Активный режим биполярного транзистора. Характеристики биполярных транзисторов
Являются биполярные транзисторы. Схемы включения зависят от того, какая у них проводимость (дырочная или электронная) и выполняемые функции.
Классификация
Транзисторы разделяют на группы:
- По материалам: чаще всего используются арсенид галлия и кремний.
- По частоте сигнала: низкая (до 3 МГц), средняя (до 30 МГц), высокая (до 300 МГц), сверхвысокая (выше 300 МГц).
- По максимальной мощности рассеивания: до 0,3 Вт, до 3 Вт, более 3 Вт.
- По типу устройства: три соединенных слоя полупроводника с поочередным изменением прямого и обратного способов примесной проводимости.
Как работают транзисторы?
Наружные и внутренний слои транзистора соединены с подводящими электродами, называемыми соответственно эмиттером, коллектором и базой.
Эмиттер и коллектор не отличаются друг от друга типами проводимости, но степень легирования примесями у последнего значительно ниже. За счет этого обеспечивается увеличение допустимого выходного напряжения.
База, являющаяся средним слоем, обладает большим сопротивлением, поскольку сделана из полупроводника со слабым легированием. Она имеет значительную площадь контакта с коллектором, что улучшает отвод тепла, выделяющегося из-за обратного смещения перехода, а также облегчает прохождение неосновных носителей – электронов. Несмотря на то что переходные слои основаны на одном принципе, транзистор является несимметричным устройством. При перемене мест крайних слоев с одинаковой проводимостью невозможно получить аналогичные параметры полупроводникового устройства.
Схемы включения способны поддерживать его в двух состояниях: он может быть открытым или закрытым. В активном режиме, когда транзистор открыт, эмиттерное смещение перехода сделано в прямом направлении. Чтобы наглядно это рассмотреть, например, на полупроводниковом триоде типа n-p-n, на него следует подать напряжение от источников, как изображено на рисунке ниже.
Граница на втором коллекторном переходе при этом закрыта, и через нее ток протекать не должен. Но на практике происходит обратное из-за близкого расположения переходов друг к другу и их взаимного влияния. Поскольку к эмиттеру подключен «минус» батареи, открытый переход позволяет электронам поступать в зону базы, где происходит их частичная рекомбинация с дырками – основными носителями. Образуется базовый ток I б. Чем он сильней, тем пропорционально больше ток на выходе. На этом принципе работают усилители на биполярных транзисторах.
Через базу происходит исключительно диффузионное перемещение электронов, поскольку там нет действия электрического поля. Благодаря незначительной толщине слоя (микроны) и большой величине отрицательно заряженных частиц, почти все из них попадают в область коллектора, хотя сопротивление базы достаточно велико. Там их втягивает электрическое поле перехода, способствующее их активному переносу. Коллекторный и эмиттерный токи практически равны между собой, если пренебречь незначительной потерей зарядов, вызванных рекомбинацией в базе: I э = I б + I к.
Параметры транзисторов
- Коэффициенты усиления по напряжению U эк /U бэ и току: β = I к /I б (фактические значения). Обычно коэффициент β не превышает значения 300, но может достигать величины 800 и выше.
- Входное сопротивление.
- Частотная характеристика – работоспособность транзистора до заданной частоты, при превышении которой переходные процессы в нем не успевают за изменениями подаваемого сигнала.
Биполярный транзистор: схемы включения, режимы работы
Режимы работы отличаются в зависимости от того, как собрана схема. Сигнал должен подаваться и сниматься в двух точках для каждого случая, а в наличии имеются только три вывода. Отсюда следует, что один электрод должен одновременно принадлежать входу и выходу. Так включаются любые биполярные транзисторы. Схемы включения: ОБ, ОЭ и ОК.
1. Схема с ОК
Схема включения с общим коллектором: сигнал поступает на резистор R L , который входит также в коллекторную цепь. Такое подключение называют схемой с общим коллектором.
Этот вариант создает только усиление по току. Преимущество эмиттерного повторителя состоит в создании большого сопротивления входа (10-500 кОм), что позволяет удобно согласовывать каскады.
2. Схема с ОБ
Схема включения биполярного транзистора с общей базой: входящий сигнал поступает через С 1 , а после усиления снимается в выходной коллекторной цепи, где электрод базы является общим. В таком случае создается усиление по напряжению аналогично работе с ОЭ.
Недостатком является небольшое сопротивление входа (30-100 Ом), и схема с ОБ применяется как генератор колебаний.
3. Схема с ОЭ
Во многих вариантах, когда применяются биполярные транзисторы, схемы включения преимущественно делаются с общим эмиттером. Питающее напряжение подается через нагрузочный резистор R L , а к эмиттеру подключается отрицательный полюс внешнего питания.
Переменный сигнал со входа поступает на электроды эмиттера и базы (V in), а в коллекторной цепи он становится уже больше по величине (V CE). Основные элементы схемы: транзистор, резистор R L и цепь выхода усилителя с внешним питанием. Вспомогательные: конденсатор С 1 , препятствующий прохождению постоянного тока в цепь подаваемого входного сигнала, и резистор R 1 , через который транзистор открывается.
В коллекторной цепи напряжения на выходе транзистора и на резисторе R L вместе равны величине ЭДС: V CC = I C R L + V CE .
Таким образом, небольшим сигналом V in на входе задается закон изменения постоянного напряжения питания в переменное на выходе управляемого транзисторного преобразователя. Схема обеспечивает возрастание входного тока в 20-100 раз, а напряжения – в 10-200 раз. Соответственно, мощность также повышается.
Недостаток схемы: небольшое сопротивление входа (500-1000 Ом). По этой причине появляются проблемы в формировании Выходное сопротивление составляет 2-20 кОм.
Приведенные схемы демонстрируют, как работает биполярный транзистор. Если не принять дополнительных мер, на их работоспособность будут сильно влиять внешние воздействия, например перегрев и частота сигнала. Также заземление эмиттера создает нелинейные искажения на выходе. Чтобы повысить надежность работы, в схеме подключают обратные связи, фильтры и т. п. При этом коэффициент усиления снижается, но устройство становится более работоспособным.
Режимы работы
На функции транзистора влияет значение подключаемого напряжения. Все режимы работы можно показать, если применяется представленная ранее схема включения биполярного транзистора с общим эмиттером.
1. Режим отсечки
Данный режим создается, когда значение напряжения V БЭ снижается до 0,7 В. При этом эмиттерный переход закрывается, и коллекторный ток отсутствует, поскольку нет свободных электронов в базе. Таким образом, транзистор заперт.
2. Активный режим
Если на базу подать напряжение, достаточное, чтобы открыть транзистор, появляется небольшой входной ток и повышенный на выходе, в зависимости от величины коэффициента усиления. Тогда транзистор будет работать как усилитель.
3. Режим насыщения
Режим отличается от активного тем, что транзистор полностью открывается, и ток коллектора достигает максимально возможного значения. Его увеличения можно достигнуть только за счет изменения прикладываемой ЭДС или нагрузки в цепи выхода. При изменении базового тока коллекторный не меняется. Режим насыщения характеризуется тем, что транзистор предельно открыт, и здесь он служит переключателем во включенном состоянии. Схемы включения биполярных транзисторов при объединении режимов отсечки и насыщения позволяют создавать с их помощью электронные ключи.
Все режимы работы зависят от характера выходных характеристик, изображенных на графике.
Их можно наглядно продемонстрировать, если будет собрана схема включения биполярного транзистора с ОЭ.
Если отложить на осях ординат и абсцисс отрезки, соответствующие максимально возможному коллекторному току и величине напряжения питания V CC , а затем соединить их концы между собой, получится линия нагрузки (красного цвета). Она описывается выражением: I C = (V CC – V CE)/R C . Из рисунка следует, что рабочая точка, определяющая ток коллектора I C и напряжение V CE , будет смещаться по нагрузочной линии снизу вверх при увеличении тока базы I В.
Зона между осью V CE и первой характеристикой выхода (заштрихована), где I В = 0, характеризует режим отсечки. При этом обратный ток I C ничтожно мал, а транзистор закрыт.
Самая верхняя характеристика в точке А пересекается с прямой нагрузки, после которой при дальнейшем увеличении I В коллекторный ток уже не изменяется. Зоной насыщения на графике является заштрихованная область между осью I C и самой крутой характеристикой.
Как ведет себя транзистор в разных режимах?
Транзистор работает с переменными или постоянными сигналами, поступающими во входную цепь.
Биполярный транзистор: схемы включения, усилитель
Большей частью транзистор служит в качестве усилителя. Переменный сигнал на входе приводит к изменению его выходного тока. Здесь можно применить схемы с ОК или с ОЭ. В выходной цепи для сигнала требуется нагрузка. Обычно используют резистор, установленный в выходной коллекторной цепи. Если его правильно выбрать, величина выходного напряжения будет значительно выше, чем входного.
Работу усилителя хорошо видно на временных диаграммах.
Когда преобразуются импульсные сигналы, режим остается тем же, что и для синусоидальных. Качество преобразования их гармонических составляющих определяется частотными характеристиками транзисторов.
Работа в режиме переключения
Предназначены для бесконтактной коммутации соединений в электрических цепях. Принцип заключается в ступенчатом изменении сопротивления транзистора. Биполярный тип вполне подходит под требования ключевого устройства.
Заключение
Полупроводниковые элементы используются в схемах преобразования электрических сигналов. Универсальные возможности и большая классификация позволяют широко применять биполярные транзисторы. Схемы включения определяют их функции и режимы работы. Многое также зависит от характеристик.
Основные схемы включения биполярных транзисторов усиливают, генерируют и преобразуют входные сигналы, а также переключают электрические цепи.
Термин «биполярный транзистор» связан с тем, что в этих транзисторах используются носители зарядов двух типов: электроны и дырки. Для изготовления транзисторов применяют те же полупроводниковые материалы, что и для .
В биполярных транзисторах с помощью трехслойной полупроводниковой структуры из полупроводников создаются два p–n-перехода с чередующими типами электропроводности (p–n–p или n–p–n).
Биполярные транзисторы конструктивно могут быть беcкорпусными (рис.1,а) (для применения, например, в составе интегральных микросхем) и заключенными в типовой корпус (рис. 1,б). Три вывода биполярного транзистора называются база
, коллектор
и эмиттер
.
Рис. 1. Биполярный транзистор: а) p–n–p-структуры без корпуса, б) n–p–n-структуры в корпусе
В зависимости от общего вывода можно получить три схемы подключения биполярного транзистора : с общей базой (ОБ), общим коллектором (ОК) и общим эмиттером (ОЭ). Рассмотрим работу транзистора в схеме с общей базой, (рис. 2).
Рис. 2. Схема работы биполярного транзистора
Эмиттер инжектирует (поставляет) в базу основные носители, в нашем примере для полупроводниковых приборов n-типа ими будут электроны.
Источники выбирают так, чтобы E2 >> E1. Резистор Rэ ограничивает ток открытого p–n-перехода.При E1 = 0 ток через коллекторный переход мал (обусловлен неосновными носителями), его называют начальным коллекторным током Iк0. Если E1 > 0, электроны преодолевают эмиттерный p–n-переход (E1 включена в прямом направлении) и попадают в область базы.
Базу выполняют с большим удельным сопротивлением (малой концентрацией примеси), поэтому концентрация дырок в базе низкая. Следовательно, немногие попавшие в базу электроны рекомбинируют с ее дырками, образуя базовый ток Iб. Одновременно в коллекторном p–n-переходе со стороны E2 действует много большее поле, чем в эмиттерном переходе, которое увлекает электроны в коллектор. Поэтому подавляющее большинство электронов достигают коллектора.
Эмиттерный и коллекторный токи связаны коэффициентом передачи тока эмиттера
при Uкб = const.
Всегда ∆ Iк ∆ Iэ, а a = 0,9 – 0,999 для современных транзисторов.
В рассмотренной схеме Iк = Iк0 + aIэ » Iэ. Следовательно, схема биполярного транзистора с общей базой обладает низким коэффициентом передачи тока. Из-за этого ее применяют редко, в основном в высокочастотных устройствах, где по усилению напряжения она предпочтительнее других.
Основной схемой включения биполярного транзистора является схема с общим эмиттером, (рис. 3).
Рис. 3. Включение биполярного транзистора по схеме с общим эмиттером
Для нее по можно записать Iб = Iэ – Iк = (1 – a)Iэ – Iк0 .
Учитывая, что 1 – a = 0,001 – 0,1, имеем Iб
Найдем отношение тока коллектора к току базы:
Это отношение называют коэффициентом передачи тока базы . При a = 0,99 получаем b = 100. Если в цепь базы включить источник сигнала, то такой же сигнал, но усиленный по току в b раз, будет протекать в цепи коллектора, образуя на резисторе Rк напряжение много большее, чем напряжение источника сигнала.
Для оценки работы биполярного транзистора в широком диапазоне импульсных и постоянных токов, мощностей и напряжений, а также для расчета цепи смещения, стабилизации режима используются семейства входных и выходных вольтамперных характеристик (ВАХ) .
Семейство входных ВАХ устанавливают зависимость входного тока (базы или эмиттера) от входного напряжения Uбэ при Uк = const, рис. 4,а. Входные ВАХ транзистора аналогичны ВАХ диода в прямом включении.
Семейство выходных ВАХ устанавливает зависимость тока коллектора от напряжения на нем при определенном токе базы или эмиттера (в зависимости от схемы с общим эмиттером или общей базой), рис. 4, б.
Рис. 4. Вольт-амперные характеристики биполярного транзистора: а – входные, б – выходные
Кроме электрического перехода n–p, в быстродействующих цепях широко используется переход на основе контакта металл–полупроводник – барьер Шоттки (Schottky). В таких переходах не затрачивается время на накопление и рассасывание зарядов в базе, и быстродействие транзистора зависит только от скорости перезарядки барьерной емкости.
Рис. 5. Биполярные транзисторы
Параметры биполярных транзисторов
Для оценки максимально допустимых режимов работы транзисторов используют основные параметры:
1) максимально допустимое напряжение коллектор–эмиттер (для различных транзисторов Uкэ макс = 10 – 2000 В),
2) максимально допустимая мощность рассеяния коллектора Pк макс – по ней транзисторы делят на транзисторы малой мощности (до 0,3 Вт), средней мощности (0,3 – 1,5 Вт) и большой мощности (более 1,5 Вт), транзисторы средней и большой мощности часто снабжаются специальным теплоотводящим устройством – радиатором,
3) максимально допустимый ток коллектора Iк макс – до 100 А и более,
4) граничная частота передачи тока fгр (частота, на которой h31 становится равным единице), по ней биполярные транзисторы делят:
- на низкочастотные – до 3 МГц,
- среднечастотные – от 3 до 30 МГц,
- высокочастотные – от 30 до 300 МГц,
- сверхвысокочастотные – более 300 МГц.
д.т.н., профессор Л. А. Потапов
Необходимые пояснения даны, переходим к сути.
Транзисторы. Определение и история
Транзистор – электронный полупроводниковый прибор, в котором ток в цепи двух электродов управляется третьим электродом. (tranzistors.ru)
Первыми были изобретены полевые транзисторы (1928 год), а биполярные появилсь в 1947 году в лаборатории Bell Labs. И это была, без преувеличения, революция в электронике.
Кстати, изначально «транзисторами» называли резисторы, сопротивление которых можно было изменять с помощью величины подаваемого напряжения. Если отвлечься от физики процессов, то современный транзистор тоже можно представить как сопротивление, зависящее от подаваемого на него сигнала.
В чем же отличие между полевыми и биполярными транзисторами? Ответ заложен в самих их названиях. В биполярном транзисторе в переносе заряда участвуют и электроны, и дырки («бис» – дважды). А в полевом (он же униполярный) – или электроны, или дырки.
Также эти типы транзисторов разнятся по областям применения. Биполярные используются в основном в аналоговой технике, а полевые – в цифровой.
И, напоследок: основная область применения любых транзисторов – усиление слабого сигнала за счет дополнительного источника питания.
Биполярный транзистор. Принцип работы. Основные характеристики
Биполярный транзистор состоит из трех областей: эмиттера, базы и коллектора, на каждую из которых подается напряжение. В зависимости от типа проводимости этих областей, выделяют n-p-n и p-n-p транзисторы. Обычно область коллектора шире, чем эмиттера. Базу изготавливают из слаболегированного полупроводника (из-за чего она имеет большое сопротивление) и делают очень тонкой. Поскольку площадь контакта эмиттер-база получается значительно меньше площади контакта база-коллектор, то поменять эмиттер и коллектор местами с помощью смены полярности подключения нельзя. Таким образом, транзистор относится к несимметричным устройствам.
Она заключаются в следующем: между эмиттером и коллектором течет сильный ток (ток коллектора ), а между эмиттером и базой – слабый управляющий ток (ток базы ). Ток коллектора будет меняться в зависимости от изменения тока базы. Почему?
Рассмотрим p-n переходы транзистора. Их два: эмиттер-база (ЭБ) и база-коллектор (БК). В активном режиме работы транзистора первый из них подключается с прямым, а второй – с обратным смещениями. Что же при этом происходит на p-n переходах? Для большей определенности будем рассматривать n-p-n транзистор. Для p-n-p все аналогично, только слово «электроны» нужно заменить на «дырки».
Поскольку переход ЭБ открыт, то электроны легко «перебегают» в базу. Там они частично рекомбинируют с дырками, но бо льшая их часть из-за малой толщины базы и ее слабой легированности успевает добежать до перехода база-коллектор. Который, как мы помним, включен с обратным смещением. А поскольку в базе электроны – неосновные носители заряда, то электирическое поле перехода помогает им преодолеть его. Таким образом, ток коллетора получается лишь немного меньше тока эмиттера. А теперь следите за руками. Если увеличить ток базы, то переход ЭБ откроется сильнее, и между эмиттером и коллектором сможет проскочить больше электронов. А поскольку ток коллектора изначально больше тока базы, то это изменение будет весьма и весьма заметно. Таким образом, произойдет усиление слабого сигнала, поступившего на базу . Еще раз: сильное изменение тока коллектора является пропорциональным отражением слабого изменения тока базы.
Помню, моей одногрупнице принцип работы биполярного транзистора объясняли на примере водопроводного крана. Вода в нем – ток коллектора, а управляющий ток базы – то, насколько мы поворачиваем ручку. Достаточно небольшого усилия (управляющего воздействия), чтобы поток воды из крана увеличился.
Помимо рассмотренных процессов, на p-n переходах транзистора может происходить еще ряд явлений. Например, при сильном увеличении напряжения на переходе база-коллектор может начаться лавинное размножение заряда из-за ударной ионизации. А вкупе с туннельным эффектом это даст сначала электрический, а затем (с возрастанием тока) и тепловой пробой. Однако, тепловой пробой в транзисторе может наступить и без электрического (т.е. без повышения коллекторного напряжения до пробивного). Для этого будет достаточно одного чрезмерного тока через коллектор.
Еще одно явления связано с тем, что при изменении напряжений на коллекторном и эмиттерном переходах меняется их толщина. И если база черезчур тонкая, то может возникнуть эффект смыкания (так называемый «прокол» базы) – соединение коллекторного перехода с эмиттерным. При этом область базы исчезает, и транзистор перестает нормально работать.
Коллекторный ток транзистора в нормальном активном режиме работы транзистора больше тока базы в определенное число раз. Это число называется коэффициентом усиления по току и является одним из основных параметров транзистора. Обозначается оно h31 . Если транзистор включается без нагрузки на коллектор, то при постоянном напряжении коллектор-эмиттер отношение тока коллектора к току базы даст статический коэффициент усиления по току . Он может равняться десяткам или сотням единиц, но стоит учитывать тот факт, что в реальных схемах этот коэффициент меньше из-за того, что при включении нагрузки ток коллектора закономерно уменьшается.
Вторым немаловажным параметром является входное сопротивление транзистора . Согласно закону Ома, оно представляет собой отношение напряжения между базой и эмиттером к управляющему току базы. Чем оно больше, тем меньше ток базы и тем выше коэффициент усиления.
Третий параметр биполярного транзистора – коэффициент усиления по напряжению . Он равен отношению амплитудных или действующих значений выходного (эмиттер-коллектор) и входного (база-эмиттер) переменных напряжений. Поскольку первая величина обычно очень большая (единицы и десятки вольт), а вторая – очень маленькая (десятые доли вольт), то этот коэффициент может достигать десятков тысяч единиц. Стоит отметить, что каждый управляющий сигнал базы имеет свой коэффициент усиления по напряжению.
Также транзисторы имеют частотную характеристику , которая характеризует способность транзистора усиливать сигнал, частота которого приближается к граничной частоте усиления. Дело в том, что с увеличением частоты входного сигнала коэффициент усиления снижается. Это происходит из-за того, что время протекания основных физических процессов (время перемещения носителей от эмиттера к коллектору, заряд и разряд барьерных емкостных переходов) становится соизмеримым с периодом изменения входного сигнала. Т.е. транзистор просто не успевает реагировать на изменения входного сигнала и в какой-то момент просто перестает его усиливать. Частота, на которой это происходит, и называется граничной .
Также параметрами биполярного транзистора являются:
- обратный ток коллектор-эмиттер
- время включения
- обратный ток колектора
- максимально допустимый ток
Условные обозначения n-p-n и p-n-p транзисторов отличаются только направлением стрелочки, обозначающей эмиттер. Она показывает то, как течет ток в данном транзисторе.
Режимы работы биполярного транзистора
Рассмотренный выше вариант представляет собой нормальный активный режим работы транзистора. Однако, есть еще несколько комбинаций открытости/закрытости p-n переходов, каждая из которых представляет отдельный режим работы транзистора.- Инверсный активный режим . Здесь открыт переход БК, а ЭБ наоборот закрыт. Усилительные свойства в этом режиме, естественно, хуже некуда, поэтому транзисторы в этом режиме используются очень редко.
- Режим насыщения . Оба перехода открыты. Соответственно, основные носители заряда коллектора и эмиттера «бегут» в базу, где активно рекомбинируют с ее основными носителями. Из-за возникающей избыточности носителей заряда сопротивление базы и p-n переходов уменьшается. Поэтому цепь, содержащую транзистор в режиме насыщения можно считать короткозамкнутой, а сам этот радиоэлемент представлять в виде эквипотенциальной точки.
- Режим отсечки . Оба перехода транзистора закрыты, т.е. ток основных носителей заряда между эмиттером и коллектором прекращается. Потоки неосновных носителей заряда создают только малые и неуправляемые тепловые токи переходов. Из-за бедности базы и переходов носителями зарядов, их сопротивление сильно возрастает. Поэтому часто считают, что транзистор, работающий в режиме отсечки, представляет собой разрыв цепи.
- Барьерный режим В этом режиме база напрямую или через малое сопротивление замкнута с коллектором. Также в коллекторную или эмиттерную цепь включают резистор, который задает ток через транзистор. Таким образом получается эквивалент схемы диода с последовательно включенным сопротивлением. Этот режим очень полезный, так как позволяет схеме работать практически на любой частоте, в большом диапазоне температур и нетребователен к параметрам транзисторов.
Схемы включения биполярных транзисторов
Поскольку контактов у транзистора три, то в общем случае питание на него нужно подавать от двух источников, у которых вместе получается четыре вывода. Поэтому на один из контактов транзистора приходится подавать напряжение одинакового знака от обоих источников. И в зависимости от того, что это за контакт, различают три схемы включения биполярных транзисторов: с общим эмиттером (ОЭ), общим коллектором (ОК) и общей базой (ОБ). У каждой из них есть как достоинства, так и недостатки. Выбор между ними делается в зависимости от того, какие параметры для нас важны, а какими можно поступиться.
Схема включения с общим эмиттером
Эта схема дает наибольшее усиление по напряжению и току (а отсюда и по мощности – до десятков тысяч единиц), в связи с чем является наиболее распространенной. Здесь переход эмиттер-база включается прямо, а переход база-коллектор – обратно. А поскольку и на базу, и на коллектор подается напряжение одного знака, то схему можно запитать от одного источника. В этой схеме фаза выходного переменного напряжения меняется относительно фазы входного переменного напряжения на 180 градусов.
Но ко всем плюшкам схема с ОЭ имеет и существенный недостаток. Он заключается в том, что рост частоты и температуры приводит к значительному ухудшению усилительных свойств транзистора. Таким образом, если транзистор должен работать на высоких частотах, то лучше использовать другую схему включения. Например, с общей базой.
Схема включения с общей базой
Эта схема не дает значительного усиления сигнала, зато хороша на высоких частотах, поскольку позволяет более полно использовать частотную характеристику транзистора. Если один и тот же транзистор включить сначала по схеме с общим эмиттером, а потом с общей базой, то во втором случае будет наблюдаться значительное увеличение его граничной частоты усиления. Поскольку при таком подключении входное сопротивление низкое, а выходное – не очень большое, то собранные по схеме с ОБ каскады транзисторов применяют в антенных усилителях, где волновое сопротивление кабелей обычно не превышает 100 Ом.
В схеме с общей базой не происходит инвертирование фазы сигнала, а уровень шумов на высоких частотах снижается. Но, как уже было сказано, коэффициент усиления по току у нее всегда немного меньше единицы. Правда, коэффициент усиления по напряжению здесь такой же, как и в схеме с общим эмиттером. К недостаткам схемы с общей базой можно также отнести необходимость использования двух источников питания.
Схема включения с общим коллектором
Особенность этой схемы в том, что входное напряжение полностью передается обратно на вход, т. е. очень сильна отрицательная обратная связь.
Напомню, что отрицательной называют такую обратную связь, при которой выходной сигнал подается обратно на вход, чем снижает уровень входного сигнала. Таким образом происходит автоматическая корректировка при случайном изменении параметров входного сигнала
Коэффициент усиления по току почти такой же, как и в схеме с общим эмиттером. А вот коэффициент усиления по напряжению маленький (основной недостаток этой схемы). Он приближается к единице, но всегда меньше ее. Таким образом, коэффициент усиления по мощности получается равным всего нескольким десяткам единиц.
В схеме с общим коллектором фазовый сдвиг между входным и выходным напряжением отсутствует. Поскольку коэффициент усиления по напряжению близок к единице, выходное напряжение по фазе и амплитуде совпадает со входным, т. е. повторяет его. Именно поэтому такая схема называется эмиттерным повторителем. Эмиттерным – потому, что выходное напряжение снимается с эмиттера относительно общего провода.
Такое включение используют для согласования транзисторных каскадов или когда источник входного сигнала имеет высокое входное сопротивление (например, пьезоэлектрический звукосниматель или конденсаторный микрофон).
Два слова о каскадах
Бывает такое, что нужно увеличить выходную мощность (т.е. увеличить коллекторный ток). В этом случае используют параллельное включение необходимого числа транзисторов.Естественно, они должны быть примерно одинаковыми по характеристикам. Но необходимо помнить, что максимальный суммарный коллекторный ток не должен превышать 1,6-1,7 от предельного тока коллектора любого из транзисторов каскада.
Тем не менее (спасибо wrewolf за замечание), в случае с биполярными транзисторами так делать не рекомендуется. Потому что два транзистора даже одного типономинала хоть немного, но отличаются друг от друга. Соответственно, при параллельном включении через них будут течь токи разной величины. Для выравнивания этих токов в эмиттерные цепи транзисторов ставят балансные резисторы. Величину их сопротивления рассчитывают так, чтобы падение напряжения на них в интервале рабочих токов было не менее 0,7 В. Понятно, что это приводит к значительному ухудшению КПД схемы.
Может также возникнуть необходимость в транзисторе с хорошей чувствительностью и при этом с хорошим коэффициентом усиления. В таких случаях используют каскад из чувствительного, но маломощного транзистора (на рисунке – VT1), который управляет энергией питания более мощного собрата (на рисунке – VT2).
Другие области применения биполярных транзисторов
Транзисторы можно применять не только схемах усиления сигнала. Например, благодаря тому, что они могут работать в режимах насыщения и отсечки, их используют в качестве электронных ключей. Также возможно использование транзисторов в схемах генераторов сигнала. Если они работают в ключевом режиме, то будет генерироваться прямоугольный сигнал, а если в режиме усиления – то сигнал произвольной формы, зависящий от управляющего воздействия.Маркировка
Поскольку статья уже разрослась до неприлично большого объема, то в этом пункте я просто дам две хорошие ссылки, по которым подробно расписаны основные системы маркировки полупроводниковых приборов (в том числе и транзисторов): http://kazus.ru/guide/transistors/mark_all.html и файл.xls (35 кб) .Полезные комментарии:
http://habrahabr.ru/blogs/easyelectronics/133136/#comment_4419173
Теги: Добавить метки
Транзистором называется полупроводниковый прибор, который может усиливать, преобразовывать и генерировать электрические сигналы. Первый работоспособный биполярный транзистор был изобретен в 1947 году. Материалом для его изготовления служил германий. А уже в 1956 году на свет появился кремниевый транзистор.
В биполярном транзисторе используются два типа носителей заряда – электроны и дырки, отчего такие транзисторы и называются биполярными. Кроме биполярных существуют униполярные (полевые) транзисторы, у которых используется лишь один тип носителей – электроны или дырки. В этой статье будут рассмотрены .
Большинство кремниевых транзисторов имеют структуру n-p-n, что также объясняется технологией производства, хотя существуют и кремниевые транзисторы типа p-n-p, но их несколько меньше, нежели структуры n-p-n. Такие транзисторы используются в составе комплементарных пар (транзисторы разной проводимости с одинаковыми электрическими параметрами). Например, КТ315 и КТ361, КТ815 и КТ814, а в выходных каскадах транзисторных УМЗЧ КТ819 и КТ818. В импортных усилителях очень часто применяется мощная комплементарная пара 2SA1943 и 2SC5200.
Часто транзисторы структуры p-n-p называют транзисторами прямой проводимости, а структуры n-p-n обратной. В литературе такое название почему-то почти не встречается, а вот в кругу радиоинженеров и радиолюбителей используется повсеместно, всем сразу понятно, о чем идет речь. На рисунке 1 показано схематичное устройство транзисторов и их условные графические обозначения.
Рисунок 1.
Кроме различия по типу проводимости и материалу, биполярные транзисторы классифицируются по мощности и рабочей частоте. Если мощность рассеивания на транзисторе не превышает 0,3 Вт, такой транзистор считается маломощным. При мощности 0,3…3 Вт транзистор называют транзистором средней мощности, а при мощности свыше 3 Вт мощность считается большой. Современные транзисторы в состоянии рассеивать мощность в несколько десятков и даже сотен ватт.
Транзисторы усиливают электрические сигналы не одинаково хорошо: с увеличением частоты усиление транзисторного каскада падает, и на определенной частоте прекращается вовсе. Поэтому для работы в широком диапазоне частот транзисторы выпускаются с разными частотными свойствами.
По рабочей частоте транзисторы делятся на низкочастотные, – рабочая частота не свыше 3 МГц, среднечастотные – 3…30 МГц, высокочастотные – свыше 30 МГц. Если же рабочая частота превышает 300 МГц, то это уже сверхвысокочастотные транзисторы.
Вообще, в серьезных толстых справочниках приводится свыше 100 различных параметров транзисторов, что также говорит об огромном числе моделей. А количество современных транзисторов таково, что в полном объеме их уже невозможно поместить ни в один справочник. И модельный ряд постоянно увеличивается, позволяя решать практически все задачи, поставленные разработчиками.
Существует множество транзисторных схем (достаточно вспомнить количество хотя бы бытовой аппаратуры) для усиления и преобразования электрических сигналов, но, при всем разнообразии, схемы эти состоят из отдельных каскадов, основой которых служат транзисторы. Для достижения необходимого усиления сигнала, приходится использовать несколько каскадов усиления, включенных последовательно. Чтобы понять, как работают усилительные каскады, надо более подробно познакомиться со схемами включения транзисторов.
Сам по себе транзистор усилить ничего не сможет. Его усилительные свойства заключаются в том, что малые изменения входного сигнала (тока или напряжения) приводят к значительным изменениям напряжения или тока на выходе каскада за счет расходования энергии от внешнего источника. Именно это свойство широко используется в аналоговых схемах, – усилители, телевидение, радио, связь и т.д.
Для упрощения изложения здесь будут рассматриваться схемы на транзисторах структуры n-p-n. Все что будет сказано об этих транзисторах, в равной степени относится и к транзисторам p-n-p. Достаточно только поменять полярность источников питания, и , если таковые имеются, чтобы получить работающую схему.
Всего таких схем применяется три: схема с общим эмиттером (ОЭ), схема с общим коллектором (ОК) и схема с общей базой (ОБ). Все эти схемы показаны на рисунке 2.
Рисунок 2.
Но прежде, чем перейти к рассмотрению этих схем, следует познакомиться с тем, как работает транзистор в ключевом режиме. Это знакомство должно упростить понимание в режиме усиления. В известном смысле ключевую схему можно рассматривать как разновидность схемы с ОЭ.
Работа транзистора в ключевом режиме
Прежде, чем изучать работу транзистора в режиме усиления сигнала, стоит вспомнить, что транзисторы часто используются в ключевом режиме.
Такой режим работы транзистора рассматривался уже давно. В августовском номере журнала «Радио» 1959 года была опубликована статья Г. Лаврова «Полупроводниковый триод в режиме ключа». Автор статьи предлагал изменением длительности импульсов в обмотке управления (ОУ). Теперь подобный способ регулирования называется ШИМ и применяется достаточно часто. Схема из журнала того времени показана на рисунке 3.
Рисунок 3.
Но ключевой режим используется не только в системах ШИМ. Часто транзистор просто что-то включает и выключает.
В этом случае в качестве нагрузки можно использовать реле: подали входной сигнал – реле включилось, нет – сигнала реле выключилось. Вместо реле в ключевом режиме часто используются лампочки. Обычно это делается для индикации: лампочка либо светит, либо погашена. Схема такого ключевого каскада показана на рисунке 4. Ключевые каскады также применяются для работы со светодиодами или с оптронами.
Рисунок 4.
На рисунке каскад управляется обычным контактом, хотя вместо него может быть цифровая микросхема или . Лампочка автомобильная, такая применяется для подсветки приборной доски в «Жигулях». Следует обратить внимание на тот факт, что для управления используется напряжение 5В, а коммутируемое коллекторное напряжение 12В.
Ничего странного в этом нет, поскольку напряжения в данной схеме никакой роли не играют, значение имеют только токи. Поэтому лампочка может быть хоть на 220В, если транзистор предназначен для работы на таких напряжениях. Напряжение коллекторного источника также должно соответствовать рабочему напряжению нагрузки. С помощью подобных каскадов выполняется подключение нагрузки к цифровым микросхемам или микроконтроллерам.
В этой схеме ток базы управляет током коллектора, который, за счет энергии источника питания, больше в несколько десятков, а то и сотен раз (зависит от коллекторной нагрузки), чем ток базы. Нетрудно заметить, что происходит усиление по току. При работе транзистора в ключевом режиме обычно для расчета каскада пользуются величиной, называемой в справочниках «коэффициент усиления по току в режиме большого сигнала», – в справочниках обозначается буквой β. Это есть отношение тока коллектора, определяемого нагрузкой, к минимально возможному току базы. В виде математической формулы это выглядит вот так: β = Iк/Iб.
Для большинства современных транзисторов коэффициент β достаточно велик, как правило, от 50 и выше, поэтому при расчете ключевого каскада его можно принять равным всего 10. Даже, если ток базы и получится больше расчетного, то транзистор от этого сильнее не откроется, на то он и ключевой режим.
Чтобы зажечь лампочку, показанную на рисунке 3, Iб = Iк/β = 100мА/10 = 10мА, это как минимум. При управляющем напряжении 5В на базовом резисторе Rб за вычетом падения напряжения на участке Б-Э останется 5В – 0,6В = 4,4В. Сопротивление базового резистора получится: 4,4В / 10мА = 440 Ом. Из стандартного ряда выбирается резистор с сопротивлением 430 Ом. Напряжение 0,6В это напряжение на переходе Б-Э, и при расчетах о нем не следует забывать!
Для того, чтобы база транзистора при размыкании управляющего контакта не осталась «висеть в воздухе», переход Б-Э обычно шунтируется резистором Rбэ, который надежно закрывает транзистор. Об этом резисторе не следует забывать, хотя в некоторых схемах его почему-то нет, что может привести к ложному срабатыванию каскада от помех. Собственно, все про этот резистор знали, но почему-то забыли, и лишний раз наступили на «грабли».
Номинал этого резистора должен быть таким, чтобы при размыкании контакта напряжение на базе не оказалось бы меньше 0,6В, иначе каскад будет неуправляемым, как будто участок Б-Э просто замкнули накоротко. Практически резистор Rбэ ставят номиналом примерно в десять раз больше, нежели Rб. Но даже если номинал Rб составит 10Ком, схема будет работать достаточно надежно: потенциалы базы и эмиттера будут равны, что приведет к закрыванию транзистора.
Такой ключевой каскад, если он исправен, может включить лампочку в полный накал, или выключить совсем. В этом случае транзистор может быть полностью открыт (состояние насыщения) или полностью закрыт (состояние отсечки). Тут же, сам собой, напрашивается вывод, что между этими «граничными» состояниями существует такое, когда лампочка светит вполнакала. В этом случае транзистор наполовину открыт или наполовину закрыт? Это как в задаче о наполнении стакана: оптимист видит стакан, наполовину налитый, в то время, как пессимист считает его наполовину пустым. Такой режим работы транзистора называется усилительным или линейным.
Работа транзистора в режиме усиления сигнала
Практически вся современная электронная аппаратура состоит из микросхем, в которых «спрятаны» транзисторы. Достаточно просто подобрать режим работы операционного усилителя, чтобы получить требуемый коэффициент усиления или полосу пропускания. Но, несмотря на это, достаточно часто применяются каскады на дискретных («рассыпных») транзисторах, и поэтому понимание работы усилительного каскада просто необходимо.
Самым распространенным включением транзистора по сравнению с ОК и ОБ является схема с общим эмиттером (ОЭ). Причина такой распространенности, прежде всего, высокий коэффициент усиления по напряжению и по току. Наиболее высокий коэффициент усиления каскада ОЭ обеспечивается когда на коллекторной нагрузке падает половина напряжения источника питания Eпит/2. Соответственно, вторая половина падает на участке К-Э транзистора. Это достигается настройкой каскада, о чем будет рассказано чуть ниже. Такой режим усиления называется классом А.
При включении транзистора с ОЭ выходной сигнал на коллекторе находится в противофазе с входным. Как недостатки можно отметить то, что входное сопротивление ОЭ невелико (не более нескольких сотен Ом), а выходное в пределах десятков КОм.
Если в ключевом режиме транзистор характеризуется коэффициентом усиления по току в режиме большого сигнала β , то в режиме усиления используется «коэффициент усиления по току в режиме малого сигнала», обозначаемый, в справочниках h31э. Такое обозначение пришло из представления транзистора в виде четырехполюсника. Буква «э» говорит о том, что измерения производились при включении транзистора с общим эмиттером.
Коэффициент h31э, как правило, несколько больше, чем β, хотя при расчетах в первом приближении можно пользоваться и им. Все равно разброс параметров β и h31э настолько велик даже для одного типа транзистора, что расчеты получаются лишь приблизительными. После таких расчетов, как правило, требуется настройка схемы.
Коэффициент усиления транзистора зависит от толщины базы, поэтому изменить его нельзя. Отсюда и большой разброс коэффициента усиления у транзисторов взятых даже из одной коробки (читай одной партии). Для маломощных транзисторов этот коэффициент колеблется в пределах 100…1000, а у мощных 5…200. Чем тоньше база, тем выше коэффициент.
Простейшая схема включения транзистора ОЭ показана на рисунке 5. Это просто небольшой кусочек из рисунка 2, показанного во второй части статьи. Такая схема называется схемой с фиксированным током базы.
Рисунок 5.
Схема исключительно проста. Входной сигнал подается в базу транзистора через разделительный конденсатор C1, и, будучи усиленным, снимается с коллектора транзистора через конденсатор C2. Назначение конденсаторов, – защитить входные цепи от постоянной составляющей входного сигнала (достаточно вспомнить угольный или электретный микрофон) и обеспечить необходимую полосу пропускания каскада.
Резистор R2 является коллекторной нагрузкой каскада, а R1 подает постоянное смещение в базу. С помощью этого резистора стараются сделать так, чтобы напряжение на коллекторе было бы Eпит/2. Такое состояние называют рабочей точкой транзистора, в этом случае коэффициент усиления каскада максимален.
Приблизительно сопротивление резистора R1 можно определить по простой формуле R1 ≈ R2 * h31э / 1,5…1,8. Коэффициент 1,5…1,8 подставляется в зависимости от напряжения питания: при низком напряжении (не более 9В) значение коэффициента не более 1,5, а начиная с 50В, приближается к 1,8…2,0. Но, действительно, формула настолько приблизительна, что резистор R1 чаще всего приходится подбирать, иначе требуемая величина Eпит/2 на коллекторе получена не будет.
Коллекторный резистор R2 задается как условие задачи, поскольку от его величины зависит коллекторный ток и усиление каскада в целом: чем больше сопротивление резистора R2, тем выше усиление. Но с этим резистором надо быть осторожным, коллекторный ток должен быть меньше предельно допустимого для данного типа транзистора.
Схема очень проста, но эта простота придает ей и отрицательные свойства, и за эту простоту приходится расплачиваться. Во – первых усиление каскада зависит от конкретного экземпляра транзистора: заменил транзистор при ремонте, – подбирай заново смещение, выводи на рабочую точку.
Во-вторых, от температуры окружающей среды, – с повышением температуры возрастает обратный ток коллектора Iко, что приводит к увеличению тока коллектора. И где же тогда половина напряжения питания на коллекторе Eпит/2, та самая рабочая точка? В результате транзистор греется еще сильнее, после чего выходит из строя. Чтобы избавиться от этой зависимости, или, по крайней мере, свести ее к минимуму, в транзисторный каскад вводят дополнительные элементы отрицательной обратной связи – ООС.
На рисунке 6 показана схема с фиксированным напряжением смещения.
Рисунок 6.
Казалось бы, что делитель напряжения Rб-к, Rб-э обеспечит требуемое начальное смещение каскада, но на самом деле такому каскаду присущи все недостатки схемы с фиксированным током. Таким образом, приведенная схема является всего лишь разновидностью схемы с фиксированным током, показанной на рисунке 5.
Схемы с термостабилизацией
Несколько лучше обстоит дело в случае применения схем, показанных на рисунке 7.
Рисунок 7.
В схеме с коллекторной стабилизацией резистор смещения R1 подключен не к источнику питания, а к коллектору транзистора. В этом случае, если при увеличении температуры происходит увеличение обратного тока, транзистор открывается сильнее, напряжение на коллекторе уменьшается. Это уменьшение приводит к уменьшению напряжения смещения, подаваемого на базу через R1. Транзистор начинает закрываться, коллекторный ток уменьшается до приемлемой величины, положение рабочей точки восстанавливается.
Совершенно очевидно, что такая мера стабилизации приводит к некоторому снижению усиления каскада, но это не беда. Недостающее усиление, как правило, добавляют наращиванием количества усилительных каскадов. Зато подобная ООС позволяет значительно расширить диапазон рабочих температур каскада.
Несколько сложней схемотехника каскада с эмиттерной стабилизацией. Усилительные свойства подобных каскадов остаются неизменными в еще более широком диапазоне температур, чем у схемы с коллекторной стабилизацией. И еще одно неоспоримое преимущество, – при замене транзистора не приходится заново подбирать режимы работы каскада.
Эмиттерный резистор R4, обеспечивая температурную стабилизацию, также снижает усиление каскада. Это для постоянного тока. Для того, чтобы исключить влияние резистора R4 на усиление переменного тока, резистор R4 шунтирован конденсатором Cэ, который для переменного тока представляет незначительное сопротивление. Его величина определяется диапазоном частот усилителя. Если эти частоты лежат в звуковом диапазоне, то емкость конденсатора может быть от единиц до десятков и даже сотен микрофарад. Для радиочастот это уже сотые или тысячные доли, но в некоторых случаях схема прекрасно работает и без этого конденсатора.
Для того, чтобы лучше понять, как работает эмиттерная стабилизация, надо рассмотреть схему включения транзистора с общим коллектором ОК.
Схема с общим коллектором (ОК) Показана на рисунке 8. Эта схема является кусочком рисунка 2, из второй части статьи, где показаны все три схемы включения транзисторов.
Рисунок 8.
Нагрузкой каскада является эмиттерный резистор R2, входной сигнал подается через конденсатор C1, а выходной снимается через конденсатор C2. Вот тут можно спросить, почему же эта схема называется ОК? Ведь, если вспомнить схему ОЭ, то там явно видно, что эмиттер соединен с общим проводом схемы, относительно которого подается входной и снимается выходной сигнал.
В схеме же ОК коллектор просто соединен с источником питания, и на первый взгляд кажется, что к входному и выходному сигналу отношения не имеет. Но на самом деле источник ЭДС (батарея питания) имеет очень маленькое внутреннее сопротивление, для сигнала это практически одна точка, один и тот же контакт.
Более подробно работу схемы ОК можно рассмотреть на рисунке 9.
Рисунок 9.
Известно, что для кремниевых транзисторов напряжение перехода б-э находится в пределах 0,5…0,7В, поэтому можно принять его в среднем 0,6В, если не задаваться целью проводить расчеты с точностью до десятых долей процента. Поэтому, как видно на рисунке 9, выходное напряжение всегда будет меньше входного на величину Uб-э, а именно на те самые 0,6В. В отличие от схемы ОЭ эта схема не инвертирует входной сигнал, она просто повторяет его, да еще и снижает на 0,6В. Такую схему еще называют эмиттерным повторителем. Зачем же такая схема нужна, в чем ее польза?
Схема ОК усиливает сигнал по току в h31э раз, что говорит о том, что входное сопротивление схемы в h31э раз больше, чем сопротивление в цепи эмиттера. Другими словами можно не опасаясь спалить транзистор подавать непосредственно на базу (без ограничительного резистора) напряжение. Просто взять вывод базы и соединить его с шиной питания +U.
Высокое входное сопротивление позволяет подключать источник входного сигнала с высоким импедансом (комплексное сопротивление), например, пьезоэлектрический звукосниматель. Если такой звукосниматель подключить к каскаду по схеме ОЭ, то низкое входное сопротивление этого каскада просто «посадит» сигнал звукоснимателя, – «радио играть не будет».
Отличительной особенностью схемы ОК является то, что ее коллекторный ток Iк зависит только от сопротивления нагрузки и напряжения источника входного сигнала. При этом параметры транзистора тут вообще никакой роли не играют. Про такие схемы говорят, что они охвачены стопроцентной обратной связью по напряжению.
Как показано на рисунке 9 ток в эмиттерной нагрузке (он же ток эмиттера) Iн = Iк + Iб. Принимая во внимание, что ток базы Iб ничтожно мал по сравнению с током коллектора Iк, можно полагать, что ток нагрузки равен току коллектора Iн = Iк. Ток в нагрузке будет (Uвх – Uбэ)/Rн. При этом будем считать, что Uбэ известен и всегда равен 0,6В.
Отсюда следует, что ток коллектора Iк = (Uвх – Uбэ)/Rн зависит лишь от входного напряжения и сопротивления нагрузки. Сопротивление нагрузки можно изменять в широких пределах, правда, при этом особо усердствовать не надо. Ведь если вместо Rн поставить гвоздь – сотку, то никакой транзистор не выдержит!
Схема ОК позволяет достаточно легко измерить статический коэффициент передачи тока h31э. Как это сделать, показано на рисунке 10.
Рисунок 10.
Сначала следует измерить ток нагрузки, как показано на рисунке 10а. При этом базу транзистора никуда подключать не надо, как показано на рисунке. После этого измеряется ток базы в соответствии с рисунком 10б. Измерения должны в обоих случаях производиться в одних величинах: либо в амперах, либо в миллиамперах. Напряжение источника питания и нагрузка должны оставаться неизменными при обоих измерениях. Чтобы узнать статический коэффициент передачи тока достаточно ток нагрузки разделить на ток базы: h31э ≈ Iн/Iб.
Следует отметить, что при увеличении тока нагрузки h31э несколько уменьшается, а при увеличении напряжения питания увеличивается. Эмиттерные повторители часто строятся по двухтактной схеме с применением комплементарных пар транзисторов, что позволяет увеличить выходную мощность устройства. Такой эмиттерный повторитель показан на рисунке 11.
Рисунок 11.
Рисунок 12.
Включение транзисторов по схеме с общей базой ОБ
Такая схема дает только усиление по напряжению, но обладает лучшими частотными свойствами по сравнению со схемой ОЭ: те же транзисторы могут работать на более высоких частотах. Основное применение схемы ОБ это антенные усилители диапазонов ДМВ. Схема антенного усилителя показана на рисунке 12.
Транзистор – повсеместный и важный компонент в современной микроэлектронике. Его назначение простое: он позволяет с помощью слабого сигнала управлять гораздо более сильным.
В частноти, его можно использовать как управляемую «заслонку»: отсутствием сигнала на «воротах» блокировать течение тока, подачей – разрешать. Иными словами: это кнопка, которая нажимается не пальцем, а подачей напряжения. В цифровой электронике такое применение наиболее распространено.
Транзисторы выпускаются в различных корпусах: один и тот же транзистор может внешне выглядеть совершенно по разному. В прототипировании чаще остальных встречаются корпусы:
TO-92 – компактный, для небольших нагрузок
TO-220AB – массивный, хорошо рассеивающий тепло, для больших нагрузок
Обозначение на схемах также варьируется в зависимости от типа транзистора и стандарта обозначений, который использовался при составлении. Но вне зависимости от вариации, его символ остаётся узнаваемым.
Биполярные транзисторы
Биполярные транзисторы (BJT, Bipolar Junction Transistors) имеют три контакта:
Коллектор (collector) – на него подаётся высокое напряжение, которым хочется управлять
База (base) – через неё подаётся небольшой ток , чтобы разблокировать большой; база заземляется, чтобы заблокировать его
Эмиттер (emitter) – через него проходит ток с коллектора и базы, когда транзистор «открыт»
Основной характеристикой биполярного транзистора является показатель h fe также известный, как gain. Он отражает во сколько раз больший ток по участку коллектор–эмиттер способен пропустить транзистор по отношению к току база–эмиттер.
Например, если h fe = 100, и через базу проходит 0.1 мА, то транзистор пропустит через себя как максимум 10 мА. Если в этом случае на участке с большим током находится компонент, который потребляет, например 8 мА, ему будет предоставлено 8 мА, а у транзистора останется «запас». Если же имеется компонент, который потребляет 20 мА, ему будут предоставлены только максимальные 10 мА.
Также в документации к каждому транзистору указаны максимально допустимые напряжения и токи на контактах. Превышение этих величин ведёт к избыточному нагреву и сокращению службы, а сильное превышение может привести к разрушению.
NPN и PNP
Описанный выше транзистор – это так называемый NPN-транзистор. Называется он так из-за того, что состоит из трёх слоёв кремния, соединённых в порядке: Negative-Positive-Negative. Где negative – это сплав кремния, обладающий избытком отрицательных переносчиков заряда (n-doped), а positive – с избытком положительных (p-doped).
NPN более эффективны и распространены в промышленности.
PNP-транзисторы при обозначении отличаются направлением стрелки. Стрелка всегда указывает от P к N. PNP-транзисторы отличаются «перевёрнутым» поведением: ток не блокируется, когда база заземлена и блокируется, когда через неё идёт ток.
Полевые транзисторы
Полевые транзисторы (FET, Field Effect Transistor) имеют то же назначение, но отличаются внутренним устройством. Частным видом этих компонентов являются транзисторы MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor). Они позволяют оперировать гораздо большими мощностями при тех же размерах. А управление самой «заслонкой» осуществляется исключительно при помощи напряжения : ток через затвор, в отличие от биполярных транзисторов, не идёт.
Полевые транзисторы обладают тремя контактами:
Сток (drain) – на него подаётся высокое напряжение, которым хочется управлять
Затвор (gate) – на него подаётся напряжение, чтобы разрешить течение тока; затвор заземляется, чтобы заблокировать ток.
Исток (source) – через него проходит ток со стока, когда транзистор «открыт»
N-Channel и P-Channel
По аналогии с биполярными транзисторами, полевые различаются полярностью. Выше был описан N-Channel транзистор. Они наиболее распространены.
P-Channel при обозначении отличается направлением стрелки и, опять же, обладает «перевёрнутым» поведением.
Подключение транзисторов для управления мощными компонентами
Типичной задачей микроконтроллера является включение и выключение определённого компонента схемы. Сам микроконтроллер обычно имеет скромные характеристики в отношении выдерживаемой мощности. Так Ардуино, при выдаваемых на контакт 5 В выдерживает ток в 40 мА. Мощные моторы или сверхъяркие светодиоды могут потреблять сотни миллиампер. При подключении таких нагрузок напрямую чип может быстро выйти из строя. Кроме того для работоспособности некоторых компонентов требуется напряжение большее, чем 5 В, а Ардуино с выходного контакта (digital output pin) больше 5 В не может выдать впринципе.
Зато, его с лёгкостью хватит для управления транзистором, который в свою очередь будет управлять большим током. Допустим, нам нужно подключить длинную светодиодную ленту, которая требует 12 В и при этом потребляет 100 мА:
Теперь при установке выхода в логическую единицу (high), поступающие на базу 5 В откроют транзистор и через ленту потечёт ток – она будет светиться. При установке выхода в логический ноль (low), база будет заземлена через микроконтроллер, а течение тока заблокированно.
Обратите внимание на токоограничивающий резистор R . Он необходим, чтобы при подаче управляющего напряжения не образовалось короткое замыкание по маршруту микроконтроллер – транзистор – земля. Главное – не превысить допустимый ток через контакт Ардуино в 40 мА, поэтому нужно использовать резистор номиналом не менее:
здесь U d – это падение напряжения на самом транзисторе. Оно зависит от материала из которого он изготовлен и обычно составляет 0.3 – 0.6 В.
Но совершенно не обязательно держать ток на пределе допустимого. Необходимо лишь, чтобы показатель gain транзистора позволил управлять необходимым током. В нашем случае – это 100 мА. Допустим для используемого транзистора h fe = 100, тогда нам будет достаточно управляющего тока в 1 мА
Нам подойдёт резистор номиналом от 118 Ом до 4.7 кОм. Для устойчивой работы с одной стороны и небольшой нагрузки на чип с другой, 2.2 кОм – хороший выбор.
Если вместо биполярного транзистора использовать полевой, можно обойтись без резистора:
это связано с тем, что затвор в таких транзисторах управляется исключительно напряжением: ток на участке микроконтроллер – затвор – исток отсутствует. А благодаря своим высоким характеристикам схема с использованием MOSFET, позволяет управлять очень мощными компонентами.
Читайте также…
1
5. Структура и режимы работы биполярного транзистора.
Биполярный транзистор представляет собой полупроводниковый прибор, состоящий из трех областей полупроводника с чередующимися типами проводимости, разделенными р-п-переходами. Из-за близкого расположения р-п-переходов между ними существует взаимодействие. Каждая область транзистора выполняет определенную функцию, поэтому концентрации легирующих примесей в них и названия областей различны.
Средняя область транзистора, расположенная между двумя р-п-переходами, называется базой (B). Одна из крайних областей с наивысшей концентрацией легирующей примеси называется эмиттером (E). Основным назначением эмиттера является инжекция неосновных носителей заряда в область базы. Соответствующий р-п-переход называют эмиттерным. Инжектированные в базу носители диффундируют в сторону третьей области, называемой коллектором (C). Основным назначением коллектора является собирание инжектированных эмиттером носителей заряда. Соответствующий р-п-переход, расположенный между базой и коллектором, называют коллекторным.
Существуют два типа биполярных транзисторов: п-р-п и р-п-р. Буквы обозначают тип проводимости эмиттерной, базовой и коллекторной областей соответственно. Символическое изображение транзисторов разных типов приведено на рис. 3.18. Стрелка эмиттера показывает условное направление тока.
Рис. 3.18. Символическое изображение транзисторов: а – n-p-n-типа; б – p-n-p-типа
|
При анализе работы биполярного транзистора ограничим наше рассмотрение приборами п-р-п-типа, которые в настоящее время используются гораздо чаще, имеют лучшие характеристики и большее усиление, особенно в интегральных схемах. Транзисторы р-п-р-типа по принципу действия ничем не отличаются от п-р-п-транзисторов, однако им свойственны другие полярности рабочих напряжений.
Известны три схемы включения биполярных транзисторов в электрическую цепь, при которых возможно усиление электрической мощности: схема с общей базой (ОБ), схема с общим эмиттером (ОЭ) и схема с общим коллектором (ОК), которые приведены на рис. 3.19 для транзистора п-р-п-типа. Кроме того на рис. 3.19 показаны внешние источники напряжений и токи, протекающие через транзистор, в нормальном режиме работы.
Любая из схем включения обладает своими достоинствами и недостатками, поэтому выбор схемы включения транзистора в каждом конкретном случае зависит от требуемых условий. На практике чаще всего используется схема включения с общим эмиттером (ОЭ), которая позволяет получать наибольшее усиление по мощности.
а) б) в)
| Рис. 3.19. Схемы включения транзистора: а – схема ОБ; б – схема ОЭ; в – схема ОК
|
.
Структура дискретного биполярного п-р-п-транзистора приведена на рис. 3.20.
Рис. 3.20. Структура дискретного биполярного n-p-n-транзистора
|
Результирующее распределение примесей в областях транзистора (сплошная линия) распределения примесей при базовой и эмиттерной диффузиях (пунктирные линии) показаны на рис. 3.21.
Рис. 3.21. Распределение примесей в дискретном биполярном n-p-n-транзисторе
|
Здесь и – поверхностные концентрации примесей при эмиттерной и базовой диффузиях, а – концентрация примеси в коллекторной области, выполненной методом эпитаксии. Эмиттер представляет собой сильнолегированную область, о чем свидетельствует знак “+” при обозначении типа проводимости эмиттернорного слоя – . У реальных транзисторов площади р-п-переходов существенно различаются. Эмиттерный переход имеет значительно меньшую площадь, чем коллекторный.
Каждый из р-п-переходов транзистора имеет донную и боковые части. Рабочей или активной областью транзистора является область, расположенная под донной частью эмиттерного перехода (на рис. 3.20 эта область заштрихована). Остальные участки, наличие которых обусловлено технологическими причинами, являются пассивными.
Идеализированная структура биполярного п-р-п-транзистора для его активной области приведена на рис. 3.22. Взаимодействие между эмиттерным и коллекторным переходами обеспечивается малой щириной базы , которая у современных транзисторов, как правило не превышает 1 мкм.
Рис. 3.22. Идеализированная структура биполярного n-p-n-транзистора
|
Внешние напряжения и создают соответствующие смещения на переходах. В зависимости от полярности напряжений и различают четыре режима работы транзистора (рис. 3.23):
Рис. 3.23. Режимы работы n-p-n-транзистора
|
1) нормальный (активный) режим, когда на эмиттерном переходе действует прямое смещение, а на коллекторном – обратное;
2) инверсный режим, когда на эмиттерном переходе действует обратное смещение, а на коллекторном – прямое;
3) режим двойной инжекции (насыщения), когда на оба перехода поданы прямые смещения;
4) режим отсечки (запирания), когда на оба перехода поданы обратные смещения.
В режимах двойной инжекции и отсечки управление транзистором практически отсутствует. В нормальном режиме управление транзистором осуществляется наиболее эффективно. Только работая в нормальном режиме, транзистор может выполнять функции активного элемента электрической схемы, т. е. усиливать, генерировать, переключать электрические сигналы и т. д.
Основные свойства транзистора определяются процессами, происходящими в базе. Существенное влияние на работу транзистора оказывает распределение легирующей примеси в базе. Если примесь в базе распределена равномерно (однородная база), то в ней отсутствует внутреннее поле и движение носителей заряда имеет чисто диффузионный характер. При неравномерном распределении примеси в области базы (неоднородная база) в ней возникает внутреннее электрическое поле, а значит, появляется дополнительная дрейфовая составляющая в движении носителей заряда. При этом необходимо так распределить примесь в базе, чтобы внутреннее поле способствовало движению носителей заряда от эмиттера к коллектору. Это возможно в случае уменьшения концентрации некомпенсированной примеси в базе в направлении от эмиттера к коллектору (см. рис. 3.21.).
Принцип работы биполярного транзистора заключается в управлении током через обратно смещенный коллекторный переход. Известно, что в обратно смещенном р-п-переходе ток очень мал и определяется только неосновными носителями заряда, которые генерируются в области объемного заряда или вблизи нее. Однако при появлении у границ такого перехода дополнительных источников неосновных носителей ток через обратносмещенный переход увеличивается. Такими источниками, например, могут быть частицы высокой энергии, попадающие при внешнем излучении в диодные фотоприемники или датчики излучения.
Другой способ увеличения концентрации неосновных носителей заряда около обратно смещенного p-n-перехода заключается в размещении в непосредственной близости от него другого p-n-перехода, смещенного в прямом направлении. Данный способ особенно удобен, так как обеспечивает электрическое управление концентрацией неосновных носителей, т. е. управление ею с помощью напряжения смещения, приложенного к этому прямо смещенному переходу.
Такая модуляция тока в одном p-n-переходе с помощью изменения напряжения смещения другого перехода, расположенного рядом с ним, называется механизмом работы биполярного транзистора. Эта одна из самых важных идей во всей истории развития электронных приборов. За исследования, в результате которых эта идея была разработана и реализована, изобретатели биполярного плоскостного транзистора Уильям Шокли, Джон Бардин и Уолтер Браттейн были удостоены Нобелевской премии по физике в 1956 г.
3. Биполярные транзисторы. Физические основы электроники. Курс лекций
3.1. Принцип действия биполярного транзистора. Режимы работы
3.1.1. Общие сведения
3.1.2. Физические процессы в бездрейфовом биполярном транзисторе
3.2. Статические характеристики биполярных транзисторов
3.2.1. Схема с общей базой
3.2.2. Схема с общим эмиттером
3.2.3. Влияние температуры на статические характеристики БТ
3.3. Дифференциальные параметры биполярного транзистора в статическом режиме
3.4. Линейная (малосигнальная) модель биполярного транзистора
3.5. Частотные свойства биполярного транзистора
3.6. Способы улучшения частотных свойств биполярных транзисторов
3.7. Работа транзистора в усилительном режиме
3.8. Особенности работы транзистора в импульсном режиме
3.8.1. Работа транзистора в режиме усиления импульсов малой амплитуды
3.8.2. Работа транзистора в режиме переключения
3.8.3. Переходные процессы при переключении транзистора
3.1. Принцип действия биполярного транзистора. Режимы работы
3.1.1. Общие сведения
Биполярным транзистором (БТ) называется трехэлектродный полупроводниковый прибор с двумя взаимодействующими p-n переходами, предназначенный для усиления электрических колебаний по току, напряжению или мощности. Слово “биполярный” означает, что физические процессы в БТ определяются движением носителей заряда обоих знаков (электронов и дырок). Взаимодействие переходов обеспечивается тем, что они располагаются достаточно близко – на расстоянии, меньшем диффузионной длины. Два p-n-перехода образуются в результате чередования областей с разным типом электропроводности. В зависимости от порядка чередования различают БТ типа n-p-n (или со структурой n-p-n) и типа p-n-p (или со структурой p-n-p), условные изображения которых показаны на рисунке 3.1.
а) |
б) |
Рисунок 3.1. |
Структура реального транзистора типа n-p-n изображена на рисунке 3.2. В этой структуре существуют два перехода с неодинаковой площадью: площадь левого перехода n1+-p меньше, чем у перехода n2-p. Кроме того, у большинства БТ одна из крайних областей (n1 с меньшей площадью) сечения легирована гораздо сильнее, чем другая крайняя область (n2).
Рисунок 3.2
Сильнолегированная область обозначена верхним индексом “+” (n+). Поэтому БТ является асимметричным прибором. Асимметрия отражается и в названиях крайних областей: сильнолегированная область с меньшей площадью (n1+) называется эмиттером, а область n2 – коллектором. Соответственно переход n1+-р называют эмиттерным, а n2-pколлекторным.Средняя область (p) называется базовой (или базой). Правая область n+ служит для снижения сопротивления коллектора. Контакты с областями БТ обозначены на рисунках 3.1 и 3.2 буквами: Э – эмиттер; Б – база; К- коллектор.
Основные свойства БТ определяются процессами в базовой области, которая обеспечивает взаимодействие эмиттерного и коллекторного переходов. Поэтому ширина базовой области должна быть малой (обычно меньше 1 мкм). Если распределение примеси в базе от эмиттера к коллектору однородное (равномерное), то в ней отсутствует электрическое поле и носители совершают в базе только диффузионное движение. В случае неравномерного распределения примеси (неоднородная база) в базе существует “внутреннее” электрическое поле, вызывающее появление дрейфового движения носителей: результирующее движение определяется как диффузией, так и дрейфом. БТ с однородной базой называют бездрейфовыми, а с неоднородной базой – дрейфовыми.
Биполярный транзистор, являющийся трехполюсным прибором, можно использовать в трех схемах включения: с общей базой (ОБ) (рисунок 3.3,а), общим эмиттером (ОЭ) (рисунок 3.3,б), и общим коллектором (ОК) (рисунок 3.3,в). Стрелки на условных изображениях БТ указывают (как и на рисунке 3.1) направление прямого тока эмиттерного перехода. В обозначениях напряжений вторая буква индекса обозначает общий электрод для двух источников питания.
В общем случае возможно четыре варианта полярностей напряжения переходов, определяющих четыре режима работы транзистора. Они получили названия: нормальный активный режим, инверсный активный режим, режим насыщения (или режим двухсторонней инжекции) и режим отсечки.
а) |
б) |
в) |
Рисунок 3.3. |
В нормальном активном режиме (НАР) на эмиттерном переходе действует прямое напряжение (напряжение эмиттер – база UЭБ), а на коллекторном переходе – обратное (напряжение коллектор – база UКБ). Этому режиму соответствуют полярности источников питания на рисунке 3.4 и направления токов для p-n-p транзистора. В случае n-p-n транзистора полярности напряжения и направления токов изменяются на противоположные.
Рисунок 3.4.
Этот режим работы (НАР) является основным и определяет назначение и название элементов транзистора. Эмиттерный переход осуществляет инжекцию носителей в узкую базовую область, которая обеспечивает практически без потерь перемещение инжектированных носителей до коллекторного перехода. Коллекторный переход не создает потенциального барьера для подошедших носителей, ставших неосновными носителями заряда в базовой области, а, наоборот, ускоряет их и поэтому переводит эти носители в коллекторную область. “Собирательная” способность этого перехода и обусловила название “коллектор”. Коллектор и эмиттер могут поменяться ролями, если на коллекторный переход подать прямое напряжение UКБ, а на эмиттерный – обратное UЭБ. Такой режим работы называется инверсным активным режимом (ИАР). В этом случае транзистор “работает” в обратном направлении: из коллектора идет инжекция дырок, которые проходят через базу и собираются эмиттерным переходом, но при этом его параметры отличаются от первоначальных.
Режим работы, когда напряжения на эмиттерном и коллекторном переходах являются прямыми одновременно, называют режимом двухсторонней инжекции (РДИ) или менее удачно режимом насыщения (РН). В этом случае и эмиттер, и коллектор инжектируют носители заряда в базу навстречу друг другу и одновременно каждый из переходов собирает носители, приходящие к нему от другого перехода.
Наконец, режим, когда на обоих переходах одновременно действуют обратные напряжения, называют режимом отсечки (РО), так как в этом случае через переходы протекают малые обратные токи.
Следует подчеркнуть, что классификация режимов производится по комбинации напряжений переходов, В схеме включения с общей базой (ОБ) они равны напряжениям источников питания UЭБ и UКБ. В схеме включения с общим эмиттером (ОЭ) напряжение на эмиттерном переходе определяется напряжением первого источника (UЭБ = -UБЭ), а напряжение коллекторного перехода зависит от напряжений обоих источников и по общему правилу определения разности потенциалов UКБ = UКЭ + UЭБ. Так как UЭБ = -UБЭ, тo UКБ = UКЭ – UБЭ; при этом напряжение источников питания надо брать со своим знаком: положительным, если к электроду присоединен положительный полюс источника, и отрицательным – в другом случае. В схеме включения с общим коллектором (ОК) напряжение на коллекторном переходе определяется одним источником: UКБ = -UБК. Напряжение на эмиттерном переходе зависит от обоих источников: UЭБ = UЭК + UКБ = UЭК – UБК, при этом правило знаков прежнее.
3.1.2. Физические процессы в бездрейфовом биполярном транзисторе
Основные физические процессы в идеализированном БТ удобно рассматривать на примере схемы с общей базой (рисунок 3.4), так как напряжения на переходах совпадают с напряжениями источников питания. Выбор p-n-p транзистора связан с тем, что направление движения инжектируемых из эмиттера носителей (дырок) совпадает с направлением тока.
В нормальном активном режиме (НАР) на эмиттерном переходе действует прямое напряжение UЭБ. Поэтому прямой ток перехода
, (3.1)
где Iэ р, Iэ n – инжекционные токи дырок (из эмиттера в базу) и электронов (из базы в эмиттер), а Iэрек – составляющая тока, вызванная рекомбинацией в переходе тех дырок и электронов, энергия которых недостаточна для преодоления потенциального барьера. Относительный вклад этой составляющей в ток перехода Iэ в (3.1) тем заметнее, чем меньше инжекционные составляющие Iэр и Iэn, определяющие прямой ток в случае идеализированного р-n перехода. Если вклад Iэ рек незначителен, то вместо (3.1) можно записать
. (3.2)
Полезным в сумме токов выражения (3.1) является только ток Iэ р, так как он будет участвовать в создании тока коллекторного перехода. “Вредные” составляющие тока эмиттера Iэ n и Iэ рек протекают через вывод базы и являются составляющими тока базы, а не коллектора. Поэтому вредные компоненты Iэ n, Iэ рек должны быть уменьшены.
Эффективность работы эмиттерного перехода учитывается коэффициентом инжекции эмиттера
, (3.3)
который показывает, какую долю в полном токе эмиттера составляет полезный компонент. В случае пренебрежения током Iэ рек
. (3.4)
Коэффициент инжекции g Э “тем выше (ближе к единице), чем меньше отношение Iэ n/ Iэ р. Величина Iэ n/ Iэ р << 1, если концентрация акцепторов в эмиттерной области p-n-p транзистора NАЭ на несколько порядков выше концентрации доноров NДБ в базе (NАЭ >> NДБ). Это условие обычно и выполняется в транзисторах.
Какова же судьба дырок, инжектированных в базу из эмиттера, определяющих полезный ток IЭр? Очевидно, что инжектированные дырки повышают концентрацию дырок в базе около границы с эмиттерным переходом, т.е. вызывают появление градиента концентрации дырок – неосновных носителей базы. Этот градиент обусловливает диффузионное движение дырок через базу к коллекторному переходу. Очевидно, что это движение должно сопровождаться рекомбинацией части потока дырок. Потерю дырок в базе можно учесть введением тока рекомбинации дырок IБ рек, так что ток подходящих к коллекторному переходу дырок
. (3.5)
Относительные потери на рекомбинацию в базе учитывают коэффициентом переноса:
. (3.6)
Коэффициент переноса показывает, какая часть потока дырок, инжектированных из эмиттера в базу, подходит к коллекторному переходу. Значение c Б тем ближе к единице, чем меньшее число инжектированных дырок рекомбинирует с электронами – основными носителями базовой области. Ток IБрек одновременно характеризует одинаковую потерю количества дырок и электронов. Так как убыль электронов в базе вследствие рекомбинации в конце концов покрывается за счет прихода электронов через вывод базы из внешней цепи, то ток IБрек следует рассматривать как составляющую тока базы наряду с инжекционной составляющей IЭ n.
Чтобы уменьшить потери на рекомбинацию, т.е. увеличить c Б, необходимо уменьшить концентрацию электронов в базе и ширину базовой области. Первое достигается снижением концентрации доноров Nд Б. Это совпадает с требованием NАЭ/NДБ, необходимым для увеличения коэффициента инжекции. Потери на рекомбинацию будут тем меньше, чем меньше отношение ширины базы WБ и диффузионной длины дырок в базовой области Lp Б. Доказано, что имеется приближенное соотношение
. (3.7)
Например, при WБ/Lp Б = 0,1 c Б = 0,995, что очень мало отличается от предельного значения, равного единице.
Если при обратном напряжении в коллекторном переходе нет лавинного размножения проходящих через него носителей, то ток за коллекторным переходом с учетом (3.5)
(3.8)
С учетом (3.6) и (3.3) получим
, (3.9)
где
. (3.10)
Это отношение дырочной составляющей коллекторного тока к полному току эмиттера называет статическим коэффициентом передачи тока эмиттера.
Ток коллектора имеет еще составляющую IКБО, которая протекает в цепи коллектор – база при IЭ = 0 (холостой ход, “обрыв” цепи эмиттера), и не зависит от тока эмиттера. Это обратный ток перехода, создаваемый неосновными носителями областей базы и коллектора, как в обычном p-n переходе (диоде).
Таким образом, полный ток коллектора с учетом (3.8) и (3.10)
. (3.11)
Из (3.11) получим обычно используемое выражение для статического коэффициента передачи тока:
, (3.12)
числитель которого (IК – IКБО) представляет собой управляемую (зависимую от тока эмиттера) часть тока коллектора, IКр. Обычно рабочие токи коллектора IК значительно IКБО, поэтому
. (3.13)
С помощью рисунка 3.4 можно представить ток базы через компоненты:
. (3.14)
По первому закону Кирхгофа для общей точки
. (3.15)
Как следует из предыдущего рассмотрения, IК и IБ принципиально меньше тока IЭ; при этом наименьшим является ток базы
. (3.16)
Используя (3.16) и (3.11), получаем связь тока базы с током эмиттера
. (3.17)
Если в цепи эмиттера нет тока (IЭ = 0, холостой ход), то IБ = -IКБО, т. е. ток базы отрицателен и по величине равен обратному току коллекторного перехода. При значении I*Э = IКБО /(1-a ) ток IБ = 0, а при дальнейшем увеличении IЭ (IЭ>I*Э) ток базы оказывается положительным.
Подобно (3.11) можно установить связь IК с IБ. Используя (3.11) и (3.15), получаем
, (3.18)
где
(3.19)
– статический коэффициент передачи тока базы. Так как значение a обычно близко к единице, то b может быть очень большим (b >>1). Например, при a = 0,99 b = 99. Из (3.18) можно получить соотношение
. (3.20)
Очевидно, что коэффициент b есть отношение управляемой (изменяемой) части коллекторного тока (IК – IКБО) к управляемой части базового тока (IБ + IКБО). Действительно, используя (3.14), получаем
.
Все составляющие последнего выражения зависят от IЭ и обращаются в нуль при IЭ = 0. Введя обозначение
, (3.21)
можно вместо (3.18) записать
. (3.22)
Отсюда очевиден смысл введенного обозначения IКЭО это значение тока коллектора при нулевом токе базы (IБ = 0) или при “обрыве” базы. При IБ = 0
IК = IЭ, поэтому ток IКЭО проходит через все области транзистора и является “сквозным” током, что и отражается индексами “К” и “Э” (индекс “О” указывает на условие IБ = 0).
3.2. Статические характеристики биполярных транзисторов
Обычно анализируют входные и выходные характеристики БТ в схемах с общей базой и общим эмиттером. Для определенности и преемственности изложения будем рассматривать p-n-p-транзистор.
3.2.1. Схема с общей базой
Семейство входных характеристик схемы с ОБ представляет собой зависимость IЭ = f(UЭБ) при фиксированных значениях параметра UКБ – напряжения на коллекторном переходе (рисунок 3.5,а).
а) |
б) |
Рисунок 3.5 |
При UКБ = 0 характеристика подобна ВАХ p-n-перехода. С ростом обратного напряжения UКБ (UКБ < 0 для p-n-p-транзистора) вследствие уменьшения ширины базовой области (эффект Эрли) происходит смещение характеристики вверх: IЭ растет при выбранном значении UЭБ. Если поддерживается постоянным ток эмиттера (IЭ = const), т.е. градиент концентрации дырок в базовой области остается прежним, то необходимо понизить напряжение UЭБ, (характеристика сдвигается влево). Следует заметить, что при UКБ < 0 и UЭБ = 0 существует небольшой ток эмиттера IЭ0, который становится равным нулю только при некотором обратном напряжении UЭБ0.
Семейство выходных характеристик схемы с ОБ представляет собой зависимости IК = f(UКБ) при заданных значениях параметра IЭ (рисунок 3.5,б).
Выходная характеристика p-n-p-транзистора при IЭ = 0 и обратном напряжении |UКБ < 0| подобна обратной ветви p-n-перехода (диода). При этом в соответствии с (3.11) IК = IКБО, т. е. характеристика представляет собой обратный ток коллекторного перехода, протекающий в цепи коллектор – база.
При IЭ > 0 основная часть инжектированных в базу носителей (дырок в p-n-p транзисторе) доходит до границы коллекторного перехода и создает коллекторный ток при UКБ = 0 в результате ускоряющего действия контактной разности потенциалов. Ток можно уменьшить до нуля путем подачи на коллекторный переход прямого напряжения определенной величины. Этот случай соответствует режиму насыщения, когда существуют встречные потоки инжектированных дырок из эмиттера в базу и из коллектора в базу. Результирующий ток станет равен нулю, когда оба тока одинаковы по величине (например, точка А’ на рисунок 3.5,б). Чем больше заданный ток IЭ, тем большее прямое напряжение UКБ требуется для получения IК = 0.
Область в первом квадранте на рис. 3.5,б, где UКБ < 0 (обратное) и параметр IЭ > 0 (что означает прямое напряжение UЭБ) соответствует нормальному активному режиму (НАР). Значение коллекторного тока в НАР определяется формулой (3.11) IК = a IЭ + IКБО. Выходные характеристики смещаются вверх при увеличении параметра IЭ. В идеализированном транзисторе не учитывается эффект Эрли, поэтому интегральный коэффициент передачи тока a можно считать постоянным, не зависящим от значения |UКБ|. Следовательно, в идеализированном БТ выходные характеристики оказываются горизонтальными (IК = const). Реально же эффект Эрли при росте |UКБ| приводит к уменьшению потерь на рекомбинацию и росту a . Так как значение a близко к единице, то относительное увеличение а очень мало и может быть обнаружено только измерениями. Поэтому отклонение выходных характеристик от горизонтальных линий вверх “на глаз” не заметно (на рисунке 3.5,б не соблюден масштаб).
3.2.2. Схема с общим эмиттером
Семейство входных характеристик схемы с ОЭ представляет собой зависимости IБ = f(UБЭ), причем параметром является напряжение UКЭ (рисунок 3.6,а). Для p-n-p транзистора отрицательное напряжение UБЭ (UБЭ < 0) означает прямое включение эмиттерного перехода, так как UЭБ = -UБЭ > 0. Если при этом UКЭ = 0 (потенциалы коллектора и эмиттера одинаковы), то и коллекторный переход будет включен в прямом направлении: UКБ = UКЭ + UЭБ = UЭБ > 0. Поэтому входная характеристика при UКЭ = 0 будет соответствовать режиму насыщения (РН), а ток базы равным сумме базовых токов из-за одновременной инжекции дырок из эмиттера и коллектора. Этот ток, естественно, увеличивается с ростом прямого напряжения UЭБ, так как оно приводит к усилению инжекции в обоих переходах (UКБ = UЭБ) и соответствующему возрастанию потерь на рекомбинацию, определяющих базовый ток.
а) |
б) |
Рисунок 3.6 |
Вторая характеристика на рисунке 3.6,а (UКЭ á 0) относится к нормальному активному режиму, для получения которого напряжение UКЭ должно быть в p-n-p транзисторе отрицательным и по модулю превышать напряжение UЭБ. В этом случае (UКБ = UКЭ + UЭБ = UКЭ – UБЭ < 0. Формально ход входной характеристики в НАР можно объяснить с помощью выражения (3.14) или (3.17): IБ =(1 – a )IЭ – IКБО. При малом напряжении UБЭ инжекция носителей практически отсутствует (IЭ = 0) и ток
IБ = -IКБО, т.е. отрицателен. Увеличение прямого напряжения на эмиттерном переходе UЭБ = -UБЭ вызывает рост IЭ и величины (1 – a ) IЭ. Когда (1 – a ) IЭ = IКБО, ток IБ = 0. При дальнейшем роете UБЭ (1 – a ) IЭ > IКБО и IБ меняет направление и становится положительным (IБ > 0) и сильно зависящим от напряжения перехода.
Влияние UКЭ на IБ в НАР можно объяснить тем, что рост |UКЭ| означает рост |UКБ| и, следовательно, уменьшение ширины базовой области (эффект Эрли). Последнее будет сопровождаться снижением потерь на рекомбинацию, т.е. уменьшением тока базы (смещение характеристики незначительно вниз).
Семейство выходных характеристик схемы с ОЭ представляет собой зависимости IК = f(UКЭ) при заданном параметре IБ (рисунок 3.6,б).
Крутые начальные участки характеристик относятся к режиму насыщения, а участки с малым наклоном – к нормальному активному режиму. Переход от первого режима ко второму, как уже отмечалось, происходит при значениях |UКЭ|, превышающих |UБЭ|. На характеристиках в качестве параметра берется не напряжение UБЭ, а входной ток IБ. Поэтому о включении эмиттерного перехода приходится судить по значению тока IБ, который связан с входной характеристикой на рисунке 3.6,а. Для увеличения IБ необходимо увеличивать |UБЭ|, следовательно, и граница между режимом насыщения и нормальным активным режимом должна сдвигаться в сторону больших значений.
Если параметр IБ = 0 (“обрыв” базы), то в соответствии с (3.22) IК = IКЭО = (b + 1 ) IКБО. В схеме с ОЭ можно получить (как и в схеме с ОБ) I = IКБО, если задать отрицательный ток IБ = -IКБО. Выходная характеристика с параметром IБ = -IКБО может быть принята за границу между НАР и режимом отсечки (РО). Однако часто за эту границу условно принимают характеристику с параметром IБ = 0.
Наклон выходных характеристик в нормальном активном режиме в схеме с общим эмиттером во много раз больше, чем в схеме с общей базой (h22Э » b h22Б) Объясняется это различным проявлением эффекта Эрли. В схеме с общим эмиттером увеличение UКЭ, а следовательно и UКБ сопровождается уменьшением тока базы, а он по определению выходной характеристики должен быть неизменным. Для восстановления тока базы приходится регулировкой напряжения UБЭ увеличивать ток эмиттера, а это вызывает прирост тока коллектора D IК, т.е. увеличение выходной проводимости (в схеме с ОБ ток IЭ при снятии выходной характеристики поддерживается неизменным).
3.2.3. Влияние температуры на статические характеристики БТ
Влияние температуры на положение входной характеристики схемы с ОБ при поддержании неизменным ее параметра аналогично ее влиянию на ВАХ полупроводникового диода. В нормальном активном режиме ток эмиттерного перехода можно представить формулой
.
С ростом температуры тепловой ток IЭО растет быстрее, чем убывает экспонента из-за увеличения j Т = kT/q. В результате противоположного влияния двух факторов входные характеристики схемы с ОБ смещаются влево при выбранном токе IЭ на величину D U » (1…2) мВ/°С (рисунок 3.7,а).
Начало входной характеристики в схеме с ОЭ определяется тепловым током коллекторного перехода IКБО который сильно зависит от температуры, так что начало характеристики при увеличении температуры опускается (рисунок 3.7, б).
а) |
б) |
Рисунок 3.7 |
Влияние температуры на выходные характеристики схем с ОБ и ОЭ в НАР удобно анализировать по формулам (3.11) и (3.22):
и .
Снятие выходных характеристик при различных температурах должно проводиться при поддержании постоянства параметров (IЭ = const в схеме с ОБ и IБ = const в схеме с ОЭ). Поэтому в схеме с ОБ при IЭ = const рост IК будет определяться только увеличением IКБО (рисунок 3.8, а).
а) |
б) |
Рисунок 3.8 |
Однако обычно IКБО значительно меньше a IЭ, изменение IК составляет доли процента и его можно не учитывать.
В схеме с ОЭ положение иное. Здесь параметром является IБ и его надо поддерживать неизменным при изменении температуры. Будем считать в первом приближении, что коэффициент передачи b не зависит от температуры. Постоянство b IБ означает, что температурная зависимость IК будет определяться слагаемым (b + 1)IКБО. Ток IКБО (как тепловой ток перехода) примерно удваивается при увеличении температуры на 10°С, и при b >> 1 прирост тока (b + 1)IКБО может оказаться сравнимым с исходным значением коллекторного тока и даже превысить его.
На рисунке 3.8,б показано большое смещение выходных характеристик вверх. Сильное влияние температуры на выходные характеристики в схеме с ОЭ может привести к потере работоспособности конкретных устройств, если не принять схемотехнические меры для стабилизации тока или термостатирование.
3.3. Дифференциальные параметры биполярного транзистора в статическом режиме
Статические характеристики и их семейства наглядно связывают постоянные токи электродов с постоянными напряжениями на них. Однако часто возникает задача установить количественные связи между небольшими изменениями (дифференциалами) этих величин от их исходных значений. Эти связи характеризуют коэффициентами пропорциональности -дифференциальными параметрами.
Рассмотрим процедуру введения дифференциальных параметров БТ на примере наиболее распространенных h-параметров, приводимых в справочниках по транзисторам. Для введения этой системы параметров в качестве независимых переменных при описании статического режима берут входной ток IВХ (IЭ или IБ) и выходное напряжение UВЫХ (UKБ или (UКЭ):
U1= f (I1,U2) (3.23)
I2= f (I1,U2)
В этом случае полные дифференциалы
(3.24)
Частные производные в выражениях (3.24) и являются дифференциальными h-napaметрами, т.е.
dU1=h11 d I1 +h12 dU2 (3.25)
dI2=h21 dI1 + h22 dU2
(h11 -входное сопротивление, h12 -коэффициент обратной передачи, h21 -коэффициент передачи входного тока и h22 -выходная проводимость). Названия и обозначения этих параметров взяты из теории четырехполюсников для переменного тока.
Приращения статических величин в нашем случае имитируют переменные токи и напряжения.
Для схемы с общей базой
dUЭБ=h11Б d IЭ +h12Б dUКБ (3.26)
dIК=h21Б dIЭ + h22Б dUКБ
Эти уравнения устанавливают и способ нахождения по статическим характеристикам, и метод измерения h-параметров. Полагая dUКБ = 0, т.е. UКБ = const, можно найти h11Б и h21Б, а считая dIЭ = 0, т. е. IЭ = const. определить h12Б и h22Б.
Аналогично для схемы с общим эмиттером можно переписать (3.26) в виде
dUБЭ=h11Э d IБ +h12Э dUКЭ (3.27)
dIК=h21Э dIБ + h22Э dUКЭ
Связь h-параметров со статическими характеристиками схем с ОБ и ОЭ и их определение по ним рассмотрены в.
3.4. Линейная (малосигнальная) модель биполярного транзистора
В качестве малосигнальных моделей могут быть использованы эквивалентные схемы с дифференциальными h-, у- и z-параметрами, которые имеют формальный характер и в которых отсутствуют непосредственная связь с физической структурой транзистора. Например, эквивалентная схема для системы Н-параметров приведена на рисунке.
Рисунок 3.9
Широкое распространение нашли эквивалентные схемы с так называемыми физическими параметрами, которые опираются на нелинейную динамическую модель Эберса – Молла, т.е. тесно связаны с физической структурой биполярного транзистора.
Малосигнальную схему БТ легко получить из нелинейной динамической модели заменой эмиттерного и коллекторного диодов их дифференциальными сопротивлениями, устанавливающими связь между малыми приращениями напряжения и тока. Кроме того, в усилительных схемах используется либо нормальный активный, либо инверсный активный режим, а режим насыщения недопустим. Поэтому при переходе к малосигнальной схеме можно ограничиться рассмотрением наиболее распространенного нормального активного режима, так как результаты легко перенести и на инверсный активный режим. В этом случае можно исключить генератор тока и малосигнальную модель БТ для схемы включения с ОБ изобразить, как на рисунке 3.10.
Рисунок 3.10
Поясним смысл элементов модели. Резистор RЭ представляет дифференциальное сопротивление эмиттерного перехода. В первом приближении его можно определить по формуле для идеализированного р-n перехода:
RЭ=dU/dI» j T/IЭ, (3.28)
где IЭ– постоянная составляющая тока эмиттера. Так как при комнатной температуре j т = 0,026 В, то при IЭ = 1 мА RЭ = 26 Ом.
Величина RК называется дифференциальным сопротивлением коллекторного перехода. Оно обусловлено эффектом Эрли и может быть определено по наклону выходной характеристики:
. (3.29)
Величина RК обратно пропорциональна значению параметра h22Б. Дифференциальное сопротивление коллектора может составлять сотни килоом и мегаомы, тем не менее его следует учитывать.
Реактивные элементы модели (Сэ, Ск) оказались теперь присоединенными параллельно резисторам RЭ и RК. Сопротивление базы r½ ББ, которое может превышать сотни ом, всегда остается в модели.
r½ ББ=h12/h22 . (3.30)
Приведенная эквивалентная малосигнальная модель БТ формально относится к схеме включения с ОБ. Однако она применима и для схемы с ОЭ. Для этого достаточно поменять местами плечи этой схемы, называемой Т-образной схемой с физическими параметрами. Электрод “Б” следует изобразить входным, а “Э” – общим, как показано на рисунке 3.11.
Рисунок 3.11
Значения всех элементов остаются прежними. Однако при таком изображении появляется некоторое неудобство, связанное с тем, что зависимый генератор тока в коллекторной цепи выражается не через входной ток (ток базы). Этот недостаток легко устранить преобразованием схемы к виду, изображенному на рисунке 3.11. Чтобы обе схемы были равноценными четырехполюсниками, они должны иметь одинаковые параметры в режимах холостого хода и короткого замыкания. Это требует перехода от тока H21БIЭ к току Н21ЭIБ и замены RК и CК на RК* и CК* соответственно. Связи этих величин определяются формулами
RК*=Н21БRК/ Н21Э=RК /( Н21Э+1) , ( 3.31 )
СК*= СК( Н21Э+1) . ( 3.32 )
Легко убедиться, что RК* характеризует наклон выходной характеристики (эффект Эрли) в схеме с ОЭ и связан с выходной проводимостью в этой схеме соотношением (5.43). Во сколько раз уменьшается RК* по сравнению с RК, во столько же раз возрастает емкость СK* по сравнению с СK, т.е. RKCK =RK*CK*.
3.5. Частотные свойства биполярного транзистора
Частотные свойства определяют диапазон частот синусоидального сигнала, в пределах которого прибор может выполнять характерную для него функцию преобразования сигнала. Принято частотные свойства приборов характеризовать зависимостью величин его параметров от частоты. Для биполярных транзисторов используется зависимость от частоты коэффициента передачи входного тока в схемах ОБ и ОЭ Н21Б и Н21Э. Обычно рассматривается нормальный активный режим при малых амплитудах сигнала в схемах включения с ОБ и ОЭ.
В динамическом режиме вместо приращения токов необходимо брать комплексные амплитуды, поэтому и коэффициенты передачи заменяются комплексными (частотно зависимыми) величинами: Н21Б и Н21Э.
Величины Н21Б и Н21Э могут быть найдены двумя способами:
• решением дифференциальных уравнений физических процессов и определением из них токов;
• анализом Т-образной эквивалентной схемы по законам теории электрических цепей.
Во втором случае Н21Б и Н21Э будут выражены через величины электрических элементов схемы. Мы проведем анализ частотных свойств коэффициентов передачи, используя Т-образную линейную модель (эквивалентную схему) n-р-n транзистора (рисунки 3.10 и 3.11).
На частотные свойства БТ влияют СЭ, СК и r½ ББ, а также время пролета носителей через базу t Б.
Нет надобности рассматривать влияние на частотные свойства транзистора каждого элемента в отдельности. Совместно все эти факторы влияют на коэффициент передачи тока эмиттера Н21Б, который становится комплексным, следующим образом:
, (3.33 )
где Н21Б0– коэффициент передачи тока эмиттера на низкой частоте, f – текущая частота, fН21Б– предельная частота. Модуль коэффициента передачи тока эмиттера равен
( 3.34 ).
Не трудно заметить, что модуль коэффициента передачи ½ Н21Б½ на предельной частоте fН21Б снижается в раз. Сдвиг по фазе между входным и выходным токами определяется формулой
. ( 3.35 )
Для схемы с ОЭ известно соотношение
( 3.36 ).
Подставляя (3.33) в (3.36) получим
(3.37),
где . Модуль коэффициента передачи тока базы будет равен
(3.38).
Как видно, частотные свойства БТ в схеме ОЭ значительно уступают транзистору, включенному по схеме с ОБ.
Граничная частота fГР – это такая частота, на которой модуль коэффициента передачи ½ Н21Э½ =1. В итоге получим, что fГР» fН21Э× Н21Э0.
Транзистор можно использовать в качестве генератора или усилителя только в том случае, если его коэффициент усиления по мощности КP> 1. Поэтому обобщающим частотным параметром является максимальная частота генерирования или максимальная частота усиления по мощности, на которой коэффициент усиления по мощности равен единице. Связь этой частоты с высокочастотными параметрами определяется выражением
, ( 3.39 ).
где fН21Б – предельная частота в мегагерцах; r1ББ – объемное сопротивление в омах; CК – емкость коллекторного перехода в пикофарадах; fМАКС – в мегагерцах.
3.6. Способы улучшения частотных свойств биполярных транзисторов
Рассмотренное выше позволяет сделать следующие выводы. Для улучшения частотных свойств (повышение предельной частоты) рекомендуется следующее.
1. Уменьшать время пролета инжектированных носителей в базовой области, т.е.
а) уменьшать ширину базовой области WБ; б) создавать n-р-n транзисторы, так как подвижность электронов выше, чем у дырок, примерно в 2 раза; в) использовать германиевые БТ, так как в германии подвижность носителей выше. Еще большие возможности открывает использование арсенида галлия.
2. Создавать ускоряющее поле в базовой области для инжектированных из эмиттера носителей. Последнее возникает при неравномерном распределении примесей в базе по направлению от эмиттера к коллектору (рис. 5.31,б). Концентрацию около эмиттера делают примерно в 100 раз больше, чем около коллектора.
Рисунок 3.12
Появление поля объясняется просто. Так как концентрация основных носителей в любой точке базы (дырок n-р-n транзистора) приблизительно равна концентрации примесей в этой точке, то распределение примесей Na(х) одновременно будет и распределением дырок p(х). Под влиянием градиента концентрации дырок будет происходить их диффузионное движение к коллектору, приводящее к нарушению условия электрической нейтральности: около эмиттера будет избыток отрицательного заряда ионов акцепторов, а около коллектора – избыток положительного заряда дырок, которые приходят к коллекторному переходу, но не проходят через него.
Нарушение электрической нейтральности приводит к появлению внутреннего электрического поля в базовой области (минус у эмиттера, плюс у коллектора). Появляющееся поле, в свою очередь, вызовет встречное дрейфовое движение дырок. Нарастание поля и дрейфового потока будет происходить до того момента, когда дрейфовый и диффузионный токи дырок уравняются. Легко видеть, что установившееся (равновесное) значение поля будет ускоряющим для электронов, которые входят в рабочем режиме из эмиттера в базу и будут уменьшать их время пролета, т.е. повышать предельную частоту БТ.
Биполярные транзисторы с неравномерным распределением примесей в базе, приводящим к появлению ускоряющего поля, называются дрейфовыми, а обычные – бездрейфовыми. Практически все современные высокочастотные и сверхвысокочастотные БТ являются дрейфовыми.
Уменьшение времени пролета в базовой области n-р-n транзистора при экспоненциальном законе убывания концентрации акцепторов от Nа(0) до Nа(WБ) учитывается коэффициентом неоднородности базы:
h =0,5ln[ NА(0)/NА(WБ)]
Поэтому можно написать
Для бездрейфовых транзисторовh =0 , а типичные значения для дрейфовых транзисторов .
3. Уменьшать барьерные емкости эмиттерного и коллекторного переходов путем уменьшения сечения областей транзистора и увеличения ширины переходов (выбором концентрации примесей и рабочего напряжения).
4. Уменьшать омическое сопротивление областей базы r½ ББ.
5. Уменьшать время пролета носителей в области коллекторного перехода.
Следует отметить, что ряд требований несовместимы и необходимо при создании транзисторов применять компромиссные решения.
3.7. Работа транзистора в усилительном режиме
При работе транзистора в различных радиотехнических устройствах в его входную цепь поступают сигналы, например переменные напряжения. Под действием входного переменного напряжения изменяются входной и выходной токи транзистора.
Для выделения полезного сигнала в выходную цепь транзистора включают элементы нагрузки. В простейшем случае нагрузкой может служить резистор Rк. На резисторе нагрузки за счет прохождения выходного тока выделяется, кроме постоянного, переменное напряжение. Амплитуда этого напряжения зависит от амплитуды переменной составляющей выходного тока и сопротивления резистора Rк и может быть больше входного напряжения. Процесс усиления сигнала удобно рассмотреть на примере простейших усилителей.
Простейшая схема усилителя на транзисторе, включенном по схеме с ОЭ, показана на рисунке 3.13.
Рисунок 3.13
Коллекторная цепь состоит из резистора Rк и источника Ек, а цепь базы – из источников тока IБ0 и IБm Источник IБ0 обеспечивает положение исходной рабочей точке на участке характеристик с наименьшей нелинейностью. Источник IБm– источник сигнала. В качестве выходного используется переменное напряжение, выделяемое на резисторе нагрузки Rк (на коллекторе транзистора).
Работа такого усилителя поясняется временными диаграммами токов и напряжений, изображенными на рис. 3..
При IБm =0 токи базы и коллектора будут определяться токами в рабочей точке (IБ 0, IК 0)и напряжением на коллекторе UК0= ЕК-IК0 × Rк
Рисунок 3.14
Во время положительного полупериода входного тока (рис. 3.14.,а) прямое напряжение эмиттерного перехода увеличивается, что вызывает рост тока коллектора (рис. 3.14,б) и уменьшение напряжения UКЭ за счет увеличения падения напряжения на сопротивлении коллектора (рисунок 3.14,в). Если работа происходит на линейных участках характеристик транзистора, то формы переменных составляющих токов базы и коллектора совпадают с формой входного напряжения, а переменное напряжение на коллекторе, обусловленной переменной составляющей коллекторного тока, оказывается сдвинутым относительно входного напряжения на 1800. При соответствующем выборе сопротивления нагрузки Rк амплитуда переменного напряжения на выходе такого усилителя Umвых=IКmRк может значительно превышать амплитуду входного напряжения.
3.8. Особенности работы транзистора в импульсном режиме
3.8.1. Работа транзистора в режиме усиления импульсов малой амплитуды
Если транзистор работает в режиме усиления импульсных сигналов малой амплитуды, то такой режим работы в принципе не отличается от линейного усиления малых синусоидальных сигналов. Импульс в этом случае может быть представлен в виде суммы ряда гармонических составляющих. Зная частотные свойства транзистора, можно определить искажения формы импульсов, возникающие при усилении.
Схема импульсного усилителя не отличается от схемы усилителя гармонических сигналов (рисунок 3.13).
3.8.2. Работа транзистора в режиме переключения
Биполярный транзистор широко используется в электронных устройствах в качестве ключа – функцией которого является замыкание и размыкание электрической цепи. Имея малое сопротивление во включенном состоянии и большое – в выключенном, биполярный транзистор достаточно полно удовлетворяет требованиям, предъявляемым к ключевым элементам.
Схема транзисторного ключа показана на рисунке 3.15. Во входной цепи действуют источник смещения ЕБЭ, создающий обратное напряжение на эмиттерном переходе, источник управляющих импульсов прямого напряжения UВХ и ограничительный резистор RБ. Обычно RБ> > Н11Э. В выходной цепи включены сопротивление нагрузки RК и источник питания ЕКЭ.
Рисунок 3.15
Когда нет импульса на входе, транзистор находится в режиме отсечки и ток коллектора практически отсутствует IК» IКБ0 (точка А на выходных характеристиках (рисунок 3.16,б). Напряжение на выходе транзистора uКЭ= ЕКЭ-IК× RК » ЕКЭ.
При подаче на вход транзистора импульсов прямого тока iБ=(UВХ– EБЭ)/RБ=IБ НАС, транзистор открывается, рабочая точка перемещается в точку Б (режим насыщения) и напряжение на коллекторе падает до значения uКЭ= ЕКЭ-IК НАС, RК=UКЭ ОСТ. При дальнейшем увеличении тока базы ток коллектора не увеличивается (рисунок 3.16,а) и напряжение на коллекторе не изменяется (рисунок 3.16,б).
а) |
б) |
Рисунок 3.16 |
3.8.3. Переходные процессы при переключении транзистора
При практическом использовании транзистора большое значение имеет скорость переключения, обуславливающая быстродействие аппаратуры. Скорость переключения определяется процессами накопления и рассасывания неравновесного заряда в базе и коллекторе транзистора, эмиттерном и коллекторном переходах.
В эмиттерном и коллекторном переходах находятся нескомпенсированные заряды неподвижных ионизированных атомов примеси – доноров и акцепторов; неравновесный заряд отсечки в базе можно считать равным нулю.
При переходе к режиму насыщения эмиттерный переход открывается, толщина перехода и его нескомпенсированный заряд уменьшаются, происходит как бы разряд ёмкости эмиттерного перехода. В следствии понижения напряжения на коллекторе, уменьшается его толщина и заряд в нем, т.е. происходит разряд ёмкости коллекторного перехода, открывается коллекторный переход и в области базы за счет инжекции электронов из эмиттерного и коллекторного переходах накапливается большой неравновесный заряд насыщения. В транзисторах, имеющих высокоомный коллектор носители заряда инжектируют и в область коллектора, где так же накапливается неравновесный заряд.
Графики напряжений и токов транзистора при переключении даны на рисунке 3.17. На базу транзистора подается прямоугольный импульс напряжения UВХ-EБЭ (рисунок 3.17,а).
График входного тока показан на рисунке 3.17,б. Величина импульса прямого тока базы IБ ПР определяется в основном сопротивлением ограничительного резистора RБ.
После переключения эмиттерного перехода на обратное направление ток перехода, как и в диоде, имеет первоначально большую величину, ограниченную лишь сопротивлением RБ: IБ ОБР= EБ/ RБ, так как сопротивление эмиттерного перехода в первый момент после переключения очень мало вследствие насыщения базы неравновесными носителями заряда (рисунок 3.17,г).
При прямоугольной форме импульса входного тока импульс выходного тока iК (рисунок 3.17,в) появляется с задержкой tЗ, которая определяется главным образом скоростью нарастания напряжения эмиттерного перехода, зависящей от величин ёмкости перехода и прямого тока базы, т.е. скоростью разряда эмиттерного перехода.
После того как транзистор перейдет из режима отсечки в активный режим, коллекторный ток начинает постепенно нарастать, достигая установившегося значения а время tн. Это время определяется скоростью накопления неравновесного заряда в базе и скоростью разряда емкости коллектора. Таким образом, полное время включения транзистора состоит из времени задержки и времени нарастания:
.
Практически оно может иметь величину от нескольких наносекунд до нескольких микросекунд в зависимости от параметров транзистора.
После подачи в цепь базы запирающего тока IБ ОБР=EБЭ/RБ выходной коллекторный ток прекращается не сразу. На протяжении некоторого времени рассасывания tp он практически сохраняет свою величину, так как концентрация носителей заряда в базе у коллекторного перехода еще остается выше равновесной и коллекторный переход благодаря этому оказывается открытым.
Лишь после того как неравновесный заряд у коллекторного перехода рассосется за счет ухода электронов из базы и рекомбинации, ток коллектора начинает постепенно спадать, достигая время спада tС установившегося значения IKЭ0. В течении этого времени продолжается рассасывание неравновесного заряда базы и происходит перезаряд емкости коллекторного перехода. Заметим, что эмиттерный переход при этом может закрыться раньше или позже коллекторного в зависимости от скорости рассасывания неравновесного заряда, сосредоточенного поблизости от него.
Процесс накопления и рассасывания неравновесного заряда qБ при переключении транзистора поясняется на рисунке 3.17,г. Накопление неравновесного заряда в базе начинается спустя время задержки tз, и заряд за время нарастания tн достигает установившегося значения qБ=Qакт. Далее вследствие падения коллекторного напряжения до величины UКЭ ОСТ< UБЭ коллекторный переход открывается и начинает инжектировать неравновесные носители заряда в базу. Заряд базы снова возрастает, достигая к концу входного импульса значения qБ=Qнас. После переключения напряжения эмиттерного перехода на обратное происходит рассасывание неравновесного заряда базы, за время tР+tС он достигает нулевого значения.
Устройство и работа биполярного транзистора
Биполярный транзистор — электронный полупроводниковый прибор, один из типов транзисторов, предназначенный для усиления, генерирования и преобразования электрических сигналов.
Транзистор называется биполярный, поскольку в работе прибора одновременно участвуют два типа носителей заряда – электроны и дырки.
Этим он отличается от униполярного (полевого) транзистора, в работе которого участвует только один тип носителей заряда.
Принцип работы обоих типов транзисторов похож на работу водяного крана, который регулирует водяной поток, только через транзистор проходит поток электронов.
У биполярных транзисторов через прибор проходят два тока — основной «большой» ток, и управляющий «маленький» ток. Мощность основного тока зависит от мощности управляющего.
У полевых транзисторов через прибор проходит только один ток, мощность которого зависит от электромагнитного поля. В данной статье рассмотрим подробнее работу биполярного транзистора.
Устройство биполярного транзистора
Биполярный транзистор состоит из трех слоев полупроводника и двух PN-переходов. Различают PNP и NPN транзисторы по типу чередования дырочной и электронной проводимостей. Это похоже на два диода, соединенных лицом к лицу или наоборот.
У биполярного транзистора три контакта (электрода). Контакт, выходящий из центрального слоя, называется база (base). Крайние электроды носят названия коллектор и эмиттер (collector и emitter).
Прослойка базы очень тонкая относительно коллектора и эмиттера. В дополнение к этому, области полупроводников по краям транзистора несимметричны. Слой полупроводника со стороны коллектора немного толще, чем со стороны эмиттера.
Это необходимо для правильной работы транзистора.
Работа биполярного транзистора
Рассмотрим физические процессы, происходящие во время работы биполярного транзистора. Для примера возьмем модель NPN. Принцип работы транзистора PNP аналогичен, только полярность напряжения между коллектором и эмиттером будет противоположной.
Как уже говорилось в статье о типах проводимости в полупроводниках, в веществе P-типа находятся положительно заряженные ионы — дырки. Вещество N-типа насыщено отрицательно заряженными электронами. В транзисторе концентрация электронов в области N значительно превышает концентрацию дырок в области P.
Подключим источник напряжения между коллектором и эмиттером VКЭ (VCE). Под его действием, электроны из верхней N части начнут притягиваться к плюсу и собираться возле коллектора. Однако ток не сможет идти, потому что электрическое поле источника напряжения не достигает эмиттера. Этому мешает толстая прослойка полупроводника коллектора плюс прослойка полупроводника базы.
Теперь подключим напряжение между базой и эмиттером VBE, но значительно ниже чем VCE (для кремниевых транзисторов минимальное необходимое VBE — 0.6V).
Поскольку прослойка P очень тонкая, плюс источника напряжения подключенного к базе, сможет «дотянуться» своим электрическим полем до N области эмиттера. Под его действием электроны направятся к базе. Часть из них начнет заполнять находящиеся там дырки (рекомбинировать).
Другая часть не найдет себе свободную дырку, потому что концентрация дырок в базе гораздо ниже концентрации электронов в эмиттере.
В результате центральный слой базы обогащается свободными электронами. Большинство из них направится в сторону коллектора, поскольку там напряжение намного выше. Так же этому способствует очень маленькая толщина центрального слоя. Какая-то часть электронов, хоть гораздо меньшая, все равно потечет в сторону плюса базы.
В итоге мы получаем два тока: маленький — от базы к эмиттеру IBE, и большой — от коллектора к эмиттеру ICE.
Если увеличить напряжение на базе, то в прослойке P соберется еще больше электронов. В результате немного усилится ток базы, и значительно усилится ток коллектора. Таким образом, при небольшом изменении тока базы IB, сильно меняется ток коллектора IС.
Так и происходит усиление сигнала в биполярном транзисторе. Cоотношение тока коллектора IС к току базы IB называется коэффициентом усиления по току.
Обозначается β, hfe или h31e, в зависимости от специфики расчетов, проводимых с транзистором.
β = IC / IB
Рассмотрим детальнее принцип усиления сигнала в электрической плоскости на примере схемы. Заранее оговорюсь, что такая схема не совсем правильная.
Никто не подключает источник постоянного напряжения напрямую к источнику переменного. Но в данном случае, так будет проще и нагляднее для понимания самого механизма усиления с помощью биполярного транзистора.
Так же, сама техника расчетов в приведенном ниже примере носит несколько упрощенный характер.
1.Описание основных элементов цепи
Итак, допустим в нашем распоряжении транзистор с коэффициентом усиления 200 (β = 200). Со стороны коллектора подключим относительно мощный источник питания в 20V, за счет энергии которого будет происходить усиление.
Со стороны базы транзистора подсоединим слабый источник питания в 2V. К нему последовательно подсоединим источник переменного напряжения в форме синуса, с амплитудой колебаний в 0.1V. Это будет сигнал, который нужно усилить.
Резистор Rb возле базы необходим для того, чтобы ограничить ток, идущий от источника сигнала, обычно обладающего слабой мощностью.
2. Расчет входного тока базы Ib
Теперь посчитаем ток базы Ib. Поскольку мы имеем дело с переменным напряжением, нужно посчитать два значения тока – при максимальном напряжении (Vmax) и минимальном (Vmin). Назовем эти значения тока соответственно — Ibmax и Ibmin.
Также, для того чтобы посчитать ток базы, необходимо знать напряжение база-эмиттер VBE. Между базой и эмиттером располагается один PN-переход. Получается, что ток базы «встречает» на своем пути полупроводниковый диод. Напряжение, при котором полупроводниковый диод начинает проводить — около 0.6V.
Не будем вдаваться в подробности вольт-амперных характеристик диода, и для простоты расчетов возьмем приближенную модель, согласно которой напряжение на проводящем ток диоде всегда 0.6V. Значит, напряжение между базой и эмиттером VBE = 0.6V.
А поскольку эмиттер подключен к земле (VE = 0), то напряжение от базы до земли тоже 0.6V (VB = 0.6V).
Посчитаем Ibmax и Ibmin с помощью закона Ома:
2. Расчет выходного тока коллектора IС
Теперь, зная коэффициент усиления (β = 200), можно с легкостью посчитать максимальное и минимальное значения тока коллектора ( Icmax и Icmin).
3. Расчет выходного напряжения Vout
Осталось посчитать напряжение на выходе нашего усилителя Vout. В данной цепи — это напряжение на коллекторе VC.
Через резистор Rc течет ток коллектора, который мы уже посчитали. Осталось подставить значения:
4. Анализ результатов
Как видно из результатов, VCmax получился меньше чем VCmin. Это произошло из-за того, что напряжение на резисторе VRc отнимается от напряжения питания VCC.
Однако в большинстве случаев это не имеет значения, поскольку нас интересует переменная составляющая сигнала – амплитуда, которая увеличилась c 0.1V до 1V. Частота и синусоидальная форма сигнала не изменились.
Конечно же, соотношение Vout/Vin в десять раз — далеко на самый лучший показатель для усилителя, однако для иллюстрации процесса усиления вполне подойдет.
Итак, подытожим принцип работы усилителя на биполярном транзисторе. Через базу течет ток Ib, несущий в себе постоянную и переменную составляющие. Постоянная составляющая нужна для того чтобы PN-переход между базой и эмиттером начал проводить – «открылся».
Переменная составляющая – это, собственно, сам сигнал (полезная информация). Сила тока коллектор-эмиттер внутри транзистора – это результат умножения тока базы на коэффициент усиления β.
В свою очередь, напряжение на резисторе Rc над коллектором – результат умножения усиленного тока коллектора на значение резистора.
Таким образом, на вывод Vout поступает сигнал с увеличенной амплитудой колебаний, но с сохранившейся формой и частотой. Важно подчеркнуть, что энергию для усиления транзистор берет у источника питания VCC. Если напряжения питания будет недостаточно, транзистор не сможет полноценно работать, и выходной сигнал может получится с искажениями.
Режимы работы биполярного транзистора
В соответствии уровням напряжения на электродах транзистора, различают четыре режима его работы:
- Режим отсечки (cut off mode).
- Активный режим (active mode).
- Режим насыщения (saturation mode).
- Инверсный ражим (reverse mode ).
Режим отсечки
Когда напряжение база-эмиттер ниже, чем 0.6V — 0.7V, PN-переход между базой и эмиттером закрыт. В таком состоянии у транзистора отсутствует ток базы. В результате тока коллектора тоже не будет, поскольку в базе нет свободных электронов, готовых двигаться в сторону напряжения на коллекторе. Получается, что транзистор как бы заперт, и говорят, что он находится в режиме отсечки.
Активный режим
В активном режиме напряжение на базе достаточное, для того чтобы PN-переход между базой и эмиттером открылся. В этом состоянии у транзистора присутствуют токи базы и коллектора. Ток коллектора равняется току базы, умноженном на коэффициент усиления. Т.е активным режимом называют нормальный рабочий режим транзистора, который используют для усиления.
Режим насыщения
Иногда ток базы может оказаться слишком большим. В результате мощности питания просто не хватит для обеспечения такой величины тока коллектора, которая бы соответствовала коэффициенту усиления транзистора.
В режиме насыщения ток коллектора будет максимальным, который может обеспечить источник питания, и не будет зависеть от тока базы.
В таком состоянии транзистор не способен усиливать сигнал, поскольку ток коллектора не реагирует на изменения тока базы.
В режиме насыщения проводимость транзистора максимальна, и он больше подходит для функции переключателя (ключа) в состоянии «включен». Аналогично, в режиме отсечки проводимость транзистора минимальна, и это соответствует переключателю в состоянии «выключен».
Инверсный режим
В данном режиме коллектор и эмиттер меняются ролями: коллекторный PN-переход смещен в прямом направлении, а эмиттерный – в обратном. В результате ток из базы течет в коллектор.
Область полупроводника коллектора несимметрична эмиттеру, и коэффициент усиления в инверсном режиме получается ниже, чем в нормальном активном режиме.
Конструкция транзистора выполнена таким образом, чтобы он максимально эффективно работал в активном режиме. Поэтому в инверсном режиме транзистор практически не используют.
Основные параметры биполярного транзистора
Коэффициент усиления по току – соотношение тока коллектора IС к току базы IB. Обозначается β, hfe или h31e, в зависимости от специфики расчетов, проводимых с транзисторов.
β — величина постоянная для одного транзистора, и зависит от физического строения прибора. Высокий коэффициент усиления исчисляется в сотнях единиц, низкий — в десятках.
Для двух отдельных транзисторов одного типа, даже если во время производства они были “соседями по конвейеру”, β может немного отличаться. Эта характеристика биполярного транзистора является, пожалуй, самой важной.
Если другими параметрами прибора довольно часто можно пренебречь в расчетах, то коэффициентом усиления по току практически невозможно.
Входное сопротивление – сопротивление в транзисторе, которое «встречает» ток базы. Обозначается Rin (Rвх). Чем оно больше — тем лучше для усилительных характеристик прибора, поскольку со стороны базы обычно находиться источник слабого сигнала, у которого нужно потреблять как можно меньше тока. Идеальный вариант – это когда входное сопротивление равняется бесконечность.
Rвх для среднестатистического биполярного транзистора составляет несколько сотен КΩ (килоом). Здесь биполярный транзистор очень сильно проигрывает полевому транзистору, где входное сопротивление доходит до сотен ГΩ (гигаом).
Выходная проводимость — проводимость транзистора между коллектором и эмиттером. Чем больше выходная проводимость, тем больше тока коллектор-эмиттер сможет проходить через транзистор при меньшей мощности.
Также с увеличением выходной проводимости (или уменьшением выходного сопротивления) увеличивается максимальная нагрузка, которую может выдержать усилитель при незначительных потерях общего коэффициента усиления.
Например, если транзистор с низкой выходной проводимостью усиливает сигнал в 100 раз без нагрузки, то при подсоединении нагрузки в 1 КΩ, он уже будет усиливать всего в 50 раз. У транзистора, с таким же коэффициентом усиления, но с большей выходной проводимостью, падение усиления будет меньше.
Идеальный вариант – это когда выходная проводимость равняется бесконечность (или выходное сопротивление Rout = 0 (Rвых = 0)).
Частотная характеристика – зависимость коэффициента усиления транзистора от частоты входящего сигнала. С повышением частоты, способность транзистора усиливать сигнал постепенно падает. Причиной тому являются паразитные емкости, образовавшиеся в PN-переходах.
На изменения входного сигнала в базе транзистор реагирует не мгновенно, а с определенным замедлением, обусловленным затратой времени на наполнение зарядом этих емкостей. Поэтому, при очень высоких частотах, транзистор просто не успевает среагировать и полностью усилить сигнал.
Биполярные транзисторы. For dummies
Поскольку тема транзисторов весьма и весьма обширна, то посвященных им статей будет две: отдельно о биполярных и отдельно о полевых транзисторах.
Транзистор, как и диод, основан на явлении p-n перехода. Желающие могут освежить в памяти физику протекающих в нем процессов здесь или здесь.
Необходимые пояснения даны, переходим к сути.
Транзисторы. Определение и история
Транзистор — электронный полупроводниковый прибор, в котором ток в цепи двух электродов управляется третьим электродом. (tranzistors.ru) Первыми были изобретены полевые транзисторы (1928 год), а биполярные появилсь в 1947 году в лаборатории Bell Labs.
И это была, без преувеличения, революция в электронике. Очень быстро транзисторы заменили вакуумные лампы в различных электронных устройствах. В связи с этим возросла надежность таких устройств и намного уменьшились их размеры.
И по сей день, насколько бы «навороченной» не была микросхема, она все равно содержит в себе множество транзисторов (а также диодов, конденсаторов, резисторов и проч.). Только очень маленьких.
Кстати, изначально «транзисторами» называли резисторы, сопротивление которых можно было изменять с помощью величины подаваемого напряжения. Если отвлечься от физики процессов, то современный транзистор тоже можно представить как сопротивление, зависящее от подаваемого на него сигнала.
В чем же отличие между полевыми и биполярными транзисторами? Ответ заложен в самих их названиях. В биполярном транзисторе в переносе заряда участвуют и электроны, и дырки («бис» — дважды). А в полевом (он же униполярный) — или электроны, или дырки.
Также эти типы транзисторов разнятся по областям применения. Биполярные используются в основном в аналоговой технике, а полевые — в цифровой.
И, напоследок: основная область применения любых транзисторов — усиление слабого сигнала за счет дополнительного источника питания.
Биполярный транзистор. Принцип работы. Основные характеристики
Биполярный транзистор состоит из трех областей: эмиттера, базы и коллектора, на каждую из которых подается напряжение. В зависимости от типа проводимости этих областей, выделяют n-p-n и p-n-p транзисторы. Обычно область коллектора шире, чем эмиттера. Базу изготавливают из слаболегированного полупроводника (из-за чего она имеет большое сопротивление) и делают очень тонкой. Поскольку площадь контакта эмиттер-база получается значительно меньше площади контакта база-коллектор, то поменять эмиттер и коллектор местами с помощью смены полярности подключения нельзя. Таким образом, транзистор относится к несимметричным устройствам. Прежде, чем рассматривать физику работы транзистора, обрисуем общую задачу. Она заключаются в следующем: между эмиттером и коллектором течет сильный ток (ток коллектора), а между эмиттером и базой — слабый управляющий ток (ток базы). Ток коллектора будет меняться в зависимости от изменения тока базы. Почему? Рассмотрим p-n переходы транзистора. Их два: эмиттер-база (ЭБ) и база-коллектор (БК). В активном режиме работы транзистора первый из них подключается с прямым, а второй — с обратным смещениями. Что же при этом происходит на p-n переходах? Для большей определенности будем рассматривать n-p-n транзистор. Для p-n-p все аналогично, только слово «электроны» нужно заменить на «дырки».
Поскольку переход ЭБ открыт, то электроны легко «перебегают» в базу. Там они частично рекомбинируют с дырками, но большая их часть из-за малой толщины базы и ее слабой легированности успевает добежать до перехода база-коллектор. Который, как мы помним, включен с обратным смещением. А поскольку в базе электроны — неосновные носители заряда, то электирическое поле перехода помогает им преодолеть его. Таким образом, ток коллетора получается лишь немного меньше тока эмиттера. А теперь следите за руками. Если увеличить ток базы, то переход ЭБ откроется сильнее, и между эмиттером и коллектором сможет проскочить больше электронов. А поскольку ток коллектора изначально больше тока базы, то это изменение будет весьма и весьма заметно. Таким образом, произойдет усиление слабого сигнала, поступившего на базу. Еще раз: сильное изменение тока коллектора является пропорциональным отражением слабого изменения тока базы.
Помню, моей одногрупнице принцип работы биполярного транзистора объясняли на примере водопроводного крана. Вода в нем — ток коллектора, а управляющий ток базы — то, насколько мы поворачиваем ручку. Достаточно небольшого усилия (управляющего воздействия), чтобы поток воды из крана увеличился.
Помимо рассмотренных процессов, на p-n переходах транзистора может происходить еще ряд явлений. Например, при сильном увеличении напряжения на переходе база-коллектор может начаться лавинное размножение заряда из-за ударной ионизации. А вкупе с туннельным эффектом это даст сначала электрический, а затем (с возрастанием тока) и тепловой пробой. Однако, тепловой пробой в транзисторе может наступить и без электрического (т.е. без повышения коллекторного напряжения до пробивного). Для этого будет достаточно одного чрезмерного тока через коллектор. Еще одно явления связано с тем, что при изменении напряжений на коллекторном и эмиттерном переходах меняется их толщина. И если база черезчур тонкая, то может возникнуть эффект смыкания (так называемый «прокол» базы) — соединение коллекторного перехода с эмиттерным. При этом область базы исчезает, и транзистор перестает нормально работать.
Коллекторный ток транзистора в нормальном активном режиме работы транзистора больше тока базы в определенное число раз. Это число называется коэффициентом усиления по току и является одним из основных параметров транзистора. Обозначается оно h31.
Если транзистор включается без нагрузки на коллектор, то при постоянном напряжении коллектор-эмиттер отношение тока коллектора к току базы даст статический коэффициент усиления по току.
Он может равняться десяткам или сотням единиц, но стоит учитывать тот факт, что в реальных схемах этот коэффициент меньше из-за того, что при включении нагрузки ток коллектора закономерно уменьшается.
Вторым немаловажным параметром является входное сопротивление транзистора. Согласно закону Ома, оно представляет собой отношение напряжения между базой и эмиттером к управляющему току базы. Чем оно больше, тем меньше ток базы и тем выше коэффициент усиления.
Третий параметр биполярного транзистора — коэффициент усиления по напряжению. Он равен отношению амплитудных или действующих значений выходного (эмиттер-коллектор) и входного (база-эмиттер) переменных напряжений.
Поскольку первая величина обычно очень большая (единицы и десятки вольт), а вторая — очень маленькая (десятые доли вольт), то этот коэффициент может достигать десятков тысяч единиц.
Стоит отметить, что каждый управляющий сигнал базы имеет свой коэффициент усиления по напряжению.
Также транзисторы имеют частотную характеристику, которая характеризует способность транзистора усиливать сигнал, частота которого приближается к граничной частоте усиления. Дело в том, что с увеличением частоты входного сигнала коэффициент усиления снижается.
Это происходит из-за того, что время протекания основных физических процессов (время перемещения носителей от эмиттера к коллектору, заряд и разряд барьерных емкостных переходов) становится соизмеримым с периодом изменения входного сигнала. Т.е.
транзистор просто не успевает реагировать на изменения входного сигнала и в какой-то момент просто перестает его усиливать. Частота, на которой это происходит, и называется граничной.
Также параметрами биполярного транзистора являются:
- обратный ток коллектор-эмиттер
- время включения
- обратный ток колектора
- максимально допустимый ток
Условные обозначения n-p-n и p-n-p транзисторов отличаются только направлением стрелочки, обозначающей эмиттер. Она показывает то, как течет ток в данном транзисторе.
Режимы работы биполярного транзистора
Рассмотренный выше вариант представляет собой нормальный активный режим работы транзистора. Однако, есть еще несколько комбинаций открытости/закрытости p-n переходов, каждая из которых представляет отдельный режим работы транзистора.
- Инверсный активный режим. Здесь открыт переход БК, а ЭБ наоборот закрыт.
Усилительные свойства в этом режиме, естественно, хуже некуда, поэтому транзисторы в этом режиме используются очень редко.
- Режим насыщения. Оба перехода открыты. Соответственно, основные носители заряда коллектора и эмиттера «бегут» в базу, где активно рекомбинируют с ее основными носителями.
Из-за возникающей избыточности носителей заряда сопротивление базы и p-n переходов уменьшается. Поэтому цепь, содержащую транзистор в режиме насыщения можно считать короткозамкнутой, а сам этот радиоэлемент представлять в виде эквипотенциальной точки.
- Режим отсечки. Оба перехода транзистора закрыты, т.е.
ток основных носителей заряда между эмиттером и коллектором прекращается. Потоки неосновных носителей заряда создают только малые и неуправляемые тепловые токи переходов. Из-за бедности базы и переходов носителями зарядов, их сопротивление сильно возрастает. Поэтому часто считают, что транзистор, работающий в режиме отсечки, представляет собой разрыв цепи.
- Барьерный режим В этом режиме база напрямую или через малое сопротивление замкнута с коллектором. Также в коллекторную или эмиттерную цепь включают резистор, который задает ток через транзистор. Таким образом получается эквивалент схемы диода с последовательно включенным сопротивлением.
Этот режим очень полезный, так как позволяет схеме работать практически на любой частоте, в большом диапазоне температур и нетребователен к параметрам транзисторов.
Схемы включения биполярных транзисторов
Поскольку контактов у транзистора три, то в общем случае питание на него нужно подавать от двух источников, у которых вместе получается четыре вывода. Поэтому на один из контактов транзистора приходится подавать напряжение одинакового знака от обоих источников.
И в зависимости от того, что это за контакт, различают три схемы включения биполярных транзисторов: с общим эмиттером (ОЭ), общим коллектором (ОК) и общей базой (ОБ). У каждой из них есть как достоинства, так и недостатки.
Выбор между ними делается в зависимости от того, какие параметры для нас важны, а какими можно поступиться.
Схема включения с общим эмиттером
Эта схема дает наибольшее усиление по напряжению и току (а отсюда и по мощности — до десятков тысяч единиц), в связи с чем является наиболее распространенной. Здесь переход эмиттер-база включается прямо, а переход база-коллектор — обратно. А поскольку и на базу, и на коллектор подается напряжение одного знака, то схему можно запитать от одного источника. В этой схеме фаза выходного переменного напряжения меняется относительно фазы входного переменного напряжения на 180 градусов. Но ко всем плюшкам схема с ОЭ имеет и существенный недостаток. Он заключается в том, что рост частоты и температуры приводит к значительному ухудшению усилительных свойств транзистора. Таким образом, если транзистор должен работать на высоких частотах, то лучше использовать другую схему включения. Например, с общей базой.
Схема включения с общей базой
Эта схема не дает значительного усиления сигнала, зато хороша на высоких частотах, поскольку позволяет более полно использовать частотную характеристику транзистора. Если один и тот же транзистор включить сначала по схеме с общим эмиттером, а потом с общей базой, то во втором случае будет наблюдаться значительное увеличение его граничной частоты усиления. Поскольку при таком подключении входное сопротивление низкое, а выходное — не очень большое, то собранные по схеме с ОБ каскады транзисторов применяют в антенных усилителях, где волновое сопротивление кабелей обычно не превышает 100 Ом. В схеме с общей базой не происходит инвертирование фазы сигнала, а уровень шумов на высоких частотах снижается. Но, как уже было сказано, коэффициент усиления по току у нее всегда немного меньше единицы. Правда, коэффициент усиления по напряжению здесь такой же, как и в схеме с общим эмиттером. К недостаткам схемы с общей базой можно также отнести необходимость использования двух источников питания.
Схема включения с общим коллектором
Особенность этой схемы в том, что входное напряжение полностью передается обратно на вход, т. е. очень сильна отрицательная обратная связь.
Напомню, что отрицательной называют такую обратную связь, при которой выходной сигнал подается обратно на вход, чем снижает уровень входного сигнала. Таким образом происходит автоматическая корректировка при случайном изменении параметров входного сигнала
Коэффициент усиления по току почти такой же, как и в схеме с общим эмиттером. А вот коэффициент усиления по напряжению маленький (основной недостаток этой схемы). Он приближается к единице, но всегда меньше ее. Таким образом, коэффициент усиления по мощности получается равным всего нескольким десяткам единиц. В схеме с общим коллектором фазовый сдвиг между входным и выходным напряжением отсутствует. Поскольку коэффициент усиления по напряжению близок к единице, выходное напряжение по фазе и амплитуде совпадает со входным, т. е. повторяет его. Именно поэтому такая схема называется эмиттерным повторителем. Эмиттерным — потому, что выходное напряжение снимается с эмиттера относительно общего провода. Такое включение используют для согласования транзисторных каскадов или когда источник входного сигнала имеет высокое входное сопротивление (например, пьезоэлектрический звукосниматель или конденсаторный микрофон).
Два слова о каскадах
Бывает такое, что нужно увеличить выходную мощность (т.е. увеличить коллекторный ток). В этом случае используют параллельное включение необходимого числа транзисторов. Естественно, они должны быть примерно одинаковыми по характеристикам. Но необходимо помнить, что максимальный суммарный коллекторный ток не должен превышать 1,6-1,7 от предельного тока коллектора любого из транзисторов каскада.
Тем не менее (спасибо wrewolf за замечание), в случае с биполярными транзисторами так делать не рекомендуется. Потому что два транзистора даже одного типономинала хоть немного, но отличаются друг от друга. Соответственно, при параллельном включении через них будут течь токи разной величины. Для выравнивания этих токов в эмиттерные цепи транзисторов ставят балансные резисторы. Величину их сопротивления рассчитывают так, чтобы падение напряжения на них в интервале рабочих токов было не менее 0,7 В. Понятно, что это приводит к значительному ухудшению КПД схемы.
Может также возникнуть необходимость в транзисторе с хорошей чувствительностью и при этом с хорошим коэффициентом усиления. В таких случаях используют каскад из чувствительного, но маломощного транзистора (на рисунке — VT1), который управляет энергией питания более мощного собрата (на рисунке — VT2).
Другие области применения биполярных транзисторов
Транзисторы можно применять не только схемах усиления сигнала. Например, благодаря тому, что они могут работать в режимах насыщения и отсечки, их используют в качестве электронных ключей.
Также возможно использование транзисторов в схемах генераторов сигнала.
Если они работают в ключевом режиме, то будет генерироваться прямоугольный сигнал, а если в режиме усиления — то сигнал произвольной формы, зависящий от управляющего воздействия.
Маркировка
Поскольку статья уже разрослась до неприлично большого объема, то в этом пункте я просто дам две хорошие ссылки, по которым подробно расписаны основные системы маркировки полупроводниковых приборов (в том числе и транзисторов): http://kazus.ru/guide/transistors/mark_all.html и файл .xls (35 кб) .
Список источников:
http://ru.wikipedia.org http://www.physics.ru http://radiocon-net.narod.ru http://radio.cybernet.name http://dvo.sut.ru
Полезные комментарии:
Принцип работы биполярного транзистора
В свое время транзисторы пришли на смену электронным лампах. Это произошло благодаря тому, что они имеют меньшие габариты, высокую надежность и менее затратную стоимость производства. Сейчас, биполярные транзисторы являются основными элементами во всех усилительных схемах.
Биполярный транзистор представляет собой полупроводниковый элемент, имеющий трехслойную структуру, которая образует два электронно-дырочных перехода. Поэтому транзистор можно представить в виде двух встречно включенных диода. В зависимости от того, что будет являться основными носителями заряда, различают p-n-p и n-p-n транзисторы.
- База – слой полупроводника, который является основой конструкции транзистора.
- Эмиттером называется слой полупроводника, функция которого инжектирование носителей заряда в слой базы.
- Коллектором называется слой полупроводника, функция которого собирать носители заряда прошедшие через базовый слой.
Как правило, эмиттер содержит намного большее количество основных зарядов, чем база.
Это основное условие работы транзистора, потому что в этом случае, при прямом смещении эмиттерного перехода, ток будет обуславливаться основными носителями эмиттера. Эмиттер сможет осуществлять свою главную функцию – впрыск носителей в слой базы.
Обратный ток эмиттера обычно стараются сделать как можно меньше. Увеличение основных носителей эмиттера достигается с помощью высокой концентрации примеси.
Базу делают как можно более тонкой. Это связано с временем жизни зарядов. Носители зарядов должны пересекать базу и как можно меньше рекомбинировать с основными носителями базы, для того чтобы достигнуть коллектора.
Для того чтобы коллектор мог наиболее полнее собирать носители прошедшие через базу его стараются сделать шире.
Принцип работы транзистора
Рассмотрим на примере p-n-p транзистора.
В отсутствие внешних напряжений, между слоями устанавливается разность потенциалов. На переходах устанавливаются потенциальные барьеры. Причем, если количество дырок в эмиттере и коллекторе одинаковое, тогда и потенциальные барьеры будут одинаковой ширины.
Для того чтобы транзистор работал правильно, эмиттерный переход должен быть смещен в прямом направлении, а коллекторный в обратном. Это будет соответствовать активному режиму работы транзистора.
Для того чтобы осуществить такое подключение, необходимы два источника. Источник с напряжением Uэ подключается положительным полюсом к эмиттеру, а отрицательным к базе.
Источник с напряжением Uк подключается отрицательным полюсом к коллектору, а положительным к базе. Причем Uэ
Под действием напряжения Uэ, эмиттерный переход смещается в прямом направлении.
Как известно, при прямом смещении электронно-дырочного перехода, внешнее поле направлено противоположно полю перехода и поэтому уменьшает его.
Через переход начинают проходить основные носители, в эмиттере это дырки 1-5, а в базе электроны 7-8. А так как количество дырок в эмиттере больше, чем электронов в базе, то эмиттерный ток обусловлен в основном ими.
Эмиттерный ток представляет собой сумму дырочной составляющей эмиттерного тока и электронной составляющей базы.
Так как полезной является только дырочная составляющая, то электронную стараются сделать как можно меньше. Качественной характеристикой эмиттерного перехода является коэффициент инжекции.
Коэффициент инжекции стараются приблизить к 1.
Дырки 1-5 перешедшие в базу скапливаются на границе эмиттерного перехода.
Таким образом, создается высокая концентрация дырок возле эмиттерного и низкая концентрация возле коллекторного перехода, в следствии чего начинается диффузионное движение дырок от эмиттерного к коллекторному переходу.
Но вблизи коллекторного перехода концентрация дырок остается равной нулю, потому что как только дырки достигают перехода, они ускоряются его внутренним полем и экстрагируются (втягиваются) в коллектор. Электроны же, отталкиваются этим полем.
Пока дырки пересекают базовый слой они рекомбинируют с электронами находящимися там, например, как дырка 5 и электрон 6.
А так как дырки поступают постоянно, они создают избыточный положительный заряд, поэтому, должны поступать и электроны, которые втягиваются через вывод базы и образуют базовый ток Iбр.
Это важное условие работы транзистора – концентрация дырок в базе должна быть приблизительно равна концентрации электронов. Другими словами должна обеспечиваться электронейтральность базы.
Количество дырок дошедших до коллектора, меньше количество дырок вышедших из эмиттера на величину рекомбинировавших дырок в базе. То есть, ток коллектора отличается от тока эмиттера на величину тока базы.
- Отсюда появляется коэффициент переноса носителей, который также стараются приблизить к 1.
- Коллекторный ток транзистора состоит из дырочной составляющей Iкр и обратного тока коллектора.
Обратный ток коллектора возникает в результате обратного смещения коллекторного перехода, поэтому он состоит из неосновных носителей дырки 9 и электрона 10. Именно потому, что обратный ток образован неосновными носителями, он зависит только от процесса термогенерации, то есть от температуры. Поэтому его часто называют тепловым током.
- От величины теплового тока зависит качество транзистора, чем он меньше, тем транзистор качественнее.
- Коллекторный ток связан с эмиттерным коэффициентом передачи тока.
- Токи в транзисторе можно представить следующим образом
- Основное соотношение для токов транзистора
- Ток коллектора можно выразить как
Из вышесказанного можно сделать вывод, что изменяя ток в цепи база – эмиттер, мы можем управлять выходным током коллектора. Причем незначительное изменение тока базы, вызывает значительное изменение тока коллектора.
1 1 1 1 1 1 1 1 1 1 3.33 (9 Голоса)
Биполярный транзистор: принцип работы
В этой статье постараемся описать принцип работы самого распространенного типа транзистора — биполярного. Биполярный транзистор является одним из главных активных элементов радиоэлектронных устройств.
Предназначение его – работа по усилению мощности электрического сигнал поступающего на его вход. Усиление мощности осуществляется посредством внешнего источника энергии.
Транзистор — это радиоэлектронный компонент, обладающий тремя выводами
Конструкционная особенность биполярного транзистора
Для производства биполярного транзистора нужен полупроводник дырочного или электронного типа проводимости, который получают методом диффузии либо сплавления акцепторными примесями. В результате этого с обоих сторон базы образуются области с полярными видами проводимостей.
Биполярные транзисторы по проводимости бывают двух видов: n-p-n и p-n-p. Правила работы, которым подчинен биполярный транзистор, имеющий n-p-n проводимость (для p-n-p необходимо поменять полярность приложенного напряжения):
- Положительный потенциал на коллекторе имеет большее значение по сравнению с эмиттером.
- Любой транзистор имеет свои максимально допустимые параметры Iб, Iк и Uкэ, превышение которых в принципе недопустимо, так как это может привести к разрушению полупроводника.
- Выводы база — эмиттер и база — коллектор функционируют наподобие диодов. Как правило, диод по направлению база — эмиттер открыт, а по направлению база — коллектор смещен в противоположном направлении, то есть поступающее напряжение мешает протеканию электрического тока через него.
- Если пункты с 1 по 3 выполнены, то ток Iк прямо пропорционален току Iб и имеет вид: Iк = hэ21*Iб, где hэ21 является коэффициентом усиления по току. Данное правило характеризует главное качество транзистора, а именно то, что малый ток базы оказывает управление мощным током коллектора.
Для разных биполярных транзисторов одной серии показатель hэ21 может принципиально разниться от 50 до 250. Его величина так же зависит от протекающего тока коллектора, напряжения между эмиттером и коллектором, и от температуры окружающей среды.
Изучим правило №3. Из него вытекает, что напряжение, приложенное между эмиттером и базой не следует значительно увеличивать, поскольку, если напряжение базы будет больше эмиттера на 0,6…0,8 В (прямое напряжение диода), то появится крайне большой ток. Таким образом, в работающем транзисторе напряжения на эмиттере и базе взаимосвязаны по формуле: Uб =Uэ + 0,6В (Uб=Uэ+Uбэ)
Еще раз напомним, что все указанные моменты относятся к транзисторам, имеющим n-p-n проводимость. Для типа p-n-p все следует изменить на противоположное.
Еще следует обратить внимание на то, что ток коллектора не имеет связи с проводимостью диода, поскольку, как правило, к диоду коллектор — база поступает обратное напряжение. В добавок , ток протекающий через коллектор весьма мало зависит от потенциала на коллекторе (данный диод аналогичен малому источнику тока)
Биполярный транзистор принцип работы
При включении транзистора в режиме усиления, эмиттерный переход получается открытым, а переход коллектора закрыт. Это получается путем подключения источников питания.
Поскольку эмиттерный переход открыт, то через него будет проходить эмиттерный ток, возникающий из-за перехода дырок из базы в эмиттер, а так же электронов из эмиттера в базу.
Таким образом, ток эмиттера содержит две составляющие – дырочную и электронную. Коэффициент инжекции определяет эффективность эмиттера.
Инжекцией зарядов именуют перенос носителей зарядов из зоны, где они были основными в зону, где они делаются неосновными.
В базе электроны рекомбинируют, а их концентрация в базе восполняется от плюса источника ЕЭ. В результате этого в электрической цепи базы будет течь довольно слабый ток.
Оставшиеся электроны, не успевшие рекомбинировать в базе, под разгоняющим воздействием поля запертого коллекторного перехода, как неосновные носители, будут перемещаться в коллектор, создавая коллекторный ток.
Перенос носителей зарядов из зоны, где они были неосновными, в зону, где они становятся основными, именуется экстракцией электрических зарядов.
Устройство и основные физические процессы биполярных транзисторов
Биполярный транзистор в своей основе содержит три слоя полупроводника (p-n-p или n-p-n) и соответственно два p-n-перехода. Каждый слой полупроводника через невыпрямляющий контакт металл-полупроводник подсоединен к внешнему выводу.
Средний слой и соответствующий вывод называют базой (Б), один из крайних слоев и соответствующий вывод называют эмиттером (Э), а другой крайний слой и соответствующий вывод — коллектором (К).
Дадим схематическое, упрощенное изображение структуры транзистора типа n-p-n
(рис. 1.51, а) и два допустимых варианта условного графического обозначения (рис. 1.51, б).
Транзистор типа p-n-p устроен аналогично, упрощенное изображение его структуры дано на рис. 1.52, а, более простой вариант условного графического обозначения — на рис. 1.52, б.
Транзистор называют биполярным, так как в процессе протекания электрического тока участвуют носители электричества двух знаков — электроны и дырки. Но в различных типах транзисторов роль электронов и дырок различна.
Транзисторы типа n-p-n более распространены в сравнении с транзисторами типа p-n-p, так как обычно имеют лучшие параметры. Это объясняется следующим образом: основную роль в электрических процессах в транзисторах типа n-p-n играют электроны, а в транзисторах типа p-n-p— дырки. Электроны же обладают подвижностью в два-три раза большей, чем дырки.
Важно отметить, что реально площадь коллекторного перехода значительно больше площади эмиттерного перехода, так как такая несимметрия значительно улучшает свойства транзистора.
Количественное своеобразие структуры транзистора
Для определенности обратимся к транзистору типа n-p-n. В основе работы биполярного транзистора лежат не какие-либо новые физические процессы, еще не рассмотренные при изучении полупроводникового диода: своеобразие транзистора определяется особенностями его конструкции.
Основными элементами транзистора являются два соединенных p-n-перехода. Это позволяет дать формальное представление структуры транзистора, представленное на рис. 1.53.
Для понимания принципа работы транзистора исключительно важно учитывать, что p-n-переходы транзистора сильно взаимодействуют. Это означает, что ток одного перехода сильно влияет на ток другого, и наоборот. Именно это взаимодействие радикально отличает транзистор от схемы с двумя диодами (рис. 1.54).
В схеме с диодами ток каждого диода зависит только от напряжения на нем самом и никак не зависит от тока другого диода.
Указанное взаимодействие имеет исключительно простую главную причину, а именно: очень малое расстояние между переходами транзистора (от 20 — 30 мкм до 1 мкм и менее). Это расстояние называют толщиной базы. Именно эта количественная особенность структуры создает качественное своеобразие транзистора.
Вообще полезно отметить, что в электронике достаточно часто реализуется следующий способ получения устройства, обладающего новым качеством: особым образом соединяют два одинаковых, уже хорошо изученных элемента. При изучении дифференциального усилителя станет ясно, что новое качество можно получить при использовании в роли таких элементов уже самих двух транзисторов.
Основные физические процессы в транзисторе
Концентрация атомов примеси (и свободных электронов) в эмиттере сравнительно велика, поэтому этот слой низкоомный. Концентрация атомов примеси (и дырок) в базе сравнительно низка, поэтому этот слой высокоомный. Концентрация атомов примеси (и свободных электронов) в коллекторе может быть как больше концентрации атомов примеси в базе, так и меньше ее.
С помощью источников напряжения сместим эмиттерный переход в прямом, а коллекторный — в обратном направлении (рис. 1.55).
Тогда через эмиттерный переход потечет ток iэ, который будет обеспечиваться главным образом инжекцией электронов из эмиттера в базу. Инжекция дырок из базы в эмиттер будет незначительной вследствие указанного выше различия в концентрациях атомов примесей.
Из-за малой толщины базы почти все электроны, пройдя базу, через так называемое время пролета достигают коллектора. Только малая доля электронов рекомбинирует в базе с дырками. Убыль этих дырок компенсируется протеканием тока базы iб. Из изложенного следует, что iб
Как работает транзистор: принцип и устройство
Транзистор – прибор, предназначенный для управления током в электрической цепи. Применяется практически во всех моделях видео- и аудио аппаратуры.
Полупроводниковые транзисторы пришли на смену морально устаревшим ламповым, которые устанавливались в старые телевизоры.
Для изготовления полупроводниковых моделей ранее использовался германий, но сферы его применения ограничены из-за чувствительности к температурным колебаниям. На смену германию пришел кремний, т.к.
кремниевые детали стоят дешевле германиевых и более устойчивы к скачкам температуры. Транзисторы небольшой мощности изготавливают в прямоугольных корпусах из полимерных материалов или в металлических цилиндрических. В этой статье мы постараемся простыми словами изложить, что такое транзистор, как он устроен и что делает.
Транзисторы
Устройство транзисторов
Наиболее популярный вид полупроводникового транзистора – биполярный. В устройство транзистора этого типа входит монокристалл, разделенный на 3 зоны: база (Б), коллектор (К) и эмиттер (Э), каждая из которых имеет свой вывод.
- Б – база, очень тонкий внутренний слой;
- Э – эмиттер, предназначается для переноса заряженных частиц в базу;
- К – коллектор, составляющая, которая имеет тип проводимости, одинаковый с эмиттером, предназначена для сбора зарядов, поступивших с эмиттера.
Типы проводимости:
- n-типа — носителями зарядов являются электроны.
- p-типа — носители зарядов – положительно заряженные «дырки».
Требуемый тип проводимости достигается путем легирования различных частей кремниевого монокристалла. Легирование – это добавление в состав материала различных примесей для улучшения физических и химических свойств этого материала. Транзисторы по типу проводимости раздаются на два типа: n-p-n и p-n-p.
Принцип работы транзистора
Транзистор работает в режимах «Открыто» и «Закрыто». Рассмотрим, как работает транзистор биполярного типа на уровне «чайников», и на каких физических процессах основано его функционирование. В таком транзисторе коллектор и эмиттер сильно легированы, база тонкая, содержит малое количество примесей.
Простое изложение принципа работы биполярного транзистора:
- Подключение к зажимам одноименного напряжения к эмиттеру и базе (p подсоединяется к «+», а n – к «-») приводит к появлению тока между эмиттером и базой. В базе образуются носители зарядов. Чем выше напряжение, тем больше количество носителей зарядов появляется в базе. Ток, подаваемый на базу, называется управляющим.
- Если к коллектору подключить обратное напряжение (n-коллектор подключается к плюсу, p-коллектор – к минусу), то между эмиттером и коллектором появится разница потенциалов, и между ними потечет ток. Чем больше носителей заряда скапливается в базе, тем сильнее будет ток между коллектором и эмиттером.
- При увеличении управляющего напряжения на базе растет ток «эмиттер-коллектор». Причем несущественный рост напряжения приводит к значительному усилению тока «эмиттер-коллектор». Этот принцип используется при производстве усилителей.
Если к эмиттеру и базе подключают напряжение, противоположное по знаку, ток прекращается, и транзистор переходит в закрытое состояние.
Кратко принцип работы полупроводникового транзистора можно изложить так: при подключении к зажимам эмиттера и базы напряжения одноименного заряда прибор переходит в открытое состояние, при подключении к этим выводам обратных зарядов транзистор закрывается.
Как работает транзистор — видео
Другие материалы по теме
Анатолий Мельник
Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.
Биполярный транзистор | Образовательная социальная сеть
Слайд 1
Самарский государственный аэрокосмический университет имени академика С.П. Королёва Биполярный транзистор Афанасьева Анастасия СергеевнаСлайд 2
Определение Биполярный транзистор представляет собой полупроводниковый элемент, имеющий трехслойную структуру, которая образует два электронно-дырочных перехода. Поэтому транзистор можно представить в виде двух встречно включенных диода. В зависимости от структуры различают p-n-p и n-p-n транзисторы.
Слайд 3
Здесь показано, как к транзистору структуры n-p-n подключен источник питания, причем именно в такой полярности, как он подключается в реальных устройствах к настоящим транзисторам. Но при таком подключении получается, что через два p-n перехода (два потенциальных барьера) ток не пройдет: как ни меняй полярность напряжения один из переходов оказывается в запертом, непроводящем, состоянии. Описанное выше включение транзистора с оборванной базой нигде в практических схемах не применяется. Принцип работы транзистора
Слайд 4
Правильное включение транзистора На рисунке показано как на базу относительно эмиттера подано некоторое небольшое напряжение, причем в прямом направлении. Под действием эмиттерного тока электроны устремятся в базу с проводимостью p из эмиттера с проводимостью n. При этом часть электронов заполнят дырки, находящиеся в области базы и через базовый вывод протекает незначительный ток, – ток базы Iб. Остальные электроны, которым не хватило дырок в тонкой базе, устремляются в коллектор и будут извлечены оттуда более высоким потенциалом коллекторной батареи Eк-э. Под этим воздействием электроны преодолеют второй потенциальный барьер и через батарею вернутся в эмиттер.
Слайд 5
Прогнозируемый результат Таким образом, небольшое напряжение, приложенное к переходу база – эмиттер, способствует открытию перехода база – коллектор, смещенному в обратном направлении. Собственно, в этом и заключается транзисторный эффект: изменяя ток в цепи база – эмиттер, мы можем управлять выходным током коллектора. Причем незначительное изменение тока базы вызывает значительное изменение тока коллектора.
Слайд 6
Основные параметры Параметры транзистора делятся на собственные (первичные) и вторичные. Собственные параметры характеризуют свойства транзистора, независимо от схемы его включения. В качестве основных собственных параметров принимают: коэффициент усиления по току α; сопротивления эмиттера, коллектора и базы переменному току r э , r к , r б , которые представляют собой: r э — сумму сопротивлений эмиттерной области и эмиттерного перехода; r к — сумму сопротивлений коллекторной области и коллекторного перехода; r б — поперечное сопротивление базы.
Слайд 7
Основные вторичные параметры Основными вторичными считаются смешанные (гибридные) параметры, обозначаемые буквой « h ». – входное сопротивление при коротком замыкании на выходе; – выхоная проводимость при холостом ходе во входной цепи;
Слайд 8
Схема четырехполюсника Собственные параметры транзистора связаны с h -параметрами, например для схемы ОЭ:
Слайд 9
Схема четырехполюсника Эквивалентная схема четырехполюсника: а) биполярный транзистор в схеме с общей базой; б) биполярный транзистор в схеме с общим эмиттером
Слайд 10
Режим работы биполярного транзистора Каждый переход биполярного транзистора можно включить либо в прямом, либо в обратном направлении. В зависимости от этого различают следующие четыре режима работы транзистора: Режим отсечки; Активный режим; Инверсный режим; Режим насыщения.
Слайд 11
Режим отсечки На оба перехода поданы обратные напряжения. Когда напряжение между базой и эмиттером ниже, чем 0.6V – 0.7V, то p-n переход между базой и эмиттером закрыт. В таком состоянии у транзистора практически отсутствует ток базы. В результате тока коллектора тоже не будет, поскольку в базе нет свободных электронов, готовых двигаться в сторону напряжения на коллекторе. Получается, что транзистор заперт, и говорят, что он находится в режиме отсечки.
Слайд 12
Активный режим На эмиттерный переход подано прямое напряжение, а на коллекторный переход – обратное. В активном режиме на базу подано напряжение, достаточное для того чтобы p-n переход между базой и эмиттером открылся. Возникают токи базы и коллектора. Ток коллектора равняется току базы, умноженном на коэффициент усиления. Т.е активным режимом называют нормальный рабочий режим транзистора, который используют для усиления.
Слайд 13
Инверсный режим К коллекторному переходу подведено прямое напряжение, а к эмиттерному — обратное. Инверсный режим работы приводит к значительному уменьшению коэффициента передачи тока эмиттера по сравнению с работой транзистора в нормальном режиме и поэтому на практике применяется крайне редко.
Слайд 14
Режим насыщения На оба перехода поданы прямые напряжения. Если увеличивать ток базы, то может наступить такой момент, когда ток коллектора перестанет увеличиваться, т.к. транзистор полностью откроется, и ток будет определяться только напряжением источника питания и сопротивлением нагрузки в цепи коллектора. Транзистор достигает режима насыщения. В режиме насыщения ток коллектора будет максимальным, который может обеспечиваться источником питания при данном сопротивлении нагрузки, и не будет зависеть от тока базы. В таком состоянии транзистор не способен усиливать сигнал, поскольку ток коллектора не реагирует на изменения тока базы. В режиме насыщения проводимость транзистора максимальна, и он больше подходит для функции переключателя (ключа) в состоянии «включен». Аналогично, в режиме отсечки проводимость транзистора минимальна, и это соответствует переключателю в состоянии «выключен».
Слайд 15
Схемы включения Любая схема включения транзистора характеризуется двумя основными показателями: Коэффициент усиления по току I вых / I вх . Входное сопротивление R вх = U вх / I вх . Различают следующие схемы включения транзистора: Схема включения с общей базой Схема включения с общим эмиттером Схема с общим коллектором
Слайд 16
Схема включения с общей базой Усилитель с общей базой среди всех трёх конфигураций обладает наименьшим входным и наибольшим выходным сопротивлением. Имеет коэффициент усиления по току, близкий к единице, и большой коэффициент усиления по напряжению. Фаза сигнала не инвертируется. Коэффициент усиления по току: I вых / I вх = I к / I э = α [α
Слайд 17
Схема включения с общим эмиттером I вых = I к I вх = I б U вх = U бэ U вых = U кэ Коэффициент усиления по току: I вых / I вх = I к / I б = I к /( I э -I к ) = α/(1-α) = β [β>>1]. Входное сопротивление: R вх = U вх / I вх = U бэ / I б . Достоинства Большой коэффициент усиления по току. Большой коэффициент усиления по напряжению. Наибольшее усиление мощности. Можно обойтись одним источником питания. Выходное переменное напряжение инвертируется относительно входного. Недостатки Худшие температурные и частотные свойства по сравнению со схемой с общей базой.
Слайд 18
Схема включения с общим коллектором I вых = I э I вх = I б U вх = U бк U вых = U кэ Коэффициент усиления по току: I вых / I вх = I э / I б = I э /( I э -I к ) = 1/(1-α) = β [β>>1]. Входное сопротивление: R вх = U вх / I вх = ( U бэ + U кэ )/ I б . Достоинства Большое входное сопротивление. Малое выходное сопротивление. Недостатки Коэффициент усиления по напряжению меньше 1. Схему с таким включением называют « эмиттерным повторителем ».
4.5. БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ | Политех в Сети
Транзистор – это полупроводниковый прибор с двумя электронно-дырочными переходами. Две крайние области полупроводникового кристалла однотипной проводимости разделены областью противоположной проводимости, как показано на рис. 4.13. Поскольку ток в полупроводниковых транзисторах обусловлен двумя типами носителей зарядов, то транзисторы называются биполярными. Биполярные транзисторы бывают
типа и типа.Рис.4.13. Структура и обозначение биполярных транзисторов
Средняя область транзистора называется базой. Левая на рисунке область транзистора называется эмиттер, правая — коллектор. Переход эмиттер-база называется эмиттерным переходом. Переход коллектор-база называется коллекторным переходом. Назначение эмиттера – инжекция подвижных носителей заряда, а коллектора – их экстракция.
На каждый
переход можно подать как прямое, так и обратное напряжение. В соответствии с этим различают четыре режима работы транзистора:Режим отсечки. В этом режиме на оба
перехода подано обратное напряжение.Режим насыщения. В этом режиме на оба
перехода подано прямое напряжение.Активный режим. В этом режиме на эмиттерный переход подано прямое напряжение, а на коллекторный – обратное напряжение.
Инверсный активный режим. В этом режиме на эмиттерный переход подано обратное напряжение, а на коллекторный – прямое напряжение.
Режим отсечки и насыщения характерен для транзисторов, работающих в ключевом режиме. В режиме отсечки оба
перехода смещены в обратном направлении и ток через транзистор отсутствует. В режиме насыщения оба перехода смещены в прямом направлении и через транзистор проходит максимальный прямой ток. В режимах отсечки и насыщения работают транзисторы схем цифровой электроники.Инверсный активный режим используется достаточно редко.
В активном режиме к эмиттерному переходу источник питания подключается в прямом направлении, а к коллекторному — в обратном, как показано на рис. 4.14. В активном режиме работают транзисторы усилителей электрических сигналов.
Рис. 4.14.Механизм возникновения токов в транзисторе
Рассмотрим работу биполярного транзистора в активном режиме. Под влиянием напряжения, приложенного к эмиттерному переходу, потенциальный барьер на эмиттерном переходе уменьшается и начинается диффузия дырок из эмиттера в область базы, а электронов из базы в область эмиттера, то есть через переход начинает протекать ток. Источник питания к коллекторному переходу подключается в обратном направлении и коллекторный переход смещен в обратном направлении. При этом создается ускоряющее электрическое поле для дырок, достигающих коллекторного перехода. В случае
транзистора, как показано на рис. 4.14, из эмиттера будет инжектироваться большое количество дырок в базу, которые создают ток эмиттера. В результате инжекции дырок из эмиттера в базу их концентрация на границе эмиттерного перехода становится больше, чем в остальном объеме базы. Вследствие этого начинается их движение в область базы к границе коллекторного перехода. Будучи в базе неосновными носителями, дырки будут перемещаться в области базы за счет диффузии, рекомбинируя с электронами базы. Рекомбинация дырок в базе вызывает соответствующий приток электронов из внешней цепи источника питания в область базы для восполнения электронов, рекомбинировавших с дырками, который создает ток базы. Так как база тонкая, то большинство дырок не успевает рекомбинировать с электронами и достигает коллекторного перехода. Вблизи коллекторного перехода поток дырок попадает под действие ускоряющего электрического поля обратно смещенного коллекторного перехода, что вызывает быстрый дрейф дырок через коллекторный переход в область коллектора, где они становятся основными носителями заряда и легко доходят до коллекторного вывода. В месте контакта коллектора и вывода источника питания дырки рекомбинируют со свободными электронами и создают ток во внешней цепи. Часть дырок успевает рекомбинировать в области базы, поэтому не все дырки инжектируемые эмиттером, доходят до коллекторного перехода. Вследствие этого коллекторный ток всегда меньше тока на величину тока базы .Движение носителей тока в транзисторе приводит к появлению токов во внешней цепи. Ток коллектора течет по цепи: плюс источника
— источник — эмиттер — база- коллектор — минус источника . Ток базы Течет по цепи: плюс источника — эмиттер – база – минус источника . Для уменьшения вероятности рекомбинации дырок в области базы, толщину базы делают немного меньше диффузионной длины пробега дырок. Для обеспечения односторонней инжекции, то есть максимального перехода дырок из эмиттера в область базы при минимальном переходе электронов из базы в эмиттер, концентрация дырок в эмиттере должна быть примерно в 100 раз больше концентрации электронов в базе. При этом эмиттер обладает меньшим удельным сопротивлением, чем база.Токи в транзисторе связаны следующим соотношением:
. (4.25)Доля носителей зарядов, инжектированных эмиттером в базу и достигших вследствие диффузии коллектора, оценивается статическим коэффициентом передачи эмиттерного тока:
, (4.26)Величина которого для современных транзисторов составляет примерно
.Другим параметром транзистора является статический коэффициент передачи базового тока:
. (4.27)Связь между
и дает следующее выражение: . (4.28)Поскольку
, то .В транзисторе к составляющей коллекторного тока, обусловленной потоком инжектируемых эмиттером дырок, прибавляется составляющая обратного (теплового) тока коллекторного перехода
.При выяснении механизма протекания токов в транзисторе
типа необходимо поменять полярности источников питания, подключаемых к эмиттеру и коллектору. При этом эмиттер будет инжектировать электроны.На основе биполярных транзисторов создают усилители электрических сигналов. Сопротивление коллекторного перехода, смещенного в обратном направлении, намного больше сопротивления эмиттерного перехода. Для получения максимальной мощности в нагрузке необходимо согласовать сопротивление коллекторной нагрузки с выходным сопротивлением транзистора. Для этого сопротивление в цепи коллектора должно быть достаточно большим (в реальных схемах усилителей единицы килоом). При этом напряжение источника коллекторной батареи должно составлять единицы-десятки вольт. Если в цепь эмиттерного перехода включить источник переменного управляющего напряжения (источник сигнала), то через транзистор наряду с постоянными токами начнут протекать переменные составляющие токов базы
~, эмиттера ~ и коллектора ~, изменяющиеся по закону изменения управляющего напряжения. При этом мощность во входной цепи, затрачиваемая на управление эмиттерным переходом, будет равна:~*~. (4.29)Мощность переменного тока на выходе в коллекторной цепи будет равна:
~*~. (4.30)Переменное напряжение на выходе в коллекторной цепи будет составлять при этом единицы вольт. А для эффективного управления эмиттерным переходом достаточны уровни управляющего напряжения равные нескольким значениям температурного потенциала
. Кроме того, переменный ток коллектора в раз больше переменного тока базы. Таким образом, мощность переменного сигнала на выходе в коллекторной цепи значительно (в сотни — тысячи раз) превосходит мощность управляющего источника сигнала в цепи эмиттер-база. Усиление управляющего сигнала сводится к преобразованию постоянного тока источника коллекторной батареи в переменный ток, изменяющийся по закону напряжения, управляющего эмиттерным переходом.4.5.1. Статические характеристики биполярных транзисторов.
При включении в цепь коллектора сопротивления нагрузки напряжение на коллекторном переходе меняется с изменением коллекторного тока за счет падения напряжения на сопротивлении нагрузки. В этом случае ток коллектора становится функцией двух одновременно меняющихся факторов. Ток коллектора зависит от напряжения на коллекторе и от тока базы:
(4.31)В свою очередь ток базы зависит от потенциала базы относительно эмиттера и от напряжения на коллекторе:
(4.32)Зависимость токов транзистора от двух меняющихся факторов значительно затрудняет анализ. Поэтому вначале рассмотрим работу транзистора в статическом режиме, то есть при отсутствии сопротивления нагрузки в цепи коллектора. В этом случае напряжения на коллекторном и эмиттерном переходах будут постоянными при изменении токов в транзисторе. При этом свойства транзистора можно характеризовать графическими зависимостями токов, называемых статическими характеристиками.
В зависимости от того, какой из электродов является общим для входной и выходной цепей, различают три схемы включения биполярного транзистора, показанные на рис.4.15: с общим эмиттером (ОЭ), с общей базой (ОБ) и с общим коллектором (ОК).
а б в
Рис. 4.15. Схемы включения биполярного транзистора:
А — с общим эмиттером; Б – С общей базой; В – с общим коллектором.
В транзисторах между собой связаны четыре величины: входные и выходные токи и входные и выходные напряжения. При этом для каждой схемы включения транзистора можно представить два семейства статических вольтамперных характеристик – входные и выходные. Входные статические характеристики представляют собой зависимость входного тока от входного напряжения при постоянном выходном напряжении:
при . (4.33)Выходные статические характеристики — это зависимость выходного тока от выходного напряжения при постоянном входном напряжении:
при (4.34)Для каждой их трех схем включения существуют свои семейства характеристик. Входные и выходные характеристики транзистора имеют тесную связь с вольтамперной характеристикой диода. Действительно, входные характеристики относятся к эмиттерному переходу, работающему при прямом напряжении смещения на переходе. Поэтому они аналогичны характеристикам, представляющим зависимость прямого тока диода от напряжения. Выходные характеристики подобны характеристике обратного тока диода, так как они отображают свойства коллекторного перехода, работающего при обратном напряжении смещения.
Для снятия статических характеристик в любой схеме включения транзистора необходимо иметь регулируемые источники постоянного напряжения для изменения напряжений на эмиттерном и коллекторном переходах, два вольтметра и два миллиамперметра для измерения изменений входного и выходного напряжений и токов.
Входные статические характеристики транзистора в схеме с общей базой представляют собой зависимости тока эмиттера от напряжения на эмиттерном переходе при постоянном напряжении на коллекторном переходе:
при . (4.35)На рис. 4.16 представлены три входные характеристики
транзистора, включенного по схеме с общей базой, при разных напряжениях на коллекторе относительно базы.Характеристика при
0В представляет собой обычную характеристику перехода, включенного в прямом направлении.Рис. 4.16. Входные статические характеристики транзистора в схеме с общей базой
С увеличением отрицательных напряжений на коллекторном переходе увеличивается ширина запорного слоя, а толщина базы становится меньше, что ускоряет прохождение дырок эмиттера через базу в область коллектора, поэтому ток эмиттера несколько увеличивается и характеристики располагаются левее. Это так называемый эффект модуляции толщины базы. По входным характеристикам можно рассчитать входное сопротивление транзистора как отношение приращения напряжения к приращению тока, взяв две точки на одной из характеристик:
при . (4.36)Входное сопротивление транзистора в схеме с ОБ мало и составляет единицы-десятки Ом, потому что эмиттерный переход смещен в прямом направлении и малые изменения напряжения на нем вызывают большие изменения тока эмиттера.
Выходные статические характеристики
транзистора (рис.4.17), включенного по схеме с общей базой, представляют собой зависимости при . (4.37)Рис. 4.17. Выходные статические характеристики транзистора в схеме с общей базой
Характеристика, снятая при
0, представляет собой характеристику перехода, включенного в обратном направлении. Ток коллектора при этом вызван неосновными носителями. Выходные характеристики имеют очень малый наклон и почти параллельны горизонтальной оси. Это объясняется тем, что дырки эмиттера достигают коллектора за счет диффузии и ускоряющее поле коллектора мало влияет на величину коллекторного тока. Уже при напряжениях, близких к нулю, ток коллектора достигает величины насыщения и затем мало меняется. Выходное сопротивление транзистора можно найти по выходным характеристикам: при (4.38)Выходное сопротивление в схеме с общей базой велико и может составлять сотни килом — единицы мегом.
Коэффициент передачи эмиттерного тока в схеме с общей базой можно рассчитать по выходным статическим характеристикам:
при . (4.39)Поскольку
, схема с общей базой не усиливает по току.Статические входные характеристики транзистора, включенного по схеме с общим эмиттером, представляют собой зависимости
при . (4.40)Входные статические характеристики
транзистора представлены на рис. 4.18.Рис. 4.18. Входные статические характеристики транзистора в схеме с общим эмиттером
Из характеристик видно, что с увеличением прямого напряжения на эмиттерном переходе увеличивается ток базы, поскольку с увеличением прямого напряжения увеличивается количество дырок, переходящих из эмиттера в базу, и увеличивается вероятность рекомбинации.
Изменение напряжения на коллекторе относительно эмиттера также влияет на величину тока базы. С увеличением отрицательного напряжения на коллекторе ток базы уменьшается. Это вызвано эффектом модуляции толщины базы. При этом характеристики смещаются немного вправо.
По входным статическим характеристикам можно рассчитать входное сопротивление транзистора:
при . (4.41)Входное сопротивление транзистора в схеме с общим эмиттером мало и составляет сотни ом – единицы килоом.
Выходные статические характеристики транзистора в схеме ОЭ представляют собой зависимости
при . (4.42)Семейство выходных статических характеристик приведено на рис. 4.19. При токе базы равном нулю через транзистор протекает обратный ток неосновных носителей. С увеличением тока базы пропорционально увеличивается ток коллектора.
Рис. 4.19. Выходные статические характеристики
транзистора в схеме с общим эмиттеромВ схеме с ОЭ напряжение, приложенное к переходу коллектор-база, равно
, так как между точками коллектор-база эти напряжения включены навстречу друг другу. Поэтому при коллекторный переход смещается в прямом направлении и через транзистор протекает большой прямой ток. Это соответствует режиму насыщения транзистора, так как при этом оба перехода смещены в прямом направлении. На участке крутизна характеристик становится небольшой и выходное сопротивление увеличивается. Этот участок характеристик соответствует активному режиму работы транзистора. По выходным характеристикам выходное сопротивление транзистора равно: при . (4.43)Выходное сопротивление транзистора в схеме с ОЭ составляет единицы-десятки килоом.
По выходным статическим характеристикам можно рассчитать коэффициент усиления тока базы в схеме с ОЭ :
при . (4.44)Схема с ОЭ отличается большим усилением по току, то есть небольшие приращения тока базы на входе вызывают большие приращения тока коллектора на выходе. Вместе с тем, схема с ОЭ обладает усилением по напряжению, так как благодаря большому выходному сопротивлению в цепь коллектора можно включать достаточно большое сопротивление, падение напряжения на котором будет значительно больше напряжения, поданного на вход.
Схема с общим коллектором имеет много общего со схемой с ОЭ. В этих схемах управляющим током является ток базы, а выходные токи
И Различаются мало. Поэтому семейство выходных характеристик схемы с ОК такое же, как семейство выходных характеристик схемы с ОЭ, если в них заменить ток коллектора током эмиттера.Входное семейство характеристик схемы с ОК по сравнению с семейством характеристик схемы с ОЭ будет сдвинуто вправо на величину напряжения на коллекторном переходе.
4.5.2. Параметры и свойства биполярных транзисторов.
Биполярные транзисторы управляются током при изменении напряжения на эмиттерном переходе. Поэтому они отличаются не очень большой величиной входного сопротивления. В схеме с ОБ величина входного сопротивления составляет единицы-десятки Ом, в схеме с ОЭ – сотни Ом — единицы килоом. Малое входное сопротивление нагружает источники сигналов.
Важными параметрами транзисторов, которые обязательно приводят в паспортных данных, являются максимальное напряжение на коллекторе и допустимая мощность рассеяния. Так как токи коллекторного и эмиттерного переходов примерно одинаковы, то выделяемая на переходе мощность определяется падением напряжения на
переходе. Максимальная мощность будет выделяться на коллекторном переходе. Максимальная мощность, рассеиваемая транзистором, ограничена допустимой температурой переходов, так как при протекании тока в транзисторе выделяется тепло. Максимальная допустимая температура коллекторного перехода для германиевых транзисторов , а для кремниевых транзисторов — . Для отвода тепла корпус мощных транзисторов крепят на специальных металлических радиаторах с большой поверхностью охлаждения. Радиаторы изготавливают из металлов с большой теплопроводностью — алюминий, медь. В качестве радиатора часто используют шасси прибора. Следует иметь в виду, что в мощных транзисторах для улучшения теплоотвода коллектор имеет тепловой контакт с корпусом транзистора. В этом случае корпус транзистора необходимо отделить от шасси или радиатора изолирующей прокладкой.Максимально допустимое напряжение на коллекторе – это предельное значение напряжения на коллекторном переходе, при превышении которого происходит пробой перехода и транзистор выходит из строя. Рабочее напряжение на коллекторе должно быть равно или меньше максимально допустимого значения.
Биполярные транзисторы разных типов различаются по своим частотным свойствам. Частотные свойства биполярных транзисторов зависят от нескольких факторов. На высоких частотах время перехода носителей тока через область базы становится соизмеримым с периодом высокочастотного электрического сигнала. Это приводит к уменьшению коэффициента передачи эмиттерного тока и заметному сдвигу по фазе между токами эмиттера и коллектора.
Другой причиной, ограничивающей частотные возможности транзисторов, являются паразитные емкости эмиттерного и коллекторного переходов. Величина этих емкостей небольшая – единицы – десятки пикофарад. Емкость эмиттерного перехода в схеме усилителя подключена параллельно источнику входного сигнала, а емкость коллекторного перехода – параллельно нагрузке. С изменением частоты изменяется емкостное сопротивление. Емкость коллекторного перехода шунтирует сопротивление нагрузки, уменьшая сопротивление нагрузки и, следовательно, уменьшая усиление каскада.
Частотные свойства транзисторов зависят также и от подвижности носителей тока. Подвижность – это скорость, приобретаемая носителем тока в электрическом поле с напряженностью 1В/см. Подвижность электронов в два раза выше подвижности дырок, поэтому транзисторы
типа имеют примерно в два раза более высокую граничную частоту по сравнению с транзисторами типа с такой же толщиной базы. В кремниевых транзисторах подвижность носителей тока меньше, чем в германиевых.Для оценки частотных свойств транзисторов вводится такой параметр, как граничная частота коэффициента усиления тока в схеме с ОЭ. Это такая частота, на которой модуль коэффициента усиления по току становится равным 1. Граничные частоты современных биполярных транзисторов составляют единицы гигагерц.
Характеристики транзистора подвержены влиянию температуры. При увеличении температуры электронам валентной зоны полупроводника сообщается дополнительная энергия и увеличивается количество электронов, которые переходят из валентной зоны в зону проводимости. Вследствие этого увеличивается количество как основных, так и неосновных носителей тока. Кроме того, с увеличением температуры увеличивается подвижность носителей тока. Особенно сильно влияет повышение температуры на обратный ток коллекторного перехода. Температурная зависимость этого тока выражается формулой:
, (4.45)Где :
И — обратный ток при температуре и ;– температурный коэффициент, величина которого для разных транзисторов принимает значения от 0,06 до 0,1.Если принять
0,1, то из последнего выражения следует, что обратный ток увеличится в 2,7 раза при изменении температуры на .При одной и той же температуре ток
кремниевых транзисторов значительно меньше, чем у германиевых, так как запрещенная зона кремния шире, чем у германия и для ее преодоления требуется больше энергии. С ростом температуры увеличиваются токи эмиттера, базы и коллектора, поэтому входные и выходные характеристики схем с ОБ и ОЭ смещаются вверх.4.5.3. Схемы задания режима работы транзистора по постоянному току.
Транзистор в схеме усилителя напряжения должен работать в активном режиме. Для обеспечения активного режима необходимо подать определенные постоянные напряжения для смещения эмиттерного перехода в прямом направлении и коллекторного перехода – в обратном направлении. При этом через транзистор начинают протекать постоянные составляющие токов базы, эмиттера и коллектора. При подаче на вход каскада переменного напряжения сигнала к постоянным составляющим токов добавляются переменные составляющие, повторяющие форму входного сигнала. Чтобы выделить на выходе усиленный сигнал, в цепь коллектора включают сопротивление нагрузки. Небольшие изменения напряжения сигнала на входе вызывают приращения токов базы, эмиттера и коллектора и значительные изменения переменного напряжения на выходе каскада. В схеме с ОЭ коллекторный ток получит приращение
. Поскольку 1, то переменная составляющая приращения тока коллектора намного больше переменной составляющей приращения тока базы. Так как величина сопротивления коллекторной нагрузки составляет единицы килом, то на сопротивлении нагрузки выделится гораздо большее переменное напряжение, чем поданное на вход. При этом форма усиленного сигнала в коллекторной цепи должна совпадать с формой сигнала на входе. Для этого необходимо обеспечить линейную зависимость между выходным и входным напряжениями сигнала. Линейную зависимость между ними можно обеспечить выбором уровня постоянного напряжения на эмиттерном переходе. Точка на статической характеристике, однозначно определяемая постоянным напряжением на эмиттерном и коллекторном переходах при отсутствии сигнала, называется рабочей точкой. Постоянное напряжение, которое подается на эмиттерный переход для выбора рабочей точки, называется напряжением смещения. Чтобы обеспечить совпадение формы выходного напряжения с формой входного сигнала, рабочую точку необходимо выбирать на середине линейного участка входной характеристики.Для подачи смещения на эмиттерный переход не нужен отдельный источник напряжения – наиболее экономично использовать для этого источник напряжения коллекторной цепи. Различают два способа подачи смещения: фиксированным током и фиксированным напряжением.
Рассмотрим простейший усилительный каскад на транзисторе P—N—P типа в активном режиме в схеме с общим эмиттером, представленный на рис. 4.20.
Рис. 4.20. Схема задания напряжения смещения фиксированным током
В активном режиме на эмиттерный переход надо подать прямое напряжение смещения, а на коллекторный – обратное. Если принять потенциал базы за нулевой, то для создания активного режима необходимо подать положительное напряжение на эмиттер, и отрицательное — на коллектор. Такой режим может обеспечить схема с фиксированным током базы. Через резистор
База подсоединена к отрицательному полюсу коллекторной батареи. При отсутствии напряжения сигнала по цепи земля — эмиттерный переход — сопротивление — минус протекает постоянный ток базы . Величина этого тока выбирается в зависимости от необходимого положения рабочей точки. Рабочая точка на входной характеристике задается соответствующим выбором постоянных напряжений смещения на базе относительно эмиттера и напряжения . Напряжение смещения на базе равно: . (4.46)По входной статической характеристике можно выбрать положение рабочей точки на линейном участке и соответствующие рабочей точке напряжения
и . При этом можно определить величину резистора в цепи базы:. (4.47)Недостатком такого способа задания смещения является нестабильность режима работы при изменении температуры и смене транзисторов.
Смещение на эмиттерный переход можно задать также фиксированным напряжением. Схема задания смещения фиксированным напряжением представлена на рис. 4.21. В этой схеме напряжение смещения на эмиттерный переход задается делителем напряжения +
Из резисторов , В цепи базы.Рис. 4.21. Схема задания смещения фиксированным напряжением.
Для устранения влияния тока базы на напряжение смещения необходимо выбрать резисторы делителя так, чтобы ток делителя был в несколько раз больше тока базы при максимальном сигнале. Это условие ограничивает величину резисторов, что приводит к уменьшению входного сопротивления схемы. Величина напряжения смещения на базе относительно эмиттера при этом определяется следующим выражением:
. (4.49)Существенным недостатком рассмотренных схем задания напряжения смещения является нестабильность положения рабочей точки при изменении температуры. С увеличением температуры концентрация основных и неосновных носителей тока увеличивается, так как большее число электронов переходит из валентной зоны в зону проводимости. Эти процессы приводят к тому, что с увеличением температуры изменяется положение и крутизна выходных статических характеристик. Для уменьшения влияния температурных изменений применяют специальные методы температурной стабилизации. Так как с увеличением температуры ток коллектора увеличивается, то в схемах температурной стабилизации воздействуют на цепи смещения так, чтобы с увеличением температуры ток коллектора автоматически уменьшался. Один из методов температурной стабилизации рабочей точки реализован в схеме, представленной на рис. 3.22.
Рис. 4.22. Схема с температурной стабилизацией рабочей точки.
В этой схеме температурная стабилизация рабочей точки осуществляется за счет падения напряжения на резисторе
. Ток эмиттера создает на нем падение напряжения, равное . Напряжение смещения, приложенное к эмиттерному переходу, равно алгебраической сумме напряжений на резисторах и :. (4.49)Напряжение, снимаемое с резистора
, подается на эмиттерный переход в прямом направлении. Напряжение с резистора Подается на эмиттерный переход в обратном направлении.При отсутствии входного переменного сигнала в схеме устанавливаются определенные постоянные напряжения на базе, эмиттере и коллекторе и протекают постоянные токи
, и . Повышение температуры вызывает увеличение тока эмиттера на величину , тока коллектора на величину и тока базы на величину . Приращения токов вызовут соответствующие изменения напряжений на базе, эмиттере и коллекторе транзистора. Поскольку ток базы получает очень малое приращение по сравнению с приращением тока эмиттера, то изменение тока базы мало скажется на величине напряжения на базе. В то же время изменение тока эмиттера приведет к увеличению падения напряжения на резисторе . Поскольку это напряжение к эмиттерному переходу приложено в обратном направлении, то его увеличение вызовет уменьшение напряжения смещения и уменьшение эмиттерного тока, что вернет рабочую точку в исходное положение. Чтобы не ухудшать усилительные свойства каскадаДля переменного сигнала резистор
зашунтировали конденсатором , величина которого выбирается из условия:, (4.50)Где
— самая низкая частота в спектре усиливаемого сигнала.Цепочка
— называется цепочкой температурной стабилизации. Стабилизирующее действие этой цепочки увеличивается с увеличением и уменьшением резисторов и В цепи базы. Эта схема является наиболее эффективной стабилизирующей схемой.4.5.4. Работа транзистора в режиме малого сигнала
Схема с общим эмиттером.
Режим работы транзистора с нагрузкой называется динамическим.
Рассмотрим отдельно каждую из трех схем включения транзистора, когда к входу подключен генератор гармонического сигнала. Схема с общим эмиттером на транзисторе
типа представлена на рис. 4.23. Напряжение на коллекторе каскада по постоянному току равно:. (4.51)При подключении к входу каскада генератора сигналов к постоянным составляющим токов добавляются соответствующие переменные составляющие токов.
Рис. 4.23. Схема с ОЭ в динамическом режиме
Направление переменных составляющих токов по отношению к направлению постоянных составляющих будет зависеть от полярности входного сигнала. При положительной полуволне входного сигнала эмиттерный и коллекторный токи увеличиваются, так как входной сигнал смещает эмиттерный переход в прямом направлении. При этом они будут совпадать по направлению с постоянными составляющими токов. При отрицательной полярности входного сигнала переменные составляющие токов будут противоположны направлению постоянных составляющих и токи транзистора будут уменьшаться. С учетом этого переменное напряжение на коллекторе будет изменяться в противофазе по отношению к входному сигналу. Таким образом, схема с ОЭ поворачивает фазу входного сигнала на 180
.Схема с ОЭ обеспечивает усиление по току и по напряжению. Коэффициент усиления тока базы для разных транзисторов составляет десятки-сотни раз. Такого же порядка и коэффициент усиления переменного напряжения сигнала. Коэффициент усиления входного сигнала по мощности может составлять десятки тысяч раз.
В динамическом режиме изменение переменного напряжения на эмиттерном переходе вызывает соответствующее изменение переменного напряжения на коллекторном переходе. Для снятия динамической характеристики в цепь коллектора включается соответствующее сопротивление нагрузки. Из уравнения (3.49) найдем зависимость
:. (4.52)Это уравнение прямой с угловым коэффициентом
Выходную динамическую характеристику строят на семействе выходных статических характеристик, исходя из заданных значений
и , как показано на рис.4.24.Рис. 4.24. Динамическая характеристика каскада по схеме с ОЭ
По оси напряжений откладывают отрезок, равный
, а по оси токов — отрезок, равный , и через эти точки проводят прямую, которая представляет динамическую характеристику каскада. Динамическая характеристика называется нагрузочной прямой. В динамическом режиме рабочая точка перемещается по нагрузочной прямой в процессе изменения уровня входного сигнала.Схема с общей базой.
На рис. 4.25 представлена схема с общей базой.
Рис. 4.25. Каскад по схеме с общей базой
В цепь коллектора включено сопротивление нагрузки
. Смещение на эмиттерный переход подается фиксированным напряжением от источника коллекторной батареи с помощью резисторного делителя , . Конденсатор обеспечивает нулевой потенциал базы по переменному току. Величина конденсатора должна быть такой, чтобы его сопротивление удовлетворяло условию:, (4.53)Где
— самая низкая частота в спектре усиливаемых сигналов.Если к входу каскада подключить генератор гармонического сигнал, то при положительной полуволне сигнала ток через транзистор будет увеличиваться, так как эмиттерный переход смещается при этом в прямом направлении, а при отрицательной полуволне – уменьшаться, так как переменная составляющая тока будет противоположна по направлению постоянной составляющей тока. Напряжение на коллекторной нагрузке в схеме с ОБ будет совпадать по фазе с напряжением входного сигнала.
Коэффициент усиления по току схемы с ОБ меньше 1, так как входным током является ток эмиттера, а выходным током – ток коллектора. Коэффициент усиления по напряжению может составлять сотни — тысячи раз.
Схема с общим коллектором
Схема с общим коллектором представлена на рис. 4.26. К входу подключен генератор гармонического сигнала. Сопротивление нагрузки в этой схеме включено в цепь эмиттера. Потенциал коллектора по переменной составляющей равен нулю.
Рис. 4.26. Схема с общим коллектором
Выходное напряжение, снимаемое с сопротивления нагрузки
, оказывается подключенным к эмиттерному переходу последовательно с напряжением сигнала, поданным на вход. При положительной полуволне сигнала на входе (плюс на базе, а минус на эмиттере), выходное напряжение приложено так, что плюс его на эмиттере, а минус — на базе. Это значит, что напряжение сигнала на входе и выходное напряжение включены навстречу друг другу и результирующее напряжение равно разности этих напряжений. Чтобы подать необходимое напряжение сигнала на эмиттерный переход, необходимо скомпенсировать выходное напряжение. Поэтому входное напряжение должно быть больше выходного напряжения. Напряжение на входе схемы с ОК равно:. (4.54)Так как
, то коэффициент усиления схемы с ОК по напряжению меньше 1.Коэффициент усиления по току в этой схеме равен:
(4.55)Схема с ОК дает незначительное увеличение коэффициента усиления по току по сравнению со схемой с ОЭ. Коэффициент усиления по мощности немного меньше коэффициента усиления по току.
Выясним фазовые соотношения между входным и выходным сигналом. Положительная полуволна сигнала на входе вызывает увеличение тока через транзистор и увеличение падения напряжения на сопротивлении нагрузки, а отрицательная полуволна – уменьшение тока и уменьшение напряжения на выходе. В этой схеме потенциал эмиттера с небольшой разницей отслеживает потенциал базы. Схема с ОК не инвертирует фазу входного сигнала. Схему с ОК называют еще эмиттерный повторитель, так как напряжение на выходе повторяет входное напряжение по величине и по фазе.
Особенностью схемы с ОК является большое входное сопротивление и малое выходное сопротивление. Входное напряжение больше выходного напряжения, а входной ток значительно меньше выходного тока. Поэтому:
(4.56)Величина
Может составлять сотни ом единицы килоом, поэтому входное сопротивление схемы с ОК может составлять десятки – сотни килоом.Выходное напряжение приложено к эмиттерному переходу и небольшое изменение выходного напряжения вызывает большие изменения тока эмиттера. Поэтому
Может составлять десятки- сотни Ом. Большое значение входного сопротивления и малое значение выходного сопротивления обусловлены в схеме с ОК тем, что часть энергии выходного сигнала в виде переменного напряжения с выхода схемы поступает обратно на вход схемы в противофазе по отношению к напряжению, действующему на входе. Выходное напряжение последовательно включено по отношению к напряжению на входе. Это соответствует наличию в этой схеме 100% последовательной отрицательной обратной связи по напряжению. Как будет показано дальше, отрицательная последовательная обратная связь по напряжению увеличивает входное сопротивление и уменьшает выходное сопротивление каскада.Большое значение
И малое значение Позволяют использовать схему с ОК в качестве согласующего звена между одним каскадом с высоким выходным сопротивлением и другим каскадом с малым входным сопротивлением.Биполярный транзистор, принцип работы для чайников
Что такое биполярный транзистор – элементарное полупроводниковое устройство, функциональность которого охватывает изменение либо усиление выходного сигнала от заряженных частиц.
Это один из типов транзисторов, состоящий из 3-х слоев, которые обеспечивают 2 «зарядных» или «дырочных» перехода (би – два перехода). Соответственно, данное устройство может быть представлено как два диодных элемента, включенных противоположно друг другу.
В простонародье биполярный транзистор пришел на смену морально и физически устаревшим транзисторам лампового вида, которые эксплуатировались очень длительное время в конструкциях телевизоров прошлого столетия.
Рисунок 1 – Биполярный транзистор
Как видно из изображения 1 устройства данного вида имеют 3 выхода, однако, по конструктивному исполнению внешний вид отличается друг от друга. Но в схемах электрических цепей они одинаковы во всех случаях.
В зависимости от проводимости биполярные устройства разделяются на P→N→P и N→P→N устройства, которые отличаются что переносит заряженные частицы – электроны или посредством «дырок».
Рисунок 2 – Разновидность биполярных аппаратов
Устройство биполярного транзистора
Согласно типовых схем, буквой «Б» называется «База» – внутренний слой аппарата, его фундамент, который приводит преобразование или изменение токового сигнала. Стрелка в кругу показывает движение токовых зарядов в «Э».
«Э» – «Эмиттер» – внутренняя основная составляющая транзистора, предназначенный для переноса заряженных элементарных частиц в «Б».
«К» – «Коллектор» – вторая составляющая транзисторного устройства, которая производит сбор тех же зарядов, которые проходят через «Б».
Пласт «Базы» конструктивно выполняют очень тоненьким в связи с рекомбинированием заряженных частиц, которые идут через базовый слой, с составными частицами данного пласта. В то же время пласт «Коллектора» конструируют как можно шире для качественного сбора зарядов.
Принцип работы биполярного транзистора
Принцип работы биполярного транзистора для чайников опишем на образце P→N→P транзисторного аппарата на рисунке 3. Принцип работы биполярного транзистора N→P→N вида сходен переходу в прямом направлении, только в этом случае заряды – электрические частицы движутся от «К» до «Э». Для выполнения данного условия необходимо всего на всего изменить полярность подключенного напряжения.
Рисунок 3 – Принцип работы P→N→P транзистора
При отсутствии внешних возмущений, внутри биполярника между его слоями будет существовать разность зарядов. На границах раздела будут установлены единые барьерные мосты, так как в это время доля «дырок» в коллекторе соответствует их численности в эмиттере.
Для точной работы биполярного транзистора переход в коллекторном пласте необходимо сместить в противоположном курсе, в то же время в эмиттере направленность перехода должна быть прямым. В этом случае режим функционирования будет активным.
Для выполнения вышеуказанных условий необходимо применить два питания, один из которых с положительным знаком соединяем с концом эмиттера, «минус» подключаем к базовому слою. Второй источник напряжения соединяем в следующем порядке: «плюс» к базовому концу, «минус» – к концу коллектора. Изобразим подключение на рисунке 4.
Рисунок 4 – Принципиальная схема подключения транзистора
Под воздействием напряжения Uэ, Uк через барьеры совершается переход дырок в эмиттере №1-5 и в базовом слое электрически заряженных частиц №7,8. В данном случае величина тока в эмиттере будет зависеть от количества переходов дырок, так как их больше.
Дырки, которые перешли в базовый слой собираются у барьерного перехода. Тем самым у границы с эмиттерным слоем будет собираться массовое количество дырок, в то же время у границы с «К», концентрация их существенно ниже. В связи с этим начнется диффузия дырок к «К» и близи границы произойдет их ускорение поля «Б» и переход в «К».
При перемещении через средний слой базы дырки рекомбинируют, заряженный электрон 6 замещает дырку 5. Такое перемещение будет совершаться с увеличением плюсового заряда при переходе дырок, соответственно движение зарядов в обратном направлении будет создавать ток определенной величины, а база остается электрически нейтральной.
Число дырок, которые перешли в коллектор будет меньше числа, которые покинули эмиттер. Это значит, что электрический ток «К» будет отличаться от значения тока «Э».
Обратный переход дырок из коллектора нежелателен и снижает эффективность транзистора, потому что переход осуществляется не основными, а вспомогательными носителями энергии и зависит данный переход сугубо от величины температуры. Данный ток носит название тока тепла. По значению теплового тока судят о качестве биполярного транзистора.
На рисунке 5 схематически изобразим направление движения заряженных частиц – токов транзистора.Рисунок 5 – Направление токов в биполярном транзисторе
На основании выше изложенного напрашивается вывод: любое изменение тока в структуре слоев эмиттер – база сопровождается изменением величины тока коллектора, причем самое малое изменение «базового» тока приведет к значимой коррекции выходного коллекторного тока.
Режим работы биполярных устройств
В зависимости от величины напряжения на выводах транзистора существует 4 режима его функционирования:
- отсечка – переходов дырки – электроды не происходит;
- активный режим – приведен в описании;
- насыщение – ток базы очень велик и ток коллектора будет иметь максимальное значение и абсолютно не зависеть от тока базы, соответственно усиления сигнала не будет;
- инверсия – использование устройства с обратными ролями эмиттера и коллектора.
Достоинства и недостатки биполярных транзисторов
К достоинствам биполярных транзисторов в сравнении с аналогами относятся:
- управление электрическими зарядами;
- надежность в работе;
- устойчивость к частотным помехам;
- малые шумовые характеристики;
К недостаткам можно отнести:
- обладает малым значением входного сопротивления, из-за которого ухудшаются характеристики по усилению сигналов;
- резкая чувствительность к статике зарядов;
- схема включения предполагает присутствие 2-х питаний;
- при высоких значениях температуры возможно повреждение транзистора.
Проголосовавших: 5 чел.
Средний рейтинг: 3.6 из 5.
Режимы работы транзисторов – Клуб лекций
В этой лекции мы обсудим три основных режима работы транзисторов. Прежде чем перейти непосредственно к применению транзисторов, я рекомендую вам разобраться в режимах работы транзисторов.
Есть три режима транзистора
- Режим отсечки
- Активный режим
- Режим насыщения
В режиме отсечки нет тока в транзистор.Другими словами, переходы база-эмиттер и база-коллектор имеют обратное смещение. Транзистор работает как разомкнутая цепь.
Следующий пример водопроводного крана объяснит вам точную работу режима отключения.
Предположим, что водопроводный кран представляет собой транзистор. Один конец – эмиттер (E), а другой конец – коллектор (C). Клапан является основанием (B). Вы можете наблюдать, когда клапан закрыт, вода не будет течь из эмиттера (E) в коллектор (C).
Аналогично, если базовый ток (Ib) равен нулю, ток в транзисторе будет равен нулю.Однако протекает небольшой ток утечки коллектора. Но это ничтожно мало.
Рис.1: Режим отсечки
Условия режима отсечки для NPN-транзистора
- Поскольку эмиттер n-типа, а база p-типа. Таким образом, для обратного смещения перехода E-B напряжение эмиттера должно быть больше, чем напряжение базы
- Поскольку коллектор снова n-типа, поэтому для достижения обратного смещения на переходе B-C напряжение коллектора также должно быть больше, чем напряжение базы.
Условия режима отсечки для PNP-транзистора
- Поскольку эмиттер p-типа, поэтому для обратного смещения BE-перехода, базовое напряжение должно быть больше, чем напряжение эмиттера
- Коллектор p-типа, поэтому снова должно быть базовое напряжение больше, чем напряжение коллектора, для обратного смещения BC-переход
В активном режиме BE-переход смещен в прямом направлении, а BC-переход смещен в обратном направлении. В этом режиме транзистор ведет себя как замкнутый переключатель.
Рис. 2: Активный режим
Условия активного режима для NPN-транзистора
- Для прямого смещения перехода B-E базовое напряжение должно быть больше, чем напряжение эмиттера.
- Аналогично соединению B-C с обратным смещением, напряжение коллектора должно быть больше, чем напряжение базы
Условия активного режима для транзистора PNP
- Для прямого смещения перехода B-E базовое напряжение должно быть меньше напряжения эмиттера.
- Теперь коллектор p-типа, поэтому для обратного смещения перехода B-C напряжение коллектора должно быть меньше, чем напряжение базы.
В режиме насыщения через транзистор проходит максимальное количество тока. Для этого как соединение B-E, так и соединение B-C должны быть смещены вперед.
Короче транзистор ведет себя как короткое замыкание. Таким образом, мы больше не можем контролировать ток, используя базу.
Рис. 3: Режим насыщения
Условия режима насыщения для NPN-транзистора
- Эмиттер n-типа, а база – p-типа, поэтому базовое напряжение должно быть больше, чем напряжение эмиттера для прямого смещения BE соединение.
- Подобно эмиттеру, коллектор также n-типа, поэтому снова базовое напряжение должно быть больше, чем напряжение коллектора, чтобы прямое смещение B-C перехода.
Условия режима насыщения для транзистора PNP
- Эмиттер p-типа, а база n-типа, поэтому напряжение базы должно быть меньше напряжения эмиттера для прямого смещения перехода B-E.
- Коллектор также p-типа, поэтому снова базовое напряжение должно быть меньше, чем напряжение коллектора, чтобы прямое смещение B-C перехода.
Полная видео-лекция на хинди / урду
Как это:
Нравится Загрузка …
СвязанныеТранзистор | Основы | Режимы работы | Смещение
Транзистор – это полупроводниковый прибор с множеством применений. Фактически, это мать всех других полупроводниковых электронных устройств, которые мы используем или видим вокруг нас сегодня.
До изобретения транзисторов все электронные устройства делались на электронных лампах.Тем не менее, можно найти такие устройства, как стереоусилители и радиоприемники, в которых используются электронные лампы, но они редки и дороги, помимо того, что они громоздкие и тяжелые по сравнению с твердотельной электроникой, в которой используются транзисторы и полупроводниковые технологии.
Существуют различные типы транзисторов, и простейшая форма транзистора – это переходной транзистор, также называемый биполярным переходным транзистором. Причина, по которой он называется переходным транзистором, состоит в том, что он содержит два PN перехода.Другими словами, с точки зрения структуры, он похож на два диода, соединенных вместе в процессе изготовления.
Тем не менее, обратите внимание, что транзистор – это совершенно другое устройство, чем диод, а это означает, что нельзя соединить два диода вместе и ожидать, что будет транзистор.
Junction TransistorПереходный транзистор: То же, что и биполярный переходный транзистор, который включает в себя обычный транзистор.
Биполярный переходной транзистор : Другое название переходного транзистора.
Вспоминая, что PN-переход имеет сторону P и сторону N, представьте, что вы хотите соединить два из них вместе. Легко понять, что в зависимости от того, как они собраны вместе, могут возникнуть два основных типа транзисторов, как показано на Рисунок 1 .
Рисунок 1 Два основных типа транзисторов: (a) PNP и (b) NPN.
Соответственно, два типа переходных транзисторов – это PNP и NPN.Эта классификация основана на полярности конструкции. Существуют и другие типы классификации, основанные на функционировании транзистора и характеристиках схемы.
Как легко понять из рисунка 1, транзистор имеет три вывода. В транзисторе, независимо от типа (PNP или NPN), средний вывод называется базой . Два других терминала называются эмиттером и коллектором .
Внутренняя структура транзистора и количество легирования в каждом материале P и N (которые определяют толщину обедненной области в PN-переходе) определяют, какая сторона является эмиттером, а какая – коллектором.
Эмиттерный переход намного выше легирован, чем коллекторный. На рисунке 2 показаны символы для переходных транзисторов, где B, C и E обозначают базу, эмиттер и коллектор соответственно.
База: Один из трех основных выводов переходного транзистора (обычного транзистора).
Излучатель: Один из трех основных выводов общего (не полевого) транзистора.
Коллектор: Один из трех основных выводов обычного транзистора.
Рисунок 2 Обозначения для (a) транзистора NPN и (b) транзистора PNP.
Эмиттер обозначен стрелкой, которая показывает направление тока. Обратите внимание на разницу между двумя символами. Направление стрелки в двух типах транзисторов – от положительного к отрицательному или, лучше сказать, от P к N, где P и N относятся к типу полупроводникового материала.
Размер и упаковка транзистораТранзисторы поставляются в различных корпусах (их физическая форма), наиболее распространенные из которых показаны на Рисунок 3 .Их размер сопоставим со скрепками, как показано на рис. , рис. 4 .
Как и любое другое устройство, транзистор имеет номинальные значения тока, напряжения и мощности. Они определены в технических характеристиках каждого транзистора и должны соблюдаться при использовании в электрических и электронных схемах.
Рисунок 3 Примеры физической формы (упаковки) транзисторов.
Рисунок 4 Указание размера типичного транзистора.
Транзисторы могут нагреваться во время работы. В этом случае к его корпусу можно прикрепить (прикрутить или приклеить) радиатор. Радиатор не является частью транзистора; он используется для любых компонентов, которые могут нагреваться во время работы. Это кусок металла (обычно алюминия) с большой площадью (чтобы он мог легко обмениваться теплом с окружающей средой), иногда гофрированный, который прикреплен к корпусу компонента, который может нагреваться. Это обычная практика, особенно в электронных устройствах.
Радиатор может иметь воздушное охлаждение, а в устройствах очень большой мощности может даже охлаждаться водой. На рисунке 5 показан резистор с большим радиатором. Одна из причин разной упаковки транзисторов – это тепло, которое они выделяют во время работы. Только три транзистора на рисунке 3 могут принять теплоотвод.
Радиатор: Кусок алюминия, прикрепленный к электронному компоненту, чтобы обеспечить большую площадь контакта с воздухом, так что тепло, выделяемое в компоненте, отводится от него лучше и быстрее, а перегрев и повреждение предотвращаются.
Рисунок 5 Пример радиатора для резистора.
Для транзисторов с тремя линейными выводами (все три в ряд; см. Рисунок 3) обычно соединение в середине является базой, а два других могут быть помечены или немаркированы. Но так бывает не всегда. Перед использованием необходимо определить клеммы базы, эмиттера и коллектора.
Подключение транзисторов и конфигурация смещенияПоскольку транзистор имеет три вывода, три разных напряжения могут появляться на каждом выводе внутри схемы.Другими словами, исходя из токов в цепи, напряжение на каждой клемме может отличаться от двух других.
Нормальное рабочее состояние транзистора требует, чтобы соединение между коллектором и базой было смещено в обратном направлении, а соединение между эмиттером и базой было смещено в прямом направлении. В этом смысле правильные соединения для транзисторов PNP и NPN различны. Два возможных случая показаны на Рис. 6a и b для транзисторов NPN и PNP соответственно.
Рисунок 6 Правильное подключение (a) NPN и (b) PNP транзисторов.
В транзисторе NPN (см. Рисунок 6a) база изготовлена из материала P-типа, а коллектор – из материала N-типа. Когда напряжение на выводе коллектора больше, чем на выводе базы, переход коллектор-база смещается в обратном направлении. Кроме того, в этом транзисторе напряжение на выводе B больше, чем напряжение на выводе E. Таким образом, переход база-эмиттер смещен в прямом направлении.
Обратите внимание, что напряжение 0 означает, что эмиттер подключен к опорному напряжению, которое может быть отрицательной клеммой источника питания постоянного тока или напряжением заземления.
Аналогично, на Рисунке 6b напряжения на клеммах B, E и C равны +15, +20 и +2 В соответственно. Это означает, что напряжение на B (сторона N перехода база-коллектор) больше, чем напряжение на выводе C (таким образом, обратное смещение), а напряжение на B меньше, чем напряжение на выводе E (таким образом, прямое смещение). .
Для того, чтобы транзистор функционировал, условие состоит в том, чтобы (1), переход эмиттер-база был смещен в прямом направлении, а (2) переход коллектор-база был смещен в обратном направлении.
Режимы работыКак мы постепенно узнаем, большинство применений транзистора предназначены для переключения и усиления.
В переключателе транзистор используется в качестве переключателя, что означает, что он может включать и выключать устройство или часть схемы. Что касается усиления , транзистор может использоваться как усилитель напряжения, усилитель тока или усилитель мощности.
И при переключении, и при усилении есть входной сигнал на транзистор и выходной сигнал с транзистора. Для каждого сигнала (входа и выхода) необходимы два соединения, как показано в Рисунок 7 . Этот рисунок символизирует транзистор как устройство ввода-вывода, каждое из которых имеет внутренний резистор между двумя выводами.
Рис. 7 Концепция входа и выхода в транзисторе.
Когда сигнал подается на входные клеммы, соответствующий выходной сигнал генерируется и доступен на выходных клеммах.
Поскольку транзистор имеет только три физических вывода для внешнего мира, для того, чтобы иметь две входные линии и две выходные линии, можно предположить, что две из этих клемм соединены внутренне через внутренний резистор. Другими словами, один из выводов должен использоваться совместно входом и выходом.
В схеме, содержащей транзистор, чтобы обеспечить правильное смещение, как упомянуто выше, транзистор можно использовать тремя различными способами. Эти разные способы основаны на том, какой вывод используется совместно входом и выходом, и определяют три режима работы транзисторов.
Эти три режима – общая база, общий эмиттер и общий коллектор. Как следует из названия, в каждом режиме одна из клемм является общей для входа и выхода.
Общая база: Одна из трех конфигураций для использования транзисторов в схеме, где база является частью как входа, так и выхода.
Общий эмиттер: Одна из трех конфигураций для использования транзисторов в схеме, где эмиттер является частью как входа транзистора, так и его выхода.
Общий коллектор: Одна из трех конфигураций для использования транзисторов в схеме, где коллектор является частью как входа, так и выхода транзистора.
На рисунке 8 показаны три режима работы NPN-транзистора. Те же три режима возможны, если используется транзистор PNP, но они здесь не показаны.
Рисунок 8 Три режима работы транзисторов: (а) общая база, (б) общий эмиттер и (в) общий коллектор.
В рис. 8a входной сигнал вводится между эмиттером и базой, а выходной сигнал берется между базой и коллектором.
Знаки + и – указывают на напряжение, которое должно быть таким, чтобы соответствующие переходы имели правильное смещение.
Очевидно, что напряжения и токи должны быть совместимы, чтобы базу можно было подключать как к входной, так и к выходной цепям. Тот же принцип применяется к конфигурациям с общим эмиттером и общим коллектором.
Позже мы увидим, что и правильное смещение, и совместимость по напряжению достигаются за счет наличия соответствующих резисторов или других компонентов в цепях каждой из трех клемм.
Шахрам Маривани – ХАРАКТЕРИСТИКИ БИПОЛЯРНОГО ТРАНЗИСТОРА
ХАРАКТЕРИСТИКИ БИПОЛЯРНОГО ТРАНЗИСТОРА
ЗАДАЧИ:
Ознакомиться с теорией работы биполярных переходных транзисторов (БЮТ). и изучить V-I характеристики BJT
ВВЕДЕНИЕ:
Тип транзистора (NPN или PNP) можно определить с помощью мультиметра.Тест проверяет полярность переходов база-эмиттер и база-коллектор. Этот тест необходимо выполнить в начале лабораторного сеанса. Для BJT есть три региона работы;
- Активная область: в этой области базовый эмиттерный переход смещен в прямом направлении, а переход база-коллектор имеет обратное смещение. Эта область – нормальный транзистор режим работы на усиление, и характеризуется коэффициентом усиления транзистора по току значение, бета.
- Запретная область: в этой области переходы база-эмиттер и база-коллектор обратное смещение, и транзистор действует как разомкнутый переключатель. (Я С = 0)
- Область насыщения: в этой области переходы база-эмиттер и база-коллектор смещен в прямом направлении, и транзистор действует как замкнутый переключатель. (V CE = 0)
В активной области транзистора была определена добротность для количественной оценки способность транзистора усиливать входной сигнал.Этот параметр определяется как соотношение между I C и I B , которое обычно называется β-фактором. Точно так же коэффициент α равен определяется как отношение между I C и I E . Таким образом;
β = I C / I B и α = I C / I E
Легко показать, что β = α / (1 – α) и α = β / (β + 1). Как показывает опыт, чем больше значение β, тем выше коэффициент усиления транзистор, т.е.е. тем лучше транзистор. Типичные значения β находятся в диапазоне от 80 до 300 или выше.
РАБОТА В ЛАБОРАТОРИИ
- Определите тип транзистора, используя сопротивление перехода постоянного тока транзистора:
Проверьте тип транзистора для каждого блока, проверив полярность базы-эмиттера соединение. Используйте мультиметр Fluke в режиме сопротивления. Сведите ваши измеренные данные в таблицу. Для данного транзистора (2N3904) измерьте сопротивление прямого и обратного смещения. между базой и эмиттером, базой и коллектором и коллектором и эмиттером.Подключение выводов этого транзистора показано на Рисунок 1. - I C – V BE Характеристика биполярного переходного транзистора:
Подключите испытательную схему транзистора, как показано на рисунке 2. Установите напряжение постоянного тока (V B ) на ноль вольт и V CC до 10 В. Увеличьте V B с шагом 0,1 В и измерьте напряжение постоянного тока между базой и эмиттером (V BE ), постоянный ток через коллектор I C и ток через базу I B .Сведите свои показания в ясную таблицу и постройте график зависимости I C от V BE . Убедитесь, что вы взяли достаточно точек данных, чтобы построить типичную характеристику. БЮТ. Вычислить β для каждой измеренной точки данных и свести в таблицу рассчитанные значения β с измеренными данными. График β по сравнению с V BE . - Измерение I C по сравнению с характеристикой V CE биполярного транзистора:
Используя испытательную схему на Рисунке 2, отрегулируйте V B , чтобы генерировать ток 50 мкА в базе транзистор.Измените V CC , чтобы изменить V CE . Выберите разумные шаги для V CE (маленькие шаги при более низких напряжениях; 0,1 В для значений от 0 до 1,0 В и большие шаги при более высоких напряжениях; 1,0 В для значений выше 1,0 В). Измерьте V CE и I C .
Повторите вышеуказанное измерение для I B = 100 мкА, 150 мкА и 200 мкА. Постройте набор кривые для I C в сравнении с V CE для постоянного I B .
По измеренным данным определите диапазон V CE , в котором I C близок к нулю ампер.
Найдите значение α из этого набора измеренных данных, затем вычислите β. Сравните значение β, полученное в результате этого измерения, и значение β, полученное в результате измерения выполнено в 2.
Рисунок 1 – Упрощенная схема и подключение выводов транзистора 2N3904
Рисунок 2 – Тестовая схема для измерения характеристик биполярного транзистора V BE и I C
Примечания по электронике
Теория работы биполярного переходного транзистора, BJT, включает в себя множество элементов. Мы стремились упростить его, но даем правильное резюме.
Transistor Tutorial:
Основы транзисторов
Усиление: Hfe, hfe и бета
Характеристики транзистора
Коды нумерации транзисторов и диодов
Выбор транзисторов на замену
Есть несколько различных элементов, которые определяют теорию и понимание того, как работает биполярный транзистор, BJT.
Понимая принцип работы биполярного переходного транзистора, можно лучше использовать его в схемотехнике, понимая его режим работы, ограничения и преимущества.
Хотя некоторые математические аспекты могут быть сложными, нет необходимости рассматривать все это, чтобы получить хорошее представление о том, как работает и работает биполярный транзистор.
Принцип работы транзистора
Биполярный транзистор может работать в одном из четырех различных режимов в зависимости от уровней смещения на двух диодах транзистора.
Из четырех режимов наиболее важным является активный или нормальный режим, в котором эмиттерный базовый переход смещен в прямом направлении, а коллекторный базовый переход – в обратном направлении. Именно в этом режиме работы транзистор может обеспечить усиление по току.
Режимы работы биполярного транзистора | ||
---|---|---|
Рабочий режим | Эмиттер базовый переход | Коллектор нижний переход |
Активный / нормальный | Вперед | Реверс |
Отсечка | Реверс | Реверс |
Насыщенность | Вперед | Вперед |
Обратный | Реверс | Вперед |
Теория транзисторов и диаграмма энергетических зон
Диаграмма энергетических зон раскрывает важный аспект теории работы транзисторов.
Диаграмма энергетического диапазона транзистора для нормального рабочего режимаНа диаграмме показаны некоторые из основных составляющих тока. Прямой ток эмиттерного базового перехода состоит из диффузионного тока электронов и дырок I nE и I p , а также токов рекомбинации в области обеднения I rD и в базе I rB .
Области транзистора – работа в активном режимеМожно рассчитать составляющие тока, если предположить, что уровни легирования однородны.
InE = q A Dn ni 2NA xB exp (q Vbe kT)
Ip = q A Dp ni 2NDE xE exp (q Vbe kT)
Где:
N DE = концентрация донора в эмиттере
x B = нейтральная база
x E = нейтральный эмиттер
I nE = стандартный диффузионный ток pn-перехода
I p = диффузионный ток стандартного перехода
Важные параметры теории транзисторов
Некоторые из важных уравнений теории транзисторов приведены ниже:
Эффективность впрыска эмиттера:
γ = InEIEБазовый транспортный коэффициент:
α = InCInE Другие электронные компоненты: Резисторы
Конденсаторы
Индукторы
Кристаллы кварца
Диоды
Транзистор
Фототранзистор
Полевой транзистор
Типы памяти
Тиристор
Разъемы
Разъемы RF
Клапаны / трубки
Аккумуляторы
Переключатели
Реле
Вернуться в меню «Компоненты».. .
Общие сведения о транзисторах с биполярным переходом
Введение
Транзисторы – это фундаментальный компонент цифровой электроники, от которого мы может создавать схемы, которые могут выполнять логику. По своей сути они действуют как переключатели включения / выключения, которыми можно управлять электрически, и хотя это простая концепция, мне было трудно понять именно , как они работали в реальный мир. Например, в сообщении в блоге я написал о понимании комплект колеса рулетки, я не мог понять, что будет за транзистор делаю так, как серия резистор-конденсатор находилась в процессе зарядки; как близко к будет ли конденсатор полностью заряжен до включения затвора?
Многие веб-сайты объясняют, что делают NPN-транзисторы и как коллектор, base и emitter связаны с этим поведением.Например, Sparkfun’s страница транзистора разбивает режимы работы из ваш стандартный транзистор NPN в следующий:
- Режим насыщения происходит, когда напряжение на базе (относительно земля; V база ) выше как напряжение на эмиттере и коллектор (опять же относительно земли; V эмиттер и В коллектор )
- активный режим происходит, когда базовое напряжение (V base ) выше чем эмиттер V эмиттер но ниже коллектора Коллектор V
- режим отсечки происходит, когда базовое напряжение (V base ) ниже, чем как коллектор (V коллектор ), так и эмиттер (V эмиттер )
Но простых соотношений и нескольких уравнений было недостаточно, чтобы помочь я понимаю, как я могу использовать эти транзисторы в реальных схемах.Так что для ради развития моего собственного понимания транзисторов (в частности, биполярных переходные транзисторы, или BJT), я установил несколько тестов, чтобы охарактеризовать поведение транзистора 2N2222 NPN.
Создание испытательной схемы
Чтобы получить практическое представление о том, как эти режимы выглядят на практике, я построил схему с потенциометром 10K, подключенным к базе, чтобы я мог посмотрим, в какой момент транзистор начал проводить:
где
-
R1
подтягивает напряжение эмиттера от земли (вместе сR4
), так что мы можем продемонстрировать режим отсечки -
R2
снижает напряжение коллектора -
R3
– блокиратор обратного хода для предотвращения короткого замыкания цепи, когда потенциометр сопротивление идет на ноль -
R4
поднимает напряжение эмиттера от земли -
R5
– потенциометр 10 кОм для проверки эффекта изменения База V на эмиттере V
С помощью этой схемы мы можем напрямую измерить три напряжения, которые управляют поведение нашего NPN-транзистора при включении схемы в трех местах:
, а затем измерения, когда потенциометр отклоняется от нулевого сопротивления. на полные 10 кОм.Самый простой способ – использовать простой мультиметр. способ провести этот эксперимент, если это немного утомительно:
На фото выше черный зажим прикреплен к земле, а красный зажим – к земле. прикреплен к коллектору.
Эксперименты с тестовой схемой
Медленно поворачивая потенциометр и измеряя напряжение на коллектор, база, эмиттер, мы можем очень четко увидеть, как влияет напряжение на база (V база ) имеет на эмиттер и коллектор.Набор в потенциометр для установки V base на значения в диапазоне от 0 до 3,3 В с шагом 0,1 В и измерение других напряжений дает нам следующее:
На этой диаграмме много интересных данных, поэтому давайте рассмотрим несколько вещи, которые он говорит нам о транзисторах NPN.
1. Определение различных режимов транзистора
Как обсуждалось выше, транзисторы NPN могут работать в одном из трех режимов:
Режим | Критерии | Поведение |
---|---|---|
Насыщенность | V цоколь > V коллектор V цоколь > V эмиттер | Работает как выключатель |
Активный | V коллектор > V база > V эмиттер | Излучатель V пропорционален базе V |
Отсечка | V цоколь V цоколь | Работает как разомкнутый выключатель |
На нашем графике измеренных данных эти режимы представлены следующим образом:
И действительно, мы видим, что
- в режиме отсечки, коллектор остается под постоянным высоким напряжением, в то время как эмиттер остается при постоянном низком напряжении
- в режиме насыщения, коллектор находится под тем же напряжением , что и эмиттер, и действует как короткое замыкание. цепь
- в активном режиме, разница напряжений коллектор-эмиттер уменьшается по мере того, как напряжение базы увеличивает
Поведение во всех трех регионах заметно линейно; поскольку V base является увеличивается, результирующее изменение двух других напряжений напрямую пропорциональный.Это удобно, потому что другие цифровые компоненты (как и серия RC) , а не , имеют простое линейное поведение; хорошо знать, что транзистор NPN не усложняет еще больше, вводя другие нелинейное поведение.
2. Определение напряжения включения
Один из практических аспектов работы транзисторов – это диапазон напряжений, в котором они работают. должен быть в активном режиме, но транзистор по-прежнему ведет себя так, как если бы он был в режим отсечки – то есть V база > V эмиттер но транзистор по-прежнему не пропускает ток.В наших измеренных данных это происходит между базовыми значениями V от 0,6 В до 1,2 В:
Это минимальное напряжение для получения любой проводимости называется напряжением включения . Получается, что при разнице между V base и В эмиттер ниже этого напряжения включения 0,6 В, транзистор ведет себя так, как будто он все еще находится в режиме отсечки. Это V BE <0,6 В критерии - внутреннее свойство транзистора; даже если Напряжение коллектора составляет 5 В (или выше), этот порог равен 0.Остается 6 В постоянный.
Это критическое свойство транзисторов с биполярным переходом, поскольку любой источник сопротивление, которое вы поставили после того, как эмиттер подтянет V эмиттер и поэтому увеличьте базу V
, которую вам нужно поставить, чтобы транзистор начать проводить. Например, прикрепив светодиод к эмиттеру в цепи 3,3 В может не всегда работать должным образом – у вас есть только 0,7 В поиграйте с опережением коллектора после падения 2,0 В на светодиодах, и это Напряжение включения 0,6 В.Характеристики транзисторов PNP
ТранзисторыPNP могут работать в одном из трех режимов:
Режим | Критерии | Поведение |
---|---|---|
Насыщенность | V цоколь V цоколь | Работает как выключатель |
Активный | V эмиттер > V цоколь > V коллектор | Излучатель V пропорционален базе V |
Отсечка | V цоколь > V коллектор V цоколь > V эмиттер | Работает как разомкнутый выключатель |
, что по сравнению с таблицей для транзисторов NPN представляет собой почти полная противоположность режимам NPN.А если подключить резистор PNP (например, 2N2907) в нашу тестовую схему как есть и запускаем эксперимент, мы получаем очень странные результаты:
Согласно приведенной выше таблице, почти все значения V base мы
Тестирование происходит в четвертом режиме, который называется обратно-активным режимом ,
где V эмиттер
Чтобы применить экспериментальную технику, которую мы использовали для характеристики NPN транзисторов на транзисторах PNP, есть несколько изменений, которые мы должны сделать, чтобы наша тестовая схема:
- Мы должны заменить NPN 2N2222 на PNP 2N2907 и поменять местами полярность так, чтобы эмиттер находился под более высоким напряжением, чем коллектор.
-
R1
должен быть подключен послеR2
сейчас. В нашей тестовой схеме NPNR1
работа заключалась в том, чтобы поднять напряжение на стороне низкого напряжения транзистора, чтобы мы мог наблюдать режим отсечки, когда V base был ниже, чем Излучатель В . В этой испытательной схеме PNP будет наблюдаться режим отсечки. когда база V выше, чем эмиттер V , поэтому перемещениеR1
приведет к Вытаскиваем эмиттер V из нашего +3.Источник 3 В. -
R2
следует заменить на более низкое сопротивление, чтобы мы могли наблюдать режим насыщения. В тестовой схеме NPN задачаR2
заключалась в том, чтобы тянуть Коллектор V внизу V основание , где V основание регулируется (частично)R3
. Режим насыщения в этом случае PNP требует что эмиттер V должен быть на выше , чем базовый V (опять же частично наR3
), поэтомуR2
не должен быть большеR3
.
Применение этих трех изменений приводит к схеме, которая выглядит следующим образом:
Обратите внимание: поскольку эмиттер и коллектор физически перевернуты, мы должны позаботьтесь о том, чтобы не забыть, какой вывод транзистора мы измеряем нашим мультиметр!
Эта испытательная схема транзистора PNP демонстрирует следующие соотношения между коллектором V , базой V и эмиттером V :
На первый взгляд, это может сильно отличаться от графика напряжения NPN-транзистора. из предыдущего раздела.Однако, если вы посмотрите на это вверх ногами, вы можете возможность увидеть, насколько похожи транзисторы PNP и NPN. Все одинаковые режимы присутствуют, как и напряжение включения:
Единственное отличие, как вам скажет любой учебник, состоит в том, что транзисторы PNP включены, когда базовое напряжение низкое.
Следующие шаги
Эти эксперименты поясняют, но их также очень утомительно проводить. с механическим потенциометром и портативным мультиметром. Чтобы выполнить это своего рода характеристики более сложных схем, таких как логические вентили, мы нужен более эффективный способ изменения напряжения и проведения измерений.К этому конец, я написал на странице о том, как использовать цифровой потенциометр (дигипот) и аналого-цифровой преобразователь (АЦП) вместе с Raspberry Pi для автоматизации этих эксперименты.
Биполярный переходной транзисторБиполярный переходный транзистор
следующий: CE Характеристики Up: Введение в электронику Предыдущая: LM 317: Регулятор Содержание Биполярный переходный транзистор (BJT) имеет три рабочих области:
- Отрезка (для NPN BJT)
- Активный регион ( для NPN)
- насыщенный (для NPN)
В активной области, для кремниевого БЮТ и для германия BJT.
В насыщенной области, .
Общие реализации BJT показаны в 10.1.
В активном регионе:
На рисунке показаны три конфигурации в активной области.
10.2. Для активной области указанное условие смещения:
довольный.
Когда транзистор используется для переключения, он работает либо в режим отсечки или насыщения.
В активной области токи базы и коллектора удовлетворяют требованиям условие (Коэффициент усиления постоянного тока. значения). является константой для конкретного транзистора, которая изменяется от до для разные транзисторы. Обратите внимание, что это условие НЕ выполняется для насыщения. и операции отключения BJT .
Теперь обратимся к проблеме схемотехники, в которой мы находим соответствующие значения сопротивлений и напряжений на рисунке 10.От 3 до обеспечить BJT в активной области . Проблема приобретает важность, поскольку многие транзисторные приложения – это те, в которых он находится в активной области.
В отсечке, как . Если становится меньше, транзистор находится в состоянии насыщения. Нам нужно обеспечить что БЮТ не в этих состояниях.
В активной области, как
,
Последнее уравнение показывает, что транзистор в этом режиме (активном) работает нормально. в основном усилитель тока.
Пусть . Потом, . Предполагать у BJT есть. .
Также нам необходимо обеспечить , так что BJT не в насыщенность. В предельном случае , когда BJT ввод насыщения из активной области. (В активной области, ).
Таким образом, . Это, для обеспечения BJT в активном область, край.
Предположим, мы увеличиваем до . Потом, . Таким образом, текущий прирост .
Отсечка и насыщение используются в приложении переключения.Для схемы, показанной на На рисунке 10.4 мы находим условия для работы BJT в качестве переключателя.
Когда,, и , так как BJT находится в отсечке.
Теперь найдите такой, что BJT находится в насыщении.
Таким образом, для , БЮТ находится в активной области.
Две разные стратегии смещения показаны на рисунке 10.6 и 10.7.
Подразделы
следующий: CE Характеристики Up: Введение в электронику Предыдущая: LM 317: Регулятор Содержание Инсинг 2007-07-25
Почему режимы работы BJT названы именно так?
Вы спрашиваете, почему их так зовут? Они названы так из-за того, как транзистор ведет себя в упомянутых состояниях.
Таким образом, в основном вы можете столкнуться с областями отсечки, активности и насыщения. Обратная активная область, я читал, что у нее есть некоторые применения в цифровом мире, но у меня мало знаний об этом, но я попытаюсь объяснить, почему она так называется. Возвращаясь к трем общим областям, вы можете просто сказать, что это состояние транзистора «полностью выключено», «контролируется» и «полностью включено» соответственно.
Прежде чем идти дальше, я бы просто добавил, что базовый вывод транзистора отвечает за включение и выключение устройства.Этот вывод контролирует, как ток течет от коллектора к эмиттеру.
Итак, возьмем NPN-транзистор: (гугл)
- Область отсечки – Согласно таблице, которую вы предоставили, база имеет очень небольшое напряжение. Это означает, что от коллектора к эмиттеру проходит очень небольшой ток. Вот почему это называется отсечкой, потому что протекающий ток «отсекается» или просто «отключается»
- Область насыщения – Я решил обсудить насыщенность перед активной областью, потому что это может помочь в понимании концепции.Насыщение – это когда напряжение на базовом выводе настолько велико, что «насыщение» означает, что оно не может усиливаться дальше. Как было сказано ранее, «полностью включен».
- Активная область – Отметив, что области отсечки и насыщения являются полностью выключенными и полностью включенными состояниями соответственно, активная область находится посередине. Здесь вы сможете управлять усилением транзистора. Регулировка входа на базовом штыре определяет усиление. Значительное увеличение напряжения приблизит вас к области насыщения, а уменьшение – к области отсечки.Это то, что я имел в виду под «контролем», изменения в базовом выводе также влияют на производительность. Именно поэтому он называется «Активный».
- Обратно-активная область – Поляризация аналогична активной области, но только в обратном направлении. Дело в том, что он не может усиливаться, как активная область.
Надеюсь, это вам поможет!
Артикулы:
http://www.ee.columbia.edu/~bbathula/courses/SSDT/lect06.pdf
Также попробуйте посмотреть на эти слайды:
https: // www.wisc-online.com/learn/career-clusters/stem/sse3603/active-region-operation-of-a-transistor
.