Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Учебник электротехники и электроники

Учебник.

Ю.А. Комиссаров, Г.И. Бабокин «Общая электротехника и электроника» ИНФРА-М, 2016 год, 479 стр. (18,9 мб. pdf)

Представленный учебник электротехники и электроники предназначен для студентов вузов: бакалавров и магистров, изучающих дисциплину — «Общая электротехника и электроника». В книге рассмотрены принципы действия, свойства и область применения основных электротехнических и электронных устройств. Рассмотрены основные электротехнические законы и методика анализа электрических: постоянного тока, однофазных, трехфазных, а также магнитных и электронных цепей. Данное учебное пособие дополнено примерами решения задач из разделов электрических цепей и электрических машин.

Подробно рассмотрена работа микропроцессорных систем и элементная база современных электронных устройств. Рассказано о методах измерения электрических величин: напряжения, тока, мощности и сопротивления в цепях постоянного и переменного тока, с помощью аналоговых и цифровых измерительных приборов. Приводится классификация электроизмерительных приборов. Книга рекомендуется в качестве учебного пособия для общеинженерной подготовки бакалавров и магистров.

ISBN: 978-5-16-010416-4 (print)
ISBN: 978-5-16-102391-4 (online)

Оглавление.
Раздел I. Электрические и магнитные цепи

Глава 1. Основные определения. топология и методы расчета электрических цепей постоянного тока
Глава 2. Анализ и расчет цепей переменного тока
Глава 3. Анализ и расчет трехфазных линейных цепей переменного тока
Глава 4. Переходные процессы в линейных электрических цепях
Глава 5. Анализ и расчет нелинейных электрических цепей постоянного тока
Глава 6. Анализ и расчет магнитных цепей

Раздел II. Электромагнитные устройства и электрические машины

Глава 7. Трансформаторы
Глава 8. Машины постоянного тока
Глава 9. Асинхронные машины
Глава 10. Трехфазные синхронные машины

Раздел III. Основы электроники и электрические измерения

Глава 11. Элементная база современных электронных устройств
Глава 12. Источники вторичного электропитания
Глава 13. Усилители электрических сигналов
Глава 14. Импульсные и автогенераторные устройства
Глава 15. Основы цифровой электроники
Глава 16. Микропроцессорные средства
Глава 17. Электрические измерения и приборы
Список технической литературы

Скачать книгу бесплатно18,9 мб. pdf

Похожая литература

1 009

https://www.htbook.ru/ehlektrotekhnika/obshhie_napravlenija/uchebnik-elektrotehniki-i-elektronikiУчебник электротехники и электроникиhttps://www.htbook.ru/wp-content/uploads/2016/12/Obschaya-elektrotehnika-i-elektronika.jpghttps://www.htbook.ru/wp-content/uploads/2016/12/Obschaya-elektrotehnika-i-elektronika.jpgОбщие направленияУчебник. Ю.А. Комиссаров, Г.И. Бабокин ‘Общая электротехника и электроника’ ИНФРА-М, 2016 год, 479 стр. (18,9 мб. pdf) Представленный учебник электротехники и электроники предназначен для студентов вузов: бакалавров и магистров, изучающих дисциплину – ‘Общая электротехника и электроника’.
В книге рассмотрены принципы действия, свойства и область применения основных электротехнических и электронных устройств. Рассмотрены…YakovLukich [email protected]Техническая литература

Учебники по общей электротехнике

Задачник по теории линейных электрических цепей

Автор: Шебес М.Р., Каблукова М.В.

Размер: 7,54 мб

Формат: djvu

21247

Теоретические основы электротехники

Автор: Бессонов Л.А.

Размер: 7,5 мб

Формат: djvu

87246

Теоретические основы электротехники. 4-е изд. Том 1

Автор: Демирчян К. С., Нейман Л.Р.

Размер: 3,88 мб

Формат: pdf

36549

Теоретические основы электротехники. 4-е изд. Том 2

Автор: Демирчян К.С., Нейман Л.Р.

Размер: 3,46 мб

Формат: pdf

20642

Теоретические основы электротехники. 4-е изд. Том 3

Автор: Демирчян К.С., Нейман Л.Р.

Размер: 3,10 мб

Формат: pdf

23603

Учебное пособие по курсу электротехники и электроники

Автор: Цуркин А.П., Мосолов Д.Н.

Размер: 2,81 мб

Формат: doc

31668

Электротехника

Автор: Борисов Ю. М., Липатов Д.Н., Зорин Ю.Н.

Размер: 2,91 мб

Формат: djvu

28150

Электротехника. Основные положения, примеры и задачи

Автор: Иванов И.И., Лукин А.Ф., Г.И. Соловьев

Размер: 3 мб

Формат: djvu

17670

Электротехника

Автор: Касаткин А.С., Немцов М.В.

Размер: 20,9 мб

Формат: djvu

15682

Электротехника

Автор: Частоедов Л.А.

Размер: 3,5 мб

Формат: djvu

12460

Книги-Электротехника

Страницы >>> [7] [6] [5] [4] [3] [2] [1]
Файл
Краткое описаниеРазмер
Сливинская А. Г., Гордон А.В. Электромагниты со встроенными выпрямителями. Москва: Издательство “Энергия”, 1970 год.
В книге излагаются основные вопросы теории электромагнитов переменного тока со встроенными выпрямителями, рассматриваются их характеристики и даются необходимые соотношения для расчета. Приводятся некоторые экспериментальные данные по выполненным электромагнитам с выпрямлением, а также дается сопоставление характеристик наиболее распространенных типов таких электромагнитов.
20 Mb
Бессонов Л.А. Теоретические основы электротехники (в трёх частях). Издание четвертое. Москва: Издательство “Высшая школа”, 1964 год.
Теоретические основы электротехники (ТОЭ) являются одной из основных дисциплин многих высших технических учебных заведений. На ней базируются профилирующие дисциплины этих вузов. Курс ТОЭ изучается студентами в течение трех семестров. В соответствии с этим предлагаемый вниманию читателя учебник по курсу ТОЭ издается в трех частях. Первая и вторая части курса посвящены теории электрических цепей, третья часть — теории электромагнитного поля.
8.6 Mb
Борисоглебский П.В., Дмоховская Л.Ф., Ларионов В.П., Пинталь Ю.С., Разевиг Д.В., Рябкова Е.Я. Техника высоких напряжений. Под общей редакцией Д.В.Разевига. Москва-Ленинград: Государственное энергетическое издательство, 1963 год.
В первом разделе подробно изложены основные вопросы теории газового разряда при высоких давлениях и результаты экспериментального определения электрической прочности газового промежутка. Второй раздел посвящен разбору основных методов заземления нейтрали электрических систем и их влияние на величину перенапряжений.
7.4 Mb
Коваленков В.И. Теория передачи по линиям электросвязи. Том 1. Москва: Связьтехиздат, 1937 год.
Основная цель учебного пособия – заинтересовать студента самим процессом научного анализа, привить ему современные методы подобной работы, подготовить к самостоятельной научной работе и творчеству.
8.5 Mb
Коваленков В.И. Теория передачи по линиям электросвязи. Том 2. Москва: Связьтехиздат, 1938 год.
Первый том книги имел своим содержанием теорию пассивного и активного четырехполюсников. Цель настоящего тома – показать, как пользоваться выводами первого тома при анализе основных вопросов практической электросвязи.
8.1 Mb
Норман Кемпбелл. Электричество. С.-Петербург: Издание П.П.Сойкина, 1914 год.
Это небольшая книжка представляетъ попытку освѣтить при помощи основныхъ законовъ и теорій ученія объ электричествѣ нѣкоторые изъ главныхъ принциповъ, на которыхъ базируется все вообще научное исслѣдованіе.
Она предназначается для читателя, интересующагося общими вопросами знанія; не требуя отъ него никакихъ предварительныхъ свѣдѣній о тѣхъ фактахъ, которые, въ ней разсматриваются, она потребуетъ отъ него только напряженнаго вниманія и тщательнаго размышленія; она не имѣетъ цѣлью доставить легкое чтеніе на полчаса, но стремится удовлетворить потребностямъ того, кто дѣйствительно жаждетъ знанія.
42.3 Mb
Хвольсон О.Д. Популярные лекции об электричестве и магнетизме. Второе издание. Москва-Ленинград: Типография товарищества “Общественная польза”, 1886 год.
Вниманию читателей предлагается книга известного отечественного физика и популяризатора науки О.Д.Хвольсона, содержащая его популярные лекции об электричестве и магнетизме. Рассматриваются простейшие электрические явления, распределение электричества на проводниках, источники электричества. Исследуется электрическая энергия, электрическое сопротивление, сила тока; описываются физиологические, тепловые и химические действия тока, а также взаимодействие токов. Разбирается явление электромагнитной индукции. Излагаются основные законы (закон Ома, закон Джоуля-Ленца и др.) и их приложения; представлено описание базовых опытов. Большое внимание в книге уделено рассмотрению различных форм применения учения об электромагнетизме — начиная от ламп накаливания до телеграфа и телефона.
Прислал книгу Станкевич Леонид.
5.43 Mb
Г.И.Бабат. Токи высокой частоты. Москва: Издательство “Знание”, 1956 год.
В настоящей брошюре мы рассмотрим промышленное применение токов высокой частоты (ТВЧ), а также некоторые применения ТВЧ для научных исследований.
Прислал книгу Николай Савченко.
1.49 Mb
Г.И.Бабат. Электричество работает. Москва-Ленинград: Государственное энергетическое издательство, 1950 год.
Автором сделана попытка изложить в популярной форме важнейшие вопросы современной электротехники. В главе первой — Язык электротехники — излагаются основы построения схем и кратко описываются свойства наиболее употребительных схем.
Во второй главе—Строительные материалы— описаны основные электротехнические материалы и простейшие конструкции. Повсюду указаны процессы в материалах и поведение материалов в работе.
В третьей главе — Мера и число — изложены основы измерительной техники и описаны современные электроизмерительные приборы и устройства.
В четвертой главе — Завод без складов готовой продукции — описан технологический процесс электрических станций.
В пятой главе — Распределение и управление— изложены основы действия аппаратуры и устройств управления.
В шестой главе — О волнах, о ситах, о разных других вещах, а, главным образом, о дальней связи — изложены основы связи по проводам и без проводов.
В главе седьмой — Искания лучших решений — рассматриваются задачи современной электротехники.
Книга предназначена для широких кругов читателей, интересующихся электротехникой.
Отсканировал книгу AAW. Прислал книгу Станкевич Леонид.
16 Mb
Пиотровский Л.М. Электрические машины. Москва-Ленинград: Государственное энергетическое издательство, 1950 год.
В книге рассмотрен комплекс вопросов электрических машин, знание которых необходимо студентам энергетических и электротехнических втузов, специализирующимся по электромашиностроению, электростанциям, передаче и распределению электрической энергии и по другим отраслям электротехники, связанным с работой электрических машин.
Прислал книгу Станкевич Леонид.
27.5 Mb
Петров Г.Н. Трансформаторы. Том 1. Основы теории. Москва-Ленинград: Государственное энергетическое издательство, 1934 год.
Настоящую книгу автор предназначает, во первых, для студентов электротехнических втузов в качестве руководства по общему курсу трансформаторов и пособия к дипломному проектированию в области трансформаторостроения, а во-вторых, для инженеров работающих по производству и эксплуатации трансформаторов.
12.3 Mb
Бессонов Л.А. Электрические цепи со сталью. Москва-Ленинград: ГОСЭНЕРГОИЗДАТ, 1948 год.
В книге рассматриваются электрические цепи, содержащие дроссели и трансформаторы со стальными сердечниками, как при наличии одного переменного поля, так и при подмагничивании постоянным полем. В книге содержатся основы теории таких цепей, а также схемы, конструкции и методы расчета различных статических аппаратов (пик-трансформаторов, стабилизаторов, дросселей насыщения, магнитных усилителей, измерительных трансформаторов постоянного тока, умножителей частоты и т. п.). Книга предназначена для научных работников, аспирантов и инженеров, а также для студентов, специализирующихся в области автоматики и электрических аппаратов.
13.2 Mb
Вонсовский С.В., Шур Я.С. Ферромагнетизм. Москва-Ленинград: ОГИЗ. Государственное издательство технико-теоретической литературы, 1948 год.
Настоящая книга является первой монографией на русском языке, в которой полно и всесторонне излагается современное состояние теории ферромагнетизма. Она содержит также обстоятельный обзор новейшего экспериментального материала. Много места в книге уделено работам советских металлофизиков, в частности работам и самих авторов. Книга рассчитана на широкий круг научных работников и на инженеров-металлофизиков.
36.8 Mb
Л.Л. Тир. Трансформаторы для установок индукционного нагрева повышенной частоты. Москва-Ленинград: Государственное энергетическое издательство, 1961 год.
В книге излагаются теория, расчёт и конструкции трансформаторов повышенной частоты (до 10000 Гц) для установок индукционного нагрева. Излагается также технология изготовления этих трансформаторов в объёме, необходимом для изготовления специальных исполнений трансформаторов на машиностроительных заводах, использующих индукционный нагрев.
Книга обнаружена на авторском сайте Валентина Володина.
5.82 Mb
Рюмин В.В. Занимательная электротехника на дому и самодельные электрические приборы. Ленинград: Издательство “Время”, 1927 год.
В своей книге автор Владимир Владимирович Рюмин (1874—1937), русский инженер и замечательный педагог, получивший широкую известность, как популяризатор науки и техники, старался упростить постройку аппаратов и сделать ее доступной любителям науки при минимальных расходах (рентгеновского аппарата из лампы накаливания, газоразрядных трубок Гейслера без вакуум насоса, самодельной высоковольтной катушки Румкорфа и т. д.), объясняя при этом принцип их конструкции и действия.
Несмотря на неизбежное устаревание, любители науки найдут интересные сведения.
Прислал книгу Иван Григорьев.
32.6 Mb
С.К.Андриевский, А.Л.Бартновский. Практикум по электротехнике. Учебное пособие для X класса средней школы. Москва: Государственно учебно-педагогическое издательство министерства просвещения РСФСР, 1958 год.
В книге приводится 31 практическая работа по разделам электротехники, пояснения, объяснения и техника безопасности.
Прислал книгу dan.
6.96 Mb
Крон Г. Применение тензорного анализа в электротехнике. Москва-Ленинград: Государственное Энергетическое Издательство, 1955 год.
Книга посвящена применениям разрабатываемого автором метода расчета сложных электрических цепей и вращающихся электрических машин. В книге собраны в сокращенном и переработанном виде результаты опубликованных ранее работ автора. Материал основных глав изложен в форме, доступной для инженеров-электриков с обычной математической подготовкой. В конце книги приводится приложение, составленное проф. Э.А. Мееровичем. В приложении рассмотрены вопросы геометрической теории цепей, которые могут облегчить чтение книги.
8.36 Mb
Попов В.К. Электропривод. Пособие для механиков и технологов. Ленинград-Москва: Издательство МАШГИЗ, 1946 год.
В книге дается краткий обзор истории развития электропривода и излагаются основные понятия об электроприводе. Рассматриваются механические характеристики различных типов электродвигателей и даются общие основания рационального выбора типа электропривода.
34.6 Mb
V.Popovs, N.Mansurovs, S.Nikolajevs. Elektrotehnika. Riga: Latvijas Valsts izdevnieciba, 1962 gads. На латышском языке.
Перевод книги – В.С.Попов,И.И.Мансуров,С.А.Николаев. ЭЛЕКТРОТЕХНИКА. Издание седьмое, переработанное и дополненное. Ленинград: Государственное энергетическое издательство, 1960 год.
Прислал книгу Станкевич Леонид.
4.12 Mb
A.Akmentins, A.Aukums, O.Abolins, K.Baums, E.Vainovskis. Elektrotehnika vidusskolam. Riga: izd.”Zvaigzne”, 1966 gads.
А.Акментиньш, А.Аукумс, О.Аболиньш, К.Баумс, Э.Вайновскис. ЭЛЕКТРОТЕХНИКА. Учебник для средней школы. Рига: “Звайгзне”, 1966 год. Книга на латышском языке.
Прислал книгу Станкевич Леонид.
4.39 Mb
Страницы >>> [7] [6] [5] [4] [3] [2] [1]

Электротехника | Актуальный список литературы за 2015-2019 гг.

СПИСОК ЛИТЕРАТУРЫ

1. Электротехника: Учебник / Под ред. Бутырина П.А.. – М.: Academia, 2018. – 187 c.
2. Электротехника и электроника: иллюстрированное учебное пособие / Под ред. Бутырина П.А.. – М.: Academia, 2018. – 892 c.
3. Электротехника и электроника / Под ред. Петленко Б.И.. – М.: Academia, 2017. – 31 c.
4. Электротехника / Под ред. Бутырин П.А.. – М.: Academia, 2016. – 352 c.
5. Плакаты: Электротехника и электроника. Иллюстрированное учеб. пособие. / Под ред. Бутырина П.А.. – М.: Academia, 2017. – 352 c.
6. Аполлонский, С.М. Электротехника. практикум (для спо) / С.М. Аполлонский. – М.: КноРус, 2018. – 352 c.
7. Аполлонский, С.М. Электротехника (для спо) / С.М. Аполлонский. – М.: КноРус, 2018. – 352 c.
8. Бутырин, П.А. Электротехника: Учебник / П.А. Бутырин. – М.: Academia, 2018. – 384 c.
9. Бутырин, П.А. Плакаты: Электротехника и электроника: Учебное пособие / П.А. Бутырин. – М.: Academia, 2018. – 384 c.
10. Бутырин, П.А. Электротехника / П.А. Бутырин. – М.: Academia, 2018. – 445 c.
11. Бутырин, П.А. Электротехника / П.А. Бутырин. – М.: Academia, 2018. – 384 c.
12. Бутырин, П.А. Электротехника: учебник для учреждений нач. проф. Образования / П.А. Бутырин. – М.: Academia, 2018. – 384 c.
13. Ванюшин, М. Занимательная электроника и электротехника для начинающих и не только / М. Ванюшин. – СПб.: Наука и техника, 2016. – 352 c.
14. Гальперин, М.В. Электротехника и электроника: Учебник / М.В. Гальперин. – М.: Форум, 2016. – 48 c.
15. Данилов, И.А. Общая электротехника: Учебное пособие для бакалавров / И.А. Данилов. – Люберцы: Юрайт, 2016. – 673 c.
16. Ермуратский, П. Электротехника и электроника / П. Ермуратский, Г. Лычкина. – М.: ДМК, 2015. – 416 c.
17. Жаворонков, М.А. Электротехника и электроника: Учебное пособие / М.А. Жаворонков. – М.: Academia, 2017. – 398 c.
18. Жаворонков, М.А. Электротехника и электроника: учебное пособие / М. А. Жаворонков. – М.: Academia, 2017. – 64 c.
19. Заварыкин, Б.С. Электротехника и электр.в элект. сист.горного произ.: Уч.пос / Б.С. Заварыкин, О.А. Кручек, Т.А. Сайгина и др. – М.: Инфра-М, 2017. – 768 c.
20. Иванов, И.И. Электротехника и основы электроники: Учебник / И.И. Иванов, Г.И. Соловьев, В.Я. Фролов. – СПб.: Лань, 2019. – 736 c.
21. Иванов, И.И. Электротехника и основы электроники: Учебник / И.И. Иванов, Г.И. Соловьев, В.Я. Фролов. – СПб.: Лань, 2016. – 736 c.
22. Иньков, Ю.М. Электротехника и электроника / Ю.М. Иньков. – М.: Academia, 2019. – 126 c.
23. Иньков, Ю.М. Электротехника и электроника. / Ю.М. Иньков. – М.: Academia, 2019. – 12 c.
24. Комиссаров, Ю.А. Общая электротехника и электроника: Учебник / Ю.А. Комиссаров, Г.И. Бабокин. – М.: Инфра-М, 2017. – 190 c.
25. Комиссаров, Ю.А. Общая электротехника и электроника: Учебник / Ю.А. Комиссаров, Г.И. Бабокин, П.Д. Саркисова. – М.: Инфра-М, 2017. – 192 c.
26. Кривоногов, Н.А. Общая электротехника: учебное пособие / Н.А. Кривоногов. – РнД: Феникс, 2016. – 222 c.
27. Кривоногов, Н.А. Общая электротехника: Учебное пособие / Н.А. Кривоногов; под ред. Потапова Л.А.. – Рн/Д: Феникс, 2015. – 22 c.
28. Кузовкин, В.А. Электротехника и электроника: Учебник для бакалавров / В.А. Кузовкин, В.В. Филатов. – Люберцы: Юрайт, 2016. – 431 c.
29. Кузовкин, В.А. Электротехника и электроника: Учебник для СПО / В.А. Кузовкин, В.В. Филатов. – Люберцы: Юрайт, 2016. – 431 c.
30. Мальц, Э.Л. Электротехника и электрические машины для студ. ВУЗов: Учебное пособие / Э.Л. Мальц. – СПб.: Корона-Век, 2016. – 304 c.
31. Мартынова, И.О. Электротехника (спо) / И.О. Мартынова. – М.: КноРус, 2018. – 160 c.
32. Мартынова, И.О. Электротехника. лабораторно-практические работы (для спо) / И.О. Мартынова. – М.: КноРус, 2017. – 128 c.
33. Миленина, С.А. Электротехника, электроника и схемотехника: Учебник и практикум для СПО / С. А. Миленина, Н.К. Миленин. – Люберцы: Юрайт, 2016. – 399 c.
34. Миленина, С.А. Электротехника, электроника и схемотехника: Учебник и практикум для академического бакалавриата / С.А. Миленина, Н.К. Миленин. – Люберцы: Юрайт, 2015. – 399 c.
35. Миленина, С.А. Электротехника, электроника и схемотехника: Учебник и практикум для академического бакалавриата / С.А. Миленина, Н.К. Миленин. – Люберцы: Юрайт, 2016. – 399 c.
36. Морозова, Н.Ю. Электротехника и электроника: Учебник / Н.Ю. Морозова. – М.: Академия, 2018. – 320 c.
37. Морозова, Н.Ю. Электротехника и электроника / Н.Ю. Морозова. – М.: Academia, 2017. – 200 c.
38. Морозова, Н.Ю. Электротехника и электроника. Учебник. / Н.Ю. Морозова. – М.: Academia, 2017. – 200 c.
39. Немцов, М.В. Электротехника и электроника: Учебник / М.В. Немцов. – М.: Академия, 2017. – 288 c.
40. Немцов, М.В. Электротехника и электроника / М.В. Немцов. – М.: Academia, 2015. – 15 c.
41. Немцов, М. В. Электротехника и электроника / М.В. Немцов. – М.: Academia, 2017. – 126 c.
42. Немцов, М.В. Электротехника и электроника: Учебник / М.В. Немцов. – М.: Academia, 2015. – 15 c.
43. Немцов, М.В. Электротехника: Учебник / М.В. Немцов. – М.: Academia, 2016. – 16 c.
44. Немцов, М.В. Электротехника: Учебник / М.В. Немцов. – М.: Academia, 2017. – 240 c.
45. Немцов, М.В. Электротехника: В 2 кн.Кн. 1: Учебник / М.В. Немцов. – М.: Академия, 2018. – 528 c.
46. Новожилов, О.П. Электротехника (теория электрических цепей): Учебник для академического бакалавриата / О.П. Новожилов. – Люберцы: Юрайт, 2016. – 643 c.
47. Новожилов, О.П. Электротехника и электроника: Учебник для бакалавров / О.П. Новожилов. – Люберцы: Юрайт, 2016. – 653 c.
48. Новожилов, О.П. Электротехника (теория электрических цепей) в 2 ч. часть 1: Учебник для академического бакалавриата / О.П. Новожилов. – Люберцы: Юрайт, 2016. – 403 c.
49. Новожилов, О.П. Электротехника (теория электрических цепей) в 2 ч. часть 2: Учебник для академического бакалавриата / О.П. Новожилов. – Люберцы: Юрайт, 2016. – 247 c.
50. Петленко, Б.И Электротехника и электроника: Учебник / Б.И Петленко; под ред. Ю. Инькова. – М.: Academia, 2017. – 288 c.
51. Подкин, Ю.Г. Электротехника и электроника. В 2 т. Т. 1. Электроника: Учебное пособие / Ю.Г. Подкин. – М.: Academia, 2018. – 480 c.
52. Подкин, Ю.Г. Электротехника и электроника: В 2 т. Т. 2. Электроника: Учебное пособие / Ю.Г. Подкин. – М.: Academia, 2018. – 480 c.
53. Покотило, С.А. Электротехника и электроника: учебное пособие / С.А. Покотило. – РнД: Феникс, 2018. – 283 c.
54. Покотило, С.А. Электротехника и электроника: Учебное пособие / С.А. Покотило, В.И. Панкратов. – Рн/Д: Феникс, 2018. – 416 c.
55. Покотило, С.А. Электротехника и электроника: учебное пособие / С.А. Покотило. – РнД: Феникс, 2017. – 283 c.
56. Поляков, А.Е. Электротехника в примерах и задачах: Учебник / А. Е. Поляков, А.В. Чесноков. – М.: Форум, 2016. – 320 c.
57. Поляков, А.Е. Электротехника в примерах и задачах: Уч. / А.Е. Поляков, А.В. Чесноков. – М.: Форум, 2018. – 232 c.
58. Прошин, В.М. Электротехника: Учебник / В.М. Прошин. – М.: Академия, 2019. – 384 c.
59. Прошин, В.М. Электротехника: учебник для НПО / В.М. Прошин. – М.: Academia, 2018. – 448 c.
60. Прошин, В.М. Электротехника: Учебник / В.М. Прошин. – М.: Academia, 2018. – 448 c.
61. Прошин, В.М. Электротехника для электротехнических профессий: Рабочая тетрадь: Учебное пособие / В.М. Прошин. – М.: Academia, 2019. – 448 c.
62. Прошин, В.М. Электротехника для электротехнических профессий. Рабочая тетрадь / В.М. Прошин. – М.: Academia, 2016. – 1088 c.
63. Прошин, В.М. Электротехника для неэлектротехнических профессий: Учебник / В.М. Прошин. – М.: Academia, 2015. – 384 c.
64. Прошин, В.М. Электротехника / В.М. Прошин. – М.: Academia, 2015. – 224 c.
65. Прошин, В.М. Электротехника для неэлектротехнических профессий: Учебник / В.М. Прошин. – М.: Academia, 2016. – 384 c.
66. Рыбков, И.С. Электротехника: Учебное пособие / И.С. Рыбков. – М.: Риор, 2018. – 184 c.
67. Рыбков, И.С. Электротехника: Учебное пособие / И.С. Рыбков. – М.: Риор, 2017. – 376 c.
68. Рюмин, В.В. Занимательная электротехника на дому / В.В. Рюмин. – М.: Центрполиграф, 2018. – 359 c.
69. Сафиуллин, Р.Н. Электротехника и электрооборудование транспортных средств: Учебное пособие / Р.Н. Сафиуллин, В.В. Резниченко, М.А. Керимов. – СПб.: Лань, 2019. – 400 c.
70. Синдеев, Ю.Г. Электротехника с основ.электроники: учебное пособие / Ю.Г. Синдеев. – РнД: Феникс, 2019. – 407 c.
71. Синдеев, Ю.Г. Электротехника с основами электроники: Учебное пособие / Ю.Г. Синдеев. – Рн/Д: Феникс, 2017. – 896 c.
72. Синдеев, Ю.Г. Электротехника с основ.электроники: учебное пособие / Ю.Г. Синдеев. – РнД: Феникс, 2018. – 407 c.
73. Славинский, А.К. Электротехника с основами электроники: Учебное пособие / А.К. Славинский, И.С. Туревский. – М.: Форум, 2019. – 304 c.
74. Фуфаева, Л.И. Электротехника: учебник / Л.И. Фуфаева. – М.: Academia, 2017. – 360 c.
75. Фуфаева, Л.И. Электротехника: учебник / Л.И. Фуфаева. – М.: Academia, 2017. – 447 c.
76. Фуфаева, Л.И. Электротехника: Учебник / Л.И. Фуфаева. – М.: Academia, 2018. – 334 c.
77. Фуфаева, Л.И. Электротехника: Учебник / Л.И. Фуфаева. – М.: Academia, 2018. – 320 c.
78. Фуфаева, Л.И. Электротехника: Учебник / Л.И. Фуфаева. – М.: Academia, 2016. – 208 c.
79. Фуфаева, Л.И. Электротехника: учебник / Л.И. Фуфаева. – М.: Academia, 2017. – 576 c.
80. Штеренлихт, Д.В. Электротехника и основы электроники: Учебное пособие / Д.В. Штеренлихт. – СПб.: Лань П, 2016. – 432 c.
81. Ярочкина, Г.В. Электротехника. Рабочая тетрадь: Учебное пособие / Г.В. Ярочкина. – М.: Academia, 2019. – 526 c.
82. Ярочкина, Г.В. Электротехника: Рабочая тетрадь: Учебное пособие / Г.В. Ярочкина. – М.: Academia, 2019. – 526 c.
83. Ярочкина, Г.В. Электротехника: Учебник / Г.В. Ярочкина. – М.: Academia, 2019. – 160 c.
84. Ярочкина, Г.В. Электротехника: Учебник / Г.В. Ярочкина. – М.: Academia, 2019. – 507 c.


Основы электротехники и электромеханики: начальный курс для чайников

Понятно желание людей любого возраста постичь такую науку, как электротехника. Помогут в этом основы электротехники для всех начинающих. В интернете и печати публикуется масса материалов, часто под заглавием «Электротехника для чайников». Начинать нужно с усвоения положений и законов электричества.

Учебное пособие по электротехнике

Понятия и свойства электрического тока

Начальные курсы электрика в первых главах дают определения понятию и свойствам электрического тока, объясняют природу и свойства электроэнергии, законы электричества и их основные формулы. Основываясь на великих открытиях, зарождалась и получила грандиозное развитие такая научная дисциплина, как электротехника. Сущность электричества заключена в направленном перемещении электронов (заряженных частиц). Они переносят электрический заряд в теле металлических проводов.

Важно! Для транзита электрической энергии используют провода, жилы которых сделаны из алюминия или меди. Это самые экономичные проводные металлы. Делать жилы проводов из других материалов дорого, поэтому невыгодно.

Ток бывает постоянного и переменного направления. Постоянное движение энергии всегда осуществляется в одном направлении. Переменный энергетический поток ритмично меняет свою полярность. Скорость, с которой меняется направление движения электронов, называют частотой. Её измеряют в герцах.

Что изучает электротехника

Основа электрики формировалась в XIX веке. Те времена называют эпохой грандиозных открытий основополагающих законов, дающих все представления об электричестве. Электротехника (ЭТ) как наука начинала делать свои первые шаги. Теория стала подкрепляться практикой. Появились первые электротехнические устройства, совершенствовались коммуникационные системы доставки электроэнергии от источника потребителю.

Базой развития электротехники стали достижения в области физики, химии и математики. Новая наука изучала свойства электрического тока, природу электромагнитных излучений и другие процессы. По мере накопления знаний ЭТ становилась наукой прикладного характера.

Современная научная дисциплина изучает устройства, в которых используется электрический ток. На основании исследований создаются новые более совершенные электротехнические установки, приборы и устройства. ЭТ – одна из передовых наук, являющаяся одним из основных двигателей прогресса человеческой цивилизации.

С чего начать изучение основ электротехники

Электротехника для начинающих доступна на многих информационных носителях. Современные средства массовой информации не испытывают дефицита в учебных пособиях по основам электричества. Самоучители по электрике приобретают в сети интернет или книжных магазинах. Уроки электрика новичок может получить в виде бесплатного видеокурса об основах электричества через интернет. Онлайн видео лекции в доступной форме обучают всех желающих основам электричества.

Обратите внимание! Книга, несмотря на доступные видеоресурсы в сети, до сих пор считается самым удобным источником информации. Пользуясь самоучителем по электрике с нуля, не нужно всё время включать ПК. Учебник всегда будет под рукой.

Самоучители служат незаменимыми помощниками для того, чтобы отремонтировать электропроводку, починить выключатель, розетку, установить датчик движения и заменить предохранители в бытовых электроприборах.

Основные характеристики тока

К основным характеристикам относятся сила тока, напряжение, сопротивление и мощность. Параметры электрического тока, протекающего по проводу, характеризуются именно этими величинами.

Сила тока

Параметр означает количество заряда, проходящего по проводу, за определённое время. Силу тока измеряют в амперах.

Напряжение

Это есть не что иное, как разница потенциалов между двумя точками проводника. Величина измеряется в вольтах. Один вольт – эта разность потенциалов, при которой для переноса заряда в 1 кулон потребуется произвести работу, равную одному джоулю.

Сопротивление

Этот параметр измеряется в омах. Его величина определяет сопротивление энергопотоку. Чем больше масса и площадь поперечного сечения проводника, тем больше сопротивление. Оно также зависит от материала и длины провода. При разнице потенциалов на концах проводника в 1 Вольт и силе тока 1 Ампер сопротивление проводника равно 1 Ому.

Мощность

Физическая величина выражает скорость протекания электроэнергии в проводнике. Мощность тока определяется произведением силы тока и напряжения. Единица мощности – ватт.

Закон Ома

Постижение основ электротехники нужно начинать с закона Ома. Именно он является фундаментом всей науки об электричестве. Выдающийся немецкий физик Георг Симон Ом в 1826 году сформулировал закон, в котором определяет взаимозависимость трёх основных параметров электрического тока: силы, напряжения и сопротивления.

Закон Ома

Энергия и мощность в электротехнике

Электрика для начинающих даёт разъяснения терминов энергии и мощности. Эти характеристики напрямую связаны с законом Ома. Энергия может перетекать из одной в другую форму. То есть она может быть ядерной, механической, тепловой и электрической.

В динамиках звуковых устройств потенциал электрического тока преобразовывается в энергию звуковых волн. В электродвигателях токовый энергопоток превращается в механическую энергию, которая заставляет вращаться ротор мотора.

Любые электрические устройства потребляют нужное количество электроэнергии в течение определённого временного промежутка. Количество потреблённой энергии в единицу времени является мощностью потребителя электричества. Более подробное толкование мощности можно найти в главах учебного пособия, посвящённых электромеханике для начинающих.

Мощность определяют по формуле:

N = I x U.

Измеряется этот параметр в ваттах. Единица измерения мощности Ватт означает, что ток силой в один Ампер перемещается под напряжением 1 Вольт. При этом сопротивление проводника равно 1-му Ому. Такая трактовка характеристики тока наиболее понятна для начинающих постигать основы электричества.

Электротехника и электромеханика

Электрическая механика – это раздел электротехники. Эта научная дисциплина изучает принципиальные схемы оборудования, двигателей и прочих приборов, использующих электрическую энергию.

Пройдя курс электромеханики для начинающих, новички могут самостоятельно научиться ремонтировать бытовые электрические устройства и приборы. Основные законы электромеханики дают возможность понять, как устроен электродвигатель, чем отличается трансформатор от стабилизатора, что такое генератор и многое другое.

Стенд для изучения основ электромеханики

Дополнительная информация. Несомненную пользу новичкам принесут учебные пособия и видео курсы по электротехнике и электромеханике. Если есть друзья или знакомые, разбирающиеся в этом деле, то это только поможет быстро освоить азы этих дисциплин.

Безопасность и практика

Основы электротехники для начинающих делают особое ударение на правилах техники безопасности. Их несоблюдение на практике порой может стать причиной получения электротравм и повреждения имущества. Для новичков в электротехнике надо следовать четырём основным требованиям ТБ.

Четыре правила техники безопасности для новичков:

  1. Перед работой с каким-либо устройством или оборудованием следует ознакомиться с его документацией. Все руководства по эксплуатации имеют раздел безопасности. В нём описаны опасные действия, которые могут вызвать короткое замыкание или удар электрическим током.
  2. Прежде, чем приступать к работе с электротехническими устройствами или электропроводкой, нужно отключить электричество. Затем произвести осмотр состояния изоляции проводников. Если обнаружено нарушение изоляционного покрытия, то оголённую часть проводников надо покрыть отрезком изоляционной ленты.
  3. При работе с проводкой и оборудованием под напряжением бытовой электросети надо использовать диэлектрические перчатки, защитные очки и обувь на толстой резиновой подошве. В электрораспределительных шкафах, щитах и электроустановках новичкам вообще делать нечего. Ими занимаются квалифицированные электрики, которые имеют допуск к работе под напряжением.
  4. Ни в коем случае нельзя касаться оголённых проводников руками. Для этого есть отвёртки-пробники, мультиметры и другие электроизмерительные приборы. Только убедившись в отсутствии напряжения, можно касаться проводов.

Электрика для чайников

Электроника окружает человека в виде различных устройств и приборов. Современная бытовая техника в большинстве своём управляется с помощью электронных схем. Курсы обучения основам электроники для начинающих нацелены на то, чтобы новичок мог отличать транзистор от резистора и понимать, как и для чего служит та или иная электронная схема.

Учебник по электронике для новичков

Учебные пособия и видеокурсы способствуют пониманию принципов построения электронных схем. Что такое печатная плата, как создать схему своими руками – на все эти вопросы отвечают основы электроники для новичков. Усвоив азы электроники, домашний «мастер» сможет определить вышедшую из строя радиодеталь в телевизоре, аудио устройстве и другой бытовой технике и заменить её. Кроме этого, новичок приобретёт опыт работы с паяльником.

Электронная схема усилителя звука

Видеокурсы, печатная продукция несут в себе массу информации по освоению основ электротехники, электромеханики и электроники. Приобрести знания в этих сферах можно, не выходя из дома. Просмотреть нужное видео, заказать учебники позволяет доступность сети интернета.

Видео

Демирчян К.С., Нейман Л.Р, Коровкин Н.В, Чечурин В.Л. Теоретические основы электротехники

Демирчян К.С., Нейман Л.Р, Коровкин Н.В, Чечурин В.Л.


Теоретические основы электротехники

В первом томе обобщены основные сведения об электромагнитных явлениях и сформулированы основные понятия и законы теории электрических и магнитных цепей. Описываются свойства линейных электрических цепей; приводятся методы расчета установившихся процессов в электрических цепях; рассматриваются резонансные явления в цепях и вопросы анализа трехфазных цепей. В учебник включены разделы, способствующие самостоятельному изучению сложного теоретического материала. Все разделы сопровождаются вопросами, упражнениями и задачами. К большинству из них приведены ответы и решения. Учебник предназначен для студентов высших технических учебных заведений, в первую очередь электротехнического и электроэнергетического направлений.

Скачать том 1    Содержание

Во втором томе изложены методы анализа переходных процессов в электрических цепях, особое внимание уделено их численному анализу. Рассмотрены методы синтеза и диагностики электрических цепей, анализа четырехполюсников, а также установившихся и переходных процессов в электрических цепях с распределенными параметрами. Анализируются элементы нелинейных электрических цепей, приводится расчет нелинейных электрических и магнитных цепей. Даны основы теории колебаний и методов расчета переходных процессов в нелинейных электрических цепях. В учебник включены разделы, способствующие самостоятельному изучению сложного теоретического материала. Все разделы сопровождаются вопросами, упражнениями и задачами. К большинству из них приведены ответы и решения. Учебник предназначен для студентов высших технических учебных заведений, в первую очередь электротехнического и электроэнергетического направлений.

Скачать том 2    Содержание

В третьем томе приведены уравнения электромагнитного поля и граничные условия на поверхностях раздела сред с различными свойствами, а также уравнения электростатического поля, электрического и магнитного полей постоянного тока и переменного электромагнитного поля. Приведены методы расчета электрической емкости и индуктивности, современные методы численного анализа электромагнитного поля. В учебник включены разделы, способствующие самостоятельному изучению сложного теоретического материала. Все разделы сопровождаются вопросами, упражнениями и задачами. К большинству из них приведены ответы и решения. Учебник предназначен для студентов высших технических учебных заведений, в первую очередь электротехнического и электроэнергетического направлений.

Скачать том 3    Содержание

Предисловие

Курс «Теоретические основы электротехники» в нашей стране становился в течение всего ХХ в. в условиях интенсивного развития промышленности, а также масштабного производства, преобразования, передачи и расширяющихся областей применения энергии электромагнитного поля. В Ленинграде он создавался и развивался действительными членами Академии наук СССР В. Ф. Миткевичем, Л. Р. Нейманом и профессором П. Л. Калантаровым. После Великой Отечественной войны они создали и в 1948 г. издали уникальный учебник именно по курсу ТОЭ, который стал ведущим в СССР. Этот учебник был переведен и издан во многих странах и сыграл решающую роль в создании в них собственных школ по ТОЭ. В 1966 г. развитие курса ТОЭ нашло свое отражение в новом учебнике, созданном Л. Р. Нейманом и его учеником К. С. Демирчяном. Настоящий учебник по курсу ТОЭ выходит спустя 20 лет после его последнего, третьего издания.

Первоначальную программу работ по подготовке четвертого издания пришлось изменить после событий 1991 г. и последующего качественного изменения экономических и организационных основ мотивации подготовки научных и инженерных кадров в России. За 20 лет существенно изменились также технические средства вычислений и их доступность. Значительно повысилась роль информационных технологий в процессе обучения и профессиональной деятельности. В новый учебник пришлось ввести также и коррективы, связанные с уменьшением аудиторных часов непосредственного общения студентов с преподавателями и увеличением доли курса, осваиваемой самостоятельно. В этой связи учебник дополнен разделами, позволяющими обеспечить его самостоятельное освоение. Н. В. Коровкиным и В. Л. Чечуриным были разработаны и включены в учебник новые разделы, вопросы, методические указания, задачник и примеры решения наиболее типичных задач.

Столетний опыт преподавания курса ТОЭ в СССР и России показывает, что первоначальная ориентация курса на первичность понимания особенностей электромагнитных процессов в рассматриваемом конкретном устройстве над формально-расчетными методами приобретает все более важное значение. Развитие возможностей ЭВМ и их программного обеспечения в настоящее время и в перспективе таковы, что изучение расчетных методов для их освоения и развития перестает быть приоритетным. На передний план выступает необходимость понимания сути изучаемых явлений и методических основ стандартных программных средств для оценки надежности полученных численных и графических данных и их соответствия реальным особенностям рассчитываемого устройства или явления. Одной из важнейших задач предлагаемого учебника является создание у читателя именно умения и привычки вникать в суть физических явлений, происходящих в изучаемых системе или устройстве.

Следует отметить особую роль одного из авторов настоящего учебника, выдающегося ученого-электротехника, академика АН СССР Л. Р. Неймана, в развитии предмета и курса «Теоретические основы электротехники» не только в СССР, но и во многих странах, где этот предмет появился, благодаря его трудам и учебникам. Мне и моим ученикам В. Л. Чечурину и Н. В. Коровкину досталась почетная и трудновыполнимая задача быть достойными продолжать традиции, заложенные в курс ТОЭ его основателями — заведующими кафедрой ТОЭ Ленинградского политехнического института академиками АН СССР Владимиром Федоровичем Миткевичем, Леонидом Робертовичем Нейманом и профессором Павлом Лазаревичем Калантаровым.

Авторы считают своим долгом прежде всего поблагодарить профессора И. Ф. Кузнецова за его большой труд по редактированию настоящего учебника, заведующего кафедрой ТОЭ Санкт-Петербургского государственного политехнического университета профессора В. Н. Боронина — за организацию работы по созданию учебника, заведующего кафедрой ТОЭ Московского энергетического института, члена-корреспондента РАН П. А. Бутырина и профессора В. Г. Миронова, оказавших помощь при издании учебника.

Авторы благодарны доценту Е. Е. Селиной и старшему преподавателю Т. И. Королевой за помощь в разработке вопросов, упражнений и задач. Весьма полезной была помощь аспирантов А. С. Адалева, Ю. М. Балагулы, Т. Г. Миневич, М. В. Эйдемиллера, которые подготовили решения предлагаемых задач, что помогло им при завершении работы над диссертациями. Авторы признательны кандидату технических наук А. Н. Модулиной и инженеру В. А. Кузьминой за неоценимую помощь в подготовке рукописи к печати, а также доценту Р. П. Кияткину и всем сотрудникам кафедры ТОЭ Санкт-Петербургского государственного политехнического университета, сделавшим полезные замечания при обсуждении новых разделов учебника на основе использованных в настоящем издании методических разработок кафедры.

Завершению и оформлению издания настоящего учебника в решающей степени способствовала финансовая помощь РФФИ.

Введение

Теоретическая электротехника в России и СССР развивалась на основе признания материальности электромагнитного поля и важности понимания картины протекания рассматриваемых физических процессов для их практического использования и описания в виде математических моделей. Развитие этой школы в течение ХХ столетия отличается освоением достижений в областях, главным образом, физики электромагнитных явлений и прикладной математики. Характерным для этого периода для ученых России и СССР следует считать практическую неделимость исследований физических явлений, разработки моделей этих явлений и решения прикладных задач, связанных с расчетом исследуемых физических величин.

Первые труды в области электричества в России принадлежат гениальному русскому ученому академику М. В. Ломоносову. М. В. Ломоносов, создавший в разных областях науки много замечательных трудов, посвятил большое число работ изучению электричества. В своих теоретических исследованиях он выдвигал положения, которые значительно опережали его эпоху, и ставил проблемы исключительной глубины. Так, по его предложению в 1755 г. Академия наук выдвинула в качестве конкурсной темы на премию задачу «сыскать подлинную електрической силы причину и составить точную ее теорию».

Современником М. В. Ломоносова был русский академик Ф. Эпинус. Ему принадлежит приоритет открытия термоэлектрических явлений и явления электростатической индукции. Особо следует отметить сделанный им в 1758 г. в Академии наук доклад на тему «Речь о родстве електрической силы и магнетизма».

В настоящее время нам хорошо известно, что между электрическими и магнитными явлениями существует неразрывная связь, и это положение лежит в основе современного учения об электромагнитных явлениях. Однако к такому убеждению научная мысль пришла лишь в итоге длительного накопления опытных фактов, и в течение долгого времени явления электрические и явления магнитные рассматривались как самостоятельные, не имеющие между собой связи. Первое обстоятельное научное сочинение о магнитных и электрических явлениях, принадлежащее Гильберту, вышло в 1600 г. В этом труде Гильберт пришел, однако, к неправильному заключению, что электрические и магнитные явления не имеют между собой связи.

Сходство между механическим взаимодействием электрически заряженных тел и механическим взаимодействием полюсов магнитов естественно привело к попытке одинаково объяснить эти явления. Возникло представление о положительной и отрицательной магнитных массах, распределенных на концах магнита и являющихся причиной магнитного взаимодействия. Однако подобное предположение, как нам теперь известно, не отвечает физической природе магнитных явлений. Оно возникло исторически по аналогии с представлением о положительном и отрицательном электричестве, отвечающем физической сущности электрических явлений. Согласно современным представлениям, электрический заряд любого тела образуется совокупностью зарядов, находящихся в непрерывном движении положительно или отрицательно заряженных элементарных частиц — протонов, электронов и т. д.

Количественные соотношения, характеризующие механические взаимодействия электрически заряженных тел и механические взаимодействия магнитных масс полюсов магнита, первым опубликовал в 1785 г. Кулон. Но уже Кулон обратил внимание на существенное различие между магнитными массами и электрическими зарядами.

Различие вытекает из следующих простых опытов. Нам без труда удается отделить друг от друга положительный и отрицательный электрические заряды, но никогда и ни в каких условиях не удается произвести опыт, в результате которого оказались бы отделенными друг от друга положительная и отрицательная магнитные массы. В связи с этим Кулон высказал предположение, что отдельные малые элементы объема магнита при его намагничивании обращаются в маленькие магнитики и что лишь внутри таких элементов объема положительные магнитные массы смещаются в одном направлении, а отрицательные — в противоположном направлении.

Однако если бы положительная и отрицательная магнитные массы имели самостоятельное существование внутри элементарных магнитиков, то все же можно было бы надеяться в каком-либо опыте, в котором осуществлялось бы непосредственное воздействие на эти элементарные магнитики, отделить отрицательную массу от положительной подобно тому, как, воздействуя на молекулу, имеющую суммарный электрический заряд, равный нулю, нам удается расщепить ее на отрицательно и положительно заряженные частицы — так называемые ионы. Но и в элементарных процессах никогда не обнаруживаются раздельно существующие положительная и отрицательная магнитные массы.

Раскрытие действительной природы магнитных явлений относится к началу позапрошлого столетия. Этот период знаменуется рядом замечательных открытий, установивших теснейшую связь между явлениями электрическими и явлениями магнитными.

В 1820 г. Эрстед произвел опыты, в которых обнаружил механическое воздействие электрического тока на магнитную стрелку.

В 1820 г. Ампер показал, что соленоид с током по своим действиям аналогичен магниту, и высказал мысль, что и для постоянного магнита действительной причиной возникновения магнитных действий являются также электрические токи, замыкающиеся по некоторым элементарным контурам внутри тела магнита. Эти идеи нашли конкретное выражение в современных представлениях, согласно которым магнитное поле постоянного магнита обусловлено элементарными электрическими токами, существующими в веществе магнита и эквивалентными магнитным моментам элементарных частиц, образующих вещество. В частности, эти элементарные токи являются результатом вращения электронов вокруг своих осей, а также вращения электронов по орбитам в атомах.

Таким образом, мы приходим к убеждению, что магнитных масс в действительности не существует.

Всеми упомянутыми исследованиями было установлено важнейшее положение, что движение электрически заряженных частиц и тел всегда сопровождается магнитными явлениями. Этим самым уже было показано, что магнитные явления не представляют собой, как полагал Гильберт, чего-либо самостоятельного, никак не связанного с явлениями электрическими. В 1831 г. Фарадей сообщил об открытии явления электромагнитной индукции. Он обнаружил возникновение электрического тока в контуре, движущемся относительно магнита или относительно другого контура с током. Таким образом, было показано, что и электрические явления могут возникать как следствие процессов, относящихся к области магнитных явлений.

В 1833 г. русский академик Э. Х. Ленц впервые сформулировал чрезвычайно важное положение, в котором устанавливались общность и обратимость явлений, открытых Эрстедом и Фарадеем. В этом положении содержалась основа важного принципа обратимости электрических машин. Э. X. Ленц установил правило определения направления индуктированного тока, выражающее фундаментальный принцип электродинамики — принцип электромагнитной инерции.

В связи со всеми этими открытиями необходимо особенно отметить основную идею, которой неизменно руководствовался в своих исследованиях Фарадей и которая была развита в трудах академика В. Ф. Миткевича, — идею о физической реальности процесса, совершающегося в пространстве между электрически заряженными телами и между контурами с электрическими токами. Согласно этим представлениям, взаимодействие заряженных тел, а также взаимодействие контуров с токами осуществляются через посредство окружающего их электромагнитного поля, являющегося особым видом материи.

Заслуга создания теории электромагнитного поля принадлежит Максвеллу, изложившему ее в классическом труде «Трактат об электричестве и магнетизме », вышедшем в 1873 г. Этот трактат содержит изложение в математической форме и дальнейшее углубление и расширение основных физических идей Фарадея.

Экспериментальное подтверждение и развитие максвелловой теории электромагнитного поля осуществлены Герцем (1886–1889 гг.) в его замечательных опытах по получению и распространению электромагнитных волн, в работах П. Н. Лебедева (1895 г.) по генерированию и распространению электромагнитных волн весьма короткой длины, в его классических опытах (1900–1910 гг.), в которых было экспериментально доказано давление света, в изобретении радио А. С. Поповым (1895 г.) и в осуществлении им радиосвязи, а также во всем дальнейшем развитии практической и теоретической радиотехники.

Все перечисленные открытия привели к признанию глубокой связи между явлениями электрическими и явлениями магнитными. В общей совокупности теоретических проблем, относящихся к области электромагнитных явлений, все большее развитие получает теория электрических и магнитных цепей. В основе теории электрических цепей лежат законы, установленные Омом (1827 г.), Джоулем (1841 г.), Ленцем (1842 г.) и Кирхгофом (1847 г.). В последующую разработку этой теории большой вклад внесли многие отечественные и зарубежные ученые.

В настоящее время в связи с чрезвычайным усложнением электроэнергетических систем, радиотехнической и электроизмерительной аппаратуры, систем автоматического контроля и управления, быстродействующих электронных вычислительных машин и информационных технологий возникает необходимость создания обобщенных методов анализа, при которых целые комплексы элементов электрической цепи, являющиеся частями этих сложных систем и выполняющие определенные функции, рассматриваются с помощью их обобщенных параметров. Такими комплексами элементов цепи являются, например, генерирующие, передающие или преобразующие электромагнитную энергию устройства в электроэнергетических системах, генераторы, усилители и преобразователи сигналов в системах проводной связи, радио- и телепередачи, электрических измерений и автоматического управления и контроля, источники питания, блоки, выполняющие логические операции в электронных вычислительных машинах, дискретные цифровые преобразователи и т. п.

Эти отдельные комплексы включают в себя линейные элементы цепи, параметры которых не зависят от тока, например резисторы, индуктивные катушки, конденсаторы, а также нелинейные элементы цепи с параметрами, зависящими от тока или напряжения, например электронные лампы, транзисторы, индуктивные катушки с ферромагнитными сердечниками. Эти элементы цепи различным образом соединены между собой и образуют уже внутри таких комплексов достаточно сложные электрические цепи. Сами же комплексы, в свою очередь, тем или иным способом соединяются между собой, образуя сложные системы.

Обобщенные методы анализа сложных систем дают возможность исследовать взаимодействие этих отдельных комплексов, являющихся частями системы. Исходными для построения таких обобщенных методов являются те же основные физические законы электрических цепей — законы Ома и Кирхгофа, которые используются и для расчета сравнительно несложных электрических цепей.

Точно так же получает дальнейшее развитие теория электромагнитного поля в связи с развитием наземной и космической радиосвязи и радиоастрономии, а также со все более широким использованием электрических и магнитных полей и электромагнитных излучений в новых электротехнологических и электрофизических установках.

Все изложенное предъявляло всегда и особенно предъявляет в настоящее время требования к организации на высоком научном уровне высшего электротехнического образования. В этом отношении исторически имело большое значение создание первых научных дисциплин для высшей школы, в которых излагались теоретические проблемы электротехники. В 1904 г. профессор В. Ф. Миткевич начал читать в Петербургском политехническом институте созданный им курс «Теория явлений электрических и магнитных», а затем курс «Теория переменных токов». В 1905 г. профессор К. А. Круг начал чтение в Московском высшем техническом училище своего курса «Теория переменных токов», а затем курса «Основы электротехники».

В последующем эти теоретические дисциплины развивались в соответствии с новыми физическими идеями, новыми теоретическими и экспериментальными методами исследования электромагнитных явлений и исключительно быстрым развитием технических применений этих явлений и образовали дисциплину, имеющую ныне наименование «Теоретические основы электротехники».

Курс «Теоретические основы электротехники» содержит четыре части. Первая, сравнительно короткая часть, именуемая «Основные понятия и законы теории электромагнитного поля и теории электрических и магнитных цепей», содержит обобщение понятий и законов из области электромагнитных явлений на основе сведений, полученных в курсе физики, и развитие формулировок и определений основных понятий и законов теории электрических и магнитных цепей, относящихся ко всем разделам этой теории. Эта часть должна рассматриваться как связывающая курс физики с курсом теоретических основ электротехники и обеспечивающая физическое представление о процессах, происходящих в электрических и магнитных цепях и в электромагнитных полях. Она имеет большое значение для правильной математической формулировки задач, решаемых методами, излагаемыми в последующих частях курса. Освоение материала этой части имеет важное значение в связи с тем, что программное обеспечение современных и перспективных ЭВМ способно реализовать численные расчеты для широкого спектра математических моделей. Чтобы избегать ошибочных трактовок результатов расчета, представленных в виде численных и графических данных, специалистам необходимо глубокое понимание физической сути изучаемого явления.

Вторая, наибольшая по объему часть курса именуется «Теория линейных электрических цепей». В ней излагаются свойства линейных электрических цепей и методы расчета процессов в таких цепях. В основном в этой части рассмотрены методы анализа цепей, т. е. определение процессов в заданных цепях, но также уделяется внимание и синтезу и диагностике цепей, т. е. вопросам о построении электрических цепей с наперед заданными свойствами и методам экспериментального определения параметров реальных устройств. Линейными называют цепи, параметры всех элементов которых не зависят от тока и напряжения. По отношению к ним применим важный принцип, называемый принципом наложения. По принципу наложения следствия, вызываемые в некоторой физической обстановке совместным действием нескольких однородных причин, являются суммой следствий, вызываемых в той же физической обстановке каждой из этих причин в отдельности. Использование этого принципа дает возможность распространить результаты, полученные для простых случаев, на случаи более сложные. И наоборот, применение этого принципа позволяет расчленить сложную задачу на несколько более простых. Мы будем широко пользоваться принципом наложения при изучении линейных электрических цепей, а также при изучении электромагнитных полей в линейных средах, параметры которых не зависят от интенсивности процесса.

Третья часть имеет наименование «Теория нелинейных электрических и магнитных цепей». В ней излагаются свойства нелинейных электрических и магнитных цепей и методы расчета происходящих в них процессов. Параметры таких цепей зависят от тока, напряжения или магнитного потока, и это приводит к существенному усложнению математического анализа процессов в этих цепях. Вместе с тем эти вопросы имеют большое значение в связи с широким использованием элементов цепей с нелинейными характеристиками в современных устройствах.

Последняя, четвертая, часть имеет наименование «Теория электромагнитного поля». Многие электротехнические проблемы не могут быть полностью рассмотрены при помощи теории цепей и могут быть решены лишь методами теории электромагнитного поля. Прежде всего, для расчета параметров электрических и магнитных цепей необходимо знать электрические и магнитные поля, связанные с этими цепями. Это вполне закономерно, так как параметры электрических и магнитных цепей, фактически, отражают в себе в интегральной форме конфигурацию электрических и магнитных полей, связанных с рассматриваемыми цепями, и физические свойства среды, в которой существуют эти поля. Ряд весьма важных вопросов может быть решен только методами, развиваемыми только в теории поля. К таким вопросам относятся, например, излучение электромагнитных волн антенной и распространение их в пространстве. Наличие основных закономерностей, сформулированных в первой части курса, дает возможность начать рассмотрение теории электромагнитного поля с общих уравнений, характеризующих это поле в целом, и показать, что случаи, в которых выявляется только электрическое или только магнитное поле, представляют собой частные случаи, когда условия наблюдения таковы, что в некоторой ограниченной области пространства обнаруживается только одна сторона электромагнитного процесса. Этим ярко выделяется мысль о единстве электрических и магнитных явлений.

В учебник введено большое количество новых методических материалов в виде вопросов, указаний и примеров решения наиболее типичных задач, а также задачник. Эти новые разделы помогут восполнить ущерб, нанесенный непосредственному общению студентов с преподавателями в связи с уменьшением аудиторных часов. Они могут быть полезными для более сознательного и эффективного освоения тех разделов курса, которые должны быть изучены самостоятельно.

Вопросы, упражнения и задачи группируются так, чтобы они охватывали несколько глав теоретического курса. Например, группа новых методических материалов следует после первой части курса (физические основы электротехники). Следующая группа вопросов, упражнений и задач объединяет второй раздел курса —основные понятия теории электрических и магнитных цепей. Таким образом, при изучении курса появляется возможность, используя эти методические материалы, закрепить полученные теоретические знания.

Сложность предлагаемых вопросов и упражнений различна, вопросы и упражнения по разделу курса расположены по мере возрастания их сложности. Наиболее сложные упражнения выделены в группы задач.

Подбор вопросов, упражнений и задач осуществлялся из соображений не только усвоения теоретической части курса, но и более углубленного понимания и изучения наиболее сложных идей и методов теоретической электротехники. Некоторые из предлагаемых вопросов и задач могут оказаться трудными для изучающих курс студентов, но будут полезными не только для них, но и для аспирантов и инженеров.

Заключенные в скобки буквы (О) и (Р) в разделах «Вопросы, упражнения, задачи к главам…» означают, что в конце тома приведены ответ или решение на соответствующий вопрос, упражнение или задачу.

Содержание, расположение и изложение этого методического материала в учебнике таковы, что существенно облегчается процесс заочного или самостоятельного освоения курса ТОЭ.

Список литературы на тему: Электротехника

СПИСОК ЛИТЕРАТУРЫ

1. Алехин, В.А. Электротехника и электроника. Компьютерный лабораторный практикум в программной среде TINA-8. Учебное пособие для вузов. / В.А. Алехин. – М.: РиС, 2014. – 208 c.
2. Алиев, И.И. Электротехника и электрооборудование: Справочник: Учебное пособие для вузов / И.И. Алиев. – М.: Высш. шк., 2010. – 1199 c.
3. Алиев, И.И. Электротехника и электрооборудование. Справочник. / И.И. Алиев. – М.: Высшая школа, 2010. – 1199 c.
4. Белов, Н.В. Электротехника и основы электроники: Учебное пособие / Н.В. Белов, Ю.С. Волков. – СПб.: Лань, 2012. – 432 c.
5. Борисов, Ю.М. Электротехника: учебник. 3-е изд. / Ю.М. Борисов. – СПб.: BHV, 2014. – 592 c.
6. Бурман, А.П. Записки о жизни электротехника / А.П. Бурман. – М.: МЭИ, 2009. – 392 c.
7. Бутырин, П.А. Электротехника: Учебник для начального проф. образования / П.А. Бутырин, О.В. Толчеев, Ф.Н. Шакирзянов. – М.: ИЦ Академия, 2012. – 272 c.
8. Ванюшин, М. Занимательная электроника и электротехника для начинающих и не только / М. Ванюшин. – СПб.: Наука и техника, 2016. – 352 c.
9. Гальперин, М.В. Электротехника и электроника: Учебник / М.В. Гальперин. – М.: Форум, НИЦ ИНФРА-М, 2013. – 480 c.
10. Данилов, И.А. Общая электротехника: Учебное пособие для бакалавров / И.А. Данилов. – М.: Юрайт, ИД Юрайт, 2013. – 673 c.
11. Данилов, И.А. Общая электротехника 2-е изд., испр. и доп. учебное пособие для бакалавров / И.А. Данилов. – Люберцы: Юрайт, 2016. – 673 c.
12. Ермуратский, П. Электротехника и электроника / П. Ермуратский, Г. Лычкина. – М.: ДМК, 2015. – 416 c.
13. Ермуратский, П.В. Электротехника и электроника / П.В. Ермуратский, Г.П. Лычкина, Ю.Б. Минкин. – М.: ДМК Пресс, 2013. – 416 c.
14. Жаворонков, М.А. Электротехника и электроника: Учебное пособие для студ. высш. проф. образования / М.А. Жаворонков, А.В. Кузин. – М.: ИЦ Академия, 2013. – 400 c.
15. Иванов, И.И. Электротехника. 4-е изд. / И.И. Иванов, Г.И. Соловьев. – СПб.: Лань, 2006. – 496 c.
16. Иванов, И.И. Электротехника: Уч.пособие. 5-е изд., стер. / И.И. Иванов, Г.И. Соловьев. – СПб.: Лань, 2008. – 496 c.
17. Иванов, И.И. Электротехника. 6-е изд., стер / И.И. Иванов, Г.И. Соловьев. – СПб.: Лань, 2009. – 496 c.
18. Иванов, И.И. Электротехника и основы электроники: учебник. 7-е изд., пер. и доп. / И.И. Иванов, Г.И. Соловьев, В.Я. Фролов. – СПб.: Лань, 2012. – 736 c.
19. Иванов, И.И. Электротехника и основы электроники: Учебник. 8-е изд., стер / И.И. Иванов, Г.И. Соловьев, В.Я. Фролов. – СПб.: Лань, 2016. – 736 c.
20. Иньков, Ю.М. Электротехника и электроника: Учебник для студентов учреждений среднего профессионального образования / Б.И. Петленко, Ю.М. Иньков, А.В. Крашенинников. – М.: ИЦ Академия, 2013. – 368 c.
21. Колистратов, М.В. Электротехника и электроника: электротехника на оборудовании National Instruments: Лабораторный практикум / М.В. Колистратов, Л.А. Шапошникова; Под ред. Л.А. Шамаро. – М.: ИД МИСиС, 2012. – 79 c.
22. Кузовкин, В.А Теоретическая электротехника / В.А Кузовкин. – М.: Логос, 2006. – 480 c.
23. Кузовкин, В.А. Электротехника и электроника: Учебник для бакалавров / В.А. Кузовкин, В.В. Филатов. – М.: Юрайт, 2013. – 431 c.
24. Кузовкин, В.А. Электротехника и электроника. учебник для бакалавров / В.А. Кузовкин, В.В. Филатов. – Люберцы: Юрайт, 2016. – 431 c.
25. Кузовкин, В.А. Электротехника и электроника. учебник для спо / В.А. Кузовкин, В.В. Филатов. – Люберцы: Юрайт, 2016. – 431 c.
26. Мальц, Э.Л. Электротехника и электрические машины: Учебное пособие для студентов неэлектрических специальностей / Э.Л. Мальц, Ю.Н. Мустафаев. – СПб.: Корона-Век, 2013. – 304 c.
27. Мальц, Э.Л. Электротехника и Электрические машины: Учебное пособие / Э.Л. Мальц, Ю.Н. Мустафаев. – СПб.: КОРОНА-Век, 2013. – 304 c.
28. Мартынова, И.О. Электротехника. : Лабораторно-практические работы. Учебное пособие / И.О. Мартынова. – М.: КноРус, 2011. – 136 c.
29. Миленина, С.А. Электротехника, электроника и схемотехника: Учебник и практикум для академического бакалавриата / С.А. Миленина, Н.К. Миленин. – Люберцы: Юрайт, 2015. – 399 c.
30. Миленина, С.А. Электротехника, электроника и схемотехника. учебник и практикум для академического бакалавриата / С.А. Миленина, Н.К. Миленин. – Люберцы: Юрайт, 2016. – 399 c.
31. Миленина, С.А. Электротехника, электроника и схемотехника. учебник и практикум для спо / С.А. Миленина, Н.К. Миленин. – Люберцы: Юрайт, 2016. – 399 c.
32. Мишкович, В.И. Электротехника и электроника: Учебное пособие для вузов / В.В. Кононенко, В.И. Мишкович, В.В. Муханов [и др.]; Под ред. В.В. Кононенко. – Рн/Д: Феникс, 2010. – 784 c.
33. Морозова, Н.Ю. Электротехника и электроника: Учебник для студентов учреждений среднего профессионального образования / Н.Ю. Морозова. – М.: ИЦ Академия, 2013. – 288 c.
34. Немцов, М.В. Электротехника и электроника: Учебник для студ. образоват. учреждений сред. проф. образования / М.В. Немцов, М.Л. Немцова. – М.: ИЦ Академия, 2013. – 480 c.
35. Немцов, М.В. Электротехника и электроника. / М.В. Немцов. – М.: Высшая школа, 2007. – 560 c.
36. Новожилов, О.П. Электротехника (теория электрических цепей) в 2 ч. часть 2. учебник для академического бакалавриата / О.П. Новожилов. – Люберцы: Юрайт, 2016. – 247 c.
37. Новожилов, О.П. Электротехника (теория электрических цепей) в 2 ч. часть 1. учебник для академического бакалавриата / О.П. Новожилов. – Люберцы: Юрайт, 2016. – 403 c.
38. Новожилов, О.П. Электротехника (теория электрических цепей). учебник для академического бакалавриата / О.П. Новожилов. – Люберцы: Юрайт, 2016. – 643 c.
39. Новожилов, О.П. Электротехника и электроника: Учебник для бакалавров / О.П. Новожилов. – М.: Юрайт, 2013. – 653 c.
40. Новожилов, О.П. Электротехника и электроника 2-е изд., испр. и доп. учебник для бакалавров / О.П. Новожилов. – Люберцы: Юрайт, 2016. – 653 c.
41. Прошин, В.М. Электротехника: Учебник для начального профессионального образования / В.М. Прошин. – М.: ИЦ Академия, 2012. – 288 c.
42. Рекус, Г.Г. Общая электротехника и основы промышленной электроники. / Г.Г. Рекус. – М.: Высшая школа, 2008. – 654 c.
43. Рыбков, И.С. Электротехника: Учебное пособие / И.С. Рыбков. – М.: ИЦ РИОР, НИЦ ИНФРА-М, 2013. – 160 c.
44. Рюмин, В.В. Занимательная электротехника на дому / В.В. Рюмин. – М.: Кн. Клуб Книговек, Северо-Запа, 2013. – 192 c.
45. Серебряков, А.С. Электротехника и электроника. Лабораторный практикум на Electronics Work-bench и Multisim. / А.С. Серебряков. – М.: Высшая школа, 2009. – 335 c.
46. Синдеев, Ю.Г. Электротехника с основами электроники: Учебное пособие для профессиональных училищ, лицеев и колледжей / Ю.Г. Синдеев. – Рн/Д: Феникс, 2010. – 407 c.
47. Синдеев, Ю.Г. Электротехника с основами электроники: Учебное пособие для профессиональных училищ, лицеев и колледжей / Ю.Г. Синдеев. – Рн/Д: Феникс, 2013. – 407 c.
48. Славинский, А.К. Электротехника с основами электроники: Учебное пособие / А.К. Славинский, И.С. Туревский. – М.: ИД ФОРУМ, НИЦ ИНФРА-М, 2013. – 448 c.
49. Чикуров, Т.Г. Электротехника и электроника. В 2-х т.Электротехника и электроника: Учебное пособие для студ. высш. учеб. заведений / Т.Г. Чикуров. – М.: ИЦ Академия, 2011. – 720 c.
50. Шнейберг, Я.А. История выдающихся открытий и изобретений (электротехника, электроэнергетика, радиоэлектроника) / Я.А. Шнейберг. – М.: МЭИ, 2009. – 118 c.


Руководство по электротехнике для начинающих | Автор Connectedreams.com | Блог Connectedreams

1. Что такое электротехника?

Электротехника – сравнительно одна из новейших отраслей машиностроения, возникшая в конце 19 века. Это та отрасль техники, которая занимается технологиями электричества, электронными компонентами и электромагнетизмом. Инженеры-электрики работают над широким спектром компонентов, устройств и систем, от крошечных микрочипов до огромных генераторов электростанций.

Интерес к этой отрасли обычно возникает из интереса к работе с различными электрическими цепями и компонентами. От резисторов до трансформаторов – эта отрасль техники лежит в основе большинства домашних электроприборов и многих сложных компонентов на электростанции!

Ранние эксперименты с электричеством включали примитивные батареи и статические заряды. Однако фактическое проектирование, конструирование и производство полезных устройств и систем началось с реализации Закона Майкла Фарадея о индукции , который, по сути, гласит, что напряжение в цепи пропорционально скорости изменения магнитного поля в цепи. .

Некоторые из самых известных личностей в области электротехники включают Томаса Эдисона, известного изобретением электрической лампочки, Джорджа Вестингауза, известного изобретением переменного тока, Николы Теслы, известного изобретением простого асинхронного двигателя, Гульельмо Маркони Квона для изобретение радио и Фило Т. Фарнсворт, известный изобретением телевидения. Эти устройства, которые так часто используются в повседневной жизни человека, изначально разрабатывались вместе с ними.

2. Чем занимается инженер-электрик?

Сливаясь с прекрасными концепциями физики, математики и теории электроники, инженер-электрик обычно разрабатывает, проектирует и управляет простыми электронными приборами и схемами.

«Инженеры-электронщики проектируют и разрабатывают электронное оборудование, такое как системы вещания и связи – от портативных музыкальных плееров до систем глобального позиционирования (GPS)». заявляет Бюро статистики труда США.

Первый в мире транзистор с тепловым приводом – логическая схема, управляемая тепловым сигналом вместо электрического сигнала.

Электротехника – это инженерная отрасль, которая дает полный обзор всего, что связано с понятием электричества. Эта ветка охватывает такие темы, как

  1. Напряжение и ток
  2. Высокочастотные цепи
  3. Цифровые и аналоговые схемы
  4. Медицинские технологии
  5. Измерение и управление
  6. Системы питания и энергетики
  7. Микроконтроллеры
  8. Генераторы
  9. Управление батареями
  10. Системы управления и многое другое….

Электроника в основном состоит из транзисторов, диодов и подобных компонентов, скомпонованных или содержащихся в миниатюрных интегральных схемах и тому подобном. Электроника упакована до применения простых устройств на плате. Все, что вы найдете в компьютере, в каком-либо компоненте автомобиля и даже в смартфоне! Здесь напряжение в большинстве случаев ограничено до 5 В при малом токе.

  1. Инженер по радиовещанию – Инженеры по радиовещанию, также известные как технические специалисты по радиовещанию, являются лицами, ответственными за установку и эксплуатацию видео- и аудиооборудования для теле- и радиовещания.
  2. Конструктор схем – в основном занимается разработкой физической формы, которую примет электронная схема. Дает выровненный вид на электрическую схему построения физической схемы.
  3. Инженер по связи – Инженер по связи отвечает за исследования, проектирование, разработку и производство оборудования / систем связи. Техника связи охватывает такие виды связи, как спутники, радио, Интернет и широкополосные технологии, а также услуги беспроводной телефонной связи.
  4. Защитник прав потребителей – лицо, чья работа заключается в защите прав клиентов, например, давая советы, тестируя продукты или пытаясь улучшить законы, касающиеся продажи товаров
  5. Инженер-конструктор – инженер-конструктор – это общий термин, который охватывает несколько инженерных дисциплин, включая электрические, механические и т. д. В основном работает на этапе проектирования в любой дисциплине от обзорного макета до готового продукта.
  6. Инженер по планированию распределения – работа здесь в основном связана с электрическим планированием и схемой распределения электроэнергии в любой данный центр или командное место.
  7. Техник-чертежник – Хотя известно, что это область гражданского строительства, инженеры-электрики тоже занимаются этим, разрабатывая электрическую сторону любой вещи, да, любого устройства.
  8. Инженер по аппаратному обеспечению – Инженеры по аппаратному обеспечению исследуют, проектируют, разрабатывают и тестируют электрические системы и компоненты, такие как процессоры, печатные платы, устройства памяти, сети и маршрутизаторы.
  9. Пилот вертолета – Название говорит само за себя. Инженеры-электрики могут стать пилотами вертолетов!
  10. Военный инженер – Должностная инструкция включает в себя часть электросвязи в вооруженных силах.
  11. Сетевой инженер – сетевой инженер, также известный как сетевой архитектор, проектирует и реализует электрические сети. В отличие от сетевых администраторов, сетевой инженер фокусируется на высокоуровневом проектировании и планировании.
  12. Инженер-ядерщик – инженеры-ядерщики проектируют оборудование и создают рабочие процедуры, используемые на атомных электростанциях. Многие также используют оборудование, которое контролирует ядерную энергетику и находит методы безопасного обращения с ядерными отходами и их утилизации.
  13. Патентный агент – лицо, обладающее квалификацией для судебного преследования патентов (т.е. составление и подача заявки на патент) известен как патентный поверенный. Учитывая тот факт, что составление патента требует определенных технических и юридических знаний, только лицо, имеющее квалификацию в обеих областях, сможет выполнить обязательства по патентному преследованию.
  14. Инженер по разработке продукта. Основная ответственность инженеров-разработчиков заключается в создании дизайна продукта, который отвечает стратегическим целям компании или клиента, объединяя потребности отделов маркетинга, продаж и производства.Они наблюдают за исследовательскими и проектными группами, проводят процедуры тестирования и разрабатывают спецификации для производства.
  15. Менеджер по продукту – Менеджер по продукту часто считается генеральным директором продукта и отвечает за стратегию, дорожную карту и определение функций для этого продукта или линейки продуктов. Должность также может включать в себя обязанности по маркетингу, прогнозированию и прибылям и убыткам (P&L).
  16. Инженер проекта – Инженер проекта также часто является основным техническим контактным лицом для потребителя.В обязанности инженера проекта входит подготовка графика, предварительное планирование и прогнозирование ресурсов для инженерных и других технических мероприятий, связанных с проектом.
  17. Консультант по коммунальным предприятиям – Как следует из названия, этот вариант карьеры заключается в предоставлении консультаций фирмам или какой-либо организации в отношении необходимой информации.
  18. Инженер-исследователь – Инженеры-исследователи применяют свой опыт и знания в технических проектах, находя инновационные, рентабельные средства для улучшения исследований, методов, процедур и / или продуктов и технологий.
  19. Робототехник – технологи-робототехники используют свои знания в области электрических, электронных и механических систем, чтобы помочь инженерам в разработке и производстве автоматизированного оборудования.
  20. Торговый представитель – Торговые представители продают покупателям товары, товары и услуги в розницу. Они работают с клиентами, чтобы найти то, что им нужно, создать решения и обеспечить бесперебойный процесс продаж. Торговые представители будут работать над поиском новых потенциальных клиентов через бизнес-каталоги, рекомендации клиентов и т. Д.
  21. Аналитик службы поддержки системы. Аналитик службы поддержки системы – это специалист-электрик, который анализирует и оптимизирует эти процессы для своей компании. Эти аналитики могут работать со многими видами технологий, от систем инвентаризации и векторов затрат и отклонений до более конкретных электрических проблем, таких как связь, энергосбережение и начисление заработной платы.
  22. Инженер по техническим продажам – также иногда называемые «системные инженеры», «предпродажная поддержка» или «полевые консультанты», SE действуют как техническая энциклопедия группы продаж во время продажи, представляя технические аспекты того, как продукт решает проблемы конкретного клиента. проблемы.Они проводят технические презентации продукта.
  23. Технический писатель – как писатель контента или разработчик, технический писатель сосредотачивается на создании и написании контента, уделяя основное внимание техническим аспектам.
  24. Техник по телекоммуникациям – Техник по телекоммуникациям в основном должен обслуживать и ремонтировать сети, проверяя схемы, выявляя неисправности и ремонтируя оборудование. Продемонстрировать клиентам правильное использование оборудования. Установите и удалите проводку, оборудование и оборудование, используемое в системах связи и сетях.
  25. Техник-испытатель – Их основная обязанность – убедиться, что продукты выполняют свои предполагаемые функции удовлетворительным образом. Для сложных продуктов, таких как автомобили или компьютеры, специалисты по тестированию могут специализироваться на мониторинге конкретной части или набора компонентов.
  26. Конструктор игрушек – Конструирование электрических игрушек, таких как автомобиль, робот или даже пистолет, входит в основные обязанности этого варианта карьеры.
  27. Профессор университета – Описание не требуется.
  28. Авиационный инженер – Авиационные инженеры работают над тем, чтобы двигательные установки работали эффективно и чтобы аэродинамические характеристики самолета были достаточными.
  29. Аэрокосмический инженер – Аэрокосмические инженеры проектируют в основном самолеты, космические аппараты, спутники и ракеты. Кроме того, они тестируют прототипы, чтобы убедиться, что они работают в соответствии с дизайном.
  30. Инженер по летно-техническим характеристикам. Как инженер по летно-техническим характеристикам, вы будете нести ответственность за применение передовых инженерных принципов при проектировании и разработке самолетов, чтобы гарантировать, что они будут работать на оптимальном уровне, максимально безопасно и эффективно.
  31. Инженер-астронавтик – это подкатегория аэрокосмической техники.
  32. Инженер по авионике – Техника авионики – это подраздел авиационной техники и занимается электронными системами, которые используются на самолетах, искусственных спутниках и космических аппаратах. В основном это касается систем, которые необходимы для бесперебойной работы самолета.
  33. Инженер-электрик – Основные должностные обязанности: – Оценка электрических систем, продуктов, компонентов и приложений путем разработки и проведения исследовательских программ; применение знаний об электричестве и материалах.Подтверждает возможности системы и компонентов, разрабатывая методы тестирования; свойства тестирования.
  34. Инженер по электрическим системам – Исследование, проектирование, разработка, тестирование или надзор за производством и установкой электрического оборудования, компонентов или систем для коммерческого, промышленного, военного или научного использования.
  35. Электрик – Обычно они делают следующее: Читают чертежи или технические схемы. Устанавливайте и обслуживайте системы электропроводки, управления и освещения. Осмотрите электрические компоненты, такие как трансформаторы и автоматические выключатели.
  36. Инженер-электронщик – Инженеры-электронщики проектируют и разрабатывают электронное оборудование, такое как системы вещания и связи, от портативных музыкальных плееров до систем глобального позиционирования (GPS). Многие также работают в областях, тесно связанных с компьютерным оборудованием.
  37. Инженер по энергоэффективности – Обычно они проектируют, разрабатывают или оценивают проекты или программы, связанные с энергетикой, для снижения затрат на энергию или повышения энергоэффективности на этапах проектирования, строительства или реконструкции.
  38. Предприниматель – Бизнесмены! Тип бизнеса – выбор.
  39. Инженер по КИПиА – Инженер по КИПиА (инженер C&I) отвечает за проектирование, разработку, установку, управление и / или техническое обслуживание оборудования, которое используется для мониторинга и управления инженерными системами, механизмами и процессами.

Ниже приведены некоторые компании частного сектора, которые нанимают различных квалифицированных инженеров-электриков:

Есть много других компаний, которые нанимают инженеров-электриков. Государственный и государственный сектор Электротехника

Ниже приведены некоторые PSU (предприятия государственного сектора) , которые нанимают инженеров-электриков:

Ниже приведены некоторые из государственных организаций , которые набирают выпускников-электриков:

  1. Bharat Dynamics Limited
  2. Coal India Limited
  3. Indian Railways
  4. Организация оборонных исследований и разработок (DRDO)
  5. Индийская организация космических исследований (ISRO)
  6. NMDC Limited
  7. Engineers India Ltd

Чтобы получить информацию об этих университетах, просто нажмите на ссылку ниже.

  1. Массачусетский технологический институт
  2. Стэнфордский университет
  3. Калифорнийский университет, Беркли
  4. Кембриджский университет
  5. Калифорнийский университет, Лос-Анджелес (UCLA)
  6. Национальный университет Сингапура
  7. ETH Zurich – Швейцарский федеральный технологический институт
  8. Технологический университет Наньян, Сингапур (NTU)
  9. Гарвардский университет
  10. Имперский колледж Лондона
  11. Оксфордский университет
  12. Калифорнийский технологический институт (Калтех)
  13. Федеральная политехническая школа Лозанны
  14. Технологический институт Джорджии
  15. Университет Цинхуа
  16. Токийский университет

Массачусетский технологический институт, Кембридж, MA

Стэнфордский университет, Стэнфорд, Калифорния

Калифорнийский университет – Беркли, Беркли, Калифорния

Иллинойский университет – Урбана-Шампейн, Шампейн, Иллинойс

900 06 Калифорнийский технологический институт, Пасадена, Калифорния

Технологический институт Джорджии, Атланта, Джорджия

Мичиганский университет – Анн-Арбор, Анн-Арбор, Мичиган

Университет Карнеги-Меллона, Питтсбург, Пенсильвания

Принстонский университет, Принстон, штат Нью-Джерси

Корнельский университет, Итака, Нью-Йорк

Пожалуйста, добавьте больше онлайн-ресурсов, кроме coursera.Безопасные беспроводные зарядные устройства

– микросхема, которая блокирует попытки беспроводной зарядки аккумулятора устройства, если зарядное устройство сначала не обеспечивает криптографическую аутентификацию. Изображение: Christine Daniloff / MIT

Другие предлагаемые онлайн-курсы: –

Реализация 5G – Узнайте о первом в мире модуле фазированной антенной решетки 5G mmWave на основе Si, работающем на частоте 28 ГГц. Крупным планом – кремниевый модуль фазированной антенной решетки миллиметрового диапазона, установленный на тестовой плате.

Вы можете напрямую загрузить эти бесплатные онлайн-книги по указанным ссылкам

  1. Инженерная математика: Youtube Workbook
  2. Автоматизация и робототехника
  3. Основы инженерной математики
  4. Введение в электронную инженерию
  5. Концепции электрических цепей
  6. Введение в комплексные числа
  7. Электроэнергетика
  8. Проблемы техники управления
  9. Техника управления
  10. Введение в векторы
  11. Введение в силовую электронику
  12. Введение в анализ цифровых сигналов и систем
  13. Электромагнетизм для инженеров
  14. Система электропривода и работа
  15. Исследование и внедрение Методы матирования изображения и видео
  16. Проектирование цифровых систем
  17. Разработка и внедрение технологии RFID
  18. Основы электротехники и электроники
  19. Прагматическое введение в Ar т электротехники
  20. Автоматизированные производственные системы с ПЛК
  • электрические инженерные портал .com – Этот веб-сайт очень хорош для последних достижений в области электротехники, а также для улучшения некоторых сложных концепций.
  • http://www.electrical4u.com/ Этот веб-сайт очень хорош как ресурс для обучения и обновления Ваши навыки.
  • ETRICAL Этот блог включает в себя все концепции и множество вопросов для интервью, касающихся различных аспектов электротехники.
  • IEEE Spectrum Этот веб-сайт содержит все статьи и последние популярные проекты, реализуемые в этой области по всему миру.
  • Блог технического эксперта-свидетеля Филип Дж. О’Киф – автор блога технического эксперта-свидетеля, который является одним из самых продолжительных инженерных блогов в Интернете; он также обычно используется студентами колледжей в качестве ресурса.
  • Тур по электротехнике Этот веб-сайт представляет собой полный пакет туров по электротехнике, на котором вы найдете учебные пособия и все, что хотите знать о отрасли.
  • EE Times EE Times – это журнал, предоставляющий инженерам самые свежие и актуальные новости, анализ и мнения.EE Times, охватывающий такие темы, как управление питанием, программируемая логика, испытания и измерения и др., Является надежным источником инженерной информации.
  • ElectricNet ElectricNet – это цифровое издание, содержащее множество новостей и информации для инженеров-электриков, от торговых до нормативных новостей. Он также включает в себя различные другие платформы обучения, а также предлагает еженедельный информационный бюллетень.
  • IEEE Xplore IEEE стремится охватить сообщество инженеров в целом своими публикациями, конференциями, технологическими стандартами, а также профессиональной и образовательной деятельностью, а его цифровая библиотека IEEE Xplore содержит более 3775000 элементов для дальнейшего развития ассоциации миссия.
  • Инженер: Билл Хэммок, доступный как в видео, так и в аудио, является одним из самых востребованных докладчиков. Его стиль – отточенное объяснение любого предмета.
  • Embedded.fm: От проводящего текстиля до носимых устройств – у Элисии Уайт лучшие интервью и подробные наблюдения по ее практической теме.
  • Подкаст Spark Gap: Карл и Кори – инженеры по встраиваемым системам, занимающиеся различными темами разработки встраиваемых систем. Они делают свои подкасты интересными и легко усваивают концепции.
  • Видеоуроки AddOhms: этот веб-сайт в основном предоставляет комплексные обучающие материалы по большинству жизнеспособных тем по большинству сложных и часто запутанных тем.
  • Engineering Update: это снова очень популярный подкаст, в котором рассказывается обо всех недавних приключениях. место в отрасли с учетом последних достижений.
  • Talking Machines : По сути, это ваш выход в мир машинного обучения. Еще одна отличная платформа, чтобы узнать о пустом окне.
  • The Discovery Files : Еще один замечательный форум, где показаны все захватывающие и умопомрачительные электрические методы с их простым научным объяснением.
  • The Engineering Commons Podcast : эти подкасты с виртуальной реальностью и затонувшими круизами дадут вам глубокий опыт обучения новейшим технологиям.
  • MakingChips >> Оснащение лидеров производства (изготовление чипов) : Эти подкасты, лежащие рядом с самой важной частью электротехники, погрузят ваш мозг в искусство изготовления чипов!
Нитин Шивараман

Вот несколько отрывков из разговора Апурвы с Нитином Шивараманом , инженером по встроенному программному обеспечению в HP Singapore, который нашел свою страсть в области компьютерного зрения.Он получил степень магистра в Технологическом университете Наньян, Сингапур

«Моя мотивация для изучения электроники как основной области обучения во время учебы в бакалавриате заключается в том, что я был очень увлечен схемами и всей идеей, лежащей в основе того, как все может работать, подключая один компонент к другому. . Как каждый студент бакалавриата, я также изучал множество предметов от цифровой обработки сигналов до связи, сетей и встроенных систем и изучал как можно больше, проходя стажировки и работая над проектами.Он работал на стыке аппаратного (схемотехнического) и программного обеспечения (создание логики и ее программирование), что в конечном итоге заинтересовало меня в области встроенных систем. Я решил работать инженером по исследованиям и разработкам в Nokia Siemens Networks, чтобы больше узнать об этой области и получить практический опыт в ней. Позже, после достижения уровня насыщения, я планировал получить степень магистра по встроенным системам. При выборе школы следует учитывать множество факторов, таких как личный интерес, академическая курсовая работа, сценарий стажировки и работы, финансирование обучения, профиль студента и т. Д.Я включил в шорт-лист две программы, предлагаемые Штутгартским университетом, Германия, и Наньянским технологическим университетом (NTU), Сингапур, поскольку обе были ориентированы на аппаратные и программные аспекты области, чего не делали другие. Важный момент, который должен здесь отметить каждый студент бакалавриата, – это попытаться поддерживать хороший академический профиль, поскольку это часто считается важным критерием при отборе студентов для их магистерских программ. NTU был лучшим решением в моей жизни, поскольку он не только дал мне возможность познакомиться с мировым классом в области встраиваемых систем благодаря советам великих профессоров и наставников, но также открыл двери для приобретения опыта в академических кругах и промышленности.У меня была возможность поработать в промышленности после получения диплома инженера по встроенным системам, но когда я понял, что моя кривая обучения становится плоской, я вернулся к исследованиям, чтобы ежедневно работать над чем-то новым. В исследованиях ожидается, что человек сделает то, чего раньше никто не делал, и вы должны заставить вещи работать, а не делать их идеальными. Этот опыт работы научным сотрудником сделал меня достаточно смелым, чтобы пробовать разные вещи на моей нынешней работе в HP. Теперь я могу заниматься новыми проектами и работать над новаторскими идеями, используя свой набор навыков, не подозревая, что ошибаюсь.

Совет, который я хотел бы дать студентам бакалавриата, состоит в том, чтобы проработать как минимум 1-2 года, прежде чем решаться на какие-либо планы магистратуры или доктора философии. Постарайтесь узнать свои настоящие интересы, пройдя стажировку в области исследований или промышленности и определив цели. «

Tutorial.pdf: E E 215 A: Основы электротехники

    Щиток приборов

    E E 215 A

    Учебник.pdf

    Перейти к содержанию Щиток приборов
    • Авторизоваться

    • Панель приборов

    • Календарь

    • Входящие

    • История

    • Помощь

    Закрывать