Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Надежное зарядное для китайского фонарика схема. Светодиодный аккумуляторный фонарь

В качестве образца возьмём аккумуляторный фонарик фирмы “ДиК”, «Люкс» или «Космос» (см. на фото). Этот карманный фонарик, малогабаритный, удобный в руке и с достаточно большим рефлектором – 55,8 мм в диаметре, светодиодная матрица которого имеет 5 белых светодиодов, что обеспечивает хорошее и большое пятно освещения.

Кроме того форма фонарика всем знакома, а многим ещё с детства, одним словом – бренд. Зарядное устройство находится внутри самого фонарика, стоит только снять сзади крышку и воткнуть его в розетку. Но, ни что не стоит на месте и эта конструкция фонарика тоже претерпела изменений, особенно его внутренняя начинка. Последняя модель на данный момент – ДИК АН 0-005 (или ДиК-5 ЕВРО).

Более ранние версии – это ДИК АН 0-002 и ДИК АН 0-003 отличаются тем, что в них стояли дисковые аккумуляторы (3 шт), Ni-Cd серии Д-025 и Д-026, ёмкостью 250 мА/часов, или в модели АН 0-003 – сборка уже более новых аккумуляторов Д-026Д с большей емкостью, 320 мА/ч и лампочки накаливания на 3,5 или 2,5 В, с током потребления 150 и 260 мА соответственно. Светодиод, для сравнения, потребляет около 10 мА и даже матрица из 5 штук – это 50 мА.

Конечно, при таких характеристиках фонарик не мог долго светить, его максимум хватало на 1 час, особенно первые модели.

Что же такого есть в последней модели фонарика ДИК АН 0-005?

Ну во-первых – светодиодная матрица из 5 светодиодов, в отличие от 3-х или лампочки накаливания, что даёт значительно больше света при меньшем токе потребления, а второе – в фонарике стоит всего лишь 1 пальчиковый современный Ni-MH аккумулятор на 1,2-1,5 В и ёмкостью от 1000 до 2700 мА/ч.

Некоторые спросят, а как же пальчиковый аккумулятор на 1,2 В может «зажечь» светодиоды, ведь чтобы они ярко светили надо примерно 3,5 В? По этой причине в более ранних моделях ставили последовательно 3 аккумулятора и получали 3,6 В.

Но, тут уже не знаю кто первый придумал, китайцы или кто-то другой, сделать преобразователь (умножитель) напряжения с 1,2 В до 3,5 В. Схема простая, в китайских фонариках это всего лишь 2 детали – резистор и радиодеталь похожая на транзистор с маркировкой – 8122 или 8116, или SS510, или SK5B. SS510 – это диод Шоттки.

Светит такой фонарик хорошо, ярко, и что не маловажно – долго, а циклов заряд-разряд не 150, как в предыдущих моделях, а на много больше, что увеличивает срок службы в разы. Но!! Чтобы светодиодный фонарик служил долго, надо вставлять его в розетку с 220 В в выключенном состоянии! Если этого правила не придерживаться то при зарядке можно легко сжечь диод Шоттки (SS510), а часто заодно и светодиоды.

Мне однажды пришлось ремонтировать фонарик ДИК АН 0-005. Не знаю точно, что послужило причиной выхода его из строя, но предполагаю, что воткнули его в розетку и забыли на несколько суток, хотя по паспорту заряжать надо не более 20 часов. Короче – вышел из строя аккумулятор, потёк, и сгорело 3 светодиода из 5, плюс преобразователь (диод) тоже перестал работать.

Аккумулятор пальчиковый на 2700 мА/ч у меня был, остался от старого фотоаппарата, светодиоды тоже, а вот найти деталь – SS510 (диод Шоттки), оказалось проблематично. Этот светодиодный фонарик скорее всего китайского происхождения и такую деталь наверное можно купить только там. И

gksteel.ru

Вторая жизнь аккумуляторного фонарика – Прочие источники – Источники питания

Сергей Никитин

Основными причинами выхода из строя аккумуляторных фонариков является выход из строя аккумуляторных батарей или перегорание светодиодов.
Вторые перегорают потому, что производители не заморачиваются с ограничением тока через светодиоды, дабы не было застоя в промышленности при производстве подобной продукции.

И так, от разных старых или неисправных устройств типа плееры, видео-регистраторы, навигаторы и прочее, всегда что то остаётся полезное, в том числе и аккумуляторы, а они обычно литиевые, которые требуют некоторых особенностей в эксплуатации, для этого в них обычно вмонтирован контроллер заряда-разряда.

Очень интересны для вторичного использования вот такие АКБ без корпусов, они маленькие и довольно ёмкие и их вполне можно ставить в фонарик, взамен вышедшего из строя штатного аккумулятора.

Зарядное устройство в обычных аккумуляторных фонариках, выполнено по примитивной схеме, которая не пригодна для заряда аккумуляторов с контроллером, потому что после заряда аккумулятора, контроллер отключит заряд, а это приведёт к скачку напряжения на входе контроллера и вывод его из строя или продолжением не контролируемого заряда.
Литиевые батареи этого не прощают и могут взорваться, выйти из строя.

Для этого была разработана простая схемка, которая ограничивает входное напряжение после отключения заряда и даже индицирует его протекание или окончание.

Штатное зарядное устройство фонарика удаляется (можно использовать его как донор) и вместо него устанавливается следующая схема.

 

 

Зарядный ток ограничивается конденсатором С1, который должен быть плёночным (не бумажным) и на напряжение не ниже 400В, можно использовать помехоподавляющие, на которых обычно пишут 275вольт.
При указанной на схеме ёмкости, зарядный ток около 50 мА.
Диодный мост взят из базы старого радиотелефона, здесь не обязательно использовать диодный мост рассчитанный на сетевое напряжение, двухцветный светодиод от туда же.
При заряде, ток протекая через резистор R7 создаёт на нём падение напряжения, что индицирует диод с одним цветом (например красный).
При отключении контроллером батареи заряда, напряжение возрастает и открывается стабилитрон VD2, VD5 которые ограничивают входное напряжение на аккумуляторе и падение напряжения на резисторе R3 зажигает другой светодиод (например зелёный), индицируя об окончании заряда.

Стабилитроны КС456 или КС468 (или им подобные рассчитанные на максимальный ток стабилизации не менее зарядного тока, в нашем случае 50мА и (или) суммарное напряжение стабилизации 8-12 вольт.
Одно замечание, не у всех аккумуляторов контроллеры отключаются при маленьком токе заряда.
В этом случае необходимо увеличить ёмкость С1 до 2-3 мкФ, а величины резисторов R3, R 6,R7 уменьшить до 51-30 Ом, мощность 1Вт, стабилитроны заменить на Д815 с соответствующим напряжением стабилизации.

Величину резистора R8 рассчитываем из условия ограничения максимального тока через светодиоды фонаря.
Обычный белый светодиод (в котором не предусмотрено принудительное охлаждение) рассчитан на ток около 20мА, падение напряжения на белых светодиодах около 3-х вольт, а максимальное напряжение аккумулятора 4,2 вольт, вот эту разницу 1,2 вольт нужно куда то пристроить.
Если у вас в фонарике 5-ть светодиодов соединённых параллельно то максимальный суммарный ток будет около 5х20мА=100мА, следовательно 1,2 вольт делим на 0,1А (это наши 100мА), получаем величину резистора 12 Ом.

Если у вас стоят мощные светодиоды, к которым прикреплён радиатор, то при расчёте их максимальный справочный ток уменьшаем на 30%, и тогда они будут работать у вас очень-очень долго.
Это касается всех светодиодов используемых в осветительных приборах. Производители умышленно загоняют их в предельные режимы работы для сокращения срока их службы.

 

vprl.ru

Солнечные фонарики — нам надо ярче / Habr

Наверняка многие уже успели наиграться с китайскими солнечными фонариками и разочароваться в них. Попробуем разобраться в вопросе: в чём причина их малой яркости и можно ли с этим что-то сделать?


Для начала сравним солнечные батареи фонариков. Я выбрал три фонарика, первый приехал с Алиэкспресса, второй был куплен около 3 лет назад в Глобусе и третий был куплен в этом году в Леруа:

Также в сравнении будут участвовать три солнечные батареи с Алиэкспресса размерами 56.8х56.8 мм и 60х65 мм:

И круглая солнечная батарея диаметром 82 мм:

Электронной нагрузки у меня нет, поэтому тест проведу при помощи аккумулятора ёмкостью 1600 мА/ч предварительно разряженного, а потом заряженного до 500 мА/ч. При пробном тесте на таких трёх одинаковых аккумуляторах одного полностью разряженного, заряженного до половины и полностью заряженного разница в зарядном токе отличалась несущественно. Поочерёдно подключаем мультиметр в разрыв провода аккумуляторов фонариков и измеряем ток заряда.

Солнечный фонарик, купленный на Алиэкспрессе:

Солнечный фонарик, купленный в Глобусе:


Солнечный фонарик, купленный в Леруа:

Аналогично измеряем зарядный ток от солнечных батарей, подключая их через плату от фонарика безвременно погибшего под чьей-то ногой.

Солнечная батарея 56.8х56.8 мм:

Солнечная батарея 60х65 мм:

Солнечная батарея диаметром 82 мм:

Измерения проводились как правило с интервалом в один час, недостающие результаты измерений для таблиц по июню и августу рассчитывались исходя из высоты солнца над горизонтом. В графике ниже приведены рассчётные значения максимального заряда аккумуляторов за сутки:

Как видно из графиков, накопленная за день энергия китайских фонариков вполне соответствуют их токам потребления, результаты измерений которых приведены ниже в этой статье. А если фонарик собирать на основе солнечных батарей с Алиэкспресса, то его потребление можно увеличить практически на порядок, доведя его до 60…100 мА. Стоит также отметить, что этот график составлен исходя из идеальных условий для солнечной батареи, а именно отсутствии облачности и затенения от деревьев, или построек. Например, фонарик заряжающийся на открытом месте током 60 мА:

При затенении от небольшой сливы:

Выдаёт в два раза меньший ток заряда, что надо учитывать при расстановке фонариков на местности:

А теперь про отрицательные свойства батарей выполненных из пластин поликристаллического кремния. Большинстве случаев эти батареи представляют собой основание из гетинакса, на котором пайкой при помощи шинок соединены фотопластины и залиты прозрачным компаундом на основе эпоксидного клея. На фотографии фонарики отслужившие два сезона:

Со временем от солнечного излучения поверхность солнечной батареи разрушается и при попадании воды покрывается белым налётом, что конечно не сказывается положительно на эффективности солнечной батареи. На фотографии ниже те же самые фонарики спустя ещё сезон:

Ситуацию может спасти полировка, например с помощью пасты ГОИ, или на крайний случай можно замочить солнечную батарейку в тёплой воде, а затем счистить налёт при помощи старой зубной щётки, а лучше с зубным порошком. Снизу фотография этих же солнечных фонариков после чистки.

На фотографии батарея с Алиэкспресса 56.8х56.8 мм, отработавшая 2 сезона и побывшая несколько часов в воде:

Та же батарея после чистки зубной щёткой:

Как показывает практика, работоспособность после такой чистки восстанавливается практически полностью, ниже тест новой батареи:

И батареи после чистки:

Разница составляет всего 5 мА, что частично можно списать на разброс параметров солнечных батарей в партии. Стоит также отметить, что прозрачный компаунд, которым применяется в данном типе солнечных батарей не стоек к спирту, растворителям и если протереть ими солнечную батарею, то компаунд практически сразу начинает разрушаться и белеть.

Также встречаются солнечные батареи из поликристаллического кремния ламинированного в полиэтилен:

Как показала практика, это является самым практичным решением, на фотографии батарея отработавшая в самодельном солнечном фонарике уже 4 сезона!


А теперь поговорим об электронной начинке солнечных фонариков. Схемы на трансформаторах мы не будем рассматриваются ввиду трудоёмкости их изготовления. Электроника солнечных фонариков первого поколения строилась на дискретных элементах. Три классические схемы показаны на рисунках ниже и если внимательно приглядеться то видно, что узел собственно повышающего преобразователя в них практически полностью идентичен и основные различия только в способе анализа освещённости и питании светодиодов. На первых двух схемах для анализа освещённости используются дополнительные фоторезисторы, а на третьей схеме в качестве датчика света используется непосредственно солнечная батарея, а светодиод подключен параллельно с интегрирующим конденсатором, сглаживающим броски напряжения, но об этом чуть позже.


Схема 1


Схема 2


Схема 3

Современные солнечные фонарики базируются в основном на китайских микросхемах семейств YX8XXX, QX5252, ANA618. Именитые производители, например Diodes, также выпускают подобные микросхемы, но из – за того что стоимость у них скорее всего значительно больше чем у китайских микросхем, в фонариках мы их вряд – ли когда нибудь встретим. В основном производители этих микросхем заявляют КПД микросхем не хуже 85%, средний ток через светодиод задаётся номиналом дросселя, но производители в даташитах по разному его нормируют — одни приводят усреднённый ток через светодиод (схемы 4, 7), другие потребляемый ток от аккумулятора (схемы 5, 6).

Также надо уточнить, что в китайских фонариках применяются индуктивности типа — EC-24:

Это недорогой маломощный дроссель, с относительно большим внутренним сопротивлением, что конечно снижает КПД преобразователя.


Схема 4


Схема 5


Схема 6


Схема 7


Вскрытие показало, что в фонарике, который был куплен в Глобусе используется микросхема YX8018:

Индуктивность номиналом 136 мкГн:

Потребление фонарика от источника напряжением 1,27 вольта составляет 6 mA:

В фонарике из Леруа используется микросхема ANA618:

Индуктивность номиналом 210 мкГн:

Потребление фонарика от источника напряжением 1,27 вольта составляет 5 mA:

А в фонарике с Алиэкспресса применена знаменитая китайская микросхема типа «клякса»:

Индуктивность номиналом в 342 мкГн:

Потребление фонарика от источника напряжением 1,27 вольта составляет 11 mA:

Результаты этого измерения и беглый взгляд на таблицу приложенную к схеме 5, позволяют предположить, что мы имеем дело с микросхемой QX5252 в бескорпусном исполнении.

После удачного повторения и наладки схем 1 — 3 схемы выяснилось, что в целом они работоспособны, но по характеристикам примерно аналогичны тем же китайским, а хотелось большего. Закупив на пробу солнечные батареи, которые вместе с фонариками участвовали в тестировании, я сначала остановился на токе потребления схем фонариков в 60 мА, применяя сверхъяркие светодиоды диаметром 5 мм с углом рассеяния в 120 градусов:

Попытки сделать светорассеиватели как в китайских фонариках успехом не увенчались и я пришёл вот к такой конструкции применяя её вместе со схемой 9:

Эти светодиоды имеют недостаток – источник света точечный и поэтому плафоны фонариков приходилось подбирать матовые, прозрачные плафоны матировать покрывая полупрозрачным белым акриловым лаком или делая вставки из белой плёнки. Но когда погнался за яркостью и перешёл на токи потребления фонариков от аккумуляторов в 100 – 120 мА, от 5 миллиметровых светодиодов пришлось окончательно отказаться, не спасало даже параллельное соединение шести светодиодов:

Маломощные светодиоды просто не способны эффективно работать на пиковых токах, поэтому пришлось перейти на сборки из трёх 0,5 ваттных светодиодов типоразмера 5730 и схему 8:

Забегая вперёд замечу, что со светодиодами 5730 в отличии от 5 миллиметровых не требуется матировать плафоны фонариков, что опять же увеличивает яркость фонарика.

На рисунках 8, 9 схемы разработанные мной на основе схем на рисунках 1 — 3. Это «рабочие лошадки», которые уже в течении 3 сезонов показали свою надёжность и неприхотливость. Схема 8 предназначена для работы с одним 1 – 3 ваттным светодиодом, или тремя 0,5 ваттными типа 5730. Схема 9 предназначена для работы с фонариками – гирляндами на основе параллельно подключенных однотипных маломощных светодиодов, например тех же 5 миллиметровых. Основой обеих схем является повышающий преобразователь на транзисторах VT4, VT5, дросселе L1, конденсаторе обратной связи С4, резисторе – ограничителе тока базы R7 и резисторе задающего ток смещения R8. Этот блок практически полностью идентичен с первыми тремя схемами. Но есть и отличия, это усилитель датчика света на транзисторе VT1, что позволило добиться более позднего включения фонарика в ранних сумерках по сравнению с исходными схемами. А также датчик напряжения, который выполняет функцию защиты аккумулятора от глубокого переразряда, запрещая работу повышающего преобразователя, если напряжение на аккумуляторе ниже 1,1 вольта. Датчик реализован на диоде VD2 и транзисторе VT2. Если напряжение на аккумуляторе будет ниже 1,1 вольта, то два PN перехода включенные последовательно образованные диодом VD2 и эмиттерным переходом транзистора VT2 будут закрыты, как и транзистор VT3, разрешающий включение повышающего преобразователя. Резистором R4 задаётся уровень гистерезиса схемы датчика напряжения. Резисторами R7, R8 задаётся ток потребляемый блоком повышающего преобразователя от аккумулятора. С данными номиналами ток потребления схемы будет составлять 95 – 120 мА при среднем токе через светодиод около 20 mA. Ток я измерил косвенным методом. К солнечной батарее был подключен стрелочный прибор от магнитофона. Направив на солнечную батарею горящие светодиоды и найдя положение, в котором стрелка отклонится на максимум и запоминаем её положение:

Затем подключаем светодиоды к регулируемому источнику тока. Регулируя ток через светодиоды добиваемся, чтобы стрелка встала в тоже положение что и в предыдущем измерении:

У меня получилось 23 мА при напряжении на светодиоде 2,8 В. Получается, что измеренное таким косвенным методом КПД равно всего 52%, что не удивительно, ввиду того что Uкэ насыщения кремниевого транзистора BC817 составляет 0,6 вольта.


Схема 8


Схема 9

При заказе транзисторов для этой схемы имейте ввиду, что китайские транзисторы BC817 с Алиэкспресса могут работать некорректно с током потребления 50 – 60 mA и низким КПД схемы. Нормально работают транзисторы фирм ON Semiconductor, или NXP. В схеме применены резисторы и керамические конденсаторы типоразмера 0805, электролитические конденсаторы танталовые в корпусе CASE-А и ёмкостью 10 – 47 мкФ и рабочим напряжением не менее 10 вольт. Диод 1SS314 можно заменить на широко распространённый LL4148, диод 1SS357 на SS16 и подобные диоды шоттки. Дроссель L1 типоразмера CD43 100 мкГн:

Транзисторы BC847, BC857 лучше применять индексом C, они имеет максимальный коэффициент усиления h31Э. Рабочее напряжение конденсатора С5 в схеме 9 должно быть не менее 16 вольт и ёмкостью не менее 10 микрофарад. При попытке его уменьшения до 1 uF (хотелось заменить достаточно большой электролитический конденсатор в корпусе в CASE-A на более миниатюрный керамический в корпусе 0603) 5 мм светодиоды из – за несглаженных выбросов импульсов напряжения с преобразователя начали постоянно выходить из строя, пришлось вернуться к первоначальному номиналу. Платы изготавливаются по стандартной ЛУТ технологии, в качестве выключателя используются разъёмы на плате и аккумуляторе:

Плата универсальна для схем на рисунках 8, 9. На фотографии плата собрана по схеме 8 (конденсатор С5 не установлен).

Ссылка на архив со схемами и печатными платами (в формате P-CAD 2006 и .pdf)

Неплохо себе показала схема 10 на экзотической и сравнительно дорогой микросхеме ZXLD383 фирмы DIODES. Конденсатор С1 керамический 0805, дроссель L1 типоразмера CD43 10 мкГн. HL1 – сборка из трёх светодиодов типа 5730. С указанными номиналами ток потребления схемы составляет 100 – 110 мА.


Схема 10

В сборе это выглядит как то так:

Ссылка на архив со схемами и печатными платами (в формате P-CAD 2006 и .pdf)

И наконец самая оптимальная по критерию цена/качество схема на китайской микросхеме фирмы QX Micro devices QX5252. Конденсатор С1 керамический 0805, дроссель L1 типоразмера CD43 22 мкГн. HL1 – сборка из трёх светодиодов типа 5730. С указанными номиналами ток потребления схемы составляет 100 – 110 мА.

Схема 11

Плата в сборе:

Ссылка на архив со схемами и печатными платами (в формате P-CAD 2006 и .pdf)

Ради интереса были проведены испытания при помощи люксометра:

Результаты в таблице:

Фонарик Ток потребления, мА Освещённость, КЛК
Алиэспресс 11 0,9
Глобус 6 2,7
Леруа 5 7,58
ZXLD383 (Схема 10) 112 95
QX5252 (Схема 11) 109 114
Схема 8 93 101

Приведу несколько фотографий. Тест фонарика из Глобуса:

Тест платы на микросхеме QX5252 (Схема 11):

Мне кажется, что всем уже наскучили голые цифры и схемы, поэтому забегая вперёд покажу как вечером выглядят в реальной жизни фонарик из Глобуса (слева) и фонарик основанный на схеме 11 (справа):

А о конструкциях фонариков на основе приведённых схем мы поговорим в следующий раз…

habr.com

Повышающий преобразователь для светодиодного фонарика из КЛЛ

В наш век прогресса и разнообразных нанотехнологий довольно многие уже используют для освещения дома «энергосберегающие лампочки» (которые на самом деле правильно называть «КЛЛ со встроенным ПРА»). Вроде таких:



Как ни странно, оные чудо-приборы будущего тоже иногда ломаются. В этом случае большинство людей просто утилизирует их вместе с остальным мусором, совершенно не подозревая, что такая лампочка, даже отслужившая свое, еще может принести существенную пользу. Например, в ней есть почти все, что нужно, чтобы собрать простой светодиодный фонарик, работающий от одной полуторавольтовой батарейки.

Для начала давайте посмотрим, что же собственно мы будем собирать:

Сия схема служит для того, чтобы повысить полтора вольта, выдаваемые батарейкой, до рабочего напряжения белого светодиода (около трех вольт, ток ограничивается за счет свойств катушки-обмотки). Она является вариацией давно известного преобразователя на блокинг-генераторе. Сразу скажу, что достоинство у приведенного варианта только одно – простота. Он пригоден исключительно для питания «обычных» белых светодиодов с рабочим током в районе 20 мА, да и то в режиме сомнительной оптимальности. Проистекает это оттого, что параметры подобной схемы зависят от кучи разных факторов (температуры в том числе), и практически не поддаются точному расчету – чистая эмпирика. Впрочем, схема обладает отличной повторяемостью, и вполне подойдет для того, чтобы развлечься долгим вечером или экстренно собрать фонарик в полевых условиях. Кроме того, существуют более пристойные ее модификации (ссылки на различные варианты даны ниже).

Несколько слов о том, как она работает. Изначально транзистор открывается током, протекающим через вторичную обмотку трансформатора T1 и резистор. Вследствие этого через открытый транзистор и первичную обмотку также начинает протекать нарастающий ток. Нарастающий ток порождает в сердечнике усиливающееся магнитное поле, которое в полном соответсвии с уравнениями Максвелла приводит к возникновению напряжения на вторичной обмотке. Однако вторичная обмотка включена навстречу первичной (точки рядом с обмотками обозначают их условное начало), потому возникающее на ней напряжение оказывается противонаправленным напряжению на участке база-эмиттер, и начинает компенсировать последнее, закрывая транзистор. Транзистор закрывается. Однако катушки обладают значительной индуктивностью, и потому ток в них не может прекратиться сразу. Через закрытый транзистор он течь не может. Но параллельно ему подключен светодиод, через который и протекает ток в этом случае. Катушка является в этот момент источником тока, а светодиод кроме всего прочего работает как стабистор, ограничивая напряжение на себе и транзисторе – без него выходное напряжение может достигать десятков вольт. Светодиод светится, энергия, запасенная в катушке, расходуется, поле в сердечнике убывает, а вместе с ним уменьшается напряжение на вторичной обмотке. В какой-то момент оно уменьшается настолько, что больше не компенсирует напряжение, приложенное к базе. Транзистор открывается, и все повторяется сначала.

Схема может быть собрана из практически любых деталей на любой коленке, и с вероятностью 98% будет работоспособна.

А теперь собственно о том, как сделать вышеописанное из энергосберегайки.

Расковыриваем корпус. Отверткой аккуратно разделяем его на две половинки, чтобы достать схему балласта, из которой добывается большинство необходимого.

Откусываем бокорезами провода, и достаем балласт:

В нем нас интересует дроссель (с него будем сматывать провод для обмоток), ферритовое колечко (на нем будем мотать трансформатор) и транзистор.

К сожалению, в этом экземпляре балласта я не смог обнаружить необходимого резистора (0.3 – 1K), потому взял подходящий экземпляр из закромов. Хотя в полевых условиях можно попытаться набрать подходящий номинал из имеющихся в балласте.

Светодиод берем там же, в хламе. Самый обычный 10мм белый светодиод:

Собираем все в кучку, дабы полюбоваться:

Теперь надо намотать трансформатор. Для этого освобождаем кольцо от тех обмоток, что на нем уже есть, разламываем дроссель пассатижами (у меня он был склеен компаундом, так что культурно разобрать не представлялось возможным), и добываем из него провод:

На кольцо надо намотать примерно по 25 витков провода для каждой обмотки. Для удобства целесообразно вести намотку так: сматываем с дросселя примерно восемьдесят сантиметров провода (отмерить можно даже без линейки – по длине примерно как четыре листа А4 в высоту; а чтобы дроссель при разматывании не колол пальцы, можно загнуть его ножки пассатижами), складываем провод пополам и наматываем обмотку прямо в два провода. После чего обрезаем концы проволоки до удобной длины, и получаем сразу две одинаковые обмотки.

При намотке я не особо старался запомнить, какие выводы какой обмотке принадлежат, и потому после прозвонил их тестером.

Транзистор имеет смысл проверить, ибо взят он из неисправной лампы, и потому, возможно, неработоспособен. Я проверил, и обнаружил, что так оно и есть. Потому я взял еще один балласт и выпаял другой транзистор из него.

Это оказался могучий MJE13003. Проверил – рабочий.

Выдержки из нагугленного даташита на него:

Поскольку, как я уже говорил, эта схема может быть собрана из чего угодно, как угодно и где угодно, в даташите нас интересует прежде всего распиновка. Остальные параметры и так имеют огромнейший запас.

Ну вот, все есть:

Собираем по схеме:

Обмотки абсолютно равноценны, потому разницы, какую включать в коллектор, а какую – в цепь базы, нет. Если же после сборки генератор не заработает, это значит, что надо поменять местами выводы одной из обмоток, и он наверняка запустится. Но я попал с первого раза.

Ну вот, работает!

Как я уже говорил, эта схема сильно упрощена. Если же хочется чего-то в том же духе, но более стабильного и правильного, то стоит обратить внимание на следующие схемы (в порядке возрастания «правильности»):

Совсем плохо:

radiokot.ru/circuit/power/converter/13/

Чуть лучше:

radiokot.ru/lab/analog/22/
radiokot.ru/lab/analog/24/
elm-chan.org/works/led1/report_e.html

Совсем пристойно, даже с явной стабилизацией тока:

elm-chan.org/works/led2/report.html

Вот и все. В заключение хочу повторить, что все перечисленные схемы в силу упомянутых в начале недостатков пригодны лишь для построения небольших «несерьезных» фонариков выходного дня, либо когда в полевых условиях нужно экстренно собрать что-то светящееся. Для мощных светодиодов они не подходят категорически.

we.easyelectronics.ru

Простой светодиодный фонарь 3.7В


Всем привет, предлагаю вашему вниманию мощный самодельный фонарик. Теперь вам будет не страшна никакая тьма. Собирается самоделка довольно просто, все материалы покупные и их легко достать. Так, например, корпус фонаря автор сделал из сантехнических труб и деталей для них. В этом фонаре установлены литиевые аккумуляторы, что позволяет его просто заряжать. Итак, рассмотрим более подробно, как же собрать такой фонарик!


Материалы и инструменты, которые использовал автор:

Список материалов:
– литиевые аккумуляторы;
– BMS-контроллер;
– светодиод;
– отражатель;
– линза;
– радиатор и вентилятор;
– кнопка для включения;
– провода;
– разъем для подключения зарядного устройства;
– зарядное устройство;
– краска;
– эпоксидный клей;
– нержавеющая проволочка;
– винтики, термопаста и другое.

Список инструментов:
– дрель;
– ножовка по металлу;
– паяльник;
– кусачки;
– отвертка;
– маркер;
– плоскогубцы.

Процесс изготовления фонарика:

Шаг первый. Устанавливаем светодиод на кулер
Светодиод мы будем использовать довольно мощный, а это значит, что от него обязательно понадобится отводить тепло. Для этих целей нам будет нужен небольшой алюминиевый радиатор.

Намечаем места, сверлим отверстия и нарезаем резьбу под винтики. Далее прикручиваем светодиод к радиатору. Обязательно наносим на радиатор термопасту, иначе теплоотдача будет низкой и светодиод перегреется.


Далее устанавливаем отражатель, автор крепит его при помощи эпоксидного клея. Горячий клей тут использовать нельзя, так как тут все нагревается. Потом можно установить и линзу. Для крепления линзы автор использовал тонкую нержавеющую проволочку. Просто приматываем с помощью нее кронштейн линзы к радиатору. Вот и все, теперь просто устанавливаем вентилятор с другой стороны радиатора. Вентилятор подключаем к светодиоду параллельно, чтобы он включался сразу при включении фонарика. Места соединений спаиваем для надежного контакта и изолируем термоусадкой.

Шаг второй. Делаем корпус
В качестве корпуса нам понадобится кусок канализационной трубы из ПВХ, в ней будут находиться два аккумулятора по 4000 мАч каждый. Что касается радиатора со светодиодом, то он будет установлен внутри конусообразной части. Поскольку начинка в нее полностью не влезла, автор немного увеличил длину детали. Он отрезал кусок от еще одной конусообразной части и приклеил ее суперклеем. Также нам понадобится заглушка для труб, тут будет находиться разъем для зарядного устройства.

Когда все будет готово, красим корпус. Автор использовал баллончик с серебристой краской, смотрится все довольно неплохо.


Шаг третий. Отверстие под кнопку
В корпусе сверлим отверстие, а затем растачиваем его напильниками или вырезаем канцелярским ножом. Сюда мы потом установим кнопку для включения фонарика.

Шаг четвертый. Крепим начинку
Радиатор с установленным светодиодом закрепим в корпусе. Для этих целей нам понадобится дрель и сверло небольшого диаметра. Сверлим отверстия и прикручиваем все это дело винтиками. Лишние части срезаем, чтобы не мешали. Оставшиеся окна закрывать нельзя, они нужны для вентиляции. Вообще в корпусе в районе радиатора хорошо бы насверлить отверстий для охлаждения. После этого припаиваем кнопку и устанавливаем ее на свое место.

Шаг пятый. Разбираемся с аккумуляторами
Аккумулятора у нас два, каждый по 4000 мАч емкости. Их автор устанавливает параллельно, для этого они спаиваются «минусами». Между «минусов» впаиваем BMS. Благодаря этому контроллеру аккумуляторы будут работать долго, он не позволит их перезарядить или разрядить до критически низкого значения. Плюсы батарей тоже соединяем проводом. Вот и все, теперь припаиваем нужные провода и устанавливаем аккумуляторы в корпус.

Шаг шестой. Разъем для зарядки
В заглушке устанавливаем гнездо для подключения зарядного устройства. Он крепится при помощи гайки. Припаиваем провода, зарядка должна идти через BMS-контроллер. Ну а далее устанавливаем заглушку на свое место.

Вот и все, фонарь готов. Если аккумуляторы заряжены, его можно испытать. На видео фонарь светит довольно ярко, как прожектор. Правда, при этом остается загадкой, на сколько же хватает зарядки аккумулятора. На этом все, проект окончен. Удачи и творческих вдохновений, если захотите повторить. Не забывайте делиться своими самоделками и наработками с нами!
Источник Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

Простейший фонарь на одном суперконденсаторе (5+ часов работы)

Простейший фонарь на одном суперконденсаторе (5+ часов работы)
Недавно мы рассматривали, как сделать очень яркий фонарик на двух суперконденсаторах. Но его недостатком было то, что там использовалась слишком мощная лампа, что высаживало фонарик за 6 минут. Тут мы рассмотрим подобный фонарь, который сделан как раз таки для того, чтобы светить как можно дольше. Не смотря на то, что тут установлен всего один конденсатор, а не два, как в ЭТОЙ САМОДЕЛКЕ, фонарь может светить более 5-ти часов. Все это благодаря тому, то тут используется один светодиод вместо лампы.
Собирается все довольно быстро, правда придется повозиться с корпусом. Его можно распечатать на 3D-принтере или просто подобрать подходящий цилиндр.

Список материалов и инструментов для сборки:
– резистор на 100 Ом;
– провода;
– светодиод;
– термоусадка;
– паяльник с припоем;
– провода с крокодильчиками;
– диод;
– суперконденсатор;
– выключатель и другое.

Процесс сборки фонарика:

Шаг первый. Подготовка деталей
В первую очередь автор распечатал корпус для светодиода, зачистил для пайки выходы конденсатора, подобрал светодиод. Все детали на этом шаге уже подготовлены к сборке.

Простейший фонарь на одном суперконденсаторе (5+ часов работы)

Шаг второй. Схема

Свой фонарик автор решил заряжать от солнечной панели, в связи с этим тут присутствует диод и отсутствует выключатель. Как именно все подключается, можно видеть на схеме.
Простейший фонарь на одном суперконденсаторе (5+ часов работы)
Простейший фонарь на одном суперконденсаторе (5+ часов работы)
Шаг третий. Устанавливаем конденсатор в корпус
На следующем шаге автор устанавливает в корпус конденсатор. Предварительно в верхней части нужно просверлить отверстие для вывода проводов зарядки, так как автор забыл его предусмотреть.

К длинному выводу светодиода автор подключил резистор, чтобы защитить светодиод. К другому концу резистора подключен провод красного цвета, дабы не перепутать полярность. Для изоляции автор натянул на резистор термоусадку. Трубку автор усаживает паяльником. К другому концу светодиода можно припаять провод синего или другого цвета, дабы при сборке не перепутать полярность. Другой контакт также изолируется термоусадкой.


Еще на этом этапе можно вывести из отверстия провода зарядки и припаять к соответствующим местам.

Шаг четвертый. Дальнейшая сборка
Протолкните светодиод через крышечку. Далее останется припаять все остальные провода, включая установку светодиода. В завершении крышечка фиксируется с помощью алюминиевого скочта. Так фонарик можно будет быстро разобрать при необходимости.


Вот и все, фонарь готов. Для лучшей производительности под светодиод можно установить отражатель.
Источник Простейший фонарь на одном суперконденсаторе (5+ часов работы) Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *