Новые виды аккумуляторов приходят на смену литий-ионным батареям
Экология потребления.Наука и техника: Будущее электротранспорта во многом зависит от совершенствования аккумуляторов — они должны весить меньше, заряжаться быстрее и при этом производить больше энергии.
Будущее электротранспорта во многом зависит от совершенствования аккумуляторов — они должны весить меньше, заряжаться быстрее и при этом производить больше энергии. Ученые уже добились некоторых результатов. Команда инженеров создала литий-кислородные батареи, которые не растрачивают энергию впустую и могут служить десятилетиями. А австралийский ученый представил ионистор на основе графена, который может заряжаться миллион раз без потери эффективности.
Литий-кислородные аккумуляторы мало весят и производят много энергии и могли бы стать идеальными комплектующими для электромобилей. Но у таких батарей есть существенный недостаток — они быстро изнашиваются и выделяют слишком много энергии в виде тепла впустую. Новая разработка ученых из МТИ, Аргонской национальной лаборатории и Пекинского университета обещает решить эту проблему.
Созданные командой инженеров литий-кислородные аккумуляторы используют наночастицы, в которых содержится литий и кислород. При этом кислород при изменении состояний сохраняется внутри частицы и не возвращается в газовую фазу. Это отличает разработку от литий-воздушных батарей, которые получают кислород из воздуха и выпускают его в атмосферу во время обратной реакции. Новый подход позволяет сократить потерю энергии (величина электрического напряжения сокращается почти в 5 раз) и увеличить срок службы батареи.
Литий-кислородная технология также хорошо адаптирована к реальным условиям, в отличие от литий-воздушных систем, которые портятся при контакте с влагой и CO2. Кроме того, аккумуляторы на литии и кислороде защищены от избыточной зарядки — как только энергии становится слишком много, батарея переключается на другой тип реакции.
Ученые провели 120 циклов заряда-разряда, при этом производительность снизилась лишь на 2%.
Пока что ученые создали лишь опытный образец аккумулятора, но в течение года они намерены разработать прототип. Для этого не нужны дорогие материалы, а производство во многом схоже с производством традиционных литий-ионных батарей. Если проект будет реализован, то в ближайшем будущем электромобили будут сохранять в два раза больше энергии при той же массе.
Инженер из Технологического университета Суинберна в Австралии решил другую проблему аккумуляторов — скорость их подзарядки. Разработанный им ионистор заряжается практически мгновенно и может использоваться в течение многих лет без потери эффективности.
Хан Линь использовал графен — один из самых прочных материалов на сегодняшний день. За счет структуры, напоминающей соты, графен обладает большой площадью поверхности для хранения энергии. Ученый напечатал графеновые пластины на 3D-принтере — такой способ производства также позволяет сократить затраты и нарастить масштабы.
Созданный ученым ионистор производит столько же энергии на килограмм веса, сколько и литий-ионный аккумуляторы, но заряжается за несколько секунд. При этом вместо лития в нем используется графен, который стоит намного дешевле. По словам Хана Линя, ионистор может проходить миллионы циклов зарядки без потери качества.
Сфера производства аккумуляторов не стоит на месте. Братья Крайзель из Австрии создали новый тип батарей, которые весят почти в два раза меньше аккумуляторов в Tesla Model S.
Норвежские ученые из Университета Осло изобрели аккумулятор, который можно полностью зарядить за полсекунды. Однако их разработка предназначена для городского общественного транспорта, который регулярно делает остановки — на каждой из них автобус будет подзаряжаться и энергии хватит, чтобы добраться до следующей остановки.
Ученые Калифорнийского университета в Ирвайне приблизились к созданию вечной батареи. Они разработали аккумулятор из нанопроволоки, который можно перезаряжать сотни тысяч раз.
А инженеры Университета Райса сумели создать литий-ионный аккумулятор, работающий при температуре 150 градусов Цельсия без потери эффективности. опубликовано econet.ru
econet.ru
какими могут быть аккумуляторы будущего / Mail.ru Group corporate blog / Habr
В последние годы мы часто слышали, что вот-вот — и человечество получит аккумуляторы, которые будут способны питать наши гаджеты неделями, а то и месяцами, при этом очень компактные и быстрозаряжаемые. Но воз и ныне там. Почему до сих пор не появились более эффективные аккумуляторы и какие существуют разработки в мире, читайте под катом.
Сегодня ряд стартапов близки к созданию безопасных компактных аккумуляторов со стоимостью хранения энергии около 100 долларов за кВт⋅ч. Это позволило бы решить проблему электропитания в режиме 24/7 и во многих случаях перейти на возобновляемые источники энергии, а заодно снизило бы вес и стоимость электромобилей.
Но все эти разработки крайне медленно приближаются к коммерческому уровню, что не позволяет ускорить переход с ископаемых на возобновляемые источники. Даже Илон Маск, который любит смелые обещания, был вынужден признать, что его автомобильное подразделение постепенно улучшает литий-ионные аккумуляторы, а не создаёт прорывные технологии.
Многие разработчики верят, что будущие аккумуляторы станут иметь совсем другую форму, строение и химический состав по сравнению с литий-ионными, которые в последнее десятилетие вытеснили иные технологии со многих рынков.
Основатель компании SolidEnergy Systems Кичао Ху (Qichao Hu), в течение десяти лет разрабатывавший литий-металлический аккумулятор (анод металлический, а не графитовый, как в традиционных литий-ионных), утверждает, что главная проблема при создании новых технологий хранения энергии заключается в том, что при улучшении какого-то одного параметра ухудшаются остальные. К тому же сегодня существует столько разработок, авторы которых громко утверждают о своём превосходстве, что стартапам очень трудно убедить потенциальных инвесторов и привлечь достаточно средств для продолжения исследований.
Согласно отчёту Lux Research, за последние 8—9 лет компания вложила в исследование хранения энергии около 4 млрд долларов, из которых стартапам, создающим «технологии нового поколения», в среднем досталось по 40 млн долларов. При этом Tesla вложила около 5 млрд долларов в Gigafactory, занимающуюся производством литий-ионных аккумуляторов. Такой разрыв очень трудно преодолеть.
По словам Герда Седера (Gerd Ceder), профессора в области материаловедения Калифорнийского университета в Беркли, создание маленькой производственной линии и решение всех производственных проблем для налаживания выпуска аккумуляторов обходится примерно в 500 млн долларов. Автопроизводители могут годами тестировать новые аккумуляторные технологии, прежде чем решить, приобретать ли создавшие их стартапы. Даже если новая технология выходит на рынок, нужно преодолеть опасный период наращивания объёмов и поиска клиентов. К примеру, компании Leyden Energy и A123 Systems потерпели неудачу, несмотря на перспективность их продуктов, поскольку финансовые потребности оказались выше расчётных, а спрос не оправдал ожиданий. Ещё два стартапа, Seeo и Sakti3, не успели выйти на массовые объёмы производства и значительный уровень дохода и были куплены за гораздо меньшие суммы, чем ожидали первичные инвесторы.
В то же время три основных мировых производителя аккумуляторов — Samsung, LG и Panasonic — не слишком заинтересованы в появлении инноваций и радикальных переменах, они предпочитают незначительно улучшать свою продукцию. Так что все стартапы, предлагающие «прорывные технологии», сталкиваются с основной проблемой, о которой они предпочитают не упоминать: литий-ионные аккумуляторы, разработанные в конце 1970-х, продолжают совершенствоваться.
Но всё же — какие технологии могут прийти на смену вездесущим литий-ионным аккумуляторам?
Литий-воздушные «дышащие» аккумуляторы
В литий-воздушных аккумуляторах в качестве окислителя используется кислород. Потенциально они могут быть в разы дешевле и легче литий-ионных аккумуляторов, а их ёмкость способна оказаться гораздо больше при сравнимых размерах. Главные проблемы технологии: значительная потеря энергии за счёт теплового рассеивания при зарядке (до 30 %) и относительно быстрая деградация ёмкости. Но есть надежда, что в течение 5—10 лет эти проблемы удастся решить. Например, в прошлом году была представлена новая разновидность литий-воздушной технологии — аккумулятор с нанолитическим катодом.
Зарядное устройство Bioo
Это устройство в виде специального горшка для растений, использующего энергию фотосинтеза для зарядки мобильных гаджетов. Причём оно уже доступно в продаже. Устройство может обеспечивать две-три сессии зарядки в день с напряжением 3,5 В и силой тока 0,5 А. Органические материалы в горшке взаимодействуют с водой и продуктами реакции фотосинтеза, в результате получается достаточно энергии для зарядки смартфонов и планшетов.
Представьте себе целые рощи, в которых каждое дерево высажено над таким устройством, только более крупным и мощным. Это позволит снабжать «бесплатной» энергией окружающие дома и будет веской причиной для защиты лесов от вырубки.
Аккумуляторы с золотыми нанопроводниками
В Калифорнийском университете в Ирвайне разработали нанопроводниковые аккумуляторы, которые могут выдерживать более 200 тыс. циклов зарядки в течение трёх месяцев без каких-либо признаков деградации ёмкости. Это позволит многократно увеличить жизненный цикл систем питания в критически важных системах и потребительской электронике.
Нанопроводники в тысячи раз тоньше человеческого волоса обещают светлое будущее. В своей разработке учёные применили золотые провода в оболочке из диоксида марганца, которые помещены в гелеобразный электролит. Это предотвращает разрушение нанопроводников при каждом цикле зарядки.
Магниевые аккумуляторы
В Toyota работают над использованием магния в аккумуляторах. Это позволит создавать маленькие, плотно упакованные модули, которым не нужны защитные корпуса. В долгосрочной перспективе такие аккумуляторы могут быть дешевле и компактнее литий-ионных. Правда, случится это ещё не скоро. Если случится.
Твердотельные аккумуляторы
В обычных литий-ионных аккумуляторах в качестве среды для переноса заряженных частиц между электродами используется жидкий легковоспламеняющийся электролит, постепенно приводящий к деградации аккумулятора.
Этого недостатка лишены твердотельные литий-ионные аккумуляторы, которые сегодня считаются одними из самых перспективных. В частности, разработчики Toyota опубликовали научную работу, в которой описали свои эксперименты с сульфидными сверхионными проводниками. Если у них всё получится, то будут созданы аккумуляторы на уровне суперконденсаторов — они станут полностью заряжаться или разряжаться всего за семь минут. Идеальный вариант для электромобилей. А благодаря твердотельной структуре такие аккумуляторы будут гораздо стабильнее и безопаснее современных литий-ионных. Расширится и их рабочий температурный диапазон — от –30 до +100 градусов по Цельсию.
Учёные из Массачусетского технологического института в содружестве с Samsung также разработали твердотельные аккумуляторы, превосходящие по своим характеристикам современные литий-ионные. Они безопаснее, энергоёмкость выше на 20—30 %, да к тому же выдерживают сотни тысяч циклов перезарядки. Да ещё и не пожароопасны.
Топливные ячейки
Совершенствование топливных ячеек может привести к тому, что смартфоны мы будем заряжать раз в неделю, а дроны станут летать дольше часа. Учёные из Пхоханского университета науки и технологии (Южная Корея) создали ячейку, в которой объединили пористые элементы из нержавеющей стали с тонкоплёночным электролитом и электродами с минимальной теплоёмкостью. Конструкция оказалась надёжнее литий-ионных аккумуляторов и работает дольше них. Не исключено, что разработка будет внедрена в коммерческие продукты, в первую очередь в смартфоны Samsung.
Графеновые автомобильные аккумуляторы
Многие специалисты считают, что будущее — за графеновыми аккумуляторами. В компании Graphenano разработали аккумулятор Grabat, который может обеспечить запас хода электромобиля до 800 км. Разработчики утверждают, что аккумулятор заряжается всего за несколько минут — скорость зарядки/разрядки в 33 раза выше, чем у литий-ионных. Быстрая разрядка особенно важна для обеспечения высокой динамики разгона электромобилей.
Ёмкость 2,3-вольтового Grabat огромна: около 1000 Вт⋅ч/кг. Для сравнения, у лучших образцов литий-ионных аккумуляторов — на уровне 180 Вт⋅ч/кг.
Микросуперконденсаторы, изготовленные с помощью лазера
Учёные из Университета Райса добились прогресса в разработке микросуперконденсаторов. Один из главных недостатков технологии — дороговизна изготовления, но применение лазера может привести к существенному удешевлению. Электроды для конденсаторов вырезаются лазером из пластикового листа, что многократно снижает трудоёмкость производства. Такие аккумуляторы могут заряжаться в 50 раз быстрее литий-ионных, а разряжаются медленнее используемых сегодня суперконденсаторов. К тому же они надёжны, в ходе экспериментов продолжали работать даже после 10 тыс. сгибаний.
Натрий-ионные аккумуляторы
Группа французских исследователей и компаний RS2E разработала натрий-ионные аккумуляторы для ноутбуков, в которых используется обычная соль. Принцип работы и процесс изготовления держатся в секрете. Ёмкость 6,5-сантиметрового аккумулятора — 90 Вт⋅ч/кг, что сравнимо с массовыми литий-ионными, но он выдерживает пока не более 2 тыс. циклов зарядки.
Пенные аккумуляторы
Другая тенденция в разработке технологий хранения энергии — создание трёхмерных структур. В частности, компания Prieto создала аккумулятор на основе субстрата пенометалла (меди). Здесь нет легковоспламеняющегося электролита, у такого аккумулятора большой ресурс, он быстрее заряжается, его плотность в пять раз выше, а также он дешевле и меньше современных аккумуляторов. В Prieto надеются сначала внедрить свою разработку в носимую электронику, но утверждают, что технологию можно будет распространить шире: использовать и в смартфонах, и даже в автомобилях.
Быстрозаряжаемый «наножелток» повышенной ёмкости
Ещё одна разработка Массачусетского технологического института — наночастицы для аккумуляторов: полая оболочка из диоксида титана, внутри которой (как желток в яйце) находится наполнитель из алюминиевой пудры, серной кислоты и оксисульфата титана. Размеры наполнителя могут меняться независимо от оболочки. Применение таких частиц позволило в три раза увеличить ёмкость современных аккумуляторов, а длительность полной зарядки снизилась до шести минут. Также снизилась скорость деградации аккумулятора. Вишенка на торте — дешевизна производства и простота масштабирования.
Алюминий-ионный аккумулятор сверхбыстрой зарядки
В Стэнфорде разработали алюминий-ионный аккумулятор, который полностью заряжается примерно за одну минуту. При этом сам аккумулятор обладает некоторой гибкостью. Главная проблема — удельная ёмкость примерно вдвое ниже, чем у литий-ионных аккумуляторов. Хотя, учитывая скорость зарядки, это не так критично.
Alfa battery — две недели на воде
Если компании Fuji Pigment удастся довести до ума свой алюминий-воздушный аккумулятор Alfa battery, то нас ждёт появление носителей энергии, ёмкость которых в 40 раз больше ёмкости литий-ионных. Более того, аккумулятор перезаряжается доливкой воды, простой или подсоленной. Как утверждают разработчики, на одном заряде Alfa сможет работать до двух недель. Возможно, сначала такие аккумуляторы появятся на электромобилях. Представьте себе автозаправку, на которую вы заезжаете за водой.
Аккумуляторы, которые можно сгибать, как бумагу
Компания Jenax создала гибкий аккумулятор J.Flex, похожий на плотную бумагу. Его даже можно складывать. К тому же он не боится воды и потому очень удобен для использования в одежде. Или представьте себе наручные часы с аккумулятором в виде ремешка. Эта технология позволит и уменьшить размер самих гаджетов, и увеличить носимый объём энергии. Другой сценарий — создание гибких складных смартфонов и планшетов. Нужен экран побольше? Просто разверните сложенный вдвое гаджет.
Как утверждают разработчики, тестовый образец выдерживает 200 тыс. складываний без потери ёмкости.
Эластичные аккумуляторы
Над созданием гибких носителей энергии работают во многих компаниях. А команда учёных из Университета штата Аризона пошла дальше и с помощью особой механической конструкции создала аккумулятор в виде эластичной ленты. Не исключено, что идея будет развита и позволит встраивать аккумуляторы в одежду.
Мочевой аккумулятор
В 2013 году Фонд Билла Гейтса вложился в продолжение исследований Bristol Robotic Laboratory по созданию аккумуляторов, работающих на моче. Весь цимес в использовании «микробных топливных ячеек»: в них содержатся микроорганизмы, расщепляющие мочу и вырабатывающие электричество. Кто знает, возможно, скоро поход в туалет будет не только потребностью, но и в буквальном смысле полезным занятием.
Ryden — углеродные аккумуляторы с быстрой зарядкой
В 2014 году компания Power Japan Plus сообщила о планах по выпуску аккумуляторов, в основе которых лежат углеродные материалы. Их можно было производить на том же оборудовании, что и литий-ионные. Углеродные аккумуляторы должны работать дольше и заряжаться в 20 раз быстрее литий-ионных. Был заявлен ресурс в 3 тыс. циклов зарядки.
Органический аккумулятор, почти даром
В Гарварде была создана технология органических аккумуляторов, стоимость производства которых составляла бы 27 долларов за кВт⋅ч. Это на 96 % дешевле аккумуляторов на основе металлов (порядка 700 долларов за кВт⋅ч). В изобретении применяются молекулы хинонов, практически идентичные тем, что содержатся в ревене. По эффективности органические аккумуляторы не уступают традиционным и могут без проблем масштабироваться до огромных размеров.
Просто добавь песка
Эта технология представляет собой модернизацию литий-ионных аккумуляторов. В Калифорнийском университете в Риверсайде вместо графитовых анодов использовали обожжённую смесь очищенного и измельчённого песка (читай — кварца) с солью и магнием. Это позволило повысить производительность обычных литий-ионных аккумуляторов и примерно втрое увеличить их срок службы.
Быстрозаряжаемые и долгоживущие
В Наньянском технологическом университете (Сингапур) разработали свою модификацию литий-ионного аккумулятора, который заряжается на 70 % за две минуты и служит в 10 раз дольше обычных литий-ионных. В нём анод изготовлен не из графита, а из гелеобразного вещества на основе диоксида титана — дешёвого и широко распространённого сырья.
Аккумуляторы с нанопорами
В Мэрилендском университете в Колледж-Парке создали нанопористую структуру, каждая ячейка которой работает как крохотный аккумулятор. Такой массив заряжается 12 минут, по ёмкости втрое превосходит литий-ионные аккумуляторы такого же размера и выдерживает около 1 тыс. циклов зарядки.
Генерирование электричества
Энергия кожи
Тут речь идёт не столько об аккумуляторах, сколько о способе получения энергии. Теоретически, используя энергию трения носимого устройства (часов, фитнес-трекера) о кожу, можно генерировать электричество. Если технологию удастся достаточно усовершенствовать, то в будущем в некоторых гаджетах аккумуляторы станут работать просто потому, что вы носите их на теле. Прототип такого наногенератора — золотая плёнка толщиной 50 нанометров, нанесённая на силиконовую подложку, содержащую тысячи крошечных ножек, которые увеличивают трение подложки о кожу. В результате возникает трибоэлектрический эффект.
uBeam — зарядка по воздуху
uBeam — любопытный концепт передачи энергии на мобильное устройство с помощью ультразвука. Зарядное устройство испускает ультразвуковые волны, которые улавливаются приёмником на гаджете и преобразуются в электричество. Судя по всему, в основе изобретения лежит пьезоэлектрический эффект: приёмник резонирует под действием ультразвука, и его колебания генерируют энергию.
Схожим путём пошли и учёные из Лондонского университета королевы Марии. Они создали прототип смартфона, который заряжается просто благодаря внешним шумам, в том числе от голосов людей.
StoreDot
Зарядное устройство StoreDot разработано стартапом, появившимся на базе Тель-Авивского университета. Лабораторный образец смог зарядить аккумулятор Samsung Galaxy 4 за 30 секунд. Сообщается, что устройство создано на базе органических полупроводников, изготовленных из пептидов. В конце 2017 года в продажу должен поступить карманный аккумулятор, способный заряжать смартфоны за пять минут.
Прозрачная солнечная панель
В Alcatel был разработан прототип прозрачной солнечной панели, которая помещается поверх экрана, так что телефон можно заряжать, просто положив на солнце. Конечно, концепт не идеален с точки зрения углов обзора и мощности зарядки. Но идея красивая.
Год спустя, в 2014-м, компания Tag Heuer анонсировала новую версию своего телефона для понтов Tag Heuer Meridiist Infinite, у которого между внешним стеклом и самим дисплеем должна была быть проложена прозрачная солнечная панель. Правда, непонятно, дошло ли дело до производства.
habr.com
Аккумуляторы нового поколения
Наверх- Рейтинги
- Обзоры
- Смартфоны и планшеты
- Компьютеры и ноутбуки
- Комплектующие
- Периферия
- Фото и видео
- Аксессуары
- ТВ и аудио
- Техника для дома
- Программы и приложения
- Новости
- Советы
- Покупка
- Эксплуатация
- Ремонт
- Подборки
- Смартфоны и планшеты
- Компьютеры
- Аксессуары
- ТВ и аудио
- Фото и видео
ichip.ru
Аккумуляторы, которых нет: новейшие разработки
Совсем недавно мы писали про существующие аккумуляторы, а сегодня расскажем о воображаемых — с гигантской удельной ёмкостью и мгновенной зарядкой. Новости о подобных разработках появляются с завидной регулярностью, но будущее пока не наступило, и мы всё ещё пользуемся появившимися в начале позапрошлого десятилетия литий-ионными аккумуляторами, либо их чуть более совершенными литий-полимерными аналогами. Так в чём же дело, в технологических трудностях, неправильной интерпретации слов учёных или чём-то другом? Попробуем разобраться.
В погоне за скоростью зарядки
Один из параметров аккумуляторов, который учёные и крупные компании постоянно стараются улучшить — скорость зарядки. Однако бесконечно увеличивать её не получится даже не в силу химических законов протекающих в аккумуляторах реакций (тем более, что разработчики алюминий-ионных батарей уже заявили, что такой тип аккумуляторов может быть полностью заряжен всего за секунду), а из-за физических ограничений. Пусть у нас есть смартфон с батареей ёмкостью 3000 мАч и поддержкой быстрой зарядки. Полностью зарядить такой гаджет можно в течение часа силой тока в среднем 3 А (в среднем потому, что напряжение при заряде изменяется). Однако если мы хотим получить полный заряд всего за одну минуту, потребуется сила тока уже в 180 А без учёта различных потерь. Для заряда устройства таким током потребуется провод диаметром около 9 мм — в два раза толще самого смартфона. Да и силу тока 180 А при напряжении около 5 В обычное зарядное устройство выдать не сможет: владельцам смартфонов понадобится импульсный преобразователь тока вроде того, что изображён на фотографии ниже.
Альтернатива увеличению силы тока — увеличение напряжения. Но оно, как правило, фиксированное, и для литий-ионный батарей составляет 3,7 В. Конечно, его можно превышать — зарядка по технологии Quick Charge 3.0 идёт с напряжением до 20 В, но попытка зарядить батарею напряжением около 220 В ни к чему хорошему не приведёт, и решить эту проблему в ближайшее время не представляется возможным. Современные элементы питания просто не могут использовать такое напряжение.
Вечные аккумуляторы
Разумеется, речь сейчас пойдёт не о «вечном двигателе», а об аккумуляторах с долгим сроком службы. Современные литий-ионные батареи для смартфонов способны выдержать максимум пару лет активного использования устройств, после чего их ёмкость неуклонно падает. Владельцам смартфонов со съёмными аккумуляторами повезло немного больше, чем другим, но и в этом случае стоит убедиться, что аккумулятор был произведён недавно: литий-ионные батарей деградируют даже тогда, когда не используются.
Своё решение этой проблемы предложили учёные Стэнфордского университета: покрыть электроды существующих типов литий-ионных аккумуляторов полимерным материалом с добавлением наночастиц графита. По задумке учёных, это позволит защитить электроды, которые неизбежно покрываются микротрещинами в процессе эксплуатации, а те же микротрещины в полимерном материале будут затягиваться самостоятельно. Принцип действия такого материала похож на технологию, применённую в смартфоне LG G Flex с самовосстанавливающейся задней крышкой.
К сожалению, дальше научной статьи, опубликованной в 2013 году, дело так и не пошло: нет ни инженерных образцов, ни новых сообщений об этой технологии.
Переход в третье измерение
В 2013 году появилось сообщение о разработке исследователями университета штата Иллинойс нового типа литий-ионных аккумуляторов. Учёные заявили, что удельная мощность таких элементов питания составит до 1000 мВт/(см*мм), в то время как удельная мощность обычных литий-ионных батарей колеблется между 10-100 мВт/(см*мм). Были использованы именно такие единицы измерения, поскольку речь идёт о достаточно небольших структурах толщиной в десятки нанометров.
Вместо плоских анода и катода, применяемых в традиционных Li-Ion батарей, учёные предложили использовать объёмные структуры: кристаллическую решётку из сульфида никеля на пористом никеле в качестве анода и литий-диоксид марганца на пористом никеле в качестве катода.
Несмотря на все сомнения, вызванные отсутствием в первых пресс-релизах точных параметров новых аккумуляторов, а также не представленные до сих пор прототипы, новый тип батарей всё же реален. Подтверждением тому служат несколько научных статей на эту тему, опубликованных за последние два года. Тем не менее, если такие батареи и станут доступны для конечных потребителей, произойдёт это очень нескоро.
Зарядка через экран
Учёные и инженеры пытаются продлить жизнь наших гаджетов не только поиском новых типов аккумуляторов или увеличением их энергоэффективности, но и довольно необычными способами. Исследователи университета штата Мичиган предложили встроить прозрачные солнечные панели прямо в экран. Поскольку принцип работы таких панелей основан на поглощении ими солнечного излучения, чтобы сделать их прозрачными, учёным пришлось пойти на хитрость: материал панелей нового типа поглощает только невидимое излучение (инфракрасное и ультрафиолетовое), после чего фотоны, отражаясь от широких граней стекла, поглощаются узкими полосками солнечных панелей традиционного типа, находящихся по его краям.
Главным препятствием для внедрения такой технологии является низкий КПД таких панелей — всего 1% против 25% традиционных солнечных панелей. Сейчас учёные ищут способы увеличить КПД хотя бы до 5%, но быстрого решения этой проблемы вряд ли стоит ожидать. К слову, похожую технологию недавно запатентовала компания Apple, но пока неизвестно, где именно в своих устройствах производитель расположит солнечные панели.
Мирный атом в каждый смартфон
До этого мы под словами «батарея» и «аккумулятор» мы подразумевали перезаряжаемый элемент питания, но некоторые исследователи считают, что в гаджетах вполне можно использовать одноразовые источники напряжения. В качестве батареек, которые могли бы работать без подзарядки или другого обслуживания несколько лет (а то и несколько десятков лет) учёные университета штата Миссури предложили использовать РИТЭГ — радиоизотопные термоэлектрические генераторы. Принцип действия РИТЭГ основан на преобразовании выделяющегося в процессе радиораспада тепла в электричество. Многим такие установки известны по использованию в космосе и труднодоступных местах на Земле, но в США миниатюрные радиоизотопные батарейки также применялись в кардиостимуляторах.
Работа над улучшенным типом таких батарей ведётся с 2009 года и даже были показаны прототипы таких элементов питания. Но увидеть радиоизотопные батарейки в смартфонах в ближайшей перспективе мы не сможем: они дороги в производстве, и, к тому же, многие страны имеют строгие ограничения на производство и оборот радиоактивных материалов.
В качестве одноразовых батареек также можно использовать и водородные элементы, но их в смартфонах использовать не получится. Водородные батареи расходуются довольно быстро: хотя ваш гаджет и будет работать от одного картриджа дольше, чем от одного заряда обычной батареи, их придётся периодически менять. Впрочем, это не мешает использовать водородные батареи в электромобилях и даже внешних аккумуляторах: пока это не массовые устройства, но уже и не прототипы. Да и компания Apple, по слухам, уже разрабатывает систему дозаправки картриджей водородом без их замены для использования в будущих iPhone.
Будущее почти здесь
Идея о том, что на основе графена можно создать аккумулятор с высокой удельной ёмкостью, была выдвинута ещё в 2012 году. И вот, в начале этого года в Испании было объявлено о начале строительства компанией Graphenano завода по производству графен-полимерых аккумуляторов для электромобилей. Новый тип батарей почти в четыре раза дешевле в производстве, чем традиционные литий-полимерные аккумуляторы, имеет удельную ёмкость 600 Втч/кг, а зарядить такую батарею на 50 кВтч можно будет всего за 8 минут. Правда, как мы говорили в самом начале, для этого потребуется мощность около 1 МВт, поэтому подобный показатель достижим лишь в теории. Когда именно завод начнёт выпускать первые графен-полимерные батареи не сообщается, но вполне возможно, что среди покупателей его продукции будет Volkswagen. Концерн уже заявил о планах выпуска электромобилей с пробегом до 700 километров от одного заряда аккумуляторов к 2018 году.
Что касается мобильных устройств, то пока применению в них графен-полимерных аккумуляторов мешают большие габариты таких батарей. Будем надеяться, что исследования в этой области продолжатся, ведь графен-полимерные аккумуляторы — один из наиболее перспективных типов аккумуляторов, которые могут появиться уже в ближайшие годы.
Куда ушёл прогресс?
Так всё же, почему, несмотря на весь оптимизм учёных и регулярно появляющиеся новости о прорывах в области сохранения электроэнергии, мы сейчас наблюдаем застой? В первую очередь, дело в наших завышенных ожиданиях, которые только подогреваются журналистами. Мы хотим верить, что вот-вот и произойдёт революция в мире аккумуляторов, и мы получим батарейку с зарядкой менее, чем за минуту, и практически неограниченным сроком службы, от которой современный смартфон с восьмиядерным процессором будет работать минимум неделю. Но таких прорывов, увы, не бывает. Вводу в массовое производство любой новой технологии предшествуют долгие годы научных исследований, испытаний образцов, разработка новых материалов и технологических процессов и другая работа, занимающая достаточно много времени. В конце концов, тем же литий-ионным аккумуляторам понадобилось около пяти лет, чтобы из инженерных образцов превратиться в готовые устройства, которые можно использовать в телефонах.
Поэтому, нам остаётся только запасаться терпением и не воспринимать новости о новых элементах питания близко к сердцу. По крайней мере, пока не появятся новости об их запуске в массовое производство, когда не останется никаких сомнений о жизнеспособности новой технологии.
mediatek-club.ru
Батареи отопления какие лучше – разбираемся в нюансах!
Организовывая в доме или квартире капитальный ремонт, в перечень мероприятий которого входит замена или модернизация отопительной системы, хозяин неизбежно встанет перед проблемой — батареи отопления какие лучше выбрать, чтобы повысить комфортность проживания и при этом не проиграть с интерьерным оформлением.
Батареи отопления какие лучше?Раньше такой вопрос обычно не ставился в принципе – кроме чугунных батарей единой модели в новых домах лишь иногда устанавливались неэффективные, некачественно изготовленные стальные конвекторы. Сегодня ситуация иная – радиаторы могут существенно различаться и по материалу изготовления, и по характеристикам, и по внешнему оформлению. Естественно, хочется установить в своей квартире, самые лучшие из тех, что позволяет выделенный на ремонт бюджет.
Однако, выбирая эти приборы, нужно учитывать, что не все они могут подойти для имеющейся системы отопления. Имея различные эксплуатационные характеристики, рассчитанные на определенную нагрузку и теплоноситель, батареи могут либо разочаровать покупателя своей невысокой эффективностью, либо даже попросту не подойти по техническим параметрам.
Кроме этого, чтобы добиться должной эффективности отопления, необходимо правильно рассчитать и установить требуемое количество секций в радиаторах. Только выполнив все условия и обязательно придерживаясь правил установки, можно получить желаемый результат.
В настоящее время наиболее распространёнными типами батарей отопления являются: производятся следующие виды радиаторов:
— стальные, панельные и трубчатые;
— чугунные, имеющие как современный, так и ретро-дизайн;
— алюминиевые и алюминиевые анодированные;
— биметаллические.
Чтобы правильно определиться с выбором, нужно подробнее разобраться в характеристиках, достоинствах и недостатках каждого типа. Для начала – несколько «сухих» цифр, которые, тем не менее уже могут дать начальное представление. Некоторые параметры различных типов батарей – в таблице:
ТС | Чг | Ал | БМ | АА | |
---|---|---|---|---|---|
Давление максимальное, (атмосфер) | |||||
– рабочее | 6-10 | 6-9 | 10-20 | 35 | 15-40 |
– опрессовочное | 9 -15 | 12-15 | 15-30 | 57 | 25-75 |
– разрушения | 18-25 | 20-25 | 30-50 | 75 | 100 |
Ограничение по рН (водородному показателю) | 6,5-9 | 6,5-9 | 7-8 | 6,5-9 | 6,5-9 |
Подверженность коррозии под воздействием: | |||||
– кислорода | да | нет | нет | да | нет |
– блуждающих токов | да | нет | да | да | нет |
– электролитических пар | слабое | нет | да | слабое | нет |
Мощность секции при h=500 мм; Dt=70 ° , Вт | 85 | 110 | 175-199 | 199 | 216,3 |
Гарантия, лет | 1 | 10 | 3-10 | 3-10 | 30 |
Сокращения в таблице:
ТС – трубчатые стальные;
Чг – чугунные;
Ал – алюминиевые обычные;
АА – алюминиевые анодированные;
БМ – биметаллические.
Ну а теперь – о каждом из типов подробнее.
Стальные батареи отопления
Стальные радиаторы могут различаться как по своей конструкции, так и по дизайнерскому решению. Они быть изготовленными в виде панелей или определенного количества вертикальных труб, соединенных между собой в одну общую батарею.
Панельные стальные радиаторы
Каждая панель такого радиатора изготавливается из двух металлических листов, которым придают нужную форму с помощью штамповки и соединяют сваркой. Затем в большинстве из моделей идет оснащение панелей конвекторными теплообменниками, которые способствуют быстрому прогреву воздуха и созданию теплового восходящего потока. После соединения всех элементов в единую конструкцию, ее окрашивают по специальной технологии.
Стальной панельный радиаторЧтобы этот вид радиаторов прослужил длительный срок, окраска должна быть равномерной — на этот параметр необходимо обратить особое внимание при покупке.
Цены на панельные радиаторы отопления Лидея
панельные радиаторы отопления Лидея
Панельные радиаторы рассчитаны на температуру теплоносителя в 85 ÷ 95 градусов, и на стандартное рабочее давление в центральной системе отопления (до 10 атмосфер).
Строение панельного радиатора типа «22»Подобные батареи имеют свою собственную классификацию, которая предопределяется количеством панелей и наличием конвекторных пластинчатых теплообменников между ними. Каждый из типов выражен определенным двузначным числом:
- 10 тип состоит только из одной панели;
- 11 тип – это одна панель, оснащенная одним конвектором;
- 21 тип — имеет две панели и один конвектор, расположенный между ними;
- 22 тип — состоит из двух панелей и двух конвекторов;
- 33 тип — имеет три конвектора, которые расположены между трех панелей.
Серьезные отличия между моделями могут быть и по общим габаритам. Понятно, что чем больше панелей, тем толще сама собранная конструкция, обычно от 50 и до 155 мм.. Длина же такой батареи может варьироваться от 400 до 3000 мм, а высота – как правило, в пределах от 200 до 900 мм.
Панельные батареи производятся с боковым и нижним подключением — выбор по этому параметру производится в зависимости от прохождения труб отопительной системы и предпочтений хозяев.
К достоинствам панельных батарей относят следующее:
- Простота монтажа. Батарея имеет цельную конструкцию, поэтому ее не нужно собирать из нескольких элементов. Панель навешивается на закрепленные в стену кронштейны, а патрубки соединяются с трубами отопительного контура.
- Из-за малой массивности стального листа прогревание панели происходит почти сразу же после запуска отопления. Это способствует хорошей теплоотдаче и с поверхности, направленной в комнату, и в пластинчатом теплообменнике, что дает возможность получить нужную температуру воздуха в помещении достаточно быстро.
- Компактный размер и аккуратный внешний вид позволяют панелям вписаться в любой интерьер.
- Эксплуатация панельных батарей в автономной системе отопления позволяет сэкономить на топливе, так как для заполнения контура используется сравнительно небольшое количество теплоносителя.
К отрицательным чертам панелей относятся следующие факторы:
- Металлические панели не имеют на внутренней своей поверхности, напрямую соприкасающейся с теплоносителем, антикоррозийного покрытия, что может привести довольно быстрому ржавлению, появлению течей, выходу из строя. Особенно это характерно для центральных систем, где на лето теплоноситель сливается, открывая «широкие возможности» для коррозионных процессов. Да и качество теплоносителя тоже далеко не всегда способствует длительности безаварийной работы приборов.
- Если батареи устанавливаются в систему центрального отопления, то не получится избежать гидроударов, которых панели могут не выдержать. Поэтому потребуется еще и установка редуктора, выравнивающего давление и принимающего удар на себя.
Чтобы получить более подробную информацию о процессе изготовления, характеристиках и нюансах эксплуатации панельных батарей, стоит пройти по рекомендуемой ссылке на специальную страницу портала.
Трубчатые батареи
Трубчатые стальные батареи состоят из наборных секций, которые скреплены между собой сваркой. Эффективность этой конструкции будет на должном уровне, если в батарее установлено нужное количество секций, суммарной тепловой своей мощностью соответствующее площади комнаты.
Трубчатый стальной радиаторТрубчатые радиаторы могут иметь очень широкое разнообразие различных дизайнерских решений, и это один из тех критериев, которые напрямую влияют на выбор именно этого вида батарей. Кроме этого, трубчатые батареи могут быть оснащены специальным кронштейном для сушки полотенец, что очень удобно, например, для кухни, или верхней панелью, которая может служить сиденьем или полкой для просушки обуви.
Производятся они разных размеров, высота варьируется от 200 и аж до 2000 мм, а толщина, как правило, от 100 до 250 мм. Заказываемая длина может быть любой, в зависимости от потребности обогрева.
Эти элементы отопительной системы могут выдерживать давление от 8 до 15 атмосфер. Во избежание повреждения батарей при гидроударах, если они установлены в центральную систему отопления, они так же, как и панельные, потребуют установки редуктора.
Толщина стенок стальных трубчатых радиаторов составляет всего 1 ÷ 1,5 мм, поэтому они очень быстро прогреваются и отдают тепло в комнату. Но этот же фактор можно отнести и к недостаткам конструкции, так как тонкая сталь легко поддается механическим повреждениям.
В отличие от панельного типа, трубки этих батарей имеют внутреннее покрытие полимерными защитными пленками, которые сохраняют их от воздействия агрессивной среды теплоносителя, а как результат — от возникновения очагов коррозии, что значительно продлевает срок их эксплуатации.
Трубчатые радиаторы часто имеют весьма оригинальное дизайнерское исполнениеК достоинствам трубчатых стальных батарей можно отнести многообразие дизайнерских решений по форме и цвету, снабжение радиаторов дополнительными элементами, оригинальный аккуратный внешний вид.
Серьезных недостатков у этого типа батарей всего два, но они могут гораздо значительнее отразиться на системе отопления дома, чем уже упомянутые достоинства:
- Низкая теплоотдача, которая приведет к большим расходам за энергоносители. Батареи быстро нагреваются, но и быстро остывают, поэтому котел будет выключаться на весьма незначительный срок. Отсутствие дополнительного теплообменника, кроме поверхности самих труб, делает площадь активной передачи тепла весьма небольшой. Это в итоге говорит о том, что трубчатые батареи невыгодно устанавливать в автономной системе отопления.
- Вместе с тем, к уязвимому месту таких батарей можно отнести сварные соединительные швы – отмечены случаи появления течи на них после гидроударов. Вывод напрашивается совсем противоположный — устанавливать трубчатые батареи без редуктора можно только в систему с автономным отоплением.
Одним словом, масса противоречий, и нужно очень хорошо подумать, прежде чем приобретать подобные батареи отопления.
Чугунные радиаторы
Хотя сегодня производятся большое количество батарей из современных материалов, не забыты и чугунные элементы отопительной системы. Их можно найти в магазинах в преображенном виде, оформленными под современные интерьеры или же под строгую «классику». В некоторых случаях такие радиаторы даже исполняют роль декоративного элемента и способны задавать тон всему оформлению комнаты.
Современные чугунные батареи, выполненные в ретро-стиле, зачастую становятся украшением помещенияКроме этого, современные чугунные батареи не требуют периодической окраски, как это было со старыми «советскими» моделями. В продажу они поступают с обработанной и окрашенной поверхностью, которую придется только иногда протирать или смахивать с нее пыль.
Чугунные батареи перестали нуждаться в регулярном подкрашивании благодаря качественному стойкому покрытиюСовременные радиаторы из чугуна могут иметь различные размеры, поэтому их можно подобрать под любую по размеру площадь комнаты. Кроме этого, если старые батареи нужно было обязательно навешивать на кронштейны, вбитые в стены, то сегодня можно приобрести варианты, в которых предусмотрены массивные ножки, на которые они устанавливаются и закрепляются к полу в определенном для них месте.
Цены на чугунные радиаторы отопления Konner
чугунные радиаторы отопления Konner
В отличие от всех других видов батарей, чугунные имеют важное преимущество — они будут одинаково эффективно функционировать как в автономной, так и в центральной отопительной системе. Главное, чтобы все соединения секций и труб были проведены правильно и надежно — тогда чугунным элементам не будут страшны ни гидроудары, ни возникновение коррозии.
Несмотря на появление новых вариантов батарей, чугунные продолжают быть популярными и из-за своей отменной теплоемкости — свойству долго сохранять тепло. Они имеют толстые и массивные стенки, которые долго прогреваются, но, набрав температуру, прогревшись, при отключении притока тепла по контуру остаются горячими гораздо более долгий срок, нежели радиаторы, произведенные из других материалов. Это происходит благодаря свойствам чугуна — недаром его широко используют для изготовления отопительных печей и котлов или отдельных комплектующих для них.
В специализированных магазинах можно найти как отечественные, так и импортные варианты чугунных радиаторов. Представляют свою продукцию такие страны, как Германия и Турция, Испания и Англия, Чехия и Италия — она по многим характеристикам выгодно отличается от изготовленной на отечественных предприятиях.
- Импортные радиаторы имеют качественные гладкие или же украшенные рельефным литьем поверхности.
- Важной функциональной особенностью является высокая тепловая мощность, даже при небольших габаритах. Для сравнения, можно взять объем традиционной отечественной батареи, который равен 1,3 литра, в то время, как радиатор чешского производства обладает объемом всего в 0,8 литра, при одинаковой теплоотдаче. Таким образом, зарубежный вариант будет более компактен и сэкономит приличную сумму на теплоносителе и на работе котла.
- Кроме этого, в отличие от отечественных, импортные батареи имеют идеально гладкую внутреннюю поверхность, что препятствует образованию на стенках накипи и значительно сокращает гидравлическое сопротивление циркуляции теплоносителя.
- Так как любые радиаторы из чугуна стойки к воздействию коррозии, их можно использовать в системах отопления открытого типа, где в теплоноситель попадает большое количество растворенного воздуха.
- Все чугунные батареи имеют достаточно толстые стенки, что повышает их сопротивляемость к возможному абразивному износу.
- В отличие от отечественных, импортные радиаторы поступают в магазины уже в окрашенном виде и не требуют периодического обновления покрытия, что сэкономит не только денежные средства, но и время владельцев жилья.
Однако, все изделия зарубежного производства имеют цену, намного превышающую стоимость отечественных батарей.
К недостаткам всех чугунных батарей можно отнести их большой вес, поэтому на все стены или перегородки их можно навесит. Да и сам процесс монтажа на стену – несколько сложнее, чем с иными радиаторами.
Алюминиевые батареи
Алюминиевые батареи пригодны только для установки в автономную систему отопления, так как они достаточно требовательны к качеству теплоносителя. У владельцев частных домов этот вид радиаторов пользуется достаточно большой популярностью, благодаря доступной цене, хорошим эксплуатационным показателям и современному внешнему оформлению.
Алюминиевый радиатор отопленияПроизводители устанавливают в паспорте минимальный срок эксплуатации на алюминиевые батареи 10 ÷ 25 лет, но они вполне могут прослужить и более длительное время. Продолжительность их «жизни» будет напрямую зависеть от качества теплоносителя, правильности установки и эксплуатации прибора отопления.
Цены на алюминиевые радиаторы
Радиатор секционный алюминий
Этот вид радиаторов рассчитан на давление в системе до 15 атмосфер, температуру теплоносителя в 90 ÷ 100 градусов, а теплоотдача секции может доходить до 200÷210 Вт. При этом емкость каждой из секций радиатора составляет всего 450 мл, а вес – 1,0 ÷ 1,5 кг. Отдельные секции скрепляются в единую батарею с помощью резьбового осевого соединения.
Стандартные расстояния между верхней и нижней осью составляют 200, 350 или 500 мм, но бывает, что изготавливаются и нестандартные варианты, имеющие межосевое расстояние в 800 и даже более миллиметров.
Схема алюминиевой батареи с межосевым расстоянием 500 ммАлюминиевые радиаторы, так же, как и все другие отопительные приборы, имеют свои достоинства и недостатки.
К преимуществам можно отнести их следующие качества:
— высокий уровень теплоотдачи;
— небольшой вес;
— относительную легкость в монтаже;
— удобный и широкий диапазон размерного ряда;
— аккуратный, эстетичный внешний вид;
— как правило – укомплектованность термостатом, что позволяет выставить нужный температурный режим.
Из недостатков стоит упомянуть следующее:
— возможный риск газообразования, что может спровоцировать «завоздушивание» и закупорку контура отопления;
— возможность образования течи на соединениях отдельных секций;
— основная концентрация тепла на ребрах элементов.
— подверженность некоторых типов алюминиевых радиаторов к возникновению коррозийных процессов.
Некоторые проблемы, которые могут возникнуть с алюминиевыми батареями, можно избежать. Например, чтобы возможное газообразование нее парализовало работу системы, необходимо врезать в общий автономный контур или установить на каждую батарею отводчик воздуха. А в случае автономной системы вообще лучше использовать хорошо адаптированный к алюминию теплоноситель (об этом подробно рассказано в соответствующей публикации портала).
Секции алюминиевых батарей изготавливаются из сплава алюминия с использованием кремниевых добавок, но разные модели могут различаются между собой еще и способом их изготовления — литья и экструзии.
- Первый метод подразумевает изготовление каждой секции отдельно, путем заливки сплава в специальные формы под высоким давлением. Кремний, присутствующий в составе сплава, дает особую прочность стенкам радиаторов, а способ изготовления в полной мере гарантирует герметичность емкости.
Батареи, изготовленные этим методом, способны выдерживать рабочее давление в системе, доходящее до 16 атмосфер. При испытательных мероприятиях теплоноситель подается в данный тип батарей под давлением в 25 атмосфер, то есть, давая характеристику своей продукции, производитель дает полуторный запас прочности.
По такой технологии изготавливаются секции самых разных форм, но традиционными все же остаются те, что имеют ровную гладкую наружную поверхность — она оптимальна для лучшей теплоотдачи.
- Другой способ изготовления секций — это метод экструзии. Расплав по этой технологии продавливается через формующие сопла — получается нужный профиль заготовки. Затем следует нарезка профиля на отдельные детали.
Затем готовые секции собираются в единую конструкцию. Батареи, изготовленные таким способом, имеют более низкую стоимость, но в процессе эксплуатации их нельзя будет их нарастить или сделать меньше – конструкция является неразборной. Качество таких радиаторов тоже пониже, так как места соединений секций (на уплотнители или даже на специальный клей) при неблагоприятном стечении обстоятельств могут потечь, и никакому ремонту не подлежат.
Алюминиевые батареи с анодным оксидированием
Существует и еще один тип алюминиевых батарей. Производятся из металла, имеющего высокую степень очистки, и проходят еще стадию анодного оксидирования – поэтому часто встречается термин «алюминиевые анодированные». При такой специальной обработке алюминий несколько изменяет свою структуру, и если обычные алюминиевые радиаторы подвержены воздействию кислородной коррозии, то анодированные секции с достоинством выдерживают такое влияние. В таких конструкциях батареи собираются с помощью муфт, которые закрепляются с внешней стороны секций.
Высококачественный радиатор из анодированного алюминияАнодированные секции для радиаторов изготавливаются методом литья, и внешне они почти не отличаются от обычных алюминиевых батарей. Поэтому, приобретая их в магазине, необходимо внимательно изучить паспорт, который должен прилагаться к подобным изделиям.
Внутренние поверхности этого типа радиаторов — абсолютно гладкие, поэтому нет никаких препятствий для циркуляции теплоносителя. Их верхний предел рабочего давления намного выше, чем у обычных алюминиевых, и составляет от 45 до 75 атмосфер.
Естественно, в связи с их выдающимися техническими характеристиками, стоимость также существенно выше. Но все же, чтобы алюминиевые батареи прослужили максимально долго, стоит выбрать радиаторы именно такой разновидности.
Биметаллические батареи
Биметаллические радиаторы по своей надежности стоят, пожалуй, на втором месте после чугунных. Их производят по комбинированному принципу, из двух металлических сплавов — внутренняя часть изготовлена из стального нержавеющего сплава, а наружная — из алюминия, покрытого слоем эмали.
Биметаллические батареи отопленияБиметаллические батареи тоже состоят из секций, которые соединяются посредством резьбового соединения. В то же время их исключительная надежность основывается на том, что внешний алюминиевый корпус никак не контактирует с теплоносителем, а служит только в качестве эффективного теплообменника (благодаря высочайшей теплопроводности этого металла) и в чем-то декоративного элемента. А вода или антифриз циркулируют по каналам, изготовленным из стального сплава, который более вынослив к барическим нагрузкам и к кислородной коррозии. Благодаря этому, такие батареи спокойно могут выдержать скачки давления до 35 ÷ 40 атмосфер.
Основные детали биметаллических батарейЭти качества биметаллических батарей позволяют безо всяких ограничений устанавливать их и в систему центрального отопления многоэтажек, и в автономную – частного дома. Единственное, во втором случае для них желательно будет создать необходимое давление, иначе, они будут функционировать не в полную силу, теряя ряд своих преимуществ. Значит, естественная циркуляция здесь не подойдет, и необходимо у в автономную систему установить циркуляционный насос.
Соединительный узел секции в разрезеБиметаллические батареи стоят достаточно дорого – их цена, во всяком случае значительно выше, чем у стальных или обычных алюминиевых, но это вполне оправдано высокой надежностью и длительным сроком службы. По сути, дороговизну можно назвать единственным недостатком, в то время, как достоинств у них гораздо больше:
- Высокая теплопроводность внешней алюминиевой «оболочки» дает возможность быстро нагреть помещение.
- Уже упоминаемая выше устойчивость к коррозии.
- Компактность и эстетичность внешнего вида, благодаря которому радиаторы отлично впишутся в любой интерьерный стиль.
- Биметаллические батареи не требуют особого ухода или периодического окрашивания, так как покрыты двухслойным закаленным полимерным покрытием.
- Способность выдерживать высокие температуры и повышенное рабочее давление, благодаря внутреннему стальному корпусу.
- Относительно небольшая масса, простота монтажа, который можно провести и без помощи специалистов.
Внешний вид биметаллических вариантов радиаторов несколько схож с алюминиевыми батареями, но разница в цене достаточно существенная. При покупке иногда даже невозможно различить два рядом стоящих типа радиаторов, поэтому их лучше приобретать в специализированных магазинах или у проверенных поставщиков. Обязательно требуя при этом техническую документацию.
Цены на популярные радиаторы отопления
Выбирая новые батареи, не стоит экономить, так как, купив дешевые низкокачественные изделия можно обречь себя на очередной, совершенно незапланированной и нежеланный ремонт через два ÷ три года. Установка хозяином неподходящих для имеющейся системы отопления радиаторов способна испортить не только напольное покрытие в его собственной квартире, но и привести к серьезным проблемам с залитыми соседями снизу. Так экономия на малом может привести к солидным затратам впоследствии.
Ни при каких обстоятельствах не забывайте потребовать паспорт изделия с отметкой производителя о дате выпуска и прохождении ОТК, и копию сертификата соответствияПоэтому, приобретая любые батареи отопления, необходимо изучить не только паспорт с указанными техническими характеристиками, но и сертификацию изделия с гарантийными обязательствами производителя. Это важно сделать для того, чтобы избежать покупки подделок, очень похожих на «»брендовый» образец внешне, но все же не перестающих быть низкокачественными.
Для «закрепления материала» предлагается посмотреть видео-урок, который поможет даст ответ на вопрос: «Батареи отопления какие лучше?»
Видео: полезные советы по выбору батарей отопления
И еще один момент. Важно не только определиться с типом радиаторов — из суммарная тепловая мощность должна соответствовать параметрам помещения, где они устанавливаются. Чтобы провести подобные расчеты, предлагаем воспользоваться специальным калькулятором, размещенным ниже:
Калькулятор для расчета радиаторов отопления
Перейти к расчётам
Последовательно введите запрашиваемые значения или отметьте нужные варианты в предлагаемых списках
Установите ползунком значение площади помещения, м²
Сколько внешних стен в помещении?
однадветричетыре
В какую сторону света смотрят внешние стены
Север, Северо-Восток, ВостокЮг, Юго-Запад, Запад
Укажите степень утепленности внешних стен
Внешние стены не утепленыСредняя степень утепленияВнешние стены имеют качественное утепление
Укажите среднюю температуру воздуха в регионе в самую холодную декаду года
– 35 °С и нижеот – 25 °С до – 35 °Сдо – 20 °Сдо – 15 °Сне ниже – 10 °С
Укажите высоту потолка в помещении
до 2,7 м2,8 ÷ 3,0 м3,1 ÷ 3,5 м3,6 ÷ 4,0 мболее 4,1 м
Что располагается над помещением?
холодный чердак или неотапливаемое и не утепленное помещениеутепленные чердак или иное помещениеотапливаемое помещение
Укажите тип установленных окон
Обычные деревянные рамы с двойным остеклениемОкна с однокамерным (2 стекла) стеклопакетомОкна с двухкамерным (3 стекла) стеклопакетом или с аргоновым заполнением
Укажите количество окон в помещении
Укажите высоту окна, м
Укажите ширину окна, м
Выберите схему подключения батарей
Укажите особенности установки радиаторов
Радиатор располжен открыто на стене или не прикрыт подоконникомРадиатор полностью прикрыт сверху подоконником или полкойРадиатор установлен в стеновой нишеРадиатор частично прикрыт фронтальным декоративным экраномРадиатор полностью закрыт декоративным кожухом
Ниже будет предложено ввести паспортную мощность одной секции выбранной модели радиатора.
Если целью расчетов стоит определение потребной суммарной тепловой мощности для отопления комнаты (например, для выбора неразборных радиаторов) то оставьте поле пустым
Введите паспортную тепловую мощность одной секции выбранной модели радиатора
stroyday.ru
Создан «вечный» аккумулятор, который можно заряжать раз в неделю
91724, Текст: Эльяс Касми
Батареи нового типа, в которых используются отрицательные ионы фтора, можно заряжать раз в неделю, а при экономичном использовании гаджетов – еще реже.Литий больше не нужен
Группа ученых из Калифорнийского технологического университета под руководством лауреата Нобелевской премии 2005 г. по химии Роберта Граббса (Robert Grabbs) разработали новый вид аккумуляторных батарей, в которых в качестве основного вещества используется не литий, а фторид (химическое соединение фтора с другими элементами). По словам ученых, использование этого материала в мобильных аккумуляторах позволит заряжать смартфоны в восемь раз реже, чем сейчас. Результаты своих исследований они отразили в статье, опубликованной в журнале Science.
В современных литий-ионных АКБ, применяемых в портативной электронике, в качестве так называемого «химического поршня» для проведения электрического заряда через контур используются положительно заряженные катионы лития Li2+. Когда аккумулятор полностью заряжен, катионы находятся в аноде и при подключении нагрузки (при включении смартфона, к примеру) начинают перетекать в анод, тем самым генерируя электрический ток. Это классический принцип работы элементов питания на литии, но Роберт Граббс с командой ученых пошли совсем другим путем.
Новые старые технологии
Химик Граббс в своей работе использовал достижения ученых, еще в 1970-х годах доказавших, что «химический поршень» может работать в обратном направлении – нужно лишь использовать отрицательно заряженные ионы, в том числе ионы фтора (F-). Но на тот момент этот процесс происходил только при нагреве аккумуляторных батарей до 150 градусов Цельсия, что делало технологию неприменимой в потребительской электронике.
В будущем этот до боли знакомый символ мы будем видеть очень редко
Роберт Граббс нашел способ обхода этого ограничения: он разработал вещество, растворяющее электролит и позволяющее анионам (отрицательно заряженным ионам) фтора смешиваться с электронами при комнатной температуре.
Технология за авторством Граббса и его коллег пока находится на ранней стадии разработки, и о серийном производстве аккумуляторов нового типа речь не идет. Тем не менее, ученые подчеркивают высокую степень значимости их работы для дальнейшего развития элементов питания мобильных устройств. К основным преимуществам АКБ на основе фторида ученые отнесли, помимо длительного удержания заряда, еще долговечность и надежность, что указывает на замедленные процессы деградации по сравнению с литий-ионными батареями и на низкую вероятность воспламенения при деформации или механическом воздействии. Для элементов питания мобильных устройств это очень важно – напомним, что всего два года назад компания Samsung выпустила смартфон Galaxy Note 7, ставший самым опасным за всю историю мобильных средств связи – его литиевый аккумулятор содержал заводской дефект, приводивший к спонтанным возгораниям или даже взрывам. Существуют официально зафиксированные случаи получения травм и материального ущерба от сгоревшего Note 7.
Альтернатива фторидным аккумуляторам
Роберт Граббс – не единственный, кто стремится сделать аккумуляторы надежнее и долговечнее. В этом направлении работают многие крупные компании: к примеру, Microsoft в 2015 г. разработала прототип программно-конфигурируемой системы аккумуляторов, в состав которой входили несколько небольших АКБ, каждая из которых по своим химическим свойствам лучше подходит для решения той или иной задачи. Годом ранее ученые из США усовершенствовали традиционные литиевые батареи за счет своего рода защитного кожуха, окутывающего анод и представляющего собой сетку толщиной 20 нм из углеродных куполов. Решение позволило повысить надежность аккумуляторов и увеличить их емкость.
Но дальше всех зашли китайцы – пока весь остальной мир разрабатывает технологии, они уже перешли непосредственно к производству элементов питания нового типа. Cтартап Qing Tao начал выпуск твердотельных аккумуляторов, по всем основным параметрам превосходящих литиевые. Они легче, у них более высокая плотность энергии, и они не так зависят от изменения температуры воздуха. В производство твердотельных АКБ китайцы уже вложили €126 млн.
cnews.ru
Какие радиаторы отопления лучше выбрать для квартиры с центральной системой отопления
Делая ремонт в квартире, зачастую мы задумываемся и о замене старых батарей, отслуживших свой срок. Пора поставить вместо них более современные и эффективные приборы, которые появились на рынке. Но тут возникает вопрос – какие радиаторы отопления лучше для квартиры? Ведь кто-то хвалит алюминиевые батареи, кто-то – стальные. Одни соседи не нарадуются новомодным биметаллическим радиаторам, а другие купили себе новые чугунные и тоже довольны. А давайте проведем сравнение этих наиболее популярных отопительных приборов, учитывая некоторые нюансы централизованного отопления.
Какие угрозы таит в себе централизованное отопление
С одной стороны, подача тепла извне удобнее автономного отопления – не надо возиться с установкой котла и его настройкой. Придет осень, и горячая водичка весело побежит по вашим батареям, согревая квартиру.
Но не все так гладко в системе централизованного отопления:
- В воде, прошедшей долгий путь, содержится немало химически активных примесей, способных вызвать коррозию труб и радиаторов.
- А еще мелкие частички шлама, неизбежно попадающие в теплоноситель, царапают батареи изнутри, через несколько лет протирая их до дыр.
- И температура воды не всегда бывает стабильной – то батареи имеют комнатную температуру, а то до них и дотронуться невозможно.
- А самая главная опасность – это внезапный огромный скачок давления в системе отопления, так называемый гидроудар. Он бывает, к примеру, по той причине, что слесарь слишком резко закрыл кран насосной станции.
Раньше там использовали вентили, имеющие плавный ход, а с появлением шаровых кранов появилась возможность перекрывать воду мгновенно. Бывает гидроудар и тогда, когда лишний воздух в трубы попадает. Секундный скачок давления бед наделать способен много. Слабые батареи не выдерживают огромного давления и лопаются, брызнув кипятком, испортив предметы обстановки и нанеся урон соседям снизу.
По каким параметрам выбирать радиаторы для квартиры
Теперь, зная слабые места центрального отопления, можно уже представить себе, каким требованиям должны отвечать хорошие батареи. Перечислим их.
1. У радиаторов давление, заявленное производителем, должно превышать давление (как рабочее, так и превышающее его в полтора раза – испытательное) в отопительной системе. Для примера приведем цифры. В пятиэтажных домах старой планировки этот параметр не больше 5 – 8 атмосфер. Многоэтажные здания современного типа отапливаются под давлением до 12 – 15 атмосфер.
2. Отдельно отметим возможность противостоять гидроудару. Потому что, живя в квартире, от скачков давления в отоплении уберечься сложно, лучше предупредить неприятность заранее. Кстати – если вы часто слышите в батареях гудение и щелчки, обратитесь в коммунальную службу. Давление, видать, «пошаливает» в системе.
3. Качество воды в отечественной системе отопления неважное, поэтому батареи должны с честью выдержать ее «химическую атаку», не разрушаясь. Нужно использовать радиаторы со специальным покрытием изнутри или химически нейтральный материал для стенок. А толщина их обязана быть такой, чтобы частички песка и мелкие камешки ее не протерли, действуя подобно наждаку.
4. Решая, какие радиаторы лучше для квартиры, не будем забывать об основной их функции – греть. То есть предпочтительнее выбирать приборы, у которых отдача тепла больше.
5. Не обойдем вниманием и дизайн радиаторов – мало кого устроят страшненькие чугунные монстры убогой формы, которые в советские времена стояли повсюду. Хочется, чтобы батареи гармонически дополняли убранство комнат – сегодня это вполне реально.
6. Последний параметр – это продолжительность службы. Тут уже комментарии излишни. Чем реже придется возиться с установкой этих громоздких и довольно дорогих приборов, тем выгоднее хозяевам.
Проверяем, какие радиаторы годятся для квартирного отопления
Батареи из стали – пали, атакованные большим давлением
Стальные радиаторы отличает небольшой вес и толщина. Хорошая отдача тепла и маленький объем воды делают их экономичными и эффективными. Да и стоят они недорого. Но по давлению они «подкачали» – всего 6-8 атмосфер выдерживают. Не годятся они для квартир, и точка.
Панельный стальной радиатор.
Трубчатый стальной радиатор, они имеют большое разнообразие и отличаются как по конструкции так и по цвету.
Алюминиевые радиаторы – съедаются коррозией, лопаются от гидроударов
Симпатично выглядят эти радиаторы, и 190 ватт тепловой мощности радует потребителя. Впрочем, подождите, обитатели квартир – радоваться рановато. Горячая вода с химическими примесями и большой кислотностью быстро «скушает» батареи изнутри. Ведь алюминий слишком активен. Да и с большим давлением он не справляется. Средние показатели рабочего давления – до 16 атмосфер. А гидроудар способен погубить даже совсем новенький радиатор из алюминия.
Алюминиевые радиаторы имеют очень привлекательный внешний вид и могут отдавать тепло как просто нагревом воздуха так и конвекцией, но абсолютно не подходят для квартиры.
Биметаллические батареи – всем хороши, только дороги
Это одна из самых новых разработок отопительных приборов. Такие радиаторы называют биметаллическими – ведь в них два металла. Это могут быть, в частности, алюминий и сталь, или же алюминий и медь.
Из алюминиевого сплава сделан ребристый фигурный корпус, а внутри находится сердечник из стали или меди.
Изготовители гарантируют, что проработают такие батареи не меньше сорока лет. Для квартиры они подходят по всем показателям, в чем вы можете убедиться.
- Температуру они выдерживают даже до 130 градусов.
- Рабочее давление у них заявлено до 30 – 50 атмосфер, в зависимости от производителя и модели. С ними можно перестать бояться гидроударов.
- Антикоррозийная наружная и внутренняя грунтовка делает батареи долговечными и стойкими к разрушению.
- Малый вес делает монтаж, переноску и транспортировку подобных батарей необременительными.
Внешний вид их приятно ласкает взор – красивые белые или цветные панели намного эстетичнее привычной формы чугунной «гармошки».
Увы – не каждый может купить такой дорогостоящий прибор. А если вам предлагают что-либо подобное по демократичной цене – не верьте. Подделку подсунут. Если уж покупать, то изделия проверенных брендов – российской фирмы Rifar, итальянских – Sira или Global. Есть и китайские неплохие производители. У них, как и у российских, цена несколько ниже, чем у радиаторов родом из Европы.
Старый добрый чугун – обретает вторую жизнь
Лет пятьдесят, не меньше, отмерено жить такой батарее. Напрасно утверждают некоторые производители новинок, что давно пора забыть об этом «старье». Долго думая, какие радиаторы отопления выбрать для квартиры, многие останавливаются именно на чугунных батареях. Уж они-то не «выкинут фокусов» при контакте с грязной отечественной водой в системе отопления. Химически пассивен этот металл, и не боится он ни высокой кислотности, ни наличия химических добавок в теплоносителе. А толстые стенки никакой абразив не повредит. Так что и чугун для квартиры (особенно в старом доме) очень даже неплох.
- Радиаторы из чугуна отличаются тем, что очень долго держат тепло – остаточное число его сохранения 30 процентов. А у всех других видов батарей этот показатель вдвое меньше
- Отдача тепла за счет лучевого способа обогрева гораздо эффективнее, чем при использовании конвекции (как в биметаллических и алюминиевых изделиях. Чугунные радиаторы греют не только воздух, но и близко находящиеся предметы.
- При сливании воды из системы в летний период чугунные батареи не поржавеют – это существенный плюс.
- Большая площадь теплоотдачи – еще один плюс.
- Перепады давления, которыми грешит центральное отопление, чугун обычно переносит неплохо. До девяти – двенадцати атмосфер может доходить рабочее давление. Вот только не всегда он выдерживает гидроудары большой мощности – подводит хрупкость этого металла.
- Стоимость этих приборов, как правило, ниже, чем биметаллических радиаторов. Иногда это – определяющий фактор.
Тяжеловаты эти радиаторы, конечно, что доставляет некоторые неудобства при их монтаже. Ну да, чугун априори легким быть не может. Но ведь этот вес оборачивается большой толщиной стенок, дающей радиаторам нужную прочность. Поставив один раз чугунные радиаторы (причем заниматься этим будут специально обученные люди – сантехники), можно на много лет забыть об их замене.
Внешний вид чугунных радиаторов сегодня уже не такой убогий, как во времена СССР. Появились весьма привлекательные внешне батареи фигурного литья, исполненные в стиле «ретро», которые очень хорошо гармонируют с изысканными помещениями. Например, можно упомянуть продукцию фирм Roca и Konner.
Правда, стоимость таких чудо-батарей достаточно высока. Более бюджетными являются украинские, российские и белорусские модели, многие из которых перед использованием надо красить. Но и они выглядят вполне достойно, их дизайн вписывается в интерьеры современных квартир.
В завершение делаем выводы
Теперь наверняка вам проще решить, какой радиатор выбрать в квартиру – ведь из четырех рассмотренных вариантов осталось только два. Как выяснилось, ни стальные, ни алюминиевые радиаторы испытания ни агрессивным отечественным теплоносителем, ни перепадами давления, не выдержат. Итак, остаются биметаллические и чугунные приборы. Что именно купить, смотрите по своему бюджету, а также по характеристикам конкретных моделей. Впрочем, и тут можно дать пару советов.
- В старых домах (например, «хрущевках») вполне можно поставить чугунные изделия. Если же вы живете в многоэтажке, где давление отопительной системы выше, то лучше всё же взять биметаллические радиаторы.
- Если предшественники ваших будущих новых батарей сделаны из чугуна, то можно остановить выбор на любом из двух вариантов. И биметалл, и чугун подойдут. Если же вы собираетесь заменить батареи, сделанные из другого металла, то меняйте их только на биметаллические.
Видео: Замена радиаторов отопления в квартире
Если вы заметили ошибку, не рабочее видео или ссылку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
srbu.ru