Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Схема 100 ваттного усилителя звука

   Для создания усилителя домашнего аудиокомплекса, вполне достаточно мощности в 100 ватт. Этим условиям удовлетворяет неплохая микросхема TDA7293 или схема собранная на транзисторах. На последнем варианте мы и остановимся. Представляем усилитель звука с токовым управлением. Здесь использован выходного каскад класса В со всеми его преимуществами и без присущих ему недостатков. Вначале рассмотрим прототип 30-ти летней давности.


   Схема функционально реализует принцип токового управления. Данный УМЗЧ позволяет получить 100Вт при работе на 4 Ом нагрузку, при этом Кг на частоте 1кГц заявлен 0,006% при мощности 60Вт. Если имеется оборудование, позволяющее произвести точные измерения Кг, C3 может быть заменен на переменный конденсатор емкостью 22пФ, и последний настроен по минимуму искажений.

   Схема также содержит нововведение в виде эквивалентной нагрузки (R9). Выходной каскад управляется (через транзисторы Т2 и Т5) транзисторами Т1 и Т4, включенными последовательно в положительные и отрицательные плечи питания ОУ соответственно. Это также улучшает скорость нарастания ОУ 741. Если, однако, применяется более скоростной ОУ (например,

LF357), то номиналы R4 и R7 должны быть изменены для обеспечения такого тока покоя ОУ, чтобы выходные транзисторы оставались закрытыми.

   Более современная элементарная база привела к созданию УМЗЧ, схема которого приведена ниже.


   Параметры усилителя звука:

Коэффициент усиления по напряжению Кu 20,5
Напряжение питания Uпит +-15…+-45В
Номинальная мощность P при Uпит = +-30В на 4Ом 100Вт
Максимальная мощность Pmax Uпит=+-45В на 4Ом 200Вт
Чувствительность по входу Uвх 1В
Суммарный коэф-т всех видов искажений при P=60Вт 4Ома, Kd 0,006%
Ток покоя усилителя Ixx 20-30мА

Ток покоя выходного каскада 0мА
Полоса воспроизводимых частот по уровню –3дБ, Гц, не уже 5-100 000

Детали, используемые в схеме

   Операционный усилитель TL071 можно заменить на КР544УД2А, КР544УД1А, КР140УД608, КР574. Замена его повлечет за собой и изменение параметров ОООС и местных ООС. Емкость C2 установлена для того, чтобы компенсировать падение усиления с увеличением частоты для ОУ 741. Для TL071 эта неравномерность проявляется далеко за пределами звукового диапазона, а поэтому не требует коррекции.

   Стабилитроны были установлены в делители баз транзисторов эмиттерного повторителя, образованного VT1 и VT2. Вместе с резисторами R5 и R6 мощностью 0,5Вт стабилитроны образуют параметрические стабилизаторы, позволяющие менять питание УМЗЧ в широких пределах, не пересчитывая резистивных делителей. Для наилучшего результата стабилитроны желательно подобрать парами по напряжению стабилизации в пределах 12-13В, но обязательно одинаковые. Напряжение 15В недопустимо, т.к. тогда ОУ в данной схеме может выйти из строя или уйти в крайне нелинейный режим.

   В данной конструкции использованы 1N4742A, как вариант BZX55C12 или отечественные, но они требуют подбора, т.к. разброс у них больше.  
   Диоды также отвечают современным тенденциям. Вместе с резисторами R15 и R16 диоды D1 и D2 выполняют функции термостабилизации предвыходного (VT3, VT4) каскада, а также предотвращают протекание тока покоя через транзисторы выходного (VT5, VT6) каскада даже при значительном прогреве устройства.

   Защитные диоды D3 и D4 предусмотрены 1N4007, однако устанавливаются они только в случае, если в выходных транзисторах отсутствуют встроенные. В моем случае, в TIP142/147 эти диоды есть. При установке транзисторов типа 2SC5200, 2SA1943

диоды D1, D2 должны быть германиевые импульсные типа Д311 или маломощные диоды Шотки, важно, чтобы падение напряжения на прямом переходе диода было 0,25-0,3 В.

   Диоды D6 и D7, включенные в прямом смещении, в комбинации с конденсаторами С4..С7 препятствуют проникновению наводок в каскад питания ОУ, возникающих в связи с большим потреблением выходного каскада на высокой мощности.

   Выходной каскад был оставлен без изменений, его характеристика не имеет значения. В ЭП были установлены популярные высокочастотные транзисторы BC546/556. В эмиттерные цепи предвыходного каскада были включены ограничивающие резисторы R15, R16, помогающие стабилизировать ток покоя. Кроме того, по напряжению на этих резисторах удобно измерять ток покоя. Его величина – 20мА. Т.о. напряжение на резисторах должно быть 15*0,02=0,3В. 

   Транзисторы предвыходного каскада подбирались по звучанию. С целью термостабильности, кроме вышеописанных мер, VT3 и VT4 разнесены на разные концы платы и установлены каждый на отдельный небольшой пластинчатый теплоотвод с площадью поверхности около 30см2.

   Катушка выполнена на оправке d=7мм в два слоя и содержит 9+7 витков медного провода диаметром 0,8мм в лаковой или эпоксидной изоляции. Пропитана клеем или парафином для жесткости. От точности и качества катушки во многом зависит конечный результат.

Настройка УМЗЧ

   Настройка выполняется с отключенными транзисторами выходного каскада. VT5 и VT6 впаиваются в последнюю очередь. Для проверки сначала установите R7 и R8 по 180 Ом. Подключите питание усилителя через мощные проволочные резисторы сопротивлением примерно по 50-100 Ом каждый. Это позволит избежать возможных пробоев, перегрева, перегрузки БП и прочих проблем. На предвыходные транзисторы устанавливаются пластинчатые теплоотводы. Вход накоротко замыкаем на землю.

   Теперь подаем питание усилителя и измеряем постоянное напряжение на его выходе. Если оно меньше 30мВ, то вам повезло и ОУ калибровать не надо. В противном случае в плату устанавливается подстроечный резистор и с его помощью на выходе устанавливается нулевое напряжение. Номинал и схема включения подстроечного резистора выбираются исходя из технической документации на микросхему.

   Ток покоя предвыходного каскада 20мА. Устанавливается подбором резисторов R7, R8 до получения на резисторах R15, R16 напряжения 300мВ. Все эти резисторы должны быть подобраны в пары с максимально возможной точностью. Начните с сопротивления 180 Ом. Для разных ОУ и транзисторов номиналы могут меняться от 180 до 330Ом. Чем больше сопротивление резисторов R7, R8, тем выше ток покоя предвыходного каскада.

   Далее установите выходные транзисторы. Они крепятся на теплоотвод площадью около 300кв. см через слюду с термопастой на винтах с изолирующими втулками. Еще раз проверьте ток покоя.

   Баланс моста выполняется при наличии осциллографа и генератора. Необходимо подать на вход 15-20кГц синусоиду. Сначала выставить небольшой уровень и посмотреть на участок вблизи оси. Если на нем заметны “прогибы” синусоиды, то настройка нужна. Для этого вместо С3 устанавливается подстроечный конденсатор примерно на 30пФ.

Печатная плата УМЗЧ

   Плата выполнена из одностороннего фольгированного текстолита размером 90х60мм. Ниже даны раскладка элементов и рисунок печатной платы для лазерно-утюжной технологии. Конденсаторы C5 и C7 устанавливаются под платой со стороны фольги.

   Усилитель действительно выдаёт честных 100 ватт мощности, при этом даже на максимуме Кг не превышает долей процента. Автор статьи: Лишманов Николай aka Lincor.


Понравилась схема – лайкни!

ПРИНЦИПИАЛЬНЫЕ СХЕМЫ УНЧ

Смотреть ещё схемы усилителей

       УСИЛИТЕЛИ НА ЛАМПАХ          УСИЛИТЕЛИ НА ТРАНЗИСТОРАХ  

   

УСИЛИТЕЛИ НА МИКРОСХЕМАХ          СТАТЬИ ОБ УСИЛИТЕЛЯХ   

    

amplif.ru

Усилитель мощности STONECOLD. Принципиальная схема, описание, чертеж платы.

УСИЛИТЕЛЬ МОЩНОСТИ STONECOLD

        Техническе характеристики усилителя мощности STONECOLD:
  Pвых на 4Ома. . . . . . . . . . . . . . . . . . . . . .. . 200Вт
  Pвых на 8Ом . . . . . . . . . . . . . . . . . . . . . . . . . 100Вт
  Uип . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±25…±45В
  Uвх . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1000мВ
  Fраб . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20…20000Гц

  Iпот . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . <3А
  Скорость нарастания без С2 . . . . . . . . >10В/мкс
  Кни на 1кГц . . . . . . . . . . . . . . . . . . . . . . . . . <0,01%

    Данный усилитель имеет вполне приличное звучание не смотря на свою простоту, но за все нужно платить, поэтому придется уделить самое пристальное внимание элементной базе и изготовлению катушки коррекции. Так же придется подобрать некоторые элементы, отвечающие за режим работы данного усилителя можности.
    Для начала немного истории:
    Доводку схемы данного усилителя проводили на форуме Вегалаб, однако чистовик был собран и протестирован Лишмановым Николаем ( Lincor) в 2005 году, что собственно и закрепило авторство за ним. Вот что он написал в каечстве аннотации к усилителю STONECOLD:
    Потрясающее, собранное и детальное звучание
   Проникновенный вокал, создающий впечатление общения с исполнителем

   Высочайшая термостабильность даже при работе на полную мощность. Выходные транзисторы работают в классе В, поэтому не подвержены саморазогреву.
    Мощность до 200Вт при простотой и ОЧЕНЬ дешевой реализации.

    Начало этой истории положило прочтение публикации [1] и ее обсуждение на протяжении более года на форумах Vlab и Ussr Hi-Fi. С тех пор стало очевидно, что без оригинала статьи [2], с которого и была скомпилирована [1], дальнейшее усовершенствование усилителя Гумеля превратится в вытаскивание гланд через … ну вы меня поняли . Статью эту удалось найти. Ниже приведен скан оригинала и сделанный мною перевод.

    Базовый принцип усилителя с токовым управлением был впервые описан в «Электоре» (см. Электор №8 и 21). Если кратко подытожить, его схема использует эффект четырех пассивных компонентов (моста) R2, R3, L и C, показанных на рис.1, благодаря которому нелинейная характеристика выходного каскада становится не важна. Таким образом, стало возможным использование выходного каскада класса В (т.е. смещение на базах выходных транзисторов ниже потенциала отсечки, поэтому их ток покоя равен нулю) со всеми его преимуществами и без присущих ему недостатков (переходные искажения) в данной конструкции.

   Схема, показанная на рис.2 функционально реализует принцип токового управления, описанный выше. Если верить автору, данный УМЗЧ позволяет получить 100Вт при работе на 4 Ом нагрузку, при этом Кг на частоте 1кГц заявлен 0,006% при мощности 60Вт. Если имеется оборудование, позволяющее произвести точные измерения Кг, C3 может быть заменен на переменный конденсатор емкостью 22пФ, и последний настроен по минимуму искажений.
   Схема также содержит нововведение в виде эквивалентной нагрузки (R9).
   Выходной каскад управляется (через транзисторы Т2 и Т5) транзисторами Т1 и Т4, включенными последовательно в положительные и отрицательные плечи питания ОУ соответственно. Это также улучшает скорость нарастания ОУ 741 (имеется в виду LM741 и клоны). Если, однако, применяется более скоростной ОУ (например, LF357), то номиналы R4 и R7 должны быть изменены для обеспечения такого тока покоя ОУ, чтобы выходные транзисторы оставались закрытыми.
   Грэм Шмидт (Германия)
    Не смотря на то, что сама идея в своем развитии, несомненно, позволяет получить высочайшие параметры при мизерных схемотехнических и денежных затратах, элементарная база, примененная Шмидтом, без сомнения, отстала от дня сегодняшнего. Сегодня стали доступны высокоточные ОУ с впечатляющим быстродействием и скоростью нарастания, мощные малошумящие транзисторы, почти не требующие подбора в пары, высокочастотные диоды с низким порогом открытия и недорогие стабилитроны, точность напряжения которых не хуже долей процента и слабо зависит от температуры. Более того, сейчас эти компоненты сравнительно дешевы и доступны.
    На основании этих фактов, непрерывных экспериментов и поисков, смены схем и плат, было получено оптимальное сочетание номиналов и параметров устройства, схема которого приведена ниже.

 

ОБ ЭЛЕМЕНТНОЙ БАЗЕ ДЛЯ УСИЛИТЕЛЯ STONECOLD   

    ОУ. Был выбран распространенный TL071 как музыкальный, скоростной ОУ с малым напряжением смещения, что очень критично в данной схеме, т.к. без C1 данный УМЗЧ может работать, фактически, как усилитель постоянного тока, поскольку не содержит емкости в цепи ООС. Лучшим TL071, из побывавших в моих руках, был ОУ производства Texas Instruments®. Смещение на выходе без калибровки составляло не более 3мВ. Для нормальной работы УМЗЧ необходимо, чтобы смещение на выходе не превышало 30мВ. Но, поскольку достать ОУ элитных фирм, таких как TI (Texas Instruments®), NS (National Semiconductors®) и AD (Analogue Devices®), с малым напряжением смещения не всегда удается, на плате предусмотрено место для установки подстроечного резистора (номинал берется из даташита) формата CA-6V или аналогичного.
   Возможные замены (от наиболее предпочтительных к наименее):
   Элитные ОУ Burr-Brown и т.п., TL071 производства “низких” брэндов типа ST, КР544УД2А, КР544УД1А, КР140УД608, КР574 и т.п.
   Замена ОУ повлечет за собой и изменение параметров ОООС и местных ООС. Емкость C2 установлена для того, чтобы компенсировать падение усиления с увеличением частоты для ОУ 741. Для TL071 эта неравномерность проявляется далеко за пределами звукового диапазона, а поэтому не требует коррекции. Одним из форумчан Vlab этот конденсатор был вообще исключен. Я же предлагаю установку емкости порядка 500-1000пФ для стабильности схемы и джампер JP1, который позволяет отключить эту коррекцию.
   Стабилитроны были установлены в делители баз транзисторов Эмиттерного Повторителя (ЭП), образованного VT1 и VT2. Вместе с резисторами R5 и R6 мощностью 0,5Вт стабилитроны образуют параметрические стабилизаторы, позволяющие менять питание УМЗЧ в широких пределах, не пересчитывая резистивных делителей. Для наилучшего результата стабилитроны желательно подобрать парами по напряжению стабилизации в пределах 12-13В, но обязательно одинаковые. Напряжение 15В недопустимо, т.к. тогда ОУ в данной схеме может выйти из строя или уйти в крайне нелинейный режим.
   В моей конструкции использованы 1N4742A, как вариант BZX55C12 или отечественные, но они требуют подбора, т.к. разброс у них больше.
   Диоды также отвечают современным тенденциям. Вместе с резисторами R15 и R16 диоды D1 и D2 выполняют функции термостабилизации предвыходного (VT3, VT4) каскада, а также предотвращают протекание тока покоя через транзисторы выходного (VT5, VT6) каскада даже при значительном прогреве устройства.
   Защитные диоды D3 и D4 предусмотрены 1N4007, однако устанавливаются они только в случае, если в выходных супер-бэтта транзисторах отсутствуют встроенные. В моем случае, в TIP142/147 эти диоды есть. При установке транзисторов типа 2SC5200,2SA1943 диоды D1, D2 должны быть германиевые импульсные типа Д311 или маломощные диоды Шотки, важно, чтобы падение напряжения на прямом переходе диода было 0,25-0,3 В.
   Диоды D6 и D7, включенные в прямом смещении, в комбинации с конденсаторами С4..С7 препятствуют проникновению наводок в каскад питания ОУ, возникающих в связи с большим потреблением выходного каскада на высокой мощности.
   Транзисторы. Выходной каскад был оставлен без изменений, его характеристика не имеет значения. В ЭП были установлены популярные высокочастотные транзисторы BC546/556. В эмиттерные цепи предвыходного каскада были включены ограничивающие резисторы R15, R16, помогающие стабилизировать ток покоя. Кроме того, по напряжению на этих резисторах удобно измерять ток покоя. Его величина – 20мА. Т.о. напряжение на резисторах должно быть 15*0,02=0,3В.
   Транзисторы предвыходного каскада подбирались по звучанию. Все рассмотренные варианты звучали по СЧ и ВЧ примерно одинаково, однако TIP31C/32C производства Fairchild Semiconductors® (Опасайтесь подделок!!!) дали не только отличную вокальную картину и детальность, но и наиболее собранный и плотный бас. С целью термостабильности, кроме вышеописанных мер, VT3 и VT4 разнесены на разные концы платы и установлены каждый на отдельный небольшой пластинчатый теплоотвод с площадью поверхности около 30см2.
    Резисторы C1-4 (углеродистые) или МЛТ (металлопленочные). Все, кроме указанных отдельно, на 0,125-0,25Вт.
    Конденсаторы С12, С3 – К10-17б; С1, С4, С6, С8, С10 – К73-17; С2 – К73-9.
    Остальные – электролиты, лучше известных японских фирм – Rubycon, Mitsumi, Matsushita (Panasonic), Samsung, Sanyo, Jamicon.

НАСТРОЙКА

   Настройка выполняется с отключенными транзисторами выходного каскада. VT5 и VT6 впаиваются в последнюю очередь.

    Катушка выполнена на оправке d=7мм в два слоя и содержит 9+7 витков медного провода диаметром 0,8мм в лаковой или эпоксидной изоляции. Пропитана клеем “Момент” или парафином для жесткости. От точности и качества катушки во многом зависит конечный результат.
   Балансировка. Для проверки сначала установите R7 и R8 по 180 Ом. Подключите питание усилителя через мощные проволочные резисторы (не менее 5Вт) сопротивлением примерно по 50-100 Ом каждый. Это позволит избежать возможных пробоев, перегрева, перегрузки БП и прочих проблем. На предвыходные транзисторы устанавливаются пластинчатые теплоотводы. Вход накоротко замыкаем на землю.
   Теперь подаем питание усилителя и измеряем постоянное напряжение на его выходе. Если оно меньше 30мВ, то вам повезло и ОУ калибровать не надо. В противном случае в плату устанавливается подстроечный резистор и с его помощью на выходе устанавливается нулевое напряжение. Номинал и схема включения подстроечного резистора выбираются исходя из технической документации на микросхему.

    Ток покоя предвыходного каскада 20мА. Устанавливается подбором резисторов R7, R8 до получения на резисторах R15, R16 напряжения 300мВ. Все эти резисторы должны быть подобраны в пары с максимально возможной точностью. Начните с сопротивления 180 Ом. Для разных ОУ и транзисторов номиналы могут меняться от 180 до 330Ом. Чем больше сопротивление резисторов R7, R8, тем выше ток покоя предвыходного каскада.
   Теперь установите выходные транзисторы. Они крепятся на теплоотвод площадью около 300кв. см через слюду с термопастой на винтах с изолирующими втулками. Еще раз проверьте ток покоя.
   Баланс моста. Этот пункт выполняется только при наличии осциллографа и генератора (можно с компьютера). Необходимо подать на вход 15-20кГц синусоиду. Сначала выставить небольшой уровень и посмотреть на участок вблизи оси. Если на нем заметны “прогибы” синусоиды, то настройка нужна. Для этого вместо С3 устанавливается подстроечный конденсатор примерно на 30пФ. Его изменением добиваются исчезновения участка “недокомпенсации”.
   Еще раз проверьте ноль на выходе. Настройка завершена!

   Печатная плата выполнена из одностороннего фольгированного текстолита толщиной 1,5мм. Размер платы 90х60мм. Ниже даны раскладка элементов и рисунок печатной платы для лазерно-утюжной технологии (ЛУТ). C5 и C7 устанавливаются под платой со стороны фольги. D6 и D7 – вертикально.

 

   

    Удержаться от того, чтобы не проработать схему под себя было конечно же не возможно.
    Прежде всего было опробовано несколько вариантов замены ОУ. Серия AD показала себя далеко не с лучшей стороны – усилитель стал крайне не устойчив и приходилось по нескольку раз перематывать катушку индуктивности, разумеется перед каждой перемоткой было опробованы различные режимы по току и подбор корректирующего конденсатора. В общем наигравшись вдоволь был оставлен рекомендованный в оригинальной схеме “Stonecold” операционный усилитель TL071. Правда TL071 от ST (STMicroelectronics) показали немного худшие параметры, поэтому для данного усилителя закупались TL071 от TI (Texas Instruments).
    Следующей партией опытов была замена транзисторов. Нет, не потому что предлагаемые в оригинальной схеме транзисторы были в дифиците. Просто 2N5551-2N5401 закупались по несколько десятков штук и расширять спикок заказов просто не хотелось.
    А вот TIP31-TIP32 были заменены намеренно. Во первых пара 2SA1837-2SC4793 гораздо быстрее, имеют гораздо большие коф усиления, что в итоге должно благоприятно отразиться на качестве звучания. Во вторых у транзисторов TIP31-TIP32 металлические фланцы, а значит потребуется изоляция транзистора – подавать на радиатор сигнал с коллектора крайне не рекомендуется, ведь он имеет амплитуду выходного сигнала и ток порядка 20-40 мА, а это однозначно вызовет возникновение наводок. Транзисторы 2SA1837-2SC4793 имеют пластиковый корпус и необходимость в прокладках отпадает сама собой и на радиатор можно смело подавать общий провод.
    В результате замен получилась следующая схема усилителя:

 

   

Для возможности более оперативно проводить подбор токозадающих резисторов и корректирующего конденсатора в плату запаивались цанги от панелек для микросхем, а после всех манипуляций детали запаивались прямо в цанги.

    Плата тоже перерабатывалась, но в основном переработка затрагивала как раз расположеение предпоследнего каскада усилителя.

    К моменту разработки последней версии платы для Стонеколда уже и транзисторы оконечного каскада изменились, причем не только внешне – усилитель с ними стал более склонен в подвозбуду – небольшим всплескам по ВЧ на верхушках синусоиды при мощностях близких к максимальным. Пришлось добавить два витка в катушку.
    Разумеется, что в качестве оконечного каскада необходимо использовать транзисторы в корпусе TO-247, хотя они бывают и в TO-220.

   

НЕСКОЛЬКО ВАРИАНТОВ ПЕЧАТНЫХ ПЛАТ ИЗ ИНТЕРНЕТА


      Данная печатная плата имеет не плохую компоновку, но при использовании этой схемотехники крепить транзисторы предпоследнего каскада на общий радиатор не совсем корректно – нагрев общего радиатора влечет изменение режимов работы усилителя.

 


      Данная плата расчитана под какие свои конструктивные особенности и выходную мощность не более 60 Вт, поскольку используются оконечные транзисторы в корпусе ТО-220

 


      Двухканальный вариант печатной платы

 


     


      Печатная плата от ИНТЕРЛАВКИ. Самый первый вариант.

     


      Первоначальная печатная плата усилителя, разработанная Lincor, ниже приведена фото как это выглядит в металле:

 


      Печатная плата усилителя с использованием спецефичных радиаторов,

     


 

    Разумеется, что на базе усилителя STONECOLD были разработаны и моноблочные конструкции.
    Первым был собран моноблок с источником питания от сети 220В, индикатором уровня и защитой акустических систем, принципиальная схема которого приведена ниже:


УВЕЛИЧИТЬ

    Единственным слабым местом данной конструкции были оптроны в предварительном усилителе. Данные оптроны удерживали минимальную выходную мощность с момента включения в течении 1-2 секунд, что позволяло закончится все переходным процессам. В момент перехода от подачи на светодиоды оптронов до их выключения звук довольно ощутимо искажался. Разумеется, что заменив PC817 на оптроны ОЭП или самодельные эту проблему можно свести на НЕТ. Более подробно о самодельных оптрнах:

    Четеж печатной платы для данного варианта усилителя мощности можно скачать ЗДЕСЬ. Чертеж выполнен в формате lay.
    Данный моноблок показал себя хорошо не только при работе в качестве сабвуфера, но и на широкую полосу.
    Ну конечно же Стонеколд был опробован в автозвуке. Модуль показал отличнейшие результаты, а отношение цена-качество заставило владельца авто задуматься о смене имеющегося усилителя.
    Принципиальная схема автомобильного усилителя на базе “Stonecold” приведена ниже, чертеж платы можно взять ЗДЕСЬ.


УВЕЛИЧИТЬ

    Модуль имеет стабилизированное выходное напряжение и защиту от перегрева. Предварительный усилитель поскольку на эту тему было слишком большое разнообразие в те времена.
    Ну и на последок самое вкусное – видеоурок о том, как усилитель STONECOLD собрать своими руками и конечно же какой блок питания для него может понадобится:

   

 

   


Адрес администрации сайта: [email protected]
   

 

soundbarrel.ru

Простой усилитель НЧ для приемника прямого преобразования (TL071, LM386)

Принципиальная схема несложного самодельного усилителя НЧ, который можно применить в приемнике прямого преобразования, схема выполнена на микросхемах TL071, LM386.

В приемниках построенных по схемам прямого преобразования основное усиление происходит по низкой, звуковойчастоте. Таким образом, большая часть чувствительности зависит от коэффициента усиления УНЧ.

Обычно УНЧ приемника прямого преобразования состоит из предварительного УНЧ, на который поступает сигнал с демодулятора, на усилитель мощности, который доводит НЧ сигнал с выхода предварительного до мощности, необходимой для работы на головные телефоны или динамический громкоговоритель. В большинстве схем оба эти усилителя с постоянным коэффициентом усиления, а громкость или усиление регулируется потенциометром между ними.

Такую схему трудно назвать оптимальной, потому что фактически регулируется не коэффициент усиления УНЧ, а величина сигнала поступающего на него (на УМЗЧ) или с него (с предварительного УНЧ).

В результате избыток усиления приводит к росту шумов, склонности к самовозбуждению. В оптимальном случае должен регулироваться именно коэффициент передачи усилителя, а не уровень сигнала, поступающего на него, или снимаемого с него.

Принципиальная схема

На схеме на рисунке 1 показан УНЧ для приемника прямого преобразования, состоящий из предварительного усилителя на операционном усилителе А1, обеспечивающем основное усиление, и усилителя мощности ЗЧ на микросхеме А2 типа LM386. В этой схеме, усиление регулируется путем изменения коэффициента передачи предварительного УНЧ с помощью переменного резистора R5, регулирующего глубину ООС операционного усилителя А1.

Рис.1. Схема УНЧ для применения с приемником прямого преобразования, выполнен на микросхемах TL071, LM386.

Усилитель питается однополярным напряжением, поэтому, на прямой вход операционного усилителя А1 поступает напряжение смещения, равное половине напряжения питания, сформированное делителем на резисторах R2 и R3. Входной сигнал поступает на инверсный вход через цепь С1 и R1. Переменный резистор R5 включен между инверсным входом и выходом А1, от его сопротивления зависит коэффициент передачи операционного усилителя.

С выхода А1 сигнал ЗЧ поступает через конденсатор С4 на УМЗЧ на микросхеме А2 типа LM386, нагруженной через конденсатор С9 на динамический громкоговоритель В1.

Детали и печатная плата

Рис.2. Печатная плата УНЧ для приемников с прямым преобразованием частоты.

Напряжение питания может быть в пределах от 5 до 12V. На рисунке 2 показана разводка и монтажная схема печатной платы. Переменный резистор R5 должен соединяться с платой экранированным проводом.

Юдин С. А. РК-02-2016.

www.qrz.ru

Усилитель для бас-гитары. Часть 2. Усилитель мощности. / Audio Lab / Блоги по электронике

Часть 1.
Во второй части статьи будет рассмотрено изготовление усилителя мощности. Так как выходная мощность усилителя по тех. Заданию должна составлять 150-200 Вт, то тут уже и схемотехника будет посерьезнее. От интегральных усилителей (типа TDA, STK) решено было отказаться, так как с такими мощностями они уже не справляются, а городить огород с мостовыми и параллельными включениями микросхем тоже не особо хотелось. Начался поиск схемных решений. Соблазном было попробовать усилитель класса D, был изучен материал вот отсюда www.compitech.ru/html.cgi/arhiv/06_11/stat_52.htm и вот отсюда www.radiokot.ru/circuit/audio/amplifier/03/, но схемотехника у них сложновата да и всяких подводных камней там навалом, так что не вариант. После долгих поисков и сложных умозаключений был выбран самый простой и оптимальный вариант, взятый вот отсюда www.interlavka.narod.ru/nabor/nabmosfit.htm
Схема приведена ниже.

Усилитель решено было делать с двумя парами выходных транзисторов, как раз получалась мощность около 200 Вт, работать он будет с двумя динамическими головками с сопротивлением катушки по 8 Ом, соединенные параллельно.
Основные параметры усилителя
Максимальная выходная мощность………….200 Вт
Напряжение питания ……………………40-45 В
THD для нагрузки 4 Ома и 90 %
от максимальной выходной
мощности не более……………………..0,02%
Коф усиления………………………….33Дб
Параметры весьма неплохие для такого схемного решения.
Рассмотрим как работает данная схема
Данный усилитель имеет предварительный буферный усилитель напряжения, выполненый на операционном усилителе TL071 и двукаскадный двухтактный усилитель мощности.
Схемотехника выходного каскада построена таким образом, что по сути представляет собой два независимых усилителя — для положительной полуволны звукового сигнала (VT1 — драйвер, VT3, VT5, VT7, VT9 — оконечники) и для отрицательной полуволны (VT2 — драйвер, VT4, VT6, VT8, VT10 — оконечники). Оба усилителя охвачены своими местными отрицательными обратными связями: R13-R9 и R14-R10, от соотношения номиналов этих резисторов и зависит коф усиления данного каскада. В данном случае он выбран таким образом, чтобы получить минимальные искажения в этом каскаде.
Поскольку последний каскад усилителя работает в усилительном режиме, то входя в режим насыщения сопростивление между выходом усилителя и источником питания становится мнимально возможным (0,2-0,5 Ома). Именно это позволяет усилителю по отношению к традиционным усилителям с эмиттерными повторителями на выходе иметь значительно больший КПД, поскольку амплитуда выходного сигнала зависти практически от напряжения питания и отличается на пару вольт в отличии от усилителей с эмиттерными повторителями на выходе. Ток покоя оконечного каскада следует выставлять в пределах 30-40 мА — этого вполне достаточно для полного исчезновения искажений «ступенька» и технологического запаса на повышение напряжения питания. Данный усилитель не имеет ни каких токостабилизирующих цепочек, следовательно при изменении напряжения питания будут изменяться и режимы работы оконечного каскада — при увеличении питания ток покоя будет увеличиваться, при снижении — уменьшаться. Особого значения это не имеет, если напряжение сети изменяется в пределах 5%, но если напряжение питания сети снизится на 10 %, то на выходе усилителя уже гарантированно появится ступенька, а если повысится на 10%, то ток покоя уже будет составлять 0,40 А, а выделяемая на каждом транзисторе мощность повысится на холостом ходу. Я для избавления от этой проблемы выставил ток покоя оконечного каскада при настройке около 22-25 ма.
В качестве термостабилизирующих элементов используются диоды VD3-VD4, которые могут быть установлены как на радиатор, так и оставаться на печатной плате — мгновенного разогрева все равно не происходит, поэтому скорости разогрева платы, установленной над радиатором вполне хватает. Усилитель охвачен общей ООС, коф усиления усилителя можно расчитать по формуле R33 / R2 + 1, в данном слечае составляет 47 раз (33 дБ). В небольших пределах можно изменять R2 для получения требуемого коф усиления, однако превышать коф усиления выше 37 дБ не рекомендуется (R2 не должен быть меньше 680 Ом). С принципом работы разобрались, можно и собирать.
На том же сайте дана печатная плата для этого усилителя, но она рассчитана на установку 4 пар выходных транзисторов. Мне такой мощи не надо и я доработал слегка печатку, ликвидировав лишние места для транзисторов и соответствующие дорожки. Резисторы R3 и R4 лучше пересчитать, в зависимости от напряжения питания усилителя. Микросхема TL071 потребляет ток 10..12 Ма, следовательно из закона Ома высчитываем напряжение питания минус напряжение стабилитрона делим на ток потребления операционника и получаем нужный номинал резистора. например питание 45 вольт: (45-15)/0,01= 3000 ом. Резистор ставим на 3Ком. Чтобы ток покоя у всех выходных транзисторов был одинаковый их желательно подобрать в пары. Делается это очень просто.Можно довольно неплохо подобрать обычным мультиметром именно полевики. В соответствии какой поливик Р или N проводимости например берём irf 9240 ставим мультиметр в режим прозвонки диодов и плюсовым щупом на сток (средний вывод) а минусовой на затвор (крайний левый, если плассмассовой частью на себя, а фланцем отсебя), а затем переносим щуп с затвора на исток, мультиметр покажет цыфры, например 312, вот по приблизительно одинаковым показателям и можно таким образом подобрать. Естественно при подборе irf240 меняем полярность щупов. Ну у 240-х эта цыфра может быть в пределах скажем 188, это так и должно быть.Подбираем одинаковые только по плечам. То есть одинаковые 240-е и одинаковые 9240-е. Я подбирал прямо на радиорынке. Тоесть получаеться ёмкость полевика заряжаем, а затем меряем сопротивление открытого канала.
Вот собственно фото собранной платы. На дорожки питания и выхода был дополнительно наплавлен слой припоя для увеличения сечения проводников.


Способ крепления транзисторов к радиатору из оригинальной статьи мне не понравился, в глаза бросилось слишком тесное расположение выходников, транзисторы образовывали некий эпицентр тепла, которое неэффективно «расползалось» по всему радиатору, проблему решил некоторым удалением друг от друга транзисторов на радиаторе. Радиаторы были взяты от силовых диодов, к ним же крепится и вентилятор.
Вот фото

Транзисторы соединяются с платой толстыми короткими проводами.
Вот все в сборе.

Так, теперь надо делать блок питания. Блок питания обычный двухполярный. Теперь встала проблема — где взять силовой трансформатор? ТС 180 и ТС270 под рукой небыло, но было железо и каркасы для катушек от сгоревшего транса с какого-то прибора. Вот фото.

Ну мотать, так мотать! Транс рассчитывал в программе PowerTrans. Ввел туда размеры сердечника, напряжения и ток вторичных обмоток. Обмотки три. Две для питания усилителя по 32 В, одна для питания вентилятора и блока защиты и индикации на 15В. Посчитала мне эта программа количество витков первички и вторички. Стал мотать. Намотал одну половину первички на одной катушке, вторую на второй. Решил включить в сеть через ЛАТР без вторичек и померять ток холостого хода. Включаю, довожу напряжение на ЛАТРа до 220 В, а транс дико гудит и амперметр показывает ток около 400 мА. Для транса с габаритной мощностью около 300 Вт это многовато, немного надурила программа расчета, но не беда, разобрал транс, домотал на каждую катушку по 70 витков, сфазировал обмотки, замер показал ток холостого хода около 120 мА. Самое то! Намотал поверх десять витков провода, померил напряжение на этой обмоточке и расчитал по новой количество витков на вольт.
Вот фото транса с намотанными первичками. Изолировал слои термостойкой изолентой, а межобмоточную изоляцию сделал сентифлексом.

Намотал вторичные обмотки, включил, проверил, погонял под нагрузкой — полет нормальный, ничего не дымит и не греется. Вот транс в сборе.

Диодный мостик использовал импортный, 35 амперный. Конденсаторы фильтра расположены на печатной плате, где собран бп для лампового преампа(см. часть1)
Так, теперь подключаем плату усилителя к блоку питания, силовой трансформатор в сеть через лампочку. При включении лампочка мигнула и погасла, значит все нормально, никаких ошибок в сборке нет. Теперь параллельно резистору R19 подключаем вольтметр и измеряем падение напряжения. Подстроечным резистором R7 добиваемся минимально падения напряжения. Далее включаем в сеть уже без лампы и этим же подстроечным резистором выставляем на вольтметре напряжение около 10 мв. Пересчитав по закону Ома ток получаем 30 мА. Это и будет ток покоя оконечного каскада. При этих манипуляциях вход усилителя должен быть закорочен на общий провод! Далее подключчаем вход усилителя к генератору низкочастотных сигналов, выставляем частоту примерно 1000Гц, выход усилителя соединяем с эквивалентом нагрузки (можно резистор мощный проволочный на 4 или 8 ом). Вот у меня такой эквивалент нагрузки

К эквиваленту нагрузки подключаем осциллограф, включаем усилитель и смотрим форму сигнала на выходе. Если синусоида чистая, без всякой высокочастотной модуляции, то все в порядке, если нет, то это возбуждение. При возбуждении еще будет сильно греться резистор R16. Самовозбуждение устраняется подбором емкостей C1, C5 или параллельно резистору обратной связи R33 поставить конденсатор емкостью 5-15 пф. Ну если все нормально, то можно увеличить уровень входного сигнала с генератора до тех пор, пока синусоида на экране осциллографа не начнет ограничиваться. Это будет максимальная амплитуда выходного сигнала. Можно теперь посчитать мощность по формуле
P = (0,707U)^2/Rн = U^2/2Rн
где 0,707- коэффициент перевода амплитудного напряжения U синусоидального тока в эквивалентное напряжение постоянного тока. При питании 45 вольт мощность составила порядка 185 Вт, что вполне достаточно для данной конструкции. Если на осциллограмме появится искажение типа «ступенька», как на картинке

то необходимо отрегулировать ток покоя до пропадания этого искажения.
Ну вот собственно и все. В последующей части будет рассмотрено устройство защиты и индикации, а также оформление всей конструкции в корпус.
вот печатная плата
Использованные ссылки
www.interlavka.narod.ru/nabor/nabmosfit.htm — основное описание
forum.cxem.net/index.php?showtopic=22538&st=0 — обсуждение на форуме
Удачи!

electronics-lab.ru

Схема усилителя мощности на полевых транзисторах МОСФИТ

   СХЕМА УСИЛИТЕЛЯ МОЩНОСТИ МОСФИТ

   

        Не смотря на примитивную схемотехнику данный усилитель мощности имеет довольно не плохие характеристики, приятное звучание и в середине восьмидесятых был запатентован (инфа по номеру патентаи и автору погибла вместе с жестким диском – пардон). С тех пор элементная база изменилась довольно сильно и схему получилось упростить сохранив саму идею и получив лучшие характеристики без снижения надежности. Принципиальная схема усилителя мощности с использованием полевых транзисторов в оконечном каскаде приведена на рисунке 1.


Рисунок 1 Усилитель мощности МОСФИТ. Принципиальная схема УВЕЛИЧИТЬ

    Усилитель имеет 4 подмодификации, отличающиеся друг от друга выходной мощностью и может на нагрузк 4 Ома выдавать 100, 200, 300 и 400 Вт. Конструктивно усилитель выполнен на печатной плате, причем сколько ватт выдаст усилитель зависит именно от длины платы, поскольку плата выполнена таким образом, что позволяет изменять количество устанавливаемых оконечных транзисторов.
    Данный усилитель мощности имеет предварительный буферный усилитель напряжения, выполненый на операционном усилителе TL071 и двукаскадный двухтактный усилитель мощности – именно мощности, поскольку производится усиление и по току и по напряжению. Схемотехника выходного каскада построена таким образом, что по сути представляет собой два независимых усилителя – для положительной полуволны звукового сигнала (VT1 – драйвер, VT3, VT5, VT7, VT9 – оконечники) и для отрицательной полуволны (VT2 – драйвер, VT4, VT6, VT8, VT10 – оконечники). Оба усилителя охвачены своими местными отрицательными обратными связями: R13-R9 и R14-R10, от соотношения номиналов этих резисторов и зависит коф усиления данного каскада. В данном случае он выбран таким образом, чтобы получить минимальные искажения в этом каскаде и менять номиналы не рекомендуется (R13 и R14 – лучше не менять, R9 и R10 могут быть от 27 до 43 Ом, оптимально – 33 или 39 Ом). Поскольку последний каскад усилителя работает в усилительном режиме, то входя в режим насыщение сопротивление между выходом усилителем и источником питания становится мнимально возможным (0,2-0,5 Ома). Именно это позволяет усилителю по отношению к традиционным усилителям с эмиттерными повторителями на выходе иметь значительно больший КПД, поскольку амплитуда выходного сигнала практически от напряжения питания отличается на пару вольт в отличии от усилителей с эмиттерными повторителями на выходе (рисунок 2-а амплитуда выходного сигнала данного усилителя, 2-б – амплитуда усилителя мощности VL).


Рисунок 2-а

Рисунок 2-б

    Кроме местной отрицательной обратной связи (ООС) весь усилитель охвачен другой веткой ООС – R32-R2, от номиналов которой зависит коф усиления всего усилителя. В данном случае коф усиления при этих номиналах равен Ku = R32 / (R2 + 1) . При указананных на схеме номиналах коф усиления составляет примерно 48 раз или чуть больше 33 дБ, а уровень THD не превышает 0,04% при выходной мощности 300 Вт (4 пары оконечных транзисторов и питание ±65 В).
    Перечень необходимых для самостоятельной сборки усилителя мощности элементов сведен в таблицу:

C4,C3 = 2 x 470.0u х 25V
C9,C10 = 2 x 470.0u x 100V
C6,C7,C2 = 3 x 1.0u x63V
C5 = 1 x 100p
C1 = 1 x 680p
C8 = 1 x 0.1u

R1,R32 = 2 x 47k
R23,R22,R27, R26,R31,R30,R19,R18 = 8 x 5W 0.33
R20,R21,R24, R25,R28,R29,R15,R17 = 8 x 39
R13,R14 = 2 x 820
R9,R10 = 2 x 0.5W 33
R11,R12 = 2 x 0.5W 220
R7,R8 = 2 x 22k
R5,R6 = 2 x 2k
R3,R4 = 2 x 1W-2W 2.7k
R2 = 1 x 1k
R16 = 1 x 1W-2W 3.6

VD2,VD1 = 2 x 15V (стабилитроны на 1,3W)
VD3,VD4 = 2 x 1N4148

VT1 = 1 x BD139
VT2 = 1 x BD140
VT6,VT8,VT10,VT4 = 4 x IRFP240
VT5,VT7,VT9,VT3 = 4 x IRFP9240

X1 = 1 x TL071
X2 = 1 x 4.7k

Усилитель мощности на полевых транзисторах МОСФИТ усилитель на полевых транзисторах для сабвуфера простой усилитель мощности самостоятельная сборка усилителя мощности на полевых транзисторах

    Чертеж печатной платы в формате LAY можно скачать здесь, расположение деталей на плате показано на рисунке 3.


Рисунок 3 Расположение деталей на печатной плате усилителя мощности МОСФИТ УВЕЛИЧИТЬ
ВЗЯТЬ В ФОРМАТЕ LAY

    Внешний вид собранного варианта усилителя мощности на 400 Вт с полевыми транзисторами IRFP240 и IRFP9240 показан на рисунке 4. На плате установлены оригинланые транзисторы и подбирать их по параметрам практически не пришлось – было достаточно, что они из одной партии. В данном усилителе мощности одинаковоть параметров наиболее актуальна, поскольку транзисторы работают в усилительно режиме.


Рисунок 4 Внешний вид усилителя мощности МОСФИТ на 400 Вт

    Как видно из фотографии оконечные транзисторы установлены не совсем традиционно – они развернуты внутрь платы и крепятся к теплоотводу через имеющиеся в плате отвертия, диаметр которых позволяет пропустить через них крепеж вместе с головкой (винты или саморезы диаметром 3 мм). Такая компjновка позволила существенно сократить размеры печатной платы усилителя.
    Из особеностей усилителя так же следует отметить, что фланцы оконечных транзисторов соеденены между собой и выходом усилителя, поэтому при использовании небольших теплоотводов с принудительным охлаждением можно не использовать диэлектрические прокладки а изолировать радиатор от корпуса. При использование теплоотводов с естественной конвекцией воздуха размеры теплоотвода уже становяться довольно большими и подавать на них выход усилителя не рекомендуется – слишком большие наводки он будет создавать, что при неудачном монтаже плат в корпусе может вызвать возбуждение усилителя даже не смотря на его довольно жесткую устойчивость.

        На рисунке 5 и 6 приведены схемы усилителя с картами напряжений для варианта усилителя на 200 Вт при напряжении питания усилителя ±45 В и двумя парами оконечных транзисторов и усилителя на 400 Вт при напряжении питания ±65 В. Оба варианта нагружены на эквивалент акустической системы (желтый прямоугольник) и используют в качестве источника питания не идеальные источники питания, имеющие свое собственное сопротивление.


Рисунок 5 Карта напряжений усилителя мощности на 200 Вт и питании ±45В


Рисунок 6 Карта напряжений усилителя мощности на 400 Вт и питании ±65В

    Пожалуй стоит заметить, что в модели использовались транзисторы IRF640-IRF9640, как ближайшие аналоги IRFP240-IRFP9240, но с меньшей мощностью рассеиваниея кристалом тепла, поскольку имеют корпус ТО-220 против ТО-247. Тем не менее IRF640-IRF9640 в симмуляторе полностью справились с возлагаемыми на них задачами, а так же могут быть использованы в усилителе в качестве оконечных транзисторов. Однако, при использовании корпусов ТО-220 не следует забывать, что можность одного корпуса ТО-220 не должна превышать 60 Вт, в отличии от корпуса ТО-247 – до 100-120 Вт. Другими словами – при использовании в качестве оконечных транзисторов IRF640-IRF9640 с усилителя с четырмя парами снимать более 240 Вт не рекомендуется.
    На рисунках 7 и 8 схемы усилителей с картами токов, потекающих через каждый элемент усилителя в режиме покоя (входной сигнал отсутствует).


Рисунок 7 Карта токов усилителя мощности при напряжении питания ±45 В.


Рисунок 8 Карта токов усилителя мощности при напряжении питания ±65 В.

    Ток покоя оконечного каскада следует выставлять в пределах 30-40 мА – этого вполне достаточно для полного исчезновения искажений “ступенька” и технологического запаса на повышение напряжения питания. Пожалуй об этом стоит сказать отдельно:
    Данный усилитель не имеет ни каких токостабилизирующих цепочек, следовательно при изменении напряжения питания будут изменяться и режимы работы оконечного каскада – при увеличении питания ток покоя будет увеличиваться, при снижении – уменьшаться. Особого значения это не имеет, если напряжение сети изменяется в пределах 5% или для усилителя используется стабилизированный блок питания, но если напряжение питания сети снизится на 10 %, что на перефирии случается довольно часто, то на выходе усилителя уже гарантированно появится ступенька, а если повысится на 10%, то ток покоя уже будет составлять 0,45 А, а выделяемая на каждом транзисторе мощность (при питании ±65 В + 10% и четырех парах оконечников) составит порядка 30 Вт, что в итоге вызовет выделение тепла порядка 200 Вт, причем это на холостом ходу.
    Именно по этой причине рекомендуется этот усилитель использовать в качестве широкополосного при не изменном напряжении питания, либо в качестве усилителя для сабвуфера и установкой тока покоя в пределах 15-20 мА. При снижении питания появившуюся “ступеньку” низкочастотная динамическая головка просто не в состоянии воспроизвести за счет инерционности дифузора, а при повышении ток покоя останеться в пределах допустипого и такого сильного разогрева теплоотвода не произойдет.
    В качестве термостабилизирующих элементов используются диоды VD3-VD4, которые могут быть установлены как на радиатор, так и оставаться на печатной плате – мгновенного разогрева все равно не происходит, поэтому скорости разогрева платы, установленной над радиатором вполне хватает. На рисунке 8 показаны тока, протекающие в каскадах при температуре 20°С, а на рисунке 9 – при температуре 60°С, т.е. температура увеличилась в 3 раза.


Рисунок 8 Токи в каскадах усилителя мощности при температуре 20°С


Рисунок 9 Токи в каскадах усилителя мощности при температуре 60°С

    Поскольку оконечный каскад усилителя имеет свой собственный коф усиления ОЧЕНЬ важно обеспечить на входе этого каскада напряжение максимально приблежонное к нулю, поскольку как видно из рисунков 5 и 6 постоянное напряжение на выходе операционного усилителя величиной в 13 мВ на выходе усилителя уже приобретает величину в 66 мВ, т.е. увеличивается практически в 5 раз. Микросхемы от различных производителей имеют разное напряжение постоянной составляющей на выходе усилителя соответсвенно будет тоже отличаться довольно значительно и если постоянное напряжение на выходе усилителя больше 0,05-0,08 В, то придется либо искать микросхему другого типа, либо другого производителя, причем не гарантия, что новая микросхема будет по этим параметрам лучше той, которая уже стоит.
    Поэтому стоит обратиться в даташнику на TL071, в котором имеется принципиальная схема самого операционного усилителя. Изучив внимаетльно описание становится понятным, что производитель предусмотрел подобную ситуацию и вполне разумно вывел точки балансировки на выводы микросхемы (выводы 1 и 5 рисунка 10).


Рисунок 10 Принципиальная схема операционного усилителя TL071

    Подстроечный резистор лучше выбрать многооборотным и установить его непосредственно на корпус микросхемы распаяв выводы резистора на балансирующие выводы микросхемы, а движок резистора соединить с минусовым выводом питания.
    Мнение о том, что постоянное напряжение может возникать из за разбросов параметров транзисторов драйверного каскада не совсем верно. Усилитель мощности охвачен довольно хорошей ООС и посотянное напряжение остается не изменным даже при использовании не комплементарных пар в драйверном каскаде, а так же при отличии номаналов резисторов R9 и R10 на 10 % относительно необходимых (R9 составлял 36 Ом, а R10 – 30 Ом). Во всех экспериментах только увеличивался уровень THD, но ни как не изменялась величина постоянного напряжения на выходе усилителя.
    Модели для МИКРОКАП-8 можно взять ЗДЕСЬ.

 

        Несколько слов об ошибках монтажа:
    В целях улучшения читаемости схем расмотрим усилитель мощности с двумя парами оконечных полевых транзисторов и питании ±45 В.
    В качестве первой ошибки попробуем “запаять” стабилитроны VD1 и VD2 не правильной полярностью (правильное включение показано на рисунке 11). Карта напряжений приобретет вид, показанный на рисунке 12.


Рисунок 11 Цоколевка стабилитронов BZX84C15 (впрочем и на диодах цоколевка такая же).


Рисунок 12 Схема усилителя с картой напряжений при неправильном монтаже стабилитронов VD1 и VD2.

    Данные стабилитроны нужны для формирования напряжения питания операционного усилителя и выбраны на 15 В исключительно из за того, что это напряжение является для данного операционного усилителя оптимальным. Работоспособность без потери качества усилитель сохраняет и при использовании рядом стоящих по линейке номиналов – на 12 В, на 13 В, на 18 В (но не более 18 В). При неправильном монтаже вместо положенного напряжения питания опреционный усилитель получает лишь напряжение падения на n-p переходе стаблитронов. Ток покая регулируется нормально, на выходе усилителя присутсвует небольшое постоянное напряжение, выходной сигнал отсутсвует.
    Так же возможен не правильный монтаж диодов VD3 и VD4. В этом случае ток покоя ограничивается лишь номиналами резисторов R5, R6 и может достигать критической величины. Сигнал на выходе усилителя будет, но довольно быстрый нагрев оконечных транзисторов однозначно повлечет их перегрев и выход усилителя из строя. Карта напряжений и токов дляэтой ошибки показаны на рисунка 13 и 14.


Рисунок 13 Карта напряжений усилителя при неправильном монтаже диодов термостабилизации.


Рисунок 14 Карта токов усилителя при неправильном монтаже диодов термостабилизации.

    Следующей популярной ошибкой монтажа может быть неправильный монтаж транзисторов предпоследнего каскада (драйверов). Карта напряжений усилителя в этом случае приобретает вид, показанный на рисунке 15. В этом случае транзисторы оконечного касада полностью закрыты и на выходе усилителя наблюдается отсутсвие каких либо признаков звука, а уровень постоянного напряжения максимально приближен к нулю.


Рисунок 15 Схема усилителя с картой напряжений при неправильном монтаже транзисторов драйверного каскада.

    Далее самая опасная ошибка – попутаны местами транзисторы драйверного каскада, причем цоколевка тоже попутана в следствии чего прилагаемое к выводам транзисторов VT1 и VT2 является верным и они работают в режиме эмиттерных повторителей. В этом случае ток через оконечный каскад зависит от положения движка подстроечного резистора и может быть от 10 до 15 А, что в любом случае вызовет перегрузку блока питания и быстрый разогрев оконечных транзисторов. На рисунке 16 показаны токи при среднем положении подстроечного резистора.


Рисунок 16 Карта токов при неправильном монтаже транзистров драйверного каскада, цоколевка тоже попутана.

    Запаять “наоборот” вывода оконечных полевых транзисторов IRFP240 – IRFP9240 врядли получится, а вот поменять их местами получается довольно часто. В этом случае установленные в транзисторах диоды получаются в нелегкой ситуации – прилагаемое к ним напряжение имеет полярность соответсвующую их минимальному сопротивлению, что вызывает максимальное потребление от блока питания и как быстро они выгорят больше зависит от удачи чем от законов физики.
    Фейверк на плате может случиться еще по одной причине – в продаже мелькают стабилитроны на 1,3 Вт в корпусе таком же как у диодов 1N4007, поэтому перед монтажом стабилитронов в плату, если они в черном корпусе стоит повнимательней ознакомиться с надписями на корпусе. При монтаже вместо стабилитронов диодов напряжение питания операционного усилителя ограничено лишь номиналами резисторов R3 и R4 и потребляемым током самого операционного усилителя. В любом случае получившаяся величина напряжения значительно больше максимального напряжения питания для данного ОУ, что влечет его выход из строя иногда с отстрелом части корпуса самого ОУ, ну а дальше возможно появление на его выходе постоянного напряжения, близкого в напряжению питания усилителя, что повлечет появление постоянного напряжения на выходе самого усилителя мощности. Как правило оконечный каскад в этом случае остается работоспособным.
    Ну и на последок несколько слов о номиналах резисторов R3 и R4, которые зависят от от напряжения питания усилителя. 2,7 кОм является наиболее универсальным, однако при питании усилителя напряжением ±80 В (только на 8 Ом нагрузку) данные резисторы будут рассеивать порядка 1,5 Вт, поэтому его необходимо заменить на резистор 5,6 кОм или 6,2 кОм, что снизит выделяемую тепловую мощность до 0,7 Вт.


Э   К   Б BD135;  BD137  

З   И   С IRF240 – IRF9240

    Данный усилитель заслуженно обрел своих поклоников и начал обретать новые версии. Прежде всего изменению подверглась цепочка формирования напряжения смещения первого транзисторного каскада. Кроме этого в схему была введена защита от перегрузки.
    В результате доработок принципиальная схема усилителя мощности с полевыми транзисторами на выходе приобрела следующий вид:


УВЕЛИЧИТЬ

    Варианты печатной платы приведены в графическом формате (необходимо масштабировать). Автором данной печатной платы являюсь не я, поэтому в формате LAY у меня ее нет.

 

 

 

 

    Внешний вид получившейся модификации усилителя мощности приведен на фотографиях ниже:

    Осталось в эту бочку меда плескануть ложку дегтя…
    Дело в том, что используемые в усилителе полевые транзисторы IRFP240 и IRFP9240 прекратила выпуск фирма разработчик International Rectifier (IR), которая прилагала больше внимания к качеству выпускаемой продукции. Основная проблема этих транзисторов – они разрабатывались для использования в источниках питания, но оказались вполне пригодными для звуковой усилительной аппаратуре. Повышенное внимание к качеству выпускамых компонентов со стороны International Rectifier позволяло не производя подбор транзисторов включать параллельно несколько транзисторов не беспокоясь об отличиях характеристик транзисторов – разброс не превышал 2%, что вполне приемлемо.
    На сегодня транзисторы IRFP240 и IRFP9240 выпускаются фирмой Vishay Siliconix, которая не так трепетно относится к выпускаемой продукции и параметры транзисторов стали пригодными лишь для источников питания – разброс “коф усиления” транзисторов одной партии превышает 15%. Это исключает параллельное включение без предварительного отбора, а количество протестированных транзисторов для выбора 4 одинаковы переваливает несколько десятков экземпляров.
    В связи с этим перед сборкой данного усилителя прежде всего следует выяснить какой фирмы транзисторы вы может достать. Если в Ваших магазинах в продаже Vishay Siliconix, то настоятельно рекомендуется отказаться от сборки данного усилителя мощности – Вы рискуете довольно серьезно потратиться и ни чего не добиться.
    Однако и работа по разработке “ВЕРСИИ 2” этого усилителя мощности и отсутствие приличных и не дорогие полевых транзисторов для выходного каскада заставили немного поразмышлять над будущим этой схемотехники. В результате был смоделирована “ВЕРСИЯ 3”, использующая вместо полевых транзисторов IRFP240 – IRFP9240 фирмы Vishay Siliconix биполярную пару от TOSHIBA – 2SA1943 – 2SC5200, которые на сегодня еще вполне приличного качества.
    Принципиальная схема нового варианта усилителя вобрала доработки “ВЕРСИИ 2” и притерпела изменения в выходном каскаде, позволив отказаться от использования полевых транзисторов. Принципиальная схема приведена ниже:


Принципиальная схема усилителя с использованием полевых транзисторов в качестве повторителей УВЕЛИЧИТЬ

    В данном варианте полевые транзисторы сохранились, но они используются в качестве повторителей напряжения, что существенно разгружает драйверный каскад. В систему защиты введена небольшая положительная связь, позволяющая избежать возбуждение усилителя мощности на границе срабатывания защиты.
    Печатная плата так и не была разработана до финального варианта, поэтому только могу предложить график измерения THD, полученный МИКРОКАП. Подробнее о данной программе можно почитать ЗДЕСЬ.

        Так же были проведены тесты с использованием одной пары полевиков в оконечном каскаде типа IRF630-IRF9630 и питанием от ±20 вольт. Усилитель позиционировался как усилитель для наушников и показал превосходнийшие результаты – качество звучания впечатлило, прослушивалось на наушниках Sennheiser HD 558 (брал у знакомого) и аудикарте ASUS Xonar DX (это уже своя). Детализация просто потрясающая, ни где ни чего не зажато. В общем пока сидел в наушниках пол закапал слюной, но мне пока такие не по карману…

   

ПРЕДВАРИТЕЛЬНЫЕ УСИЛИТЕЛИ
УСИЛИТЕЛИ МОЩНОСТИ НА МИКРОСХЕМАХ
УСИЛИТЕЛИ МОЩНОСТИ НА ТРАНЗИСТОРАХ

   

 


Адрес администрации сайта: [email protected]
   

 

soundbarrel.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *