмотке. или основной обмотки, но не к обеим. Обычно отраслевой стандарт поменять местами провода пусковой обмотки
В двухфазном двигателе с двойным напряжением (FGR.27) ходовая обмотка разделен на две части и может быть подключен для работы от 120-вольтной или источник 240 В. Две обмотки подключаются последовательно при работе. от источника 240 В и параллельно для работы на 120 В.
Пусковая обмотка подключена к линиям питания низкого напряжения. и по одной линии до середины ходовых обмоток для высокого напряжения. Это гарантирует, что все обмотки получат 120 В, на которые они рассчитаны. работать в.Чтобы изменить направление вращения разветвителя с двумя напряжениями фазного двигателя, поменяйте местами два провода пусковой обмотки.
Двигатели с двойным напряжением подключаются для получения желаемого напряжения следующим образом. схема подключения на паспортной табличке.
Номинальная мощность двухфазного двигателя с двумя напряжениями составляет 120/240 В. любого типа двигателя с двойным напряжением, более высокое напряжение предпочтительнее, когда возможен выбор между напряжениями. Мотор использует столько же мощности и производит такое же количество лошадиных сил при работе от питание 120 В или 240 В.Однако, поскольку напряжение увеличивается вдвое с 120 В до 240 В ток уменьшается вдвое. Работа двигателя на этом пониженном уровень тока позволяет использовать проводники цепи меньшего диаметра и снижает потери мощности в линии.
FGR. 28 Двигатель с постоянным разделением конденсаторов.
Во многих однофазных двигателях конденсатор используется последовательно с одним из статоров. обмотки для оптимизации разности фаз между пусковой и рабочей обмотками для запуска.Результат – более высокий пусковой момент, чем у расщепленной фазы. мотор может производить. Есть три типа конденсаторных двигателей: конденсаторные. пуск, при котором фаза конденсатора находится в цепи только при пуске; постоянно разделенный конденсатор, в котором конденсаторные фазы в цепи как для запуска, так и для работы; и двухзначный конденсатор, в котором есть – разные значения емкости для запуска и работы. Перманентный раскол конденсаторный двигатель, изображенный на FGR.28, постоянно использует конденсатор соединены последовательно с одной из обмоток статора. Эта конструкция ниже по стоимости, чем двигатели с конденсаторным пуском, которые включают переключение конденсаторов системы. Установки включают компрессоры, насосы, станки, воздушные кондиционеры, конвейеры, воздуходувки, вентиляторы и другие труднодоступные для запуска приложения.
ПОДКЛЮЧЕНИЯ ТРЕХФАЗНЫХ ДВИГАТЕЛЕЙ
Трехфазный асинхронный двигатель переменного тока является наиболее распространенным двигателем, используемым в коммерческих и промышленное применение.
Однофазные двигатели большей мощности обычно не используются, так как они неэффективны по сравнению с трехфазными двигателями. Кроме того, однофазные двигатели не запускаются самостоятельно на своих рабочих обмотках, в отличие от трехфазных моторы.
Двигатели переменного тока большой мощности обычно бывают трехфазными.
Все трехфазные двигатели имеют внутреннюю конструкцию с рядом отдельных намотанные катушки. Независимо от количества отдельных катушек, индивидуальные катушки всегда будут подключены вместе (последовательно или параллельно) для получения трех отдельные обмотки, которые называются фазой A, фазой B и фазой С.Все трехфазные двигатели подключены таким образом, чтобы фазы были подключены друг к другу. конфигурация звезды (Y) или треугольника (?), как показано на FGR. 29.
ПОДКЛЮЧЕНИЯ ДВУХНАПРЯЖНЫХ ДВИГАТЕЛЕЙ
FGR. 29 Трехфазные соединения двигателя звездой и треугольником.
Обычно производят трехфазные двигатели, которые могут быть подключены работать на разных уровнях напряжения.
Наиболее распространенное номинальное напряжение для трехфазных двигателей – 208/230/460. В.Всегда проверяйте характеристики двигателя или паспортную табличку на предмет надлежащего напряжения. номинал и схема подключения для способа подключения к источнику напряжения.
FGR. 30 иллюстрирует типичную идентификацию терминала и подключение таблица для девятипроводного трехфазного двигателя с двойным напряжением, соединенным звездой. Один конец каждой фазы внутренне постоянно подключен к другим фазам.
Каждая фазная катушка (A, B, C) разделена на две равные части и соединена последовательно для работы с высоким напряжением или параллельно для работы с низким напряжением операция.Согласно номенклатуре NEMA, эти отведения имеют маркировку от T1 до Т9. Высоковольтные и низковольтные соединения приведены в прилагаемых таблица соединений и клеммная колодка двигателя. Тот же принцип серии Применяется (высоковольтное) и параллельное (низковольтное) подключение катушек для трехфазных двигателей с двойным напряжением, соединенных звездой-треугольником. В любом случае обратитесь к электросхеме, поставляемой с двигателем, чтобы убедиться в правильности подключения. для желаемого уровня напряжения.
Прод. к части 2 >>
Схемы электрических соединений
Результаты обученияЭлектрооборудование Электромонтаж Схемы � Опишите различные компоненты электрической схемы. (например, маркировка проводов, размер проводов, символы компонентов, заземление, взаимосвязь между компонентами и цепями, распределение мощности) � Определите различные электрические символы. (SAE, DIN, Valley Forge) � Опишите, как читать электрические схемы.� Опишите различные варианты использования электрических схем. � Опишите различия между различными типами электрических схем. (Графические, изометрические, блочные, принципиальные и электрические схемы, распределение питания и заземления) � Обозначьте электрические цепи на схеме. � Рекомендовать диагностические стратегии с использованием электрических схем и испытательного оборудования. Электропроводка Схемы В 1950 году в грузовике было около 200 электрических цепей. Сегодня в коммерческих автомобилях HD используется более 3000 схем.В 1950 году основной интерес вызвали цепи запуска, зажигания и освещения. Теперь электронное управление, применяемое к каждой системе транспортного средства, и объединенные в сеть электрические системы значительно усложнили современные транспортные средства. К традиционным системам транспортных средств добавляются удобные устройства, такие как навигационные и мультимедийные устройства, системы безопасности транспортных средств, специальные схемы кузовостроения и т. Д. Правильное понимание и интерпретация электрической схемы важны для техника, чтобы сократить время диагностики электрических проблем и исключить догадки.Схема подключения обычно позволяет технику отслеживать цепи от источников питания через переключатели, компоненты, устройство защиты цепи, жгуты, соединительные блоки, соединители и заземления. Диаграммы Электромонтаж составляются производителями в различных стилях, чтобы с высокой степенью ясности отображать отдельные компоненты схемы и их расположение. Типы электрических схем включают в себя: � Карта � Графическая � Схема � DIN (Нормы Немецкого института) � Карта Valley Forge Схемы На схемах на картах показана вся электрическая схема транспортного средства.Символы для компонентов обычно графические, что означает, что символ выглядит как компонент, который он представляет. Отдельные компоненты и их пространственное отношение друг к другу не обязательно передаются так четко, как логическое и разборчивое представление работы схемы. Вариантом схемы карты является линейная диаграмма. Эти
Как читать схемы подключения панели управления
Большая часть устранения неисправностей, ремонта и построения электрической системы начинается с умения техника прочитать схему подключения.На схемах подключения показаны компоненты системы, а также их соединения.
Блог по теме: Идентификация и объяснение ключевых компонентов вашей промышленной панели управления
Будь то простой бытовой прибор или электрическая схема панели управления, большинство систем и устройств будут включать источники питания, заземление и переключатели. Однако на схемах панели управления будут показаны реле, пускатели двигателей, аварийные сигналы, реле и контрольные устройства.
Как читать электрические схемы
Хотя неопытному глазу они могут показаться чуждыми, символы на диаграммах должны напоминать физический объект, который они представляют.Антенна на схеме очень похожа на антенну, которую можно увидеть на старых телевизорах. Провода обычно обозначаются основными черными вертикальными линиями, идущими к каждому компоненту. Понятную схему будет довольно просто прочитать, если вы определите основные компоненты системы. Для целей статьи будет использоваться лестничная диаграмма:
Определите источник питания – частыми источниками питания являются коммерческие линии электропередач, генераторы и батареи. Источник питания переменного или постоянного тока зависит от конструкции и применения системы.Помимо хороших мер безопасности, лучше всего найти источник напряжения до начала работы с системой.
линий – Вертикальные линии (шины) образуют границы цепи и подают напряжение на компоненты. Пунктирными линиями показано внешнее оборудование (двигатели, пилотные устройства), которое все еще является частью системы. Горизонтальные линии (ступеньки лестницы) – это пути, по которым подается ток. Постоянные провода в системах управления пронумерованы так, чтобы каждый провод в электрически непрерывной точке имел одинаковый номер независимо от размера.
Выключатели и индикаторы– индикаторы и выключатели являются важной частью быстрого поиска и устранения неисправностей. Световые индикаторы являются индикаторами состояния системы (независимо от того, работают ли двигатели и активированы ли аварийные сигналы). Селекторные и испытательные переключатели позволяют техническим специалистам изолировать часть системы, минуя пилотные устройства, и избежать нарушения проводки.
Другие типы переключателей, обычно встречающиеся в системе промышленных панелей управления, включают:
- Поплавковые переключатели – размыкание и замыкание переключателя в зависимости от уровня жидкости в резервуарах
- Реле потока – контролирует уровни газов или жидкостей в трубах или трубопроводах
Схемы подключения дают общее представление о проводке и устройствах в системе.Возможность правильно читать диаграммы позволяет средствам промышленного управления обслуживать, эксплуатировать и устранять неисправности по мере необходимости.
Символы электрических подключений
Схемы подключения: Глава 2
Основные символыВ этом модуле мы познакомим вас с некоторыми из основных символов, которые вы найдете на схеме подключения.
Перейти к викторине!Легенда
Символ на схеме подключения обозначает конкретный электрический компонент в цепи.Прежде чем вы научитесь читать диаграмму, вы должны понять, что представляет каждый символ.
Напомним, что схемы подключения включают легенду. Легенда объясняет, что обозначают определенные символы на схеме. Легенда не объясняет, что означает каждый символ.
На рисунке справа показана легенда электрической схемы. Вы можете видеть, что каждая строка легенды состоит из символа и описания. Символ – это то, что вы увидите на диаграмме. Описание – это то, что означает этот символ.
Например, посмотрите на первый символ в легенде. Первый символ показывает тонкую сплошную линию. Рядом с строкой написано «заводская силовая разводка». Любые тонкие сплошные линии, которые вы видите на схеме, – это заводская силовая проводка.
СимволыНапомним, что резистор – это компонент, который снижает ток и напряжение, протекающие через цепь. Зигзагообразный символ представляет резистор на схеме подключения. На картинке справа вы можете увидеть символ резистора.
Напомним, что конденсатор используется для хранения электрической энергии в цепи.Символ «- | (-» представляет конденсатор на схеме подключения. Вы можете увидеть пример символа емкости на рисунке справа.
Напомним, что существует два типа конденсаторов:
Поляризованные конденсаторы имеют положительный полюс. и отрицательный конец. Неполяризованные конденсаторы не имеют положительного и отрицательного полюсов.
На рисунке справа вы можете увидеть символ поляризованного конденсатора. Поляризованный конденсатор имеет знак «+» и изогнутые линии.
На рисунке справа вы можете увидеть символ неполяризованного конденсатора.Неполяризованный конденсатор находится в левой части изображения. На нем две прямые линии и нет знака «+».
Катушка индуктивности – это катушка, которая накапливает электрическую энергию в виде магнитной энергии. Спиральная линия на схеме подключения представляет собой индуктор.
Напомним, что существует два типа тока: переменный и постоянный. Источники питания переменного и постоянного тока будут иметь разные символы.
Блок питания – это устройство, обеспечивающее питание системы. Символ источника питания переменного тока представляет собой круг с волной внутри.
Символ источника питания постоянного тока представляет собой круг со знаком «+» и «-» внутри круга.
Выключатель – это устройство, которое может отключать или завершать прохождение тока в цепи.
На схеме подключения используются два символа для переключателей:
Символ для разомкнутого переключателя,
Символ для замкнутого переключателя
Символ разомкнутого переключателя представляет собой прямую линию между два круга. Линия , а не , касается обоих кругов.
Символ замкнутого переключателя – прямая линия между двумя кружками. Линия – это , касающаяся обоих кругов.
На схеме вы увидите переключатели в разомкнутом или замкнутом состоянии. Если на схеме показан разомкнутый переключатель, он должен быть разомкнут, чтобы цепь работала. Если на схеме показан замкнутый переключатель, он должен быть замкнут, чтобы цепь работала.
В этом модуле вы узнали символы электропроводки для общих элементов на электрической схеме.Легенда будет определять определенные символы на диаграмме. Важно запоминать символы, чтобы вы могли быстро и эффективно читать основные электрические схемы.
В следующем модуле мы рассмотрим несколько более сложных схемных символов.
Сложные символы
В этом модуле мы познакомим вас с некоторыми символами, которые вы можете увидеть на сложной схеме подключения.
Перейти к викторине!Легенда
Напомним, что на схемах подключения используются символы для обозначения конкретного электрического компонента.Прежде чем вы научитесь читать диаграмму, вы должны понять, что означает каждый символ.
Напомним, что схемы подключения включают легенду. В легенде указано, что представляют некоторые символы на схеме.
Например, на рисунке справа показана легенда электрической схемы. Вы можете видеть, что каждая строка легенды имеет символ и описание. Символ – это то, что вы увидите на диаграмме. Описание – это то, что означает этот символ.
ОбозначенияНапомним, что контактор – это реле, используемое для цепей с более высоким током.
Контакторы имеют два состояния:
На рисунке справа вы можете увидеть символ замкнутого контактора. Напомним, что элементы управления в цепи могут открывать или закрывать переключатели.
На рисунке справа вы можете увидеть символ разомкнутого контактора.
Контакторы будут показаны на схеме подключения в разомкнутом или замкнутом состоянии. Состояние контактора на схеме – это состояние, в котором контактор должен находиться для работы цепи. Например, если на схеме показан разомкнутый контактор, то для функционирования цепи контактор должен быть разомкнут.
Реле – это тип переключателя. Контроллер может дистанционно открывать или закрывать реле. Например, термостат, включающий нагреватель, является примером реле. Термостат подает сигнал на реле, чтобы открыть или закрыть. Открытие или закрытие реле включает нагрев.
Вы можете увидеть пример символа реле на картинке справа.
Трансформатор – это электрическое устройство, передающее напряжение и ток между цепями.
Напомним, что переключатель перегрузки используется для защиты цепи от скачков тока / напряжения.Символ переключателя перегрузки выглядит как касание двух C.
Реле высокого давления размыкает цепь при обнаружении слишком высокого давления. Реле высокого давления часто можно встретить в установках HVAC.
Реле низкого давления размыкает цепь, когда в системе слишком низкое давление.
У некоторых переключателей есть задержка по времени между открытием и закрытием. У переключателя с задержкой по времени будет вертикальная линия в переключателе и ветвь внизу. Ветвь внизу указывает на то, что это переключатель с временной задержкой.
Символом двигателя является круг с буквой M в центре.
Обмотка обозначается спиральной катушкой. Обмотки можно найти в таких компонентах, как двигатели или компрессоры.
Напомним, что предохранитель – это устройство, используемое для защиты цепей от скачков тока или напряжения. Символ предохранителя выглядит как символ волны (~).
Линии между символами на схеме обозначают проводку. Пунктирные и сплошные линии представляют на схеме разные типы проводки.В легенде будет определение каждого типа проводки в цепи.
Полевая проводка – это проводка, которую техник или установщик должен выполнить на месте. Пунктирная линия обозначает полевую проводку на схемах.
Заводская проводка – это проводка, выполненная на заводе перед продажей продукта. Вам не нужно подключать ничего, что помечено заводской проводкой. Сплошная линия представляет на схеме заводскую электропроводку.
Мы рассмотрели много символов. Что делать, если вы его забыли? Как правило, лучший способ – это Google символы схемы подключения.В Google есть изображения, на которых показаны общие символы электрических схем.
В этом модуле вы выучили некоторые сложные символы, которые вы увидите на схеме подключения. Эти символы важно запомнить, чтобы вы могли быстро прочитать диаграмму.
Вопрос №1: Есть только один тип конденсатора.
True
False
Прокрутите вниз, чтобы найти ответ …
Ответ: False
Существует два типа конденсаторов.Конденсаторы могут быть поляризованными или неполяризованными.
Вопрос № 2: Поляризованный конденсатор будет иметь «+» и «-» на каждом конце конденсатора.
True
False
Прокрутите вниз, чтобы найти ответ …
Ответ: True
Верно, поляризованный конденсатор имеет положительную и отрицательную клеммы. Знак + и – будет отмечать, какой конец конденсатора положительный или отрицательный.
Вопрос № 3: Круг с волной (~) внутри круга представляет источник питания переменного тока.
True
False
Прокрутите вниз, чтобы найти ответ …
Ответ: True
Верно, блок питания переменного тока будет иметь кружок с волной внутри. Напомним, что символ ~ означает переменный ток.
Вопрос № 4: Источник питания постоянного тока будет иметь кружок со знаком «+» и «-» в круге.
Верно
Неверно
Прокрутите вниз, чтобы найти ответ…
Ответ: True
Верно, у блока питания постоянного тока будет кружок с +/- в центре. +/- обозначает полярность источника питания постоянного тока. Напомним, что постоянный ток течет только в одном направлении, поэтому каждый компонент имеет положительный и отрицательный конец.
Вопрос № 5: Открытый переключатель имеет две окружности с линией, которая не касается обоих окружностей.
Верно
Неверно
Прокрутите вниз, чтобы найти ответ…
Ответ: Верно
Верно, символ разомкнутого переключателя – это две окружности с линией между ними. Если линия касается обоих кругов, то переключатель замкнут. Если линия не касается обоих кругов, она открыта.
Вопрос № 6: Контакторы имеют два символа: один для разомкнутого контактора и один для замкнутого контактора.
Верно
Неверно
Прокрутите вниз, чтобы найти ответ…
Ответ: Верно
Верно, на схеме подключения контакторы могут отображаться в двух состояниях. Символ контактора может указывать на то, что цепь разомкнута или замкнута.
Вопрос № 7: Положение контактора на схеме – это положение, в котором переключатель должен находиться для правильной работы цепи.
Верно
Ложно
Прокрутите вниз, чтобы найти ответ …
Ответ: Верно
Верно, символ контактора на схеме представляет положение, в котором контактор должен быть для правильной работы схемы.
Вопрос № 8: В каких компонентах вы найдете обмотки?
Двигатели
Компрессоры
Все вышеперечисленное
Прокрутите вниз, чтобы найти ответ …
Ответ: Все вышеперечисленное
Вы найдете внутри двигатели и компрессоры.
Вопрос № 9: Полевая проводка – это проводка, которая:
Техник должен выполнять на месте
Производитель подключил
Можно игнорировать
907 Все вышеперечисленное
907 Все вышеперечисленное
Прокрутите вниз, чтобы найти ответ…
Ответ: Техник должен выполнять в полевых условиях
Полевая проводка – это электромонтаж, который техник должен выполнять в полевых условиях. Обычно пунктирная линия обозначает полевую проводку.
Вопрос № 10: Заводская проводка – это проводка, которая:
Техник должен выполнять в полевых условиях
Производитель подключил
Можно игнорировать
907 Все вышеперечисленное
907 Все вышеперечисленное
Прокрутите вниз, чтобы найти ответ…
Ответ: Заводская проводка
Заводская проводка – это проводка, выполненная производителем. Технику не нужно беспокоиться о разводке заводской проводки. Обычно сплошная линия обозначает заводскую проводку.
% PDF-1.4 % 1013 0 объект > эндобдж xref 1013 91 0000000016 00000 н. 0000002194 00000 н. 0000002398 00000 н. 0000002552 00000 н. 0000002585 00000 н. 0000002648 00000 н. 0000002797 00000 н. 0000003538 00000 н. 0000003921 00000 н. 0000003990 00000 н. 0000004155 00000 н. 0000004267 00000 н. 0000004332 00000 н. 0000004399 00000 н. 0000004464 00000 н. 0000004595 00000 н. 0000004660 00000 н. 0000004760 00000 н. 0000004823 00000 н. 0000004891 00000 н. 0000004961 00000 н. 0000005113 00000 п. 0000005267 00000 н. 0000005420 00000 н. 0000005574 00000 н. 0000005726 00000 н. 0000005879 00000 п. 0000006032 00000 н. 0000006187 00000 н. 0000006344 00000 п. 0000006500 00000 н. 0000006655 00000 н. 0000006809 00000 н. 0000006965 00000 н. 0000007121 00000 н. 0000007277 00000 н. 0000007431 00000 н. 0000007586 00000 п. 0000007687 00000 н. 0000007787 00000 н. 0000007888 00000 н. 0000007989 00000 п. 0000008091 00000 н. 0000008191 00000 п. 0000008288 00000 н. 0000008385 00000 п. 0000008483 00000 н. 0000008581 00000 н. 0000008679 00000 н. 0000008777 00000 н. 0000008875 00000 н. 0000008973 00000 н. 0000009073 00000 н. 0000009171 00000 п. 0000009271 00000 н. 0000009369 00000 п. 0000009469 00000 н. 0000009569 00000 н. 0000009667 00000 н. 0000009767 00000 н. 0000009865 00000 н. 0000009964 00000 н. 0000010063 00000 п. 0000010162 00000 п. 0000010260 00000 п. 0000010358 00000 п. 0000010458 00000 п. 0000010556 00000 п. 0000010655 00000 п. 0000010753 00000 п. 0000010852 00000 п. 0000010950 00000 п. 0000011048 00000 п. 0000011148 00000 п. 0000011246 00000 п. 0000011344 00000 п. 0000011444 00000 п. 0000011544 00000 п. 0000011644 00000 п. 0000011792 00000 п. 0000012897 00000 п. 0000013118 00000 п. 0000014225 00000 п. 0000014438 00000 п. 0000014552 00000 п. L = (: / LtGr.TK | exffB @ D8 “8l ݜ v ֢ / [塷 Òri י͎6- ‘Например LYm (P [A% E конечный поток эндобдж 1103 0 объект 565 эндобдж 1020 0 объект > эндобдж 1021 0 объект > эндобдж 1022 0 объект \(Икс) / Родитель 1021 0 р / А 1026 0 Р / Первые 1027 0 руб. / Последний 1027 0 руб. / След. 1023 0 R / Счет 2 / C [0 0 0,50197] / F 2 >> эндобдж 1023 0 объект jOV) / Родитель 1021 0 р / Назад 1022 0 R / А 1024 0 R / C [1 0 0] / F 2 >> эндобдж 1024 0 объект > эндобдж 1025 0 объект ] fh) >> эндобдж 1026 0 объект > эндобдж 1027 0 объект !?\\П) / А 1028 0 Р / Первые 1029 0 руб. / Последний 1029 0 руб. / Родитель 1022 0 р / F 2 / Счет 1 >> эндобдж 1028 0 объект > эндобдж 1029 0 объект d ~ Oda \ n9 = MfCr # 8k) / А 1030 0 Р / Родитель 1027 0 р >> эндобдж 1030 0 объект > эндобдж 1031 0 объект foW.mNL) >> эндобдж 1032 0 объект > эндобдж 1033 0 объект ЗП) / Тип / Аннотация / Подтип / Ссылка / Rect [44.2482 573.41389 291.15315 608.81245] / Граница [0 0 0] / H / P >> эндобдж 1034 0 объект Из) / Тип / Аннотация / Подтип / Ссылка / Rect [54.86777 547.74994 292.03812 573.41389] / Граница [0 0 0] / H / P >> эндобдж 1035 0 объект > эндобдж 1036 0 объект ?П) / Тип / Аннотация / Подтип / Ссылка / Rect [54.86777 500,84685 294,69301 524,74088] / Граница [0 0 0] / H / P >> эндобдж 1037 0 объект HYU4) / Тип / Аннотация / Подтип / Ссылка / Rect [44,2482 475,18289 295,57797 487,57239] / Граница [0 0 0] / H / P >> эндобдж 1038 0 объект > эндобдж 1039 0 объект 9I_) / Тип / Аннотация / Подтип / Ссылка / Rect [53.09784 404.38577 291.15315 440.6693] / Граница [0 0 0] / H / P >> эндобдж 1040 0 объект @U \) x) / Тип / Аннотация / Подтип / Ссылка / Rect [55.75273 355,71275 292, 406,1557] / Граница [0 0 0] / H / P >> эндобдж 1041 0 объект “` Ха \ (18) / Тип / Аннотация / Подтип / Ссылка / Rect [323.89682 596.42296 561.06717 620.31699] / Граница [0 0 0] / H / P >> эндобдж 1042 0 объект = GOiI7H) / Тип / Аннотация / Подтип / Ссылка / Rect [323,89682 560,13943 561,95213 596,42296] / Граница [0 0 0] / H / P >> эндобдж 1043 0 объект грамм) / Тип / Аннотация / Подтип / Ссылка / Rect [323.89682 535.36044 562.8371 560.13943] / Граница [0 0 0] / H / P >> эндобдж 1044 0 объект
Bentley – Документация по продукту
MicroStation
Справка MicroStation
Ознакомительные сведения о MicroStation
Справка MicroStation PowerDraft
Ознакомительные сведения о MicroStation PowerDraft
Краткое руководство по началу работы с MicroStation
Справка по синхронизатору iTwin
ProjectWise
Справка службы автоматизации Bentley Automation
Ознакомительные сведения об услуге Bentley Automation
Bentley i-model Composition Server для PDF
Подключаемый модуль службы разметкиPDF для ProjectWise Explorer
Справка администратора ProjectWise
Справка службы загрузки данных ProjectWise Analytics
Коннектор ProjectWise для ArcGIS – Справка по расширению администратора
Коннектор ProjectWise для ArcGIS – Справка по расширению Explorer
Коннектор ProjectWise для ArcGIS Справка
Коннектор ProjectWise для Oracle – Справка по расширению администратора
Коннектор ProjectWise для Oracle – Справка по расширению Explorer
Коннектор ProjectWise для справки Oracle
Коннектор управления результатами ProjectWise для ProjectWise
Справка портала управления результатами ProjectWise
Ознакомительные сведения по управлению поставками ProjectWise
Справка ProjectWise Explorer
Справка по управлению полевыми данными ProjectWise
Справка администратора геопространственного управления ProjectWise
Справка ProjectWise Geospatial Management Explorer
Ознакомительные сведения об управлении геопространственными данными ProjectWise
Модуль интеграции ProjectWise для Revit Readme
Руководство по настройке управляемой конфигурации ProjectWise
Справка по ProjectWise Project Insights
ProjectWise Plug-in для Bentley Web Services Gateway Readme
ProjectWise ReadMe
Матрица поддержки версий ProjectWise
Веб-справка ProjectWise
Справка по ProjectWise Web View
Справка портала цепочки поставок
Управление эффективностью активов
Справка по AssetWise 4D Analytics
Справка по услугам AssetWise ALIM Linear Referencing Services
AssetWise ALIM Web Help
Руководство по внедрению AssetWise ALIM в Интернете
AssetWise ALIM Web Краткое руководство, сравнительное руководство
Справка по AssetWise CONNECT Edition
Руководство по внедрению AssetWise CONNECT Edition
Справка по AssetWise Director
Руководство по внедрению AssetWise
Справка консоли управления системой AssetWise
Руководство администратора мобильной связи TMA
Справка TMA Mobile
Анализ моста
Справка по OpenBridge Designer
Справка по OpenBridge Modeler
Строительное проектирование
Справка проектировщика зданий AECOsim
Ознакомительные сведения о конструкторе зданий AECOsim
AECOsim Building Designer SDK Readme
Генеративные компоненты для Building Designer Help
Ознакомительные сведения о компонентах генерации
Справка по OpenBuildings Designer
Ознакомительные сведения о конструкторе OpenBuildings
Руководство по настройке OpenBuildings Designer
OpenBuildings Designer SDK Readme
Справка по генеративным компонентам OpenBuildings
OpenBuildings GenerativeComponents Readme
Справка OpenBuildings Speedikon
Ознакомительные сведения OpenBuildings Speedikon
OpenBuildings StationDesigner Help
OpenBuildings StationDesigner Readme
Гражданское проектирование
Помощь в канализации и коммунальных услугах
Справка OpenRail ConceptStation
Ознакомительные сведения по OpenRail ConceptStation
Справка по OpenRail Designer
Ознакомительные сведения по OpenRail Designer
Справка конструктора надземных линий OpenRail
Справка OpenRoads ConceptStation
Ознакомительные сведения по OpenRoads ConceptStation
Справка по OpenRoads Designer
Ознакомительные сведения по OpenRoads Designer
Справка по OpenSite Designer
Файл ReadMe для OpenSite Designer
Строительство
ConstructSim Справка для руководителей
ConstructSim Исполнительный ReadMe
Справка издателя i-model ConstructSim
Справка по планировщику ConstructSim
ConstructSim Planner ReadMe
Справка стандартного шаблона ConstructSim
ConstructSim Work Package Server Client Руководство по установке
Справка по серверу рабочих пакетов ConstructSim
Руководство по установке сервера рабочих пакетов ConstructSim
Справка по управлению SYNCHRO
SYNCHRO Pro Readme
Энергия
Справка по Bentley Coax
Справка по Bentley Communications PowerView
Ознакомительные сведения о Bentley Communications PowerView
Справка по Bentley Copper
Справка по Bentley Fiber
Bentley Inside Plant Help
Справка конструктора Bentley OpenUtilities
Ознакомительные сведения о Bentley OpenUtilities Designer
Справка по подстанции Bentley
Ознакомительные сведения о подстанции Bentley
Справка конструктора OpenComms
Ознакомительные сведения о конструкторе OpenComms
Справка OpenComms PowerView
Ознакомительные сведения OpenComms PowerView
Справка инженера OpenComms Workprint
OpenComms Workprint Engineer Readme
Справка подстанции OpenUtilities
Ознакомительные сведения о подстанции OpenUtilities
PlantSight AVEVA Diagrams Bridge Help
Справка по мосту PlantSight AVEVA PID
Справка по экстрактору мостов PlantSight E3D
Справка по PlantSight Enterprise
Справка по PlantSight Essentials
PlantSight Открыть 3D-модель Справка по мосту
Справка по PlantSight Smart 3D Bridge Extractor
Справка по PlantSight SPPID Bridge
Promis.e Справка
Promis.e Readme
Руководство по установке Promis.e – управляемая конфигурация ProjectWise
Руководство пользователя sisNET
Руководство по настройке подстанции– управляемая конфигурация ProjectWise
Инженерное сотрудничество
Справка рабочего стола Bentley Navigator
Геотехнический анализ
PLAXIS LE Readme
Ознакомительные сведения о PLAXIS 2D
Ознакомительные сведения о программе просмотра вывода PLAXIS 2D
Ознакомительные сведения о PLAXIS 3D
Ознакомительные сведения о программе просмотра 3D-вывода PLAXIS
PLAXIS Monopile Designer Readme
Управление геотехнической информацией
Справка администратора gINT
Справка gINT Civil Tools Pro
Справка gINT Civil Tools Pro Plus
Справка коллекционера gINT
Справка по OpenGround Cloud
Гидравлика и гидрология
Справка Bentley CivilStorm
Справка Bentley HAMMER
Справка Bentley SewerCAD
Справка Bentley SewerGEMS
Справка Bentley StormCAD
Справка Bentley WaterCAD
Справка Bentley WaterGEMS
Проектирование шахты
Справка по транспортировке материалов MineCycle
Ознакомительные сведения по транспортировке материалов MineCycle
Моделирование мобильности
LEGION 3D Руководство пользователя
Справка по подготовке к LEGION CAD
Справка по построителю моделей LEGION
Справка по API симулятора LEGION
Ознакомительные сведения об API симулятора LEGION
Справка по симулятору LEGION
Моделирование
Bentley Посмотреть справку
Ознакомительные сведения о Bentley View
Анализ морских конструкций
SACS Close the Collaboration Gap (электронная книга)
Ознакомительные сведения о SACS
Анализ напряжений в трубах и сосудов
AutoPIPE Accelerated Pipe Design (электронная книга)
Советы новым пользователям AutoPIPE
Краткое руководство по AutoPIPE
AutoPIPE & STAAD.Pro
Завод Дизайн
Ознакомительные сведения об экспортере завода Bentley
Bentley Raceway and Cable Management Help
Bentley Raceway and Cable Management Readme
Bentley Raceway and Cable Management – Руководство по настройке управляемой конфигурации ProjectWise
Справка по OpenPlant Isometrics Manager
Ознакомительные сведения об OpenPlant Isometrics Manager
Справка OpenPlant Modeler
Ознакомительные сведения для OpenPlant Modeler
Справка по OpenPlant Orthographics Manager
Ознакомительные сведения для OpenPlant Orthographics Manager
Справка OpenPlant PID
Ознакомительные сведения о PID OpenPlant
Справка администратора проекта OpenPlant
Ознакомительные сведения для администратора проекта OpenPlant
Техническая поддержка OpenPlant Support
Ознакомительные сведения о технической поддержке OpenPlant
Справка по PlantWise
Ознакомительные сведения о PlantWise
Реальность и пространственное моделирование
Справка по карте Bentley
Справка по мобильной публикации Bentley Map
Ознакомительные сведения о карте BentleyСправка консоли облачной обработки ContextCapture
Справка редактора ContextCapture
Ознакомительные сведения для редактора ContextCapture
Мобильная справка ContextCapture
Руководство пользователя ContextCapture
Справка Декарта
Ознакомительные сведения о Декарте
Справка карты OpenCities
Ознакомительные сведения о карте OpenCities
OpenCities Map Ultimate для Финляндии Справка
Карта OpenCities Map Ultimate для Финляндии: ознакомительные сведения
Структурный анализ
Справка OpenTower iQ
Справка по концепции RAM
Справка по структурной системе RAM
STAAD Close the Collaboration Gap (электронная книга)
STAAD.Pro Help
Ознакомительные сведения о STAAD.Pro
Программа физического моделирования STAAD.Pro
Расширенная справка по STAAD Foundation
Дополнительные сведения о STAAD Foundation
Детализация конструкций
Справка ProStructures
Ознакомительные сведения о ProStructures
ProStructures CONNECT Edition Руководство по внедрению конфигурации
ProStructures CONNECT Edition Руководство по установке – Управляемая конфигурация ProjectWise
Схема электрических соединений
Схема электрических цепей
Расположение электрических цепей и их компонентов показано в виде схем, состоящих из символов и соединительных линий.Умение читать принципиальную схему важно при попытке отследить и исправить неисправность в электрической системе. Однако не все производители используют одни и те же символы, коды или номера клемм, но для успешного начала чтения схем подключения лучше всего следовать одной общей системе. Описанная здесь система основана на европейском стандарте DIN, в котором ток обычно течет сверху (клемма № 30) на нижнюю землю (клемма № 31) и слева направо.
Подробные сведения о том, как читать конкретную принципиальную схему, см. В руководстве по обслуживанию производителя.
Примечание:
Для целей обучения и тестирования схемы и информация доступны в автомобильных технических руководствах.
Обзор
Принципиальная схема (также известная как электрическая схема или электронная схема) – это графическое изображение электрической цепи. Он показывает различные компоненты схемы, а также силовые и сигнальные соединения между устройствами.Расположение компонентов и соединений на схеме обычно не соответствует их физическому расположению в готовом устройстве.
В отличие от блок-схемы или схемы компоновки, принципиальная схема показывает фактические используемые межсоединения проводов (хотя изображение не обязательно должно соответствовать тому, как на самом деле выглядит схема).
2.2 Коды “группы” идентификации компонентов
Отдельные компоненты, показанные на принципиальных схемах подключения, можно идентифицировать по коду «Группа», а также по номеру.Тогда все похожие предметы описываются одной и той же буквой «Группа», например узлы, например, подушка безопасности (водитель), обозначаются буквой «A», переключатели «S», все предохранители обозначаются буквой «F». Число или математическая цифра после буквы идентифицирует цепь, к которой принадлежит этот предохранитель. Лампочкам обозначается буква «E», двигателям – «M», а всем реле – «K», опять же, число после буквы идентифицирует цепь, к которой принадлежит этот компонент. Полный их список доступен в разделе «Информация о технической поддержке». .
2.3 Цветовой код соединительного провода
Цвета отдельных соединительных проводов можно определить по буквенному коду, который может быть сокращением фактического цвета провода на английском или немецком языке. Основные различия:
- Белый – WS (Weiss)
- Черный- sw (Swartz)
- Красный – RT (Rote)
- Желтый – ge (Gelb)
Полный список доступен в разделе «Информация о технической поддержке».
2.4 Примеры электрических схем
Примеры электрических схем, начинающиеся на странице 17, относятся к бензиновому двигателю Volkswagen® Golf 1.4 1997-06, код AHW. Эта первая диаграмма широко представляет ряд схематических диаграмм производителя. Особенностью этой схемы является идентификационный код терминала «X». Эта клемма эквивалентна клемме № 75 (аксессуары), это означает, что она находится под напряжением при включенном зажигании, но отключается во время запуска двигателя.Это необходимо для сохранения максимального напряжения аккумуляторной батареи для запуска двигателя.
2.5 Символы и коды, используемые в примерах схем
Некоторые из символов, используемых на этих схемах, не строго соответствуют стандарту DIN, но вместо этого они представляют собой графическое изображение отдельных компонентов, например тусклые лампы обозначаются иначе, чем дальний свет. Это система, используемая Autodata®, и она разработана, чтобы помочь вам «читать» или интерпретировать диаграммы от всех производителей двигателей.
Следующие диаграммы в этом блоке представляют собой попытку «поднять» или выделить отдельные цепи из общей схемы.Вам следует внимательно изучить каждую схему, а затем, когда вы почувствуете себя уверенно, пойти дальше и попрактиковаться в поиске и отслеживании этих цепей на аналогичных диаграммах других производителей. Помните, что цель этого упражнения – научить вас самостоятельно разрабатывать и конструировать эти схемы.
Назначение системы обозначений клемм для автомобильных электрических систем – обеспечить правильное и простое подключение проводов к различным устройствам, особенно в случае ремонта и замены оборудования.
DIN * 72552 – это стандарт DIN для номеров автомобильных электрических клемм, стандартизирующий почти каждый разъем в автомобиле с помощью числового кода.
Если количество обозначений клемм недостаточно (многоконтактные соединения), клеммы последовательно нумеруются с использованием цифр или букв, чье представление конкретных функций не стандартизировано.
3.1 Номера электрических соединений (DIN)
Обозначения клемм: (Выдержки из стандарта DIN 72 552) эти обозначения клемм не идентифицируют проводники, потому что устройства с разными обозначениями клемм могут быть подключены на двух концах каждого проводника.Если количество обозначений клемм недостаточно (многоконтактные соединения), клеммы последовательно нумеруются с использованием цифр или букв, чье представление конкретных функций не стандартизировано.
Терминал | Определение | |
15 | Переключение + после аккумуляторной батареи (выход переключателя зажигания / движения) | |
Аккумулятор | ||
30 | Вход от + клеммы аккумулятора, прямой | |
31 | Обратный провод к аккумулятору – клемма аккумулятора или заземление, прямой | |
Указатель поворота | ||
49 и 49a, 49b и 49c и т. Д. | Все клеммы № 49 должны быть подключены к указателям поворота | |
Стартер | ||
50 | Управление стартером, выключатель зажигания к выключателю стартера | |
54 | Лампа стоп-сигнала | |
Освещение | ||
55 | Противотуманные фары | |
56 (а, б) | Система фар | |
56a | Контрольная лампа дальнего и дальнего света | |
56b | Ближний свет | |
58 | Боковые габаритные фонари, задние фонари, фонари освещения номерного знака и фонари приборной панели | |
58L | Фонарь габаритный левый | |
58R | Фонарь габаритный, правый | |
Генераторы и регуляторы напряжения | ||
61 | Индикатор заряда генератора | |
Реле переключения | ||
85 | Выход, привод (конец обмотки на массу или отрицательный) | |
86 | Начало обмотки | |
87 | Выход на нагрузку от клеммы 30 | |
87a | Нормально замкнутый контакт |
* DIN «Deutsches Institut für Normung» – немецкая национальная организация по стандартизации и член ISO этой страны.
Дополнительную информацию можно найти в автомобильных технических руководствах.
4.1 Физические требования к электрическим соединениям
Электрические цепи требуют подключения для сборки или подключения источника питания к желаемой нагрузке. Сложные схемы будут иметь переключатели, предохранители, возможно, реле и т. Д., А также все разъемы и клеммные соединения на токоведущей и заземленной сторонах этих цепей. Цепи в автомобиле подвергаются нагрузкам от вибрации, влажности и изменения температуры, а также возможной коррозии из-за агрессивных жидкостей и газов.Вибрация и движение из-за теплового расширения также вызывают небольшое движение, которое приводит к трению между любыми соединителями, которые просто зажимаются вместе.
4.2 Требования к электрическим соединениям при эксплуатации
Следовательно, электрические соединители должны обеспечивать как можно более простой путь для электронов, чтобы покинуть одну сторону соединения и войти в прилегающий соединитель. Разъем также должен обеспечивать адекватную электрическую изоляцию для проходящего через него тока и предотвращать попадание влаги и грязи.
Соединения также должны быть спроектированы так, чтобы их можно было легко подключать или отключать и при этом иметь надежную систему блокировки.
4.3 Требования к электрическим разъемам для обслуживания
Электрические соединения не следует разбирать и собирать, за исключением случаев крайней необходимости, поскольку каждое движение увеличивает риск сопротивления трения, влияющего на качество электрического контакта поверхности с поверхностью.
Не должно быть возможности соединить неправильные разъемы / соединения вместе, так как это может иметь самые серьезные последствия, а наибольшая опасность – короткое замыкание и возгорание!
4.4 Последствия неправильного электрического подключения
В современных автомобилях используется ряд электрических разъемов для соединения секций жгута проводов с компонентами систем автомобиля. Поддержание надлежащего и безопасного функционирования этих разъемов очень важно, поскольку любая коррозия, возникающая в них или на них, может вызвать снижение напряжения и, следовательно, проблему системы из-за недостаточного напряжения в конкретной системе. Плохие соединения часто являются причиной многих неисправностей автомобильной электрической системы, поскольку неисправное соединение может увеличить потребление тока и отрицательно повлиять на работу системы автомобиля.
Как правило, они водостойкие, но не «водонепроницаемые», поэтому следует избегать использования мойки высокого давления (особенно если в процессе стирки) непосредственно на них, так как это может вызвать процесс порчи.
4.5 Клеммы с золотым и оловянным покрытием
Некоторые разъемы (концы клемм) имеют золотое покрытие (гальваническое покрытие), чтобы уменьшить потенциальную окислительную коррозию и, следовательно, обеспечить лучшее долгосрочное электрическое соединение между соединяемыми элементами.Не смешивайте соединения с золотым покрытием и с оловянным покрытием, так как сочетание различных металлов вызовет электролиз, который затем повредит электропроводность соединения.
5.1 Реле электромагнитные
Реле – это переключатели, которые включаются и выключаются небольшим электрическим током. Внутри реле находится электромагнит. Когда небольшой ток возбуждает этот электромагнит, он притягивает лопасть якоря и замыкает точки контакта. В этих точках может протекать большой ток, который реле предназначено для включения или выключения.Пока через катушку реле протекает небольшой коммутирующий ток, через точки его контакта будет протекать гораздо больший ток.
Функция реле в цепях освещения заключается в снижении тока, потребляемого переключателем управления.
Эти контакты могут быть нормально разомкнутыми, нормально замкнутыми или переключающими.
- Нормально разомкнутые контакты подключают цепь при срабатывании реле; цепь отключается, когда реле неактивно.Нормально замкнутые контакты размыкают цепь при срабатывании реле; цепь подключена, когда реле неактивно.
- Переключающие контакты управляют двумя цепями: одним нормально разомкнутым контактом и одним нормально замкнутым контактом.
№ пина | Обозначение | Описание |
85 | Реле переключения | Земля (конец обмотки на массу или отрицательный) |
86 | Реле переключения | Плюс (начало обмотки) |
87 | Реле переключения | Выход (потребителю, например: фара дальнего света) |
87a | Реле переключения | Альтернативный выход (1-й выход, сторона разрыва) |
30 | Аккумулятор | Положительное питание (вход от + клеммы аккумулятора, прямой) |
5.2 соленоида
Определение соленоида: линейное движение от электрического сигнала.
Современный стартер – это пример того, как соленоидный переключатель работает аналогично реле. Он используется в качестве переключателя там, где требуется очень большая сила тока для запуска автомобиля.
Когда слаботочная мощность от свинцово-кислотной аккумуляторной батареи подается на соленоид, обычно через переключатель с ключом, его движение (вызванное магнитным эффектом, воздействующим на его центральный компонент) вытягивает небольшую шестерню на валу стартера и зацепляет ее. с зубчатым венцом на маховике двигателя.
Соленоид также замыкает сильноточные контакты стартера, и он начинает работать.
Если двигатель запускается, ключ зажигания отпускается, соленоид обесточивается, и пружина возвращается в исходное положение, тем самым отключая питание от стартера и снимая малую шестерню с шестерни стартера.
Функция реле; покрыто 4.1
7.1 Гнездо для электропроводки прицепа
Упомянутая розетка обычного типа 12N.Это гнездо окрашено в черный цвет и содержит 7 контактов, пронумерованных от 1 до 7, которые необходимо подключить с использованием правильных мест подключения, как показано ниже.
|
Розетка прицепа на автомобиле, вид спереди.
Штифт | Цвет кабеля | Функция | Терминал |
1. | Желтый | Указатель поворота левый | л |
2. | Синий | Противотуманные фары | 54G |
3. | Белый | Земля возврат | 31 |
4. | Зеленый | Указатель поворота правый | р |
5. | Коричневый | Фонарь правый габаритный | 58R |
6. | Красный | Стоп-сигналы | 54 |
7. | Черный | Левый габаритный огонь | 58л |
Примечание. Всегда обращайтесь к инструкциям производителя по установке. При установке розетки для прицепа на транспортном средстве, оснащенном системой CAN bus, важно использовать розетку для прицепа производителя, поскольку она будет соответствовать необходимым требованиям для этого транспортного средства.
Включено в следующий раздел
Практическое задание
Обратитесь к своему инструктору за дополнительной информацией, которую можно найти в автомобильных технических руководствах.Примеры в разделе 10.1
Компонент | Обозначение цепи | Функция компонента |
Двухпозиционный переключатель | SPST = однополюсный, односторонний. | |
Двухпозиционный переключатель | SPDT = однополюсный, двусторонний. | |
Двойной двухпозиционный выключатель | DPST = двухполюсный, одинарный. | |
(DPDT) | DPDT = двойной полюс, двойной бросок. |
10.1 Автомобильные электрические символы
Ниже приведены некоторые примеры символов, используемых в принципиальных схемах. Фактическое расположение компонентов обычно сильно отличается от принципиальной схемы.
Провода и соединения | ||
Компонент | Обозначение цепи | Функция компонента |
Провод | Очень легко пропускать ток от одной части цепи к другой. | |
Провода соединены | «Клякса» должна быть нарисована в месте соединения (стыковки) проводов, но иногда ее не показывают. Провода, подключенные на «перекрестке», должны быть слегка смещены в шахматном порядке для образования двух Т-образных переходов, как показано справа. | |
Провода не соединены | В сложных схемах часто необходимо провести пересечение проводов, даже если они не соединены.Я предпочитаю символ «горб», показанный справа, потому что простое пересечение слева может быть неверно истолковано как соединение, когда вы забыли добавить «каплю»! |
Источники питания | ||
Компонент | Обозначение цепи | Функция компонента |
Ячейка | Поставляет электрическую энергию. | |
Аккумулятор | Поставляет электрическую энергию. Батарея состоит из более чем одной ячейки. | |
Предохранитель | Устройство безопасности, которое «взорвется» (расплавится), если ток, протекающий через него, превысит заданное значение. | |
Земля | Подключение к земле. Он также известен как земля. |
Устройства вывода: лампы, мотор. | ||
Компонент | Обозначение цепи | Функция компонента |
Лампа (индикатор) | Преобразователь, преобразующий электрическую энергию в свет.Этот символ используется для лампы, обеспечивающей освещение, например для автомобильной фары. | |
Двигатель | Преобразователь, преобразующий электрическую энергию в кинетическую энергию (движение). |
Коммутаторы | |||||
Компонент | Обозначение цепи | Функция компонента | |||
Выключатель | SPST = однополюсный, односторонний. | ||||
Двухпозиционный переключатель | SPDT = однополюсный, двусторонний. | ||||
Двойной двухпозиционный выключатель | DPST = двухполюсный, одинарный. | ||||
Реверсивный переключатель | DPDT = двойной полюс, двойной бросок. | ||||
Резисторы | |||||
Компонент | Обозначение цепи | Функция компонента | |||
Резистор | Резистор ограничивает прохождение тока. | ||||
Переменный резистор | Этот тип переменного резистора с 2 контактами (реостат) обычно используется для управления током. Примеры включают: регулировку яркости передней панели. | ||||
Переменный резистор | Этот тип переменного резистора с 3 контактами (потенциометр) обычно используется для контроля напряжения e.грамм. Указатель уровня топлива. |
Измерители и осциллографы | ||
Компонент | Обозначение цепи | Функция компонента |
Вольтметр | Вольтметр используется для измерения напряжения. | |
Амперметр | Амперметр используется для измерения тока. | |
Омметр | Омметр используется для измерения сопротивления. |
11.1 Примеры принципиальных схем
стоп-сигналы
Стоп-сигналы или стоп-сигналы – это красные огни, установленные на задней части автомобиля.Согласно DIN 72552 они имеют номер «54». Обычно они встроены в группу задних фонарей, хотя многие автомобили имеют дополнительный стоп-сигнал более высокого уровня, установленный на верхней части крышки багажника или на заднем стекле, который называется стоп-сигналом верхнего уровня (H 85 на схеме).
Стоп-сигналы включаются всякий раз, когда водитель задействует ножной тормоз, чтобы замедлить или остановить автомобиль.
На этой принципиальной схеме показана цепь стоп-сигнала, рисунок 1 выше. Переключатель S13 является переключателем педали тормоза, и цепь защищена предохранителем F13, рассчитанным на 10 ампер.
Схемы парковочных и задних фонарей
Для автомобилей и прицепов два красных задних фонаря работают, когда переключатель фар находится в положении парковки и положении фар. Согласно DIN 72552 они имеют номер «58». Два фонаря расположены близко к самым широким точкам транспортного средства, так что ширину транспортного средства могут видеть другие участники дорожного движения. Лампы соединены параллельно друг другу, так что выход из строя одной нити накала не приведет к полному выходу из строя цепи.Лампа освещения номерного знака обычно подключается параллельно задним фонарям и включается при включении задних фонарей.
На этой принципиальной схеме показана обычная цепь стояночных / габаритных огней. Цепь защищена предохранителями F4, F22, F23 и переключается через S3. (обратите внимание на 58 на контактах переключателя).
Фары
Современные фары с электроприводом расположены попарно, по одной или по две с каждой стороны передней части движущегося транспортного средства.Согласно DIN 72552 они имеют номера «56a и 56b». Система налобных фонарей должна обеспечивать ближний и дальний свет, что может быть достигнуто либо отдельной лампой для каждой функции, либо одной многофункциональной лампой. Дальний свет (называемый в некоторых странах «дальним светом», «полным светом» или «дальним светом») направляет большую часть своего света прямо вперед, увеличивая расстояние обзора, но производя слишком много яркого света для безопасного использования, когда на дороге присутствуют другие транспортные средства. .
На принципиальной схеме на странице 19 показана обычная цепь фары (клеммы 56a и 56b на переключателе света). Все лампы имеют независимые предохранители.Номера предохранителей F18. Используются F19, F20 и F21.
Вы заметите, что цепь затемнения (T.56b) остается включенной с фарами.
Компоненты M35 и M36 представляют собой электродвигатели регулировки фар.
Законы и правила
Фары должны поддерживаться в правильном положении (прицеливании) и состоянии в соответствии с требованиями NCT для состояния и цели фар, состояния вспомогательных ламп и цели
Противотуманные фары
Противотуманные фары используются с другим автомобильным освещением в плохую погоду, например, в густом тумане, проливном дожде или метели.Поскольку туман состоит из водяных капель, взвешенных в воздухе, ночью он может отражать свет фар обратно вам в глаза. В таких условиях противотуманные фары могут помочь водителям видеть дальше вперед и освещать края дороги на разумной скорости и используются с «парковочными» огнями вместо фар.
Противотуманные фары обычно подключаются к реле. Они могут быть подключены к работе только с габаритными огнями и отключаться при использовании фар.
На принципиальной схеме на следующей странице показана обычная цепь противотуманных фар.Согласно DIN 72552 они имеют номер «55». Передние фары (E14 и E15) включаются реле (K2). Заземление этого реле проходит через нить накала фары, что означает, что противотуманные фары будут работать только при выключенных фарах. Предохранитель (F3) защищает реле, а предохранитель (F36) защищает цепь освещения.
Фонари заднего хода
Фонари заднего хода – это белые фонари, установленные на задней части автомобиля. Они обеспечивают водителю обзор позади автомобиля в ночное время, а также предупреждают других водителей о том, что автомобиль должен быть задан.
Когда ключ зажигания включен и автомобиль находится на передаче заднего хода, ток течет от аккумуляторной батареи через выключатель зажигания к замкнутому выключателю фонарей заднего хода на коробке передач.
Электрический ток течет через замкнутый переключатель к фонарям заднего хода, а затем возвращается в аккумулятор через систему заземления.
Фары дальнего света
Фары дальнего света используются в качестве дополнения к системам фар автомобиля. Фары дальнего света устанавливаются на передней части автомобиля и обеспечивают более интенсивное освещение на больших расстояниях, чем стандартные системы фар.Правила NCT определяют ограничения в отношении расположения фар.
Доступно множество типов фар. Они бывают разных размеров, форм и разной мощности лампочек.
Индикаторы
Указатели поворота – это устройства визуальной сигнализации, указывающие на намерение повернуть. После их активации они продолжаются до тех пор, пока переключатель не будет отменен оператором или механизмом отмены в переключателе. Механизм отмены срабатывает после завершения поворота и возврата рулевого колеса в положение для движения по прямой.
В схему входят:
- аккумулятор
- плавкие вставки и предохранители
- выключатель зажигания
- блок мигалок
- трехпозиционный переключатель, используемый в качестве переключателя указателя поворота
- Фары спереди и сзади автомобиля
- контрольные лампы, установленные в комбинации приборов, чтобы указать водителю, в каком направлении был задействован переключатель
- проводка для подключения всех компонентов
- цепь заземления для возврата электрического тока к батарее
Если переключатель указателя поворота повернут для индикации правого поворота, ток от аккумуляторной батареи течет через плавкую перемычку к замку зажигания, где он направляется через предохранитель к блоку указателя поворота.
Практическое задание
Это практическая задача. Обратитесь к своему инструктору за дополнительной информацией, которую можно найти в автомобильных технических руководствах.
Практическое задание
Это практическая задача. Обратитесь к своему инструктору.
Практическое задание
Это практическая задача. Обратитесь к своему инструктору за дополнительной информацией, которую можно найти в автомобильных технических руководствах.Примеры в разделе 10.1.
15,1 ’BUS’ Разъяснение
В автомобильных системах термин «шина» может соединять несколько блоков управления или устройств вместе с помощью одного и того же набора проводов. Можно сравнить шоссе с двусторонним движением и движение транспорта, выходящего на шоссе из разных мест. Доступ к трассе контролируется светофором (кан-автобус).
Эта система называется шиной управляемой сети или CAN-шиной. «CAN» расшифровывается как Controller Area Network, что означает, что блоки управления объединены в сеть и обмениваются данными.Он использует два тонких провода для соединения или мультиплексирования всех блоков управления и их датчиков друг с другом. Преимущество мультиплексной сети состоит в том, что она позволяет уменьшить количество выделенных проводов для каждой функции и, следовательно, уменьшить количество проводов в жгуте проводов, снизить стоимость и вес системы, повысить надежность, удобство обслуживания и установки. Кроме того, в сети доступны общие данные датчиков, такие как скорость автомобиля, температура двигателя и т. Д., Поэтому данные могут быть совместно использованы, что сокращает количество датчиков.Кроме того, сеть обеспечивает большую гибкость содержания транспортного средства, поскольку функции могут быть добавлены или изменены путем изменения программного обеспечения.
К CANBUS можно подключить диагностический прибор для извлечения оперативной информации, помогающей в диагностике и поиске неисправностей.
16.1 Сеть и мультиплексирование
Даже самые простые автомобили включают в себя множество систем с электронным управлением. Если бы каждая электронная система имела свой собственный блок управления двигателем, жгут проводов и датчики, вес добавленных компонентов свел бы на нет любую эффективность, которую она обеспечивала.Многочисленные электронные системы транспортного средства могут потребовать более 1,6 км изолированной проводки, состоящей из около 1000 отдельных проводов и множества клемм.
Одним из решений проблемы является использование системы, которая объединяет датчики в общий жгут проводов путем объединения всех отдельных систем, где это возможно, в мультиплексную сеть последовательной связи, чтобы они могли обмениваться информацией. Дополнительным преимуществом является то, что это экономит вес, так как позволяет различным системам совместно использовать датчики и снижает сложность автономных систем.
Практическое задание
Это практическая задача. Обратитесь к своему инструктору за дополнительной информацией, которую можно найти в автомобильных технических руководствах.
18.1 Лампочки
Колба лампы состоит из тонкой катушки вольфрамовой проволоки, называемой нитью накала, заключенной в прозрачную стеклянную колбу, из которой удален весь воздух. Пропускание тока через нить накаливания повышает ее температуру до белого каления и вызывает излучение лампы накаливания.Удаление воздуха из стеклянной оболочки предотвращает окисление нити накала во время работы и увеличивает срок службы нити.
В лампах с высокой мощностью частицы вольфрама могут выкипать из нити, даже если воздух удален, что в конечном итоге приведет к повреждению нити. Чтобы предотвратить это, стеклянная оболочка заполнена инертным газом, например аргоном, который не вступает в реакцию с вольфрамом и замедляет выкипание нити. В некоторых случаях используются лампы со специальным покрытием, что помогает предотвратить «пожелтение» пластиковых линз.
У всех производителей есть процедуры снятия и установки ламп, которые необходимо соблюдать постоянно. При установке галогенной лампы важно не загрязнять поверхность лампы рукой, так как это приведет к преждевременному выходу лампы из строя. Сфокусировать фары также рекомендуется после установки новых ламп фар, чтобы убедиться, что они правильно выровнены в соответствии с действующими правилами NCT.
Информация о лампе
На всех лампах выбиты буквы и цифры, которые указывают мощность, потребляемую лампой при работе при номинальном рабочем напряжении.
Например, в лампе 12 В / 21 Вт нить накала будет потреблять 21 Вт мощности, когда к ней приложено 12 В.
Хотя мощность не обязательно является показателем светоотдачи, обычно можно предположить, что чем выше мощность, тем больше будет светоотдача. Если вставить лампу с более высокой мощностью, чем рекомендуется, это может привести к выделению большего количества тепла и возможности возникновения пожара.
Обычно в автомобилях используются следующие лампы:
- Лампы гирлянды, используемые во многих внутренних осветительных приборах.
- Байонетные соединители для цепей освещения парковых фонарей; стоп-сигналы; задние фонари; лампы номерного знака; некоторые ранние фары.
- Клиновидная лампа используется во многих приборных панелях.
18.2 Ксеноновые фары HID
Разрядные или спрятанные огни высокой интенсивности можно распознать по очень яркому белому или голубоватому свету. Они обеспечивают автомобилисту лучшее освещение, чем другие типы фонарей. HID фары улучшают видимость.Водители, использующие HID-фары, могут видеть дорогу впереди примерно на 100 метров по сравнению с примерно 60 метрами для галогенной системы.
По сравнению с галогенными фарами, HID-фары могут быть в 3 раза ярче, они более эффективны в преобразовании электрической энергии в энергию света, имеют более длительный срок службы, а цвет света более белый или ближе к дневному.
Они работают на системе газоразрядных ламп и состоят из лампы, балласта и специальной схемы высокого напряжения.Системы HID-фар не используют нить накала в лампе. У них есть инертный газ ксенон внутри колбы с двумя электродами, между которыми есть воздушный зазор в стеклянной трубке. Между электродами подается высокое напряжение. Это вызывает образование дуги, которая испаряет газы и твердые вещества, поэтому они излучают яркий свет. Напряжение, необходимое для зажигания и поддержания дуги, очень высокое – обычно до 20 000 вольт. Поэтому при работе с этими системами всегда обращайтесь к процедурам производителя.
Практическое задание
Это практическая задача. Обратитесь к своему инструктору.
20.1 Требования к цепи проводки кузова и освещения NCT
Пожалуйста, обратитесь к текущему справочному руководству NCT, позиции с 26 по 34 включительно, чтобы узнать о требованиях NCT для систем освещения легковых автомобилей.
Практическое задание
Это практическая задача. Обратитесь к своему инструктору.
Практическое задание
Это практическая задача.Обратитесь к своему инструктору.
23.1 Предохранители
Предохранители и автоматические выключатели предназначены для размыкания цепи при чрезмерном токе. Наиболее распространены предохранители, плавкие вставки и автоматические выключатели. Все они указаны в амперах. На них обычно отмечаются их рейтинги. Важно установить предохранитель правильного размера. Слишком маленький номинал не позволит протекать в цепи достаточному току, а слишком большой номинал может не защитить цепь должным образом.
Предохранители обычно используются в осветительных и вспомогательных цепях, где ток обычно умеренный. Изменение мощности лампы, т. Е. (Неправильный тип лампы) изменит требуемый ток. Если вставить лампу более высокой мощности, это может привести к перегрузке электрической системы и возгоранию.
Плавкая вставка обычно размещается рядом с аккумулятором и, за исключением стартера; он передает ток, необходимый для питания отдельной цепи или ряда цепей.
24.1 Зачистка изоляции провода
Подготовка и безопасность
Цель
Правильно зачистите электрический провод и подключите беспаечный разъем.
3 видеоролика, которые помогут доставить раздел
Личная безопасность
Каждый раз, когда вы выполняете какую-либо работу в мастерской, вы должны использовать личную защитную одежду и оборудование, которые подходят для этой задачи и соответствуют вашим местным правилам и политике безопасности.Среди прочего, это может включать:
- Рабочая одежда, такая как комбинезоны и обувь со стальным колпаком
- Средства защиты глаз – например, защитные очки и маски для лица
- Средства защиты ушей – например, наушники и беруши
- Защита рук – например, резиновые перчатки и защитный крем
Если вы не уверены, что подходит или требуется, спросите своего инструктора.
Проверка безопасности
- Никогда не используйте острое лезвие или нож для удаления изоляции.Вы можете серьезно порезаться, если лезвие соскользнет.
- Клещи для снятия изоляции имеют острые края и требуют надежного захвата. Не зажимайте кожу между челюстями; в противном случае вы рискуете получить серьезный порез.
- При снятии изоляции с провода отталкивайтесь от себя, а не к себе.
- Убедитесь, что вы понимаете и соблюдаете все законодательные нормы и процедуры личной безопасности при выполнении следующих задач. Если вы не знаете, что это такое, спросите своего инструктора.
Указывает на примечание
- Изолирующий слой из пластика покрывает электрические провода, используемые в автомобильных жгутах.
- Когда электрический провод присоединяется к другим проводам или подсоединяется к клемме, изоляцию необходимо удалить.
- Инструменты для зачистки проводов бывают разных конфигураций. Все они выполняют одну и ту же задачу. Тип инструмента, который вы используете или покупаете, будет зависеть от объема выполняемых вами ремонтов электрических проводов.
Пошаговая инструкция
- Выберите подходящий инструмент для снятия изоляции
Инструмент для зачистки проводов предназначен для снятия изоляции вокруг медной жилы кабеля, не повреждая кабель или себя. Никогда не используйте нож или другой острый инструмент, чтобы отрезать изоляцию с кабеля, так как они очень легко соскользнут, и вы можете пораниться. Использование бокорезов или плоскогубцев также может быть опасным; К тому же они менее эффективны, так как часто также обрезают некоторые жилы проволоки.Это называется звонком в провод, что эффективно снижает допустимую нагрузку на провод по току. - Выберите правильное калибровочное отверстие
Использование правильного инструмента намного безопаснее и эффективнее. Устройства для зачистки проводов могут снимать изоляцию с кабелей различного калибра, поэтому выберите отверстие в приспособлении для зачистки, которое ближе всего к диаметру жилы в кабеле, который нужно зачищать.
- Разрезать изоляцию
Вставьте кабель в отверстие и плотно закройте его зажимами, чтобы разрезать изоляцию.Если вы выбрали правильный калибр, то он прорежет изоляцию, но не медную жилу. Удалите столько изоляции, сколько необходимо для работы. Слишком маленький оголенный провод может не обеспечить хорошего соединения, а слишком длинный провод может привести к потенциальному короткому замыканию с другими цепями или к заземлению. Удаление более 1,2 сантиметра изоляции за один раз также может растянуть и повредить сердцевину. - Удалить изоляцию
Некоторые съемники автоматически разрезают и удаляют изоляцию.Другие просто разрезают и крепко держат кабель, и вам нужно сильно потянуть за провод, чтобы удалить изоляцию и обнажить медную жилу. Чтобы пряди оставались вместе, слегка скрутите их.
Фары прицеливания
Подготовка и безопасность
Цель
Используйте блок регулировки света фар, чтобы направить фары.
Личная безопасность
Каждый раз, когда вы выполняете какую-либо работу в мастерской, вы должны использовать личную защитную одежду и оборудование, которые подходят для этой задачи и соответствуют вашим местным правилам и политике безопасности.Среди прочего, это может включать:
- Рабочая одежда, такая как комбинезоны и обувь со стальным колпаком
- Средства защиты глаз – например, защитные очки и маски для лица
- Средства защиты ушей – например, наушники и беруши
- Защита рук – например, резиновые перчатки и защитный крем
- Респираторное оборудование – например, маски для лица и т. Д.
Проверка безопасности
Убедитесь, что вы понимаете и соблюдаете все законодательные нормы и процедуры личной безопасности при выполнении следующих задач.Если вы не знаете, что это такое, спросите своего инструктора.
Указывает на примечание
- Проверить настройки производителя и текущие настройки NCT. Если вы не знаете, что это такое, спросите своего инструктора.
- Конкретную информацию относительно регулировки угла наклона фар см. В руководстве производителя. Они также могут предложить разместить в транспортном средстве какой-либо груз.
Пошаговая инструкция
- Проверить давление в шинах
Убедитесь, что автомобиль стоит на ровной и ровной поверхности и что шины накачаны должным образом.Перегрузка задней части автомобиля может изменить выравнивание, поэтому убедитесь, что проверка выполняется в соответствии с рекомендациями производителя по загрузке. - Позиционирующий автомобиль
Установите автомобиль в правильное положение по отношению к блоку регулировки фар, следуя инструкциям производителя оборудования. - Проверить настройки ближнего света
включите фары на ближний свет. Сравните показания с настройками производителя. - Проверить настройки дальнего света
дальний свет должен быть галопом, падая на пересечения горизонтальных и вертикальных отметок. - Регулировка угла наклона фар
При необходимости найдите регулировочные винты на фаре и поверните их так, чтобы огни указывали в нужные места.
Проверка и замена лампы фары
Подготовка и безопасность
Цель
Проверьте и замените лампочку фары.
Личная безопасность
Каждый раз, когда вы выполняете какую-либо работу в мастерской, вы должны использовать личную защитную одежду и оборудование, которые подходят для этой задачи и соответствуют вашим местным правилам и политике безопасности. Среди прочего, это может включать:
- Рабочая одежда, такая как комбинезоны и обувь со стальным колпаком
- Средства защиты глаз – например, защитные очки и маски для лица
- Средства защиты ушей – например, наушники и беруши
- Защита рук – например, резиновые перчатки и защитный крем
- Респираторное оборудование – например, маски для лица и т. Д.
Проверка безопасности
Убедитесь, что вы понимаете и соблюдаете все законодательные нормы и процедуры личной безопасности при выполнении следующих задач.Если вы не знаете, что это такое, спросите своего инструктора.
Указывает на примечание
- Доступно множество типов ламп для фар. Всегда проверяйте, что вы заменяете лампочку на лампочку точно такого же типа. В противном случае замените оба источника света одновременно, чтобы они всегда показывали одинаковую интенсивность в люменах.
- Блоки с герметичной балкой требуют замены всего блока при выходе из строя одной нити накала. Если на отражателе в блоке лампы видны признаки внутреннего вздутия, это также указывает на необходимость замены блока.
- Если оба индикатора горят, но не горят при включении, запустите двигатель, чтобы посмотреть, решит ли это проблему. Батарея может быть плохо заряжена. Другое объяснение заключается в том, что система может иметь плохое заземление. Это нужно будет проверить с помощью DVOM.
- Если дотронуться до новой галогеновой лампы пальцами, на внешней поверхности могут остаться жирные следы пальцев. Это может привести к очень быстрому перегоранию лампы.Если вы случайно дотронетесь до лампочки, очистите ее средством на спиртовой основе.
Пошаговая инструкция
- Проверить работу фар
Проверку работы фар всегда лучше проводить при слабом освещении. Включите фары автомобиля на ближний свет, а затем на дальний свет. Убедитесь, что индикатор дальнего света на панели приборов работает. Обратите внимание на изменение интенсивности света.Если один из фонарей не работает, эту фару необходимо заменить. - Определить тип фары
Определите тип лампы, установленной на автомобиле, и произведите замену. Многие автомобили сегодня оснащены фарами галогенного типа. Они вдвое мощнее, чем старые блоки с герметизированной балкой, и с ними нужно обращаться осторожно. Всегда следуйте инструкциям производителя по обращению. - Доступ к патрону лампы
Отсоедините электрический разъем на задней стороне блока лампы.На большинстве автомобилей нет необходимости снимать блок лампы с автомобиля. Открутите стопорное кольцо лампы. - Снимите и замените старую лампу
Снимите старую лампочку и замените ее новой. Берите новую лампочку только за цоколь или, если есть, за крышку карты памяти. Очень важно, чтобы вы никогда не касались поверхности лампы пальцами, так как это приведет к ее очень быстрому перегоранию. - Заменить блок фары и проверить
Замените блок и стопорное кольцо или лампу в сборе, а затем снова вставьте разъем.Снова включите свет, чтобы убедиться, что они оба работают правильно.
Проверка и замена внешней лампочки
Подготовка и безопасность
Цель
Проверить и заменить лампочку наружного освещения.
Личная безопасность
Каждый раз, когда вы выполняете какую-либо работу в мастерской, вы должны использовать личную защитную одежду и оборудование, которые подходят для этой задачи и соответствуют вашим местным правилам и политике безопасности.Среди прочего, это может включать:
- Рабочая одежда, такая как комбинезоны и обувь со стальным колпаком
- Средства защиты глаз – например, защитные очки и маски для лица
- Средства защиты ушей – например, наушники и беруши
- Защита рук – например, резиновые перчатки и защитный крем
- Респираторное оборудование – например, маски для лица и т. Д.
Проверка безопасности
Убедитесь, что вы понимаете и соблюдаете все законодательные нормы и процедуры личной безопасности при выполнении следующих задач.Если вы не знаете, что это такое, спросите своего инструктора.
Указывает на примечание
- Убедитесь, что предохранители в хорошем состоянии, прежде чем пытаться заменить лампочку в цепи с более чем одной лампочкой, например в цепи указателя поворота. Если ни одна из лампочек не работает, возможно, необходимо решить более серьезную проблему.
- Многие лампочки имеют внутри более одной нити накала. Эти лампы обычно имеют смещенные штифты, чтобы обеспечить надежную фиксацию в патроне.Обязательно внимательно посмотрите на заменяемую лампу, чтобы убедиться, что вы не пытаетесь заставить лампу работать неправильно.
- Некоторые лампы имеют цветной стеклянный колпак, что позволяет использовать их с прозрачными линзами. Если вы заменяете лампу этого типа, убедитесь, что вы заменили ее на лампочку того же цвета.
Пошаговая инструкция
- Доступ к лампе
Определите метод крепления блока лампы или крышки объектива и снимите крышку, чтобы открыть колбу.Если на крышке объектива нет винтов, возможно, потребуется снять весь узел, чтобы получить доступ к лампе. - Снимите лампу
Если лампа закреплена на штифтах, осторожно возьмитесь за лампу и протолкните ее внутрь. Поверните лампу против часовой стрелки и снимите ее с патрона. - Проверить патрон лампы на предмет коррозии
Осмотрите патрон лампы, чтобы убедиться в отсутствии коррозии. Если есть, очистите его абразивной лентой. - Вставьте новую лампочку
Вставьте новую лампочку в патрон, полностью нажмите на нее, поверните по часовой стрелке и отпустите. Убедитесь, что лампа надежно закреплена, и проверьте ее работу, включив и выключив. - Заменить крышку и проверить
Закройте крышку и проверьте еще раз.
Проверка освещения и периферийных систем
Подготовка и безопасность
Цель
Проверить системы периферийного освещения.
Личная безопасность
Каждый раз, когда вы выполняете какую-либо работу в мастерской, вы должны использовать личную защитную одежду и оборудование, которые подходят для этой задачи и соответствуют вашим местным правилам и политике безопасности. Среди прочего, это может включать:
- Рабочая одежда, такая как комбинезоны и обувь со стальным колпаком
- Средства защиты глаз – например, защитные очки и маски для лица
- Средства защиты ушей – например, наушники и беруши
- Защита рук – например, резиновые перчатки и защитный крем
- Респираторное оборудование – например, маски для лица и т. Д.
Проверка безопасности
Убедитесь, что вы понимаете и соблюдаете все законодательные нормы и процедуры личной безопасности при выполнении следующих задач.Если вы не знаете, что это такое, спросите своего инструктора.
Указывает на примечание
- Обязательно работайте систематически, иначе вы можете пропустить неисправную лампочку или другой компонент.
- Транспортное средство может иметь сигнальные огни, которые срабатывают, только если эта цепь используется. Возможно, вам потребуется включить эту цепь, чтобы увидеть сигнальную лампу. Если вы не знаете, где они находятся, спросите своего инструктора.
Пошаговая инструкция
- Контрольно-измерительные приборы
в затемненном месте включите зажигание.Должны отображаться контрольные лампы на приборной панели. Запустить двигатель. Если какой-либо индикатор продолжает гореть при запуске двигателя, это может указывать на проблему в одной из систем безопасности или механических системах автомобиля. Если вы не уверены, что означает какой-либо из сигнальных индикаторов, обратитесь к руководству производителя. - Проверить автомобильный гудок
Убедитесь, что автомобильный гудок работает. Если звуковой сигнал не работает, найдите его под капотом с помощью руководства производителя. Проверьте проводку, чтобы убедиться в хорошем контакте.При необходимости используйте DVOM, чтобы изолировать неисправность. - Проверить задние фонари
попросите кого-нибудь встать за автомобилем, чтобы сообщить о любых проблемах, а затем включите зажигание. Включите габаритные огни и задние фонари. То же самое проделайте для левого и правого указателей поворота. Нажмите педаль тормоза, чтобы убедиться, что стоп-сигналы работают.
- Проверить передние фары
находясь перед автомобилем, убедитесь, что дальний и ближний свет фар, габаритные огни и указатели поворота работают правильно. - Проверить освещение салона
установив переключатель внутреннего освещения в правильное положение, откройте дверь со стороны водителя, чтобы убедиться, что внутреннее освещение работает. Если какой-либо из этих фонарей не работает, возможно, вам потребуется заменить лампочку или предохранитель. Сначала проверьте предохранитель, используя DVOM, чтобы проверить целостность. Если предохранитель неисправен, вы должны сообщить об этом своему инструктору, так как это может быть более серьезная неисправность в системе электропроводки автомобиля.
Если вы являетесь автором приведенного выше текста и не соглашаетесь делиться своими знаниями для обучения, исследований, стипендий (для добросовестного использования, как указано в авторских правах США), отправьте нам электронное письмо, и мы удалим ваши текст быстро.Добросовестное использование – это ограничение и исключение из исключительного права, предоставленного законом об авторском праве автору творческой работы. В законах США об авторском праве добросовестное использование – это доктрина, которая разрешает ограниченное использование материалов, защищенных авторским правом, без получения разрешения от правообладателей. Примеры добросовестного использования включают комментарии, поисковые системы, критику, репортажи, исследования, обучение, архивирование библиотек и стипендии. Он предусматривает легальное, нелицензионное цитирование или включение материалов, защищенных авторским правом, в работы других авторов в соответствии с четырехфакторным балансирующим тестом.(источник: http://en.wikipedia.org/wiki/Fair_use)
Информация о медицине и здоровье, содержащаяся на сайте, носит общий характер и цель , которая является чисто информативной и по этой причине не может в любом случае заменить совет врача или квалифицированного лица, имеющего законную профессию.