Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Схема профессионального лабораторного БП | 2 Схемы

Очень популярная схема блока питания для лабораторного источника питания, который может обеспечить питание 0-30 В вызвала такой интерес, что несколько китайских поставщиков выпустили набор со всеми деталями, включая печатную плату, по вполне привлекательной цене около 10 долларов. Вот оригинальная схема этого регулируемого БП:

Схема конечно хороша, но слишком устарела, поэтому проведена её модернизация: добавлен ЖК-дисплей, изменен механизм настройки тока, использующий дисплей, так что можно установить режим ограничения тока перед подключением проверяемого устройства. Собраны сразу два стабилизатора чтоб при надобности соединить их параллельно, чтобы получить больший ток, или последовательно, чтобы получить регулируемое двойное напряжение +0-30 В / масса / -0-30 В или напряжение 0-60 В. Также разработана простая система двойного слежения, когда один источник контролирует другой.

Список деталей схемы поставляемый с комплектом, приведен в конце статьи, со всеми изменениями и дополнениями. Из этого списка не будем использовать D7, а D8 — стабилитрон 1N4733A 5V1, требующий смещения 60 мА. Заменим этот тип стабилитроном BZX55C5V6 или BZX79C5V6, для обоих требуется ток смещения всего 5 мА. ОУ U1 установит опорное напряжение в два раза больше напряжения стабилитрона — 11,2 В. При необходимом смещении 5 мА для D8, R4 должен быть 1K, а не 4K7.

Поскольку надо ограничить максимальный ток до 1 или 1,5 А, необходимо пересчитать R18. Этот резистор в любом случае имел неправильное значение (56К) в оригинальной конструкции.

Также необходимо поставить цифровой дисплей напряжения и тока. Их диапазон рабочего напряжения где-то между 3,5 и 30 В постоянного тока. Обратите внимание, что эти дисплеи должны быть гальванически развязаны от источника питания во избежание лишнего шума. Альтернативой является хорошая фильтрация в цепи напряжения питания, чтобы избежать этого дела.

Эти дисплеи способны работать с большими токами — до 10 А с внутренним шунтом. Красный провод подключен к выходу блока питания и является входом для измерения напряжения. Это устройство имеет внутренний шунтирующий резистор, который подключен между желтым и черным проводом. Чтобы было проще, подключим черный провод к выходу минуса блока питания (4), а желтый провод станет новым выходом минуса.

На задней панели индикатора есть два подстроечных резистора, которые можно использовать для регулировки (подстройки) напряжения и тока. Чтобы точно установить напряжение питания блока питания, используйте эталонный прибор.

  1. Есть еще два дополнения. Одним из них является добавление светодиода, показывающего что устройство имеет основное питание. Этот зеленый светодиод подключен к 12 В через резистор 4K7 к земле.
  2. Вторым дополнением является еще один конденсатор 3300 мкФ / 50 В (C12), параллельный C1, чтобы обеспечить большую стабильность исходного питания и уменьшить пульсации при более высоких токах.

Конечно использован большой радиатор, на него размещена LM7812, Q2 и Q4. Существует достаточно места для добавления другого выходного транзистора, параллельного Q4, если надо увеличить ток. С этим радиатором не понадобится вентилятор (с токами ниже 1,5 А).

Можете использовать трансформаторы разных размеров и использовать их для нескольких стабилизаторов (при двухполярной сборке БП).

После всех модификаций и экспериментов с источником питания, возникла необходимость добавить способ отображения настройки ограничения тока, поэтому я добавлена небольшая цепь к БП, чтобы можно было установить постоянный ток / ограничение тока.

Вот улучшенная схема:


А это оригинальный список деталей, поставляемых с комплектом, но с изменениями и дополнениями:

R1 = 2K2 1W Заменено на версию 2W
R2 = 82R Заменен на версию 2W
R3 = 220R Не требуется (заменен на LM337)
R4 = 4K7 Значение изменено на 1K
R5, R6, R13, R20, R21 = 10K R13 не требуется
R7 = 0,47R 5 Вт
R8, R11 = 27K
R9, R19 = 2K2
R10 = 270K Значение изменено на 1K
R12, R18 = 56K R18 см. Текст
R14 = 1K5 Не требуется
R15, R16 = 1K
R17 = 33R Значение изменено на 68R
R22 = 3K9 Значение изменено на 1K5
RV1 = 100K 10 подстроечник заменен на 5K 10-ти оборотный подстроечник

P1, P2 = 10K линейный P1 заменен на 10-ти оборотный подстроечник

C1 = 3300 мкФ / 50 В
C2, C3 47 мкФ / 50 В
C4 = 100 нФ
C5 = 220 нФ
C6 = 100 пФ
C7 = 10 мкФ / 50 В
C8 = 330 пФ
C9 = 100 пФ

D1, D2, D3, D4 = 1N5408
D5, D6, D9, D10 = 1N4148
D7, D8 = 1N4733A, стабилитрон 5V1, D8 = BCX55C5V6, D7 не требуется
D11 = 1N4004

Q1 = 2SD9014
Q2 = 2SD882
Q3 = 2SD9015
Q4 = 2SD1047 Не требуется

U1, U2, U3 = TL081 Заменяется на 3x TLE2141
U4 = LM7824 Заменено на LM7812
D12 = красный светодиод

Дополнительные детали:

R23, R27 = 4K7
R24 = 1K
R25 = 240R
R26 = 10R
RV2 = 2K
RV3 = 200K или 250K (необязательно)
U5 = TLE 2141
U6 = LM337
C 11 = 47 мкФ / 25 В
C12 = 3300 мкФ / 50 В
C13 = 22 мкФ / 10 В
D13 = 10 В 1 Вт
D14 = зеленый светодиод
D15 = красный светодиод
Индикатор вольт / ампер
S1 двухпозиционный переключатель
S2 кнопка

Испытания блока питания

Как оказалось, большая часть измеренного шума исходит от дисплея V/A метр.

Импульсный регулятор, который стоит в этом дисплее, подает много шума обратно в источник питания. Для решения этих проблем вернемся к использованию LM7824, который был частью набора, и применим его вместо D10, стабилитрона 10 В, который использовался для создания питания для U3, U5 и Q3.

Чтобы противодействовать просачиванию шума с дисплея, используем D10 для уменьшения питания и для питания дисплея.

Также переместим токовый шунт дисплея с выходной клеммы за пределы токовой петли обратной связи. Это уменьшило еще немного шума и сделало настройку более точной. Поскольку шунт находился внутри контура обратной связи, напряжение на шунте при более высоких токах создавало ошибку. Небольшое, потому что шунт всего 25 мОм, но все же создавало.

Чтобы максимально устранить большие токи на печатной плате, подключим коллекторы Q4 и Q3 непосредственно к точке, где объединяются катоды D1 и D2 и конденсаторы фильтра C1 и C2.

Ещё установим дополнительные подстроечники, чтобы установить максимальное выходное напряжение (RV2) и максимальный выходной ток (RV3). Важно установить максимальный предел тока. Конденсатор C16 используется тоже для устранения шума.

Поскольку светодиоды D14 и D15 теперь подключены к шинам 24 В, их резисторы ограничения тока (R27 и R23) должны удвоиться в значении.

Наконец, выходной конденсатор C7 был увеличен с 10 мкФ до 470 мкФ. Вот окончательная схема с последними изменениями:

Время нарастания питания теперь составляет около 5 мсек, а время спада составляет чуть более 2 мсек при максимальном напряжении и токе, измеренных с помощью динамической электронной нагрузки.

Со всеми этими модификациями выходной шум теперь составляет 18 мВ по всему спектру напряжения и тока и, что более важно, остается на этом уровне в режиме CC / CL.

И еще одно дополнение: установлен параллельный транзистор (2SD1047) и модифицирован источник питания, чтобы он мог выдерживать больший ток. При более высоких токах также понадобится вентилятор для охлаждения, так что это тоже было добавлено в основную схему.

Трансформатор, который в итоге установлен, это 15-0-15 В при 3,5 А. Выбран диодный мост с напряжением 600 В на 10 A, который можно установить на радиатор охлаждения. Немного излишне, но это из-за пусковых токов к конденсаторам основного фильтра. Два 3300 мкФ не подходят для таких токов, поэтому установлены 2 х 10 000 мкФ на напряжение 63 В.

Корпус укомплектован главным выключателем, предохранителем и индикатором питания. Также подается с трансформатора AC 15-0-15 на гнезда на передней панели, чтобы использовать переменку для различных целей.

Позже удалось найти простой, но эффективный способ объединить два стабилизатора и создать источник питания с напряжением +30 0 -30 В или источник +60 В.

Принцип прост: если вы подключите выход 0 В одного источника питания к выходу +0-30 В второго, то фактически можете создать источник питания +30 0 -30 В или 0-60 В. Нужно отрегулировать оба измерителя напряжения для установки таких значений, но если хотите измерить цепь с переменным напряжением, нужен механизм отслеживания.

Хитрость заключается в том, чтобы сделать настройку напряжения одного источника в зависимости от настройки другого. После экспериментов с разными способами в итоге остановились на следующей схеме:

Переключатель R41 должен быть установлен так, чтобы настройка напряжения на главном устройстве совпадала с выходным напряжением на ведомом устройстве. Сигнал идущий к выключателю будет близко к опорному напряжению 11V2.

Слева направо: Q4, Q3 и LM7812. Q4 и Q3 изолированы, радиатор LM заземлен, поэтому не нуждается в нем.

Наилучшая точность отслеживания может быть достигнута, если оба источника питания установлены на 30 В в режиме +/-, как на схеме. Затем можно переключить переключатель в режим слежения и настраивать R41 до тех пор, пока ведомый не покажет 30 В. Вы заметите, что отслеживание является довольно точным (около 1%) до тех пор, пока не опуститесь ниже 5 В, затем оно все больше рассинхронизируется до примерно 200 мВ при 1 В. Это должно быть связано с разницей в линейности усиления обоих операционных усилителей U2. В принципе эта точность достаточно хороша.

Также добавлен R43 в качестве меры безопасности, чтобы убедиться что ведомое питание не будет иметь неопределенного выхода, если связь между чувствительным резистором в ведущем устройстве не подключена к ведомому или когда переключатель перемещен из одного положения в другое.

Учтите, что нужно установить оба предела тока независимо для обоих источников, но если стабилизатор «мастер» переходит в режим ограничения тока, ведомый будет следовать его примеру независимо от своей настройки.


Лабораторный блок питания 0-30В 3А

Вниманию читателя представлена схема полноценного лабораторного блока питания с регулировкой выходного напряжения и тока, а также с защитой от короткого замыкания на выходе. Данный лабораторный блок может полезно служить в качестве источника питания для запуска, проверки и ремонта различных устройств или для зарядки различных аккумуляторов. Лабораторный блок может обеспечить выходным током до 3А и напряжением до 30В.

Технические характеристики

Напряжение питания (AC) ….. ~12-24В

Собственный ток потребления ….. менее 10мА

Выходной ток ….. 10мА-3А

Схема лабораторного блока питания

Принцип работы схемы

Питание схемы двухполярное. Основное плечо (положительное) выпрямляется диодным мостом VD2, второе плечо (отрицательное), которым питаются ОУ U1 и U3, выпрямляется диодами VD1 и VD4. Также отрицательное плечо имеет стабилизацию -5.6В, которая обеспечивается стабилитроном VD5. Служит отрицательное плечо для более точной работы при низких входных напряжениях операционных усилителей (меньше 1В). Если на входе ОУ потенциал 0.2В относительно GND, то относительно отрицательной шины он будет уже 5.8В, что обеспечит меньшую погрешность и меньшие пульсации при усилении.

Источник опорного напряжения выполнен на операционном усилителе U2. За счет положительной обратной связи, организованной резистором R12, ОУ самовозбуждается. На его выходе начинает происходить рост напряжения до тех пор, пока на инвертирующем и неинвертирующем входах уровень сигналов не сравняется. Это произойдет тогда, когда на выходе U2 напряжение достигнет 11.2В. На входах в этот момент, за счет резистивных делителей, будет по 5.6В. Потенциал 11.2В будет опорным и стабильным (неизменным) при изменении входного напряжения.

Регулировка напряжения лабораторного блока осуществляется с помощью переменного резистора RV2, который включен как потенциометр. Изменяя положение его ползунка, происходит деление опорного потенциала на неинвертирующем входе U3. На инвертирующий вход U3 через делитель R21R15 подается напряжение с выхода лабораторного блока питания. Изменяя опорное напряжение, будет происходить изменение выходного напряжения U3, которое поступает на эмиттерный повторитель. Эмиттерный повторитель состоит из транзисторов VT3 и VT4 включенных по схеме Дарлингтона, для увеличения коэффициента усиления. Транзистор Дарлингтона регулирует выходное напряжение лабораторного блока питания.

Ограничение по току лабораторного блока питания осуществляется потенциометром RV1. Потенциометр задает уровень опорного потенциала на неинвертирующем входе U1. На инвертирующий вход подается потенциал с датчика тока, в роли которого выступает шунт R20R23. Операционный усилитель U1 включен как компаратор. Когда на датчике тока а, следовательно, и на инвертирующем входе U1, напряжение станет больше чем на неинвертирующем входе, тогда на выходе U1 появиться отрицательный потенциал, который через диод VD7 поступит на 3 вывод U3, изменив его опорный потенциал. Таким образом, ограничение тока лабораторного блока питания обеспечивается через регулировку напряжения. Также отрицательный потенциал поступит на базу VT1 через делитель R4R5 и транзистор откроется, потечет коллекторный ток через резистор R3 и светодиод VD3, который засветится, обозначив включение режима ограничения тока.

 

 

Защита от КЗ срабатывает через ограничение по току. Резистор R11, включенный в делитель напряжения R8, RV1 и R11, не позволит задать большой порог срабатывания (более 3А) компаратора U1 даже при максимальном сопротивлении потенциометра RV1. Я установил шунт R20R23 общим сопротивлением 0.75Ома, поэтому ток КЗ у меня ограничивается в пределе 2.8 Ампер. Для уменьшения тока короткого замыкания нужно увеличить сопротивление R20R23.

Подстроечным резистором RV3 выставляется ноль на выходе лабораторного блока.

Компоненты лабораторного блока питания

Все номиналы компонентов указаны на схеме. Операционные усилители можно заменить на TL081, LM741.

Элементы VT3, VT4 и VD2 необходимо установить на радиатор. Если корпус ЛБП пластиковый, то изолировать элементы от теплоотвода нет необходимости. Если корпус металлический, то изолировать обязательно, так как коллекторы, а значит и фланцы VT3 и VT4 соединены с положительной шиной питания.

Площадь поверхности теплоотвода будет зависеть от выходного тока, при котором будет эксплуатироваться лабораторный блок питания. Так при эксплуатации его на токах до 3А необходим радиатор с площадью поверхности 600см2. Также, чем больше разность между входным и выходным напряжениями, тем больше тепла будет рассеиваться на силовом транзисторе.

Выбор трансформатора

К выбору трансформатора для этого лабораторного блока нужно отнестись ответственно.

Напряжение вторичной обмотки не должно превышать 24В переменного тока. Связано это с максимальным напряжением питания операционных усилителей TL071 (TL081), которое находится в пределах ±18В (для однополярного напряжения +36В). Выпрямленное напряжение на конденсаторе C3 (без нагрузки) будет в 1.41 раз больше переменного. Так для трансформатора с вторичной обмоткой 24В выпрямленное напряжение будет приблизительно +34В. Также по схеме видно, что минусовые выводы питания операционных усилителей U1 и U3 соединены не с общей шиной, а с отрицательным плечом -5.6В, которое организовано элементами VD1, VD4, R6, C4 и VD5. Таким образом, питание U1 и U3 осуществляется от +39.5В относительно отрицательного плеча, что уже на пределе возможностей TL071 и TL081. При нагрузке блока питания напряжение просядет, но все же…

Поэтому, выходное напряжение трансформатора для данного лабораторного блока ни в коем случае не должно превышать 24В переменного тока, входное не должно быть ниже 12В, так как опорный потенциал на выходе U2 равен удвоенному напряжению стабилитрона VD6 (5. 6В), то есть 11.2 Вольта.

Выходной ток трансформатора должен соответствовать выходной нагрузке лабораторного блока. Если он будет эксплуатироваться на токах до 3А, то и ток вторичной обмотки должен быть не ниже 3А.

Печатная плата лабораторного блока питания СКАЧАТЬ

Самодельный лабораторный блок питания: vladikoms — LiveJournal

Когда то у меня был советский источник питания Б5-47, он очень громко и противно пищал, грелся, периодически из него шел дым. Таким образом пользование сей девайсом более 5 минут причиняло просто невыносимые моральные страдания. Явно он был неисправен. Вскрытие показало что лучше его сразу выбросить и забыть. К тому же его интерфейс управления мне никогда не нравился, юзабельность тоже оставляла желать лучшего. Понятно, что без нормального БП жизнь скучна, решил быстренько сделать БП из того что было под рукой. В итоге изготовление данной конструкции по разным причинам затянулось аж на 2 года. Собственно вот результат:


Требования были следующие: регулируемое выходное напряжение до 30 В с регулируемым токоограничением до 5 А. Разумеется должна применяться цифровая индикация. Дизайн должен напоминать MASTECH HY3005D и им подобные. Единственное - мне никогда не нравилось что первый прибор показывает ток. Ну неправильно это - напряжение всегда первично, соответственно первый прибор должен показывать именно напряжение.

Первоначально проектировал схему на базе линейного стабилизатора К142ЕН2А, но в итоге отказался от этой идеи - низкий КПД, регулирующий силовой транзистор сильно грелся даже с учетом того что был предусмотрен переключатель отпаек на вторичной стороне трансформатора. Да и вообще всё как-то криво работало. Пришлось выпилить.

Второй вариант схемы разработал на базе легендарного ШИМ-контроллера TL494, который в разных вариациях встречается во многих компьютерных блоках питания. На этот раз всё получилось как надо.

Вкратце о конструкции:

Принципиальная схема (кликабельно)

Как уже говорил - девайс собрал из запчастей, большинство которых были в радиусе 5 метров от меня.

Понижающий трансформатор нашелся под столом, марки я его не знаю. Напряжение на вторичке около 40 В.
D1 - TL494, VD1 - диод шоттки и тороидальный дроссель L1 выпаял из неисправного компьютерного блока питания: диод шоттки используется в схеме выпрямления, он установлен на радиаторе возле импульсного трансформатора, тороидальный дроссель расположен рядом с ним.
LM358 - весьма хороший и распространенный операционный усилитель. Продаётся почти на каждом углу. Рекомендован к приобретению.
Шунт R12 - взял из какого-то старого связисткого оборудования: представляет собой 3 толстых изогнутых проволочки.

Резисторы R9, R10 используются для регулирования выходного напряжения (грубо, точно). Резисторы R3, R4 используются для регулирования токоограничения (грубо, точно).
При наладке БП подстроечным резистором R15 регулируется порог переключения светодиодной сигнализации. Еще возникли проблемы с интегральным стабилизатором 7805 - при входном напряжении около 40 В он начинал ужасно глючить - просаживал выходное напряжение, решил проблему установив по входу 1 Вт гасящий резистор R13.

Сам корпус взят от древнего самопишущего регистратора. Компоновка получилась следующей - в середине корпуса установлен силовой трансформатор, который вошел туда как родной, видимо они были созданы друг для друга. В передней части БП расположена электронная схема управления, органы управления и сигнализации. В задней части корпуса расположена вся силовая электроника. Таким образом трансформатор как бы делит БП на 2 части - слаботочную и силовую.

Передняя часть корпуса с откинутой лицевой крышкой. Цифровые измерительные приборы приехали из Китая, они заводского производства. Электронная схема управления состоит из 2 плат: плата регулятора напряжения - TL494 c обвязкой, и плата сигнализации - включает в себя микросхемы D3,D4. Почему не сделал на одной плате? Просто сигнализацию я делал несколько позже чем регулятор, и отдельно доводил её "до ума". Там тоже были свои заморочки.

Задняя часть корпуса. На общем радиаторе установлены диодный мост KBPC 3510, силовой транзистор КТ827А, дроссель L1, шунт R12. Всё это дело изнутри обдувается 12 сантиметровым вентилятором. В задней части корпуса установлены также предохранители, сглаживающие конденсаторы C1, C4 и маленький вспомогательный импульсный блок питания для работы вентилятора и цифровых измерительных приборов.

Конечно, можно было бы купить фирменный БП и не городить огород. Но иногда хочется самому поизобретать велосипед

Если кто-то задумает повторить конструкцию вот здесь выложил принципиальную схему в высоком разрешении и чертежи печатных плат в формате Sprint Layout.

Обновление 09.01.2019

По прошествии времени пользователи в комментариях поделились своими модификациями блоков питания. Рассмотрим подробнее предложенные варианты. Обсуждение всех конструкций по-прежнему доступно в комментариях

Модификация № 1

Предложена acxat_smr

Принципиальная схема

Драйвер полевика (точнее, двух параллельно - выравниванием токов занимаются сами полевики) запитан от отдельного источника 15в. У себя взял промагрегат 9-36в/15в TEN 12-2413. От него же запитаны кулеры.
TL494 запитана от отдельного источника 24 в.
Потенциометр вольтажа любой, замер тока с шунта амперметра. Трансформатор выдает 34 в, выпрямленного около 45.
Проблема мощности упиралась в дросселе. Если 5-амперник нормально шел, то 20 помучал.
Практическим путем нашел вариант два параллельно на кольцах от компового. 23 витка проводом 1,15мм.

Внешний вид конструкции

Модификация № 2

Предложена rond_60

Принципиальная схема

Недавно натолкнулся на эту статью про ЛБП на TL494. Загорелся желанием собрать БП по этой схеме, тем более уже давно валялся трансформатор от польского блока питания на 24в и 4а. Вторичка выдает 34в переменки, после моста с кондером 10000х63в - 42в. Собрал навесным монтажом по этой схеме, включил и сразу дым из 494-й. Все проверил, заменил микросхему, включаю - на холостом работает, на выходе напряжение пытается регулироваться, прикоснулся к 494 - горячая! Добавил номинал 4. 7к резистору R1 - блок работает, но стоило подключить лампочку 24в 21вт, как взорвалась микросхема в районе 9, 10 ножки. Отмотал с вторичной обмотки транс-ра несколько витков (снизил напряжение на 4 вольта) и все равно горят микросхемы. Питание на 8,11,12 ноги подавал 12в с другого БП, мотал дроссель разным по диаметру проводом и количеством витков - толку нет (сжег 6 микрух). У меня есть кой - какой опыт по переделке компьютерных блоков в зарядные устройства и регулируемые блоки питания на основе TL494 и ее аналогах. Начал собирать обвязку ШИМа по схемам к комповым БП. Изменил управление силовым транзистором, подал питание на ШИМ от отдельного источника на 12в (переделал зарядку от сотового телефона) и все - блок заработал! Пару дней настраивал на регулировки и свист дросселя (оссцила нет) теперь надо отлутить плату управления и можно собирать в корпус.

Сегодня настраивал свой БП. Спасибо большое shc68 за подсказку проверять пульсации на выходе динамиком если нет осциллографа. При малой нагрузке (лампочка 12в, 21вт) из динамика слышался гул и вой когда крутил регулятор тока. Устранил это безобразие установкой дополнительных конденсаторов (на схеме обведено красным цветом).
Как рекомендовал shc68 конденсатор С15 действительно жизненно важный. Еще с помощью динамика определил бракованный потенциометр на регулировку тока. При его вращении из динамика слышался шорох и треск. После его замены и установки доп. конденсаторов из динамика тишина (чуть слышное шипение) при разной нагрузке на выходе БП.
Делал тест на нагрев деталей блока. При такой нагрузке в течении 1.5 часов только транзистор грелся (трогал пальцем его корпус), а радиатор, где он установлен, чуть теплый (обдувается вентилятором). Дроссель - холодный, трансформатор тоже.

Внешний вид конструкции

Модификация № 3

Предложена andrej_l

За основу была взята схема с полевиком https://ic.pics.livejournal.com/rond_60/78751049/3328/3328_original.jpg
При отладке появились проблемы с управлением полевика через трансформатор. На небольших токах нагрузки он работал, при увеличении более 2 ампер происходил срыв и падение тока (при скважности ШИМ > 30%). Пришлось убрать трансформатор и вместо него поставить оптодрайвер ACPL3180 с питанием от отдельной обмотки трансформатора.
Сделал 2 независимых канала с регулировкой напряжения до 30V и ограничения тока до 10A. Второй канал запустился сразу, только пришлось подстроить максимальные значения напряжения и тока. Регулировочные резисторы - 10 оборотные
https://ru.aliexpress.com/item/Free-Shipping-3590S-2-103L-3590S-10K-ohm-Precision-Multiturn-Potentiometer-10-Ring-Adjustable-Resistor/32673624883.html?spm=a2g0s.11045068.rcmd404.3.de3456a4CSwuV3&pvid=b572f0cb-2d84-4353-a657-a28824b99672&gps-id=detail404&scm=1007.16891.96945.0&scm-url=1007.16891.96945.0&scm_id=1007.16891.96945.0
В качестве V-A метра применён китайский модуль
https://ru.aliexpress.com/item/DC-100-10A-50A-100A/32834619911.html?spm=a2g0s.9042311.0.0.466b33edLWGUwZ с доработкой, достигнута точность показаний 2% при больших токах и 10 мА при токах до 1А.
Радиатор на транзисторе и диоде один от компьютерного блока питания. При нагрузке на лампу 15V 150W он нагревается до 80 градусов (больше греется диод). Настроил включение вентилятора охлаждения на 50 град. (один на 2 канала)
Окончательная схема одного канала

Rшунт 0,0015 Ом - Это встроенный шунт прибора, к нему добавляются сопротивление проводов от индикатора до клемм XS104 и "-", при большом токе они оказывают значительное влияние. Провод 1,5 кв.мм
Настройка:
1 Запускаем задающий генератор на TL494 и драйвер с отключенным затвором VT101. На выходе драйвера будет ШИМ около 90%. Настраиваем частоту TL в пределах 80 - 100 кГц подбирая R107
2 Подключаем затвор транзистора (для подстраховки питание +45 подаём через токоограничивающий балласт, я брал 2 лампы 24V 150W последовательно) и смотрим выход БП. Подключаем небольшую нагрузку (я брал 100 Ом). Если напряжение на выходе регулируется то устанавливаем максимальное значение выхода с помощью R122.
3 Убираем токоограничивающий балласт, нагружаем выход сильнотоковой нагрузкой (я брал лампу 15V 150W) и настраиваем максимальный ток в нагрузке: R106 постепенно выводим в нижнее по схеме положение, подбираем R104 и R105 добиваясь срабатывания защиты по току (у меня ограничение по току 10А). При сработке токовой защиты регулировка напряжения с помощью R101 в большую сторону не приводит к его росту на выходе.
4 Узел индикации на операционнике и светодиодах не нуждается в настройке (его единственный недостаток - небольшая подсветка красного светодиода когда горит зелёный, можно исправить включив последовательно с красным обычный диод.
5 настраиваем Р101 на нужную температуру срабатывания вентилятора нагрузив блок питания на приличную нагрузку измеряя температуру диода и транзистора на радиаторе.

Внешний вид:

Осциллограммы


Простой лабораторный блок питания - Блоки питания - Источники питания

Сергей Никитин

Описанием этого простого лабораторного блока питания, я открываю цикл статей, в которых познакомлю Вас с простыми и надёжными в работе разработками (в основном различных источников питания и зарядных устройств), которые приходилось собирать по мере необходимости из подручных средств.
Для всех этих конструкций в основном использовались детали и части от списанной с эксплуатации старой оргтехники.

И так, понадобился как-то срочно блок питания с регулировкой выходного напряжения в пределах 30-40 вольт и током нагрузки в районе 5-ти ампер.

В наличии имелся трансформатор от бесперебойника UPS-500, в котором при соединении вторичных обмоток последовательно, получалось около 30-33 Вольт переменного напряжения. Это меня как раз устраивало, но осталось решить, по какой схеме собирать блок питания.

Если делать блок питания по классической схеме, то вся лишняя мощность при низком выходном напряжении будет выделяться на регулирующем транзисторе. Это мне не подходило, да и делать блок питания по предлагаемым схемам как то не захотелось, и ещё нужно было-бы для него искать детали.
По этому разработал схему под те детали, какие на данный момент у меня были в наличии.

За основу схемы взял ключевой стабилизатор, чтобы на греть в пустую окружающее пространство выделяемой мощностью на регулирующем транзисторе.
Здесь нет ШИМ-регулирования и частота включения ключевого транзистора, зависит только от тока нагрузки. Без нагрузки частота включения в районе одного герца и менее, зависит от индуктивности дросселя и ёмкости конденсатора С5. Включение слышно по небольшому циканию дросселя.

Транзисторы MJ15004 были в огромном количестве от ранее разобранных бесперебойников, поэтому решил поставить их на выходные. Для надёжности поставил два в параллель, хотя и один вполне справляется со своей задачей.
Вместо них можно поставить любые мощные p-n-p транзисторы, например КТ-818, КТ-825.

Дроссель L1 можно намотать на обычном Ш-образном (ШЛ) магнитопроводе, его индуктивность особо не критична, но желательно, чтобы подходила ближе к нескольким миллигенри.
Берётся любой подходящий сердечник, Ш, ШЛ, с сечением желательно не меньше 3 см,. Вполне подойдут сердечники от выходных транформаторов ламповых приёмников, телевизоров, выходные трансформаторы кадровых развёрток телевизоров и т.д. Например стандартный размер Ш, ШЛ-16х24.
Далее берётся медный провод, диаметром 1,0 - 1,5 мм и мотается до заполнения окна сердечника полностью.
У меня дроссель намотан на железе от трансформатора ТВК-90, проводом 1,5 мм до заполнения окна.
Магнитопровод, конечно собираем с зазором 0,2-0,5мм.(2 - 5 слоёв обычной писчей бумаги).

Единственный минус этого блока питания, под большой нагрузкой дроссель у меня жужжит, и этот звук меняется от величины нагрузки, что слышно и немного достаёт. Поэтому наверно нужно дроссель хорошо пропитывать, а может ещё лучше - залить полностью в каком нибудь подходящем корпусе эпоксидкой, чтобы уменьшить звук "цикания" .

Транзисторы я установил на небольшие алюминиевые пластины, и на всякий случай поставил внутрь ещё и вентилятор для их обдува.

Вместо VD1 можно ставить любые быстрые диоды на соответствующее напряжение и ток, у меня просто в наличии много диодов КД213, поэтому я их в таких местах в основном везде и ставлю. Они достаточно мощные (10А) и напряжение 100В, что вполне достаточно.

На мой дизайн блока питания особо внимание не останавливайте, задача стояла не та. Нужно было сделать быстро, и работоспособно. Сделал временно в таком корпусе и в таком оформлении, и пока это "временно" уже довольно долго работает.
Можно в схему ещё добавить амперметр для удобства. Но это дело личное. Я поставил одну головку для измерения напряжения и тока, шунт для амперметра сделал из толстого монтажного провода (на фотографиях видно, намотан на проволочном резисторе) и поставил переключатель "Напряжение" - "Ток". На схеме это просто не показал.

 

Набор для сборки линейного регулируемого блока питания 35 Вольт 5 Ампер. Обзор комплекта для сборки блока питания, схема, тест

Честно говоря заказал я данный набор скорее по остаточному принципу, добить посылку, но в итоге оказалось что он может быть весьма полезен, особенно для начинающих радиолюбителей. Некоторое время назад я делал обзор простого регулируемого блока питания и как выяснилось, он оказался полезным, а теперь представьте что это примерно такой же БП но:
На большее напряжение
На больший ток
С переключением обмоток трансформатора
С управлением вентилятором

Интересно? Тогда думаю не прогадаете.

Начну я сегодняшний обзор с того, что расскажу сначала о продавце, а точнее о том, что случайно выяснилось что это уже четвертый обзор его товаров, предыдущие думаю также запомнились и в них были описаны:
1. LCR-метр
2. Простой осциллограф
3. Электронная нагрузка

Собственно потому могу посоветовать заказывать у этого продавца сразу несколько товаров, особенно выгодна комбинация нагрузка + БП.

Приходит от посредника это все в одном пакете, судя по информации от него же весит комплект 175 грамм, для покупок с Тао вес имеет значение.

В итоге вы должны получить печатную плату и большой пакет с деталями, коробок в комплект не входит и приведен для понимания размера 🙂

Как и в случае с электронной нагрузкой схема в комплект не входит, вся необходимая для сборки информация нанесена на плату в виде шелкографии. Здесь указаны номиналы каждого компонента, потому проблем со сборкой быть не должно.

Монтаж полностью односторонний, SMD компоненты отсутствуют, что на мой взгляд может быть важно для начинающего радиолюбителя.

Качество шелкографии очень хорошее, печать четкая, все отлично видно.

А вот трассировка не очень оптимальна, на торец платы вынесены места под силовые транзисторы и там же расположен разъем подключения трансформатора, потому что-то одно придется подключать проводами в плату, впрочем к этому я еще вернусь.

Существует четыре варианта комплектации лота:
1. Полный комплект, детали плюс плата, мой вариант, цена около $8.64
2. Все то же самое, но без пары выходных транзисторов, цена около $7.76
3. Все компоненты, но без печатной платы, цена около $6.73
4. Плата без компонентов, цена около $1.9 доллара.

Так как компонентов довольно много, то я бы рекомендовал первый вариант, но так как компоненты не все хорошего качества (например конденсаторы), то возможно подойдет и вариант 4, варианты 2 и 3 как по мне смысла особо не имеют.

А вот здесь проявился минус ТаоБао, у меня в комплекте забыли положить ручки переменных резисторов, стоят копейки, но жалко 🙁

На странице товара приведена схема блока питания, что также может помочь в сборке, мне все таки пару раз пришлось к ней обращаться, но о нюансах я напишу в разделе сборки. Качество схемы не очень высокое, продавец предлагает ее "в HD", но как скачать, а не понял.

В общем-то схема ничего принципиально нового не содержит, на одном ОУ собран сам БП, на втором переключатель обмоток, внизу виде узел управления питанием вентилятора. Немного смущает "кривое" питание ОУ и обмотка со средней точкой для питание внутренней электроники, которая в данном случае вообще смысла не имеет.
Также несколько непривычно включение переменных резисторов, двумя проводами, при чем увеличение напряжения/тока соответствует увеличению сопротивления резистора.

Основные узлы блока питания.
1. Зеленый - собственно регулируемый стабилизатор напряжения и тока, слаботочная часть плюс цепь питания
2. Красный - силовая часть регулятора, выпрямители и реле
3. Синий - Схема управления реле переключения обмоток
4. Фиолетовый - управление вентилятором.

Не буду ходить вокруг и перейду к сборке, но так как описание процесса нужно скорее в качестве дополнения, то спрячу эту часть под спойлер.


В комплекте идет 10 номиналов мелких резисторов. При монтаже проще было быстро измерить тестером, чем искать по маркировке.

Вот здесь вылезла мелкая проблемка, у двух резисторов маркировка на плате попала под лужение и пришлось искать их по схеме. В данном случае это пара резисторов 100 Ом, собственно с них я и начинал монтаж. Кроме того рекомендую немного приподнять их над платой, так как китайской краске на резисторах доверия у меня нет.

Вид платы с запаянными резисторами. Больше проблем у меня на этом этапе не возникло.

Также дали диоды и стабилитроны, с диодами и стабилитронами проблем не возникло, маркировка есть на них самих, при этом 1N5408 и 4007 внешне спутать крайне тяжело, а по стабилитронам есть даташит с вариантами маркировки.
Сложности возникли только с компонентом в мелком стеклянном корпусе, я сначала решил что это 4148 со стертой маркировкой, но это термистор и к диодам он отношения не имеет, будьте внимательны.

Маркировка есть, но местами найти место довольно сложно, диоды и стабилитроны стоят на плате вертикально.

У стабилитронов совсем мелкая маркировка на плате, ниже на фото показано как устанавливать компонент.
Все компоненты я обычно устанавливаю единообразно, часто катодом (полоска на корпусе), но в случае с диодом 5408 пришлось поступить наоборот, решил что так он меньше будет мешать подключениям к плате. Диод в работе не греется, потому конденсаторам также мешать не будет, он стоит параллельно выходу для защиты.

1. Дальше паяем конденсаторы, благо их на плате мало, а маркировка указана в том же формате что и на самих конденсаторах.
2. Слева на фото регулируемый стабилитрон TL431 и три транзистора SS8050, устанавливать их лучше после конденсаторов, перед монтажом габаритных компонентов.
3. С подстроечными резисторами также проблем не возникло, единственно маркировка на плате указана как 501 (500 Ом) у одного и 10к и 100к у остальных, на фото это резисторы с обозначением 103 и 104 соответственно.
4. Также есть шесть мощных резисторов, здесь можно ошибиться, у средних на плате написано 7.5 кОм, а резисторы дали 2.2 кОм, у продавца это написано, но кто там читает 🙂 Резисторы 2.2 кОм (средние) стоят параллельно входу питания и выходу БП.
Резисторы в работе могут нагреваться, потому чтобы они не грели плату я их немного поднял отформовав выводы.

В установленном виде.

В качестве источника опорного напряжения используется TL431, но расположен он совсем не оптимально, как раз между мощными резисторами, которые хоть и не сильно, но греются в работе, особенно правый.

Разъемы, клемники и панельки. Здесь меня немного запутало то, что разъемов дали как-то слишком много, а кроме того не совсем понятно как его планировал ставить производитель.
Кстати, клемники довольно хорошего качества, с "лифтовым" механизмом. На заявленном для БП токе проблем быть не должно.

В итоге у меня осталось два трехконтактных разъема, которые я не нашел куда пристроить, возможно производитель планировал сделать некий переходник для питания вентиляторов или еще что-то.
Двухконтактные разъемы можно установить в почти произвольном порядке, но я рекомендую это делать так, как показано на фото,.
Мелкие разъемы ставим для подключения светодиода, термистора и переменных резисторов, более крупные для вентилятора и ампервольтметра. Трехконтактный на плате один, потому здесь вариантов мало.

С разъемом подключения вентилятора возникла небольшая заминка. Если ставить как показано на фото, то цвета родного кабеля не будут соответствовать полярности, но будут соответствовать расположению контактов на разъеме стандартного вентилятора, ну а чтобы не путаться, разъем питания ампервольтметра был установлен также как разъем вентилятора.

Вот уже пошли и габаритные детали. В пакете нашлись конденсаторы:
2200 мкФ 50 Вольт, 3шт
2200 мкФ 25 Вольт, 2шт (на плате указан как 1000мкФ 25 Вольт)
680 мкФ 35 Вольт, 1шт (на плате указан как 470 мкФ 35 Вольт)
470 мкФ 25 Вольт, 1шт (на фото не попал, закатился).
220 мкФ 16 Вольт, 3шт
100 мкФ 50 Вольт, 1шт
4.7 мкФ 50 Вольт, 1шт.

Конденсаторы все "китайские", если хочется "как лучше", то можно заменить на фирменные.

Реле самые обычные, безымянные, по заявленному току подходят с запасом.

Свободного места на плате явно стало гораздо меньше, фактически она почти собрана.

Из того, что устанавливается еще на плату остались только мощные транзисторы и стабилизаторы. В комплекте к ним идут (неожиданно) изолирующие прокладки.
Прокладки ставить можно даже не пытаться, крайне неудобно, они больше чем место внутри радиатора, в итоге я их заменил на слюду, у кого ее нет, могут просто подрезать родные прокладки. Также можно сразу выкинуть родные винты, они имеют потайную шляпку и просто расколят изолирующие втулки, заменил их на винты от материнской платы с большой головкой.
У одного радиатора отверстие было чуть чуть смещено, из-за чего корпус микросхемы почти касался радиатора, но прозвонка показала что все в порядке. Думаю изоляторы нужны потому, что под радиаторами на плате есть дорожки и радиатор может процарапать маску над ними. Как вариант, можно не изолировать сам компонент, а обеспечить изоляцию под радиатором.

На этом же этапе сборки установил и операционные усилители, метки для установки есть на плате.

Собственно плата полностью собрана. по итогам сборки предварительно могу сказать, что особых каких-то проблем не возникло, но сама плата выглядит немного... неэстетично, нет в ней красоты.

Кроме того разъемы хорошо было бы вынести на край платы, а не размещать в середине. Ну и небольшой минус, выяснилось что выход БП подключается пайкой, а не клемником.

После пайки флюс лучше смыть, но не столько из-за влияния на электронику, сколько из-за внешнего вида. по желанию потом можно покрыть лаком Пластик-70

Паяется плата на отлично, я использовал припой с флюсом и самый обычный паяльник с контролем температуры.

А это судя по всему фото прототипа, найденное на странице товара, вид попроще, но вот радиаторы заметно больше.

И так, у меня остались провода, выходные транзисторы, диодный мост и прочая мелочь.

А вот теперь подключение и регулировки платы.
1. 0-15-25-35 Вольт - подключение силового трансформатора. Напряжения считаются относительно точки 0.
2. Диодный мост и транзисторы, думаю понятно и так
3. Рег реле 25 и 35 Вольт, регулировка напряжения при котором подключаются дополнительные соответствующие обмотки.
4. Рег температуры и термистор, соответственно регулировка включения вентилятора и разъем подключения термистора, полярность термистора значения не имеет.
5. 12-15 Вольт, вход дополнительного питания переменного тока 12-15 Вольт, можно использовать одну обмотку.
6. Пит Амперметра - подключение питания амперметра для измерения выходного тока, стабилизированные 12 Вольт
7. Вентилятор - разъем подключения вентилятора.
8. Корр тока - установка диапазона регулировки выходного тока
9. Уст тока - Регулировка выходного тока. (резистор 10к)
10. LED CC, светодиод индикации режима ограничения тока
11. Корр напряжения - установка диапазона регулировки выходного напряжения.
12. Уст напряжения - Регулировка выходного напряжения (резистор 10к)
13. Выход - Выходные площадки для подключения нагрузки к БП.
14. Амперметр - подключение амперметра, если не используется, то закоротить перемычкой.

Теперь о регулировках.
Напряжение переключения обмоток.
1. Крутим резисторы влево до крайнего положения или около того, как вариант до выключения обоих реле.
2. Выставляем на выходе напряжение около 9-10 Вольт и крутим резистор 25 Вольт вправо пока не включится первое реле.
3. Выставляем на выходе напряжение около 20-22 Вольт и крутим вправо резистор 35 Вольт пока не включится второе реле.
4. Всё.

Диапазон регулировки выходного напряжения/тока.
1. Крутим вправо до упора резистор регулировки напряжения.
2. Вращением соответствующего подстроечного резистора добиваемся на выходе требуемого нам напряжения, например 35 Вольт
3. Повторяем то же самое с регулировкой тока, в качестве нагрузки можно использовать мультиметр.

Для увеличения тока вращать подстроечный резистор влево, напряжения - вправо.

Включение вентилятора.
1. Под нагрузкой разогреваем радиатор до той температуры когда он начинает обжигать руку, это около 50-55 градусов
2. Вращаем влево резистор пока не включится вентилятор. Температуру можно поднять до 60-70 градусов, но уже с измерением при помощи термометра.
Кстати вентилятором управляет довольно мощный транзистор, который установлен скорее из-за большого корпуса, вентилятор имеет примитивную схему управления и у него нет четкого включения/выключения, переход плавный и он может работать на малой скорости, но диапазон температур от выкл до полной мощности довольно узкий.

Если у вас трансформатор только с двумя обмотками, например от БП усилителя где к примеру пара обмоток по 18 Вольт со средней точкой, то можно использовать и его, хотя нагрев конечно будет больше. В этом случае вместо второго реле ставится перемычка.

У переменных резисторов соединяются два левых вывода, а сам резистор подключается двумя проводами.
Термистор также имеет двухпроводное подключение, после припаивания изолируем термоусадкой.
Вход подключения дополнительного питания рассчитан на обмотку с отводом от середины, как по мне, то крайне неудобно, можно соединить крайние выводы разъема и питать от одной обмотки 12-15 Вольт, работать будет так же.

Провод подключения вентилятора и ампервольтметра я не использовал, остальные перед пайкой свил чтобы было аккуратнее и меньше наводилось помех. Черная термоусадка была в комплекте.

Здесь я сделаю небольшое отступление, на плате есть место под установку диодного моста, но при токе в 5 Ампер он быстро поджарится и я решил вынести его за пределы платы, потому на этом фото не только транзисторы, а и диодный мост.
Транзисторы TIP3055, 15 Ампер 60 Вольт 90 Ватт, при этом в БП каждый транзистор работает при токе 2.5 Ампера, напряжении до 50 Вольт и рассеивает мощность до 35-40 Ватт, потому небольшой запас еще есть.

Для тестов я использовал относительно небольшой радиатор, в реальной эксплуатации можно вполне применить компьютерный кулер от более-менее мощного процессора. Из-за того что есть переключение обмоток, то даже в самом худшем режиме (КЗ) на нем будет рассеиваться около 75-80 Ватт что вполне сопоставимо с процессором.
Транзисторы от радиатора изолированы, если этого не сделать, то тепловое сопротивление будет меньше, но на радиаторе будет плюс силового питания.

Можно сказать что к тестам готовы 🙂

В ходе тестов был применен вентилятор с трехконтактным разъемом, в этом случае он подключается контактами с красным и черным проводом так, как показано на фото.

Производитель на странице товара выложил вариант применения с не очень распространенным, но интересным ампервольтметром, но вот что-то он мне на момент написания обзора не попался, там вроде ток был до 5 Ампер и цена доступная.

Зато у другого продавца видел не менее интересный приборчик, давно хочу купить поиграться, тем более что он имеет диапазон измерения тока до 10 Ампер, напряжения до 95 Вольт и может подключаться к компьютеру для мониторинга. Но стоит 13 баксов - ссылка .

Ладно, что то я увлекся. Подключаю к плате проверенный комплект из двух трансформаторов + небольшой для вспомогательного питания. Трансформаторы дают в сумме три напряжения кратные 12 Вольт. Кстати, производитель платы рекомендует не комбинацию 12+12+12, а 15+10+10, как я примерно писал в обзоре платы для мощного регулируемого БП, такая комбинация напряжений более оптимальна.

А теперь проверим на что способна данная платка.
1. Минимально можно выставить -0.1 Вольта. Да, именно отрицательное, я с таким встречают не впервые.
2. Максимум 21 Вольт в минимально положении подстроечного резистора диапазона.
3. Дальше я попытался отрегулировать максимальное напряжение подстроечным резистором и получил всего 26 Вольт, маловато.
4. Сначала думал припаивать какие нибудь резисторы для проверки, но помня что резистор регулировки при увеличении сопротивления увеличивает значение напряжения или тока, то просто выдернул разъем и без проблем получил полное выходное.
5. По току минимум 0, при этом светодиод индикации СС светит, нагрузкой является выходной резистор БП.
6. Здесь проблем с калибровкой не было, выставил 5 Ампер.

Потом решил покрутить подстроечный резистор дальше и также без проблем получил и 6 Ампер.

Но мне не нравилась ситуация с ограничением по выходному напряжению и ее как-то надо было решать. Подозрение пало на вспомогательное питание, измерил напряжение на выходе трансформатора и выяснил что там всего 11 Вольт, взял другой трансформатор, с выходным около 24 Вольта, с ним легко выставил на выходе даже 42 Вольта.
Дело в том, что вспомогательное напряжение стабилизируется при помощи стабилизатора 12 Вольт, а ей на выходе надо хотя бы 15, кроме того на плате есть питание со стабилитроном на 15 Вольт. Но при входном 11 Вольт получить напряжение более 15-16 Вольт сложно и в итоге была просадка.

После этого захотелось проверить максимальную выходную мощность, которую можно получить в таком варианте, но примерно через 20 секунд теста раздался громкий хлопок и я получил такое чудо....
Да, когда я заменил трансформатор, то как-то совсем забыл об этих конденсаторах и потому получил вполне закономерный результат, на них было около 32 Вольт.

Но "шоу должно продолжаться" и пострадавшие были заменены на более фирменные Samwha 1000мкФ 35 Вольт.

В итоге я получил на выходе более 200 Ватт, при токе нагрузки 5 Ампер и напряжении 41 Вольт. По моему совсем неплохо.

Далее тест проверки стабильности поддержания выходного напряжения в зависимости от тока нагрузки. Здесь также довольно неплохо, хотя напряжение все таки немного плыло, но возможно это было из-за контакта между нагрузкой и платой так как нагрузка была подключена к щупам мультиметра, а те в свою очередь были просто вставлены в отверстия платы.
Тест с током 1, 2, 3.5 и 5 Ампер.

В процессе работы плата заметно греется. Наиболее всего греются мощные резисторы.
1. При низких напряжениях греются резисторы вспомогательного питания, которые включены совместно со стабилитронами 6.2 и 15 Вольт, особенно греется ближний к краю платы, через который питается стабилитрон 6.2 Вольта.
2. Если на выходе выставить напряжение более 20-30 Вольт, то начинают сильно греться резисторы 2.2 кОм, расположенные в правом верхнем углу. Нагрев одного зависит от выходного напряжения, а нагрев второго от входного которое максимально когда выходное более 20-22 Вольт. Думаю что лучше их заменить на что нибудь около 3.3-4.7 кОм.

Температура резисторов в обоих случаях порядка 100-110 градусов.

И последний тест, оценка размаха пульсаций на выходе. К сожалению они есть, с частотой 100 Гц. В обоих случаях нагрузка была около 4 Ампер (автомобильная лампа), но в первом стоят только родные входные конденсаторы, во втором я параллельно им подключил еще один, емкостью 10000мкФ, правда на проводах длиной около 10см.
В первом случае размах 50 мВ, во втором 25 мВ.

На мой взгляд пульсации на выходе являются следствием не столько недостатка входной емкости, здесь я считаю как раз все в порядке, сколько несколько странной схемой обратной связи (отмечена красным).
Кроме того мне не нравится что по выходу стоит конденсатор емкостью целых 100 мкФ (помечено зеленым), думаю что лучше его уменьшить до 10-22 мкФ. На пульсации он по сути не влияет, но влияет на бросок тока при переходе с режима CV к режиму СС.

Видеоверсия обзора

И конечно некоторые выводы основанные на результатах процесса сборки и тестов.
Для начала о самом конструкторе.
Нареканий не очень много, но они есть. Забыли положить ручки к резисторам, неудобные изолирующие прокладки, диодный мост надо выносить на радиатор, конденсаторы посредственного качества.
Но есть и достоинства, все собирается без особых сложностей, мало того, оно потом еще и работает обеспечивая даже больше заявленных 35 Вольт 5 Ампер, я смог получить напряжение до 42 Вольт, а ток до 6 Ампер и не думаю что это предел.

По результатам тестов можно реально придраться только к повышенному уровню пульсаций, но думаю что есть шанс это доработать.

В общем и целом набор немного сыроват, но на мой взгляд интереснее чем известная плата 30 Вольт 3 Ампера, обзор которой я как-то делал. Ключевые отличия:
1. Напряжение до 35 Вольт, реально можно поднять и больше.
2. Ток до 5 Ампер, но также можно увеличить.
3. Емкость входного конденсатора 6600 мкФ против 3300 у 3 Ампера варианта
4. В 3 Ампера БП был один силовой транзистор, здесь два.
5. Есть переключение обмоток трансформатора, три ступени.
6. Добавлено управление вентилятором в зависимости от температуры.
7. Шунт измерения тока стоит в положительном полюсе, а не земляном.

Существенный недостаток только один, у обозреваемого варианта выше уровень пульсаций, скорее всего обусловленный схемными недоработками.

Спонсором данного обзора выступил посредник yoybuy.com, который взял на себя оплату доставки.
Стоимость комплекта с учетом доставки к посреднику вышла $11.09, вес комплекта 175 грамм, стоимость доставки от посредника зависит от разных факторов, например количества, а также наличия других товаров в заказе.
Товар на Алиэкспресс - ссылка

Линейный лабораторный блок питания своими руками

Приветствую, Самоделкины!
Если вы ищете схему простого и надежного линейного блока питания, то эта статья именно для вас. Тут вы найдете полную инструкцию по сборке, а также настройке данного блока питания. Автором данной самоделки является Роман (YouTube канал «Open Frime TV»).


Для начала немного предыстории. Совсем недавно автор переделывал свое рабочее место и в качестве третьего блока питания хотел установить именно линейный блок, так как иногда ему приходится собирать схемы, которые не переносят пульсации напряжения. А как нам известно, то у линейного блока на выходе, пульсация напряжения практически полностью отсутствует.


До этого момента линейные блоки автора не сильно интересовали, и он как-то особо не вникал в данную тему. Когда же пришла идея по построению такого блока, Роман сразу открыл всеми любимый и широко известный видеохостинг YouTube. В итоге после продолжительных поисков автор для себя смог выделить 2 схемы. Автором первой является AKA KASYAN (автор одноименного YouTube канала), а вторая схема построена на операционниках.


Но так как операционники могут работать на напряжении до 32В, то и выходное напряжение соответственно не могло превышать данного предела, а это значит эта схема отпадает.

Ладно, можно собрать схему от Касьяна, но и тут нас ждало разочарование. Данная схема боится статики. Это проявлялось взрывом транзисторов если взяться за выходные контакты.


Так было несколько раз. И тогда автор решил оставить данную схему в покое. Вы скажете, что в интернете полно схем линейных блоков питания.

Да, несомненно это так, но только эти две схемы упомянутые выше, имели нормально разведенные печатки, которое можно было просто скачать. Все остальное, либо без печаток, либо собрано навесным монтажом. А мы (радиолюбители) привыкли к тому, что все подается на блюдечке с голубой каёмочкой.

И вот когда все варианты иссякли, автор вспомнил, что года 3 тому назад он уже собирал линейный блок, который, кстати, к тому же отлично работал. Была найдена схема трехлетней давности.


Автор решил развести нормальную печатку. Плата получилось довольно компактной. После проведенного тестирования данной схемы, на удивление она отлично проявила себя.

При такой простоте автору это так понравилось, что он даже решил сделать kit-набор из данной платы. Для этого необходимо преобразовать печатку в Gerber файл (файл с расширением .gbr, представляющий собой проект печатной платы для последующего изготовления фотошаблонов на различном оборудовании). Затем необходимо отправить платы на изготовление.

И вот спустя пару недель после заказа получаем наши долгожданные платы. Вскрыв посылку и рассмотрев платы поближе, можем убедиться, что все очень качественно и красиво получилось.


Итак, давайте уже запаяем данную плату и проверим ее в работе. Компонентов для установки не так уж много, паять от силы минут 20, не больше.

Закончили с пайкой. Производим первое включение. И тут нас ждет небольшое разочарование. Данная плата не обошлась без косяков. Проявились они в том, что при вращении ручки потенциометра влево идёт увеличение напряжения и тока, а при правом вращении происходит уменьшение.


Так произошло потому, что резисторы для данной платы автор вынес на провода (для последующей установки на корпус) и там без проблем можно было поменять направление вращения просто поменяв боковые контакты. Ну ладно, зато все остальное работает как положено.


Но все же автор исправил печатку, теперь там при правом вращении потенциометра идёт увеличение напряжения, все как и должно быть. Так что можете смело скачивать и повторять данную конструкцию (архив с данной печатной платой находится в описании под оригинальным видеороликом автора, необходимо пройти по ссылке ИСТОЧНИК в конце статьи).

А теперь давайте перейдем к детальному рассмотрению схемы и непосредственно самой платы. Схему вы можете видеть на своих экранах.


Данный блок питания оснащен регулятором напряжения и тока, а также системой защиты от короткого замыкания, которая просто необходима в таких блоках.

Представьте себе на минуточку, что происходит при коротком замыкании, когда на входе напряжение 36В. Получается, что все напряжение рассеивается на силовом транзисторе, который конечно же такого издевательства вряд ли выдержит.


Защиту тут можно настроить. С помощью вот этого подстроечного резистора выставляем любой ток срабатывания.

Здесь установлена релюшка защиты на 12В, а входное напряжение может достигать 40В. Поэтому необходимо было получить напряжение 12В.


Это можно реализовать с помощью параметрического стабилизатора на транзисторе и стабилитроне. Стабилитрон на 13В, так как идет падение напряжения на переходах коллектор-эмиттер двух транзисторов.


Итак, теперь можно приступать к тестам данного линейного блока питания. Подаем напряжение в 40В от лабораторного блока питания. На нагрузку вешаем лампочку рассчитанную на напряжение 36В, мощностью 100Вт.

Затем начинаем потихоньку вращать переменный резистор.



Как видим регулировка напряжения работает отлично. Теперь давайте попробуем регулировать ток.

Как можно наблюдать, при вращении второго резистора ток уменьшается, а это значит, что схема работает в штатном режиме.
Так как это линейный блок и все «лишнее» напряжение превращается в тепло, ему нужен радиатор довольно таки больших размеров. Для этих целей отлично зарекомендовали себя радиаторы от процессора компьютера. Такие радиаторы имеют большую площадь рассеивания, а если их еще оснастить вентилятором, то можно в принципе полностью забыть про перегрев транзистора.

А теперь о том, как работает защита. Выставляем необходимый ток с помощью подстроечного резистора. При коротком замыкании срабатывает реле. Пара его контактов размыкает выходную цепь и транзистор находится в безопасности.

Для возвращения в нормальный режим работы предусмотрена вот такая кнопка на размыкание, при нажатии на которую снимается защита.

Ну или же можно просто отключить блок от сети и подать напряжение снова. Таким образом, защита тоже выключится. Также на плате имеются 2 светодиода. Один сигнализирует про работу блока, а второй про срабатывание защиты.


Подводя итоги можно сказать, что блок получился очень классным и подойдет как для новичков, так и для уже опытных радиолюбителей. Так что скачивайте архив и собирайте себе такой блок.

Ну а на этом все. Благодарю за внимание. До новых встреч!

Видео:


Источник (Source) Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Самодельный лабораторный блок питания

Изготовление самодельного лабораторного блока питания из подручных доступных компонентов.


Для настройки самодельной электроники и не только самодельной, требуется источник питания. Для каждого устройства требуется свое напряжения питания. У каждого мастера должен быть универсальный блок питания, идеальный вариант это лабораторный блок питания. У меня есть только регулируемый блок питания. На нем нет возможности установить ограничение тока. Выход есть, соберу свой ЛБП.

Комплектующие

Лежал у меня алюминиевый корпус. Насколько я помню, корпус от регулятора паяльника времен СССР. Он крепкий и легкий.

Трансформатор от старого телевизора, может еще от чего. Я сделал отвод от 22-х вольт. Обмотки были рассчитаны на 27 вольт, мне показалось много. Намотал отдельную обмотку для питания Вольт-Ампер метра. Напряжение порядка 7-8 вольт. Сетевая обмотка соответственно 220 вольт.

Диодный мост самодельный. Состоит из диодов Д242. Диоды установлены на радиаторы.

После моста установлю электролитический конденсатор. Емкость и рабочее напряжение видны на фото.

Вольт-Ампер метр из Китая. Точность довольно хорошая. На крайний случай есть подстроечные резисторы, которыми можно подкорректировать значения.

Регулировать напряжение, и ток буду при помощи китайского модуля. Главное, не превышать входящее напряжение выше 30 вольт. На модуле установлен маломощный стабилизатор с максимальным входным напряжением 30 вольт.

Выходные клеммы советские. Одну пометил красным лаком, будет плюсовой.

Передняя панель отсутствует. Сделаю из композитного пластика.

Сборка

Собирать буду по простой схеме. В первичной цепи трансформатора установил выключатель и предохранитель. С вторички напряжение поступает на диодный мост и электролитический конденсатор. С них напряжение поступает на понижающий модуль. С модуля, через Вольт-Ампер метр поступает на выходные клеммы. Подстроечные резисторы выпаиваем и на проводах выносим за пределы платы, но устанавливаем регулируемые. Нижняя часть схемы, с линейным стабилизатором, служит для питания Вольт-Ампер метра.

Схема регулируемого блока питания

Расставляю силовые элементы на нижней части корпуса. Конденсатор установил между трансформатором и диодным мостом.

Соединяем трансформатор, диодный мост и понижающий модуль. Витые провода пойдут на регулировочные резисторы.

Так получилась часть для питания приборчика. Диодный мостик, электролитический конденсатор и стабилизатор на 5 вольт.

На задней панели вырезаю отверстие под сетевой разъем. Такой разъем можно снять со старого компьютерного блока питания.

На заготовке из композитного пластика, вырезаю все необходимые отверстия. Сетевой выключатель клавишный, до последнего момента не знал что установить. Разметку производил по защитной пленке, ее при установке сниму.

Распаиваю резисторы. Подключаю выключатель. Распаял провода на Вольт-Ампер метр. В разрыве предохранитель, на задней панели.

Устанавливаем все элементы передней панели на свои места. Защитная пленка снята.

Ручки на резисторы нашел разных цветов. Верхнюю крышку покрасил. Можно испытать. Диапазон регулировки получился от 1 до 27 вольт. Ток на короткое замыкание получился около 9 ампер.

Такой ЛБП получился. Для всех моих потребностей более чем достаточно.

Видео по сборке

Цепь лабораторного источника питания

| Проекты самодельных схем

Хотя в последнее время появилось множество лабораторных настольных источников питания, лишь немногие из них обеспечат вам эффективность, универсальность и низкую стоимость конструкции, подробно описанной в этой статье.

В этом посте рассказывается о строго регулируемом, самостоятельном, лабораторном источнике питания с двойным напряжением 0-50 вольт. Диапазоны напряжения и тока независимо изменяются от 0 до 50 В и от 0 до 5 ампер соответственно..

Сказав, что, благодаря компоновке DIY, вы можете настроить параметры по мере необходимости, что можно увидеть в следующей таблице спецификаций.

  • Количество источников питания = 2 (полностью плавающих)
  • Диапазон напряжения = от 0 до 50 В
  • Диапазон тока = от 0 до 5 ампер
  • Коэффициент грубого и точного регулирования как для тока, так и для напряжения = 1:10
  • Регулировка напряжения = 0,01% от линии и 0,1% нагрузки
  • Ограничитель тока = 0,5%

Схема описание

На рисунке 1 выше показана принципиальная электрическая схема лабораторного источника питания.Технические характеристики компоновки сконцентрированы вокруг IC1, регулируемого регулятора LM317HVK, обеспечивающего широкие функциональные возможности. Суффикс «HVK» указывает на высоковольтную версию регулятора.

Оставшаяся часть схемы обеспечивает возможность настройки напряжения и ограничения тока. Вход на IC1 исходит от выхода BR1, который фильтруется C1 и C2 примерно до + 60 В постоянного тока, а вход для токового компаратора IC2 создается мостовым выпрямителем BR2, который, кроме того, работает как источник отрицательного смещения, чтобы получить регулировка до уровня земли.

Функция IC1 - поддерживать на клемме OUT 1,25 В постоянного тока на клемме ADJ. Потребление тока на выводе ADJ крайне минимально (всего 25 мкА), и, следовательно, R15 и R16 (грубые и уточненные манипуляции с напряжением) и R8 образуют делитель напряжения с 1,25 вольт, появляющимся около R8.

Нижний вывод R16 подключается к опорному напряжению -1,3, создаваемому D7 и D8, что позволяет резистивному делителю R8 - R15 фиксировать выходное напряжение вплоть до уровня земли в любой момент, когда R15 + R16 становится равным 0 Ом.

Расчет выходного напряжения

Обычно выходное напряжение зависит от следующих результатов:

(VouT - 1,25 + 1,3) / (R15 + R16) = 1,25 / R8.

Таким образом, максимальное значение напряжения, доступное для каждой платы переменного питания, может быть:

VOUT = (1,25 / R8) x (R15 + R16) = 50,18 вольт постоянного тока.

Потенциометры R15 и R16 используются для управления выходным напряжением, которое позволяет изменять VouT от 0 до 50 вольт постоянного тока.

Как работает контроль тока

Когда ток нагрузки постоянного тока увеличивается, падение напряжения на R2 также увеличивается и составляет около 0.65 вольт (то есть примерно 20 мА), Q1 и Q2 включаются, становясь основным направлением тока. Кроме того, R3 и R4 гарантируют, что Q1 и Q2 справляются с нагрузкой равномерно. IC2 работает как ступень ограничителя тока.

Его неинвертирующий вход использует выходное напряжение как опорное, в то время как его инвертирующий вход подключен к делителю напряжения, разработанному R6, и токовым регуляторам R13 и R14. Падение напряжения на R6 составляет около 1,25 В, указанное выше опорное напряжение определяется разностью между выводами OUT и ADJ IC1.

Ток, проходящий через Q1 и Q2, проходит через R9, создавая падение напряжения на R13 + R14. В результате IC2 принудительно выключается, как только падение напряжения вокруг R9 генерирует ток через R13 и R14, в результате чего неинвертирующее входное напряжение выходит за пределы VouT.

Это фиксирует порог ограничения тока на уровне: (IouT x 0,2) / (R13 + R14) = 1,25 / 100K; низкий = от 0 до 5 ампер. Это обеспечивает соответствующий диапазон около 0-5 ампер.

Когда достигается порог ограничения тока, выход IC2 становится низким, приводя в движение вывод ADJ через D2, что приводит к включению светодиода LED1.Дополнительный ток для D5 доставляет R5.

Когда на выводе ADJ установлен низкий уровень, выход следует, пока выходной ток не упадет до точки, эквивалентной настройке R13 и R14.

Учитывая, что выходное напряжение может быть в пределах 0-50 вольт, напряжение питания для IC2 должно соответствовать этому диапазону при работе с D3, D4 и Q3.

Затем D9 проверяет, что выходное напряжение не увеличивается после выключения входа питания, в то время как D10 защищает от обратного напряжения питания.Наконец, счетчики M1 отображают значение напряжения, а M2 отображает текущее значение.

Список деталей

Схема расположения печатной платы

Лабораторный источник питания 0-20 В и 0,002-4 А: 7 ступеней (с изображениями)

Выходной каскад выполнен в виде усилителя напряжения с U2 с регулируемым усилением и транзисторами выходного буфера для усиления электрический ток. Выбранное напряжение (Vadj) подается на положительный вход U2 из схемы регулировки напряжения. В случае, если ограничитель тока включен, Vadj обходится напряжением, установленным U3 (Vo3).Обход осуществляется таким образом, что Vo3 достаточно низкий, чтобы D9 был смещен вперед. В обоих случаях напряжение на положительном входе равно Vi2, где Vi2 = Vadj в источнике напряжения и Vi2 = Vo3 + 0,7 В в режиме источника тока.

Операционный усилитель пытается довести отрицательный уровень входного напряжения до Vi2. Это выполняется путем повышения напряжения на его выходе (вывод 6) до точки, когда оно становится равным Vo2 = Vi2 · (TRIM1 + R11) / R11. Здесь установлен подстроечный потенциометр, чтобы мы могли настроить усиление выходного усилителя, чтобы P1 работал в полном диапазоне.В этом случае референтное напряжение изменяется от 0 до 11,2 В, поэтому TRIM1 имеет примерно такое же значение, что и R11, что дает усиление 2. Усиление предназначено только для составляющей постоянного тока, любые быстрые изменения напряжения Vo2 будут проходить через C6 и будет ослабляться петлей обратной связи, построенной вокруг U2. Кроме того, возможный шум, исходящий от Vadj, заземляется C4, и некоторые быстрые изменения, производимые самим U2, также будут передаваться C9 и ослабляться отрицательным входом U2. Цепь, построенная вокруг Q1, используется для защиты всего источника питания от пробоя отрицательной шины.В случае, когда что-то происходит с отрицательной шиной, -5,6 В исчезает, и соединение BE Q1 становится смещенным вперед. Это приводит к насыщению Q1 и отводит весь ток от базы Q2, отключая его и последовательно отключая Q4. Усиление тока осуществляется парой Дарлингтона Q2 и Q4, здесь нам нужен Q2, потому что операционный усилитель не может выводить ток, необходимый для питания транзистора 2N3055 в активном режиме. Конденсатор C7 сглаживает высокочастотный шум, а D11 - обратный диод (в случае, если какая-либо индуктивная нагрузка, подключенная к выходу, дает отрицательные выбросы).

Superb Lab Power Supply: 15 шагов (с изображениями)

Схема представляет собой экран для Arduino UNO, совместимого с версиями R3. Я разработал его с деталями, доступными на digikey.com.

Выход комплекта схемы источника питания vkmaker подключается к клеммной колодке IN, а клеммная колодка OUT - непосредственно к клеммам источника питания.

R4 - шунтирующий резистор в положительной шине номиналом 0,01 Ом, он имеет падение напряжения, пропорциональное выходному току.Дифференциальное напряжение R4 подключается напрямую к контактам RS + и RS- микросхемы IC1. Максимальное падение напряжения при максимальном выходном токе составляет 4 А * 0,01 Ом = 40 мВ.

R2, R3 и C2 образуют фильтр ~ 15 Гц, чтобы избежать шума.

IC1 - усилитель высокого тока: MAX44284F. Он основан на операционном усилителе с прерывистой схемой, который позволяет получить очень низкое входное напряжение смещения, максимум 10 мкВ при 25 ° C. При 1 мА падение напряжения на R4 составляет 10 мкВ, что равно максимальному входному напряжению смещения.

MAX44284F имеет коэффициент усиления по напряжению 50 В / В, поэтому выходное напряжение, сигнал SI, при максимальном токе 4 А будет равно 2 В.

Максимальное синфазное входное напряжение MAX44284F составляет 36 В, это ограничивает диапазон входного напряжения до 36 В.

R1 и C1 образуют фильтр для подавления нежелательных сигналов 10 кГц и 20 кГц, которые могут появиться из-за архитектуры устройства, это рекомендуется на странице 12 таблицы данных.

R5, R6 и R7 - это делитель напряжения с высоким сопротивлением 0,05 В / В. R7 с C4 образуют фильтр ~ 5 Гц, чтобы избежать шума. Делитель напряжения помещается после R4 для измерения реального выходного напряжения после падения напряжения.

IC3 - это операционный усилитель MCP6061T, он образует повторитель напряжения для изоляции высокоомного делителя напряжения. Максимальный входной ток смещения составляет 100 пА при комнатной температуре, этот ток незначителен по сравнению с импедансом делителя напряжения. При 10 мВ напряжение на входе IC3 составляет 0,5 мВ, что намного больше, чем его входное напряжение смещения: 150 мкВ на максимум.

Выход IC3, сигнал SV, имеет напряжение 2 В при входном напряжении 40 В (максимально возможное 36 В из-за IC1).Сигналы SI и SV подключены к IC2. IC2 - это MCP3422A0, двухканальный сигма-дельта АЦП I2C. Он имеет внутреннее опорное напряжение 2,048 В, выбираемое усиление напряжения 1, 2, 4 или 8 В / В и выбираемое количество 12, 14, 16 или 18 бит.

Для этой схемы я использую фиксированное усиление 1 В / В и фиксированное разрешение 14 бит. Сигналы SV и SI не являются дифференциальными, поэтому отрицательный вывод каждого входа должен быть заземлен. Это означает, что количество доступных младших битов сократится вдвое.

Поскольку внутреннее опорное напряжение равно 2.13, значения АЦП будут: 2 LSB на каждый 1 мА в случае тока и 1 LSB на каждые 5 мВ в случае напряжения.

X2 - разъем для кнопки включения. R11 предотвращает статические разряды на входе Arduino, а R12 - это подтягивающий резистор, который составляет 5 В при нажатии и ~ 0 В при нажатии. Сигнал I_ON.

X3 - разъем для кнопки ВЫКЛ. R13 предотвращает статические разряды на входе Arduino, а R14 - это подтягивающий резистор, который составляет 5 В при нажатии и ~ 0 В при нажатии.Сигнал I_OFF.

X5 - разъем для потенциометра уставки защиты от перегрузки по току. R15 защищает входной контакт Arduino от статических разрядов, а R16 предотвращает короткое замыкание шины + 5V. Сигнал A_OC.

X6 - разъем для потенциометра уставки защиты от перенапряжения. R17 защищает входной контакт Arduino от статических разрядов, а R18 предотвращает короткое замыкание шины + 5V. Сигнал A_OV.

X7 - это внешний вход, который используется для получения режима постоянного тока или постоянного напряжения источника питания.Поскольку он может иметь много входных напряжений, он выполнен с использованием Q2, R19 и R20 в качестве переключателя уровня напряжения. Сигнал I_MOD.

X4 - это разъем внешнего ЖК-дисплея, это просто соединение шины 5V, GND и I2C SCL-SDA линий.

Линии I2C, SCL и SDA, используются IC2 (АЦП) и внешним ЖК-дисплеем, они подтягиваются R9 и R10.

R8 и Q1 образуют драйвер реле K1. К1 подключает выходное напряжение при питании. При 0 В на входе -CUT реле обесточено, а при 5 В на входе -CUT реле запитано.D3 - это безынерционный диод для подавления отрицательного напряжения при отключении напряжения обмотки реле.

Z1 - ограничитель переходных напряжений с номинальным напряжением 36 В.

Регулируемый лабораторный источник питания 0-30 В 0-3 А

Имея под рукой исходную схему, я взял на себя смелость внести несколько изменений. Первым делом я заменил два стабилизатора транзистора-стабилитрона на LM317L / LM337L. Цепи рассчитаны на получение положительного напряжения 33 В и отрицательного напряжения 3 В. Таким образом, общее напряжение питания операционных усилителей не превышает 36 В, поэтому мы можем использовать стандартные.Я также внес изменения в схему управления светодиодами и несколько других мелких изменений.

После этого я решил еще больше упростить схему. Я заменил ненужную сложную схему для построения опорного напряжения на IC2 с простой схемой резистор-стабилитрон. Это даст нам стабильное опорное напряжение, так как напряжение питания уже регулируется LM317. В исходной схеме опорное напряжение составляет 9,4 В, поэтому я решил использовать два стабилитрона - 3,3 В и 6,2 В, соединенные последовательно, что должно дать нам 9,5 В.Также выбранные стабилитроны имеют противоположные температурные коэффициенты, которые должны устранять друг друга, что обеспечивает превосходную температурную стабильность.

Это проверялось на готовой плате предыдущей версии - я вынул IC2 из гнезда, распаял R5 и Z3 и подключил дополнительный стабилитрон (для теста я использовал стабилитрон на 9,1 В) и резистор с проводами. Это сработало очень хорошо - как я и ожидал.

Выпрямитель сильно нагревается, когда выходной ток превышает 2 А, поэтому будет полезно установить небольшой радиатор поверх него.

Трансформатор должен быть 100–120 Вт с выходным напряжением 27–30 В переменного тока. Вы должны внести некоторые исправления в схему, если выходное напряжение ниже или падение напряжения выше при высоком токе. R10 и R21 устанавливают выходное напряжение регулятора IC3 (LM317), и они должны быть рассчитаны таким образом, чтобы выходное напряжение было на 2 В ниже минимального входного напряжения. Если, например, наименьшее напряжение, измеренное на C1, когда источник питания полностью загружен, составляет 27 В постоянного тока, то выход IC3 должен быть 25 В.При R10 = 4k3 и R21 = 220R у нас будет это выходное напряжение. При стабилизированном напряжении 25 В для микросхем максимальное выходное напряжение блока питания будет около 23 В постоянного тока.
Схема будет работать без этих изменений, но выходное напряжение не будет таким стабильным.
Если напряжение на C1 ниже 33 В постоянного тока без нагрузки, то в IC3 нет необходимости, и мы можем его пропустить.

В качестве резистора измерения тока R7 я использую два параллельных резистора 0,68 Ом / 10 Вт. Вы можете использовать одиночный 0.Резистор 33 Ом / 10 Вт, но он будет слишком горячим.
При R16 = 82 кОм и R7 = 0,33 Ом максимальный предел тока, настраиваемый с помощью P2, будет больше 3 А - больше похоже на 3,3 А. Если мы хотим быть ближе к 3A, тогда R16 должен быть 91k.

Вы можете добавить линейный потенциометр 1 кОм последовательно к P1 для точной регулировки напряжения. Или лучше использовать многооборотный потенциометр, но он дорогой.

Странно выглядящий стабилитрон Z1, подключенный к PAD1, используется для питания цифрового вольтметра, который показывает выходное напряжение.Для этого требуется напряжение питания 6-28 В, и с помощью этого стабилитрона я уменьшаю входное напряжение до приемлемого уровня. Z1 можно не указывать, если он не нужен.

Многие люди просили меня нарисовать схему подключения цифровых панельных счетчиков. Вот как можно подключить цифровой вольтметр и амперметр. Как видите, в «варианте 1» вольтметр последовательно подключен к амперметру, поэтому его ток питания будет добавлен к измеряемому току и представит очень небольшую ошибку (ниже 10 мА). В «варианте 2» заземляющий провод вольтметра подключается к отрицательному выводу платы, а не к отрицательной клемме.Таким образом, его ток питания не будет измеряться, но вольтметр будет показывать немного более высокое напряжение, потому что будет добавлено падение напряжения на амперметре (макс. 50-80 мВ).
Убедитесь, что общий ток питания двух счетчиков не превышает 15–16 мА (стабилитрон Z1 перегреется).

Также сообщалось, что отрицательное напряжение может колебаться. Это может произойти, если входное переменное напряжение ниже или при высоком токе нагрузки оно значительно падает. Затем входное напряжение для IC4 (LM337L) становится низким, чтобы поддерживать стабильное выходное напряжение -3 В.Лекарство от этого простое: увеличьте значение C2 до 22 или 47 мкФ.

Лабораторный источник питания 0-50V 0-4A

Лабораторный тип 0-50V 0-4A Регулируемая схема источника питания Классическая конструкция на основе операционного усилителя TL081. Я думаю, что я неправильно прочитал схему электрической или электронной схемы книги .. Лабораторный трансформатор источника питания, используемый в ... Проекты электроники, Лабораторный источник питания 0-50В 0-4А «проекты силовой электроники, схема питания, проект источника питания», Дата 2019/08/04

Лаборатория Тип 0-50V 0-4A Регулируемая цепь питания Классическая конструкция на базе операционного усилителя TL081.. Я думаю, что, возможно, неправильно прочитал схему в электрических или электронных схемах.

Лабораторный источник питания Трансформатор, используемый в цепи питания с 4 транзисторами BD249 на выходном каскаде. Один выход может использоваться 2X25VAC вместо трансформатора 50VAC.

В схеме стабилизированного источника питания есть гораздо более дешевый альтернативный готовый модуль для резистивных переходов для использования вольтметров и амперметров, построенных с интеграцией ICL7107, и вы не можете использовать их, потому что они внутренние.На том же чертеже печатной платы той же цепи эти элементы были добавлены для дополнительной регулировки мощности 3,3 кОм в неиспользуемой цепи.

В аппликаторах цепи питания лабораторного типа не использовался изолятор для транзисторов управления мощностью. В конструкции, не имеющей элементов вольт-амперметра, транзистор T4 BD140 подключен к хладагенту, но это не обязательно. Поскольку коллекторы транзисторов BD239 и BD249 объединены, в соединении охлаждающей жидкости нет изолятора, поэтому все напряжение охлаждающей жидкости сохраняется.Если вы используете металлический корпус для блока питания, он может выйти из строя, если он коснется шасси.

Схема цепей источника питания 0,50 В, 0,4 А

источник:
hobbielektronika.hu/forum/topic_1560.html?pg=127
elektro.zolee.hu/rajz_mutat.php?mutasd=75 914LOW 914LOW 914LOW СПИСОК (в формате TXT): LINKS-25942.zip

Схемы электропитания постоянного тока

LM317 ПЕРЕМЕННЫЙ ИСТОЧНИК ПИТАНИЯ
2 декабря 2010 г.

Поистине неподвластная времени трасса.LM317 - это универсальный и высокоэффективный стабилизатор напряжения 1,2–37 В, который может обеспечивать ток до 1,5 А с большим радиатором. Он идеально подходит практически для любого приложения. This ... [подробнее]

Источник питания с двойной полярностью
2 ноября 2010 г.

Этот источник питания с двойной полярностью прост в сборке, требует небольшого количества деталей и регулируется от 0 до 15 вольт. Он отлично подходит для питания схем операционных усилителей, а также других схем, требующих двойного... [подробнее]

Источник питания с фиксированным напряжением
20 октября 2010 г.

Источник питания с фиксированным напряжением полезен в приложениях, где регулируемый выход не требуется. Этот источник питания прост, но очень гибок, поскольку выходное напряжение зависит только от регулятора и ... [подробнее]

Источник питания 10 А, 13,8 В
13 октября 2010 г.

Схема выдает нам 10 ампер (12 ампер) с производительностью, равной или превосходящей любой коммерческий блок.Схема даже имеет функцию ограничения тока, которая является более надежной системой, чем большинство других ... [подробнее]

Бестрансформаторный источник питания
12 октября 2010 г.

В этом источнике питания отсутствует тяжелый понижающий трансформатор и очень мало деталей. Схема может быть очень малогабаритной и может обеспечивать небольшие токи для небольших проектов. Главный провал этого ... [подробнее]

Блок питания TTL с защитой «лом»
12 октября 2010 г.

Источники питания, предназначенные для использования с логическими схемами TTL, должны защищать от перенапряжения, которое может очень быстро разрушить микросхемы TTL.Продолжительность перенапряжения, которое может разрушить микросхемы TTL, слишком велика ... [подробнее]

Источник переменного тока постоянного тока
12 октября 2010 г.

Источник переменного тока постоянного тока - один из самых полезных инструментов на рабочем месте любителя электроники. Эта схема не является абсолютной новинкой, но она проста, надежна, «прочна» и защищена от коротких замыканий, с возможностью изменения напряжения до ... [подробнее]

Источник питания постоянного тока

| Регулируемые Источники Питания

Подбор источников питания постоянного тока к применению

Источники питания постоянного тока

используются в широком спектре приложений - от обучения следующего поколения инженеров-электриков до разработки революционных носимых устройств со сверхнизким энергопотреблением.Независимо от того, нужен ли вам источник питания постоянного тока, обеспечивающий базовый источник питания, или тот, который расширяет пределы производительности, подавая тысячи вольт, выбор подходящего источника питания имеет решающее значение для получения успешных результатов испытаний в обучении, исследованиях, проектировании и производстве.

Как выбрать лучший источник питания постоянного тока

Наиболее распространенные критерии отбора:

  • Количество выходных каналов (один или несколько выходов)
  • Выходное напряжение, ток и мощность
  • Установка разрешения и точности
  • Пульсация и шум
  • Функции и возможности программирования
  • Расширенные функции, такие как измерение тока с разрешением наноампер, последовательность, аналоговые входы, цифровой ввод / вывод и функции программирования

Источники питания постоянного тока Keithley

Часто задаваемые вопросы об источниках питания постоянного тока

Что такое блок питания постоянного тока?

Источник питания постоянного тока обеспечивает напряжение постоянного тока (DC) для питания тестируемого устройства, например печатной платы или электронного продукта.Источник питания постоянного тока обычно устанавливается на рабочем месте или на рабочем месте инженера и часто называется настольным источником питания.

Зачем нужен блок питания постоянного тока?

Источник питания постоянного тока используется инженерами для тестирования компонентов, схем или электронных устройств, таких как устройства Интернета вещей, медицинские изделия, мобильные телефоны и удаленные промышленные датчики. Источник питания постоянного тока позволяет инженерам устанавливать и подавать определенные напряжения для питания устройства, чтобы убедиться, что оно работает должным образом.

Как вы используете источник питания постоянного тока?

Блок питания постоянного тока

А прост в использовании.Эти инструменты подключаются к тестируемому устройству с помощью проводов, которые вставляются в панель источника постоянного тока. Используя дисплей на передней панели, инженеры могут устанавливать уровни напряжения или тока для питания устройства для тестирования.

Как работает блок питания постоянного тока?

Источник питания постоянного тока работает, обеспечивая регулируемый постоянный ток для питания компонента, модуля или устройства. Большинство источников питания постоянного тока имеют два режима работы. В режиме постоянного напряжения (CV) источник питания регулирует выходное напряжение в соответствии с настройками пользователя.В режиме постоянного тока (CC) источник питания регулирует ток.

Хотите подробные спецификации? Загрузите полное руководство по выбору настольных источников питания.

Хотите узнать больше об основах настольных источников питания? Прочтите наш блог о настольных источниках питания.

Вместе Tektronix и Keithley предлагают полный ассортимент настольных источников питания для удовлетворения ваших потребностей в источниках питания от базовых до самых сложных требований для автоматизированного тестирования, обучения, прецизионного тестирования маломощных, портативных устройств, а также исследований и разработок.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *