Как работают импульсные преобразователи напряжения (27 схем)
Для преобразования напряжения одного уровня в напряжение другого уровня часто применяют импульсные преобразователи напряжения с использованием индуктивных накопителей энергии. Такие преобразователи отличаются высоким КПД, иногда достигающим 95%, и обладают возможностью получения повышенного, пониженного или инвертированного выходного напряжения.
В соответствии с этим известно три типа схем преобразователей: понижающие (рис. 1), повышающие (рис. 2) и инвертирующие (рис. 3).
Общими для всех этих видов преобразователей являются пять элементов:
- источник питания,
- ключевой коммутирующий элемент,
- индуктивный накопитель энергии (катушка индуктивности, дроссель),
- блокировочный диод,
- конденсатор фильтра, включенный параллельно сопротивлению нагрузки.
Включение этих пяти элементов в различных сочетаниях позволяет реализовать любой из трех типов импульсных преобразователей.
Регулирование уровня выходного напряжения преобразователя осуществляется изменением ширины импульсов, управляющих работой ключевого коммутирующего элемента и, соответственно, запасаемой в индуктивном накопителе энергии.
Стабилизация выходного напряжения реализуется путем использования обратной связи: при изменении выходного напряжения происходит автоматическое изменение ширины импульсов.
Понижающий импульсный преобразователь
Понижающий преобразователь (рис. 1) содержит последовательно включенную цепочку из коммутирующего элемента S1, индуктивного накопителя энергии L1, сопротивления нагрузки RH и включенного параллельно ему конденсатора фильтра С1. Блокировочный диод VD1 подключен между точкой соединения ключа S1 с накопителем энергии L1 и общим проводом.
Рис. 1. Принцип действия понижающего преобразователя напряжения.
При открытом ключе диод закрыт, энергия от источника питания накапливается в индуктивном накопителе энергии. После того, как ключ S1 будет закрыт (разомкнут), запасенная индуктивным накопителем L1 энергия через диод VD1 передастся в сопротивление нагрузки RH, Конденсатор С1 сглаживает пульсации напряжения.
Повышающий импульсный преобразователь
Повышающий импульсный преобразователь напряжения (рис. 2) выполнен на тех же основных элементах, но имеет иное их сочетание: к источнику питания подключена последовательная цепочка из индуктивного накопителя энергии L1, диода VD1 и сопротивления нагрузки RH с параллельно подключенным конденсатором фильтра С1. Коммутирующий элемент S1 включен между точкой соединения накопителя энергии L1 с диодом VD1 и общей шиной.
Рис. 2. Принцип действия повышающего преобразователя напряжения.
При открытом ключе ток от источника питания протекает через катушку индуктивности, в которой запасается энергия. Диод VD1 при этом закрыт, цепь нагрузки отключена от источника питания, ключа и накопителя энергии.
Напряжение на сопротивлении нагрузки поддерживается благодаря запасенной на конденсаторе фильтра энергии. При размыкании ключа ЭДС самоиндукции суммируется с напряжением питания, запасенная энергия передается в нагрузку через открытый диод VD1. Полученное таким способом выходное напряжение превышает напряжение питания.
Инвертирующий преобразователь импульсного типа
Инвертирующий преобразователь импульсного типа содержит все то же сочетание основных элементов, но снова в ином их соединении (рис. 3): к источнику питания подключена последовательная цепочка из коммутирующего элемента S1, диода VD1 и сопротивления нагрузки RH с конденсатором фильтра С1.
Индуктивный накопитель энергии L1 включен между точкой соединения коммутирующего элемента S1 с диодом VD1 и общей шиной.
Рис. 3. Импульсное преобразование напряжения с инвертированием.
Работает преобразователь так: при замыкании ключа энергия запасается в индуктивном накопителе. Диод VD1 закрыт и не пропускает ток от источника питания в нагрузку. При отключении ключа ЭДС самоиндукции накопителя энергии оказывается приложенной к выпрямителю, содержащему диод VD1, сопротивление нагрузки Rн и конденсатор фильтра С1.
Поскольку диод выпрямителя пропускает в нагрузку только импульсы отрицательного напряжения, на выходе устройства формируется напряжение отрицательного знака (инверсное, противоположное по знаку напряжению питания).
Импульсные преобразователи и стабилизаторы
Для стабилизации выходного напряжения импульсных стабилизаторов любого типа могут быть использованы обычные «линейные» стабилизаторы, но они имеют низкий КПД, В этой связи гораздо логичнее для стабилизации выходного напряжения импульсных преобразователей использовать импульсные же стабилизаторы напряжения, тем более, что осуществить такую стабилизацию совсем несложно.
Импульсные стабилизаторы напряжения, в свою очередь, подразделяются на стабилизаторы с широтно-импульсной модуляцией и на стабилизаторы с частотно-импульсной модуляцией. В первых из них изменяется длительность управляющих импульсов при неизменной частоте их следования. Во вторых, напротив, изменяется частота управляющих импульсов при их неизменной длительности. Встречаются импульсные стабилизаторы и со смешанным регулированием.
Ниже будут рассмотрены радиолюбительские примеры эволюционного развития импульсных преобразователей и стабилизаторов напряжения.
Узлы и схемы импульсных преобразователей
Задающий генератор (рис. 4) импульсных преобразователей с нестабилизированным выходным напряжением (рис. 5, 6) на микросхеме КР1006ВИ1 работает на частоте 65 кГц. Выходные прямоугольные импульсы генератора через RC-цепоч-ки подаются на транзисторные ключевые элементы, включенные параллельно.
Катушка индуктивности L1 выполнена на ферритовом кольце с внешним диаметром 10 мм и магнитной проницаемостью 2000. Ее индуктивность равна 0,6 мГн. Коэффициент полезного действия преобразователя достигает 82%.
Рис. 4. Схема задающего генератора для импульсных преобразователей напряжения.
Рис. 5. Схема силовой части повышающего импульсного преобразователя напряжения +5/12 В.
Рис. 6. Схема инвертирующего импульсного преобразователя напряжения +5/-12 В.
Амплитуда пульсаций на выходе не превышает 42 мВ и зависит от величины емкости конденсаторов на выходе устройства. Максимальный ток нагрузки устройств (рис. 5, 6) составляет 140 мА.
В выпрямителе преобразователя (рис. 5, 6) использовано параллельное соединение слаботочных высокочастотных диодов, включенных последовательно с выравнивающими резисторами R1 — R3.
Вся эта сборка может быть заменена одним современным диодом, рассчитанным на ток более 200 мА при частоте до 100 кГц и обратном напряжении не менее 30 В (например, КД204, КД226).
В качестве VT1 и VT2 возможно использование транзисторов типа КТ81х структуры п-р-п — КТ815, КТ817 (рис. 4.5) и р-п-р — КТ814, КТ816 (рис. 6) и другие.
Для повышения надежности работы преобразователя рекомендуется включить параллельно переходу эмиттер — коллектор транзистора диод типа КД204, КД226 таким образом, чтобы для постоянного тока он был закрыт.
Преобразователь с задающим генератором-мультивибратором
Для получения выходного напряжения величиной 30…80 В П. Беляцкий использовал преобразователь с задающим генератором на основе несимметричного мультивибратора с выходным каскадом, нагруженным на индуктивный накопитель энергии — катушку индуктивности (дроссель) L1 (рис. 7).
Рис. 7. Схема преобразователя напряжения с задающим генератором на основе несимметричного мультивибратора.
Устройство работоспособно в диапазоне питающих напряжений 1,0. ..1,5 В и имеет КПД до 75%. В схеме можно применить стандартный дроссель ДМ-0,4-125 или иной с индуктивностью 120.. .200 мкГн.
Вариант выполнения выходного каскада преобразователя напряжения показан на рис. 8. При подаче на вход каскада управляющих сигналов прямоугольной формы 7777-уровня (5 В) на выходе преобразователя при его питании от источника напряжением 12 В получено напряжение 250 В при токе нагрузки 3…5 мА (сопротивление нагрузки около 100 кОм). Индуктивность дросселя L1 — 1 мГн.
В качестве VT1 можно использовать отечественный транзистор, например, КТ604, КТ605, КТ704Б, КТ940А(Б), КТ969А и др.
Рис. 8. Вариант выполнения выходного каскада преобразователя напряжения.
Рис. 9. Схема выходного каскада преобразователя напряжения.
Аналогичная схема выходного каскада (рис. 9) позволила при питании от источника напряжением 28В и потребляемом токе 60 мА получить выходное напряжение 250 В при токе нагрузки 5 мА, Индуктивность дросселя — 600 мкГч. Частота управляющих импульсов — 1 кГц.
В зависимости от качества изготовления дросселя на выходе может быть получено напряжение 150…450 В при мощности около 1 Вт и КПД до 75%.
Преобразователь напряжения на основе КР1006ВИ1
Преобразователь напряжения, выполненный на основе генератора импульсов на микросхеме DA1 КР1006ВИ1, усилителя на основе полевого транзистора VT1 и индуктивного накопителя энергии с выпрямителем и фильтром, показан на рис. 10.
На выходе преобразователя при напряжении питания 9В и потребляемом токе 80…90 мА образуется напряжение 400…425 В. Следует отметить, что величина выходного напряжение не гарантирована — она существенно зависит от способа выполнения катушки индуктивности (дросселя) L1.
Рис. 10. Схема преобразователя напряжения с генератором импульсов на микросхеме КР1006ВИ1.
Для получения нужного напряжения проще всего экспериментально подобрать катушку индуктивности для достижения требуемого напряжения или использовать умножитель напряжения.
Схема двуполярного импульсного преобразователя
Для питания многих электронных устройств требуется источник двухполярного напряжения, обеспечивающий положительное и отрицательное напряжения питания. Схема, приведенная на рис. 11, содержит гораздо меньшее число компонентов, чем аналогичные устройства, благодаря тому, что она одновременно выполняет функции повышающего и инвертирующего индуктивного преобразователя.
Рис. 11. Схема преобразователя с одним индуктивным элементом.
Схема преобразователя (рис. 11) использует новое сочетание основных компонентов и включает в себя генератор четырехфазных импульсов, катушку индуктивности и два транзисторных ключа.
Управляющие импульсы формирует D-триггер (DD1.1). В течение первой фазы импульсов катушка индуктивности L1 запасается энергией через транзисторные ключи VT1 и VT2. В течение второй фазы ключ VT2 размыкается, и энергия передается на шину положительного выходного напряжения.
Во время третьей фазы замыкаются оба ключа, в результате чего катушка индуктивности вновь накапливает энергию. При размыкании ключа VT1 во время заключительной фазы импульсов эта энергия передается на отрицательную шину питания. При поступлении на вход импульсов с частотой 8 кГц схема обеспечивает выходные напряжения ±12 В. На временной диаграмме (рис. 11, справа) показано формирование управляющих импульсов.
В схеме можно использовать транзисторы КТ315, КТ361.
Преобразователь напряжения со стабильными 30В
Преобразователь напряжения (рис. 12) позволяет получить на выходе стабилизированное напряжение 30 В. Напряжение такой величины используется для питания варикапов, а также вакуумных люминесцентных индикаторов.
Рис. 12. Схема преобразователя напряжения с выходным стабилизированным напряжением 30 В.
На микросхеме DA1 типа КР1006ВИ1 по обычной схеме собран задающий генератор, вырабатывающий прямоугольные импульсы с частотой около 40 кГц.
К выходу генератора подключен транзисторный ключ VT1, коммутирующий катушку индуктивности L1. Амплитуда импульсов при коммутации катушки зависит от качества ее изготовления.
Во всяком случае напряжение на ней достигает десятков вольт. Выходное напряжение выпрямляется диодом VD1. К выходу выпрямителя подключен П-образный RC-фильтр и стабилитрон VD2. Напряжение на выходе стабилизатора целиком определяется типом используемого стабилитрона. В качестве «высоковольтного» стабилитрона можно использовать цепочку стабилитронов, имеющих более низкое напряжение стабилизации.
Преобразователь напряжения с индуктивным накопителем энергии
Преобразователь напряжения с индуктивным накопителем энергии, позволяющий поддерживать на выходе стабильное регулируемое напряжение, показан на рис. 13.
Рис. 13. Схема преобразователя напряжения со стабилизацией.
Схема содержит генератор импульсов, двухкаскадный усилитель мощности, индуктивный накопитель энергии, выпрямитель, фильтр, схему стабилизации выходного напряжения. Резистором R6 устанавливают необходимое выходное напряжение в пределах от 30 до 200 В.
Аналоги транзисторов: ВС237В — КТ342А, КТ3102; ВС307В — КТ3107И, BF459—КТ940А.
Понижающие и инвертирующие преобразователей напряжения
Два варианта — понижающего и инвертирующего преобразователей напряжения [4.1] показаны на рис. 14. Первый из них обеспечивает выходное напряжение 8,4 В при токе нагрузки до 300 мА, второй — позволяет получить напряжение отрицательной полярности (-19,4 В) при таком же токе нагрузки. Выходной транзистор ѴТЗ должен быть установлен на радиатор.
Рис. 14. Схемы стабилизированных преобразователей напряжения.
Аналоги транзисторов: 2N2222 — КТЗ117А 2N4903 — КТ814.
Понижающий стабилизированный преобразователь напряжения
Понижающий стабилизированный преобразователь напряжения, использующий в качестве задающего генератора микросхему КР1006ВИ1 (DA1) и имеющий защиту потоку нагрузки, показан на рис. 15. Выходное напряжение составляет 10 В при токе нагрузки до 100 мА.
Рис. 15. Схема понижающего преобразователя напряжения.
При изменении сопротивления нагрузки на 1% выходное напряжение преобразователя изменяется не более чем на 0,5%.
Аналоги транзисторов: 2N1613 — КТ630Г, 2N2905 — КТ3107Е, КТ814.
Двухполярный инвертор напряжения
Для питания радиоэлектронных схем, содержащих операционные усилители, часто требуются двухполярные источники питания. Решить эту проблему можно, использовав инвертор напряжения, схема которого показана на рис. 16.
Устройство содержит генератор прямоугольных импульсов, нагруженный на дроссель L1. Напряжение с дросселя выпрямляется диодом VD2 и поступает на выход устройства (конденсаторы фильтра СЗ и С4 и сопротивление нагрузки). Стабилитрон VD1 обеспечивает постоянство выходного напряжения — регулирует длительность импульса положительной полярности на дросселе.
Рис. 16. Схема инвертора напряжения +15/-15 В.
Рабочая частота генерации — около 200 кГц под нагрузкой и до 500 кГц без нагрузки. Максимальный ток нагрузки — до 50 мА, КПД устройства — 80%.
Недостатком конструкции является относительно высокий уровень электромагнитных помех, впрочем, характерный и для других подобных схем.
В качестве L1 использован дроссель ДМ-0,2-200.
Инверторы на специализированных микросхемах
Наиболее удобно собирать высокоэффективные современные преобразователи напряжения, используя специально созданные для этих целей микросхемы.
Микросхема КР1156ЕУ5 (МС33063А, МС34063А фирмы Motorola) предназначена для работы в стабилизированных повышающих, понижающих, инвертирующих преобразователях мощностью в несколько ватт.
На рис. 17 приведена схема повышающего преобразователя напряжения на микросхеме КР1156ЕУ5. Преобразователь содержит входные и выходные фильтрующие конденсаторы С1, СЗ, С4, накопительный дроссель L1, выпрямительный диод VD1, конденсатор С2, задающий частоту работы преобразователя, дроссель фильтра L2 для сглаживания пульсаций. Резистор R1 служит датчиком тока. Делитель напряжения R2, R3 определяет величину выходного напряжения.
Рис. 17. Схема повышающего преобразователя напряжения на микросхеме КР1156ЕУ5.
Частота работы преобразователя близка к 15 кГц при входном напряжении 12 В и номинальной нагрузке. Размах пульсаций напряжения на конденсаторах СЗ и С4 составлял соответственно 70 и 15 мВ.
Дроссель L1 индуктивностью 170 мкГн намотан на трех склеенных кольцах К12x8x3 М4000НМ проводом ПЭШО 0,5. Обмотка состоит из 59 витков. Каждое кольцо перед намоткой следует разломить на две части.
В один из зазоров вводят общую прокладку из текстолита толщиной 0,5 мм и склеивают пакет. Можно также применить кольца из феррита с магнитной проницаемостью свыше 1000.
Пример выполнения понижающего преобразователя на микросхеме КР1156ЕУ5 приведен на рис. 18. На вход такого преобразователя нельзя подавать напряжение более 40 В. Частота работы преобразователя — 30 кГц при UBX=15 В. Размах пульсаций напряжения на конденсаторах СЗ и С4 — 50 мВ.
Рис. 18. Схема понижающего преобразователя напряжения на микросхеме КР1156ЕУ5.
Рис. 4.19. Схема инвертирующего преобразователя напряжения на микросхеме КР1156ЕУ5.
Дроссель L1 индуктивностью 220 мкГч намотан аналогичным образом (см. выше) на трех кольцах, но зазор при склейке был установлен 0,25 мм, обмотка содержала 55 витков такого же провода.
На следующем рисунке (рис. 4.19) показана типовая схема инвертирующего преобразователя напряжения на микросхеме КР1156ЕУ5, Микросхема DA1 питается суммой входного и выходного напряжений, которая не должна превышать 40 В.
Частота работы преобразователя — 30 кГц при UBX=5 S; размах пульсаций напряжения на конденсаторах СЗ и С4 — 100 и 40 мВ.
Для дросселя L1 инвертирующего преобразователя индуктивностью 88 мкГн были использованы два кольца К12x8x3 М4000НМ с зазором 0,25 мм. Обмотка состоит из 35 витков провода ПЭВ-2 0,7. Дроссель L2 во всех преобразователях стандартный — ДМ-2,4 индуктивностью 3 мкГч. Диод VD1 во всех схемах (рис. 17 — 19) должен быть диодом Шотки.
Для получения двухполярного напряжения из однополярного фирмой MAXIM разработаны специализированные микросхемы. На рис. 20 показана возможность преобразования напряжения низкого уровня (4,5…5 6) в двухполярное выходное напряжение 12 (или 15 6) при токе нагрузки до 130 (или 100 мА).
Рис. 20. Схема преобразователя напряжения на микросхеме МАХ743.
По внутренней структуре микросхема не отличается от типового построения подобного рода преобразователей, выполненных на дискретных элементах, однако интегральное исполнение позволяет при минимальном количестве внешних элементов создавать высокоэффективные преобразователи напряжения.
Так, для микросхемы МАХ743 (рис. 20) частота преобразования может достигать 200 кГц (что намного превышает частоту преобразования подавляющего большинства преобразователей, выполненных на дискретных элементах). При напряжении питания 5 В КПД составляет 80…82% при нестабильности выходного напряжения не более 3%.
Микросхема снабжена защитой от аварийных ситуаций: при снижении питающего напряжения на 10% ниже нормы, а также при перегреве корпуса (выше 195°С).
Для снижения на выходе преобразователя пульсаций с частотой преобразования (200 кГц) на выходах устройства установлены П-образные LC-фильтры. Перемычка J1 на выводах 11 и 13 микросхемы предназначена для изменения величины выходных напряжений.
Для преобразования напряжения низкого уровня (2,0…4,5 6) в стабилизированное 3,3 или 5,0 В предназначена специальная микросхема, разработанная фирмой MAXIM, — МАХ765. Отечественные аналоги — КР1446ПН1А и КР1446ПН1Б. Микросхема близкого назначения — МАХ757 — позволяет получить на выходе плавно регулируемое напряжение в пределах 2,7…5,5 В.
Рис. 21. Схема низковольтного повышающего преобразователя напряжения до уровня 3,3 или 5,0 В.
Схема преобразователя, показанная на рис. 21, содержит незначительное количество внешних (навесных) деталей.
Работает это устройство по традиционному принципу, описанному ранее. Рабочая частота генератора зависит от величины входного напряжения и тока нагрузки и изменяется в широких пределах — от десятков Гц до 100 кГц.
Величина выходного напряжения определяется тем, куда подключен вывод 2 микросхемы DA1: если он соединен с общей шиной (см. рис. 21), выходное напряжение микросхемы КР1446ПН1А равно 5,0±0,25 В, если же этот вывод соединен с выводом 6, то выходное напряжение понизится до 3,3±0,15 В. Для микросхемы КР1446ПН1Б значения будут 5,2±0,45 В и 3,44±0,29 В. соответственно. Максимальный выходной ток преобразователя — 100 мА. Микросхема МАХ765 обеспечивает выходной ток 200 мА при напряжении 5-6 и 300 мА при напряжении 3,3 В. КПД преобразователя — до 80%.
Назначение вывода 1 (SHDN) — временное отключение преобразователя путем замыкания этого вывода на общий провод. Напряжение на выходе в этом случае понизится до значения, несколько меньшего, чем входное напряжение.
Светодиод HL1 предназначен для индикации аварийного снижения питающего напряжения (ниже 2 В), хотя сам преобразователь способен работать и при более низких значениях входного напряжения (до 1,25 6 и ниже).
Дроссель L1 выполняют на кольце К10x6x4,5 из феррита М2000НМ1. Он содержит 28 витков провода ПЭШО 0,5 мм и имеет индуктивность 22 мкГч. Перед намоткой ферритовое кольцо разламывают пополам, предварительно надпилив алмазным надфилем. Затем кольцо склеивают эпоксидным клеем, установив в один из образовавшихся зазоров текстолитовую прокладку толщиной 0,5 мм.
Индуктивность полученного таким образом дросселя зависит в большей степени от толщины зазора и в меньшей — от магнитной проницаемости сердечника и числа витков катушки. Если смириться с увеличением уровня электромагнитных помех, то можно использовать дроссель типа ДМ-2,4 индуктивностью 20 мкГч.
Конденсаторы С2 и С5 типа К53 (К53-18), С1 и С4 — керамические (для снижения уровня высокочастотных помех), VD1 — диод Шотки (1 N5818, 1 N5819, SR106, SR160 и др.).
Сетевой блок питания фирмы «Philips»
Преобразователь (сетевой блок питания фирмы «Philips», рис. 22) при входном напряжении 220 В обеспечивает выходное стабилизированное напряжение 12 В при мощности нагрузки 2 Вт.
Рис. 22. Схема сетевого блока питания фирмы «Philips».
Источник питания для питания портативных и карманных приемников
Бестрансформаторный источник питания (рис. 23) предназначен для питания портативных и карманных приемников от сети переменного тока напряжением 220 В. Следует учитывать, что этот источник электрически не изолирован от питающей сети. При выходном напряжении 9В и токе нагрузки 50 мА источник питания потребляет от сети около 8 мА.
Рис. 23. Схема бестрансформаторного источника питания на основе импульсного преобразователя напряжения.
Сетевое напряжение, выпрямленное диодным мостом VD1 — VD4 (рис. 4.23), заряжает конденсаторы С1 и С2. Время заряда конденсатора С2 определяется постоянной цепи R1, С2. В первый момент после включения устройства тиристор VS1 закрыт, но при некотором напряжении на конденсаторе С2 он откроется и подключит к этому конденсатору цепь L1, СЗ.
При этом от конденсатора С2 будет заряжаться конденсатор СЗ большой емкости. Напряжение на конденсаторе С2 будет уменьшаться, а на СЗ — увеличиваться.
Ток через дроссель L1, равный нулю в первый момент после открывания тиристора, постепенно увеличивается до тех пор, пока напряжения на конденсаторах С2 и СЗ не уравняются. Как только это произойдет, тиристор VS1 закроется, но энергия, запасенная в дросселе L1, будет некоторое время поддерживать ток заряда конденсатора СЗ через открывшийся диод VD5. Далее диод VD5 закрывается, и начинается относительно медленный разряд конденсатора СЗ через нагрузку. Стабилитрон VD6 ограничивает напряжение на нагрузке.
Как только закрывается тиристор VS1 напряжение на конденсаторе С2 снова начинает увеличиваться. В некоторый момент тиристор снова открывается, и начинается новый цикл работы устройства. Частота открывания тиристора в несколько раз превышает частоту пульсации напряжения на конденсаторе С1 и зависит от номиналов элементов цепи R1, С2 и параметров тиристора VS1.
Конденсаторы С1 и С2 — типа МБМ на напряжение не ниже 250 В. Дроссель L1 имеет индуктивность 1…2 мГн и сопротивление не более 0,5 Ом. Он намотан на цилиндрическом каркасе диаметром 7 мм.
Ширина обмотки 10 мм, она состоит из пяти слоев провода ПЭВ-2 0,25 мм, намотанного плотно, виток к витку. В отверстие каркаса вставлен подстроечный сердечник СС2,8х12 из феррита М200НН-3. Индуктивность дросселя можно менять в широких пределах, а иногда и исключить его совсем.
Схемы устройств для преобразования энергии
Схемы устройств для преобразования энергии показаны на рис. 4.24 и 4.25. Они представляют собой понижающие преобразователи энергии с питанием от выпрямителей с гасящим конденсатором. Напряжение на выходе устройств стабилизировано.
Рис. 24. Схема понижающего преобразователя напряжения с сетевым бестрансформаторным питанием.
Рис. 25. Вариант схемы понижающего преобразователя напряжения с сетевым бестрансформаторным питанием.
В качестве динисторов VD4 можно использовать отечественные низковольтные аналоги — КН102А, Б. Как и предыдущее устройство (рис. 23), источники питания (рис. 24 и 25) имеют гальваническую связь с питающей сетью.
Преобразователь напряжения с импульсным накоплением энергии
В преобразователе напряжения С. Ф. Сиколенко с «импульсным накоплением энергии» (рис. 26) ключи К1 и К2 выполнены на транзисторах КТ630, система управления (СУ) — на микросхеме серии К564.
Рис. 26. Схема преобразователя напряжения с импульсным накоплением.
Накопительный конденсатор С1 — 47 мкФ. В качестве источника питания используется батарея напряжением 9 В. Выходное напряжение на сопротивлении нагрузки 1 кОм достигает 50 В. КПД составляет 80% и возрастает до 95% при использовании в качестве ключевых элементов К1 и К2 КМОП-структур типа RFLIN20L.
Импульсно-резонансный преобразователь
Импульсно-резонансные преобразователи конструкции к,т.н. Н. М. Музыченко, один из которых показан на рис. 4,27, в зависимости от формы тока в ключе VT1 делятся на три разновидности, в которых коммутирующие элементы замыкаются при нулевом токе, а размыкаются — при нулевом напряжении. На этапе переключения преобразователи работают как резонансные, а остальную, большую, часть периода — как импульсные.
Рис. 27. Схема импульсно-резонансного преобразователя Н. М. Музыченко.
Отличительной чертой таких преобразователей является то, что их силовая часть выполнена в виде индуктивно-емкостного моста с коммутатором в одной диагонали и с коммутатором и источником питания в другом. Такие схемы (рис. 27) отличаются высокой эффективностью.
Источник: Шустов М. А. Практическая схемотехника. Преобразователи напряжения.
www.qrz.ru
Повышающие импульсные преобразователи напряжения DC-DC
Казалось бы, всё просто как бублик: слепили из простых и доступных ингредиентов генератор, присовокупили к нему повышающий трансформатор, мостик, всякие там дела… Вот, собственно, и всё – дело сделано, сказка сказана, можно закрывать тему.
– Но мы же не можем прямо тут… У нас же есть какие-то морально-этические принципы…
– Так сегодня ж понедельник!
– Понедельник, конечно, но не до такой же степени. Поэтому говорить будем много,
нудно и обстоя- тельно.
А обсудим мы на этой странице повышающие преобразователи напряжения, не омрачённые такими редко любимыми в радиолюбительских кругах моточными изделиями, как силовые (или импульсные) трансформаторы.
Начнём с устройств, выполненных на цепях диодно-конденсаторных умножителей напряжения.
Рис.1
Простой преобразователь напряжения на одной К561ЛН2-микросхеме с минимальным числом навесных элементов можно собрать по схеме,
приведённой на Рис.1.
Преобразователь содержит задающий генератор, реализованный на первых двух инверторах КМОП микросхемы DD1, и буферного выходного
каскада, предназначенного для увеличения выходного тока преобразователя и выполненного на включённых параллельно оставшихся элементов ИМС.
Диоды VD1, VD2, а так же конденсаторы С2, С3 образуют цепь удвоения напряжения.
При указанных на схеме номиналах элементов – генератор импульсов, работает на частоте 10 кГц. При напряжении питания 10В –
выходное напряжение составляет 17В при токе нагрузки 5мА, 16В при токе 10мА, 14,5В при токе 15мА.
Значение КПД и величину выходного напряжения преобразователя можно увеличить за счёт использования в выпрямителе-умножителе напряжения
германиевых диодов, либо диодов Шоттки.
А для получения отрицательного выходного напряжения – элементы удвоителя напряжения следует включить в соответствии
с правой частью рисунка Рис.1.
Для увеличения мощности повышающих преобразователей между генератором и умножителем вводятся дополнительные биполярные или полевые транзисторы с максимальным допустимым током, превышающим ток нагрузки.
Рис.2
Устройство, представленное на Рис.2, образуют задающий генератор, собранный на логических элементах DD1.1 и DD1.2,
буферные ступени DD1.3, DD1.4, усилители тока VT1, VT2 и выпрямитель-удвоитель напряжения на диодах VD1, VD2 и конденсаторах
С2, СЗ.
При питании преобразователя от источника постоянного тока напряжением 12 В его выходное напряжение при токе нагрузки 30 мА будет
около 22 В (напряжение пульсаций — 18 мВ).
При токе нагрузки 100 мА выходное напряжение уменьшается до 21 В, а при 250 мА — до 19,5 В.
Без нагрузки преобразователь потребляет от источника питания ток не более 2 мА.
Транзисторы VT1 и VT2 преобразователя могут быть любыми из указанных на схеме серий, а также ГТ402В или ГТ402Г, ГТ404В или ГТ404Г.
С германиевыми транзисторами выходное напряжение преобразователя будет больше примерно на 1 В.
Для получения больших выходных напряжений применяются схемы преобразователей напряжения с многокаскадными умножителями.
Рис.3
На Рис.3 приведена схема экономичного преобразователя напряжения для питания варикапов, опубликованная в журнале Радио №10, 1984,
И. Нечаевым.
«Преобразователь не содержит намоточных деталей, экономичен и прост в налаживании. Устройство состоит из генератора прямоугольных
импульсов на микросхеме DD1, умножителя напряжения на диодах VD1-VD6 и конденсаторах СЗ-С8, параметрического стабилизатора
напряжения на транзисторах VT1-VT3.
В качестве стабилитронов используются эмиттерные переходы транзисторов. Режим стабилизации наступает при токе 5…10мкА.
Помимо указанных на схеме, в преобразователе можно использовать микросхемы К176ЛЕ5 и К176ЛА9, транзисторы КТ315, КТ316 с любым
буквенным индексом, диоды Д9А, Д9В, Д9Ж. Конденсаторы С1-С7 – КЛС или KM, C8 – К50-6 или К50-3, резисторы МЛТ или ВС.
Налаживание преобразователя сводится к подбору транзисторов VT1 – VT3 с требуемым напряжением стабилизации.
При изменении напряжения питания приёмника от 6,5 до 9В потребляемый преобразователем ток увеличивается с 0,8 до 2,2мА, а выходное
напряжение – не более чем на 8…10мВ.
При необходимости выходное напряжение преобразователя можно повысить, увеличив число звеньев умножителя напряжения и число
транзисторов в стабилизаторе».
В последнее время для преобразования напряжения всё чаще применяют импульсные преобразователи с использованием индуктивных
накопителей энергии. Такие преобразователи отличаются высоким КПД и обладают возможностью получения повышенного, пониженного
или инвертированного выходного напряжения.
Как это работает?
Рис.4
На рисунке Рис.4 (слева) изображён импульсный повышающий преобразователь напряжения, способный повышать выходное напряжение от напряжения источника питания до величины в десятки раз превышающей его.
При замыкании ключа, выполненного на транзисторе Т, через цепь: источник питания – индуктивность – замкнутый ключ начинает протекать ток. При этом, в связи с явлением самоиндукции, ток через индуктивность не может измениться моментально, так как в это время идёт постепенный запас энергии (ЭДС) в магнитном поле катушки.
При размыкании ключа – ток начинает течь по другому контуру: источник питания-индуктивность-диод-нагрузка. Поскольку источник питания и катушка в этой цепи соединены последовательно, то их ЭДС складываются. Таким образом происходит повышение напряжения.
Величина выходного напряжения подобных преобразователей малопредсказуема и зависит от нескольких факторов: сопротивления нагрузки, добротности катушки, и энергии, которая успела запастись в ней за время замыкания ключа. Именно поэтому напряжение в цепи без нагрузки может достигать значительных величин, порой приводящих к пробою ключевого транзистора.
Так как же регулировать напряжение на выходе таких преобразователей?
Очень просто – запасать в дросселе ровно столько энергии, сколько необходимо для того, чтобы создать необходимое напряжение на нагрузке.
Производится это посредством регулировки длительности импульсов открывающих транзистор (временем в течении которого открыт транзистор).
Уровень выходного напряжения преобразователя описывается формулой Uвых = K×Uвх/(1-D), где
D – это величина, обратная скважности, и равная отношению периода времени, когда ключ открыт, к общему периоду
импульсного сигнала, управляющего ключевым транзистором, а
К – коэффициент, прямо пропорциональный сопротивлению нагрузки и обратно пропорциональный сопротивлению открытого ключа,
а также сопротивлению потерь катушки индуктивности.
У данного типа преобразователей полярность выходного напряжения, совпадает с полярностью входного.
На рисунке Рис.4 (справа) приведена упрощённая схема инвертирующего преобразователя напряжения, имеющего полезное
свойство – работать как в режиме понижения напряжения, так и в режиме повышения.
Полярность его выходного напряжения противоположна полярности входного.
Так же как и в предыдущем случае, во время замыкания ключа Т происходит процесс накопления энергии катушкой индуктивности.
Диод Д препятствует попаданию напряжению от источника питания в нагрузку.
Когда ключ закрывается, энергия индуктивности начинает перетекать в нагрузку.
При этом ЭДС самоиндукции, направлена таким образом, что на концах катушки формируется полярность, противоположная первичному источнику
питания. Т. е. на верхнем конце обмотки катушки формируется отрицательный потенциал, на противоположном конце – положительный.
Уровень выходного напряжения равен: Uвых = K×Uвх×D/(1-D).
С теорией завязываем, резко переходим к схемам электрическим принципиальным повышающих преобразователей напряжения с индуктивными накопителями на борту.
Рис.5
На Рис.5 приведена очень простая и красивая схема преобразователя напряжения 1,5 в 15 вольт, содержащая всего 2
транзистора, выполняющих как функцию генератора сигнала, управляющего ключевым транзистором, так и самого ключевого транзистора.
Вот что пишет автор конструкции, приведённой в зарубежном издании.
«В качестве источника используется элемент питания напряжением 1,5 В, а на выходе схемы получается напряжение 15 В.
Схема ещё хороша тем, что очень проста для повторения и не имеет дефицитных деталей.
Рассмотрим принцип работы. Итак, при замыкании тумблера SA1 на резисторе R1 возникает падение напряжения. Как следствие, через базу
транзистора VT1 потечёт ток и оба транзистора (VT1, VT2) будут находится в открытом состоянии. В начальный момент времени, на коллекторе
VT2 будет практически нулевое напряжение и через него и катушку L1 потечет нарастающий ток. Этот ток будет непрерывно увеличиваться
пока транзистор VT2 не перейдет в режим насыщения. Следствием это будет увеличение напряжения на коллекторе транзистора VT2,
что неизменно приведет к возрастанию напряжения на резисторе R2. В результате, транзистор VT1 закроется, после чего закроется и второй
транзистор VT2.
После того, как ток прекратит движение через катушку L1, на коллекторе транзистора VT2 образуется большое положительного напряжения,
которое двигаясь через диод Шоттки VD1, будет заряжать конденсатор C1. Стабилитрон VD2 в схеме преобразователя напряжения играет роль
ограничителя зарядного напряжения на конденсаторе C1 и поддерживает его на уровне 15 В.
После того, как магнитное поле катушки L1 исчезает, напряжение на транзистора VT2 падает до уровня источника питания, т. е. до 1,5 Вольт.
После чего оба транзистора переходят в открытое состояние, а через катушку L1 снова потечет нарастающий ток.
Частота работы устройства около 10 кГц. При исправных деталях и правильном монтаже, простой преобразователь напряжения начинает
работать сразу. Допускается замена деталей очень близких по характеристикам».
Много разнообразных преобразователей напряжения реализуется на базе интегрального таймера NE555.
Рис.6
Схема одного из вариантов такого преобразователя приведена на Рис.6. Для получения высоковольтных импульсов он использует
накопительный дроссель.
«На таймере DA1 собран генератор импульсов с частотой повторения около 40 кГц (она определяется сопротивлением резисторов R1, R2
и емкостью конденсатора С1). Эти импульсы поступают на транзистор VT1, работающий в режиме переключения. Когда он открыт, в катушке
индуктивности L1 накапливается энергия за счет протекающего через VTI тока. Когда транзистор закрывается, на катушке L1 возникает
импульс напряжения, амплитуда которого в несколько раз превышает напряжение питания (в авторской конструкции она была около 80 В).
Эти импульсы напряжения выпрямляются диодом VD1, а выпрямленное напряжение фильтруется, а затем стабилизируется стабилитроном VD2.
Транзистор VT1 желательно подобрать из числа предназначенных для использования в переключающих схемах. Он, в частности, должен иметь
высокое допустимое напряжение коллектор-эмиттер (не ниже 100 В). Высокое обратное допустимое напряжение должен иметь и диод VD1.
Стабилитрон VD2 — малой мощности на требуемое выходное напряжение (в авторской конструкции — на 30 В). Таймер DA1 имеет аналог
отечественного производства — КР1006ВИ1. Подробной информации о катушке индуктивности в первоисточнике нет. Отмечается лишь, что
она выполнена на незамкнутом броневом магнитопроводе из материала с высокой начальной магнитной проницаемостью медным проводом
диаметром 0,1 мм.
При налаживании конструкции может возникнуть необходимость подобрать резистор R3 по наибольшему выпрямленному напряжению».
Рис.7
«Ещё одна схема очень простого преобразователя постоянного напряжения с минимумом элементов, обеспечивающего несколько миллиампер
тока напряжением 400…425В при потребляемом токе 80…90 мА от источника 9 В, приведена на Рис.7.
На таймере NE555 выполнен мультивибратор на частоту 14 кГц. КПД устройства сильно зависит от добротности катушки индуктивностью 1 мГн.
Дроссель имеет индуктивность 1000мкГн. Толщина провода не столь важна, поскольку выходной ток схемы ничтожный. Такое устройство может
быть пригодно для тех приборов, где нужно получить повышенное напряжение, но размеры ограничены».
Достаточно часто приходится видеть устройства преобразователей на NE555 со встроенной схемой стабилизации выходного напряжения. Однако, кто интересуется, тот знает, что импульсные преобразователи со стабилизацией гораздо лучше работают на недорогих микросхемах серии UC384x, которые представляют из себя широтно-импульсные контроллеры и специально спроектированы для работы в преобразователях постоянного напряжения. Схема такого устройства приведена на Рис.8.
Рис.8
L1 намотана на кольце из порошкового железа d=24мм и содержит 24 витка провода диаметром 1мм. Выходная частота работы микросхемы при указанных номиналах элементов работы – 75-80 кГц.
Устройство было изготовлено и довольно подробно протестировано в сравнении с аналогичным преобразователем на микросхеме NE555
уважаемым Александром Сорокиным на странице форума https://www.drive2.ru/c/470856784697885156/.
Вот что пишет автор:
«Стабилизация выходного напряжения на микросхеме UC3845 работает прекрасно во всем диапазоне нагрузок. Напряжение холостого хода в пределах нормы (19.2 вольта для ноутбука), при 10Вт на выходе напряжение 18,94в, при 85Вт 18,8в т.е. просадка всего 0,1в и это прекрасно».
Ну и конечно не следует обходить вниманием специализированные микросхемы, представляющие собой практически готовые повышающие DC-DC преобразователи. Примером такой ИМС является TL499A (Рис.9).
Рис.9
С помощью этого импульсного источника питания можно получить напряжение от 1,5 до 15V при выходном токе до 50мА, для питания портативной
аппаратуры от источника напряжением ЗV (два элемента «АА» или один литиевый элемент).
В основе схемы DC/DC конвертор на микросхеме TL499A. У микросхемы есть два входа, в данном случае используется только один – вывод 3,
для подачи входного напряжения с целью его повышения.
Кстати, это напряжение не обязательно должно быть ЗV, может быть и 5V, а может быть и 1,5V (при работе от одного гальванического
элемента), потому что минимальное входное
напряжение микросхемы 1,1V, а максимальное 10V. При этом выходное напряжение поддерживается стабильным.
Установка и стабилизация выходного напряжения происходит при помощи компаратора (вывод 2), наблюдающего за выходным напряжением,
которое поступает на него через делитель на резисторах R2 и R3. Подстроечным резистором R2 выставляется уровень выходного напряжения
в диапазоне от 1,5 до 15V.
vpayaem.ru
Повышающий/понижающий преобразователь напряжения своими руками
Всем доброго времени суток, уважаемые самоделкины!В этой самоделке AKA KASYAN сделает универсальный понижающий и повышающий преобразователь напряжения.
Недавно автор собрал литиевый аккумулятор. А сегодня раскроет секрет, для какой цели он его изготовил.
Вот новый преобразователь напряжения, режим его работы – однотактный.
Преобразователь имеет небольшие габариты и достаточно большую мощность.
Обычные преобразователи делают одно из двух. Только повышают, или только понижают подаваемое на вход напряжение.
Вариант, изготовленный автором может как повысить,
так и понизить входное напряжение до требуемого значения.
У автора имеются различные регулируемые источники питания, с помощью которых он тестирует собранные самоделки.
Заряжает аккумуляторы, да и использует их для различных других задач.
Не так давно появилась идея создания портативного источника питания.
Постановка задачи была такой: устройство должно иметь возможность заряжать всевозможные портативные гаджеты.
От обычных смартфонов и планшетов до ноутбуков и видеокамер, а также справился даже с питанием любимого паяльника автора TS-100.
Естественно можно просто воспользоваться универсальными зарядными устройствами с адаптерами питания.
Но все они питаются от 220В
В случае автора требуется нужен был именно портативный источник различных выходных напряжений.
А таковых в продаже автор не нашел.
Питающие напряжения для указанных гаджетов имеют очень широкий диапазон.
Например смартфонам нужно всего 5 В, ноутбукам 18, некоторым даже 24 В.
Аккумулятор, изготовленный автором, рассчитан на выходное напряжение в 14,8 В.
Следовательно, необходим преобразователь, способный как повышать, так и понижать начальное напряжение.
Обратите внимание, некоторые номиналы указанных на схеме компонентов, отличаются от установленных на плате.
Это конденсаторы.
На схеме указаны эталонные номиналы, а плату автор делал для решения своих задач.
Во-первых, интересовала компактность.
Во-вторых, авторский преобразователь питания позволяет спокойно создать выходной ток в 3 Ампера.
AKA KASYAN большего и не надо.
Связано это с тем, что емкость примененных накопительных конденсаторов небольшая, но схема способна выдать выходной ток до 5 А.
Поэтому схема является универсальной. Параметры зависят от емкости конденсаторов, параметров дросселя, диодного выпрямителя и характеристик полевого ключа.
Замолвим пару слов о схеме. Она представляет собой однотактный преобразователь на базе шим-контроллера UC3843.
Поскольку напряжение от аккумулятора немного больше штатного питания микросхемы, в схему был добавлен 12В стабилизатор 7812 для питания шим-контроллера.
В приведенной схеме данный стабилизатор указан не был.
Сборка. Про перемычки, установленные с монтажной стороны платы.
Этих перемычек четыре, и две из них являются силовыми. Их диаметр должен быть не менее миллиметра!
Трансформатор, вернее дроссель, намотан на желтом кольце из порошкового железа.
Такие колечки можно найти в выходных фильтрах компьютерных блоков питания.
Размеры примененного сердечника.
Внешний диаметр 23,29мм.
Внутренний диаметр 13,59мм.
Толщина 10,33мм.
Скорее всего, толщина намотки изоляции 0,3мм.
Дроссель состоит из двух равноценных обмоток.
Обе обмотки наматываются медной проволокой диаметром 1,2 мм.
Автор рекомендует применять проволоку диаметром немного больше, 1,5-2,0 мм.
Витков в обмотке десять, оба провода наматываются разом, в одном направлении.
Перед установкой дросселя перемычки заклеиваем капроновым скотчем.
Работоспособность схемы заключается в правильной установке дросселя.
Необходимо правильно припаять выводы обмоток.
Просто установите дроссель, как это показано на фото.
Силовой N-канальный полевой транзистор, подойдет практически любой низковольтный.
Ток транзистора не ниже 30А.
Автор использовал транзистор IRFZ44N.
Выходной выпрямитель – это сдвоенный диод YG805C в корпусе TO220.
Важно использовать диоды Шоттки, так как они дают минимальную просадку напряжения (0,3В против 0,7) на переходе, это влияет на потери и нагрев. Их также легко найти в пресловутых компьютерных блоках питания.
В блоках они стоят в выходном выпрямителе.
В одном корпусе – два диода, которые в схеме у автора запараллелены для увеличения проходящего тока.
Преобразователь стабилизирован, имеется обратная связь.
Выходное напряжение задает резистор R3
Его можно заменить на выносной переменный резистор для удобства работы.
Преобразователь также снабжен защитой от короткого замыкания. В качестве датчика тока применен резистор R10.
Это низкоомный шунт, и чем выше его сопротивление тем меньше ток срабатывания защиты. Установлен SMD вариант, на стороне дорожек.
Если защита от КЗ не нужна, то этот узел просто исключаем.
Еще защита. На входе схемы стоит предохранитель на 10А.
Кстати, в плате контроля аккумулятора уже установлена защита от КЗ.
Конденсаторы, применяемые в схеме крайне желательно брать с низким внутренним сопротивлением.
Стабилизатор, полевой транзистор и диодный выпрямитель крепятся к алюминиевому радиатору в виде согнутой пластины.
Обязательно изолируем подложки транзистора и стабилизатора от радиатора при помощи пластиковых втулок и теплопроводящих изолирующих прокладок. Не забываем и про термопасту. А установленный в схеме диод уже имеет изолированный корпус.
Благодаря ШИМ-управлению, КПД у преобразователя весьма высокий кпд.
Например, ток холостого хода, в зависимости от питающего напряжения, находится в пределах 20мА – 40мА.
Приступим к испытаниям.
Для начала проверим диапазоны выходных напряжений.
Подадим на вход 12 В. Выходное напряжение достигает двадцати пяти. Выше поднимать нельзя, выходные конденсаторы на 25 В.
Минимальное выходное напряжение составляет 4,85 В. Следовательно, можно заряжать все USB гаджеты.
Стабилизация работает отлично! Увеличив входное напряжение до 22,2 В, выходное находится точно в установленных пределах.
При компактных размерах стабилизатор дает выходной ток 2,5 – 3 А практически без просадки выходного напряжения.
Важно усилить припоем широкие силовые дорожки печатной платы. Ибо там протекают большие токи.
Большое спасибо AKA KASYAN за проделанный труд!
Ссылки на комплектующие находятся в описании к оригиналу видео.
Ссылка на оригинальное видео – под текстом кнопка “источник”.
Источник Доставка новых самоделок на почту
Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!
*Заполняя форму вы соглашаетесь на обработку персональных данных
Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.usamodelkina.ru
Схемы импульсных преобразователей » СтудИзба
Схемы импульсных преобразователей
Классификация схем. Существует множество схем импульсных преобразователей постоянного тока. Это многообразие, главным образом, связано с использованием различных схемных способов принудительного конденсаторного выключения однооперационных тиристоров, составляющих основу полупроводникового ключа.
Схемы классифицируются по следующим признакам: способу запирания тиристоров (обратным напряжением, обратным током), виду коммутации (одноступенчатая, двухступенчатая), схеме включения коммутирующей ЭДС (параллельная, последовательная), структуре цепей заряда и разряда коммутирующего конденсатора (зависимая, независимая).
Схемы с одноступенчатой коммутацией. В простейших схемах с одноступенчатой коммутацией для запирания тиристоров используются постоянно включенные колебательные цепи (рис. 8.8).
При включении тиристора VT в LкCк-контуре возникает колебательный процесс. Через некоторое время ток в тиристоре “вытесняется” встречным током колебательного контура и становится равным нулю. Тиристор запирается обратным напряжением от коммутирующего конденсатора. Для изменения среднего значения напряжения на нагрузке в этих схемах может быть применен лишь частотно-импульсный способ, что заметно ограничивает регулировочные свойства и энергетические показатели преобразователя. Поэтому в подавляющем большинстве случаев в современных тиристорных импульсных преобразователях используются схемы с двухступенчатой коммутацией.
Схемы с двухступенчатой коммутацией (рис. 8.9). В таких схемах коммутирующие цепи присоединяются к цепи силового (главного тиристора с помощью вспомогательных (коммутирующих) тиристоров в определенные моменты времени, и ток главного тиристора на короткий интервал времени проходит через коммутирующий тиристор. При этом запирание главного тиристора может осуществляться обратным напряжением (жесткая коммутация) или импульсом обратного тока (мягкая коммутация).
Рис. 8.9. Базовые схемы тиристорных импульсных преобразователей с коммутацией импульсом обратного тока (а, в, д) и приложением обратного напряжения (б, г, е).
Многоквадрантный режим импульсного преобразователя. Рассмотренные выше схемы включения ИР соответствуют только одноквадрантному режиму преобразования энергии, так как полярность напряжения и2 и направление тока i2 цепи нагрузки для каждой из схем неизменны.
Рассмотрим возможность реализации в схемах с ИР многоквадрантных режимов преобразования энергии в цепях постоянного тока (рис. 8.12).
В схемах (рис. 8.12, а,б) показаны направления потоков энергии Р. Возможные области режимов работы в координатах U2, I2 показаны заштрихованными областями для соответствующего квадранта. Эти схемы можно включить совместно в такой комбинации, которая обеспечивает многоквадрантный режим работы.
На рис. 8.12, в и г приведены схемы для двухквадрантного режима работы. Схема (см. рис. 8.12, в) предусматривает изменение направления тока I2, а схема (рис. 8.12, г) — напряжения U2. В обоих случаях достигается изменение направления потока Р. В схеме с изменением направления тока I2 предусматривается специальный коммутирующий дроссель Lк с выведенной средней точкой для разделения выключаемого тиристора от встречно включенного диода. Этот дроссель снижает ответвление коммутирующего тока в цепь данного диода.
Схема (рис. 8.12, д) позволяет реализовать четырехквадрантный режим импульсного преобразователя. Поскольку напряжение U2 как и ток I2 на стороне нагрузки могут изменять направление на обратное, достигается работа преобразователя во всем пространстве состояний. Эта схема представляет собой преобразователь постоянно-переменного тока, т.е. мостовую схему однофазного инвертора, обеспечивающую передачу энергии из цепи постоянного тока в цепь переменного тока и обратную передачу энергии.
9. АВТОНОМНЫЕ ИНВЕРТОРЫ
9.1. НАЗНАЧЕНИЕ И ВИДЫ АВТОНОМНЫХ ИНВЕРТОРОВ
Автономные инверторы – это преобразователи постоянного тока в переменный однофазный или многофазный ток. Коммутация тока в них осуществляется независимо от процессов во внешних электрических цепях благодаря наличию дополнительных коммутирующих устройств внутри самого преобразователя. На его выходе можно получать переменный ток теоретически любой частоты, плавно регулировать от нуля до максимального значения частоту и напряжение. Благодаря этому свойству автономные инверторы находят все более широкое применение в регулируемых электроприводах с асинхронными двигателями трехфазного тока. Особенно перспективно применение автономных инверторов в тяговых электроприводах электровозов, электропоездов, тепловозов.
В зависимости от способа принудительной коммутации тока, схемы инвертора, параметров источника питания и нагрузки автономные инверторы делятся на виды, отличающиеся специфическими особенностями процессов переключений тока. Полная коммутация с переключением тока с одной ветви схемы на другую в автономных инверторах происходит на нескольких этапах, важнейшими из которых являются: уменьшение прямого тока в одном из тиристоров до нуля, задержка приложения прямого напряжения на этом тиристоре до полного восстановления его запирающей способности, нарастание прямого тока во втором тиристоре. Эти события могут совершаться совместно или последовательно. Средства для осуществления надежной коммутации обычно являются одной из наиболее трудных проблем в автономных инверторах. Принципиально эти средства можно разделить на два класса.
К первому классу следует отнести полностью управляемые силовые полупроводниковые приборы (силовые транзисторы и запираемые тиристоры).
Второй класс составляют обычные не полностью управляемые СПП (однооперационные тиристоры), дополненные специальными узлами принудительной коммутации, например, в виде предварительно заряженных конденсаторов и вспомогательных тиристоров.
Рассмотрим принцип работы автономного инвертора на примере простейшей однофазной схемы с использованием указанных выше
средств коммутации (рис. 91).
Принцип работы инвертора на полностью управляемых приборах.
Силовые транзисторы используются как ключи, получая сигналы управления СУ по цепи базы от отдельной схемы управления СУ, построенной на основе генератора прямоугольных импульсов. Сигналы управления, поступающие на транзисторы VT1 и VT2, не совпадают по времени, что устраняет появление сквозного тока источника питания Е. Предполагается, что один транзистор открывается в тот момент, когда другой закрывается. В схеме не требуется дополнительных коммутирующих устройств, так как транзисторы обладают свойством полной управляемости, и для включения и выключения достаточно управлять током их базовых цепей.
Рис 9. 1. Схемы и временные диаграммы работы однофазного автономного инвертора на транзисторах при работе на активную нагрузку (без обратных диодов) (с) и на активно-индуктивную нагрузку (с обратными диодами) (б)
Сигналы управления подаются на VT1, VT2 с периодом следования Т. При активной нагрузке (см. рис. 9.1, а) поочередное включение транзисторов обуславливает приложение ЭДС источника Е к первичной обмотке трансформатора Т, выполненного с выведенной средней (нулевой) точкой 0. По первичным полуобмоткам протекают токи i11, i12. На вторичной обмотке возникает напряжение и2 прямоугольной формы. Ток i2 при активной нагрузке R повторяет форму кривой и2 и переходит через нулевое значение одновременно с моментом переключения транзисторов. При работе транзисторов в нулевой схеме в течение непроводящей части периода к ним прикладывается в прямом направлении напряжение 2Е.
В реальных схемах нагрузка носит, как правило, активно-индуктивный характер (см. рис. 9.1, б). Во время переключения транзисторов в такой схеме возникают условия, которые могут привести к большим перенапряжениям, поскольку ток в цепи с индуктивным элементом не может мгновенно изменить направление. Следовательно, для предупреждения перенапряжения в схеме должна быть предусмотрена ветвь тока нагрузки на интервалах t0 — t1, t2 —t3 после переключения транзистора.
Для пропуска тока могут быть включены разнообразные устройства, например резисторы, конденсаторы или дополнительные цепи с полупроводниковыми приборами. Наиболее экономичное решение было предложено выполнять по схеме с обратными диодами VD1, VD2, включенными встречно-параллельно основным (главным) транзисторам VT1, VT2 [4]. Для этого случая на рис. 9.1, б показаны формы напряжений и токов в схеме инвертора. В схеме с обратным диодами после переключения транзистора контур индуктивного тока нагрузки проходит через диод, включенный встречно ЭДС источника Е. Входной ток id инвертора на интервалах переключения тока (спадания тока нагрузки до нуля) протекает в обратном направлении, обеспечивая возврат в источник питания энергии, накопленной в дросселе L. Среднее значение тока Id источника определяется потреблением энергии активным сопротивлением R цепи нагрузки. При идеальной индуктивной нагрузке теоретически возможно Id = 0.
Принцип работы инвертора на однооперационных тиристорах. Рассмотрим схему инвертора, в которой требуются дополнительные элементы для осуществления коммутации. Схема однофазного инвертора на однооперационных тиристорах VT1, VT2 (рис. 9.2) называется параллельным инвертором [4] и строится по принципу коммутации тока с использованием конденсатора С, включенного параллельно цепи нагрузки.
Широко известная схема однофазного параллельного инвертора отличается от схемы (см. рис. 9.1) наличием дросселя в цепи постоянного тока с индуктивностью Ld и коммутирующего конденсатора емкостью С. В этой схеме принудительное выключение однооперационных тиристоров VTI, VT2 осуществляется предварительно заряженным коммутирующим конденсатором. Коммутация тиристора VT1 начинается с момента (t2, t6), когда отпирается второй тиристор VT2, и конденсатор С, заряженный так, что верхняя обкладка положительна, обеспечивает обратное напряжение на запираемом тиристоре VT1.
Интервалы времени (t2 — t3, t6 – t7 для VT1; t0 – t1,t4 —t5 для VT2) должны быть не менее времени выключения тиристора. Для
выполнения этого условия необходимо включить конденсатор такой емкости С, чтобы отводить ток нагрузки от тиристора на интервале времени выключения.
Дроссель L цепи постоянного тока такого инвертора обычно имеет достаточно большую индуктивность, чтобы исключить или существенно уменьшить пульсации подводимого постоянного тока id. При этом ток idпереключения с одного тиристора на другой равнозначен току прямоугольной формы через тиристоры VT1 и VT2. Ток i2 цепи RL-нагрузки имеет плавное изменение, и разность токов тиристора (источника) и нагрузки компенсируется током конденсатора ic. Их алгебраическая сумма на каждом временном интервале равна нулю. Конденсатор заряжается на интервале, когда ток тиристора превышает ток нагрузки (приведенный к числу витков первичной обмотай трансформатора), и разряжается, если ток нагрузки превышает ток источника. В результате конденсатор перезаряжается дважды за один период Т. Напряжение конденсатора ис накладывается на ЭДС источника Е, и на выходе инвертора напряжение ии содержит постоянную составляющую Е и переменную составляющую, определяемую напряжением на конденсаторе ис(см. рис. 9.2). Напряжение на входе ии имеет значительые пульсации, возрастающие с уменьшением емкости С при неизменных параметрах RL-нагрузки.
Расчет параллельного инвертора довольно сложен. Основные принципы которые позволяют выполнить расчет, сводятся к следующему:
мощность получаемая от источника постоянного тока, должна
быть равна мощности, отдаваемой нагрузке: EId = U22/R, где U2—
эффективное значение напряжения нагрузки;
так как кривые напряжений и токов несинусоидальны и содержат ряд гармонических составляющих, то реактивные мощности основной и каждой высшей гармонической составляющей тока источника питания должны быть равны соответствующим составляющим реактивной мощности всей цепи переменного тока на выходе;
в установившемся режиме среднее за интервал проводящего состояния каждого тиристора напряжение на полуобмотке первичной обмотки трансформатора должно быть равно напряжению источника питания Е.
Принцип работы инверторов на однооперационных тиристорах с последовательным конденсатором в нагрузке. Последовательная RC-цепь нагрузки образует резонансный контур, обеспечивающий коммутацию. Такие инверторы получили название последовательных (рис. 9.3) [4].
Когда тиристор VT1 открыт, а тиристор VT2 закрыт, последовательная резонансная цепь подсоединена к источнику постоянного тока. За время первого полупериода резонансного колебания (t0 —t2 ) напряжение на конденсаторе иc возрастает до значения, близкого 2Е. Затем ток idуменьшается ниже тока удержания тиристора и прекращается. Второй тиристор VT2 можно включить, спустя интервал (t2 — t3) длительностью не менее времени выключения тиристора. Когда тиристор VT2 включается, происходит такой же колебательный процесс перезаряда конденсатора через цепь нагрузки. При этом источник питания не участвует в работе. Конденсатор перезаряжается током исходной полярности. Далее с интервалом (t5 — t6) открывается тиристор VT1, и процессы в схеме повторяются. Если интервалы t2 — t3 и t5— t6 поддерживать минимальными, то ток i в цепи нагрузки близок к синусоидальной форме. Для устойчивой коммутации тиристоров эти временные интервалы должны быть достаточными для гарантированного выключения тиристоров.
studizba.com
Импульсные преобразователи напряжения
Простые схемы импульсных преобразователей постоянного напряжения для питания радиолюбительских устройств
Доброго дня уважаемые радиолюбители!
Сегодня на сайте “Радиолюбитель“ мы рассмотрим несколько схем несложных, даже можно сказать – простых, импульсных преобразователей напряжения DC-DC (преобразователей постоянного напряжения одной величины, в постоянное напряжение другой величины)
Чем хороши импульсные преобразователи. Во-первых, они имеют высокий КПД, и во-вторых могут работать при входном напряжении ниже выходного.
Импульсные преобразователи подразделяются на группы:
– понижающие, повышающие, инвертирующие;
– стабилизированные, нестабилизированные;
– гальванически изолированные, неизолированные;
– с узким и широким диапазоном входных напряжений.
Для изготовления самодельных импульсных преобразователей лучше всего использовать специализированные интегральные микросхемы – они проще в сборке и не капризны при настройке.
Первая схема.
Нестабилизированный транзисторный преобразователь:
Этот преобразователь работает на частоте 50 кГц, гальваническая изоляция обеспечивается трансформатором Т1, который наматывается на кольце К10х6х4,5 из феррита 2000НМ и содержит: первичная обмотка – 2х10 витков, вторичная обмотка – 2х70 витков провода ПЭВ-0,2. Транзисторы можно заменить на КТ501Б. Ток от батареи, при отсутствии нагрузки, практически не потребляется.
Вторая схема.
Стабилизированный транзисторный преобразователь напряжения:
Трансформатор Т1 наматывается на ферритовом кольце диаметром 7 мм, и содержит две обмотки по 25 витков провода ПЭВ=0,3.
Третья схема.
Нестабилизированный преобразователь напряжения на основе мультивибратора:
Двухтактный нестабилизированный преобразователь на основе мультивибратора (VТ1 и VТ2) и усилителя мощности (VТ3 и VТ4). Выходное напряжение подбирается количеством витков вторичной обмотки импульсного трансформатора Т1.
Четвертая схема.
Преобразователь на специализированной микросхеме:
Преобразователь стабилизирующего типа на специализированной микросхеме фирмы MAXIM. Частота генерации 40…50 кГц, накопительный элемент – дроссель L1.
Пятая схема.
Нестабилизированный двухступенчатый умножитель напряжения:
Можно использовать одну из двух микросхем отдельно, например вторую, для умножения напряжения от двух аккумуляторов.
Шестая схема.
Импульсный повышающий стабилизатор на микросхеме фирмы MAXIM:
Типовая схема включения импульсного повышающего стабилизатора на микросхеме фирмы MAXIM. Работоспособность сохраняется при входном напряжении 1,1 вольта. КПД – 94%, ток нагрузки – до 200 мА.
Седьмая схема.
Два напряжения от одного источника питания:
Позволяет получать два разных стабилизированных напряжения с КПД 50…60% и током нагрузки до 150 мА в каждом канале. Конденсаторы С2 и С3 – накопители энергии.
Восьмая схема.
Импульсный повышающий стабилизатор на микросхеме-2 фирмы MAXIM:
Типовая схема включения специализированной микросхемы фирмы MAXIM. Сохраняет работоспособность при входном напряжении 0,91 вольта, имеет малогабаритный SMD корпус и обеспечивает ток нагрузки до 150 мА при КПД – 90%.
Девятая схема.
Импульсный понижающий стабилизатор на микросхеме фирмы TEXAS:
Типовая схема включения импульсного понижающего стабилизатора на широкодоступной микросхеме фирмы TEXAS. Резистором R3 регулируется выходное напряжение в пределах +2,8…+5 вольт. Резистором R1 задается ток короткого замыкания, который вычисляется по формуле:
Iкз(А)= 0,5/R1(Ом)
Десятая схема.
Интегральный инвертор напряжения на микросхеме фирмы MAXIM:
Интегральный инвертор напряжения, КПД – 98%.
Одиннадцатая схема.
Два изолированных преобразователя на микросхемах фирмы YCL Elektronics:
Два изолированных преобразователя напряжения DA1 и DA2, включенных по “неизолированной” схеме с общей “землей”.
Двенадцатая схема.
Двухполярный стабилизированный преобразователь напряжения на микросхеме фирмы National Semiconductor:
Индуктивность первичной обмотки трансформатора Т1 – 22 мкГн, отношение витков первичной обмотки к каждой вторичной – 1:2.5.
Тринадцатая схема.
Стабилизированный повышающий преобразователь на микросхеме фирмы MAXIM:
Типовая схема стабилизированного повышающего преобразователя на микросхеме фирмы MAXIM.
Четырнадцатая схема
Нестандартное применение микросхемы фирмы MAXIM:
Эта микросхема обычно служит драйвером RS-232. Умножение напряжения получается с коэффициентом 1,6…1,8.
radio-stv.ru
Источники питания. Часть 2 — Импульсные преобразователи
DC-DC преобразованиеДля изменения напряжения постоянного тока с минимальными потерями используются DC-DC преобразователи, работающие по принципу Широтно-Импульсной Модуляции (ШИМ, она же PWM по басурмански). Если не читал мои прошлые статьи, где я подробно разжевал принцип работы ШИМ, то я кратенько тебе напомню. Основной принцип тут в том, что напряжение подается не сплошным потоком, как в линейных стабилизаторах, а краткими импульсами и с большой частотой.
Готовый девайс |
То есть у тебя на выходе ШИМ контроллера, например, сначала в течении десяти микросекунд напряжение, к примеру, двенадцать вольт, потом идет пауза. Скажем, те же десять микросекунд, когда на выходе напряжения вообще нет. Затем все повторяется, словно мы быстро-быстро включаем и выключаем рубильник.
Таким образом у нас получаются прямоугольные импульсы. Если вспомнить матан, а конкретно интегрирование, то после интегрирования этих импульсов мы получим площадь под фигурой очерченной импульсами. Таким образом, меняя ширину импульсов и пропуская их через интегратор, можно плавно менять напряжения от нуля до максимума с любым шагом и практически без потерь.
В качестве интегратора служит конденсатор, он заряжается на пике, а на паузах будет отдавать энергию в цепь. Также туда всегда последовательно ставят дроссель, который тоже служит источником энергии, только он запасает и отдает ток. Поэтому такие преобразователи при небольших габаритах легко питают мощную нагрузку и при этом почти не расходуют энергию на лишний нагрев.
Если не догнал, то я для простоты переложил это в понятное «канализационное русло». Смотри на картинку, где ключевой транзистор ШИМ контроллера похож на вентиль, он открывает и закрывает канал. Конденсатор это банка, накапливающая энергию. Дроссель это массивная турбина, которая, будучи разогнанной потоком, при открытом вентиле, за счет своей инерции прогоняет воду по трубам и после закрытия вентиля.
Конечно, самостоятельно разработать такой источник питания сложно, требуется неслабое образование в области электроники, но не стоит напрягаться по этому поводу. Умные дядьки из Motorola, STM, Dallas и прочих Philips’ов придумали все за нас и выпустили уже готовые микросхемы содержащие в себе ШИМ контроллер. Тебе остается его лишь припаять и добавить обвески, которая задает параметры работы, причем изобретать самому ничего не надо, в datasheet’ах подробно расписано что и как подключать, какие номиналы выбирать, а иногда даже дают готовый рисунок печатной платы. Надо лишь немного знать английский 🙂
Принцип работы импульсного БП |
Схема нашего преобразователя |
Рисунок печатной платы |
А сейчас, в порядке практического задания, под моим чутким руководством, ты построишь себе универсальный зарядник для сотового телефона, который можно будет подключать к любому источнику постоянного или переменного напряжения от 8 до 40 вольт. И неважно, что это будет, хоть бортовая сеть автомобиля, связка батареек или какой-нибудь совершенно левый блок питания от свитча или модема, лишь бы не меньше восьми и не больше сорока вольт.
Анализируем задание
Итак, по техзаданию, у нас на входе напряжение может быть как постоянным, так и переменным. А на входе DC-DC должно быть всегда постоянное. Что делать? Правильно, выпрямлять! Перечитай про выпрямители в первой части статьи и воткни на входе схемы диодный мост. Можно и без него, но тогда источники переменного тока отпадают как класс, да и тебе придется каждый раз определять полярность питающего источника, а это моветон. Поскольку после моста напряжение все равно будет пульсирующим, то повесь в параллель конденсатор. Он его немного сгладит.
Дальше ШИМ контроллер, я рекомендую широко распространенный и любимый всеми электронщиками МС34063х, где на месте «х» может быть любая буква, обычно «А». Тебе он нужен в DIP-8 корпусе, с длинными выводами который. Надеюсь, ты уже выучил все популярные типы корпусов и теперь сразу представляешь себе как он выглядит. Дальше открываем с диска даташитину и смотрим схему понижающего преобразователя, зовется она Step-Down. Подключаем ее как есть, не меняя ничего. Общий или земля у нас это традиционно минус, а плюс Vin. Выходом служит Vout в качестве плюса, а в качестве минуса все тот же общий провод. Вот тут главное не перепутать подключение к мобильнику. Поэтому посмотри тестером полярность подачи напряжения на разъем твоей мобилы.
Точный расчет – главное качество инженера!
Такс, схему мы набросали, осталось только ее сконфигурировать. Это не цифровое устройство, поэтому конфигурация тут задается установкой необходимых номиналов резисторов. Резистор Rsc я обычно заменяю на перемычку из куска провода. Его величина определяет перегрузочную способность. При перемычке преобразователь выдаст все, на что он способен, но может сгореть если от него потребовать невозможное. Наличие там резистора на 0.33 ома заставит преобразователь заглохнуть при предельной для него перегрузке, чем выше сопротивление Rsc тем при меньшей нагрузке заглохнет преобразователь. Иногда полезно, когда тебе надо ограничить максимальный выходной ток со стороны источника.
Дроссель L1 выбирается только исходя из индуктивности и перегрузочного тока. На схеме указан дроссель индуктивностью 220 микроГенри, а ток у него должен быть не меньше 500-600 миллиампер (средний ток зарядки любого современного сотового). Дроссель можно купить готовый, можно намотать самому. В принципе величина индуктивности может очень сильно варьироваться от 50 до 300 микроГенри, работать будет, но КПД возможно снизится. Главное, чтобы по току проходил, иначе будет сильно греться, а потом и вовсе сгорит.
Диод купи тот же, который и указан в схеме, благо он не редкость. Если не найдешь точно такой, то возьми любой диод Шоттки с расчетным током не меньше одного ампера. Диод Шоттки отличается от обычного диода тем, что у него дикое быстродействие. При смене направления напряжения он закрывается в порядке быстрей чем обычный, не допуская даже малейших утечек тока в обратную сторону. Через него будет замыкаться цепь катушка – конденсатор – нагрузка, когда транзистор в микросхеме закроется.
Теперь надо задать выходное напряжение. Для этого тебе надо взять тестер и померить сколько вольт выдает твой зарядник для сотового. У меня все зарядники выдают примерно по 7 вольт. Порывшись в даташите нахожу формулу зависимости выходного напряжения от резисторов R1 и R2
Для Step-Down схемы выглядит она так: Vout=1.25(1+R2/R1). Чтобы получить напряжение в 7 вольт сопротивление R2 должно быть 4.7 кОм, а R1 должен быть равен 1 кОм. Получим 7.125 вольта, но это не страшно, невелика погрешность и эти излишки все равно упадут где-нибудь на потерях в проводах. Собственно вот и все, вот мы и разработали с тобой универсальный преобразователь для своих девайсов. Теперь осталось только протравить плату и спаять.
Главное НИ В КОЕМ СЛУЧАЕ НЕ СОВАТЬ этот зарядник в РОЗЕТКУ, т.к. там напряжение 220 вольт, а наша схема расчитана на 40 вольт максимум!
Именно два таких преобразователя на 3.3 и на 5 вольт стоят в силовом блоке моего робота.
Кстати, если покопаешься в даташите, то найдешь там и повышающую схему, зовется Step-Up.
Если выкинуть нафиг диодный мост (за ненужностью) и собрать всю конструкцию по Step-Up схеме, то ты сможешь заряжать сотовый телефон от трех, а то и двух пальчиковых батареек, если хватит трех вольт для раскачки микросхемы. Также тебе никто не мешает порыться в инете и найти DC-DC преобразователь, работающий от 1, а то и от 0.5 вольт и сделать на нем повышающий преобразователь.
Полная версия статьи опубликована в журнале «Хакер» за август 2008
easyelectronics.ru
Импульсный стабилизатор напряжения — Википедия
И́мпульсный стабилиза́тор напряже́ния (ключево́й стабилизатор напряжения, используются также названия импульсный преобразователь, импульсный источник питания) — стабилизатор напряжения, в котором регулирующий элемент (ключ) работает в импульсном режиме[1], то есть регулирующий элемент периодически открывается и закрывается.
Энергия первичного источника питания передаётся через регулирующий элемент определёнными порциями, заданными контуром регулирования так, чтобы стабильным было среднее значение выходного напряжения. Сглаживание пульсаций выходного напряжения происходит благодаря наличию элемента (или сочетания элементов), способного накапливать электрическую энергию и отдавать её в нагрузку.
Импульсный стабилизатор напряжения по сравнению с линейным стабилизатором имеет меньшие потери энергии на нагрев регулирующего элемента, что повышает КПД стабилизатора и позволяет применять регулирующий элемент меньшей мощности, а радиатор меньших размеров и веса.
Сравнение с линейным стабилизатором[править | править код]
Преимущества:
- высокий КПД, особенно при работе в большом диапазоне входных напряжений[2];
- малые габариты и масса (высокая удельная мощность)[2];
- принципиальная возможность гальванической развязки входных и выходных цепей, при работе от промышленной сети переменного тока не требуется использование имеющего большие габариты и вес трансформатора, рассчитанного на частоту 50/60 Гц[2].
Недостатки:
- импульсные помехи во входных и выходных цепях[2] — как дифференциальные (противофазные), так и помехи общего вида (синфазные помехи)[3][4];
- более высокая нестабильность выходного напряжения при изменении входного напряжения или тока нагрузки[2];
- более длительные переходные процессы (большее время восстановления выходного напряжения после скачкообразного изменения входного напряжения или тока нагрузки)[2];
- входное отрицательное дифференциальное сопротивление — входной ток увеличивается при уменьшении входного напряжения; если импеданс первичного источника напряжения (включая входные вспомогательные цепи самого импульсного преобразователя) выше отрицательного импеданса импульсного преобразователя, то возникают автоколебания с нарушением работоспособности и возможным повреждением стабилизатора[4][5][6].
Функциональные схемы по типу цепи управления[править | править код]
Импульсный стабилизатор напряжения представляет собой систему автоматического регулирования. Задающим параметром для контура регулирования служит опорное напряжение, которое сравнивается с выходным напряжением стабилизатора. В зависимости от сигнала рассогласования устройство управления изменяет соотношение длительностей открытого и закрытого состояния ключа.
В представленных ниже структурных схемах можно выделить три функциональных узла: ключ (1), накопитель энергии (2) (который иногда называют фильтром[7]) и цепь управления. При этом ключ (1) и накопитель энергии (2) вместе образуют силовую часть[8] стабилизатора напряжения[⇨], которая вместе с цепью управления образуют контур регулирования. По типу цепи управления различают три схемы.
С триггером Шмитта[править | править код]
Стабилизатор напряжения с триггером Шмитта называется также релейным или стабилизатором с двухпозиционным регулированием[9]. В нём выходное напряжение сравнивается с нижним и верхним порогами срабатывания триггера Шмитта (4 и 3) посредством компаратора (4), который обычно является входной частью триггера Шмитта. При замкнутом ключе (1) входное напряжение поступает на накопитель энергии (2), выходное напряжение нарастает, и после достижения верхнего порога срабатывания Umax триггер Шмитта переключается в состояние, размыкающее ключ (1). Накопленная энергия расходуется в нагрузке, при этом напряжение на выходе стабилизатора спадает, и после достижения нижнего порога срабатывания Umin триггер Шмитта переключается в состояние, замыкающее ключ. Далее описанный процесс периодически повторяется. В результате на выходе образуется пульсирующее напряжение, размах пульсаций которого зависит от разности порогов срабатывания триггера Шмитта.
Такой стабилизатор характеризуются сравнительно большой, принципиально неустранимой пульсацией напряжения на нагрузке и переменной частотой преобразования, зависящей как от входного напряжения, так и от тока нагрузки[10].
С широтно-импульсной модуляцией[править | править код]
Структурная схема стабилизатора напряжения с ШИМКак и в предыдущей схеме, в процессе работы накопитель энергии (2) или подключён к входному напряжению, или передаёт накопленную энергию в нагрузку. В результате на выходе имеется некоторое среднее значение напряжения, которое зависит от входного напряжения и скважности[11] импульсов управления ключом (1). Вычитатель-усилитель на операционном усилителе (4) сравнивает выходное напряжение с опорным напряжением (6) и усиливает разность, которая поступает на модулятор (3). Если выходное напряжение меньше опорного, то модулятор увеличивает отношение времени открытого состояния ключа к периоду тактового генератора (5). При изменении входного напряжения или тока нагрузки скважность импульсов управления ключом изменяется таким образом, чтобы обеспечить минимальную разность между выходным и опорным напряжением.
В таком стабилизаторе частота преобразования не зависит от входного напряжения и тока нагрузки и определяется частотой тактового генератора[10].
С частотно-импульсной модуляцией[править | править код]
При этом способе управления импульс, открывающий ключ, имеет постоянную длительность, а частота следования импульсов зависит от сигнала рассогласования между опорным и выходным напряжениями. При увеличении тока нагрузки или снижении входного напряжения частота увеличивается. Управление ключом может осуществляться, например, с помощью моностабильного мультивибратора (одновибратора) с управляемой частотой запуска.
Этот раздел имеет чрезмерный объём или содержит маловажные подробности. Если вы не согласны с этим, пожалуйста, покажите в тексте существенность излагаемого материала. В противном случае раздел может быть удалён. Подробности могут быть на странице обсуждения. |
По схеме силовой части импульсные стабилизаторы делят обычно на три основных типа: понижающие, повышающие и инвертирующие[8]. Такое разделение сложилось, в частности, в отечественной технической литературе[12].
Некоторые авторы, рассматривая схемы импульсных преобразователей постоянного напряжения во всём их многообразии, показывают, что число элементарных базовых схем преобразователя можно свести к двум[13] — понижающего типа и повышающего типа. Также отмечается, что другие схемы импульсного преобразователя напряжения (в том числе инвертирующего преобразователя[14]) могут быть получены каскадным соединением этих двух базовых схем[15][неавторитетный источник?][16].
В нижеприведённых схемах в качестве ключа S могут использоваться полевой транзистор, биполярный транзистор или тиристор, цепь управления ключом для простоты не показана. Отношение времени замкнутого состояния ключа к сумме длительностей замкнутого и разомкнутого состояний называют коэффициентом заполнения (или рабочим циклом — англ. duty cycle)[2].
Преобразователь с понижением напряжения[править | править код]
Преобразователь с понижением напряженияНазвания в англоязычной литературе — buck converter (step-down converter). Если ключ S замкнут, то диод D закрыт, и через дроссель L течёт нарастающий ток от источника. Когда ключ размыкается, ток дросселя, который не может измениться мгновенно, начинает протекать через диод D, при этом величина тока уменьшается. При достаточной индуктивности ток дросселя не успевает уменьшиться до нуля к началу следующего цикла (режим неразрывных токов) и имеет пульсирующий характер. Поэтому даже при отсутствии конденсатора C напряжение на нагрузке R будет иметь такой же характер с пульсациями, размах которых тем меньше, чем больше индуктивность дросселя. Однако, на практике увеличение индуктивности связано с увеличением габаритов, массы и стоимости дросселя и потерь мощности в нём, поэтому использование конденсатора для уменьшения пульсаций более эффективно. Сочетание элементов L и C в этой схеме часто называют фильтром[10][17].
Преобразователь с повышением напряжения[править | править код]
Преобразователь с повышением напряженияНазвания в англоязычной литературе — boost converter (step-up converter). Если ключ S замкнут, то диод D закрыт, и через дроссель L течёт линейно нарастающий ток от источника. Когда ключ размыкается, ток дросселя, который не может измениться мгновенно, начинает протекать через диод D и конденсатор C (заряжая его). К началу следующего цикла практически линейно спадающий ток через конденсатор может уменьшиться до нуля, однако приложенное к нагрузке R напряжение конденсатора почти постоянно — амплитуда пульсаций тем меньше, чем больше ёмкость конденсатора. В отличие от предыдущей схемы, здесь дроссель не является элементом фильтра. Напряжение на нагрузке всегда больше напряжения источника[10][18].
Инвертирующий преобразователь[править | править код]
Инвертирующий преобразовательНазвание в англоязычной литературе — buck-boost converter (то есть «понижающе-повышающий преобразователь»). Основное отличие от предыдущей схемы состоит в том, что цепь D, R, C подключена параллельно дросселю, а не параллельно ключу. Принцип работы схемы похожий. Если ключ S замкнут, то диод D закрыт, и через дроссель L течёт линейно нарастающий ток от источника. Когда ключ размыкается, ток дросселя, который не может измениться мгновенно, начинает протекать через конденсатор C (заряжая его) и диод D. К началу следующего цикла практически линейно спадающий ток через конденсатор может уменьшиться до нуля, однако приложенное к нагрузке R напряжение конденсатора почти постоянно — амплитуда пульсаций тем меньше, чем больше ёмкость конденсатора (дроссель не является элементом фильтра). Напряжение на нагрузке может быть как больше, так и меньше напряжения источника[10][19].
Влияние диода на КПД[править | править код]
Прямое падение напряжения для обычных кремниевых диодов составляет около 0,7 В, для диодов Шоттки — около 0,4 В. Мощность, рассеиваемая в диоде при больших токах, существенно снижает КПД, особенно в стабилизаторах с низким выходным напряжением. Поэтому в таких стабилизаторах диод часто заменяют дополнительным полупроводниковым ключом с низким падением напряжения в открытом состоянии, например, силовым полевым транзистором.
Во всех трёх описанных схемах диод D может быть заменён на дополнительный ключ[20], замыкаемый и размыкаемый в противофазе к основному ключу.
Если требуется гальваническая развязка входных и выходных цепей импульсного стабилизатора — например, по требованиям электробезопасности при использовании промышленной сети переменного тока в качестве первичного источника питания — можно применить разделительный трансформатор в рассмотренных выше основных схемах. Использование высокочастотного трансформатора в схеме преобразователя с понижением напряжения приводит к схеме однотактного или двухтактного прямоходового преобразователя (англ. forward converter). Замена дросселя в схеме инвертирующего преобразователя на дроссель с двумя или более обмотками приводит[21] к схеме обратноходового преобразователя (англ. flyback converter).
Некоторые особенности импульсных преобразователей с гальванической развязкой входа от выхода:
- Благодаря высокой рабочей частоте преобразования (от 20 кГц до 1 МГц[2]) габаритные размеры развязывающего трансформатора или многообмоточного дросселя значительно меньше, чем трансформатора для частоты 50 Гц.
- В цепи управления применяется либо оптрон, либо отдельная обмотка в трансформаторе (или дросселе), либо специальный трансформатор.
A — входной выпрямительный мост и фильтр помех.
B — конденсаторы входного фильтра, правее — радиатор высоковольтных транзисторов.
C — трансформатор, правее — радиатор низковольтных диодов.
D — выходной дроссель.
E — конденсаторы выходного фильтра.
Ниже E — дроссель и конденсатор входного фильтра на сетевом разъёме.
Фильтрация импульсных помех[править | править код]
Импульсный стабилизатор напряжения является источником высокочастотных помех в связи с тем, что содержит ключи, коммутирующие ток[22]. Поэтому в моменты коммутации возникают довольно значительные броски напряжения и тока, порождающие помехи как на входе, так и на выходе стабилизатора, причём помехи и противофазные, и синфазные[3]. Фильтры для подавления помех устанавливаются как на входе, так и на выходе стабилизатора.
Для снижения помех можно производить коммутацию ключа в моменты, когда через ключ нет тока при размыкании, или на ключе нулевое напряжение при замыкании. Этот приём используют в так называемых резонансных преобразователях, которые также имеют свои недостатки[23][24].
Входное сопротивление[править | править код]
Импульсный стабилизатор напряжения под нагрузкой имеет входное отрицательное дифференциальное сопротивление — при повышении входного напряжения входной ток уменьшается, и наоборот. Это следует учитывать для сохранения устойчивости работы импульсного стабилизатора напряжения от источника с повышенным внутренним сопротивлением[4][6].
Использование в сетях переменного тока[править | править код]
Рассмотренные выше импульсные стабилизаторы (преобразователи) напряжения преобразуют постоянный ток на входе в постоянный ток на выходе. Для питания устройств от электрической сети переменного тока на входе устанавливается выпрямитель и сглаживающий фильтр.
Это предполагает наличие некоторого количества элементов, установленных до развязывающего трансформатора, а значит, гальванически связанных с входными цепями. Такие элементы обычно выделяются на платах либо штриховкой, либо чертой на слое сеткографической маркировки, или даже особой окраской, которая предупреждает человека о потенциальной опасности прикосновения к ним. Импульсные блоки питания в составе других приборов (телевизоров, компьютеров) закрываются защитными крышками, снабжёнными предупреждающими надписями. Если при ремонте импульсного блока питания необходимо включить его со снятой крышкой, рекомендуется включать его через развязывающий трансформатор или УЗО.
Часто помехоподавляющие фильтры на входе импульсных блоков питания соединяются с корпусом прибора. Это делается в том случае, если предполагается подключение защитного заземления корпуса. Если защитным заземлением пренебрегли, то на корпусе прибора образуется потенциал относительно земли, равный половине сетевого напряжения. Конденсаторы фильтров, как правило, имеют небольшую ёмкость, поэтому прикосновение к корпусу такого прибора неопасно для человека, но одновременное прикосновение чувствительными частями тела к заземленным приборам и к незаземленному корпусу ощутимо (говорят, что прибор «кусается»). Кроме того потенциал на корпусе может быть опасен для самого прибора.
- ↑ ГОСТ Р 52907-2008 (неопр.). docs.cntd.ru. Дата обращения 2 февраля 2018.
- ↑ 1 2 3 4 5 6 7 8 Интегральные микросхемы: Микросхемы для импульсных источников питания и их применение. — М. : Додэка, 1997. — С. 15—16. — 224 с. — ISBN 587835-0010-6
- ↑ 1 2 Электромагнитная совместимость в электроэнергетике (рус.) (недоступная ссылка). lib.rosenergoservis.ru. Дата обращения 19 августа 2017. Архивировано 19 августа 2017 года.
- ↑ 1 2 3 Жданкин В. Подавление электромагнитных помех во входных цепях преобразователей постоянного напряжения
- ↑ Севернс и Блум, 1988, с. 218.
- ↑ 1 2 Sokal, Nathan O. System oscillations from negative input resistance at power input port of switching-mode regulator, amplifier, DC/DC converter, or DC/DC inverter (англ.) : journal. — 1973. — P. 138—140. — DOI:10.1109/PESC.1973.7065180. (англ.)
- ↑ Титце У. Шенк К. Полупроводниковая схемотехника. Мир, 1982. — С. 271.
- ↑ 1 2 Импульсные стабилизаторы (неопр.). Studopedia.org. Дата обращения 6 января 2018.
- ↑ Китаев В. В. Электропитание устройств связи. — : Связь, 1975. — С. 196—207. — 328 с. — 24 000 экз.
- ↑ 1 2 3 4 5 8.4. Импульсные стабилизаторы (неопр.). riostat.ru. Дата обращения 16 августа 2017.
- ↑ В расчётах стабилизатора обычно используется величина, обратная скважности — коэффициент заполнения.
- ↑ Семенов, 2006.
- ↑ Севернс и Блум, 1988, с. 9—14.
- ↑ Хотя тут же (С. 139) Севернс и Блум отмечают, что многими специалистами схема инвертирующего преобразователя рассматривается как третья элементарная преобразовательная ячейка.
- ↑ Севернс и Блум, 1988, с. 138—139.
- ↑ Поликарпов А. Г., Сергиенко Е. Ф. Однотактные преобразователи напряжения в устройствах электропитания РЭА. — М.: Радио и связь, 1989. — С. 6—7. — 160 с. — ISBN 5-256-00213-9
- ↑ issh.ru — Источники питания — Раздел 16 Импульсные источники питания — Основные импульсные схемы — Понижающий преобразователь — Стр. 128
- ↑ issh.ru — Источники питания — Раздел 16 Импульсные источники питания — Основные импульсные схемы — Повышающий преобразователь — Стр. 129
- ↑ issh.ru — Источники питания — Раздел 16 Импульсные источники питания — Основные импульсные схемы — Инвертирующий повышающий преобразователь — Стр. 130
- ↑ Как, например, в микросхеме TPS54616
- ↑ The Flyback Converter — Lecture notes — ECEN4517 — Department of Electrical and Computer Engineering — University of Colorado, Boulder.
- ↑ issh.ru — Источники питания — Раздел 16 Импульсные источники питания — Первичный источник питания — Подавление радиопомех — Стр. 147
- ↑ Источники питания — Раздел 16. Импульсные источники питания — Схемы управления — Резонансные контроллеры, стр. 145 //issh.ru
- ↑ Авторская страница Б. Ю. Семенова
ru.wikipedia.org