Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Схемы блоков питания | 2 Схемы

Схемы самодельных блоков питания на различные напряжения и ток — простые БП для начинающих и мощные двухканальные регулируемые лабораторные источники питания со всеми защитами.

Попробовал недавно собрать схему мощного лабораторного блока питания 0-30 В с защитой 0-10 А, работает нормально. Принципиальная схема, печатная плата и файлы в общем архиве. …

В этой статье представим два самых простых регулируемых блока питания на базе популярных микросхем LM317 и LM337. Конструкции были сделаны из дешевых и легкодоступных деталей. …

Этот мощный самодельный блок питания состоит из двух отдельных модулей: управляющей части со стабилизатором и инвертора. В данной конструкции блока питания отсутствует силовой трансформатор (как …

Проект этого очень мощного импульсного источника питания давно ждал своего времени и наконец был воплощен в железе, потому что потребовался регулируемый лабораторный ИП повышенной мощности.

Разрешите представить на суд уважаемых радиолюбителей и читателей сайта 2Схемы довольно необычный лабораторный источник питания с регулировками напряжения 0 — 20 В и током защиты …

Блок питания — комплект для самостоятельной сборки из одного зарубежного радиоконструктора, только тут трансформатор 2x 9 В 2,5 A, соответственно снижен в 2 раза предел …

Предпосылкой к проекту было создать простой и дешевый преобразователь напряжения. Постоянное напряжение 12 В при выходном переменном значении около 220 В и нагрузочной способности до …

Радиопередатчик, которым по долгу службы иногда пользуюсь, имеет напряжение 12 В, поэтому блок питания к нему требуется достаточной мощности. Купить готовый можно, но это же …

Разрешите представить на суд читателей сайта 2Схемы универсальный источник питания для радиомастерской, изготовленный из блока питания ATX с контроллером TL494. БП был создан быстро из …

Источник питания для некоторых планшетов, например Asus Eee, имеет нестандартное напряжение 9,5 В, 2,3 А. На рынке нет стабилизатора для этого напряжения, поэтому схема должна …

Понижающий преобразователь постоянного напряжения на TL494 представляет собой типичный ШИМ-контроллер и силовые транзисторы IRFZ44N. Катушка 40 мкГн участвует в преобразовании входного напряжения 12 Вольт в …

Очередная полезная покупка с сайта AliExpress — электронная нагрузка с тестером емкости аккумуляторов, хотя производитель дал модулю другое название: «тестер разрядки аккумулятора». Куплено было устройство …

Нужен мощный БП на ток более 10 Ампер? Вот одна из самых простых схем источников питания, которую можно собрать предварительно протестировав и отрегулировав. Исходные предположения …

Это обзор китайского блока питания на 2,5 А, где есть плавная регулировка напряжения в диапазоне 3-24 В. Существуют и другие версии этого блока питания, например: …

Трудно назвать проект полностью самодельным, если всего-то надо спаять между собой несколько готовых модулей, но для начинающих радиолюбителей такой подход будет вполне оправдан, поэтому редакция …

Данное электронное устройство предназначено для преобразования низкого постоянного напряжения в диапазоне 8-32 В в более высокое постоянное напряжение на выходе (до 410 В) [1-2]. Устройство …

Здравствуйте все посетители сайта 2 Схемы. Представляем очередной девайс для самостоятельное сборки, которое работает как зарядное устройство гелевой батареи. Представленное ЗУ состоит из трансформатора ТС25/6 …

Как раньше делали радиосхемы и электронные устройства? Радиолюбители сами изготавливали печатные платы и сами паяли каждую деталь, но времена меняются и теперь соединив пару-тройку покупных …

Построить нерегулируемый лабораторный блок питания на несколько различных напряжений можно на основе двойного триггера D-типа (микросхема CD4013) и старого блока питания ATX, взятого из любого …

Если у вас завалялись в радиозакромах пару транзисторов 2N3055 с радиаторами, блок питания и китайский цифровой вольтметр — возможно собрать из всего этого такую нужную …

Неисправности БП XL160-1 от Harmonic ProView 7000

Статья посвящена неисправностям БП N2Power XL160-1.

В связи с отсутствием принципиальной схемы на данный БП неисправности приходилось выявлять опытным путем. Мы использовали части схем из заводских мануалов, описаний микросхем и других элементов. Если у Вас есть принципиальная схема, поделитесь, будем очень признательны.

Итак, путем прозвонки дорожек и используя описания включений микросхем ШИМ 3842 и 3843, мы воссоздали часть схемы БП (насколько хватило времени и терпения).


 Неисправность 1 – ресивер не включается, внешних повреждений элементов при визуальном осмотре блока питания не обнаружено. При подаче входного напряжения 220В слышны щелчки от БП. Попробуйте проверить конденсатор С3, номиналом 68мкФ. В нашем случае его замена «оживила» 3 блока из 30.


Неисправность 2 – неисправность корректора мощности. Осциллографом проверяем наличие напряжения Vref =5V и пилообразный сигнал у ШИМ микросхемы 3842В, подав на неё питание 16,2 В с ограничением тока 100мА.

(на нашем лабораторном блоке питания есть возможность ограничить ток, без ограничения тока есть вероятность подпалить ещё чего-нибудь…).


При наличии напряжения 5 В и пилообразного сигнала проверяем исправность элементов схемы корректора. Часть элементов находятся на противоположной стороне платы, поэтому на схеме указываем точки припайки этих элементов.


Неисправность 3 – Не запускалась м/сх ШИМ 3843В. В нашем случае ремонт был связан с заменой неисправного транзистора с маркировкой 2А (в интернете под этой маркировкой нашли транзистор MMBT3906).


Марка транзистора- 2А-MMBT3906.

Коллеги по ремонту! У нас есть еще другие наработки по ремонту этого блока питания, но в связи с отсутствием принципиальной схемы остаются еще вопросы по ремонту и неисправные БП. Если у Вас тоже есть какие-нибудь наработки по ремонту XL160-1, оставьте Ваши контакты в разделе обратной связи https://strb.

ru/request/, мы обязательно перезвоним. Или напишите нам на электронную почту: [email protected] с пометкой ДЛЯ РЕМЦЕХА.

Повторимся, очень ищем принципиальную схему!



принцип работы, принципиальная схема и проверка его работоспособности

Сегодня комплектующие для десктопного ПК устаревают очень быстро. Единственным исключением является блок питания (БП). Конструкция этого устройства не претерпела серьезных изменений за последние 15 лет, когда на рынке появились БП форм-фактора ATX. Принцип работы и принципиальная схема блока питания для компьютера мало чем отличаются у всех производителей.

Структура и принцип работы

Типовая схема компьютерного блока питания стандарта ATX показана ниже. По своей конструкции это классический БП импульсного типа, основанный на ШИМ-контроллере TL 494. Сигнал к началу работы этого элемента поступает с материнской платы. До формирования управляющего импульса активным остается лишь источник дежурного питания, выдающий напряжение в 5 В.

Выпрямитель и ШИМ-контроллер

Чтобы было проще разобраться с устройством блока питания компьютера и принципом его работы, нужно рассмотреть отдельные структурные элементы. Начать стоит с сетевого выпрямителя.

Основная задача этого блока заключается в преобразовании переменного сетевого электротока в постоянный, который необходим для функционирования ШИМ-контроллера, а также дежурного источника питания. В состав блока входит несколько основных деталей:

  • Предохранитель F1 – необходим для защиты БП от перегрузки.
  • Терморезистор – он расположен в магистрали «нейтраль» и призван снижать скачки электротока, возникающие в момент включения ПК.
  • Фильтр помех – в его состав входят дроссели L1 и L2, конденсаторы C1- C4, а также Tr1, имеющие встречную обмотку. Этот фильтр позволяет подавлять помехи, неизбежно возникающие при работе импульсного БП, могут негативно воздействовать на работу теле- и радиоаппаратуры.
  • Диодный мостик – находится сразу за фильтром помех и позволяет преобразовать переменный электроток в постоянный пульсирующий. Для сглаживания пульсаций предусмотрен емкостно-индукционный фильтр.

На выходе из сетевого выпрямителя напряжение присутствует до того момента, пока БП не будет отключен от розетки. При этом ток поступает на дежурный источник питания и ШИМ-контроллер. Именно первый структурный элемент схемы представлен на рисунке.

​Он представляет собой преобразователь малой мощности импульсного типа. В его основе лежит транзистор Т11, задачей которого является генерация питающих импульсов для микросхемы 7805.

После транзистора ток сначала проходит через разделительный трансформатор и выпрямитель, основанный на диоде D 24. Используемая в этом БП микросхема обладает одним довольно серьезным недостатком – высоким падением напряжения, что при больших нагрузках может вызвать перегрев элемента.

Основой любого преобразователя импульсного типа является ШИМ-контроллер. В рассматриваемом примере он реализован с помощью микросхемы TL 494. Основная задача модуля ШИМ (широтно-импульсная модуляция) заключается в изменении длительности импульсов напряжении при сохранении их амплитуды и частоты. Полученное выходное напряжение на импульсном преобразователе стабилизируется с помощью настройки длительности импульсов, которые генерирует ШИМ-контроллер.

Выходные каскады преобразователя

Именно на этот элемент конструкции ложится основная нагрузка. Это приводит к серьезному нагреву коммутирующих транзисторов Т2 и Т4. По этой причине они установлены на массивные радиаторы. Однако пассивное охлаждение не всегда позволяет справляться с сильным тепловыделением, все БП оснащены кулером. Схема выходного каскада изображена на рисунке.

Перед выходным каскадом расположена цепь включения БП, основанная на транзисторе Т9. При пуске блока питания на этот элемент конструкции напряжение в 5 В подается через сопротивление R 8. Это происходит после формирования сигнала к пуску ПК на материнской плате. Если возникли проблемы с работой источника дежурного питания, то БП может после пуска сразу отключиться.

Сейчас все производители используют практически аналогичные схемы блоков питания компьютеров. Вносимые ими изменения не оказывают серьезного влияния на принцип работы устройства.

Распиновка главного коннектора

Сначала БП форм-фактора ATX для соединения с системной платой оснащались разъемом на 20 пин. Однако совершенствование вычислительной техники привело к необходимости использовать дополнительно еще 4 контакта. Современные блоки питания могут оснащаться 24-пиновым разъемом в одном корпусе или иметь 20+4 пин. Все контакты коннекторов стандартизованы и вот основные из них:

  • +3,3 В – питание материнской платы и центрального процессора.
  • +5 В – напряжение необходимо для работы некоторых узлов системной платы, винчестеров и внешних устройств, подключенных к портам USB.
  • +12 В – управляемое напряжение, используемое HDD и кулерами.
  • -5 В – начиная с версии ATX 1.3 не используется.
  • -12 В – сегодня применяется крайне редко.
  • Ground – масса.

Распределение нагрузки и возможные неисправности

Напряжение, выдаваемое источником питания, предназначено для различных нагрузок. Таким образом, в зависимости от конфигурации конкретного ПК, потребление энергии в каждой цепи источника питания может меняться. Именно поэтому в технических характеристиках БП указывается не только общая мощность устройства, но и максимальное потребление электротока для каждого типа выходного напряжения.

При апгрейде «железа» ПК следует помнить об этом факте. Например, установка мощного современного видеоускорителя приводит к резкому повышению нагрузки в цепи 12 В. Чтобы ПК работал корректно, возможно потребуется и замена блока питания. Чаще всего неполадки с работой БП связаны со старением элементов его конструкции либо существенным недостатком мощности.

Не стоит забывать и о том, что перегрев выходного каскада может быть связан с накоплением большого количества пыли внутри блока питания. Электролитические конденсаторы, установленные в сетевом выпрямителе и выходных каскадах, больше других деталей склонны к старению.

В первую очередь это касается продукции малоизвестных брендов, использующих дешевые комплектующие. По сути, именно элементная база и качество деталей отличает хорошие устройства от дешевых. Провести ремонт БП самостоятельно может только человек, имеющий определенный набор знаний в области электроники. Однако современные устройства, изготовленные известными брендами, отличаются высокой надежностью. При соблюдении правил обслуживания ПК, проблемы с ними возникают очень редко.

Блоки питания. Виды и работа. Особенности и применение

Вторичные источники питания являются неотъемлемой частью конструкции любого радиоэлектронного устройства. Они предназначены для того, чтобы преобразовывать переменное или постоянное напряжение электросети или аккумулятора в постоянное или переменное напряжение, требуемое для работы устройства, это блоки питания.

Виды

Источники питания бывают не только включены в схему какого-либо устройства, но и могут выполнятся в виде отдельного блока и даже занимать целые цеха электроснабжения.

К блокам питания предъявляется несколько требований. Среди них: высокий КПД, высокое качество выходного напряжения, наличие защит, совместимость с сетью, небольшие размеры и масса и др.

Среди задач блока питания могут числится:

  • Передача электрической мощности с минимумом потерь;
  • Трансформация одного вида напряжения в другое;
  • Формирование частоты отличной от частоты тока источника;
  • Изменение величины напряжения;
  • Стабилизация. Блок питания должен на выходе выдавать стабильный ток и напряжение. Эти параметры не должны превышать или быть ниже определенного предела;
  • Защита от короткого замыкания и других неисправностей в источнике питания, которые могут привести к поломке устройства, которое обеспечивает блок питания;
  • Гальваническая развязка. Метод защиты от протекания выравнивающих и других токов. Такие токи могут приводить к поломкам оборудования и поражать людей.

Но зачастую перед блоками питания в бытовых приборах стоят только две задачи – преобразовывать переменное электрическое напряжение в постоянное и преобразовывать частоту тока электросети.

Среди блоков питания наиболее распространены два типа. Они различаются по конструкции. Это линейные (трансформаторные) и импульсные блоки питания.

Линейные блоки питания

Изначально источники питания изготавливались только в таком виде. Напряжение в них преобразовывается силовым трансформатором. Трансформатор понижает амплитуду синусоидальной гармоники, которая затем выпрямляется диодным мостом (бывают схемы с одним диодом). Диоды преобразуют ток в пульсирующий. А далее пульсирующий ток сглаживается с помощью фильтра на конденсаторе. В конце ток стабилизируется с помощью триода.

Чтобы просто понять, что происходит, представьте себе синусоиду – именно так выглядит форма напряжения, поступающего в наш блок питания. Трансформатор как бы сплющивает эту синусоиду. Диодный мост горизонтально рубит ее пополам и переворачивает нижнюю часть синусоиды наверх. Уже получается постоянное, но все еще пульсирующее напряжение. Фильтр конденсатора доделывает работу и «прижимает» эту синусоиду до такой степени, что получается почти прямая линия, а это и есть постоянный ток. Примерно так, возможно, чересчур просто и грубо, можно описать работу линейного блока питания.

Плюсы и минусы линейных БП

К преимуществам относится простота устройства, его надежность и отсутствие высокочастотных помех в отличие от импульсных аналогов.

К недостаткам можно отнести большой вес и размер, увеличивающиеся пропорционально мощности устройства. Также триоды, идущие в конце схемы и стабилизирующие напряжение снижают КПД устройства. Чем стабильнее напряжение, тем большие его потери будут на выходе.

Импульсные блоки питания

Импульсные блоки питания такой конструкции появились в 60-ых годах прошлого века. Они работают по принципу инвертора. То есть, не только преобразуют постоянное напряжение в переменное, но и меняют его величину. Напряжение из электросети попадая в прибор выпрямляется входным выпрямителем. Затем амплитуда сглаживается входными конденсаторами. Получаются высокочастотные импульсы прямоугольной формы с определенным повторением и длительностью импульса.

Дальнейший путь импульсов зависит от конструкции блока питания:
  • В блоках с гальванической развязкой импульс попадает в трансформатор.
  • В БП без развязки импульс идет сразу на выходной фильтр, который срезает нижние частоты.
Импульсный БП с гальванической развязкой

Высокочастотные импульсы из конденсаторов попадают в трансформатор, который отделяет одну электрическую цепь от другой. В этом и заключается суть гальванической развязки. Благодаря высокой частотности сигнала эффективность трансформатора повышается. Это позволяет снизить в импульсных БП массу трансформатора и его размеры, а, следовательно, и всего устройства. В импульсных трансформаторах в качестве сердечника используются ферромагнитные соединения. Это также позволяет снизить габариты устройства.

Конструкция такого типа предполагает преобразование тока в три этапа:
  1. Широтно-импульсный модулятор;
  2. Транзисторный каскад;
  3. Импульсный трансформатор.
Что такое широтно-импульсный модулятор

По-другому этот преобразователь называется ШИМ-контроллер. Его задача состоит в том, чтобы изменять время, в течении которого будет подаваться импульс прямоугольной формы. Модулятор меняет время, в течении которого импульс остается включенным. Он меняет время, в которое импульс не подается. Но частота подачи при этом остается одинаковой.

Как стабилизируется напряжение в импульсных БП

Во всех импульсных БП реализован вид обратной связи, при котором с помощью части выходного напряжения компенсируется влияние входного напряжения на систему. Это позволяет стабилизировать случайные входные и выходные изменения напряжения

В системах с гальванической развязкой для создания отрицательной обратной связи применяются оптроны. В БП без развязки обратная связь реализована делителем напряжения.

Плюсы и минусы импульсных БП

Из плюсов можно выделить меньшую массу и размеры. Высокий КПД, за счет снижения потерь, связанных с процессами перехода в электрических цепях. Меньшая цена в сравнении с линейными БП. Возможность использования одних и тех же БП в разных странах мира, где параметры электросети отличаются между собой. Наличие защиты от короткого замыкания.

Недостатками импульсных БП является их невозможность работы на слишком высоких или слишком низких нагрузках. Не подходят для отдельных видов точных устройств, поскольку создают радиопомехи.

Применение

Линейные блоки питания активно вытесняются их импульсными аналогами. Сейчас линейные БП можно встретить в стиральных машинах, СВЧ-печах, системах отопления.

Импульсные БП применяются почти везде: в компьютерной технике и телевизорах, в медицинской технике, в большинстве бытовых приборов, в оргтехнике.

Похожие темы:

Схема блока питания БП-ЭПТ – Энциклопедия по машиностроению XXL

Рис. 6. Схема блока питания типа БПВ-26

Фиг. 118. Принципиальная схема блока питания осциллографа
Отключить от-схемы блок питания радиоприемника, если на автомобиле имеется радиоприемник  [c. 21]

Блок питания, как и блоки усиления и управления, выполнены на Т-образных шасси. Передняя стенка шасси является одновременно лицевой панелью блоков, на которой установлены разъемы для внешних присоединений. Шасси вставляется в кожух, который крепится с задней стороны одним винтом. Схема блока питания показана на рис. 1.10.  [c.26]

Рис, 214, Принципиальная электрическая схема блока питания БП-ЭПТ-П № 579-00-35  [c.297]

Принципиальная схема блока питания постоянного тока в шкафу постоянного тока собственных нужд 10/0,4 кВ  [c.183]

Рис. 4. I. Принципиальная схема блока питания гидросистемы самолета с размещением датчиков измеряемых параметров

Для контроля равновесия мостов выпускаются комплектные устройства на электроннолучевой трубке. Они снабжаются блоком питания, усилителями вертикального н горизонтального отклонения и входным трансформатором. В схеме усилителя вертикальной развертки предусмотрен фильтр R со ступенчатой регулировкой для получения наибольшего усиления при определенной частоте.  [c.75]

Приборы обоих типов построены по единой принципиальной схеме и различаются лишь блоками питания клистронов и антенными системами.  [c.243]

Функциональная схема установки, представленная на рис. 1, состоит из намагничивающего устройства 3 с блоком питания 1, механизма угловых колебаний 6, измерительной 10 и опорной 7 катушек, усилителей измерительного 13 и опорного 8 каналов, генератора управляющих напряжений 11, измерителя отношения двух сигналов 9, регистрирующего устройства 12. Под будем понимать коэффициент передачи л-го ее узла. Работа установки заключается в следующем. Механизм угловых колебаний посредством генератора управляющих напряжений 11 сообщает оси 4 с закрепленными на ней испытуемым образцом и постоянным магнитом 5 угловые периодические колебания с частотой Q. Амплитуда угловых колебаний составляет примерно 0,5°.  [c.153]

В блоке питания прибора применена двойная стабилизация напряжения питания анодных цепей. Это обеспечивает устойчивость и стабильность работы схемы.  [c.60]

Принципиальная электрическая схема прибора приведена на рис. 57. Прибор состоит из следующих узлов блока питания с ферромагнитным и электронным стабилизатором и выпрямителем, собранным на полупроводниковых диодах  [c.69]

Прибор ЭМТ-2 разработан на основе прибора ЭМТ. Принципиальная электрическая схема прибора показана на рис. 69. Она состоит из генератора на частоту 200 или 1000 кгц, служащего для питания катушки датчика переменным током колебательного контура, в качестве индуктивности которого используется катушка датчика дифференциального лампового индикатора Jli с полупроводниковыми диодами на входе и стрелочным прибором на выходе, который служит для измерения переменного напряжения на контуре, изменяющегося в зависимости от контролируемой толщины блока питания с феррорезонансным стабилизатором.[c.79]

Принципиальная электрическая схема прибора приведена на рис. 71 она состоит из генератора стабилизированной частоты, усилителя, измерительной системы и блока питания.  [c.79]

Схемы генератора высокой частоты (600—800 кгц) и блока питания принципиально ничем не отличаются от соответствующих узлов прибора ИДП-3.  [c.81]

Это измерительное средство включает в себя и командное устройство в виде электроконтактного преобразователя. Поэтому усилители командных сигналов, блоки питания и блоки сигнализации применяются те же, что и для измерительного средства по приведенной на рис. 3 схеме.  [c.23]

Рассмотренная схема представляет собой электронное реле, которое выполняется в двух видах (табл. 7) позитивном (включение реле Р при замыкании контактов преобразователя) и негативном (выключение реле Р при замыкании контактов преобразователя). Промышленность выпускает электронные реле в одном блоке с источником питания, а также отдельно (блок-приставка). К одному блоку питания можно присоединить несколько блок-приставок.  [c.39]

На границах HliTerpHpyrouiero контура включены переменные сопротивления, с помощью которых устанавливаются соответствующие значения коэффициентов теплоотдачи в случае граничных условий третьего рода. Нулевая установка сопротивлений Rr и Rb будет, очевидно, соответствовать граничным условиям первого рода. Электрические схемы блока питания, катодных повторителей остаются такими же, как в случае однослойной стенки.  [c.379]

Рис. 47. Электрическая схема блока питания пресса модели П96У
Структурированная программа представляется системой вложенных гфуг в друга модулей. Тот, кто овладел навыками составления таких программ, быстро их пишет и отлаживает. В этом он подобен конструктору современной аппаратуры, состоящей из отдельных электронных блоков – больших интегральных схем, блоков питания и т. д. Их число не так уж велико, но из них можно собрать разнообразные электронные приборы. Неструкту-  [c.15]

Блок питания БП служит для получения напряжений нужной фазы, формы и величины, необходимых для функционирования системы САУТ. Схема блока питания показана на общей схеме системы (рис. 307). Трехфазный многообмоточный трансформатор Тр1, первичные обмотки которого А—X, В—Y, С—Z соединены в звезду, получает питание от трехфазной магистрали по проводам 81С, 82С и 83С. В целях улучшения симметрии напряжений нулевые выводы трансформатора Тр1 и генератора АМ—Г (рис. 319) соединены проводом 32.  [c.363]

При включении переключателя Я5 в положение сеть питание дефектоскопа может осуществляться напряжением 127 или 220 в в зависимости от положения колодки переключения напряжения сети. Схема блока питания дефектоскопа УЗД-НИИМ-3 приведена ва рис. 3-65.  [c.146]

Рис. 3-65. Электрическая схема блока питания дефектоскопа УЗД-НИИМ-3. Нумерация элементов с.хемы блока—по общей схеме дефектоскопа.
Рис. 3. Схема блока питания лампы полого катода и усилителя обратной евязи.
Рид, 4.27, Схема блока питания трансивере  [c.198]

Рассмотренные характеристики позволяют построить зависимости потребляемых мощностей и оценить нагруженность насосов в различных схемах блоков питания. В блоке НПо + ПеК по-требляе.мая мощность (рис. 2.5, б) непрерывно возрастает с ростом рабочего давления и в режиме нулевых расходов в системе достигает максимума (весь расход насоса сливается через переливной клапан). Элементы конструкции насоса нагружены при этом максимальным рабочим давлением (режим Н). В блоке с НПс в режиме /з = onst потребляемая мощность пропорциональна расходу в систему и при расходах, близких к нулевым (необходимы рас. ходы на смазку и охлаждение), потребляемые мощности малы. Однако нагруженность элементов конструкции насоса при этом велика (режим Н ).  [c.63]

Блок питания предназначен для обеспечения ламп-вспышек энергией от 1000 до 4000 Дж и состоит из высоковольтного выпрямителя, конденсаторов и системы поджига ламп. Электрическаяе схема блока питания приведена на рис. 2.7, а основные параметры — в табл. 2.6 [40].  [c.45]

Функциональная схема управления и автоматического регулирования включает в себя два регулятора температуры, позволяющих поддерживать температуру в камере в заданном диапазоне. Роль регуляторов выполняют электронные потенциометры ЭПВ2. Управление и согласование отдельных блоков системы осуществляется коммутирующим устройством, представляющим собой систему контакторов и переключателей, энергия к которым подводится от блока питания. Датчиками температуры 5, 6 и 7 являются хромель-копелевые термопары. Исполнительными механизмами служат электроклапаны и электромотор, соединенный с дросселем на горячем конце низкотемпературной вихревой трубы.[c.250]

В неавтоматических влагомерах используют одноканальную схему по методам прямого преобразования (отсчет по шкале прибора) или замещения (отсчет по шкале аттенюатора). Установка (рис. 50, а) состоит из двух частей приемно-измерительного тракта (приемная антенна 5, измерительный аттенюатор 6, детектор 7, усилительный блок 8, измерительный прибор 9) и передающего тракта (передающая антенна 4 с клистронным генератором 2 и блоком питания 1 и вентилем 3), 10 — устройство управления аттенюатором.  [c.254]

Схема состоит из блока питания, усилителя постоянного тока ( микроамперметром в качестве индикатора) со звеном коррекции дл установки стрелки индикатора на нуль. Питание прибора осушествл5 ется тремя батареями, каждая напряжением 1,6 В. Напряжение дву элементов преобразуется при помощи блокинг-генератора, раб( тающего на частоте 10 кГц, в напряжение 1400 В для питания ф(  [c.46]

Анализ конструкций акустических течеискателей показал, что, в основном, они изготовлены примерно по одинаковым принципиальным схемам. Приемник течеискате-ля улавливает ультразвуковые колебания газа, истекаю-щего через течи, и преобразует их в электрические колебания. В качестве приемника обычно используют пьезоэлектрический микрофон, который либо размещают в корпусе течеискателя (ТУЗ-2, ТУЗ-5М), либо выполняют в виде выносного щупа (АТ-1, АТ-2), в котором смонтирован микрофон и предварительный усилитель высокой частоты, усиливающий электрические колебания по мощности и напряжению. В нем есть несколько каскадов усиления, собранных на транзисторах, поэтому коэффициент усиления можно регулировать. В преобразователе электрические сигналы детектируются по амплитуде, фильтруются и проходят согласующий каскад. Усилитель низкой час ТОТЫ усиливает электрические колебания до величины, необходимой для нормальной работы индикаторного прибора и головных телефонов. В усилителе предусмотрена регулировка коэффициента усиления. Блок питания осуществляет электроснабжение всех узлов течеискателя. В нем есть аккумуляторные батареи, для подзарядки которых служит зарядное устройство.[c.119]

Работы в области полупроводниковых логических элементов привели к созданию методики расчета оптимальных схем элементов, учитывающей как наихудшие, так и вероятностные сочетания значений параметров, к разработке способов повышения надежности элементов за счет построения избыточных структур и созданию различных полупроводниковых элементов и систем. Разработанные элементы нашли широкое применение для построения различных систем автоматического управления, в том числе телеавтоматической системы управления поточно-транспортными линиями. Была разработана единая серия полупроводниковых логических элементов общепромышленного назначения, в которую вошли логические и функциональные элементы, элементы времени, усилителр и блоки питания (рис. 47). Единая серия разрабатывалась совместно Институтом автоматики и телемеханики АН СССР, Всесоюзным научно-исследовательским институтом электропривода, Центральным научно-исследовательским институтом МПС, Конструкторским бюро Цветметавтоматика и рядом других организаций. Разработанная серия полупроводниковых логических элементов работает при колебаниях напряжения питания 20%, изменениях температуры окружающей среды от —45 до +60° С при частоте до 20 кгц.  [c.266]

Принципиальная электрическая схема прибора приведена на рис. 59. Прибор состоит из следующих узлов блока питания, состоящего из трансформатора Гр выпрямителя, собранного на лампе Лз (5Ц4С) дросселя Др выпрямителя В, собранного на полупроводниковых диодах ДГ-Ц1 стабилизатора анодного напряжения с использованием стабилитронов Л и Л (СГ-ЗС) генератора  [c.70]

Принципиальная электрическая схема прибора представлена на рис. 64. Блок питания, собранный по обычной схеме (на рис. 64 не показан), обеспечивает питание анодной цепи генератора стабилизированным напряжением 300 в. Ток накала генераторной лампы Л (6П14П) стабилизирован с помощью бареттера.  [c.73]

Принципиальная электрическая схема прибора приведена на рис. 74. Блок питания состоит из диода ДГЦ-27 (Дх) и стабилизатора питающего напряжения с использованием стабилитрона Л (СГЗП), благодаря чему допускаются колебания напряжения сети переменного тока от 180 до 240 в. Сопротивления и Яг образуют делитель напряжения, и они должны быть точно подобраны, чтобы напряжение на сопротивлении R было бы 30 в. Выбор такой величины напряжения дает возможность использовать в качестве источника питания батареи  [c.82]

Принципиальная электрическая схема прибора приведена на рис. 75. Прибор состоит из блока питания с электронной стабилизацией, генераторного блока, измерительного блока с датчиком, блока усиления я индикаторного блока. Блок питания включает в себя трансформатор Тр, полупроводниковый мостовой выпрямитель ВС с электронной стабилизацией на лампах Л , а Jig и барретор Л, для питания ламп генератора и усилителя. Стабилизированное анодное напряжение равно 250 в, напряжение накала 6,3 в.  [c.84]

На рис. 115 представлена электронная схема тензоусилителя с блоком питания. Трехкаскадный усилитель выполнен на двух электронных лампах с согласующим трансформатором 2Тр на выходе. Усиленный сигнал от тензодатчиков после 2Тр выпрямляется для дальнейшего сравнения с эталонным напряжением, которое снимается с потенциометра Ri. Величина эталонного  [c.174]

Поисковый механизм сообщает оптической системе низкочастотные (0,005 гц) угловые колебания относительно опоры О (см. рис. 122) для осматривания по винтовой линии рабочей части образца 6. Механизм представляет собой реверсивный электродвигатель с фазосдвигаюш,ими обмотками, на валу которого имеется кривошип, соединенный шатуном с оптической системой так, что колебания ее происходят в вертикальной плоскости, проходящ.ей через ось образца. Управление мотором осуществляется блоком питания и,, усиления 2, электрическая блок-схема которого представлена на рис. 124. Блок состоит из двухкаскадного линейного усилителя (усилитель сигнала 1 и  [c. 185]

Московским заводом электровакуумных приборов (МЗЭВП) серийно выпускаются механотрон-ные преобразователи. Это сдвоенные диодные механотроны, предназначенные для особо точных и длительных измерений линейных размеров. Принципиальная схема такого механотрона показана на рис. 49. В качестве источника питайия для механотронов завод освоил выпуск универсальных блоков питания Б.621.05.  [c.102]

Реле (рис. 20, табл. 7) смонтировано в одном корпусе с блоком питания. Светофорное табло не предусматривается. Реле предназначено для усиления и преобразования двух команд датчика. Усиление команды осуществляется двухкаскадным усилителем на лампах типа 6Н6П. В анодные цепи выходной лампы включены электромагнитные реле Pi и Р2 типа РКН. Для питания анодных цепей ламп служат два выпрямителя, собранные по двухполуперйодным схемам на кремниевых диодах Дз, Д4 и Да, Д . Для получения отрицательного запирающего напряжения— 18 в используется однополупериодный  [c. 46]


Революция в схемах компьютерных блоков питания полувековой давности / Хабр

Полвека назад улучшенные транзисторы и импульсные стабилизаторы напряжения произвели революцию в схемах компьютерных блоков питания. Получила преимущества, к примеру, компания Apple – хотя не она запустила эту революцию, несмотря на заявления Стива Джобса.



Без Intel внутри: на рентгене видны компоненты импульсного блока питания, использованного в оригинальном микрокомпьютере Apple II, вышедшем в 1977 году

Компьютерным блокам питания не уделяется должного внимания.

Как энтузиаст технологий, вы наверняка знаете, какой у вашего компьютера микропроцессор и сколько у него физической памяти, однако есть вероятность, что вам ничего не известно о его блоке питания. Не тушуйтесь – даже производители разрабатывают БП в последнюю очередь.

А жаль, поскольку на создание БП для персональных компьютеров ушло довольно много сил, и это было серьёзное улучшение по сравнению с теми схемами, что питали другую потребительскую электронику вплоть до конца 1970-х. Этот прорыв стал возможен благодаря огромным скачкам в полупроводниковой технологии, сделанным полвека назад, в частности, улучшениям в импульсных стабилизаторах напряжения и инновациям в интегральных схемах. Но при этом данная революция прошла мимо внимания общественности, и даже неизвестна многим людям, знакомым с историей микрокомпьютеров.

В мире БП не обошлось без выдающихся чемпионов, включая и личность, упоминание которой может вас удивить: Стива Джобса. Согласно его авторизованному биографу, Уолтеру Айзексону, Джобс очень серьёзно относился к БП передового персонального компьютера Apple II и его разработчику, Роду Холту. Джобс, как утверждает Айзексон, заявлял следующее:

Вместо обычного линейного БП, Холт создал такой, который использовался в осциллографах. Он включал и выключал энергию не 60 раз в секунду, а тысячи раз; это позволяло ему сохранять энергию на гораздо меньших промежутках времени, в результате чего он испускал гораздо меньше тепла. «Этот импульсный БП был таким же революционным, как логическая плата Apple II, — сказал позже Джобс. – Рода не часто хвалят за это в книжках по истории, а должны были бы. Сегодня все компьютеры используют ИБП, и все они скопированы со схемы Рода Холта».

Это серьёзное заявление показалось мне не слишком достоверным, и я провёл своё расследование. Я обнаружил, что, хотя ИБП и были революционными, эта революция произошла в конце 1960-х и середине 1970-х, когда ИБП приняли эстафету у простых, но неэффективных линейных БП. Apple II, появившийся в 1977, получил преимущества этой революции, но не вызывал её.

Исправление джобсовской версии событий – не какая-то мелочь из инженерной области. Сегодня ИБП представляют собой повсеместный оплот всего, мы используем их ежедневно для зарядка наших смартфонов, планшетов, ноутбуков, камер и даже некоторых автомобилей. Они питают часы, радио, домашние аудиоусилители, и другую мелкую бытовую технику. Спровоцировавшие эту революцию инженеры заслуживают признания своих заслуг. Да и вообще, это весьма интересная история.

БП в настольных компьютерах, таких, как Apple II, преобразует переменный линейный ток в постоянный ток, и выдаёт очень стабильное напряжение для питания системы. БП можно сконструировать множеством разных способов, но чаще всего встречаются линейные и импульсные схемы.

Со всеми бородавками


В прошлом небольшие электронные устройства обычно использовали громоздкие БП-трансформаторы, получившие уничижительное прозвище «стенные бородавки». В начале XXI века технологические улучшения позволили начать практическое применение компактных импульсных источников питания малой энергии для питания небольших устройств. С падением стоимости импульсных AC/DC адаптеров они быстро заменили собой громоздкие БП у большинства домашних устройств.

Apple превратила зарядник в хитроумное устройство, представила прилизанную зарядку для iPod в 2001 году, внутри которой был компактный обратноходовой преобразователь под управлением интегральных схем (слева на картинке). Вскоре получили широкое распространение USB-зарядки, а ультракомпактный зарядник в виде дюймового куба от Apple, появившись в 2008, стал культовым (справа).

Самые модные зарядники высокого уровня подобного типа сегодня используют полупроводники на основе нитрида галлия, способные переключаться быстрее кремниевых транзисторов, и потому более эффективные. Развивая технологии в другом направлении, сегодня производители предлагают USB-зарядки уже по цене меньше доллара, хотя и экономя при этом на качестве питания и системах безопасности.

* * *

Типичный линейный БП использует громоздкий трансформатор для преобразования высоковольтного AC в розетке в низковольтный AC, который затем превращается в низковольтный DC при помощи диодов, обычно четырёх штук, подключенных в классическую схему диодного моста. Для сглаживания выходного напряжения диодного моста применяются крупные электролитические конденсаторы. Компьютерные БП используют схему под названием линейный стабилизатор, уменьшающую напряжение DC до нужного уровня и удерживающую его на этом уровне даже при изменениях в нагрузке.

Линейные БП тривиальны в проектировании и создании. Они используют дешёвые низковольтные полупроводниковые компоненты. Однако у них есть два больших минуса. Один – необходимость в использовании крупных конденсаторов и громоздких трансформаторов, которые никак нельзя запихнуть в нечто столь маленькоё, лёгкое и удобное, как зарядники, которые мы все используем для наших смартфонов и планшетов. Другой – схема линейного стабилизатора, основанная на транзисторах, превращает излишнее напряжение DC – всё, что выше необходимого уровня – в паразитное тепло. Поэтому такие БП обычно теряют более половины потребляемой энергии. И им часто требуются крупные металлические радиаторы или вентиляторы, чтобы избавляться от этого тепла.

ИБП работает на другом принципе: линейный вход AV превращается в высоковольтный DC, который включается и выключается десятки тысяч раз в секунду. Высокие частоты позволяют использовать гораздо более мелкие и лёгкие трансформаторы и конденсаторы. Особая схема точно управляет переключениями для контроля выходного напряжения. Поскольку таким БП не нужны линейные стабилизаторы, они теряют очень мало энергии: обычно их эффективность достигает 80-90%, и в итоге они гораздо меньше греются.

Однако ИБП обычно гораздо более сложные, чем линейные, и их сложнее проектировать. Кроме того, они выдвигают больше требований к компонентам, и нуждаются в высоковольтных транзисторах, способных эффективно включаться и выключаться с высокой частотой.

Должен упомянуть, что некоторые компьютеры использовали БП, не являвшиеся ни линейными, ни импульсными. Одной грубой, но эффективной техникой было запитать мотор от розетки и использовать его для раскрутки генератора, выдававшего необходимое напряжение. Мотор-генераторы использовались несколько десятилетий, по меньшей мере, с момента появления машин от IBM с перфокартами в 1930-х и до 1970-х, питая, среди прочего, суперкомпьютеры Cray.

Ещё один вариант, популярный с 1950-х и вплоть до 1980-х, использовал феррорезонансные трансформаторы – особый тип трансформаторов, дающих на выходе постоянное напряжение. Также в 1950-х для регулирования напряжения ламповых компьютеров использовался дроссель насыщения, контролируемая катушка индуктивности. В некоторых современных БП для ПК он вновь появился под именем “магнитного усилителя”, давая дополнительное регулирование. Но в итоге все эти старые подходы уступили место ИБП.

Принципы, лежащие в основе ИБП, известны инженерам-электрикам с 1930-х, однако эта технология редко использовалась в эру электронных ламп. В то время в некоторых БП использовались специальные ртутные лампы, тиратроны, и их можно считать примитивными, низкочастотными импульсными стабилизаторами. Среди них — REC-30, питавшая телетайп в 1940-х, а также блок питания компьютера IBM 704 от 1954 года. Но с появлением в 1950-х силовых транзисторов ИБП начали быстро улучшаться. Pioneer Magnetics начала производить ИБП в 1958. General Electric выпустила ранний проект транзисторного ИБП в 1959.

В 1960-е НАСА и аэрокосмическая индустрия стала основной движущей силой в развитии ИБП, поскольку для аэрокосмических нужд преимущества малого размера и высокой эффективности имели приоритет перед большой стоимостью. К примеру, в 1962-м спутник Telstar (первый спутник, начавший передачу телевидения) и ракета “Минитмен” использовали ИБП. Годы шли, цены пали, и ИБП начали встраивать в потребительскую технику. К примеру, в 1966 Tektronix использовала ИБП в портативном осциллографе, что позволяло ему работать как от розетки, так и от батареек.

Тенденция ускорялась по мере того, как производители начали продавать ИБП другим компаниям. В 1967 RO Associates представила первый ИБП на 20 КГц, который назвала первым коммерчески успешным примером ИБП. Nippon Electronic Memory Industry Co. начала разработку стандартизованных ИБП в Японии в 1970. К 1972 году большинство производителей БП продавали ИБП или готовились к их выпуску.

Примерно в это время индустрия компьютеров начала использовать ИБП. Среди ранних примеров – микрокомпьютер PDP-11/20 от Digital Equipment 1969 года, и микрокомпьютер 2100A от Hewlett-Packard 1971 года. В публикации 1971 года заявлялось, что среди компаний, использующих ИБП, отметились все главные игроки рынка: IBM, Honeywell, Univac, DEC, Burroughs и RCA. В 1974 в списке микрокомпьютеров, использующих ИБП, отметились Nova 2/4 от Data General, 960B от Texas Instruments и системы от Interdata. В 1975 ИБП использовались в терминале HP2640A, похожем на пишущую машинку Selectric Composer от IBM, и в портативном компьютере IBM 5100. К 1976 году Data General использовала ИБП в половине своих систем, а HP – в мелких системах типа 9825A Desktop Computer и 9815A Calculator. ИБП начали появляться и в домашних устройствах, например, в некоторых цветных телевизорах к 1973 году.

ИБП часто освещались в электронных журналах той эпохи, как в виде рекламы, так и в статьях. Ещё в 1964 году Electronic Design рекомендовал использовать ИБП из-за более высокой эффективности. На обложке от октября 1971 года журнала Electronics World красовался ИБП на 500 Вт, а название статьи гласило: «Блок питания с импульсным стабилизатором». Computer Design в 1972 детально описывал ИБП и постепенный захват ими компьютерного рынка, хотя упомянул и о скептицизме некоторых компаний. На обложке Electronic Design 1976 года было написано «Переключаться внезапно стало легче», и описывалась новая интегральная схема управления ИБП. В журнале Electronics была длинная статья на эту тему; в Powertec были двухстраничные рекламные материалы о преимуществах ИБП со слоганом «The big switch is to switchers» [большие изменения для переключателей]; Byte объявлял о выпуске ИБП для микрокомпьютеров компанией Boschert.

Роберт Бошерт, уволившийся с работы и начавший собирать БП у себя на кухне в 1970-м, был ключевым разработчиком этой технологии. Он концентрировался на упрощении схем, чтобы сделать импульсные БП конкурентными по цене с линейными, и к 1974 году уже выпускал недорогие БП для принтеров в промышленных количествах, а потом в 1976 выпустил и недорогие ИБП на 80 Вт. К 1977 Boschert Inc. выросла до компании из 650 человек. Она делала БП для спутников и истребителя Grumman F-14, а позже – компьютерные БП для HP и Sun.

Появление недорогих высоковольтных высокочастотных транзисторов в конце 1960-х и начале 1970-х, выпускаемых такими компаниями, как Solid State Products Inc. (SSPI), Siemens Edison Swan (SES) и Motorola, помогло вывести ИБП в мейнстрим. Более высокие частоты переключения повышали эффективность, поскольку тепло в таких транзисторах рассеивалось в основном в момент переключения между состояниями, и чем быстрее устройство могло совершать этот переход, тем меньше энергии оно тратило.

Частоты транзисторов в то время увеличивались скачкообразно. Транзисторная технология развивалась так быстро, что редакторы Electronics World в 1971 могли заявлять, что БП на 500 Вт, представленный на обложке журнала, невозможно было произвести всего на 18 месяцев ранее.

Ещё один заметный прорыв случился в 1976, когда Роберт Маммано, сооснователь Silicon General Semiconductors, представил первую интегральную схему для контроля ИБП, разработанную для электронного телетайпа. Его контроллер SG1524 кардинально упростил разработку БП и уменьшил их стоимость, что вызвало всплеск продаж.

К 1974 году, плюс-минус пару лет, каждому человеку, хотя бы примерно представлявшему себе состояние индустрии электроники, было ясно, что происходит реальная революция в конструкциях БП.


Лидеры и последователи: Стив Джобс демонстрирует персональный компьютер Apple II в 1981 году. Впервые представленный в 1977, Apple II выиграл от промышленного сдвига от громоздких линейных БП к небольшим и эффективным импульсным. Но Apple II не запустил этот переход, как позже утверждал Джобс.

Персональный компьютер Apple II представили в 1977. Одной из его особенностью был компактный ИБП без вентилятора, дававший 38 Вт мощности и напряжение в 5, 12, –5, и –12 В. Он использовал простую схему Холта, ИБП с топологией обратноходового офлайнового преобразователя. Джобс заявил, что сегодня каждый компьютер копирует революционную схему Холта. Но была ли эта схема революционной в 1977? И скопировал ли её каждый производитель компьютеров?

Нет и нет. Похожие обратноходовые преобразователи в то время уже продавали Boschert и другие компании. Холт получил патенты на парочку особенностей своего БП, но их так и не стали широко использовать. А создание управляющей схемы из дискретных компонентов, как сделали для Apple II, оказалось технологическим тупиком. Будущее ИБП принадлежало специализированным интегральным схемам.

Если и был микрокомпьютер, оказавший долгосрочное влияние на проектирование БП, это был IBM Personal Computer, запущенный в 1981. К тому времени, всего через четыре года после выхода Apple II, технология БП серьёзно изменилась. И хотя оба этих ПК использовали ИБП с топологией обратноходового офлайнового преобразователя и несколькими выходами, это и всё, что между ними было общего. Контуры питания, управления, обратной связи и стабилизации были разными. И хотя БП для IBM PC использовал контроллер на интегральной схеме, в нём было почти в два раза больше компонентов, чем в БП от Apple II. Дополнительные компоненты давали дополнительную стабилизацию выходного напряжения и сигнал «качественное питание», когда все четыре напряжения были верными.

В 1984 году IBM выпустила значительно обновлённую версию ПК, под названием IBM Personal Computer AT. Его БП использовал множество новых схем, полностью отказавшись от обратноходовой топологии. Он быстро стал стандартом де факто и оставался таковым до 1995 года, когда Intel представила форм-фактор ATX, который, как и другие вещи, определившие БП ATX, по сей день остаётся стандартом.

Но, несмотря на появление стандарта ATX, компьютерные системы питания стали сложнее в 1995 году, когда появился Pentium Pro – микропроцессор, требовавший меньшего напряжения и больших токов, чем БП ATX мог дать напрямую. Для такого питания Intel представил модуль регулирования напряжения (VRM) – импульсный преобразователь DC-DC, устанавливаемый рядом с процессором. Он уменьшал 5 В от БП до 3 В, используемых процессором. В графических картах многих компьютеров тоже есть VRM, питающий установленные в них высокоскоростные графические чипы.

Сегодня быстрому процессору от VRM может требоваться целых 130 Вт – что гораздо больше, чем полватта мощности, которые использовал процессор Apple II, 6502. Современный процессор в одиночку может использовать в три раза больше мощности, чем целый компьютер Apple II.

Растущее потребление энергии компьютерами стало причиной беспокойства, связанной с окружающей средой, в результате чего появились инициативы и законы, требующие более эффективных БП. В США правительственный сертификат Energy Star и промышленный 80 Plus требуют от производителей выдавать более «зелёные» БП. Им удаётся это сделать при помощи различных технологий: более эффективного энергопотребления в режиме ожидания, более эффективных стартовых схем, резонансных схем, уменьшающих потери питания в импульсных транзисторах, схемы типа active clamp, заменяющие импульсные диоды более эффективными транзисторами. Улучшения в технологиях силовых транзисторов MOSFET и высоковольтных кремниевых выпрямителей, произошедшие в последние десять лет, также послужили увеличению эффективности.

Технология ИБП продолжает развиваться и другими путями. Сегодня, вместо аналоговых схем, многие поставщики используют цифровые чипы и программные алгоритмы, контролирующие выход. Разработка контроллера БП стала как вопросом проектирования железа, так и вопросом программирования. Цифровое управление питанием позволяет поставщикам общаться с остальной системой с большей эффективностью и вести логи. И хотя эти цифровые технологии по большей части используются в серверах, они начинают влиять на разработку настольных ПК.

Сложно увязать всю эту историю с мнением Джобса о том, что Холт должен быть известен шире, или что «Рода не часто хвалят за это в книжках по истории, а должны были бы». Даже самые лучшие разработчики БП не становятся известными за пределами крохотного сообщества. В 2009 году редакторы Electronic Design пригласили Бошерта в свой “Инженерный зал славы”. Роберт Маммано получил награду “достижения всей жизни” в 2005 году от редакторов Power Electronics Technology. Руди Севернс получил другую такую награду в 2008 году за инновации в ИБП. Но никто из этих светил в области проектирования БП даже не отмечен в Википедии.

Часто повторяемое мнение Джобса о том, что Холта незаслуженно не заметили, привело к тому, что работу Холта описывают в десятках популярных статей и книжек про Apple, от “Реванша нердов” Пола Киотти, появившейся в журнале California в 1982, до биографии Джобса, бестселлера за авторством Айзексона, вышедшего в 2011. Так что весьма иронично, что, хотя его работа над Apple II вовсе не была революционной, Род Холт, вероятно, стал самым известным разработчиком БП всех времён.

Схема блока питания компьютера – электрическая, структурная, подключение, импульсного

Работа любого компьютера невозможна без блока питания. Поэтому стоит отнестись серьезно к выбору. Ведь от стабильной и надежной работы БП будет зависеть работоспособность самого компьютера.

Что это такое

Главной задачей блока питания является преобразование переменного тока и дальнейшее формирование требуемого напряжения, для нормальной работы всех комплектующих ПК.

Напряжение, требуемое для работы комплектующих:

Кроме этих заявленных величин существует и дополнительное величины:

Фото: блок питания

БП выполняет роль гальванической развязки между электрическим током из розетки и комплектующими потребляющие ток. Простой пример, если произошла утечка тока и человек дотронулся до корпуса системного блока его ударило бы током, но благодаря блоку питания этого не происходит. Часто используются источники питания (ИП) формата ATX.

Обзор схем источников питания

Главной частью структурной схемы ИП, формата ATX, является полумостовой преобразователь. Работа преобразователей этого типа заключается в использовании двухтактного режима.

Стабилизация выходных параметров ИП осуществляется применением широтно-импульсной модуляции (ШИМ-контроллер) управляющих сигналов.

В импульсных источниках питания часто используется микросхема ШИМ-контроллера TL494, которая обладает рядом положительных свойств:

  • приемлемые рабочие характеристики микросхемы. Это – малый пусковой ток, быстродействие;
  • наличие универсальных внутренних элементов защиты;
  • удобство использования.

Простой импульсный БП

Принцип работы обычного импульсного БП можно увидеть на фото.

Фото: блок схема работы импульсного

Первый блок выполняет изменение переменного тока в постоянный. Преобразователь выполнен в виде диодного моста, который преобразовывает напряжение, и конденсатора, сглаживающего колебания.

Кроме этих элементов могут присутствовать еще дополнительные комплектующие: фильтр напряжения и термисторы. Но, из-за дороговизны, эти комплектующие могут отсутствовать.

Генератор создает импульсы с определенной частотой, которые питают обмотку трансформатора. Трансформатор выполняет главную работу в БП, это – гальваническая развязка и преобразование тока до требуемых величин.

Далее переменное напряжение, генерируемое трансформатором, идет на следующий блок. Этот блок из диодов, выравнивающих напряжение, и фильтра пульсаций. Фильтр состоит из группы конденсаторов и дросселя.

Видео: Принцип работы ШИМ контроллера БП

АТХ без коррекции коэффициента

Простой импульсный БП хоть и рабочее устройство, но на практике его использовать неудобно. Многие из его параметров на выходе «плавают», в том числе и напряжение. Все эти показатели изменяются из-за нестабильного напряжения, температуры и загруженности выхода преобразователя.

Но если осуществлять управление этими показателями с помощью контроллера, который будет выполнять роль стабилизатора и дополнительные функции, то схема будет вполне пригодной для применения.

Структурная схема БП с использованием контроллера широтно-импульсной модуляции проста и представляет генератор импульсов на ШИМ-контроллере.

Фото: ИП для компьютера с ШИМ-контроллером

ШИМ-контроллер регулирует амплитуду изменения сигналов проходящих через фильтр низких частот (ФНЧ). Главным достоинством являются высокие показатели КПД усилителей мощности и широкие возможности в использовании.

АТХ с коррекцией коэффициента мощности

В новых источниках питания для ПК появляется дополнительный блок – корректор коэффициента мощности (ККМ). ККМ убирает появляющиеся погрешности мостового выпрямителя переменного тока и повышает коэффициент мощности (КМ).

Поэтому производителями активно изготавливаются БП с обязательной коррекцией КМ. Это означает, что ИП на компьютере будет работать в диапазоне от 300Вт и более.

Фото: схема блока питания компьютера 300w

В этих БП используют специальный дроссель с индуктивностью выше чем на входе. Такой ИП называют PFC или пассивным ККМ. Имеет внушительный вес из-за дополнительного использования конденсаторов на выходе выпрямителя.

Из недостатков можно выделить невысокую надежность ИП и некорректную работу с ИБП во время переключения режима работы «батарея/сеть».


Это связано с маленькой емкостью фильтра сетевого напряжения и в момент падения напряжения повышается ток ККМ, и в этот момент включается защита от короткого замыкания.

На двухканальном ШИМ-контролере

Часто используют в современных источниках питания для компьютера двухканальные ШИМ-контроллеры. Единственная микросхема способна выполнять роль преобразователя и корректора КМ, что сокращает общее количество элементов в схеме БП.

Фото: схема БП с использованием двухканального ШИМ-котроллера

 

В приведенной схеме первая часть выполняет формирование стабилизированного напряжение +38В, а вторая часть является преобразователем, который формирует стабилизированное напряжение +12В.

Схема подключения блока питания компьютера

Для подключения блока питания к компьютеру следует выполнить ряд последовательных действий:

  • установить БП в системный блок. Все эти действия нужно выполнять аккуратно, чтобы не задеть остальные комплектующие;
  • закрепить БП к задней панели системного блока специальными винтами;
  • подсоединить кабели питания ко всем устройствам находящимся в системном блоке (материнская плата, дисковод, видеокарта, винчестер). Особых предпочтений в порядке подключения нет, главное все сделать аккуратно и правильно.

    фото: схема подключения питания компьютера PcCar CarPc

Конструктивные особенности

Для подключения комплектующих персонального компьютера на БП предусмотрены различные разъемы. На задней его части расположен разъем под сетевой кабель и кнопка выключателя.

Кроме этого может находится еще на задней стенке БП и разъем для подключения монитора.

В различных моделях могут быть и другие разъемы: 

  • индикатор напряжения;
  • кнопки изменения режима работы вентилятора;
  • переключатель входящего напряжения;
  • USB-порты, встроенные в БП.

    Фото: внешний вид БП для ПК

В современных источниках питания для ПК реже устанавливают вентилятор на задней стенке, который вытягивал горячий воздух из БП. В замен этого решения начали использовать вентилятор на верхней стенке, который был больше и работал тише.

На некоторых моделях возможно встретить сразу два вентилятора. Из стенки, которая находится внутри системного блока, выходит провод со специальным разъемом для подачи тока на материнскую плату. На фото указаны возможные разъемы подключения и обозначение контактов.

Фото: обозначение контактов разъемов БП

Каждый цвет провода подает определенное напряжение:

  • желтый — +12 В;
  • красный — +5 В;
  • оранжевый — +3,3 В;
  • черный – заземление.

У различных производителей могут изменяться значения для этих цветов проводов.

Также есть разъемы для подачи тока комплектующим компьютера.

Фото: специальные разъемы для комплектующих

Параметры и характеристики

БП персонального компьютера имеет много параметров, которые могут не указываться в документации. На боковой этикетке указываются несколько параметров – это напряжение и мощность.

Мощность – основной показатель

Эта информация пишется на этикетке крупным шрифтом. Показатель мощности БП указывает на общее количество электроэнергии доступной для внутренних комплектующих.

Казалось бы, выбрать БП с требуемой мощностью будет достаточным просуммировать потребляемые показатели комплектующими и выбрать БП с небольшим запасом. Поэтому большой разницы между 200w и 250w не будет существенной.

Фото: Импульсный блок питания компьютера (ATX) на з00 Вт

Но на самом деле ситуация выглядит сложнее, потому что выдаваемое напряжение может быть разным — +12В, -12В и другим. Каждая линия напряжения потребляет определенную мощность. Но в БП расположен один трансформатор, который генерирует все напряжения, используемые ПК. В редких случаях может быть размещено два трансформатора. Это дорогой вариант и используется в качестве источника на серверах.

В простых же БП используется 1 трансформатор. Из-за этого мощность на линиях напряжений может меняться, увеличиваться при малой нагрузке на других линиях и наоборот уменьшаться.

Рабочие напряжение

При выборе БП следует обратить внимание на максимальные значения рабочих напряжений, а также диапазон входящих напряжений, он должен быть от 110В до 220В.

Правда большинство из пользователей на это не обращают своего внимания и выбирая БП с показателями от 220В до 240В рискуют к появлению частых отключений ПК.

Фото: параметры блока питания компьютера

Такой БП будет выключаться при падении напряжения, которые не редкость для наших электросетей.Превышение заявленных показателей приведет к выключению ПК, сработает защита. Чтобы включить обратно БП придется отключить его от сети и подождать минуту.

Следует помнить, что процессор и видеокарта потребляю самое большее рабочее напряжение в 12В. Поэтому следует обращать внимание на эти показатели.Для снижения нагрузки на разъемы, линию 12В разделяют на пару параллельных с обозначением +12V1 и +12V2. Эти показатели должны быть указаны на этикетке.

Советы по выбору источника

Перед тем как выбрать для покупки БП, следует обратить внимание на потребляемую мощность внутренними компонентами ПК.

Но некоторые видеокарты требуют особый потребляемый ток +12В и эти показатели следует учитывать при выборе БП. Обычно для ПК, в котором установлена одна видеокарта, достаточно источника с мощностью в 500вт или 600.

Фото: Super Power 300X

Также следует ознакомится с отзывами покупателей и обзорами специалистов о выбранной модели, и компании производителе. Лучшие параметры, на которые следует обратить внимание, это: мощность, тихая работа, качество и соответствие написанным характеристикам на этикетке.

Вам необходимо настроить модем в режиме роутера! Подробнее в настройке модема в роутер ByFly.

Интересует настройка роутера ZYXEL KEENETIC LITE PPPoE? Читайте тут.

Настройка IPTV в роутере DIR 620 от Ростелеком? Читайте в статье.

Экономить при этом не следует, ведь от работы БП будет зависеть работа всего ПК. Поэтому чем качественнее и надежнее источник, тем дольше прослужит компьютер. Пользователь может быть уверен, что сделал правильный выбор и не беспокоится о внезапных выключениях своего ПК.

Сильноточная схема регулируемого регулятора напряжения, 0-30 В 20 А

Если вам нужна сильноточная схема регулируемого регулятора напряжения . Это может быть лучшим выбором для вас.

Он может выдавать выходной ток 20 А или 400 Вт и может регулировать напряжение от 4 до 20 В или легко подавать напряжение от 0 до 30 В. Это хорошее качество, отличная производительность и долговечность с печатной платой.

Для использования в электронной телекоммуникации, радиопередатчике большой мощности и т. Д.

В этом проекте используются несколько компонентов.Из-за использования четырех стабилизаторов напряжения LM338-5A и популярного операционного усилителя IC-741 в режиме линейного питания.

Попробуй построить и тебе понравится!

Как это работает

LM338K, который мы предлагаем для использования, представляет собой схему регулятора напряжения постоянного тока плавающего типа. Простой прикладной стиль этой ИС, как показано на рисунке 1

Как использовать LM338 IC в basic

Рисунок 1 Схема , в нормальных условиях напряжение между выводом Adj и выводом равно 1.25 В стабильно, что поток R1, R2 также будет постоянным.

Выходное напряжение равно напряжению на выводе Adj + 1,25 В или Рассчитывается следующим образом

Vo = 1,25 (R1 + R2) / R1

Высокий ток при параллельном подключении LM338

Нормально IC-LM338 Может подавать до 5 ампер, но чтобы ток нагрузки не превышал 20 ампер, мы приведем его в параллель.

На что следует обратить внимание при параллельном подключении множества ИС, так это на средний ток, протекающий по цепи.Каждому одинаково.

Самый простой способ – подключить резистор к выходному выводу IC, как показано на рис. 2 .

Номинал резисторов-R, используемых к нему, будет намного меньше, чем R1.

Исходя из схемы, мы можем установить.

IoRs = 1,25 – Vo (R1 / (R1 + R2))

И от работы цепей набора вниз, будет.

IiRs = 1,25 – Vo (R1 / (R1 + R2))

Из этих двух одинаковых уравнений следует, что Io = Ii.

Или просто, ток через микросхему LM338 одинаков.


Соединение LM338 в параллельной форме

На практике мы не используем схемы для его использования. Так как напряжение на падение РТС будет изменяться в зависимости от величины тока, протекающего через нагрузку и Реферировано напряжения IC. Кроме того, они отличаются друг от друга.


Внешнее управление LM338 с использованием uA741

Следовательно, нам необходимо управлять внешними цепями.Чтобы контролировать напряжение на выводе adj, как показано на Рис. 3.

Из схемы мы увидим, что на отрицательном выводе IC должно быть половинное напряжение от выходного напряжения. И на положительном выводе должно быть равное номинальному напряжению.

Это вызвано постоянным током, протекающим через транзистор к Rs и P1.

От свойств схемы операционного усилителя до регулируемого уровня выходного напряжения, что. Пока не будет такое же напряжение на штыревом входе.

Итак, напряжение на базе вывода транзистора Q1 равно напряжению на отрицательном выводе IC.

Напряжение это, чтобы сделать изменения в сопротивлении транзистора, в результате чего напряжение в точке ссылочного изменения.

Сопротивление транзистора обратно пропорционально выходному напряжению, чтобы компенсировать потерю напряжения в размере Rs. Из-за неравномерного протекания этих нагрузочных токов.

Регулятор постоянного тока большой мощности 4-20 вольт 20 ампер от LM338

  • Исходя из всех вышеперечисленных принципов, у нас есть схемы применения, как показано на Рисунок 4 , если вы хотите добавить IC-LM338, что позволяет они должны быть выше тока.
  • Для трансформатора, который может подавать не менее 30 ампер, а напряжение вторичной обмотки должно быть не менее 18 вольт.

Для оптимизации схемы конденсатора-С2 лучше использовать 20000uF.

Чтение: Как использовать LM317 Техническое описание и распиновка

Список деталей
IC1: LM741
IC2-IC5: LM338K или LM338P
Q1: BD140
D1: Мостовой диод 35A

4 Диоды: 1NN R1: 150 Ом резистор 0,5 Вт
R2: 100 Ом резистор 0.5 Вт
R3, R4: резисторы 4,7 кОм 1/2 Вт
R5-R8: резисторы 0,3 Ом 5 ​​Вт
C1: 0,01 мкФ 200 В, полиэфирный конденсатор
C2, C5: 4700 мкФ 50 В, электролитические конденсаторы
C3: 0,1 мкФ 63 В, полиэфирный конденсатор
C4: 10 мкФ 25 В Тантал
C6: 47 мкФ 35 В, электролитические конденсаторы


Печатная плата регулятора постоянного тока большой мощности-4-20-вольт-20-ампер

Build 20A Сильноточный регулируемый источник питания

  • Все устройства в схемах. Устройства можно припаять к печатной плате, как показано на Рисунок 5 .Если вы не измените входной конденсатор-C2, они увеличились. Придется установить его вне печатной платы.
  • Мостовой диод должен быть аккуратно прикреплен к радиатору. Чтобы продлить срок службы и долговечность.
  • Для IC-LM338, который также необходимо установить на радиатор большого размера. Будьте осторожны, корпус ИС к радиатору Коротко решительно.
  • Когда все будет готово к пайке оборудования, протестируйте входное питание переменного тока для этого проекта.
  • Затем отрегулируйте VR1 до необходимого выходного напряжения, проверьте нагрузку и отрегулируйте VR1 до тех пор, пока выходное напряжение не останется неизменным.

ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ

Я всегда стараюсь сделать Electronics Learning Easy .

Переменный источник питания высокого напряжения 0-300 В

Вот схема переменного высокого напряжения постоянного тока, выходное напряжение которой мы можем настроить от 0 до 311 В постоянного тока, и она защищает ток сверх предела, который мы определяем примерно на 100 мА.

Вам могут понравиться эти
LM338 5A Регулирующий регулятор Увеличенный срок службы при высоком токе при том же напряжении 1.От 25 до 30 В.

На схеме вы можете видеть, что T1 представляет собой сетевой трансформатор с соотношением 1: 1 по соображениям безопасности, а также снижает шумовой сигнал.

Затем сетевое напряжение от T1 выпрямляется до постоянного напряжения с помощью мостового диода D1-D4. Мы используем № 1N4007, который выдерживает напряжение 1000 В при токе 1 А, и это постоянное напряжение фильтруется через конденсатор C1 – 220 мкФ 400 В Для электролитических типов больших размеров падение напряжения на C1 составляет около 311 В постоянного тока.

Силовой полевой МОП-транзистор Q1 управляет токовым выходом, с помощью резистора R3 – 500 кОм регулирует вывод затвора напряжения Q1.

Доступен стабилитрон ZD1-12V для предотвращения перенапряжения на выводе затвора Q2, если его нет, когда высокое напряжение Q2 может быть повреждено.

Транзистор Q2-BC337 и шунтирующий резистор R2 – 3,3 Ом добавлены в качестве ограничителя тока. Когда токовый выход слишком увеличен, Q2 немедленно остановит вывод затвора Q1, который будет защищать более высокий токовый выход. Степень R3 определяется тестированием в этой схеме, которое зависит от коэффициента усиления транзистора или значения hFE, поэтому вам может потребоваться настроить значение R2

Примечание : Q1 должен иметь радиатор большого размера, он будет иметь мощность около 311 В x 100 мА = 31 Вт. Можно использовать полевой МОП-транзистор Q1, имеющий несколько номеров: N-канальный, режим улучшения, Vds = 400 В, Id = 10.5A, например: IRF740, BUZ326 и т. Д.
Выходное сопротивление источника питания определяется бета-степенью Q1, таким образом, полное сопротивление большого полевого МОП-транзистора ниже, чем выходное сопротивление.

Эта схема работает хорошо, как показано на видео ниже:

Спасибо

Кроме того, вы можете увидеть другую схему высоковольтного питания. ниже…

  1. 3 идеи схем высоковольтных источников питания
  2. Схема преобразователя постоянного тока с 12 В в 300 В

ПОЛУЧИТЬ ОБНОВЛЕНИЕ ЧЕРЕЗ ЭЛЕКТРОННУЮ ПОЧТУ

Я всегда стараюсь учиться электронике .

Основы питания

Детали блока питания

В идеале блок питания постоянного тока (обычно называемый блоком питания), получающий питание от сети переменного тока, выполняет ряд задач:

  • 1. Он изменяет (в большинстве случаев снижает) уровень подачи до значения, подходящего для управления цепью нагрузки.
  • 2. Он вырабатывает постоянный ток от сети (или сети) синусоидального переменного тока.
  • 3. Он предотвращает появление переменного тока на выходе источника питания.
  • 4. Это гарантирует, что выходное напряжение поддерживается на постоянном уровне, независимо от изменений:
  • а. Напряжение питания переменного тока на входе питания.
  • г. Ток нагрузки, поступающий с выхода источника питания.
  • г. Температура.

Для этого базовый блок питания имеет четыре основных этапа, показанных на рис. 1.0.1.

Рис. 1.0.1 Блок-схема источника питания

Источники питания

за последнее время значительно повысили надежность, но, поскольку они должны выдерживать значительно более высокие напряжения и токи, чем любая или большая часть цепей, которые они питают, они часто наиболее подвержены отказу любой части электронной системы.

Современные источники питания также значительно усложнились и могут обеспечивать очень стабильные выходные напряжения, контролируемые системами обратной связи. Многие цепи питания также содержат автоматические цепи безопасности для предотвращения опасного перенапряжения или перегрузки по току.

Силовые модули на Learnabout-electronics поэтому знакомят с многими методами, используемыми в современных источниках питания, изучение которых важно для понимания электронных систем.

Предупреждение

Если вы планируете построить или отремонтировать источник питания, особенно тот, который питается от сети (линейного) напряжения, модули источников питания на этом сайте помогут вам понять, сколько часто встречающихся схем работает.Однако вы должны понимать, что напряжения и токи, присутствующие во многих источниках питания, в лучшем случае опасны и могут присутствовать даже при выключенном источнике питания! В худшем случае высокое напряжение, присутствующее в источниках питания, может, и время от времени, УБИТЬ.

Информация, представленная на этом сайте, не только даст вам квалификацию для безопасной работы с источниками питания. Вы также должны обладать навыками и оборудованием для безопасной работы и полностью осознавать местные проблемы здоровья и безопасности.

Пожалуйста, действуйте ответственно, автор этой информации и владельцы этого сайта не несут никакой ответственности или обязательств за любой ущерб или травмы, причиненные людям или любым третьим лицам, имуществу или оборудованию в результате использования или неправильного использования информации, представленной на веб-сайты learnabout-electronics.

Регулируемые блоки питания

Блок регулятора / стабилизатора

Последствия плохого регулирования

Эффект от плохого регулирования (или стабилизации) подачи можно увидеть на рис.1.3.1, где показаны графики изменения выходного напряжения (V DC ) при увеличении тока нагрузки (I) в различных версиях базового блока питания.

Обратите внимание, что выходное напряжение значительно выше для двухполупериодных схем (красный и желтый), чем для полуволновых (зеленый и фиолетовый). Также обратите внимание на небольшое снижение напряжения при добавлении LC-фильтра из-за падения напряжения на катушке индуктивности. В каждом случае в базовой конструкции выходное напряжение падает почти линейно по мере увеличения тока, потребляемого от источника питания.В дополнение к этому эффекту дополнительный разряд накопительного конденсатора также вызывает увеличение амплитуды пульсаций.

Рис. 1.3.1 Сравнение кривых регулирования

Регулятор (стабилизатор)

Регулятор или стабилизатор

?

Строго говоря, компенсация колебаний входного напряжения сети (линии) называется РЕГУЛИРОВАНИЕМ, а компенсация колебаний тока нагрузки – СТАБИЛИЗАЦИЕЙ. На практике вы обнаружите, что эти термины используются довольно свободно для описания компенсации обоих эффектов.Фактически большинство стабилизированных или регулируемых источников питания компенсируют колебания как на входе, так и на выходе и поэтому являются (по крайней мере, до некоторой степени) стабилизированными и регулируемыми источниками питания.

Как и в большинстве современных случаев, термин «регулятор» будет использоваться здесь для описания как регулирования, так и стабилизации.

Эти проблемы можно в значительной степени решить, включив на выходе источника питания ступень регулятора. Эффект от этой схемы можно увидеть на рис. 1.3.1. как черная линия на графике, где для любого тока примерно до 200 мА выходное напряжение (хотя и ниже абсолютного максимума, обеспечиваемого базовым источником питания) остается постоянным.

Регулятор противодействует влиянию переменного тока нагрузки, автоматически компенсируя снижение выходного напряжения по мере увеличения тока.

В регулируемых источниках питания также часто бывает, что выходное напряжение автоматически и внезапно уменьшается до нуля в качестве меры безопасности, если потребляемый ток превышает установленный предел. Это называется ограничением тока.

Регулировка требует дополнительной схемы на выходе простого источника питания. Используемые схемы сильно различаются как по стоимости, так и по сложности.Используются две основные формы регулирования:

1. Шунтирующий регулятор.

2. Регулятор серии.

Эти два подхода сравниваются на Рис. 1.3.2 и Рис. 1.3.3

Шунтирующий регулятор

Рис. 1.3.2 Шунтирующий регулятор

В шунтирующем регуляторе (рис. 1.3.2) цепь включена параллельно нагрузке. Цель регулятора – обеспечить постоянное стабильное напряжение на нагрузке; это достигается за счет постоянного протекания тока через цепь регулятора.Если ток нагрузки увеличивается, тогда схема регулятора уменьшает свой ток, так что общий ток питания I T (состоящий из тока нагрузки I L плюс тока регулятора I S ) остается на том же значении. . Аналогично, если ток нагрузки уменьшается, то ток регулятора увеличивается, чтобы поддерживать постоянный общий ток I T . Если общий ток питания останется прежним, то останется и напряжение питания.

Регулятор серии

Рис.1.3.2 Регулятор серии

В последовательном регуляторе (рис. 1.3.3) регулирующее устройство включено последовательно с нагрузкой. На регуляторе всегда будет падение напряжения. Это падение будет вычтено из напряжения питания, чтобы получить напряжение V L на нагрузке, которое представляет собой напряжение питания V T за вычетом падения напряжения регулятора V S . Следовательно:

V L = V T – V S

Регуляторы серии

обычно управляются выборкой напряжения нагрузки с использованием системы отрицательной обратной связи.Если напряжение нагрузки имеет тенденцию падать, меньшая обратная связь заставляет управляющее устройство уменьшать свое сопротивление, позволяя большему току течь в нагрузку, таким образом увеличивая напряжение нагрузки до исходного значения. Увеличение напряжения нагрузки приведет к обратному эффекту. Как и шунтирующее регулирование, действие последовательного регулятора также компенсирует колебания напряжения питания.

Источники питания, схемы фильтров

  • Изучив этот раздел, вы сможете:
  • Опишите принцип действия емкостного конденсатора в базовых источниках питания.
  • • Резервуар-конденсатор действия.
  • • Влияние накопительного конденсатора на постоянную составляющую.
  • • Влияние накопительного конденсатора на ток диода.
  • Опишите принципы работы фильтра нижних частот, используемого в базовых источниках питания.
  • • Фильтры LC.
  • • RC-фильтры.

Компоненты фильтра

Типичную схему фильтра источника питания можно лучше всего понять, разделив схему на две части: накопительный конденсатор и фильтр нижних частот.Каждая из этих частей способствует удалению оставшихся импульсов переменного тока, но по-разному.

Резервуарный конденсатор

Рис. 1.2.1 Резервуарный конденсатор

На рис. 1.2.1 показан электролитический конденсатор, используемый в качестве накопительного конденсатора, названный так потому, что он действует как временное хранилище выходного тока источника питания. Выпрямительный диод подает ток для зарядки накопительного конденсатора в каждом цикле входной волны. Накопительный конденсатор – это большой электролитический конденсатор, обычно на несколько сотен или даже тысячу и более микрофарад, особенно в БП с сетевой частотой.Это очень большое значение емкости требуется, потому что накопительный конденсатор при зарядке должен обеспечивать достаточный постоянный ток для поддержания стабильного выхода блока питания в отсутствие входного тока; то есть во время промежутков между положительными полупериодами, когда выпрямитель не проводит ток.

Действие емкостного конденсатора на полуволновую выпрямленную синусоидальную волну показано на рис. 1.2.2. В течение каждого цикла анодное переменное напряжение выпрямителя увеличивается до Vpk. В некоторой точке, близкой к Vpk, анодное напряжение превышает катодное напряжение, выпрямитель проводит ток, и протекает импульс тока, заряжающий накопительный конденсатор до значения Vpk.

Рис. 1.

2.2 Действие резервуарного конденсатора

Как только входная волна проходит через Vpk, напряжение на аноде выпрямителя падает ниже напряжения конденсатора, выпрямитель становится смещенным в обратном направлении и проводимость прекращается. Цепь нагрузки теперь питается только от емкостного конденсатора (отсюда и необходимость в конденсаторе большой емкости).

Конечно, даже несмотря на то, что резервуарный конденсатор имеет большое значение, он разряжается по мере подачи питания на нагрузку, и его напряжение падает, но не очень сильно. В какой-то момент во время следующего цикла подключения к сети входное напряжение выпрямителя поднимается выше напряжения на частично разряженном конденсаторе, и резервуар снова заряжается до пикового значения Vpk.

Пульсация переменного тока

Величина разряда накопительного конденсатора в каждом полупериоде определяется током, потребляемым нагрузкой. Чем выше ток нагрузки, тем сильнее разряд, но при условии, что потребляемый ток не является чрезмерным, количество переменного тока, присутствующего на выходе, значительно уменьшается. Обычно размах амплитуды оставшегося переменного тока (называемого пульсацией, поскольку волны переменного тока теперь значительно уменьшены) не превышает 10% от выходного напряжения постоянного тока.

Выход постоянного тока выпрямителя без накопительного конденсатора равен 0.637 Впик для двухполупериодных выпрямителей или 0,317 Впик для однополупериодных. Добавление конденсатора увеличивает уровень постоянного тока выходной волны почти до пикового значения входной волны, как это видно на рис. 1.1.9.

Для получения наименьших пульсаций переменного тока и наивысшего уровня постоянного тока было бы разумно использовать максимально возможный резервуарный конденсатор. Однако есть загвоздка. Конденсатор обеспечивает ток нагрузки большую часть времени (когда диод не проводит ток). Этот ток частично разряжает конденсатор, поэтому вся энергия, используемая нагрузкой в ​​течение большей части цикла, должна быть восполнена за очень короткое оставшееся время, в течение которого диод проводит в каждом цикле.

Формула, связывающая заряд, время и ток, гласит, что:

Q = Оно

Заряд (Q) конденсатора зависит от величины тока (I), протекающего в течение времени (t).

Следовательно, чем короче время зарядки, тем больший ток должен подавать диод для его зарядки. Если конденсатор очень большой, его напряжение практически не будет падать между импульсами зарядки; это вызовет очень небольшую пульсацию, но потребует очень коротких импульсов гораздо более высокого тока для зарядки накопительного конденсатора.И входной трансформатор, и выпрямительные диоды должны обеспечивать этот ток. Это означает использование более высокого номинального тока для диодов и трансформатора, чем было бы необходимо для емкостного конденсатора меньшего размера.

Таким образом, есть преимущество в уменьшении емкости резервуарного конденсатора, что позволяет увеличить имеющуюся пульсацию, но это может быть эффективно устранено путем использования ступеней фильтра нижних частот и регулятора между резервуарным конденсатором и нагрузкой.

Это влияние увеличения размера резервуара на ток диода и трансформатора следует учитывать во время любых операций по обслуживанию; Замена накопительного конденсатора на конденсатор большей емкости, чем в оригинальной конструкции, «для уменьшения гула в сети» может показаться хорошей идеей, но может привести к повреждению выпрямительного диода и / или трансформатора.

При двухполупериодном выпрямлении характеристики резервуарного конденсатора по устранению пульсаций переменного тока значительно лучше, чем с полуволновым, для резервуарного конденсатора того же размера пульсация составляет примерно половину амплитуды, чем в полуволновых источниках, потому что в двухполупериодных схемах периоды разряда короче, так как накопительный конденсатор заряжается с частотой, вдвое превышающей частоту полуволновой конструкции.

Фильтры нижних частот

Хотя пригодный для использования источник питания может быть изготовлен с использованием только резервуарного конденсатора для устранения пульсаций переменного тока, обычно необходимо также включать фильтр нижних частот и / или ступень регулятора после резервуарного конденсатора, чтобы удалить любые оставшиеся пульсации переменного тока и улучшить стабилизацию. выходного напряжения постоянного тока в условиях переменной нагрузки.

Рис. 1.2.3 LC-фильтр

Рис. 1.2.4 RC-фильтр

Фильтры нижних частот LC или RC могут использоваться для удаления пульсации, остающейся после накопительного конденсатора.LC-фильтр, показанный на рис. 1.2.3, более эффективен и дает лучшие результаты, чем RC-фильтр, показанный на рис. 1.2.4, но для базовых источников питания конструкции LC менее популярны, чем RC, поскольку катушки индуктивности, необходимые для фильтрации Для эффективной работы на частотах от 50 до 120 Гц необходимы большие и дорогие ламинированные или тороидальные сердечники. Однако современные конструкции, использующие импульсные источники питания, где любые пульсации переменного тока имеют гораздо более высокие частоты, могут использоваться индукторы с ферритовым сердечником гораздо меньшего размера.

Фильтр нижних частот пропускает низкую частоту, в данном случае постоянный ток (0 Гц), и блокирует более высокие частоты, будь то 50 Гц или 120 Гц в базовых схемах или десятки кГц в схемах с переключением.

Реактивное сопротивление (X C ) конденсатора в любом из фильтров очень низкое по сравнению с сопротивлением резистора R или реактивным сопротивлением дросселя X L на частоте пульсаций. В RC-схемах сопротивление R должно быть довольно низким, так как через него должен проходить весь ток нагрузки, возможно несколько ампер, выделяя значительное количество тепла. Таким образом, типичное значение составляет 50 Ом или меньше, и даже при этом значении обычно необходимо использовать большой проволочный резистор.Это ограничивает эффективность фильтра, поскольку соотношение между сопротивлением R и реактивным сопротивлением конденсатора не будет больше примерно 25: 1. Тогда это будет типичный коэффициент уменьшения амплитуды пульсаций. При включении фильтра нижних частот на резисторе теряется некоторое напряжение, но этот недостаток компенсируется лучшими характеристиками пульсаций, чем при использовании только резервуарного конденсатора.

LC-фильтр работает намного лучше, чем RC-фильтр, потому что можно сделать соотношение между X C и X L намного большим, чем соотношение между X C и R. Обычно соотношение в LC-фильтре может быть 1: 4000, что дает гораздо лучшее подавление пульсаций, чем RC-фильтр. Кроме того, поскольку сопротивление постоянному току катушки индуктивности в LC-фильтре намного меньше, чем сопротивление R в RC-фильтре, проблема выделения тепла большим постоянным током значительно снижается в LC-фильтрах.

С помощью комбинированного накопительного конденсатора и фильтра нижних частот можно удалить 95% или более пульсаций переменного тока и получить выходное напряжение, примерно равное пиковому напряжению входной волны.Однако простой источник питания, состоящий только из трансформатора, выпрямителя, резервуара и фильтра нижних частот, имеет некоторые недостатки.

Рис. 1.2.5 Адаптер постоянного тока

Выходное напряжение блока питания имеет тенденцию падать по мере увеличения тока на выходе. Это связано с:

а. Резервуарный конденсатор разряжается больше в каждом цикле.

г. Большее падение напряжения на резисторе или дроссель в фильтре нижних частот при увеличении тока.

Эти проблемы можно в значительной степени преодолеть, включив на выходе источника питания каскад регулятора, как описано в модуле 2 источника питания.

Однако основные схемы питания, описанные здесь, в Модуле 1, обычно используются в обычных адаптерах постоянного тока типа «настенная бородавка», поставляемых со многими электронными продуктами. Наиболее распространенные версии содержат трансформатор, мостовой выпрямитель и иногда накопительный конденсатор. Дополнительная фильтрация и регулировка / стабилизация обычно выполняются в цепи, питаемой от адаптера.

Как выход базового источника питания может быть улучшен с помощью схем регулирования, объясняется в Модуле 2 источников питания

Источники питания | Electronics Club

Блоки питания | Клуб электроники

Трансформатор | Выпрямитель | Сглаживание | Регулятор | Двойные расходные материалы

Следующая страница: Преобразователи

См. Также: AC / DC | Диоды | Конденсаторы

Типы источников питания

Есть много типов источников питания. Большинство из них предназначены для преобразования сети переменного тока высокого напряжения. к подходящему низковольтному источнику питания для электронных схем и других устройств. Источник питания можно разбить на серию блоков, каждый из которых выполняет определенную функцию.

Например, регулируемое питание 5 В:

  • Трансформатор – понижает напряжение сети переменного тока высокого напряжения до переменного тока низкого напряжения.
  • Выпрямитель – преобразует переменный ток в постоянный, но выходной постоянный ток меняется.
  • Smoothing (Сглаживание) – сглаживает постоянный ток от сильного колебания до небольшого.
  • Регулятор
  • – устраняет пульсации, устанавливая на выходе постоянного тока фиксированное напряжение.

Блоки питания, изготовленные из этих блоков, описаны ниже со схемой и графиком их выхода:

Только трансформатор

Низковольтный выход переменного тока подходит для ламп, нагревателей и специальных двигателей переменного тока. не подходит для электронных схем, если они не включают выпрямитель и сглаживающий конденсатор.

См .: Трансформатор


Трансформатор + выпрямитель

регулируемый выход постоянного тока подходит для ламп, нагревателей и стандартных двигателей. не подходит для электронных схем, если они не содержат сглаживающий конденсатор.

См .: Трансформатор | Выпрямитель


Трансформатор + выпрямитель + сглаживание

На выходе smooth DC наблюдается небольшая пульсация. Он подходит для большинства электронных схем.

См .: Трансформатор | Выпрямитель | Сглаживание


Трансформатор

+ выпрямитель + сглаживание + регулятор

Регулируемый выход постоянного тока очень плавный, без пульсаций.Подходит для всех электронных схем.

См .: Трансформатор | Выпрямитель | Сглаживание | Регулятор



Трансформатор

Трансформаторы преобразуют электричество переменного тока из одного напряжения в другое с небольшими потерями мощности. Трансформаторы работают только с переменным током, и это одна из причин, по которой в сети используется переменный ток.

Повышающие трансформаторы повышают напряжение, понижающие трансформаторы понижают напряжение. В большинстве источников питания используется понижающий трансформатор для снижения опасно высокого напряжения в сети. напряжение (230 В в Великобритании) на более безопасное низкое напряжение.

Трансформаторы расходуют очень мало энергии, поэтому выходная мощность (почти) равна мощности на входе. Обратите внимание, что при понижении напряжения ток увеличивается.

Входная катушка называется первичной , а выходная катушка – вторичной . Между двумя катушками нет электрического соединения, вместо этого они связаны переменное магнитное поле создается в сердечнике из мягкого железа трансформатора. Две линии в середине символа схемы представляют сердечник.

Rapid Electronics: трансформаторы

Обозначение схемы трансформатора

Передаточное число

Отношение числа витков на каждой катушке, называемое коэффициентом витков , определяет соотношение напряжений. Понижающий трансформатор имеет большое количество витков на первичной (входной) катушке, которая подключена к питающей сети высокого напряжения. и небольшое количество витков на вторичной (выходной) катушке для обеспечения низкого выходного напряжения.

передаточное число = Вп = Np
VS Ns
выходная мощность = мощность вх.

Vp = первичное (входное) напряжение
Np = количество витков первичной катушки
Ip = первичный (входной) ток

Vs = вторичное (выходное) напряжение
Ns = количество витков вторичной катушки
Is = вторичный (выходной) ток


Выпрямитель

Есть несколько способов подключения диодов, чтобы выпрямитель преобразовывал переменный ток в постоянный. Мостовой выпрямитель является наиболее важным и производит двухполупериодных переменный постоянный ток. Двухполупериодный выпрямитель также можно сделать всего из двух диодов, если используется трансформатор с центральным отводом, но сейчас этот метод редко используется, поскольку диоды стали дешевле. Можно использовать одиночный диод в качестве выпрямителя, но он использует только положительные (+) части волны переменного тока для создания полуволны переменного постоянного тока.

Мостовой выпрямитель

Мостовой выпрямитель может быть выполнен с использованием четырех отдельных диодов, но он также доступен в пакеты, содержащие четыре необходимых диода.Он называется двухполупериодным выпрямителем. потому что он использует всю волну переменного тока (как положительную, так и отрицательную части). Чередующиеся пары диодов проводят, это переключает соединения, поэтому переменные направления переменного тока преобразуются в одно направление постоянного тока.

1,4 В используется в мостовом выпрямителе, потому что на каждом диоде 0,7 В при проводящем соединении, и всегда есть два диоды проводящие, как показано на схеме.

Мостовые выпрямители

рассчитаны на максимальный ток, который они могут пропускать, и максимальное обратное напряжение, которое они могут выдержать.Их номинальное напряжение должно быть не менее трех -кратного действующего напряжения источника питания. поэтому выпрямитель может выдерживать пиковые напряжения. Пожалуйста, смотрите страницу Диоды для более подробной информации, включая фотографии мостовых выпрямителей.

Rapid Electronics: мостовые выпрямители

Мостовой выпрямитель

Выход: двухполупериодный переменный постоянный ток
(с использованием всей волны переменного тока)

Выпрямитель одинарный диод

Один диод можно использовать в качестве выпрямителя, но он дает полуволны переменного постоянного тока, имеющего промежутки когда переменный ток отрицательный. Трудно сгладить это достаточно хорошо, чтобы питать электронные схемы, если они не требуется очень небольшой ток, поэтому сглаживающий конденсатор существенно не разряжается во время промежутков. Пожалуйста, обратитесь к странице Диоды для некоторых примеров выпрямительных диодов.

Rapid Electronics: Выпрямительные диоды

Однодиодный выпрямитель

Выход: полуволна переменного тока
(с использованием только половины переменного тока)


Сглаживание

Сглаживание выполняется электролитическим конденсатором большой емкости. подключен к источнику постоянного тока, чтобы действовать как резервуар, подающий ток на выход, когда изменяющееся напряжение постоянного тока от выпрямитель падает.На диаграмме показаны несглаженный изменяющийся постоянный ток (пунктирная линия) и сглаженный постоянный ток (сплошная линия). Конденсатор быстро заряжается около пика переменного постоянного тока, а затем разряжается, подавая ток на выход.

Обратите внимание, что сглаживание значительно увеличивает среднее напряжение постоянного тока почти до пикового значения. (1,4 × значение RMS). Например, выпрямляется переменный ток 6 В RMS. до полной волны постоянного тока около 4,6 В RMS (1,4 В теряется в мостовом выпрямителе), со сглаживанием этого увеличивается почти до максимального значения, что дает 1.4 × 4,6 = 6,4 В постоянного тока.

Сглаживание неидеальное из-за небольшого падения напряжения на конденсаторе при его разряде, дает небольшую пульсацию напряжения . Во многих цепях пульсация составляет 10% от напряжения питания. напряжение является удовлетворительным, и приведенное ниже уравнение дает необходимое значение для сглаживающего конденсатора. Конденсатор большего размера даст меньше пульсаций. При сглаживании полуволны постоянного тока емкость конденсатора должна быть увеличена вдвое.

Rapid Electronics: электролитические конденсаторы

Сглаживающий конденсатор, C, для пульсации 10%:

С = 5 × Io
Vs × f

где:
C = сглаживающая емкость в фарадах (Ф)
Io = выходной ток в амперах (A)
Vs = напряжение питания в вольтах (V), это пиковое значение несглаженного постоянного тока.
f = частота сети переменного тока в герцах (Гц), в Великобритании это 50 Гц



Регулятор

ИС регулятора напряжения доступны с фиксированными (обычно 5, 12 и 15 В) или переменное выходное напряжение.Они также рассчитаны на максимальный ток, который они могут пропускать. Доступны регуляторы отрицательного напряжения, в основном для использования в двойных источниках питания. Большинство регуляторов включают в себя автоматическую защиту от чрезмерного тока («защита от перегрузки»). и перегрев («тепловая защита»).

Многие из микросхем фиксированного стабилизатора напряжения имеют 3 вывода и выглядят как силовые транзисторы, например, регулятор 7805 + 5V 1A, показанный справа. В них есть отверстие для крепления при необходимости радиатор.

Rapid Electronics: регулятор 7805

Фотография регулятора напряжения © Рапид Электроникс

Стабилитрон

Для слаботочных источников питания можно сделать простой регулятор напряжения с резистором. и стабилитрон , подключенный в обратном направлении , как показано на схеме.Стабилитроны имеют номинальное напряжение пробоя Vz и максимальная мощность Pz (обычно 400 мВт или 1,3 Вт).

Резистор ограничивает ток (как светодиодный резистор). Ток через резистор постоянный, поэтому при отсутствии выходного тока весь ток течет через стабилитрон, и его номинальная мощность Pz должна быть достаточно большой, чтобы выдержать это.

Дополнительную информацию о стабилитронах см. На странице «Диоды».

Rapid Electronics: стабилитроны

стабилитрон
a = анод, k = катод

Выбор стабилитрона и резистора

Это шаги для выбора стабилитрона и резистора:

  1. Напряжение стабилитрона Vz – необходимое выходное напряжение
  2. Входное напряжение Vs должно быть на несколько вольт больше, чем Vz.
    (это необходимо для небольших колебаний Vs из-за пульсации)
  3. Максимальный ток Imax – это требуемый выходной ток плюс 10%
  4. Мощность стабилитрона Pz определяется максимальным током: Pz> Vz × Imax
  5. Сопротивление резистора : R = (Vs – Vz) / Imax
  6. Номинальная мощность резистора : P> (Vs – Vz) × Imax

В этом примере показано, как использовать эти шаги для выбора стабилитрона и резистора с подходящими значениями и номинальной мощностью.

Например

Если требуемое выходное напряжение 5 В и выходной ток 60 мА:

  1. Vz = 4,7 В (ближайшее доступное значение)
  2. Vs = 8V (на несколько вольт больше, чем Vz)
  3. Imax = 66 мА (ток плюс 10%)
  4. Pz> 4,7 В × 66 мА = 310 мВт, выберите Pz = 400 мВт
  5. R = (8 В – 4,7 В) / 66 мА = 0,05 кОм = 50,
    выбираем R = 47
  6. Номинальная мощность резистора P> (8 В – 4.7 В) × 66 мА = 218 мВт, выберите P = 0,5 Вт

Двойные расходные материалы

Для некоторых электронных схем требуется источник питания с положительным и отрицательным выходами, а также нулевое напряжение (0 В). Это называется «двойным источником питания», потому что это похоже на два обычных источника питания, соединенных вместе, как показано на схеме.

Двойные источники питания имеют три выхода, например, источник питания ± 9 В имеет выходы + 9 В, 0 В и -9 В.

Rapid Electronics: блоки питания


Следующая страница: Преобразователи | Исследование


Политика конфиденциальности и файлы cookie

Этот сайт не собирает личную информацию.Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно никому не будет передано. На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден. Рекламодателям не передается никакая личная информация. Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации.Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов. (включая этот), как объяснил Google. Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста, посетите AboutCookies.org.

electronicsclub.info © Джон Хьюс 2021 г.

Веб-сайт размещен на Tsohost

Замечания по проектированию источника питания

– MCI Transformer Corporation

Базовое руководство по применению источника питания

Используются четыре основных типа блоков питания:

  • Нерегулируемый линейный
  • Регулируемый линейный
  • Феррорезонанс
  • Режим переключения

Различия между четырьмя типами включают постоянное выходное напряжение, экономическую эффективность, размер, вес и пульсации.В этом руководстве объясняется каждый тип источника питания, описывается принцип работы и выделяются преимущества и недостатки каждого из них.

1. Нерегулируемый линейный источник питания

Нерегулируемые источники питания содержат четыре основных компонента: трансформатор, выпрямитель, конденсатор фильтра и резистор утечки.

Блок питания этого типа из-за своей простоты является наименее дорогостоящим и наиболее надежным для требований низкого энергопотребления. Недостаток в том, что выходное напряжение непостоянно.Оно будет меняться в зависимости от входного напряжения и тока нагрузки, и пульсации не подходят для электронных приложений. Пульсации можно уменьшить, заменив конденсатор фильтра на фильтр IC (индуктор-конденсатор), но стоимость этого изменения сделает использование регулируемого линейного источника питания более экономичным.

2. Регулируемый линейный источник питания

Стабилизированный линейный источник питания идентичен нерегулируемому линейному источнику питания, за исключением того, что вместо стравливающего резистора используется трехконтактный стабилизатор.

Регулируемый линейный источник питания решает все проблемы нерегулируемого источника питания, но не так эффективен, потому что трехконтактный регулятор будет рассеивать избыточную мощность в виде тепла, которое должно быть учтено в конструкции источника питания. Выходное напряжение имеет незначительные пульсации, очень маленькую регулировку нагрузки и высокую надежность, что делает его идеальным выбором для использования в маломощных электронных устройствах.

3. Источники питания феррорезонансные

Феррорезонансный источник питания очень похож на нерегулируемый источник питания, за исключением характеристик феррорезонансного трансформатора.

Феррорезонансный трансформатор будет обеспечивать постоянное выходное напряжение в широком диапазоне входного напряжения трансформатора. Проблемы с использованием феррорезонансного источника питания заключаются в том, что он очень чувствителен к незначительным изменениям в частоте сети и не может быть переключен с 50 Гц на 60 Гц, и что трансформаторы рассеивают больше тепла, чем обычные трансформаторы. Эти источники питания тяжелее и будут иметь более слышимый шум от резонанса трансформатора, чем регулируемые линейные источники питания.

4.

Импульсные источники питания

Импульсный источник питания имеет выпрямитель, конденсатор фильтра, последовательный транзистор, регулятор, трансформатор, но он более сложный, чем другие источники питания, которые мы обсуждали. Схема ниже представляет собой простую блок-схему и не отображает все компоненты источника питания.

Переменное напряжение выпрямляется до нерегулируемого постоянного напряжения с помощью последовательного транзистора и регулятора. Этот постоянный ток прерывается до постоянного высокочастотного напряжения, что позволяет резко уменьшить размер трансформатора и позволяет использовать источник питания гораздо меньшего размера.Недостатки этого типа источника питания состоят в том, что все трансформаторы должны изготавливаться по индивидуальному заказу, а сложность источника питания не подходит для низкопроизводительных или экономичных применений с низким энергопотреблением.


Выпрямительные цепи для регулируемых линейных источников питания

Из нашего предыдущего описания, регулируемый линейный источник питания является наиболее экономичной конструкцией с низким энергопотреблением, низким уровнем пульсаций и низким уровнем регулирования, который подходит для электронных приложений. В этом разделе мы объясним четыре основных используемых схемы выпрямления:

      • Полуволна
      • Полноволновый центральный отвод
      • Полноволновой мост
      • Двойной дополнительный

1. Полуволновые схемы

Так как конденсаторный входной фильтр потребляет ток из схемы выпрямления только короткими импульсами, частота импульсов вдвое меньше, чем у двухполупериодной схемы, поэтому пиковый ток этих импульсов настолько велик, что эту схему не рекомендуется использовать для Мощность постоянного тока более 1/2 Вт.

2. Полноволновые схемы с центральным ответвлением

Двухполупериодный выпрямитель одновременно использует только половину обмотки трансформатора. Номинальный вторичный ток трансформатора должен в 1,2 раза превышать постоянный ток источника питания. Напряжение вторичной обмотки трансформатора должно быть примерно в 0,8 раза больше напряжения постоянного тока нерегулируемого источника питания на каждую сторону центрального ответвления, или трансформатор должно быть в 1,6 раза больше напряжения постоянного тока с центральным ответвлением.

3.Полноволновой мост

Двухполупериодная мостовая схема выпрямления является наиболее экономичной, поскольку для нее требуется трансформатор с более низким номиналом в ВА, чем двухполупериодный выпрямитель. В двухполупериодном мосте вся вторичная обмотка трансформатора используется в каждом полупериоде, в отличие от двухполупериодного центрального отвода, который использует только половину вторичной обмотки в каждом полупериоде. Номинальный вторичный ток трансформатора должен в 1,8 раза превышать постоянный ток источника питания. Вторичное напряжение трансформатора должно быть примерно.В 8 раз больше постоянного напряжения нерегулируемого источника питания.

4. Двойной дополнительный выпрямитель

Двойной дополнительный выпрямитель используется для подачи положительного и отрицательного выходного постоянного тока с одинаковым напряжением. В большинстве случаев отрицательный ток значительно меньше, чем требуемый положительный ток, поэтому отношение напряжения и тока переменного тока к напряжению и току постоянного тока должно быть таким же, как и для двухполупериодного центрального отвода, описанного ранее.


Как выбрать трансформатор

Регулируемый линейный источник питания используется для обеспечения постоянного выходного напряжения для различных нагрузок, а также для изменения входного напряжения. Все наши расчеты для определения правильного трансформатора предполагают, что входное напряжение может варьироваться от 95 до 130 В и не влияет на выход нашего источника питания.

Формула, используемая для определения напряжения переменного тока, требуемого от трансформатора, выглядит следующим образом:

      • Vdc = Выходное напряжение
      • Vreg = Падение напряжения регулятора = 3v
      • Vrec = Падение напряжения на диодах = 1.25 В
      • Врип = пульсация напряжения = 10% от постоянного тока
      • Vном = 115 В
      • Vlowline = 95 В
      • .9 = КПД выпрямителя

Мы суммировали все расчеты для трех основных схем выпрямления в таблице ниже:

Цепь выпрямления RMS НАПРЯЖЕНИЕ (ВОЛЬТ) RMS ТОК (AMPS)
Полноволновой центральный метчик В переменного тока C. Т. = 2,092 x Vdc ​​+ 8,08 IAC = IDC x 1,2
Полноволновой мост В переменного тока = 1,046 x В постоянного тока +4,04 IAC = IDC x 1,8
Двойной дополнительный В переменного тока CT = 2,092 X В постоянного тока = 8,08 IAC = IDC x 1,8

Существуют регуляторы с малыми потерями, которые имеют падение 0,5 В вместо 3 В, но в настоящее время они не рассматриваются из-за доступности.

ПРИМЕРЫ:

, пример № 1:

Регулируемый линейный источник питания необходим для 5 В постоянного тока на 1 АЦП с первичной обмоткой 115 В или 230 В, и вы не знаете, должен ли он быть двухполупериодным с центральным ответвлением или двухполупериодным мостом.

Полноволновый центральный метчик
В перем. Тока Т. Т. = 2,092 x В пост. Тока + 8,08 Iac = Idc x 1,2
В пер.т. = 2,092 x 5 + 8,08 Iac + 1 х 1,2
Vac C.T. = 18,54 C.T. Iac = 1,2
VA = 18,54 x 1,2 = 22,5

Возможные варианты трансформаторов:
4-02-6020 Крепление для ПК UL
4-05-4020 Низкопрофильный
4-07-6020 Монтаж на шасси UL
4-42-3020 Крепление для ПК VDE
4-44-6020 Крепление для ПК VDE
4-47-3020 Крепление на шасси VDE
4-49-4020 Крепление на шасси VDE

Полноволновой мост
В пер. = 1.046 x Vdc ​​+ 5,23 Iac = Idc x 1,8
В переменного тока = 1,046 x В постоянного тока + 5,23 Iac = 1 x 1,8
В переменного тока = 10,46 Iac = 1,8
VA = 10,46x 1,8 = 18,83

Возможные варианты трансформатора:
4-02-6010 Крепление для ПК UL
4-05-4010 Низкопрофильный
4-07-6010 Монтаж на шасси UL
4-42-3010 Крепление для ПК VDE
4-47-6010 Крепление для ПК VDE
4-47-3010 Крепление на шасси VDE
4-49-4010 Крепление на шасси VDE

, пример № 2:

Стабилизированный линейный источник питания необходим для 12 В постоянного тока при 250 мА постоянного тока с одним первичным напряжением 115 В и двухполупериодный мост – это схемы выпрямления, которые вы будете использовать.

Полноволновой мост
В переменного тока = 1,046 x В постоянного тока + 4,04 Iac = Idc x 1,8
В перем. Тока = 1,046 x 12 + 4,04 Iac = 0,25 x 1,8
Vac = 16,59 Iac = .45
VA = 16,59 x 0,45 = 7,47

Возможные варианты трансформатора:
4-01-5020 Крепление для ПК UL
4-03-4020 Крепление для ПК UL
4-05-3020 UL низкопрофильный кронштейн для ПК
4-06-5020 Монтаж на шасси UL
4-41-2020 Крепление для ПК VDE
4-44-5020 Крепление для ПК VDE
4-46-2020 Крепление на шасси VDE

При использовании источников питания убедитесь, что выбранный регулятор имеет теплоотвод, достаточный для рассеивания мощности при высокой полной нагрузке линии.

, пример № 3:

Регулируемый линейный источник питания необходим для напряжения ± 15 В постоянного тока при 50 мА с первичной обмоткой 115 В.

Двойной дополнительный:
В переменного тока CT = 2,092 x В постоянного тока x 8,08 Iac = Idc x 1,8
В перем. Тока CT = 2,092 x 15 + 8,08 Iac = 0,050 x 1,8
В перем. Тока CT = 39,46 Iac = 0,090
ВА = 39.46 х 0,090 = 3,55

Возможные варианты трансформатора:
4-01-4036 Крепление для ПК UL
4-03-3040 Крепление для ПК UL
4-05-2040 UL низкопрофильный кронштейн для ПК
4-06-4036 Монтаж на шасси UL
4-44-4036 Крепление для ПК VDE

Давайте теперь посмотрим, как регулятор будет рассеивать тепло в худших условиях при высоком напряжении линии (= 130 В) и полной нагрузке.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *