Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Конденсаторное питание | Электроника для всех

Что то часто меня стали спрашивать как подключить микроконтроллер или какую низковольтную схему напрямую в 220 не используя трансформатор. Желание вполне очевидное — трансформатор, пусть даже и импульсный, весьма громоздок. И запихать его, например, в схему управления люстрой размещенной прям в выключателе не получится при всем желании. Разве что нишу в стене выдолбить, но это же не наш метод!

Тем не менее простое и очень компактное решение есть — это делитель на конденсаторе.

Правда конденсаторные блоки питания не имеют развязки от сети, поэтому если вдруг в нем что нибудь перегорит, или пойдет не так, то он запросто может долбануть тебя током, или сжечь твою квартиру, ну а комп угробить это вообще за милое дело, в общем технику безопасности тут надо чтить как никогда — она расписана в конце статьи. В общем, если я тебя не убедил что бестрансформаторные блоки питания это зло — то сам себе злой Буратино, я тут не причем. Ну ладно, ближе к теме.

Помните обычный резистивный делитель?

Казалось бы, в чем проблема, выбрал нужные номиналы и получил искомое напряжение. Потом выпрямил и Profit. Но не все так просто — такой делитель может и сможет дать нужное напряжение, но вот совершенно не даст нужный ток. Т.к. сопротивления сильно велики. А если сопротивления пропорционально уменьшать, то через них насквозь пойдет большой ток, что при напряжении в 220 вольт даст очень большие тепловые потери — резисторы будут греть как печка и в итоге либо выйдут из строя, либо пожар устроят.

Все меняется если один из резисторов заменить на конденсатор. Суть в чем — как вы помните из статьи про конденсаторы, напряжение и ток на конденсаторе не совпадают по фазе. Т.е. когда напряжение в максимуме — ток минимален, и наоборот.

Так как у нас напряжение переменное, то конденсатор будет постоянно разряжаться и заряжаться, а особенность разряда-заряда конденсатора в том, что когда у него максимальный ток (в момент заряда), то минимальное напряжение и наборот. Когда он уже зарядился и напруга на нем максимальная, то ток равен нулю. Соответственно, при таком раскладе, мощность тепловых потерь, выделяемая на конденсаторе (P=U*I) будет минимальной. Т.е. он даже не вспотеет. А рективное сопротивление конденсатора Xc=-1/(2pi*f*C).

Теоретическое отступление

В цепи бывают три вида сопротивлений:

Активное — резистор (R)
Реактивное — конденсатор (Xс) и катушка(XL)
Полное же сопротивление цепи (импенданс) Z=(R2+(XL+Xс)2)1/2

Да, чистые активные и реактивные элементы бывают только в теории. Например, у катушки есть индуктивное сопротивление — витки, активное сопротивление — сопротивление проволки и емкостное сопротивление — паразитные конденсаторы образующиеся между витками катушки.
Даже обычный проводник имеет какую то паразитную емкость и индуктивность.

Активное сопротивление всегда постоянно, а реактивное зависит от частоты.
XL=2pi*f * L
Xc=-1/(2pi*f*C)
Знак реактивного сопротивления элемента указывает на его характер. Т.е. если больше нуля, то это индуктивные свойства, если меньше нуля то емкостные. Из этого следует, что индуктивность можно скомпенсировать емкостью и наоборот.

f — частота тока.

Соответственно, на постоянном токе при f=0 и XL катушки становится равен 0 и катушка превращается в обычный кусок провода с одним лишь активным сопротивлением, а Xc конденсатора при этом уходит в бесконечность, превращая его в обрыв.

Эта зависимость от частоты также показывает почему в высокочастотных устройствах простые, казалось бы, дорожки печатной платы начинают вести себя как детали — а просто из за возросшей частоты их паразитные значения реактивных сопротивлений возрастают до ощутимых величин.

Получается у нас вот такая вот схема:

Теперь надо что-то сделать с тем, что у нас переменка. Не велика проблема — добавим парочку диодов (можно, конечно, и диодный мост, будет эффективней, но с двумя диодами проще) диоды должны быть на ток около ампера, не меньше. И чтобы обратное напряжение было вольт на 500. 1N4007, например, или похожий по параметрам:

Все, в одну сторону ток течет через один диод, в другую через второй. В итоге, в правой части цепи у нас уже не переменка, а пульсирующий ток — одна полуволна синусоиды.

Добавим сглаживающий конденсатор, чтобы сделать напряжение поспокойней, микрофарад на 100 и вольт на 25, электролит:

Но есть тут одна заковыка — у нас напряжение на нагрузке зависит от сопротивления нагрузки. Т.е. если у тебя схема, включенная вместо Rн снизила потребление тока, то соответственно напряжение на ней вырастет. А для всякой нежной электроники это черевато.

Лечится стабилитроном на нужное нам напряжение. Питать мы собираемся микроконтроллер, так что на 5 вольт:

В принципе уже готово, единственно что надо поставить стабилитрон на такой ток, чтобы он не сдох когда нагрузки нет вообще, ведь тогда отдуваться за всех придется ему, протаскивая весь ток который может дать БП.

А можно ему помочь слегонца. Поставить резистор токоограничительный. Правда это сильно снизит нагрузочную способность блока питания, но нам хватит и этого.

Ток который эта схема может отдать можно, ЕМНИП, примерно вычислить по формуле:

I = 2F * C (1.41U — Uвых/2).

  • F — частота питающей сети. У нас 50гц.
  • С — емкость
  • U — напряжение в розетке
  • Uвых — выходное напряжение

Сама формула выводится из жутких интегралов от формы тока и напряжения. В принципе можешь сам ее нагуглить по кейворду «гасящий конденсатор расчет», материала предостаточно.

В нашем случае получается что I = 100 * 0.46E-6 (1.41*U — Uвых/2) = 15мА

Не феерия, но для работы МК+TSOP+оптоинтерфейс какой- нибудь более чем достаточно. А большего обычно и не требуется.

Еще добавить парочку кондеров для дополнительной фильтрации питания и можно использовать:

Еще добавил резюк на 43ом 1Вт, чтобы кондер при втыкании кондер заряжался не так быстро и не было броска тока. На печатке он здоровый такой, возле разьема.

Печатная плата простая и вопросов по ее разводке под другую форму корпуса ни у кого не возникнет. Я же ее тут сделал просто для примера, поэтому не смотрите на ее большие размеры. Я не мельчил:

Как всегда, прикладываю LAY файл.

После чего, как обычно, все вытравил и спаял:

Схема многократно проверена и работает. Я ее когда то пихал в систему управления нагревом термостекла. Места там было со спичечный коробок, а безопасность гарантировалась тотальной остекловкой всего блока.

ТЕХНИКА БЕЗОПАСНОСТИ

В данной схеме нет никакой развязки по напряжению от питающей цепи, а значит схема ОЧЕНЬ ОПАСНА в плане электрической безопасности.

Поэтому надо крайне ответственно подходить к ее монтажу и выбору компонентов. А также внимательно и очень осторожно обращаться с ней при наладке.

Во первых, обратите внимание, что один из выводов идет к GND напрямую из розетки. А это значит что там может быть фаза, в зависимости от того как воткнули вилку в розетку.

Поэтому неукоснительно соблюдайте ряд правил:

  • 1. Номиналы надо ставить с запасом на как можно большее напряжение. Особенно это касается конденсатора. У меня стоит на 400вольт, но это тот что был в наличии. Лучше бы вообще вольт на 600, т.к. в электросети иногда бывают выбросы напряжения намного превышающие номинал. Стандартные блоки питания за счет своей инерционности его переживут запросто, а вот конденсатор может и пробить — последствия представьте себе сами. Хорошо если не будет пожара.
  • 2. Эта схема должна быть тщательным образом заизолирована от окружающей среды. Надежный корпус, чтобы ничего не торчало наружу. Если схема монтируется в стену, то она не должна касаться стен. В общем, пакуем все это дело наглухо в пластик, остекловываем и закапываем на глубине 20метров. :)))))
  • 3. При наладке ни в коем случае не лезть руками ни к одному из элементов цепи. Пусть вас не успокаивает что там на выходе 5 вольт. Так как пять вольт там исключительно относительно самой себя. А вот по отношению к окружающей среде там все те же 220.
  • 4. После отключения крайне желательно разрядить гасящий конденсатор. Т.к. в нем остается заряд вольт на 100-200 и если неосторожно сунуться куда нибудь не туда больно цапнет за палец. Вряд ли смертельно, но приятного мало, а от неожиданности можно и бед натворить.
  • 5. Если используется микроконтроллер , то прошивку его делать ТОЛЬКО при полном выключении из сети. Причем выключать надо выдергиванием из розетки. Если этого не сделать, то с вероятностью близкой к 100% будет убит комп. Причем скорей всего весь.
  • 6. То же касается и связи с компом. При таком питании запрещено подключаться через USART, запрещено обьединять земли.

Если все же хотите связь с компом, то используйте потенциально разделенные интерфейсы. Например, радиоканал, инфракрасную передачу, на худой конец разделение RS232 оптронами на две независимые части.

В общем, я настоятельно НЕ РЕКОМЕНДУЮ пользоваться такой схемой включения. И если можно от нее избавиться, то от нее нужно избавиться. Перейдя на традиционные схемы блоков питания с развязкой от сети.

Ну и, как обычно, видеосьемка процесса запуска девайса от розетки через такой вот БП:

Offtop:
Для троллей я заготовил много вкусной еды — энджой!

easyelectronics.ru

Как рассчитать емкость гасящего конденсатора простого блока питания

Блок питания с гасящим конденсатором представляет собой простейший вариант запитать какое нибудь маломощное устройство.

При всей своей простоте он имеет и два минуса:
1. Он гальванически связан с сетью! потому такие БП используются там, где нет вероятности прикосновения к контактам.
2. Такой Бп имеет не очень большой выходной ток. При увеличении выходного тока надо увеличивать емкость гасящего конденсатора и его габариты становятся существенными.

Внимание, будьте очень аккуратны, не прикасайтесь к контактам этого БП когда он включен.

Простейшая схема данного БП выглядит так:

Как можно увидеть из схемы, последовательно с сетью стоит конденсатор. Он то и является балластом,, на котором гасится часть напряжения.
Конденсатор не пропускает постоянный ток, но так как в сети переменный и конденсатор в итоге постоянно перезаряжется, то и получается, что в таком случае ток на выходе есть. Причем сила тока напрямую зависит от емкости конденсатора.

Собственно потому для расчета емкости конденсатора необходимо знать как минимум выходной ток нашего будущего БП, причем надо учесть и потребление стабилизатора, обычно это несколько мА.

И так. Есть две формулы, сложная и простая.
Сложная – подходит для расчета при произвольном выходном напряжении.
Простая – подходит в ситуациях, когда выходное напряжение не более 10% от входного.
I – выходной ток нашего БП
Uвх – напряжение сети, например 220 Вольт
Uвых – напряжение на выходе БП (или до стабилизаторе если такой есть), например 12 Вольт.
С – собственно искомая емкость.

Например я хочу сделать БП с выходным током до 150мА. Пример схемы приведен выше, вариант применения – радиопульт с питанием 5 Вольт + реле на 12 Вольт.
Подставляем наши 0.15 Ампера и получаем емкость 2.18мкФ, можно взять ближайший номинал из стандартных – 2,2мкФ, ну или "по импортному" – 225.

Все как бы вроде хорошо, схема простая, но есть несколько минусов, которые надо исключить:
1. Бросок тока при включении может сжечь диодный мост.
2. При выходе из строя конденсатора может быть КЗ
3. Если оставить как есть, то вполне можно получить разряд от входного конденсатора, так как на нем может долго присутствовать напряжение даже после отключения БП от сети.
4. При снятии нагрузки напряжение на конденсаторе до стабилизатора поднимется до довольно большого значения.

Решения:
1. Резистор R1 последовательно с конденсатором
2. Предохранитель 0.5 Ампера.
3. Резистор R2 параллельно конденсатору.
4. Супрессор на 12 Вольт параллельно конденсатору после диодного моста. Я не рекомендую здесь использовать стабилитроны, супрессоры рассчитаны на большую мощность рассеивания и схема будет работать надежнее.

На схеме красным цветом я выделил новые компоненты, синим – небольшое дополнение в виде светодиода.

Но гасящие конденсаторы используют часто и в дешевых светодиодных лампах. Это плохо, так как у таких ламп меньше надежность и часто высокие пульсации света.
Ниже упрощенный вариант схемы такой лампы.

Попробуем рассчитать емкость для такого применения, но так как напряжение на выходе будет явно больше чем 1/10 от входного, то применим первую формулу.
В качестве выходного напряжения я заложил 48 Вольт, 16 светодиодов по 3 Вольта на каждом. Конечно это все условно, но близко к реальности.
Ток – 20мА, типичный максимальный ток для большинства индикаторных светодиодов.

У меня вышло, что необходим конденсатор емкостью 0.298 мкФ. Ближайший из распространенных номиналов – 0.27 или 0.33мкФ. Первый встречается гораздо реже, а второй уже будет давать превышение тока, потому можно составить конденсатор из двух параллельных, например по 0.15мкФ. При параллельном включении емкость складывается.

С емкостью разобрались, осталось еще пара моментов:
1. Напряжение конденсатора
2. Тип конденсатора.

С напряжением все просто, можно применить конденсатор на 400 Вольт, но надежнее на 630, хоть они и имеют больше размер.

С типом чуть сложнее. Для такого применения лучше использовать конденсаторы, которые изначально предназначены для такого использования, например К73-17, CL21, X2
На фото конденсатор CL21

А это более надежный вариант, не смотрите что на нем указано 280 Вольт, у него это значение переменного действующего напряжения и он будет работать надежнее, чем К73-17 или CL21.

Такие конденсаторы могут выглядеть и так

А вот теперь можно еще раз внимательно посмотреть, что надо для того, чтобы собрать такой "простой" блок питания и решить, нужен ли он.
В некоторых ситуациях да, он поможет, но он имеет кучу минусов, потому на мой взгляд лучше применить просто небольшой импульсный блок питания, который уже имеет стабилизированное выходное напряжение, гальваническую изоляцию и больший выходной ток.
Как пример таких блоков питания я могу дать ссылку на подробный обзор четырех вариантов, с тестами, схемами и осмотров.

Но можно поступить еще лучше. Сейчас получили распространение монолитные блоки питания. По сути кубик, в котором находится миниатюрный БП
Например HLK-PM01 производства Hi-link, стоимостью около двух долларов за штуку.

Или их китайский аналог TSP-05 производства Tenstar robot. Они немного дешевле, 1.93 доллара за штуку.
Практика показала, что качество у них сопоставимое.

Как я писал выше, они представляют из себя импульсный Бп в модульном исполнении. БП в пластмассовом корпусе залитый эпоксидной смолой.
Выпускаются на разные напряжения и способны поддерживать его на довольно стабильном уровне.

Внутренности поближе, на фото вариант от Hi-link

На этом вроде все. Надеюсь, что статья была полезна, постараюсь и в будущем находить интересные темы. Также интересны пожелания, что хотелось бы видеть в рубрике – Начинающим.

www.kirich.blog

Источники тока на полевых и биполярных транзисторах

Схемы генераторов тока, разновидности токовых зеркал, Онлайн калькулятор
расчёта элементов источников тока.


На сегодняшнем мероприятии, посвящённом открытию “Культурно-досугового центра Лоховского муниципального образования”, поговорим о разновидностях источников постоянного и, желательно, стабильного выходного тока.
- Если напряжение можно понять умом, то ток только чувством! – начал свой доклад руководитель кружка по художественному рукоделию Семён Самсонович Елдыкин.
- Целью нашего сегодняшнего радиолюбительского заседания является освоение упорядоченного движения свободных электрически заряженных частиц – как суммы знаний, физических умений и врождённых навыков.
“Как заземлить незаземлённое заземление? Сколько нужно выпить водки в граммах для снижения сопротивление тела на 1 кОм? И как не вступить с электричеством в интимные отношения?” – станет темой нашего научного коллоквиума.

Спасибо Семёну Самсоновичу за вводные слова, а нам пора переместиться поближе к обозначенной в заголовке теме. Напустим энциклопедического глубокомыслия:

«Источник тока – элемент, двухполюсник, сила тока через который не зависит от напряжения на его зажимах (полюсах). Используются также термины генератор тока и идеальный источник тока…» – учит нас Википедия.

Дополним редакцию. Источник тока должен иметь большое внутреннее дифференциальное сопротивление, такое чтобы при изменении сопротивления нагрузки сила тока в нагрузке практически не изменялась. Такую возможность нам предоставляет биполярный транзистор со стороны коллектора, полевик со стороны стока, либо операционник между инвертирующим входом и выходом.

Есть несколько основных характеристик, которые характеризуют источник тока.
Первой и основной из них является величина выходного тока.
Во-вторых, его выходное сопротивление, которое определяет, насколько ток источника меняется в зависимости от сопротивления нагрузки.
Третья спецификация – это минимальное и максимальное напряжения на выходе источника, при котором узел работает должным образом, т.е. выходной транзистор находится в активном режиме.
В-четвёртых, температурная стабильность и способность противостоять колебаниям напряжения источника питания.

Для разминки рассмотрим схемы простейших генераторов (источников) тока на транзисторах и операционных усилителях.

Источники тока на полевых и биполярных транзисторах
Рис.1

Схема источника тока на биполярном транзисторе – самая плохая. В ней присутствует полный букет недостатков – и температурная нестабильность, и зависимость тока от колебаний напряжения источника питания и наличие пресловутого эффекта Эрли (эффект влияния напряжения между коллектором и базой на ток коллектора).
Здесь входной делитель на резисторах R1, R2 задаёт ток базы транзистора Iб, выходной ток в первом приближении можно считать равным Iн = Iк≈β×Iб.

Схема на полевом транзисторе не столь чувствительна к нестабильности источника питания, однако имеет другой существенный недостаток – практическую невозможность заранее рассчитать выходной ток генератора из-за значительности разброса параметров данных типов полупроводников.
Максимальный ток данного типа источника равен начальному току стока при R1=0 (паспортная характеристика), минимальный ограничен падением напряжения на токозадающем резисторе R1.

Генераторы тока на операционных усилителях (инвертирующий слева, неинвертирующий справа) – вполне себе работоспособные устройства, которые являются близкими аналогами идеальных источников тока, и практически лишены недостатков, присущих транзисторным схемам.
Единственное, но существенное в отдельных случаях “но” состоит в том, что нагрузка является «плавающей», т.е. не подключённой никаким боком к земле.
Ток через нагрузку практически с 100% точностью описывается формулой Iн= Uвх/R1.

Размялись? Пришло время избавляться от недостатков простейших источников тока, обкашлянных нами выше.
Источники тока на полевых и биполярных транзисторах
Рис.2

Схемы стабилизаторов тока, представленные на Рис.2, будут полезны в устройствах, работающих с конечными потребителями, которые чувствительны не столько к стабильности напряжения, сколько к постоянству протекающего через них тока.
За примерами далеко ходить не надо – источники питания светодиодов, газоразрядных ламп, зарядные устройства для аккумуляторов и т.д. Все они требуют наличия на выходе постоянного, либо изменяющегося по определённому алгоритму тока.
Принцип работы приведённых схем предельно прост. При увеличении тока нагрузки пропорционально увеличивается и падение напряжения на токозадающем резисторе R1. При достижении уровня падения этого напряжения ≈0,6В, начинает открываться транзистор T1, снижая величину Uбэ (или Uзи) второго транзистора T2. Он начинает закрываться, соответственно, уменьшается и количество тока, протекающего через нагрузку.
Для схемы на биполярном транзисторе номинал резистора Rб следует выбирать из соображений Rб.
Для полевика, в силу его высокого входного сопротивления, величина резистора Rз1 может выбрана достаточно высокой (десятки килоом). Единственное, за чем надо зорко послеживать – максимально допустимое значение напряжения затвор-исток транзистора. Если оно меньше Еп, следует добавить дополнительный резистор Rз2 такого номинала, чтобы образованный делитель вогнал напряжение на затворе в допустимые пределы.
Выходной ток рассчитывается по простой формуле Iн≈0,6/ R1.
В этих схемах нет температурной компенсации, изменение выходного тока составляет величину ≈ 0,3% на один °С.

Источники тока на полевых и биполярных транзисторах
Рис.3


Про схему токового зеркала, изображённую на Рис.3, смело можно сказать, что это базовая схема источника тока.
Резисторы в эмиттерных цепях транзисторов создают отрицательную обратную связь по току, что с одной стороны, приводит к улучшению термостабилизирующих свойств узла, а с другой, позволяет в широких пределах регулировать соотношения токов транзисторов Т1 и Т2.

Здесь ток   Ik1, задаваемый резистором R1:
Iк1≈(Eп-0,7)/(R1+ Rэ1),
а ток, протекающий в нагрузке:
Iн≈ Rэ1×(Eп-0,7)/(R1× Rэ2+ Rэ1× Rэ2).

Источники тока на полевых и биполярных транзисторах
Рис.4


Для снижения зависимости выходного тока от колебаний напряжения питания широкое применение нашли источники тока (Рис.4), называемые двойным зеркалом тока.
Механизм работает следующим образом: Предположим, увеличилось напряжение питания. Тогда увеличивается и падение напряжения на резисторе R1. Это приводит к уменьшению потенциала базы транзистора VТ3, транзистор VТ3 призакроется, его ток Iэ3 уменьшится, соответственно уменьшится ток базы Iб2 и Iн тоже уменьшится и вернётся в исходное состояние.

Iк1≈(Eп-1,4)/(R1+ Rэ1),
Iн≈ Rэ1×(Eп-0,7)/(R1× Rэ2+ Rэ1× Rэ2).

Источники тока на полевых и биполярных транзисторах
Рис.5


Источник тока, представленный на Рис. 5, называется схемой токового зеркала Уилсона и обеспечивает высокую степень постоянства выходного тока за счёт подавления проявлений эффекта Эрли (эффект влияния напряжения между коллектором и базой на ток коллектора).
Транзисторы T1 и T2 в этой схеме включены так же, как в обычном токовом зеркале, но благодаря транзистору T3 потенциал коллектора токозадающего Т2 фиксирован и не влияет на выходной ток.

Все формулы аналогичны предыдущему описанию:
Iк1≈(Eп-1,4)/(R1+ Rэ1),
Iн≈ Rэ1×(Eп-0,7)/(R1× Rэ2+ Rэ1× Rэ2).

Источники тока на полевых и биполярных транзисторах
Рис.6


Каскодный генератор тока, изображённый на Рис. 6, обладает достоинствами, связанными с очень высоким внутренним сопротивлением и значительным ослаблением эффекта Эрли. Динамическое внутреннее сопротивление такого отражателя тока превышает величину в несколько МОм.

И опять – всё то же самое:
Iк1≈(Eп-1,4)/(R1+ Rэ1),
Iн≈ Rэ1×(Eп-0,7)/(R1× Rэ2+ Rэ1× Rэ2).

Легко заметить, что для всех типов приведённых токовых зеркал формула для расчёта выходного тока – одна и та же. Формула приблизительная, не учитывающая влияние на расчётные показатели незначительных величин базовых токов транзисторов, однако дающая возможность с погрешностью, не превышающей 5-7%, рассчитать величины токозадающих элементов.


При необходимости сгенерить ток обратного направления, следует перевернуть схему вверх ногами и заменить n-p-n транзисторы на полупроводники обратной проводимости.

И по традиции приведу таблицу, позволяющую не сильно утруждаться, при желании воплотить описанные узлы в реальную жизнь.

РАСЧЁТ ТОКОЗАДАЮЩИХ ЭЛЕМЕНТОВ ИСТОЧНИКОВ ТОКА НА БИПОЛЯРНЫХ ТРАНЗИСТОРАХ.

Источники тока на полевых транзисторах, в связи со значительностью разброса параметров данного типа полупроводников, практическое применение получили в основном при производстве аналоговых интегральных микросхем. При этом при использовании МОП-структур полевых транзисторов, схемотехника токовых зеркал практически не отличается от приведённых выше источников тока на биполярных собратьях.
Источники тока на полевых и биполярных транзисторах
Рис.6

Проектировать источники тока на дискретных полевых транзисторах – занятие, на мой взгляд, довольно нецелесообразное.
Другое дело – специально разработанные полупроводники, называемые токостабилизирующими диодами (CRD), в основе которых лежит полевой транзистор с каналом n-типа.
Источники тока на полевых и биполярных транзисторах
Рис.7

Полевые диоды имеют только два вывода и оптимизированы с точки зрения вольт-амперных характеристик. При их изготовлении можно достичь нулевого температурного коэффициента, объединяя CRD с резистором, имеющим тот же самый, но противоположного знака температурный коэффициент.
Токостабилизирующие диоды не очень известны в широких массах радиолюбительского сообщества, но тем временем активно выпускаются буржуйскими промышленниками, имеют приличную номенклатуру токов и достаточно широкий диапазон рабочих напряжений.

А на следующей странице продолжим тему – посвятим её источникам тока на операционных усилителях, а также преобразователям напряжение-ток на ОУ и транзисторах.

Источники тока на полевых и биполярных транзисторах

 

vpayaem.ru

Конденсатор в цепи переменного тока

Мы знаем, что конденсатор не пропускает через себя постоянного тока. Поэтому в электрической цепи, в которой последовательно с источником тока включен конденсатор, постоянный ток протекать не может.

Совершенно иначе ведет себя конденсатор в цепи переменного тока (Рис 1,а).

Рисунок 1. Сравнение конденсатора в цепи переменного тока с пружиной, на которую воздействует внешняя сила.

 

В течение первой четверти периода, когда переменная ЭДС нарастает, конденсатор заряжается, и поэтому по цепи проходит зарядный электрический ток i, сила которого будет наибольшей вначале, когда конденсатор не заряжен. По мере приближения заряда к концу сила зарядного тока будет уменьшаться. Заряд конденсатора заканчивается и зарядный ток прекращается в тот момент, когда переменная ЭДС пе-рестает нарастать, достигнув своего амплитудного значения. Этот момент соответствует концу первой четверти периода.

После этого переменная ЭДС начинает убывать, одновременно с чем конденсатор начинает разряжаться. Следовательно, в течение второй четверти периода по цепи будет протекать разрядный ток. Так как убывание ЭДС происходит вначале медленно, а затем все быстрее и быстрее, то и сила разрядного тока, имея в начале второй четверти периода небольшую величину, будет постепенно возрастать.

Итак, к концу второй четверти периода конденсатор разрядится, ЭДС будет равна нулю, а ток в цепи достигнет наибольшего, амплитудного, значения.

С началом третьей четверти периода ЭДС, переменив свое направление, начнет опять возрастать, а конденсатор — снова заряжаться. Заряд конденсатора будет происходить теперь в обратном направлении, соответственно изменившемуся направлению ЭДС. Поэтому направление зарядного тока в течение третьей четверти периода будет совпадать с направлением разрядного тока во второй четверти, т. е. при переходе от второй четверти периода к третьей ток в цепи не изменит своего направления.

Вначале, пока конденсатор не заряжен, сила зарядного тока имеет наибольшее значение. По мере увеличения заряда конденсатора сила зарядного тока будет убывать. Заряд конденсатора закончится и зарядный ток прекратится в конце третьей четверти периода, когда ЭДС достигнет своего амплитудного значения и нарастание ее прекратится.

Итак, к концу третьей четверти периода конденсатор окажется опять заряженным, но уже в обратном направлении, т. е. на той пластине, где был прежде плюс, будет минус, а где был минус, будет плюс. При этом ЭДС достигнет амплитудного значения (противоположного направления), а ток в цепи будет равен нулю.

В течение последней четверти периода ЭДС начинает опять убывать, а конденсатор разряжаться; при этом в цепи появляется постепенно увеличивающийся разрядный ток. Направление этого тока совпадает с направлением тока в первой четверти периода и противоположно направлению тока во второй и третьей четвертях.

Из всего изложенного выше следует, что по цепи с конденсатором проходит переменный ток и что сила этого тока зависит от величины емкости конденсатора и от частоты тока. Кроме того, из рис. 1,а, который мы построили на основании наших рассуждений, видно, что в чисто емкостной цепи фаза переменного тока опережает фазу напряжения на 90°.

Отметим, что в цепи с индуктивностью ток отставал от напряжения, а в цепи с емкостью ток опережает напряжение. И в том и в другом случае между фазами тока и напряжения имеется сдвиг, но знаки этих сдвигов противоположны

 

Емкостное сопротивление конденсатора

Мы уже заметили, что ток в цепи с конденсатором может протекать лишь при изменении приложенного к ней напряжения, причем сила тока, протекающего по цепи при заряде и разряде конденсатора, будет тем больше, чем больше емкость конденсатора и чем быстрее происходят изменения ЭДС

Конденсатор, включенный в цепь переменного тока, влияет на силу протекающего по цепи тока, т. е. ведет себя как сопротивление. Величина емкостного сопротивления тем меньше, чем больше емкость и чем выше частота переменного тока. И наоборот, сопротивление конденсатора переменному току увеличивается с уменьшением его емкости и понижением частоты.

Рисунок 2. Зависимость емкостного сопротивления конденсатра от частоты.

Для постоянного тока, т. е. когда частота его равна нулю, сопротивление емкости бесконечно велико; поэтому постоянный ток по цепи с емкостью проходить не может.

Величина емкостного сопротивления определяется по следующей формуле:

где Хс — емкостное сопротивление конденсатора в ом;

f—частота переменного тока в гц;

ω — угловая частота переменного тока;

С — емкость конденсатора в ф.

При включении конденсатора в цепь переменного тока, в последнем, как и в индуктивности, не затрачивается мощность, так как фазы тока и напряжения сдвинуты друг относительно друга на 90°. Энергия в течение одной четверти периода— при заряде конденсатора — запасается в электрическом поле конденсатора, а в течение другой четверти периода — при разряде конденсатора — отдается обратно в цепь. Поэтому емкостное сопротивление, как и индуктивное, является реактивным или безваттным.

Нужно, однако, отметить, что практически в каждом конденсаторе при прохождении через него переменного тока затрачивается большая или меньшая активная мощность, обусловленная происходящими изменениями состояния диэлектрика конденсатора. Кроме того, абсолютно совершенной изоляции между пластинами конденсатора никогда не бывает; утечка в изоляции между пластинами приводит к тому, что параллельно конденсатору как бы оказывается включенным некоторое активное сопротивление, по которому течет ток и в котором, следовательно, затрачивается некоторая мощность. И в первом и во втором случае мощность затрачивается совершенно бесполезно на нагревание диэлектрика, поэтому се называют мощностью потерь.

Потери, обусловленные изменениями состояния диэлектрика, называются диэлектрическими, а потери, обусловленные несовершенством изоляции между пластинами, — потерями утечки.

Ранее мы сравнивали электрическую емкость с вместимостью герметически (наглухо) закрытого сосуда или с площадью дна открытого сосуда, имеющего вертикальные стенки.

Конденсатор в цепи переменного тока целесообразно сравнивать с гиб-костью пружины. При этом во избежание возможных недоразумений условимся под гибкостью понимать не упругость («твердость») пружины, а величину, ей обратную, т. е. «мягкость» или «податливость» пружины.

Представим себе, что мы периодически сжимаем и растягиваем спиральную пружину, прикрепленную одним концом наглухо к стене. Время, в течение которого мы будем производить полный цикл сжатия и растяжения пружины, будет соответствовать периоду переменного тока.

Таким образом, мы в течение первой четверти периода будем сжимать пружину, в течение второй четверти периода отпускать ее, в течение третьей четверти периода растягивать и в течение четвертой четверти снова отпускать.

Кроме того, условимся, что наши усилия в течение периода будут неравномерными, а именно: они будут нарастать от нуля до максимума в течение первой и третьей четвертей периода и уменьшаться от максимума до нуля в течение второй и четвертой четвертей.

Сжимая и растягивая пружину таким образом, мы заметим, что в начале первой четверти периода незакрепленный конец пружины будет двигаться довольно быстро при сравнительно малых усилиях с нашей стороны.

В конце первой четверти периода (когда пружина сожмется), наоборот, несмотря на возросшие усилия, незакрепленный конец пружины будет двигаться очень медленно.

В продолжение второй четверти периода, когда мы будем постепенно ослаблять давление на пружину, ее незакрепленный конец будет двигаться по направлению от стены к нам, хотя наши задерживающие усилия направлены по направлению к стене. При этом наши усилия в начале второй четверти периода будут наибольшими, а скорость движения незакрепленного конца пружины наименьшей. В конце же второй четверти периода, когда наши усилия будут наименьшими, скорость движения пружины будет наибольшей и т. д.

Продолжив аналогичные рассуждения для второй половины периода (для третьей и четвертой четвертей) и построив графики (рис. 1,б) изменения наших усилий и скорости движения незакрепленного конца пружины, мы убедимся, что эти графики в точности соответствуют графикам ЭДС и тока в емкостной цепи (рис 1,а), причем график усилий будет соответствовать графику ЭДС , а график скорости — графику силы тока.

 

Рисунок 3. а)Процессы в цепи переменного тока с конденсатором и б)сравнение конденсатора с пружиной.

Нетрудно, заметить, что пружина, так же как и конденсатор, в течение одной четверти периода накапливает энергию, а в течение другой четверти периода отдает ее обратно.

Вполне очевидно также, что чем меньше гибкость пружины,- т е. чем она более упруга, тем большее противодействие она будет оказывать нашим усилиям. Точно так же и в электрической цепи: чем меньше емкость, тем больше будет сопротивление цепи при данной частоте.

И наконец, чем медленнее мы будем сжимать и растягивать пружину, тем меньше будет скорость движения ее незакрепленного конца. Аналогично этому, чем меньше частота, тем меньше сила тока при данной ЭДС.

При постоянном давлении пружина только сожмется и на этом прекратит свое движение, так же как при постоянной ЭДС конденсатор только зарядится и на этом прекратится дальнейшее движение электронов в цепи.

А теперь как ведет себя конденсатор в цепи переменного тока вы можете посмотреть в следующем видео:

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!


Похожие материалы:

Добавить комментарий

www.sxemotehnika.ru

§52. Конденсаторы, их назначение и устройство

Заряд и разряд конденсатора. Конденсатор представляет собой устройство, способное накапливать электрические заряды. Простейшим конденсатором являются две металлические пластины (электроды), разделенные каким-либо диэлектриком. Конденсатор 2 можно зарядить, если соединить его электроды с источником 1 электрической энергии постоянного тока (рис. 181, а).

При заряде конденсатора свободные электроны, имеющиеся на одном из его электродов, устремляются к положительному полюсу источника, вследствие чего этот электрод становится положительно заряженным. Электроны с отрицательного полюса источника устремляются ко второму электроду и создают на нем избыток электронов, поэтому он становится отрицательно заряженным. В результате протекания зарядного тока i3 на обоих электродах конденсатора образуются равные, но противоположные по знаку заряды и между ними возникает электрическое поле, создающее между электродами конденсатора определенную разность потенциалов. Когда эта разность потенциалов станет равной напряжению источника тока, движение электронов в цепи конденсатора, т. е. прохождение по ней тока i3 прекращается. Этот момент соответствует окончанию процесса заряда конденсатора.

При отключении от источника (рис. 181,б) конденсатор способен длительное время сохранять накопленные электрические заряды. Заряженный конденсатор является источником электрической энергии, имеющим некоторую э. д. с. ес. Если соединить электроды заряженного конденсатора каким-либо проводником (рис. 181, в), то конденсатор начнет разряжаться. При этом по цепи пойдет ток iр разряда конденсатора. Начнет уменьшаться и разность потенциалов между электродами, т. е. конденсатор будет отдавать накопленную электрическую энергию во внешнюю цепь. В тот момент, когда количество свободных электронов на каждом электроде конденсатора станет одинаковым, электрическое поле между электродами исчезнет и ток станет равным нулю. Это означает, что произошел полный разряд конденсатора, т. е. он отдал накопленную им электрическую энергию.

Емкость конденсатора. Свойство конденсатора накапливать и удерживать электрические заряды характеризуется его емкостью. Чем больше емкость конденсатора, тем больше накопленный им заряд, так же как с увеличением вместимости сосуда или газового баллона увеличивается объем жидкости или газа в нем.

Емкость С конденсатора определяется как отношение заряда q, накопленного в конденсаторе, к разности потенциалов между его электродами (приложенному напряжению)U:

C = q / U (69)

Емкость конденсатора измеряется в фарадах (Ф). Емкостью в 1 Ф обладает конденсатор, у которого при сообщении заряда

Рис. 181. Заряд и разряд конденсатора

в 1 Кл разность потенциалов возрастает на 1 В. В практике преимущественно пользуются более мелкими единицами: микрофарадой (1 мкФ=10-6 Ф), пикофарадой (1 пФ = 10-12 мкФ).

Емкость конденсатора зависит от формы и размеров его электродов, их взаимного расположения и свойств диэлектрика, разделяющего электроды. Различают плоские конденсаторы, электродами которых служат плоские параллельные пластины (рис. 182, а), и цилиндрические (рис. 182,б).

Свойствами конденсатора обладают не только специально изготовленные на заводе устройства, но и любые два проводника, разделенные диэлектриком. Емкость их оказывает существенное влияние на работу электротехнических установок при переменном токе. Например, конденсаторами с определенной емкостью являются два электрических провода, провод и земля (рис. 183, а), жилы электрического кабеля, жилы и металлическая оболочка кабеля (рис. 183,6).

Устройство конденсаторов и их применение в технике. В зависимости от применяемого диэлектрика конденсаторы бывают бумажными, слюдяными, воздушными (рис. 184). Используя в качестве диэлектрика вместо воздуха слюду, бумагу, керамику и другие материалы с высокой диэлектрической проницаемостью, удается при тех же размерах конденсатора увеличить в несколько раз его емкость. Для того чтобы увеличить площади электродов конденсатора, его делают обычно многослойным.

Рис. 182. Плоский (а) и цилиндрический (б) конденсаторы

В электротехнических установках переменного тока обычно применяют силовые конденсаторы. В них электродами служат длинные полосы из алюминиевой, свинцовой или медной фольги, разделенные несколькими слоями специальной (конденсаторной) бумаги, пропитанной нефтяными маслами или синтетическими пропитывающими жидкостями. Ленты фольги 2 и бумаги 1 сматывают в рулоны (рис. 185), сушат, пропитывают парафином и помещают в виде одной или нескольких секций в металлический или картонный корпус. Необходимое рабочее напряжение конденсатора обеспечивается последовательным, параллельным или последовательно-параллельным соединениями отдельных секций.

Всякий конденсатор характеризуется не только значением емкости, но и значением напряжения, которое выдерживает его диэлектрик. При слишком больших напряжениях электроны диэлектрика отрываются от атомов, диэлектрик начинает проводить ток и металлические электроды конденсатора замыкаются накоротко (конденсатор пробивается). Напряжение, при котором это происходит, называют пробивным. Напряжение, при котором конденсатор может надежно работать неограниченно долгое время, называют рабочим. Оно в несколько раз меньше пробивного.

Конденсаторы широко применяют в системах энергоснабжения промышленных предприятий и электрифицированных железных дорог для улучшения использования электрической энергии при переменном токе. На э. п. с. и тепловозах конденсаторы используют для сглаживания пульсирующего тока, получаемого от выпрямителей и импульсных прерывателей, борьбы с искрением контактов электрических аппаратов и с радиопомехами, в системах управления полупроводниковыми преобразователями, а также для созда-

Рис. 183. Емкости, образованные проводами воздушной линии (а) и жилами кабеля (б)

Рис. 184. Общие виды применяемых конденсаторов: 1 — слюдяные; 2 — бумажные; 3 — электролитический; 4 — керамический

Рис. 185. Устройство бумажного (а) и электролитического (б) конденсаторов

Рис. 186. Устройство конденсатора переменной емкости

ния симметричного трехфазного напряжения, требуемого для питания электродвигателей вспомогательных машин. В радиотехнике конденсаторы служат для создания высокочастотных электромагнитных колебаний, разделения электрических цепей постоянного и переменного тока и др.

В цепях постоянного тока часто устанавливают электролитические конденсаторы. Их изготовляют из двух скатанных в рулон тонких алюминиевых лент 3 и 5 (рис. 185,б), между которыми проложена бумага 4, пропитанная специальным электролитом (раствор борной кислоты с аммиаком в глицерине). Алюминиевую ленту 3 покрывают тонкой пленкой окиси алюминия; эта пленка образует диэлектрик, обладающий высокой диэлектрической проницаемостью. Электродами конденсатора служат лента 3, покрытая окисной пленкой, и электролит; вторая лента 5 предназначена лишь для создания электрического контакта с электролитом. Конденсатор помещают в цилиндрический алюминиевый корпус.

При включении электролитического конденсатора в цепь постоянного тока необходимо строго соблюдать полярность его полюсов; электрод, покрытый окисной пленкой, должен быть соединен с положительным полюсом источника тока. При неправильном включении диэлектрик пробивается. По этой причине электролитические конденсаторы нельзя включать в цепи переменного тока. Их нельзя также использовать в устройствах, работающих при высоких напряжениях, так как окисная пленка имеет сравнительно небольшую электрическую прочность.

В радиотехнических устройствах применяют также конденсаторы переменной емкости (рис. 186). Такой конденсатор состоит из двух групп пластин: неподвижных 2 и подвижных 3, разделенных воздушными промежутками. Подвижные пластины могут перемещаться относительно неподвижных; при повороте оси 1 конденсатора изменяется площадь взаимного перекрытия пластин, а следовательно, и емкость конденсатора.

Способы соединения конденсаторов. Конденсаторы можно соединять последовательно и параллельно. При последовательном

Рис. 187. Последовательное (а) и параллельное (б) соединения конденсаторов

Рис. 188. Схема подключения цепи R-C к источнику постоянного тока (а) и кпивые тока и напряжения при переходном процессе (б) кривые

Рис. 189. Схема разряда емкости С на резистор R (а) и кривые тока и напряжения при переходном процессе (б)

Рис. 190. Кривая пилообразного напряжения

соединении нескольких (например, трех), конденсаторов (рис. 187, а) эквивалентная емкость

1 /Cэк = 1 /C1 + 1 /C2 + 1 /C3

эквивалентное емкостное сопротивление

XCэк= XC1 + XC2 + XC3

результирующее емкостное сопротивление

Cэк = C1 + C2 + C3

При параллельном соединении конденсаторов (рис. 187,б) их результирующая емкость

1 /XCэк = 1 /XC1 + 1 /XC2 + 1 /XC3

Включение и отключение цепей постоянного тока с конденсатором. При подключении цепи R-C к источнику постоянного тока и при разряде конденсатора на резистор также возникает переходный процесс с апериодическим изменением тока i и напряжения uc При подключении к источнику постоянного тока цепи R-C выключателем В1 (рис. 188,а) происходит заряд конденсатора. В начальный момент зарядный ток Iнач=U /R. Но по мере накопления зарядов на электродах конденсатора напряжение его и с будет возрастать, а ток уменьшаться (рис. 188,б). Если сопротивление R мало, то в начальный момент подключения конденсатора возникает большой екачок тока, значительно превышающий номинальный ток данной цепи. При разряде конденсатора на резистор R (размыкается выключатель В1 на рис. 189, а) напряжение на конденсаторе uс и ток i постепенно уменьшаются до нуля (рис. 189,б).

Скорость изменения тока i и напряжения ис при переходном процессе отделяется постоянной времени

T = RC

Чем больше R и С, тем медленнее происходит заряд конденсатора.

Процессы заряда и разряда конденсатора широко используют в электронике и автоматике. С помощью их получают периодаческие несинусоидальные колебания, называемые релаксационными, и, в частности, пилообразное напряжение, необходимое для работы систем управления тиристорами, осциллографов и других устройств. Для получения пилообразного напряжения (рис. 190) периодически подключают конденсатор к источнику питания, а затем к разрядному резистору. Периоды Т1 и T2, соответствующие заряду и разряду конденсатора, определяются постоянными времени цепей заряда Т3 и разряда Тр, т. е. сопротивлениями резисторов, включенных в эти цепи.

electrono.ru

2.06. Транзисторный источник тока

ГЛАВА 2. ТРАНЗИСТОРЫ

НЕКОТОРЫЕ ОСНОВНЫЕ ТРАНЗИСТОРНЫЕ СХЕМЫ



Хотя источники тока не столь известны, они не менее полезны и важны, чем источники напряжения. Источники тока представляют собой прекрасное средство для обеспечения смещения транзисторов, и кроме того, незаменимы в качестве активной нагрузки для усилительных каскадов с большим коэффициентом усиления и в качестве источников питания эмиттеров для дифференциальных усилителей. Источники тока необходимы для работы таких устройств, как интеграторы, генераторы пилообразного напряжения. В схемах усилителей и стабилизаторов они обеспечивают широкий диапазон напряжений. И наконец, источники постоянного тока требуются в некоторых областях, не имеющих прямого отношения к электронике, например в электрохимии, электрофорезе.

эмиттерный повторитель

Рис. 2.20.

Подключение резистора к источнику напряжения. Схема простейшего источника тока показана на рис. 2.20. При условии что Rн » R (иными словами, Uн » U), ток сохраняет почти постоянное значение и равен приблизительно I = U/R. Если нагрузкой является конденсатор, то, при условии что Uконд » U, он заряжается с почти постоянной скоростью, определяемой начальным участком экспоненты, характерной для данной RC-цепи.

Простейшему резистивному источнику тока присущи существенные недостатки. Для того чтобы получить хорошее приближение к источнику тока, следует использовать большие напряжения, а при этом на резисторе рассеивается большая мощность. Кроме того, током этого источника трудно управлять в широком диапазоне с помощью напряжения, формируемого где-либо в другом узле схемы.

Упражнение 2.6. Допустим, нам нужен источник тока который бы обеспечивал точность 1% в диапазоне изменения напряжения на нагрузке от 0 до +10 В. Какой источник напряжения нужно подключить последовательно к резистору?

Упражнение 2.7. Допустим, что в предыдущем упражнении требуется получить от источника ток 10 мА. Какая мощность будет рассеиваться на резисторе? Какая мощность передается нагрузке?

эмиттерный повторитель

Рис. 2.21. Транзисторный источник тока: основная идея.

Какая мощность передается нагрузке? Транзисторный источник тока. Очень хороший источник тока можно построить на основе транзистора (рис. 2.21). Работает он следующим образом: напряжение на базе Uб > 0,6 В поддерживает эмиттерный переход в открытом состоянии: Uэ = Uб – 0,6 В. В связи с этим Iэ = Uэ/Rэ = (Uэ – 0,6/Rэ. Так как для больших значений коэффициента h21эIэ ≈ Iк, то Iк ≅ (Uб – 0,6 В)/Rэ независимо от напряжения Uк до тех пор, пока транзистор не перейдет в режим насыщения (Uк > Uэ + 0.2 В).

Смешение в источнике тока. Напряжение на базе можно сформировать несколькими способами. Хороший результат дает использование делителя напряжения, если он обеспечивает достаточно стабильное напряжение. Как и в предыдущих случаях, сопротивление делителя должно быть значительно меньше сопротивления схемы со стороны базы по постоянному току h21эRэ. Можно воспользоваться также зенеровским диодом и использовать для смещения источник питания Uкк, а можно взять несколько диодов, смещенных в прямом направлении и соединенных последовательно, и подключить их между базой и соответствующим источником питания эмиттера. На рис. 2.22 показаны примеры схем смещения. В последнем примере (рис. 2.22,6) транзистор p-n-p – типа питает током заземленную нагрузку (он – источник тока). Остальные примеры (в которых используются транзисторы n-р-n – типа.) правильнее было бы называть «поглотителями» тока, но принято называть все схемы такого типа источниками тока. [Название «поглотитель» и «источник» связано с направлением тока; если ток поступает в какую-либо точку схемы, то это источник, и наоборот]. В первой схеме сопротивление делителя напряжения составляет приблизительно 1,3 кОм и очень мало по сравнению с сопротивлением со стороны базы, составляющим ≅100кОм (для h21э = 100). Любое изменение коэффициента β, связанное с изменением напряжения на коллекторе, не повлияет существенным образом на выходной ток, так как соответствующее изменение напряжения на базе совсем мало. В двух других схемах резисторы в цепи смещения выбраны так, чтобы протекающий ток составлял несколько миллиампер, – этого достаточно, чтобы диоды были открыты.

Рабочий диапазон. Источник тока передает в нагрузку постоянный ток только до определенного конечного напряжения на нагрузке. В противном случае источник тока был бы способен генерировать бесконечную мощность. Диапазон выходного напряжения, в котором источник тока ведет себя как следует, называется рабочим диапазоном. Для рассмотренных только что транзисторных источников тока рабочий диапазон определяется из того, что транзистор должен находиться в активном режиме работы. Так, в первой схеме напряжение на коллекторе можно понижать до тех пор, пока не будет достигнут режим насыщения, т. е. до +12 В. Вторая схема, с более высоким напряжением на эмиттере, сохраняет свойства источника лишь до значения напряжения на коллекторе, равного приблизительно + 5,2 В.

Во всех случаях напряжение на коллекторе может изменяться от значения напряжения насыщения до значения напряжения питания. Например, последняя схема работает как источник тока в диапазоне напряжения на нагрузке, ограниченном значениями 0 и +8,6 В. Если в нагрузке используются батареи или собственные источники питания, то напряжение на коллекторе может быть больше, чем напряжение источника питания. При использовании такой схемы рекомендуется следить за тем. чтобы не возник пробой транзистора (напряжение Uкэ не должно превышать значение Uкэпроб – напряжение пробоя перехода коллектор-эмиттер) и не рассеивалась излишняя мощность (определяемая величиной произведения IкUкэ). В разд. 6.07 вы увидите, что для мощных транзисторов область безопасной работы определяется специально.

Упражнение 2.8. В схеме имеются два стабилизированных источника напряжения: +5 и 15 В. Разработайте схему источника тока на основе транзистора n-р-n – типа, которая бы обеспечивала ток +5 мА. В качестве источника напряжения для базы используйте источник +5 В. Чему равен рабочий диапазон в такой схеме?

В источнике тока напряжение на базе не обязательно должно быть фиксированным. Если предусмотреть возможность изменения напряжения Uб, то получим программируемый источник тока. Если выходной ток должен плавно отслеживать изменения входного напряжения, то размах входного сигнала uвх (напоминаем, что строчными буквами мы договорились обозначать изменения) должен быть небольшим, таким, чтобы напряжение на эмиттере никогда не уменьшалось до нуля. В таком источнике тока изменение выходного тока будет пропорционально изменениям входного напряжения.

Недостатки источников тока. Как сильно отличается транзисторный источник тока от идеального? Иными словами, изменяется ли ток в нагрузке при изменении, скажем напряжения, т.е. имеет ли источник тока эквивалентное сопротивление конечной величины (Rэкв

1. При заданном токе коллектора и напряжение Uбэ, и коэффициент h21э (эффект Эрли) несколько изменяются при изменении напряжения коллектор-эмиттер. Изменение напряжения Uбэ, связанное с изменением напряжения на нагрузке, вызывает изменение выходного тока, так как напряжение на эмиттере (а следовательно, и эмиттерный ток) изменяется, даже если напряжение на базе фиксировано. Изменение значения коэффициента h21э приводит к небольшим изменениям выходного (коллекторного) тока при фиксированном токе эмиттера, так как Iк = Iэ – Iб; кроме того, немного изменяется напряжение на базе в связи с возможным изменением сопротивления источника смешения, обусловленного изменениями коэффициента h21э (а следовательно, и тока базы). Эти изменения незначительны. Например, изменение выходного тока для схемы, представленной на рис. 2.22, a, составляет приблизительно 0,5% для транзистора типа 2N3565. В частности, при изменении напряжения на нагрузке от 0 до 8 В эффект Эрли обусловливает изменение тока на 0,5%, а нагрев транзистора – на 0,2%. Изменение коэффициента вносит дополнительный вклад в изменение выходного тока – 0,05% (для жесткого делителя напряжения). Все эти изменения приводят к тому, что источник тока работает хуже, чем идеальный: выходной ток немного зависит от напряжения и, следовательно, его сопротивление не бесконечно. В дальнейшем вы узнаете, что есть методы, которые позволяют преодолеть этот недостаток.

2. Напряжение Uбэ и коэффициент h21э зависят от температуры. В связи с этим при изменении температуры окружающей среды возникает дрейф выходного тока. Кроме того, температура перехода изменяется при изменении напряжения на нагрузке (в связи с изменением мощности, рассеиваемой транзистором) и приводит к тому, что источник работает не как идеальный. Изменение напряжения и Uбэ в зависимости от температуры окружающей среды можно скомпенсировать с помощью схемы, показанной на рис. 2.23. В этой схеме падение напряжения между базой и эмиттером транзистора Т2 компенсируется падением напряжения на эмиттерном переходе Т1 который имеет такие же температурные характеристики. Резистор R3 играет роль нагрузки для Т1, необходимой для задания втекающего тока базы транзистора Т2.

эмиттерный повторитель

Рис. 2.23. Один из методов температурной компенсации источника тока.

Улучшение характеристик источника тока. Вообще говоря, изменение напряжения Uбэ, вызванное как влиянием температуры (относительное изменение составляет приблизительно -2 мВ/°С), так и зависимостью от напряжения Uбэ (эффект Эрли оценивается величиной ΔUбэ ≈ -0,001 ΔUкэ), можно свести к минимуму, если установить напряжение на эмиттере достаточно большим (по крайней мере 1 В), тогда изменение напряжения Uбэ на десятые доли милливольта не приведет к значительному изменению напряжения на эмиттерном резисторе (напомним, что схема поддерживает постоянное напряжение на базе). Например, если Uэ = 0,1В (т. е. к базе приложено напряжение 0,7 В), то изменение напряжения Uбэ на 10 мВ вызывает изменение выходного тока на 10%, если же Uэ = 1,0 В, то такое же изменение Uбэ вызывает изменение тока на 1%. Однако, не стоит заходить слишком далеко. Напомним, что нижняя граница рабочего диапазона определяется напряжением на эмиттере. Если в источнике тока, работающем от источника питания +10 В, напряжение на эмиттере сделать равным +5 В, то диапазон выхода будет равен немного менее 5 В (напряжение на коллекторе может изменяться от Uэ + 0,2 В до Uкк, т. е. от 5,2 до 10 В).


эмиттерный повторитель

Рис. 2.24. Каскодный источник тока, обладающий повышенной устойчивостью к изменениям напряжения на нагрузке.

На рис. 2.24 показана схема, которая существенно улучшает характеристики источника тока. Источник тока Т1 работает, как и прежде, но напряжение на коллекторе фиксируется с помощью эмиттера Т2. Ток, текущий в нагрузку, такой же, как и прежде, так как коллекторный (для Т2) и эмиттерный токи приблизительно равны между собой (из-за большого значения h21э). В этой схеме напряжение Uкэ (дая Т1) не зависит от напряжения на нагрузке, а это значит, что устранены изменения напряжения Uбэ, обусловленные эффектом Эрли и температурой. Для транзисторов типа 2N3565 эта схема дает изменение тока на 0,1% при изменении напряжения на нагрузке от 0 до 8 В; для того чтобы схема обеспечивала указанную точность, следует использовать стабильные резисторы с допуском 1%. (Кстати, эту схему используют в высокочастотных усилителях, где она известна под названием «каскод»). В дальнейшем вы познакомитесь со схемами источников тока, в которых используются операционные усилители и обратная связь, и в которых также решена задача устранения влияния изменений Uбэ на выходной ток.

Влияние коэффициента h21э можно ослабить, если выбрать транзистор с большим значением h21э, тогда ток базы будет вносить незначительный вклад в ток эмиттера.

эмиттерный повторитель

Рис. 2.25. Транзисторный источник тока с использованием напряжения Uбэ в качестве опорного.

На рис 2.25 показан еще один источник тока, в котором выходной ток не зависит от напряжения питания. В этой схеме напряжение Uбэ транзистора Т1, падая на резисторе R1, определяет выходной ток независимо от напряжения Uкк

Uвых = Uбэ/R2U2.

С помощью резистора R1 устанавливается смещение транзистора Т2 и потенциал коллектора Т1, причем этот потенциал меньше, чем напряжение Uкк, на удвоенную величину падения напряжения на переходе; тем самым уменьшается влияние эффекта Эрли. В этой схеме нет температурной компенсации; напряжение на R2 уменьшается приблизительно на 2,1 мВ/°С и вызывает соответствующее изменение выходного тока 0,3%/°С).


Модель Эберса-Молла для основных транзисторных схем


skilldiagram.com

Источники тока на операционных усилителях, схемы и расчёты

Схемы генераторов тока, управляемых напряжением, на ОУ и выходными
каскадами на биполярных и полевых транзисторах.


Продолжаем наш тематический вечер, посвящённый схемотехническим исследованиям генераторов стабильного тока, источников тока и иже с ними – стабилизаторов тока.
В повестке дня сегодняшнего радиолюбительского заседания обозначены следующие мероприятия: викторина «Угадай радиодетальку», а также обсуждение схемы источника (генератора) тока, выполненного на интегральном операционном усилителе (ОУ в простонародье).

Базовые схемы генераторов тока на операционных усилителях мы бегло рассмотрели на предыдущей странице вместе с транзисторными источниками. Повторим пройденный материал.
Источники тока на операционных усилителях
Рис.1

Генераторы тока, изображённые на Рис.1, (инвертирующий слева, неинвертирующий справа) – вполне себе работоспособные устройства, которые являются близкими аналогами идеальных источников тока, и практически лишены недостатков, присущих транзисторным схемам.
Ток через нагрузку с достаточно высокой точностью описывается формулой Iн≈ Uвх/R1.
При включении в качестве Rн конденсатора, приведённые схемы широким фронтом эксплуатируются в формирователях треугольного и пилообразного напряжений.
В отдельных случаях существенным недостатком источников тока, изображённых на Рис.1, является «плавающая», т.е. не подключённая никаким боком к земле или питанию нагрузка. К тому же, по большей части, операционный усилитель не может обеспечить значительных величин токов, поступающих в нагрузку.

Рассмотрим схемы источников тока на ОУ, не имеющих этих недостатков.
Как правило, для получения устойчивого положительного результата, к операционному усилителю присовокупляется дополнительный выходной каскад на биполярном или полевом транзисторе.
Источники тока на ОУ
Рис.2

На Рис.2 приведены схемы генераторов тока на ОУ с выходными каскадами на биполярном, либо полевом транзисторе и нагрузкой, подключаемой к шине питания.
Пренебрегая входным током ОУ и конечным коэффициентом усиления транзистора, выходной ток составит всё ту же величину Iн≈ Uвх/R1.
На самом деле, коэффициент усиления биполярного транзистора имеет конечное значение, а полная формула тока нагрузки выглядит следующим образом Iн= Uвх×β/[R1(1+β)].
Это обуславливает некоторую нестабильность выходного тока при изменении сопротивления нагрузки за счёт проявления эффекта Эрли (эффект влияния напряжения между коллектором и базой на величину коэффициента передачи тока транзистора).
Проявления этой нестабильности можно уменьшить, если в качестве биполярного транзистора использовать составной транзистор, либо применяя полевой транзистор.
Особенность схем источников тока, показанных на Рис.2, состоит в том, что нагрузка подключается к шине питания.
Источники тока на ОУ
Рис.3

На Рис.3 приведены источники тока с заземлённой нагрузкой.
Выходной ток здесь описывается уже несколько другой формулой: Iн≈ (Еп-Uвх)/R1.
Подобная зависимость выходного тока от управляющего напряжения не всегда удобна в практических разработках, поэтому для устранения этого недостатка к схеме можно присовокупить дополнительный преобразователь уровня.
Источник тока на операционном усилителе
Рис.4

Здесь первый операционник с транзистором n-p-n структуры служит для преобразования уровня входного управляющего напряжения Uвх в значение Eп-Uвх.
Rпр1 и Rпр2, как правило, выбираются одного номинала, величина которого рассчитывается, исходя из входного сопротивления второго ОУ, а также из соображений приемлемого быстродействия при работе источника тока в динамическом режиме (т.е. при подаче на вход импульсного сигнала управления).
Ну и ясен шпунтубель, что всё наше усердие было направлено на получение удобной зависимости Iн≈ Uвх/R1, а для повышения выходного сопротивления источника тока вместо простого биполярного выходного транзистора следует включить составной или полевой транзистор.

Источник тока на операционном усилителе

 

vpayaem.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *