Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

вид и обозначение, достоинства и недостатки, принцип работы для чайников

В электронике и радиотехнике очень часто применяются полупроводниковые приборы, к которым относятся и транзисторы. Полевые транзисторы (ПТ) потребляют значительно меньше электрической энергии, благодаря чему они применяются в различных маломощных устройствах. Кроме того, существуют модели, работающие на больших токах при малом потреблении питающего напряжения (U).

Общие сведения

FET или ПТ — полупроводниковый прибор, который при изменении управляющего U, регулирует I (силу тока). Этот тип транзистора называется еще униполярным. Появился он позже обычного транзистора (биполярного), но с ростом технологии получил широкое распространение среди цифровых устройств благодаря низкому энергопотреблению. Основное отличие заключается в методе регулирования I. В биполярном — регулирование I происходит при помощи управляющего I, а полевом — при помощи U (Рисунок 1).

Рисунок 1 – Отличие полевого от биполярного Т.

У ПТ нет I управления, и он обладает высоким входным сопротивлением (R), которое достигает несколько сотен ГОм (ГигаОм) или ТОм (ТерраОм). Для того чтобы узнать сферы применения ПТ, нужно внимательно изучить его. Носителями заряда являются электроны или дырки, а у биполярного – электроны и дырки.

Классификация и устройство

ПТ бывают нескольких видов, обладают различными характеристиками и устройством. Они делятся на 2 типа:

  1. С управляющим p-n – переходом (JFET).
  2. С изолированным затвором (MOSFET).

Кроме того, каждый из типов бывает с N и P каналами. У ПТ с N-каналом носителями заряда являются электроны, а у P-канального – дырки. Принцип работы для P и N аналогичен, отличие лишь в подаче U другой полярности в качестве управляющего.

Устройство JFET ПТ (рисунок 2) простое. Область N образовывает канал между зонами P. К концам канала N подключаются электроды, которые называются условно стоком (С) и истоком (И), так как все зависит от схемы подключения. Затвор (З) — тип электрода, который образовывается при закорачивании полупроводников P. Это обусловлено электрическим соединением при воздействии U. Возле С и И находится область повышенной концентрации или легирование (N+) электронов, что приводит к улучшению проводимости канала. Наличие зоны легирования значительно понижает образование паразитных p-n – переходов, образующихся при присоединении алюминия.

Рисунок 2 – Схематическое устройство ПТ типа JFET.

MOFSET называется МОП или МДП, также делятся на типы — со встроенным и индуцируемым каналами. В каждом из этих типов есть модели с P и N каналами. Полевой транзистор, обозначение которого представлено на рисунке 3, иногда обладает 4 выводами.

Рисунок 3 – Обозначение МДП-транзистора.

Устройство довольно простое и показано на рисунке 4. Для ПТ с N-каналом подложка (покрывается SiO2) обладает электропроводимостью P-типа. Через слой диэлектрика проводятся электроды стока и истока от зон с легированием, а также вывод, который закорачивается с истоком. Слой затвора находится над диэлектриком.

Рисунок 4 – Типичное устройство ПТ с индуцированным каналом.

Принцип работы JFET

JFET работает в 2 режимах. Эта особенность связана с тем, что подается на затвор напряжение положительной и отрицательной составляющей (рис. 5). При подключении U > 0 к стоку, а земли к истоку необходимо подсоединить затвор к земле (Uзи = 0). Во время постепенного повышения U между С и И (Uис) ПТ является обыкновенным проводником. При низких значениях Uис ширина канала является максимальной.

При высоких значениях Uис через канал протекают большие значения силы тока между истоком и стоком (Iис). Это состояние получило название омической области (ОО). В полупроводнике N-типа, а именно в зонах p-n – перехода происходит снижение концентрации свободных электронов. Несимметричное разрастание слоя снижения концентрации свободных электронов называется обедненным слоем. Разрастание случается со стороны подключенного источника питания. Происходит сильное сужение канала при повышении Uис, вследствие которого Iис растет незначительно. Работа ПТ в этом режиме называется насыщением.

Рисунок 5 – Схема работы JFET (Uзи = 0).

При подаче низкого отрицательного U на затворе происходит сильное сужение канала и уменьшение Iис. При уменьшении U произойдет закрытие канала, и ПТ будет работать в режиме отсечки, а U, при котором прекращается подача Iис, называется напряжением отсечки (Uотс). На рисунке 6 изображено графическое представление работы ПТ при Uзи < 0:

Рисунок 6 – Графическое представление принципа работы полевого транзистора типа JFET.

При использовании в режиме насыщения происходит усиление сигнала (рис. 7), так как при незначительных изменениях Uис

происходит значительное изменение Iис:

Рисунок 7 – Пример S JFET.

Этот параметр является усилительной способностью JFET и называется крутизной стоко-затворной характеристики (S). Единица измерения — mA/В (милиАмпер/Вольт).

Особености работы MOFSET

При подключении U между электродами С и И любой полярности к MOFSET с индуцированным N-каналом ток не потечет, так как между легитивным слоем находится слой с проводимостью P, которая не пропускает электроны. Принцип работы с каналом P-типа такой же, только необходимо подавать отрицательное U. Если подать положительное Uзи на затвор, то возникнет электрическое поле, выталкивающее дырки из зоны P в направлении подложки (рис. 8).

Под затвором концентрация свободных носителей заряда начнет уменьшаться, а их место займут электроны, которые притягиваются положительным зарядом затвора. При достижении Uзи порогового значения концентрация электронов будет значительно больше концентрации дырок. В результате этого произойдет формирование между С и И канала с проводимостью N-типа, по которому потечет Iис. Можно сделать вывод о прямо пропорциональной зависимости Iис от Uзи: при повышении Uзи происходит расширение канала и увеличение Iис. Этот процесс является одним из режимов ПТ — обогащения.

Рисунок 8 – Иллюстрация работы ПТ с индуцированным каналом (тип N).

ВАХ ПТ с изолированным затвором примерно такой же, как и с управляющим переходом (рис. 9). Участок, на котором Iис растет прямо пропорционально росту Uис, является омической областью (насыщения). Участок при максимальном расширении канала, на котором Iис не растет, является активной областью.

При превышении порогового значения U переход типа p-n пробивается, и ПТ является обычным проводником. В этом случае радиодеталь выходит из строя.

Рисунок 9 – ВАХ ПТ с изолированным затвором.

Отличие между ПТ со встроенным и индуцируемым каналами заключается в наличии между С и И канала проводящего типа. Если к ПТ со встроенным каналом подключить между стоком и истоком U разной полярности и оставить затвор включенным (Uзи = 0), то через канал потечет Iис (поток свободных носителей заряда – электронов). При подключении к затвору U < 0 возникает электрическое поле, выталкивающее электроны в направлении подложки. Произойдет уменьшение концентрации свободных носителей заряда, а сопротивление увеличится, следовательно, Iис — уменьшится. Это состояние является режимом обеднения.

При подключении к затвору U > 0 возникает электромагнитное поле, которое будет притягивать электроны из стока, истока и подложки. В результате этого произойдет расширение канала и повышение его проводимости, а Iис увеличится. ПТ начнет работать в режиме обогащения. Вольт-амперная характеристика (ВАХ) представлена на рисунке 10.

Рисунок 10 – ВАХ ПТ со встроенным каналом.

Несмотря на свою универсальность, ПТ обладают преимуществами и недостатками. Эти недостатки следуют из устройства, способа исполнения и ВАХ приборов.

Преимущества и недостатки

Преимущества и недостатки являются условными понятиями, взятыми из сравнения полевых и биполярных транзисторов. Одним из свойств ПТ является высокое сопротивление Rвх. Причем у MOFSET его значение на несколько порядков выше, чем у JFET. ПТ практически не потребляют ток у источника сигнала, который нужно усилить.

Например, если взять обыкновенную схему, генерирующую сигнал на базе микросхемы-микроконтроллера. Эта схема управляет работой электродвигателя, но обладает низким значением тока, которого недостаточно для этих целей. В этом случае необходим усилитель, потребляющий малое количества I и генерирующий на выходе ток высокой величины. В усилителе такого типа и следует применить JFET, обладающий высоким Rвх. JFET обладает низким коэффициентом усиления по U. При построении усилителя на JFET (1 шт.) максимальный коэффициент усиления будет около 20, при использовании биполярного — несколько сотен.

В усилителях высокого качества применяются оба типа транзистора. При помощи ПТ происходит усиление по I, а затем, при помощи биполярного происходит усиление сигнала по U. Однако ПТ обладают рядом преимуществ перед биполярными. Эти преимущества заключаются в следующем:

  1. Высокое Rвх, благодаря которому происходит минимальное потребление I и U.
  2. Высокое усиление по I.
  3. Надежность работы и помехоустойчивость: при отсутствии протекания I через затвор, в результате чего управляющая цепь затвора изолирована от стока и истока.
  4. Высокое быстродействие перехода из одного состояния в другое, что позволяет применять ПТ на высоких частотах.

Кроме того, несмотря на широкое применение, ПТ обладают несколькими недостатками, не позволяющими полностью вытеснить с рынка биполярные транзисторы. К недостаткам относятся следующие:

  1. Повышенное падение U.
  2. Температура разрушения прибора.
  3. Потребление большего количества энергии на высоких частотах.
  4. Возникновение паразитного транзистора биполярного типа (ПБТ).
  5. Чувствительность к статическому электричеству.

Повышенное падение U возникает из-за высокого R между стоком и истоком во время открытого состояния. ПТ разрушается при превышении температуры по Цельсию 150 градусов, а биполярный – 200. ПТ обладает низким энергопотреблением только на низких частотах. При превышении частоты 1,6 ГГц энергопотребление возрастает по экспоненте. Исходя из этого, частоты микропроцессоров перестали расти, а делается упор на создании машин с большим количеством ядер.

При использовании мощного ПТ в его структуре образовывается ПБТ, при открытии которого ПТ выходит из строя. Для решения этой проблемы подложку закорачивают с И. Однако это не решает проблему полностью, так как при скачке U может произойти открытие ПБТ и выход из строя ПТ, а также цепочки из деталей, которые подключены к нему.

Существенным недостатком ПТ является чувствительность к статическому электричеству. Этот недостаток исходит от конструктивной особенности ПТ. Слой диэлектрика (изоляционный) тонкий, и его очень легко разрушить при помощи заряда статического электричества, который может достигать сотен или тысяч вольт. Для предотвращения выхода из строя при воздействии статического электричества предусмотрено заземление подложки и закорачивание ее с истоком. Кроме того, в некоторых типах ПТ между стоком и истоком стоит диод. При работе с интегральными микросхемами на ПТ следует применять антистатические меры: специальные браслеты и транспортировка в вакуумных антистатических упаковках.

Схемы подключения

ПТ подключается примерно так же, как и обыкновенный, но есть некоторые особенности. Существует 3 схемы включения полевых транзисторов: с общими истоком (ОИ), стоком (ОС) и затвором (ОЗ). Чаще всего применяется схема подключения с ОИ (схема 1). Это подключение позволяет получить значительное усиление по мощности. Однако подключение с ОИ используется в низкочастотных усилителях, а также обладает высокой входной емкостной характеристикой.

Схема 1 – Включение с ОИ.

При включении с ОС (схема 2) получается каскад с повторителем, который называется истоковым. Преимуществом является низкая входная емкость. Его применяют для изготовления буферных разделительных каскадов (например, пьезодатчик).

Схема 2 – Подключение с ОС.

При подключении с ОЗ (схема 3) не происходит значительного усиления по току, коэффициент усиления по мощности ниже, чем при подключениях с ОИ и ОС. Однако при помощи этого типа подключения возможно полностью избежать эффекта Миллера. Эта особенность позволяет увеличить максимальную частоту усиления (усиление СВЧ).

Схема 3 – Включение с ОЗ.

Таким образом, ПТ получили широкое применение в области информационных технологий. Однако не смогли вытеснить с рынка радиодеталей биполярные транзисторы. Это связано, прежде всего, с недостатками ПТ, которые кроются в принципе работы и конструктивной особенности. Главным недостатком является высокая чувствительность к полям статического электричества.

ПРИНЦИП ДЕЙСТВИЯ ПОЛЕВОГО ТРАНЗИСТОРА

Транзисторы можно разделить на два класса – биполярные и униполярные. В биполярных транзисторах как положительные, так и отрицательные носители принимают участие в работе прибора, отсюда и термин «биполярный». Заряд избыточных неосновных носителей, инжектированных в базу, компенсируется равным по величине зарядом основных носителей, так что электрическая нейтральность в базе сохраняется. С другой стороны, в униполярных приборах ток обусловлен только свободными основными носителями в проводящем канале и влияние малого количества неосновных носителей несущественно, отсюда и термин «униполярный» [1].

Полевой транзистор (ПТ) является униполярным прибором, в котором количество носителей в токе через проводящую область определяется электрическим полем, приложенным к поверхности (или p-n-переходу) полупроводника. В полевом транзисторе поток электронов направлен от истока, представляющего омический контакт, через проводящий канал к стоку, также представляющему омический контакт (рис. 1). Канал имеет длину в направлении протекания тока и соответственно ширину в направлении, перпендикулярном току и поверхности.

В полевом транзисторе с p-n-переходом управляющим электродом (затвором) является слой полупроводника, тип проводимости которого (р-тип) противоположен типу проводимости канала (n-тип). Управляющий p-n-переход, обратно смещённый относительно канала, образует изолирующий обеднённый слой, который, распространяясь в проводящий канал, эффективно ограничивает его размеры. Увеличение отрицательного потенциала вызывает дальнейшее сужение канала, уменьшающее его проводимость, а уменьшение отрицательного потенциала наоборот, приводит к расширению канала, увеличивающему его проводимость. При определённом значении напряжения на затворе, называемом напряжением отсечки, проводимость канала в идеальном случае уменьшается до нуля.

Нормальная работа ПТ с каналом р-типа обеспечивается подачей положительного смещения на затвор.

Рис. 1. Схематичное изображение полевого транзистора с p-n-переходом.
1 – исток; 2 – затвор p-типа; 3 – сток; 4 – обеднённая область; 5 – канал n-типа; 6 – затвор p-типа.

Максимальный ток стока и максимальная крутизна у ПТ с управляющим р-n-переходом (как с каналом р-типа, так и с каналом n-типа) наблюдается при нулевом смещении на затворе. При подаче прямого смещения на затвор ПТ появляется прямой ток через участок затвор-исток и резко уменьшается входное сопротивление транзистора.

На сток полевого транзистора с каналом n-типа необходимо подавать напряжение положительной полярности, а с каналом p-типа – отрицательной полярности.

Рис. 2. Условные обозначения ПТ с р-n-переходом.
а – с каналом p-типа; б – с каналом n-типа.

Условные обозначения полевых транзисторов с управляющим p-n-переходом приведены на рис. 2.

CONTENTS NEXT

Полевой транзистор: определение, устройство, принцип работы

Полевой транзистор является очень широко используемым активным (т. е. способным усиливать сигналы) полупроводниковым прибором. Впервые он был предложен в 1930 г.

Полевыми транзисторами называют активные полупроводниковые приборы, в которых выходным током управляют с помощью электрического поля (в биполярных транзисторах выходной ток управляется входным током). В англоязычной литературе эти транзисторы называют транзисторами типа FET (Field Effect Transistor).

Полевые транзисторы называют также униполярными, так как в процессе протекания электрического тока участвуют только основные носители.

Васильев Дмитрий Петрович

Профессор электротехники СПбГПУ

Задать вопрос

Различают два вида полевых транзисторов: с управляющим переходом и с изолированным затвором. Для определенности вначале обратимся к так называемому полевому транзистору с управляющим p-n-переходом с каналом p-типа.

Устройство транзистора

Дадим схематическое изображение структуры полевого транзистора с управляющим переходом и каналом p-типа. (рис. 1.85) и условное графическое обозначение этого транзистора (рис. 1.86, а). Стрелка указывает направление от слоя pк слою n (как и стрелка в изображении эмиттера биполярного транзистора). В интегральных микросхемах линейные размеры транзисторов могут быть меньше 1 мкм.

Удельное сопротивление слоя n(затвора) намного меньше удельного сопротивления слоя p (канала), поэтому область p-n-перехода, обедненная подвижными носителями заряда и имеющая очень большое удельное сопротивление, расположена главным образом в слое р.

Если типы проводимости слоев полупроводника в рассмотренном транзисторе изменить на противоположные, то получим полевой транзистор с управляющим p-n-переходом и каналом n-типа, его условное графическое обозначение представлено на рис. 1.86, б.

Основные физические процессы

Подадим положительное напряжение между затвором и истоком транзистора с каналом p-типа: uзи> 0. Оно сместит p-n-переход в обратном направлении.

Абрамян Евгений Павлович

Доцент кафедры электротехники СПбГПУ

Задать вопрос

При увеличении обратного напряжения на p-n -переходе он расширяется в основном за счет канала (в силу указанного выше различия в удельных сопротивлениях). Увеличение ширины p-n -перехода уменьшает толщину канала и, следовательно, увеличивает его сопротивление. Это приводит к уменьшению тока между истоком и стоком. Именно это явление позволяет управлять током с помощью напряжения и соответствующего ему электрического поля. Если напряжение uзи достаточно велико и равно напряжению отсечки u зи отс, канал полностью перекрывается областью p-n-перехода.

В рабочем (не аварийном) режиме p-n-переход должен находиться под обратным или нулевым напряжением. Поэтому в рабочем режиме ток затвора примерно равен нулю (iз ~ 0), а ток стока iс примерно равен току истока iи (iи = iс).Важно учитывать, что на ширину p-n-перехода и толщину канала прямое влияние может оказывать напряжение между истоком и стоком uис.

Пусть uиз = 0 (между истоком и затвором включена закоротка) и подано положительное напряжение uис (рис. 1.87).

Это напряжение через закоротку окажется поданным на промежуток затвор — сток, т. е. окажется, что uиз=uис и что p-n-переход находится под обратным напряжением.

Обратное напряжение в различных областях p -n-перехода различно. В областях вблизи истока это напряжение практически равно нулю, а в областях вблизи стока это напряжение равно величине uис . Поэтому p-n-переход будет шире в тех областях, которые ближе к стоку. Обычно считают, что напряжение в канале от истока к стоку увеличивается линейно.

Можно утверждать, что при u ис = u из отс канал полностью перекроется вблизи стока. При дальнейшем увеличении напряжения uис та область канала, в которой он перекрыт, будет расширяться (рис. 1.88).

Что такое полевой транзистор и как его проверить

Добрый день, друзья!

Недавно мы с вами начали плотнее знакомились с тем, как устроено компьютерное «железо». И познакомились одним из его «кирпичиков» — полупроводниковым диодом. Компьютер – это сложная система, состоящая из отдельных частей. Разбирая, как работают эти отдельные части (большие и малые), мы приобретаем знание.

Обретая знание, мы получаем шанс помочь своему железному другу-компьютеру, если он вдруг забарахлит. Мы же ведь в ответе за тех, кого приручили, не правда ли?

Сегодня мы продолжим это интересное дело, и попробуем разобраться, как работает самый, пожалуй, главный «кирпичик» электроники – транзистор. Из всех видов транзисторов (их немало) мы ограничимся сейчас рассмотрением работы полевых транзисторов.

Почему транзистор – полевой?

Слово «транзистор» образовано от двух английских слов translate и resistor, то есть, иными словами, это преобразователь сопротивления.

Среди всего многообразия транзисторов есть и полевые, т.е. такие, которые управляются электрическим полем.

Электрическое поле создается напряжением. Таким образом, полевой транзистор – это полупроводниковый прибор, управляемый напряжением.

В англоязычной литературе используется термин MOSFET (MOS Field Effect Transistor). Есть другие типы полупроводниковых транзисторов, в частности, биполярные, которые управляются током. При этом на управление затрачивается и некоторая мощность, так как к входным электродам необходимо прикладывать некоторое напряжение.

Канал полевого транзистора может быть открыт только напряжением, без протекания тока через входные электроды (за исключением очень небольшого тока утечки). Т.е. мощность на управление не затрачивается. На практике, однако, полевые транзисторы используются большей частью не в статическом режиме, а переключаются с некоторой частотой.

Конструкция полевого транзистора обуславливает наличие в нем внутренней переходной емкости, через которую при переключении протекает некоторый ток, зависящий от частоты (чем больше частота, тем больше ток). Так что, строго говоря, некоторая мощность на управление все-таки затрачивается.

Где используются полевые транзисторы?

Настоящий уровень технологии позволяет сделать сопротивление открытого канала мощного полевого транзистора (ПТ) достаточно малым – в несколько сотых или тысячных долей Ома!

И это является большим преимуществом, так как при протекании тока даже в десяток ампер рассеиваемая на ПТ мощность не превысит десятых или сотых долей Ватта.

Таким образом, можно отказаться от громоздких радиаторов или сильно уменьшить их размеры.

ПТ широко используются в компьютерных блоках питания и низковольтных импульсных стабилизаторах на материнской плате компьютера.

Из всего многообразия типов ПТ для этих целей используются ПТ с индуцированным каналом.

Как работает полевой транзистор?

ПТ с индуцированным каналом содержит три электрода — исток (source), сток (drain), и затвор (gate). 

Принцип работы ПТ наполовину понятен из графического обозначения и названия электродов.

Канал ПТ – это «водяная труба», в которую втекает «вода» (поток заряженных частиц, образующих электрический ток) через «источник» (исток).

«Вода» вытекает из другого конца «трубы» через «слив» (сток). Затвор – это «кран», который открывает или перекрывает поток. Чтобы «вода» пошла по «трубе», надо создать в ней «давление», т.е. приложить напряжение между стоком и истоком.

Если напряжение не приложено («давления в системе нет»), тока в канале не будет.

Если приложено напряжение, то «открыть кран» можно подачей напряжения на затвор относительно истока.

Чем большее подано напряжение, тем сильнее открыт «кран», больше ток в канале «сток-исток» и меньше сопротивление канала.

В источниках питания ПТ используется в ключевом режиме, т.е. канал или полностью открыт, или полностью закрыт.

Честно сказать, принципы действия ПТ гораздо более сложны, он может работать не только в ключевом режиме. Его работа описывается многими заумными формулами, но мы не будем здесь все это описывать, а ограничимся этими простыми аналогиями.

Скажем только, что ПТ могут быть с n-каналом (при этом ток в канале создается отрицательно заряженными частицами) и p-каналом (ток создается положительно заряженными частицами). На графическом изображении у ПТ с n-каналом стрелка направлена внутрь, у ПТ с p-каналом – наружу.

Собственно, «труба» — это кусочек полупроводника (чаще всего – кремния) с примесями химических элементов различного типа, что обуславливает наличие положительных или отрицательных зарядов в канале.

Теперь переходим к практике и поговорим о том,

Как проверить полевой транзистор?

В норме сопротивление между любыми выводами ПТ бесконечно велико.

И, если тестер показывает какое-то небольшое сопротивление, то ПТ, скорее всего, пробит и подлежит замене.

Во многих ПТ имеется встроенный диод между стоком и истоком для защиты канала от обратного напряжения (напряжения обратной полярности).

Таким образом, если поставить «+» тестера (красный щуп, соединенный с «красным» входом тестера) на исток, а «-» (черный щуп, соединенный с черным входом тестера) на сток, то канал будет «звониться», как обычный диод в прямом направлении.

Это справедливо для ПТ с n-каналом. Для ПТ с p-каналом полярность щупов будет обратной.

Как проверить диод с помощью цифрового тестера, описано в соответствующей статье. Т.е. на участке «сток — исток» будет падать напряжение 500-600 мВ.

Если поменять полярность щупов, к диоду будет приложено обратное напряжение, он будет закрыт и тестер это зафиксирует.

Однако исправность защитного диода еще не говорит об исправности транзистора в целом. Более того, если «прозванивать» ПТ, не выпаивая из схемы, то из-за параллельно подключенных цепей не всегда можно сделать однозначный вывод даже об исправности защитного диода.

В таких случаях можно выпаять транзистор, и, используя небольшую схему для тестирования, однозначно ответить на вопрос – исправен ли ПТ или нет.

В исходном состоянии кнопка S1 разомкнута, напряжение на затворе относительно стока равно нулю. ПТ закрыт, и светодиод HL1 не светится.

При замыкании кнопки на резисторе R3 появляется падение напряжения (около 4 В), приложенное между истоком и затвором. ПТ открывается, и светодиод HL1 светится.

Эту схему можно собрать в виде модуля с разъемом для ПТ. Транзисторы в корпусе D2 pack (который предназначен для монтажа на печатную плату) в разъем не вставишь, но можно припаять к его электродам проводники, и уже их вставить в разъем. Для проверки ПТ с p-каналом полярность питания и светодиода нужно изменить на обратную.

Иногда полупроводниковые приборы выходят из строя бурно, с пиротехническими, дымовыми и световыми эффектами.

В этом случае на корпусе образуются дыры, он трескается или разлетается на куски. И можно сделать однозначный вывод об их неисправности, не прибегая к приборам.

В заключение скажем, что буквы MOS в аббревиатуре MOSFET расшифровываются как Metal — Oxide — Semiconductor (металл – оксид – полупроводник). Такова структура ПТ – металлический затвор («кран») отделен от канала из полупроводника слоем диэлектрика (оксида кремния).

Надеюсь, с «трубами», «кранами» и прочей «сантехникой» вы сегодня разобрались.

Однако, теория, как известно, без практики мертва! Надо обязательно поэкспериментировать с полевиками, поковыряться, повозиться с их проверкой, пощупать, так сказать.


Полевой транзистор принцип работы для чайников

Транзисторами (transistors, англ.) называют полупроводниковые триоды у которых расположено три выхода. Их основным свойством является возможность посредством сравнительно низких входных сигналов осуществлять управление высоким током на выходах цепи.

Для радиодеталей, которые используются в современных сложных электроприборах, применяются полевые транзисторы. Благодаря свойствам этих элементов выполняется включение или выключение тока в электрических цепях печатных плат, или его усиление.

Что представляет собой полевой транзистор

Полевые транзисторы — это трех или четырех контактные устройства, в которых ток, идущий на два контакта может регулироваться посредством напряжения электрополя  третьего контакта.  на двух контактах регулируется напряжением электрического поля на третьем. В результате этого подобные транзисторы называются полевыми.

Название расположенных на устройстве контактов и их функции:

  • Истоки – контакты с входящим электрическим током, которые находится на участке n;
  • Стоки – контакты с исходящим, обработанным током, которые находятся  на участке n;
  • Затворы – контакты, находящиеся на участке р, посредством изменения напряжения на котором, выполняется регулировка пропускной способности на устройстве.

Полевые транзисторы с  n-p переходами – особые виды, позволяющие управлять током. От простых они, как правило, отличаются тем, через них протекает ток, без пересечения участка р-n переходов, участка который образуется на границах этих двух зон. Размеры р-n участка являются регулируемыми.

Видео «Подробно о полевых транзисторах»

Виды полевых транзисторов

Полевой транзистор с n-р переходами подразделяется на несколько классов в зависимости:

  1. От типа каналов проводников: n или р. Каналы воздействую на знаки, полярности, сигналы управления. Они должны быть противоположны по знакам n-участку.
  2. От структуры приборов: диффузных, сплавных по р -n — переходам, с затворами Шоттки, тонкопленочными.
  3. От общего числа контактов: могут быть трех или четырех контактными. Для четырех контактных приборов, подложки также являются затворами.
  4. От используемых материалов: германия, кремния, арсенид галлия.

В свою очередь разделение классов происходит в зависимости от принципа работы транзистора:

  • устройства под управлениями р-n переходов;
  • устройства с изолированными затворами или с барьерами Шоттки.

Принцип работы полевого транзистора

Говоря простыми словами о том, как работает полевой транзистор для чайников с управляющими p-n переходами, стоит отметить: радиодетали состоят из двух участков: p-переходов и n-переходов. По участку n проходит электроток. Участок р является перекрывающей зоной, неким вентилем.  Если оказывать определенное давление на нее, то она будет перекрывать участок и препятствовать прохождению тока. Либо, же наоборот, при снижении давления количество проходящего тока возрастет. В результате такого давления осуществляется увеличение напряжения на контактах затворов, находящихся на участке р.

Приборы с управляющими p-n канальными переходами — это полупроводниковые пластины, имеющие электропроводность с одним из данных типов. К торцевым сторонам пластин выполняется подсоединение контактов: стока и истока, в середину — контакты затвора. Принцип работы прибора основан на изменении пространственных толщин p-n переходов. Так как в запирающих областях практически отсутствуют подвижные носители заряда, их проводимость равняется нулю. В полупроводниковых пластинах, на участках которых не воздействует запирающий слой, создаются проводящие ток каналы. Если подается отрицательное напряжение в отношении истока, на затворе образуется поток, через который протекают носителя заряда.

Для изолированных затворов, характерно расположение на них тонкого слоя диэлектрика. Такое устройство работает по принципу электрических полей.  Для его разрушения понадобится всего лишь небольшое электричество. В связи с этим, чтобы предотвратить статическое напряжение, которое может превышать 1000 В, необходимо создание специальных корпусов для приборов, которые минимизируют эффект от воздействия вирусных типов электричества.

Для чего нужен полевой транзистор

При рассмотрении работы сложных видов электротехники, стоит рассмотреть работу такого важного компонента интегральной схемы, как полевой транзистор. Основная задача от использования данного элемента заключается в пяти ключевых направлениях, в связи с чем транзистор применяется для:

  1. Усиления высокой частоты.
  2. Усиления низкой частоты.
  3. Модуляции.
  4. Усиления постоянного тока.
  5. Ключевых устройств (выключателей).

В качестве простого примера работа транзистора-выключателя, может быть представлена как микрофон и лампочка в одной компановке.  Благодаря микрофону улавливаются звуковые колебания, что влияет на появление электрического тока, поступающего на участок запертого устройства. Присутствие тока влияет на включение устройства и включение электрической цепи, к которой подключаются лампочки. Последние загораются после того как микрофон уловил звук, но горят они за счет источников питания не связанных с микрофоном и более мощных.

Модуляцию применяют с целью управления информационными сигналами. Сигналы управляют частотами колебаний. Модуляцию применяют для качественных звуковых радиосигналов, для передачи звуковых частот в телевизионные передачи, для трансляции цветовых изображений и телевизионных сигналов с высоким качеством. Модуляцию применяют повсеместно, где нужно проводить работу с высококачественными материалами.

Как усилители полевые транзисторы в упрощенном виде работают по такому принципу: графически любые сигналы, в частности, звукового ряда, могут быть представлены как ломаная линия, где ее длиной является временной промежуток, а высотой изломов – звуковая частотность. Чтобы усилить звук к радиодетали подается поток мощного напряжения, приобретаемого нужную частотность, но с более большим значением, из-за подачи слабых сигналов на управляющие контакты. Иначе говоря, благодаря устройству происходит пропорциональная перерисовка изначальной линии, но с более высоким пиковым значением.

 

Как применять полевой транзистор для чайников

Первыми приборами, которые поступили на рынок для реализации, и в которых были использованы полевые транзисторы с управляющими p-n переходами, были слуховые аппараты. Их изобретение состоялось еще в пятидесятые годы XX века. В более крупным масштабах они применялись, как элементы для телефонных станций.

В наше время, применение подобных устройств можно увидеть во многих видах электротехники. При наличии маленьких размеров и большому перечню характеристик, полевые транзисторы встречаются в кухонных приборах (тостерах, чайниках, микроволновках), в устройстве компьютерной, аудио и видео техники и прочих электроприборах. Они используются для сигнализационных систем охраны пожарной безопасности.

На промышленных предприятиях транзисторное оборудование применяют для регуляции мощности на станках. В сфере транспорта их устанавливают в поезда и локомотивы, в системы впрыскивания топлива на личных авто. В жилищно-коммунальной сфере транзисторы позволяют следить за диспетчеризацией и системами управления уличного освещения.

Также самая востребованная область, в которой применяются транзисторы – изготовление комплектующих, используемых в процессорах. Устройство каждого процессора предусматривает множественные миниатюрные радиодетали, которые при повышении частоты более чем на 1,5 ГГц, нуждаются в усиленном потреблении энергии. В связи с этими разработчики процессорной техники решил создавать многоядерные оборудования, а не увеличивать тактовую частоту.

Достоинства и недостатки полевых транзисторов

Использование полевых транзисторов благодаря их универсальным характеристикам позволило обойти другие виды транзисторов. Они широко применяются для интегральной схемы в качестве выключателя.

Достоинства:

  • каскады детали расходуют малое количество энергии;
  • показатели усиления превышают, значения других аналогичных устройств;
  • достижение высокой помехоустойчивости осуществляется за счет того, что отсутствует ток в затворе;
  • обладают более высокой скоростью включения и выключения, работают с недоступными для других транзисторов частотами.

Недостатки:

  • менее устойчивы к высоким температурам, которые приводят к разрушению;
  • на частотах более 1,5 ГГц, количество потребляемой энергии стремительно увеличивается;
  • чувствительны к статическим видам электричества.

Благодаря характеристикам, которыми обладают полупроводниковые материалы, взятые в качестве основы для полевого транзистора, позволяют использовать устройство в бытовой и производственной сфере. Полевыми транзисторами оснащается различная бытовая техника, которая используется современным человеком.

Видео «Устройство и принцип работы полевого транзистора»

принцип работы, схемы и т.д.

Полевые транзисторы — специальный класс транзисторов, которые могут использоваться в качестве выключателей, регуляторов тока или усилителей. Полевой транзистор, отличается от обычного транзистора тем, что ток в нем двигается не пересекая P-N перехода. Величиной тока можно управлять путем регулировки затворного потенциала, подаваемого через этот переход. Существует две основные разновидности полевых транзисторов: полевые транзисторы с затвором на основе перехода и полевые транзисторы с изолированным затвором.

Полевой транзистор
Обратите внимание на основы электричества и на приборы электроники.

Полевой транзистор с затвором на основе перехода

Полевой транзистор с затвором на основе перехода состоит из канальной области (канала) и затвора. Когда он работает, то ток протекает через канал от клеммы истока к клемме стока.

Канал изготовлен из материала n-типа, а затвор — из материала p-типа. Полевые транзисторы с затвором на основе перехода подобного типа называются полевыми транзисторами с затвором на основе перехода с каналом n-типа. На блок-схеме, показанной на рисунке ниже материал p-типа присоединен с обеих сторон к каналу. Однако во многих транзисторах с каналом n-типа этот материал p-типа бывает обернут вокруг канала сплошным кольцом, образуя, тем самым единый, неразрывный p-n переход. Принципы работы данного прибора в основном те же самые, несмотря на методы, использованные в его конструкции.

Схема полевого транзистора с затвором на основе перехода

Потенциал на затворе определяет проводимость на пути от истока до стока указанного транзистора. Затворный потенциал полевого транзистор с затвором на основе перехода, всегда имеет обратное смещение, чтобы снижать до минимума ток, протекающий через переход. Когда переход имеет обратное смещение, то током, протекающим по каналу, можно управлять с помощью изменения размеров обедненной области. Большие значения потенциала обратного смещения вызывают расширение обедненной области, что ограничивает ток, протекающий по каналу. И наоборот, с помощью уменьшения потенциала обратного смещения, и, тем самым, сокращения размеров обеденной области, создается возможность для протекания большего тока от истока к стоку. Состояние обратного смещения гарантирует, что никакой ток не течет самостоятельно через p-n переход.

Полевой транзистор с изолированным затвором

Полевые транзисторы с изолированным затвором отличаются от полевых транзисторов с затвором на основе перехода как по своей конструкции, так и по принципу работы. Обычно в полевых транзисторах с изолированным затвором, как это видно из их названия, затвор изолируется от основного корпуса транзистора тонким слоем окиси металла или каким-нибудь другим изолирующим материалом. Транзисторы этого типа, в которых в качестве изолятора использована окись металла, часто называют полевыми транзисторами со структурой металл-оксид-полупроводник.

Изоляция затвора в этих транзисторах от их основной части обеспечивает им двойное преимущество по сравнению с полевыми транзисторами с затвором на основе перехода. Одно из этих преимуществ заключается в том, что подобная изоляция предотвращает движение тока через затвор независимо от полярности, подаваемого на затвор потенциала. А это, в свою очередь, создает второе преимущество, которое состоит в том, что эти транзисторы могут действовать постоянно, независимо от того подается ли на затвор положительный или отрицательный потенциал.

Схема полевого транзистора с изолированным затвором

Полевые транзисторы

История создания и реализации полевых транзисторов

Первый полевой транзистор был изобретен Юлий Эдгаром Лилиенфельдом – австро-венгерским ученым-физиком, посвятившим большую часть жизни изучению транзисторного эффекта. Случилось это в 1928 году, однако первая технология изготовления транзисторов не позволяла физически реализовать этот радиоэлемент в промышленности. Первый работающий полевой транзистор с изолированным затвором, согласно трудам Лилиенфельда, произвели в США лишь в 1960 году. За 7 лет до этого была предложена другая технология изготовления полевого транзистора на базе управляющего p-n перехода (МОП транзистор). На основе трудов Вальтера Шоттки в 1966 году американский инженер Карвер Андресс Мид предложил новый тип транзисторов с использованием барьера Шоттки. В 1977 году было установлено, что применение полевых транзисторов в вычислительной технике значительно повышает расчетные мощности электронных устройств, что положило начало разработок компьютерных процессоров и логических микросхем на основе полевого транзистора. Более корректным названием полевого транзистора является униполярный транзистор (управляемый одним электрическим полем), однако в народе это название не прижилось.

Физические основы работы полевого транзистора

Полевым (униполярным) транзистором называют электронное устройство, в основе которого лежит принцип использования зарядов только одного знака, т.е. электронов или дырок. Управление током в полевых транзисторах осуществляется изменением проводимости канала под действием электрического поля, а не потенциала напряжения, что является основным отличием полевого транзистора от биполярного. По способу создания канала различают полевые транзисторы с p-n переходом, встроенным каналом и индуцированным каналом. Транзисторы с встроенным и индуцированным каналом так же относятся к разновидности МДП транзисторов.

Устройство полевого транзистораа – с p-n переходом; б – с изолированным затвором и встроенным каналом; в – с изолированным затвором и индуцированным каналом.

Работа полевых транзисторов основана на движении основных носителей в полупроводнике.

Полевой транзистор с p-n переходом.

Данный транзистор состоит из основного канала полупроводника n-типа, изготовленного из пластины кремния с омическими выводами с каждого конца. Канал образован методом диффузии (введением легированного материала) и образует тончайший слой с дырочной проводимостью. Канал заключен между двумя электродами p-типа, соединенными между собой. Таким образом, n-канал образует два p-n перехода, расположенных параллельно направлению тока. Вывод, через который поступают носителя заряда, называют истоком (И), а электрод, откуда заряд вытекает – стоком (С). Оба p-слоя электрически связаны между собой и имеют внешний электрод, называемый затвором (З). Существуют два типа канала. Положительный заряд протекает через канал с p проводимостью, а отрицательный заряд проходит через канал с n проводимостью. На рисунке ниже представлен полевой канал с отрицательной проводимостью, управляемый полем положительной полярности. В данном случае через канал от истока к стоку передвигаются электроны. Подобную конструкцию имеют и полевые транзисторы с каналом p типа.

Управляющее или входное напряжение (Uзи) подается между затвором и истоком. Это напряжение для обоих p-n переходов является обратным. В выходную цепь, в которую так же входит канал транзистора, подключается напряжение Uси положительным полюсом к стоку.

Способность управления транзистором объясняется тем фактором, что при изменении напряжения Uзи будет изменяться ширина p-n переходов, которые представляют собой участки в полупроводнике, которые обеднены носителями заряда. Так как p-слой c меньшим сопротивлением имеет большую концентрацию примесей по сравнению с n-слоем, то управление изменением ширина канала происходит за счет более высокоомного n-слоя. При этом изменяется сечение, и проводимость токопроводящего канала (Ic – ток стока) от истока к стоку.

Особенность работы полевого транзистора заключается во влиянии напряжения Uзи и Uси на проводимость канала. Влияние подводимых напряжений отображает рисунок ниже.

На рисунке:

А) напряжение прикладывается только к входной управляющей цепи. Изменение Uзи управляет сечением канала по всей ширине, однако, выходной ток Ic=0 из-за отсутствия напряжения Uси.

Б) Присутствует только напряжение канала, управляющее напряжение отсутствует и начинает протекать ток Ic. Создается падение напряжения на стоковом электроде, в результате пропускная способность канала сужается и при некотором значении границы p-n переходов смыкаются. Повышается внутреннее сопротивление канала и ток Ic далее не способен проходить.

В) В этом варианте на рисунке показано суммарное значение напряжений, когда канал напряжения Uси заперт малым управляющим напряжением Uзи. При подаче этого напряжения происходит расширение n области и начинает протекать ток Ic.

Полевой транзистор с изолированным затвором (МДП и МОП)

В этих транзисторах затворный электрод отделен от канала тонким изолирующим слоем из окиси кремния. Отсюда другое название этих транзисторов – МОП-транзисторы (структура металл – окисел — полупроводник). Наличие диэлектрика обеспечивает высокое входное сопротивление рассматриваемых транзисторов. Проникновения управляющего поля в канал не затруднено, но ток затвора сильно уменьшается и не зависит от полярности приложенного напряжения к затвору. МДП-транзисторы (структура металл – диэлектрик — полупроводник) выполняют из кремния. Принцип действия МДП-транзисторов основан на эффекте изменения проводимости приповерхностного слоя полупроводника на границе с диэлектриком под воздействием поперечного электрического поля.

Каналы полевых МДП транзисторов могут быть обедненного (б — встроенный канал) и обогащенного типа (в — индуцированный канал), (см. рисунок устройства полевого транзистора).

— По встроенному каналу течет ток Iс при отсутствии напряжения Uзи. Его значением можно управлять в сторону уменьшения, подав положительное напряжение Uзи, если транзистор с p-каналом и отрицательное напряжение, если транзистор с n-каналом. Другими словами – закрыть транзистор управляющим обратным напряжением.

— В индуцированном канале, если отсутствует напряжение Uзи ток между стоком и истоком очень мал. При подаче управляющего напряжения ток Iси увеличивается.

Итак, управляющее напряжение при его подаче на затвор транзистора с встроенным каналом – закрывает транзистор, в индукционном канале — открывает транзистор.

Вольт — амперная и сток — затворная характеристики полевого транзистора

ВАХ полевого транзистора определяет его выходные (стоковые) характеристики, а так же содержит информацию о его свойствах в различных режимах работы. Кроме того ВАХ отображает связь параметров между собой. По графику можно определить некоторые параметры, не документированные в описании к транзистору, произвести расчеты уровня напряжения цепей смещения (Uзи), стабилизацию режима, а так же дать оценку работы полевого транзистора в широком диапазоне токов и напряжений.

На рисунке слева показан пример стоковой характеристики полевого транзистора с p-n переходом и каналом p-типа при различных фиксированных управляющих напряжениях Uзи. Графики отображают зависимость тока стока (Ic) от напряжения сток – исток (Uси). На каждой из этих кривых присутствуют 3 характерные области:

1. Сильная зависимость тока Ic от напряжения Uси (участок до штрих — пунктирной линии). Эта часть определяет период насыщения канала до напряжения Uси нас, при котором транзистор переходит в закрытое (открытое) состояние. Чем выше управляющее напряжение смещения Uзи, тем раньше закроется (откроется) полевой транзистор.

2. Слабая зависимость тока Ic, когда канал насыщается до своего максимального значения и переходит в постоянно закрытое (открытое) состояние.

3. В момент, когда напряжение Uси превышает предельно допустимое для полевого транзистора, наступает необратимый электрический пробой p-n перехода. Полевой транзистор при этом выходит из строя.

Сток-затворная характеристика показывает зависимость Ic от напряжения между затвором и истоком.

Напряжение на затворе, при котором ток стока стремится к нулю, является очень важной характеристикой полевого транзистора. Оно соответствует напряжению запирания прибора по цепи затвора и называется напряжением запирания или напряжением отсечки.

Условные графические изображения полевых транзисторов в электрических схемах выглядят следующим образом.

Где полевой транзистор:

а – с p-n переходом и p-каналом;

б — с p-n переходом и n-каналом;

в – со встроенным p-каналом обедненного типа;

г – со встроенным n-каналом обедненного типа;

д – с индуцированным p-каналом обогащенного типа;

е – с индуцированным n-каналом обогащенного типа;

ж – p-типа (в) и выводом от подложки;

з – p-типа (д) и выводом от подложки

Европейское обозначение контактов: gate – затвор, drain – сток, source – исток, tab – подложка (зачастую в неизолированных транзисторах является стоком).

Основные технические характеристики полевого транзистора

Современные полевые транзисторы характеризуются основными характеристиками, температурными характеристиками и электрическими характеристиками при температуре до +25 градусов на подложке (истоке). Кроме того, существуют статические и динамические характеристики полевых транзисторов, определяющие максимальные показатели при их применении в частотных сигналах. На частотные характеристики следует обращать особое внимание при использовании транзисторов в генераторах, модуляторах, импульсных блоках питания, современных цифровых усилителях класса D и выше. Частотные свойства определяются постоянной времени RC-цепи затвора, определяющей скорость запирания / отпирания канала. У полевых транзисторов с изолированным затвором (МОП и МДП) входная емкость значительно меньше полевых транзисторов с p-n переходом, что дает возможность применять их в высокочастотной аппаратуре.

К основным характеристикам полевых транзисторов относятся:

Vds (Vdss) или Uси max – определяет максимально допустимое значение напряжения между истоком и стоком;

Id или Ic – максимально допустимый ток стока, проходящий через открытый канал транзистора;

Rdc(on) – сопротивление канала между затвором и истоком (обычно указывается совместно с управляющим напряжением Uзи или Vgs).

Iз ут или Igss – ток утечки затвора при заданном напряжении между затвором и остальными выводами, замкнутыми между собой.

Pd или Pmax – максимальная рассеиваемая мощность транзистора при температуре, как правило, +25 градусов.

Тепловые параметры полевого транзистора определяют устойчивость его характеристик при работе в диапазоне температур, так как при изменении температуры свойства полупроводниковых материалов изменяются. От температуры сильно зависит значение Ic , крутизны и тока утечки затвора.

Tj или Тmax – температура разрушения кристалла подложки, соответствующая максимально допустимой рабочей температуре

Tstg или Тmin – минимальная отрицательная температура, при которой соблюдаются основные паспортные параметры транзистора

Отличительной особенностью работы полевых транзисторов в сравнении с биполярными является очень низкий коэффициент шума или Кш. Данный коэффициент мало влияет от напряжений сток – исток, тока стока, а так же температуры работы транзистора (до +50 градусов).

Рекомендации по применению полевых транзисторов


1. Не рекомендуется снижать температуру полевых транзисторов во время их работы ниже -5 градусов, а так же выходи за пределы рабочей температуры +60 +70 градусов (в народе — температура удержания пальца).
2. Во время эксплуатации необходимо выбирать рабочие напряжения и токи, которые не будут превышать 70% от максимально допустимых параметров по паспорту (даташиту).
3. Нельзя использовать транзисторы в максимальных режимах по двум параметрам одновременно.
4. Не допускать работу транзистора с отключенным затвором.
5. На затвор полевых транзисторов с p-n переходом нельзя подавать напряжение, смещающее переход в прямом направлении. Для p-канальных это будет отрицательное напряжение, для n-канальных – положительное.
6. Хранение полевых МОП и МДП транзисторов желательно производить с закороченными выводами. Маломощные транзисторы частотные транзисторы этой структуры выходят из строя от статического напряжения.
7. Проверить исправность полевого транзистора электронным тестером можно по аналогии с этим видео http://www.youtube.com/watch?v=jQ6l6C8LMSw

Будущее технологии сегнетоэлектрических полевых транзисторов

  • 1.

    Ma, T. & Han, J.-P. Почему до сих пор не удается найти энергонезависимый сегнетоэлектрический полевой транзистор с памятью? IEEE Electron Device Lett. 23 , 386–388 (2002).

    Артикул Google ученый

  • 2.

    Миколаджик Т., Шредер У. и Слезазек С. Прошлое, настоящее и будущее сегнетоэлектрических воспоминаний. IEEE Trans.Электронные устройства 67 , 1434–1443 (2020).

    Артикул Google ученый

  • 3.

    Sugibuchi, K., Kurogi, Y. & Endo, N. Сегнетоэлектрическое устройство памяти с полевым эффектом, использующее пленку Bi 4 Ti 3 O 12 . J. Appl. Phys. 46 , 2877–2881 (1975). В этой работе был продемонстрирован один из первых сегнетоэлектрических полевых транзисторов с использованием сегнетоэлектрика на основе оксида перовскита.

    Артикул Google ученый

  • 4.

    Скотт Дж. Ф. Ferroelectric Memories Vol. 3 (Springer, 2000).

  • 5.

    Böscke, T. et al. Фазовые переходы в сегнетоэлектрическом оксиде гафния, легированном кремнием. заявл. Phys. Lett. 99 , 112904 (2011).

    Артикул Google ученый

  • 6.

    Бёске Т., Мюллер Дж., Бройхаус Д., Шредер У. и Бёттгер У. Сегнетоэлектричество в оксиде гафния: КМОП-совместимые сегнетоэлектрические полевые транзисторы. В 2011 г. Electron Devices Meeting 24.5.1–24.5.4 (IEEE, 2011). В данной работе был продемонстрирован сегнетоэлектрический полевой транзистор с сегнетоэлектриком на основе оксида гафния.

  • 7.

    Салахуддин, С., Ни, К. и Датта, С. Эра гипермасштабирования в электронике. Nat. Электрон. 1 , 442–450 (2018).

    Артикул Google ученый

  • 8.

    Aly, M. M. S. et al. Энергоэффективные вычисления с большим объемом данных: N3XT 1,000x. Компьютер 48 , 24–33 (2015).

    Google ученый

  • 9.

    Кешаварци, А. и ван ден Хук, W. Edge Intelligence – на сложном пути к триллиону интеллектуальных подключенных устройств Интернета вещей. IEEE Des. Тест 36 , 41–64 (2019).

    Артикул Google ученый

  • 10.

    Вонг, Дж. К. и Салахуддин, С. Транзисторы с отрицательной емкостью. Proc. IEEE 107 , 49–62 (2018).

    Артикул Google ученый

  • 11.

    Дистелхорст, М., Дрождин, К. Стохастический резонанс и переключение доменов. Сегнетоэлектрики 291 , 217–224 (2003).

    Артикул Google ученый

  • 12.

    Херон, Дж.и другие. Детерминированное переключение ферромагнетизма при комнатной температуре с помощью электрического поля. Природа 516 , 370–373 (2014).

    Артикул Google ученый

  • 13.

    Si, M. et al. Сегнетоэлектрический полупроводниковый полевой транзистор. Nat. Электрон. 2 , 580–586 (2019).

    Артикул Google ученый

  • 14.

    Иевлев, А.и другие. Перемежаемость, квазипериодичность и хаос в переключении сегнетоэлектрических доменов, индуцированном зондом. Nat. Phys. 10 , 59–66 (2014).

    Артикул Google ученый

  • 15.

    Мюллер К. А. и Буркард Х. SrTiO 3 : собственный квантовый параэлектрик ниже 4 К. Phys. Ред. B 19 , 3593 (1979).

    Артикул Google ученый

  • 16.

    Jerry, M. et al. Аналоговый синапс на сегнетоэлектрических полевых транзисторах для ускорения обучения глубоких нейронных сетей. В 2017 IEEE Int. Собрание электронных устройств (IEDM) , 6.2.1–6.1.4 (IEEE, 2017). В этой работе был продемонстрирован многомодовый (5-битный) синапс весовой ячейки / аналоговый синапс на основе сегнетоэлектрического полевого транзистора для приложений ускорителей глубоких нейронных сетей с модуляцией проводимости × 4 и программными импульсами ~ 75 нс.

  • 17.

    Seo, M. et al. Первая демонстрация синапса с сегнетоэлектрическим плавниковым транзистором без стыков, совместимого с логическими процессами, для нейроморфных приложений. IEEE Electron Device Lett. 39 , 1445–1448 (2018).

    Артикул Google ученый

  • 18.

    Chung, W., Si, M. & Peide, DY Первая демонстрация полевого транзистора с сегнетоэлектрической нанопроволокой Ge в качестве синаптического устройства для онлайн-обучения в нейронной сети с большим числом состояний проводимости и г max / г мин . В 2018 IEEE International Electron Devices Meeting (IEDM) , 15.2.1–15.2.4 (IEEE, 2018).

  • 19.

    Ni, K. et al. Многобитная весовая ячейка FeMFET, совместимая с логикой SoC, для нейроморфных приложений. В 2018 IEEE Int. Конференция по электронным устройствам (IEDM) 13.2.1–13.2.4 (IEEE, 2018).

  • 20.

    Sun, X., Wang, P., Ni, K., Datta, S. & Yu, S. Использование гибридной точности для обучения и вывода: аналоговая синаптическая весовая ячейка на основе 2T-1FeFET. В 2018 IEEE Int. Конференция по электронным устройствам (IEDM) 3.1.1–3.1.4 (IEEE, 2018).

  • 21.

    Li, X. et al. Обеспечение энергоэффективных энергонезависимых вычислений с полевым транзистором отрицательной емкости. IEEE Trans. Электронные устройства 64 , 3452–3458 (2017).

    Артикул Google ученый

  • 22.

    Wang, Z. et al. Экспериментальная демонстрация сегнетоэлектрических нейронов с импульсами для неконтролируемой кластеризации. В 2018 IEEE Int. Конференция по электронным устройствам (IEDM) 13.3.1–13.3.4 (IEEE, 2018). Эта работа экспериментально продемонстрировала концепцию генераторов на основе сегнетоэлектрических полевых транзисторов и импульсных нейронов .

  • 23.

    Fang, Y. et al. Нейромиметическая динамика импульсного нейрона на основе сегнетоэлектрического полевого транзистора. IEEE Electron Device Lett. 40 , 1213–1216 (2019).

    Артикул Google ученый

  • 24.

    Ван З., Ханделвал С. и Хан А. И. Сегнетоэлектрические генераторы и их связанные сети. IEEE Electron Device Lett. 38 , 1614–1617 (2017).

    Артикул Google ученый

  • 25.

    Fang, Y. et al. Решатель оптимизации роя на основе нейронных сетей с сегнетоэлектрическими пиками. Фронт. Neurosci. 13 , 855 (2019).

    Артикул Google ученый

  • 26.

    О, С., Хван, Х. и Ю, И. Сегнетоэлектрические материалы для нейроморфных вычислений. APL Mater. 7 , 0

    (2019).

    Артикул Google ученый

  • 27.

    Гокмен, Т. и Власов, Ю. Ускорение обучения глубоких нейронных сетей с помощью резистивных устройств пересечения точек: соображения проектирования. Фронт. Neurosci. 10 , 333 (2016).

    Артикул Google ученый

  • 28.

    Ni, K. et al. Сегнетоэлектрическая троичная адресно-адресная память для однократного обучения. Nat. Электрон. 2 , 521–529 (2019).

    Артикул Google ученый

  • 29.

    Tan, A. J. et al. Экспериментальная демонстрация сегнетоэлектрической ячейки памяти с адресацией по содержанию HfO 2 . IEEE Electron Device Lett . (2019).

  • 30.

    Wang, Y. et al. Энергонезависимый процессор с временем пробуждения 3 мкс на основе сегнетоэлектрических триггеров. В 2012 Proc. ESSCIRC 149–152 (IEEE, 2012).

  • 31.

    Мулаосманович, Х., Миколаджик, Т. и Слезазек, С. Накопительная инверсия поляризации в сегнетоэлектрических транзисторах нанометрового размера. ACS Appl. Матер. Интерфейсы 10 , 23997–24002 (2018). В этой работе были продемонстрированы нетривиальные эффекты, связанные с переключением сегнетоэлектрической поляризации при масштабированных горизонтальных размерах, а именно метапластичность / накопление поляризации, однодоменное переключение и вероятностное переключение, в короткоканальных сегнетоэлектрических полевых транзисторах .

    Артикул Google ученый

  • 32.

    Ni, K. et al. Вычислительный примитив в памяти для слияния данных датчиков по 28-нм технологии HKMG FeFET. В 2018 IEEE International Electron Devices Meeting (IEDM) , 16.1.1–16.1.4 (IEEE, 2018).

  • 33.

    Мулаосманович, Х., Миколаджик, Т. и Слезазек, С. Генерация случайных чисел на основе сегнетоэлектрического переключения. IEEE Electron Device Lett. 39 , 135–138 (2017).

    Артикул Google ученый

  • 34.

    Luo, J. et al. Бесконденсаторный стохастический нейрон с утечкой на FeFET возбуждающих и тормозных связей для SNN с уменьшенной стоимостью оборудования. В 2019 IEEE Int. Встреча по электронным устройствам (IEDM) 6–4 (IEEE, 2019).

  • 35.

    Florent, K. et al. Вертикальный сегнетоэлектрик HfO 2 FET на основе архитектуры 3-D NAND: к плотной памяти с низким энергопотреблением. В 2018 IEEE Int.Конференция по электронным устройствам (IEDM) 2.5.1–2.5.4 (IEEE, 2018).

  • 36.

    Тирумала, С. К. и Гупта, С. К. Реконфигурируемый сегнетоэлектрический транзистор – часть I: устройство и работа устройства. IEEE Trans. Электронные устройства 66 , 2771–2779 (2019).

    Артикул Google ученый

  • 37.

    Тасним, Н. и Хан, А. И. О возможности динамической настройки и коллапса сегнетоэлектрического окна гистерезиса / памяти в асимметричном устройстве DG MOS: путь к реконфигурируемому устройству логической памяти.В 2018 76-я конференция по исследованиям устройств (DRC) 1-2 (IEEE, 2018).

  • 38.

    Wang, Z. et al. Криогенная характеристика сегнетоэлектрического полевого транзистора. заявл. Phys. Lett. 116 , 042902 (2020).

    Артикул Google ученый

  • 39.

    Chen, K.-Y., Tsai, Y.-S. & Wu, Y.-H. Влияние ионизирующего излучения на характеристики памяти сегнетоэлектрических полевых транзисторов на основе HfO 2 . IEEE Electron Device Lett. 40 , 1370–1373 (2019).

    Артикул Google ученый

  • 40.

    Шум Д. и др. Демонстрация функциональности самовыравнивающейся ячейки NVM с разделенным затвором 1,1 В, встроенной в LP 40 нм CMOS для автомобильных приложений и смарт-карт. В 2015 IEEE Int. Семинар по памяти (IMW) https://doi.org/10.1109/IMW.2015.7150288 (IEEE, 2015).

  • 41.

    Канда, А.и другие. Встроенная флеш-система емкостью 24 МБ на основе 28-нм SG-MONOS. Обеспечивает операции чтения на частоте 240 МГц и надежное обновление программного обеспечения для автомобильных приложений по беспроводной сети. IEEE Solid-State Circ. Lett. 2 , 273–276 (2019).

    Артикул Google ученый

  • 42.

    Tsuda, S. et al. Первая демонстрация FinFET MONOS с разделенным затвором для высокоскоростной и высоконадежной встроенной флеш-памяти в узлах 16/14 нм и выше. В 2016 IEEE Int.Electron Devices Meeting (IEDM) , 11.1.1–11.1.4 (IEEE, 2016).

  • 43.

    Wei, L. et al. STT-MRAM на 7 Мбайт по технологии 22FFL FinFET с временем считывания 4 нс при 0,9 В с использованием схемы записи-проверки-записи и метода определения смещения-отмены. В 2019 IEEE Int. Конференция по твердотельным схемам (ISSCC) , 214–216 (IEEE, 2019).

  • 44.

    Lee, K. et al. Встроенная STT-MRAM высокой плотности 1 Гбит по 28-нм технологии FDSOI. В 2019 IEEE Int. Встреча по электронным устройствам (IEDM) 2.2.1–2.2.4 (IEEE, 2019).

  • 45.

    Jain, P. et al. Встроенный энергонезависимый макрос ReRAM 3,6 Мбит / с 10,1 Мбит / мм2 в 22-нм технологии FinFET с адаптивными схемами формирования / установки / сброса, обеспечивающий снижение напряжения до 0,5 В при времени срабатывания 5 нс при 0,7 В. В 2019 IEEE Int. Конференция по твердотельным схемам (ISSCC) 212–214 (IEEE, 2019).

  • 46.

    Wu, J. et al. Технология памяти с фазовым переходом, совместимая с 40-нм технологией памяти с низким энергопотреблением. В 2018 IEEE Int. Встреча по электронным устройствам (IEDM) 27–6 (IEEE, 2018).

  • 47.

    Dünkel, S. et al. Основанная на FEFET сверхмаломощная сверхбыстрая встроенная технология NVM для 22-нм FDSOI и выше. В 2017 IEEE Int. Собрание электронных устройств (IEDM) 19–7 (IEEE, 2017). В этой работе продемонстрированы масштабированные сегнетоэлектрические полевые транзисторы на платформе полностью обедненного кремния на изоляторе (КНИ) на узле 22 нм.

  • 48.

    Trentzsch, M. et al. 28-нм технология HKMG со сверхнизким энергопотреблением, встроенная в энергонезависимую память на основе сегнетоэлектрических полевых транзисторов.В 2016 IEEE Int. Собрание электронных устройств (IEDM) , 11–5 (IEEE, 2016).

  • 49.

    Лю, X., Си, М., Шреста, П., Чунг, К. и Йе, П. Первое прямое измерение субнаносекундного переключения поляризации в сегнетоэлектрическом оксиде гафния-циркония. В 2019 IEEE Int. Встреча по электронным устройствам (IEDM) 15–2 (IEEE, 2019).

  • 50.

    Wei, Y. et al. Магнитоионный контроль спиновой поляризации в мультиферроидных туннельных переходах. npj Quant. Матер. 4 , 1–6 (2019).

    Артикул Google ученый

  • 51.

    Cheema, S. S. et al. Повышенное сегнетоэлектричество в ультратонких пленках, выращенных непосредственно на кремнии. Природа 580 , 478–482 (2020). Эта работа продемонстрировала масштабируемость толщины сегнетоэлектриков на основе оксида гафния .

    Артикул Google ученый

  • 52.

    Lederer, M. et al. Локальное кристаллографическое обнаружение фазы и отображение текстуры в сегнетоэлектрических пленках HfO 2 , легированных Zr, методом просвечивающей EBSD. заявл. Phys. Lett. 115 , 222902 (2019).

    Артикул Google ученый

  • 53.

    Гримли Э. Д., Шенк Т., Миколаджик Т., Шредер У. и Лебо Дж. М. Атомная структура доменных и межфазных границ в сегнетоэлектрике HfO 2 . Adv. Матер. Интерф. 5 , 1701258 (2018).

    Артикул Google ученый

  • 54.

    Ni, K., Chakraborty, W., Smith, J., Grisafe, B. & Datta, S. Фундаментальное понимание и контроль изменений от устройства к устройству в сегнетоэлектрических полевых элементах с большими масштабами. В симпозиуме 2019 по технологии СБИС , T40 – T41 (IEEE, 2019).

  • 55.

    Maekawa, K. et al. Воздействие однородно диспергированных нанокластеров алюминия путем внедрения монослоя Si в Hf 0.5 Zr 0,5 O 2 Пленка на массиве памяти FeFET с жестким распределением порогового напряжения. В 2019 IEEE Int. Встреча по электронным устройствам (IEDM) 15–4 (IEEE, 2019).

  • 56.

    Migita, S., Morita, Y., Mizubayashi, W. & Ota, H. Получение эпитаксиальной пленки HfO 2 (EOT = 0,5 нм) на подложке Si с использованием атомно-слойного осаждения аморфной пленки и быстрая термическая кристаллизация (RTC) при резком температурном градиенте. В 2010 г.Electron Devices Meeting , 11.5.1–11.5.4 (IEEE, 2010).

  • 57.

    Chatterjee, K. et al. Самовыравнивающееся запоминающее устройство с сегнетоэлектрическим затвором, последним затвором, FDSOI, с длиной волны 5,5 нм Hf 0,8 Zr 0,2 O 2 , высокой износостойкостью и восстановлением после пробоя. IEEE Electron Device Lett. 38 , 1379–1382 (2017).

    Артикул Google ученый

  • 58.

    Чау Р. Инновации в процессах и упаковке для продолжения закона Мура и за его пределами.В 2019 г. Electron Devices Meeting 1.1 (IEEE, 2019).

  • 59.

    Козодаев М.Г. и др. Снижение эффекта пробуждения и повышение стойкости сегнетоэлектрических тонких пленок HfO 2 -ZrO 2 путем тщательного легирования La. J. Appl. Phys. 125 , 034101 (2019).

    Артикул Google ученый

  • 60.

    Muller, J. et al. Стратегии повышения износостойкости сегнетоэлектрических полевых транзисторов на основе оксида гафния.В 2016 16-й симпозиум по технологии энергонезависимой памяти (NVMTS) https://doi.org/10.1109/NVMTS.2016.7781517 (IEEE, 2016).

  • 61.

    Ni, K. et al. Критическая роль прослойки в характеристиках энергонезависимой памяти сегнетоэлектрического полевого транзистора Hf 0,5 Zr 0,5 O 2 . IEEE Trans. Электронные устройства 65 , 2461–2469 (2018). Эта работа дает представление об оптимизации конструкции стека затвора современного сегнетоэлектрического полевого транзистора для повышения надежности .

    Артикул Google ученый

  • 62.

    Юрчук Э. и др. Причина снижения долговечности в новых энергонезависимых сегнетоэлектрических запоминающих устройствах 1T на основе HfO 2 . В 2014 IEEE Int. Симпозиум по физике надежности 2E.5.1–2E.5.5 (IEEE, 2014).

  • 63.

    Toprasertpong, K., Takenaka, M. и Takagi, S. Прямое наблюдение за поведением межфазного заряда в FeFET с помощью квазистатического разделения CV и методов Холла: выявление работы FeFET.В 2019 IEEE Int. Конференция по электронным устройствам (IEDM) 23.7.1–23.7.4 (IEEE, 2019). В этой работе продемонстрирован метод расчета количества захваченных носителей на интерфейсах, которые экранируют сегнетоэлектрическую поляризацию в сегнетоэлектрическом полевом транзисторе .

  • 64.

    Tan, A. et al. Горячие электроны как основной источник деградации полевых транзисторов HZO толщиной менее 5 нм. В 2020 Симпозиум по технологии СБИС (IEEE, в печати).

  • 65.

    Ando, ​​T. Максимальное масштабирование затворных диэлектриков с высоким – κ : высокое – κ или очистка межфазного слоя? Материалы 5 , 478–500 (2012).

    Артикул Google ученый

  • 66.

    Cheng, C.-H. И Чин, А. Память типа DRAM с низким током утечки, использующая однопотранзисторный сегнетоэлектрический полевой МОП-транзистор с высокочастотным диэлектриком затвора. IEEE Electron Device Lett. 35 , 138–140 (2013).

    Артикул Google ученый

  • 67.

    Khanna, S. et al. Микроконтроллер SoC с энергонезависимой логикой на основе FRAM, обеспечивающий 100% сохранение цифрового состояния при VDD = 0 В, достижение нулевой утечки при времени пробуждения менее 400 нс для приложений ULP. IEEE J. Solid-State Circ. 49 , 95–106 (2013).

    Артикул Google ученый

  • 68.

    Moise, T. et al. Демонстрация сегнетоэлектрической памяти высокой плотности объемом 4 Мбайт, встроенной в логический процесс Cu / FSG с длиной волны 130 нм, 5 лм.В дайджесте Int. Electron Devices Meeting 535–538 (IEEE, 2002).

  • 69.

    Век сегнетоэлектричества. Nat. Mater . 19 , 129 (2020).

  • 70.

    Meterelliyoz, M. et al. Встроенная память DRAM 2-го поколения с 4-кратным снижением мощности самообновления благодаря 22-нм технологии Tri-Gate CMOS. В сборнике технических документов 2014 симпозиума по схемам СБИС https://doi.org/10.1109/VLSIC.2014.6858415 (IEEE, 2014).

  • 71.

    Lombardo, S. et al. Получение изображения переключения поляризации в (анти) сегнетоэлектрическом запоминающем материале в атомном масштабе: диоксид циркония (ZrO 2 ). В 2020 Симпозиум по технологии СБИС (в печати). В данной работе изучалась эволюция микроструктуры при переключении поляризации в антисегнетоэлектрическом оксиде циркония с помощью in-situ просвечивающей электронной микроскопии .

  • Сегнетоэлектрический полупроводниковый полевой транзистор

  • 1.

    Miller, S.L.& МакВортер, П. Дж. Физика полевого транзистора с энергонезависимой памятью сегнетоэлектрика. J. Appl. Phys. 72 , 5999–6010 (1992).

    Артикул Google ученый

  • 2.

    Ишивара, Х. Современное состояние и перспективы сегнетоэлектрической памяти на полевых транзисторах. J. Semicond. Technol. Sci. 1 , 1–14 (2001).

    Google ученый

  • 3.

    Ишивара, Х. FeFET и сегнетоэлектрическая память с произвольным доступом. J. Nanosci. Nanotechnol. 12 , 7619–7627 (2012).

    Артикул Google ученый

  • 4.

    Müller, J. et al. Наносекундное переключение поляризации и длительное удержание в новом MFIS-FET на основе сегнетоэлектрика HfO 2 . IEEE Electron Device Lett. 33 , 185–187 (2012).

    Артикул Google ученый

  • 5.

    Юрчук Э. и др. Причина снижения долговечности в новых энергонезависимых сегнетоэлектрических запоминающих устройствах 1T на основе HfO 2 . В IEEE International Reliability Physics Symposium 2E.5.1–2E.5.5 (IEEE, 2014).

  • 6.

    Юрчук Э. и др. Явление захвата заряда в энергонезависимой памяти типа FeFET на основе HfO 2 . IEEE Trans. Электронные устройства 63 , 3501–3507 (2016).

    Артикул Google ученый

  • 7.

    Muller, J. et al. Стратегии повышения износостойкости сегнетоэлектрических полевых транзисторов на основе оксида гафния. В 2016 16 th Симпозиум по технологии энергонезависимой памяти (NVMTS) 7781517 (IEEE, 2016).

  • 8.

    Chung, W., Si, M. & Ye, P. D. Безгистерезисные германиевые КМОП-транзисторы FinFET с отрицательной емкостью и двунаправленным напряжением ниже 60 мВ / дек. В материалах Proceedings of IEEE International Electron Devices Meeting 365–368 (IEEE, 2017).

  • 9.

    Chung, W. et al. Первые прямые экспериментальные исследования Hf 0,5 Zr 0,5 O 2 Переключение сегнетоэлектрической поляризации до 100 пикосекунд в германиевых сегнетоэлектрических полевых транзисторах с нанопроволокой менее 60 мВ / дек. В симпозиуме по технологии СБИС 89–90 (IEEE, 2018).

  • 10.

    Yoo, H. K. et al. Разработка скорости переключения сегнетоэлектриков в HfO, легированном кремнием 2 для высокоскоростного применения 1T-FERAM. В материалах Proceedings of IEEE International Electron Devices Meeting 481–484 (IEEE, 2017).

  • 11.

    Dünkel, S. et al. Сверхмощная сверхбыстрая встроенная технология NVM на основе FeFET для 22-нм FDSOI и выше. В материалах Proceedings of IEEE International Electron Devices Meeting 485–488 (IEEE, 2017).

  • 12.

    Si, M. et al. Крутая отрицательная емкость без гистерезиса MoS 2 транзисторов. Nat. Nanotechnol. 13 , 24–29 (2018).

    Артикул Google ученый

  • 13.

    Si, M., Liao, P.-Y., Qiu, G., Duan, Y. & Ye, PD Сегнетоэлектрические полевые транзисторы на основе MoS 2 и CuInP 2 S 6 двумерных Гетероструктура Ван-дер-Ваальса. ACS Nano 12 , 6700–6705 (2018).

    Артикул Google ученый

  • 14.

    Миколаджик, Т., Слезазек, С., Парк, М. Х. и Шредер, У. Сегнетоэлектрический оксид гафния для сегнетоэлектрической памяти с произвольным доступом и сегнетоэлектрических полевых транзисторов. MRS Bull. 43 , 340–346 (2018).

    Артикул Google ученый

  • 15.

    Li, J. et al. Сверхбыстрое переключение поляризации в тонкопленочных сегнетоэлектриках. заявл. Phys. Lett. 84 , 1174–1176 (2004).

    Артикул Google ученый

  • 16.

    Ларсен, П. К., Кампшер, Г. Л. М., Уленаерс, М. Дж. Э., Спирингс, Г. А. С. М.& Куппенс, Р. Наносекундное переключение тонких сегнетоэлектрических пленок. заявл. Phys. Lett. 59 , 611–613 (1991).

    Артикул Google ученый

  • 17.

    Росс И. М. Полупроводниковое трансляционное устройство. Патент США 2791760 (1957).

  • 18.

    Ма, Т. П. и Хан, Дж. П. Почему энергонезависимый сегнетоэлектрический полевой транзистор с памятью все еще неуловим? IEEE Electron Device Lett. 23 , 386–388 (2002).

    Артикул Google ученый

  • 19.

    Zhou, Y. et al. Неплоскостное пьезоэлектричество и сегнетоэлектричество в слоистых наночешках α-In 2 Se 3 . Nano Lett. 17 , 5508–5513 (2017).

    Артикул Google ученый

  • 20.

    Ding, W. et al. Прогнозирование собственных двумерных сегнетоэлектриков в материалах In 2 Se 3 и других III 2 –VI 3 ван-дер-Ваальсовых материалов. Nat. Commun. 8 , 14956 (2017).

    Артикул Google ученый

  • 21.

    Cui, C. et al. Взаимосвязанное сегнетоэлектричество в плоскости и вне плоскости в сверхтонком двумерном слоистом полупроводнике In 2 Se 3 . Nano Lett. 18 , 1253–1258 (2018).

    Артикул Google ученый

  • 22.

    Сяо, Дж.и другие. Собственное двумерное сегнетоэлектричество с дипольной синхронизацией. Phys. Rev. Lett. 120 , 227601 (2018).

    Артикул Google ученый

  • 23.

    Zheng, C. et al. Плоское сегнетоэлектричество при комнатной температуре по Ван-дер-Ваальсу In 2 Se 3 . Sci. Adv. 4 , eaar7720 (2018).

    Артикул Google ученый

  • 24.

    Wan, S. et al. Сегнетоэлектричество при комнатной температуре и переключаемый диодный эффект в двумерных тонких слоях α-In 2 Se 3 . Наноразмер 10 , 14885–14892 (2018).

    Артикул Google ученый

  • 25.

    Xue, F. et al. Мемристивные явления с перестраиваемым затвором и переключением во многих направлениях в сегнетоэлектрике Ван-дер-Ваальса. Adv. Матер. 31 , 1

    0 (2019).

    Артикул Google ученый

  • 26.

    Lin, M. et al. Контролируемый рост атомарно тонких чешуек In 2 Se 3 методом ван-дер-ваальсовой эпитаксии. J. Am. Chem. Soc. 135 , 13274–13277 (2013).

    Артикул Google ученый

  • 27.

    Zhou, J. et al. Управляемый синтез высококачественного однослойного α-In 2 Se 3 методом физического осаждения из паровой фазы. Nano Lett. 15 , 6400–6405 (2015).

    Артикул Google ученый

  • 28.

    Макклеллан, К. Дж., Ялон, Э., Смит, К. К., Сурьяванши, С. В. и Поп, Э. Эффективное легирование монослоя MoS 2 n-типа AlO x . В 2017 75-я ежегодная конференция по исследованиям устройств (DRC) 7999392 (IEEE, 2017).

  • 29.

    Qiu, G. et al. Высокопроизводительные КМОП-устройства с несколькими слоями теллура, основанные на технологии легирования диэлектрика с осаждением атомных слоев.В 2018 76-я ежегодная конференция по исследованиям устройств (DRC) 8442253 (IEEE, 2018).

  • 30.

    Пауэлл, М. Дж. Нестабильность захвата заряда в тонкопленочных транзисторах аморфный кремний – нитрид кремния. заявл. Phys. Lett. 43 , 597–599 (1983).

    Артикул Google ученый

  • 31.

    Park, S.J. et al. Реконфигурируемые энергонезависимые транзисторы на основе кремниевых нанопроволок. Adv. Электрон. Матер. 4 , 1700399 (2018).

    Артикул Google ученый

  • Полевой транзистор с изолированным затвором

    Полевой транзистор с изолированным затвором
    Далее: Схемы силовых полевых МОП-транзисторов Up: транзисторных схем Предыдущая: Усилитель общего стока с полевым транзистором JFET

    Полевой транзистор с изолированным затвором, также известный как металлооксидный полупроводник. полевой транзистор (MOSFET), похож на JFET, но имеет еще больший резистивный входной импеданс из-за тонкого слоя диоксид кремния, который используется для изоляции ворот от полупроводниковый канал.Этот изолирующий слой образует емкостную связь между затвором и корпус транзистора. Как следствие, отсутствие внутреннего подключения постоянного тока к воротам делает устройство более универсально, чем JFET, но это также означает, что изоляционный материал конденсатора может быть легко поврежден внутренний разряд статического заряда, возникающего при нормальном обращении.

    MOSFET широко используется в крупномасштабных цифровых интегральных схемах. где его высокий входной импеданс может привести к очень низкому энергопотреблению на компонент.Многие из этих схем имеют соединения биполярных транзисторов с внешние клеммы, тем самым делая устройства менее восприимчивыми к повреждать.

    MOSFET бывает четырех основных типов: N-канальный, P-канальный, обедненный. и улучшение. Конфигурация N-канального истощающего МОП-транзистора показана на рисунок 5.19a. Его работа аналогична N-канальному JFET, описанному ранее: отрицательное напряжение, приложенное к затвору, создает область с истощенным зарядом в материале N-типа рядом с воротами, тем самым уменьшая площадь канал проводимости между стоком и истоком.Однако механизм формирования обедненной области таков. отличается от JFET. Поскольку затвор сделан отрицательным по отношению к источнику, более положительным носители из материала P-типа втягиваются в N-канал, где они сочетаются с бесплатными отрицательными зарядами и устраняют их. Это действие увеличивает область истощения по направлению к воротам, уменьшая площадь N-канала и тем самым снижая проводимость между стоком и истоком. Для отрицательных приложенных напряжений затвор-исток наблюдаемый эффект очень похож на JFET, а также имеет примерно такой же размер.


    Рисунок 5.19: a) Тип истощения или истощения-улучшения MOSFET и b) MOSFET улучшенного типа.

    Однако, поскольку затвор MOSFET изолирован от канала, положительный Напряжения затвор-исток также могут применяться без потери полевого транзистора. эффект. В зависимости от деталей конструкции, применение положительного Напряжение затвор-исток для полевого МОП-транзистора обедненного типа может оттолкнуть меньшинство положительные носители в обедненной части N-канала обратно в материал P-типа, как описано ниже, тем самым увеличивая канал и снижение сопротивления.Если устройство демонстрирует такое поведение, это называется усиление-истощение MOSFET.

    Полевой МОП-транзистор со строгим расширением является результатом конфигурации, показанной на рисунок 5.19b. Ниже некоторого порога положительного напряжения затвор-исток подключение канал из материала N-типа между стоком и истоком полностью заблокирован областью истощения, создаваемой PN-переходом. Поскольку напряжение затвор-исток становится более положительным, меньшинство положительные носители отталкиваются обратно в материал P-типа, оставляя бесплатные отрицательные заряды позади.Эффект заключается в сокращении области истощения и увеличении проводимость между стоком и истоком.



    Далее: Цепи силовых полевых МОП-транзисторов Up: транзисторных схем Предыдущая: Усилитель общего стока с полевым транзистором JFET
    Дуг Гингрич
    Вт 13 июля 16:55:15 EDT 1999

    Произошла ошибка при настройке пользовательского файла cookie

    Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


    Настройка вашего браузера для приема файлов cookie

    Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

    • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки вашего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
    • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
    • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
    • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
    • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

    Почему этому сайту требуются файлы cookie?

    Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


    Что сохраняется в файле cookie?

    Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

    Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

    Полевые транзисторы – Основы – Полупроводниковые технологии от А до Я

    1.Подложка

    Основой n-канального полевого транзистора является кремниевая подложка, легированная p-примесью (бором).

    2. Окисление

    Поверх подложки за счет термического окисления создается тонкий слой диоксида кремния SiO 2 (оксид затвора). Он используется для изоляции позже нанесенного затвора и подложки.

    3. Депонирование

    В процессе LPCVD наносится нитрид, который позже используется в качестве маскировки во время полевого окисления.

    4. Фотолитография

    Поверх нитрида наматывают, экспонируют и проявляют фоторезист. Таким образом формируется слой структурированного покрытия, который служит маской для травления.

    5. Офорт

    Только на участках, свободных от резиста, нитрид удаляют реактивным ионным травлением.

    6. Сопротивление удалению

    После этого резистная маска удаляется в растворе влажного химического проявителя.

    7. Окисление

    Во время полевого окисления нитрид служит маскирующим слоем, термическое влажное окисление происходит только на оксиде без покрытия.Выращенный полевой оксид используется для боковой изоляции соседних устройств.

    8. Офорт

    После окисления нитрид удаляется в процессе влажного химического травления.

    9. Депонирование

    Посредством CVD низкого давления осаждается поликристаллический кремний, который представляет собой электрод затвора.

    10. Фотолитография

    Снова нанесен узор на слой резиста поверх поликремния.

    11. Офорт

    Фоторезист, в свою очередь, служит маскирующим слоем, за счет реактивного ионного травления затвор формируется.

    12. Сопротивление снятию

    Резист удаляется методом влажного химического травления.

    13. Окисление

    Тонкий оксид (постоксид) наносится в качестве изолирующего слоя для электрода затвора, а также в качестве прокладки для последующей имплантации истока и стока.

    14. Ионная имплантация

    Путем ионной имплантации с фосфором вводятся области истока и стока (n-тип). Поскольку электрод затвора действует как маска во время имплантации, ширина n-канала между истоком и стоком задается заранее.Это называется «самовыравнивание».

    15. Окисление

    В качестве изоляции осаждается неметалл (например, оксид). Это происходит в процессе LPCVD с TEOS, который обеспечивает хорошее покрытие этапов.

    16. Фотолитография и травление

    На следующем этапе структурируется слой резиста, а края контактных отверстий закругляются в процессе изотропного травления.

    17. Офорт

    Затем контактные отверстия открываются в процессе сильно анизотропного травления.

    18. Металлизация

    Контактные отверстия заполнены алюминием напылением.

    19. Фотолитография

    На заключительном этапе литографии формируется новая маска резиста.

    20. Офорт

    Рисунок переносится на нижележащую металлизацию в процессе анизотропного сухого травления.

    21. Сопротивление снятию

    Наконец, резистор удаляется, и остаются алюминиевые проводники для срабатывания транзистора.

    Фактическая конструкция транзистора намного сложнее, так как дополнительные слои планаризации для фотолитографии необходимы или необходимо выполнить имплантацию вторичного стока и истока для точной регулировки порогового напряжения. На откосах электрода затвора могут быть сформированы дополнительные распорки (боковые стенки) для установки точной длины канала или точной настройки профиля легирования соответственно.

    Графеновые полевые транзисторы для биологических и химических сенсоров

    Датчики GFET, в которых используется материал 2D-канала, имеют ряд преимуществ по сравнению с объемными полупроводниковыми приборами (включая кремний).Для большинства полупроводниковых транзисторных датчиков локальные изменения электрического поля на поверхности канала мало влияют на глубину канала устройства, ограничивая чувствительность отклика. С GFET канал графена имеет толщину всего в один атом, что означает, что весь канал находится на поверхности и напрямую подвергается воздействию окружающей среды. Любая молекула, прикрепленная к поверхности канала, влияет на перенос электронов через всю глубину устройства. Кремний или другие объемные полупроводники, близкие к атомарной толщине, неэффективны, потому что при такой толщине поверхностные дефекты доминируют над характеристиками материала.Двумерные материалы, такие как графен, не имеют оборванных связей на поверхности, которые могли бы образовывать дефекты. В результате графен обладает высокой проводимостью и чувствителен к поверхностным воздействиям. Кроме того, поскольку материал не имеет оборванных связей, он устраняет неспецифическое связывание и, следовательно, ложные срабатывания, что было проблемой с другими датчиками на основе полевых транзисторов. При правильной функционализации GFET-транзисторы обеспечивают высокочувствительное, высокоселективное, прямое, без этикеток обнаружение целевых аналитов с полностью электронным управлением и считыванием устройств.

    Полевые транзисторы на основе графена имеют явные преимущества при изготовлении по сравнению с устройствами, изготовленными из одномерных материалов, таких как углеродные нанотрубки (УНТ) и нанопроволоки. Подобно графену, одностенные УНТ также обладают высокой проводимостью (с правильной хиральностью) и практически вся поверхность. Графен может быть получен в виде однородных пленок с однородными характеристиками материала. В настоящее время нельзя изготавливать одномерные материалы с такой же консистенцией. Кроме того, массивы высокопроизводительных устройств с однородным откликом невозможно создать с использованием случайно распределенных нанопроволок или нанотрубок, поскольку количество и ориентация одномерных объектов варьируется в зависимости от распределения.Эта неоднородность положения, часто усугубляемая неоднородностью размеров между одномерными объектами, создает большой разброс характеристик отклика между устройствами. 2D-материалы обеспечивают согласованность между устройствами. Кроме того, однородные графеновые пленки размером с пластину могут быть сформированы путем химического осаждения из газовой фазы, и эти пленки можно использовать для фотолитографических технологий изготовления, разработанных для процессов изготовления интегральных схем, разработанных в полупроводниковой промышленности.

    Производство GFET

    GFET-транзисторы

    изготавливаются на кремниевых пластинах, чтобы воспользоваться преимуществами традиционных, недорогих и высоконадежных процессов литографии, осаждения и интеграции, применяемых в промышленности интегральных схем. Для этих устройств графеновые пленки формировались методом химического осаждения из паровой фазы при атмосферном давлении. 8 Подложку для осаждения медной фольги загружали в печь и нагревали до 1000 ° C в восстановительной среде аргон / водород для удаления любого естественного оксида с поверхности меди.В газовый поток был добавлен небольшой поток метана. Образование графена начинается с нескольких мест зарождения, за которыми следует рост кристаллов графена с одним атомным слоем до тех пор, пока домены не встретятся, полностью покрывая поверхность меди. Метан разрушается на поверхности меди, и адсорбированные атомы углерода перемещаются по поверхности, пока не встретятся с кристаллами графена и не присоединятся к ним. Сплошной однослойный графен (SLG) был сформирован после короткого времени роста от 5 до 30 минут, в основном в зависимости от соотношения газовых потоков.

    Металлические электроды были нанесены на кремниевую пластину термическим напылением и литографически сформированы. Тонкий слой титана или хрома необходим для адгезии к поверхности SiO 2 . Золото или палладий обеспечивают электронный контакт с графеном. Пленка графена переносилась с подложки для осаждения меди и накладывалась на пластину после формирования электродов. Для выполнения переноса полиметилметакрилат (PMMA, Prod. No. 182230, 445746 и 182265) был нанесен центрифугированием на графеновую поверхность медной подложки.Медь была отделена от ПММА / графена механическим разделением с помощью водного электролиза. Пленку графена помещали на поверхность пластины, пластину запекали для обеспечения адгезии графена к пластине и электродам, а ПММА удаляли ацетоном. Дополнительная фотолитография использовалась для формирования рисунка графена в каналы полевого транзистора между электродами, а кислородная плазма была эффективна при удалении незащищенного графена. Минимизация металлических примесей в графеновых пленках имеет решающее значение для интеграции в производственные мощности IC.Для этого необходимо избегать процессов травления медной подложки.

    Функционализация GFET

    За последние несколько лет был разработан ряд хорошо контролируемых процедур химической функционализации, совместимых с GFET. Графеновые полевые транзисторы были оснащены белками, химическими соединениями и молекулами ДНК для создания сенсоров для различных приложений.

    В случае функционализации белка неспецифическое связывание белка нежелательно, поскольку обычно подразумевает потерю контроля над функциональной структурой белка. 9 A.T. Группа Чарли Джонсона из Пенсильванского университета продемонстрировала различные химические соединения, подходящие для использования в графеновых устройствах. Они могут быть основаны на соединениях диазония, которые образуют ковалентную связь с поверхностью графена 10 , или на бифункциональных соединениях пирена, которые взаимодействуют с графеном посредством π – π-стэкинг-взаимодействия. 10,11 Связывание с белком может осуществляться через амидную связь, которая разрешена в подходящих аминогруппах на внешней стороне белка 11 , или через связь Ni-нитрилотриуксусной кислоты с гистидиновой меткой на рекомбинантном белке. 12 В каждом случае контроль параметров химии насадки (например, концентрация, температура, время) позволяет выполнять функционализацию, сохраняя при этом высококачественные свойства графенового устройства, которые способствуют высокой чувствительности (в частности, высокая подвижность несущей и хорошие шумовые характеристики).

    Применение в биосенсорах и химических датчиках

    Исключительные электронные и тепловые свойства графена

    и высокое отношение поверхности к объему делают его особенно подходящим для таких приложений, как биосенсоры, газовые сенсоры 13,14 , 15,16 и высокопроизводительные транзисторы. 17–19 Устройства на основе графена могут позволить использовать быстрые высокочувствительные датчики для диагностики в местах оказания медицинской помощи и обнаружения химических веществ, а также могут заменить другие высокозатратные, низкочувствительные и трудоемкие методы.

    A.T. Группа Чарли Джонсона продемонстрировала датчик GFET для обнаружения небольших молекул при концентрациях пг / мл. 14 GFET были функционализированы с помощью рассчитанного с помощью вычислений водорастворимого варианта человеческого μ-опиоидного рецептора (рецептор, связанный с G-белком) с использованием тетрафторбората 4-карбоксибензолдиазония, который продуцировал участки карбоновой кислоты на графене, которые в дальнейшем активировались и стабилизировались с помощью Гидрохлорид 1-этил-3- [3-диметиламинопропил] карбодиимида ( Prod.№ 03449 и прод. No. E7750) / сульфо-N-гидроксисукцинимид (EDC / sNHS). 20 Электронные измерения тока исток-сток в зависимости от напряжения на заднем затворе после каждого этапа процедуры функционализации показали воспроизводимые сдвиги в проводимости. Об обнаружении налтрексона, нацеленного на μ-опиоидный рецептор (антагонист опиоидных рецепторов, Prod. № 1453504), сообщалось при концентрациях всего 10 пг / мл с высокой специфичностью14. В исследованиях вместо этого использовали сконструированный одноцепочечный вариабельный фрагмент (scFv). полных антител в качестве рецепторных молекул на других датчиках FET на основе углерода показали увеличение предела обнаружения в 1000 раз. 21 scFv представляет собой сконструированный гибридный белок, содержащий вариабельные области антитела, которые специфичны к антигену и сохраняют специфичность исходного антитела, несмотря на удаление константных областей, составляющих большую часть антитела. Повышенная чувствительность датчиков полевых транзисторов, функционализированных с помощью scFv, может быть объяснена более близкой близостью связанной мишени биомаркера к каналу GFET, что приводит к более сильным электростатическим взаимодействиям и большему электрическому сигналу. 21

    Химическое зондирование паров, или «носовое» зондирование паров, – еще одно приложение, в котором используются полевые транзисторы. Для этого GFET были функционализированы одноцепочечной ДНК для обнаружения различных химических паров. Химические сенсоры на основе GFET показали быстрое время отклика, быстрое восстановление до исходного уровня при комнатной температуре и различение между несколькими аналогичными анализируемыми парами паров: например, диметилметилфосфонатом (DMMP, Prod. No. D169102) и пропионовой кислотой ( Prod. No. 402907). 16

    Выводы и перспективы на будущее

    Исключительные электронные свойства графена по-прежнему остаются многообещающими для сенсорных приложений. Датчики на основе GFET для биологических и химических приложений обеспечат быстрое, чувствительное, специфическое, недорогое и полностью электронное считывание. Кроме того, датчики GFET могут быть мультиплексированы, что позволяет быстро тестировать несколько целей (от десятков до тысяч) с высокой чувствительностью на одном чипе небольшого размера. Сенсорная технология GFET может подорвать рынки здравоохранения, открытия лекарств и обнаружения химических веществ.

    Полевой транзистор

    Полевые транзисторы

    Функция полевых транзисторов аналогична биполярным транзисторам (особенно того типа, который мы обсудим здесь), но есть несколько отличий. У них есть 3 клеммы, как показано ниже. Два основных типа полевых транзисторов – это полевые МОП-транзисторы с каналом «N» и «P». Здесь мы будем обсуждать только канал N. Фактически, в этом разделе мы будем обсуждать только наиболее часто используемый N-канальный MOSFET в режиме улучшения (полевой транзистор с металлическим оксидом и полупроводником).Его схематический символ находится ниже. Стрелки показывают, как НОЖКИ реального транзистора соответствуют условному обозначению.

    Current Control:
    Терминал управления называется воротами. Помните, что через базовый вывод биполярного транзистора проходит небольшой ток. Затвор на полевом транзисторе практически не пропускает ток при управлении постоянным током.При управлении затвором с помощью высокочастотных импульсных сигналов постоянного или переменного тока может протекать небольшой ток. “Включение” транзистора (a.к.а. пороговое) напряжение варьируется от одного полевого транзистора к другому, но составляет примерно 3,3 вольта по отношению к источнику.

    Когда полевые транзисторы используются в секции аудиовыхода усилителя, Vgs (напряжение от затвора до источника) редко превышает 3,5 вольт. Когда полевые транзисторы используются в импульсных источниках питания, Vgs обычно намного выше (от 10 до 15 вольт). Когда напряжение затвора превышает примерно 5 вольт, он становится более эффективным (что означает меньшее падение напряжения на полевом транзисторе и, следовательно, меньшее рассеивание мощности).

    Обычно используются полевые МОП-транзисторы, потому что их легче использовать в сильноточных устройствах (например, в импульсных источниках питания в автомобильных аудиоусилителях). Если используется биполярный транзистор, часть тока коллектор / эмиттер должна проходить через базовый переход. В ситуациях с большим током, когда имеется значительный ток коллектора / эмиттера, ток базы может быть значительным. Полевые транзисторы могут работать при очень небольшом токе (по сравнению с биполярными транзисторами). Единственный ток, который течет из схемы возбуждения, – это ток, протекающий из-за емкости.Как вы уже знаете, когда на конденсатор подается постоянный ток, возникает первоначальный скачок, после чего ток прекращается. Когда затвор полевого транзистора приводится в действие высокочастотным сигналом, схема управления по существу видит только небольшой конденсатор. Для низких и промежуточных частот схема возбуждения должна обеспечивать небольшой ток. На очень высоких частотах или когда задействовано много полевых транзисторов, схема возбуждения должна обеспечивать больший ток.

    Примечание:
    Затвор полевого МОП-транзистора имеет некоторую емкость, что означает, что он будет удерживать заряд (сохранять напряжение).Если напряжение затвора не разряжено, полевой транзистор будет продолжать проводить ток. Это не означает, что вы можете заряжать его и ожидать, что полевой транзистор будет продолжать проводить бесконечно долго, но он будет продолжать проводить до тех пор, пока напряжение на затворе не станет ниже порогового напряжения. Вы можете убедиться, что он отключился, если вы подключите понижающий резистор между затвором и истоком.

    Сильноточные клеммы:
    «Управляемые» клеммы называются истоком и стоком. Это клеммы, отвечающие за пропускание тока через транзистор.

    Пакеты транзисторов:
    В полевых МОП-транзисторах используются те же «корпуса», что и в биполярных транзисторах. Наиболее распространенным в автомобильном стереоусилителе в настоящее время является корпус TO-220 (показан выше).


    Транзистор в цепи:
    На этой диаграмме показаны напряжения на резисторе и полевом транзисторе с 3 различными напряжениями затвора. Вы должны увидеть, что на резисторе нет напряжения, когда напряжение затвора составляет около 2,5 вольт. Это означает, что ток не течет, потому что транзистор не открыт.Когда транзистор частично включен, на обоих компонентах возникает падение напряжения (напряжения). Когда транзистор полностью открыт (напряжение затвора около 4,5 В), полное напряжение питания подается на резистор, и на транзисторе практически отсутствует падение напряжения. Это означает, что оба вывода (исток и сток) транзистора имеют по существу одинаковое напряжение. Когда транзистор полностью включен, нижний вывод резистора эффективно заземлен.

    Напряжение на затворе Напряжение на резисторе Напряжение на транзисторе
    2.5 вольт без напряжения примерно 12 вольт
    3,5 В менее 12 вольт менее 12 вольт
    4,5 В примерно 12 вольт практически нет напряжения

    В следующей демонстрации вы можете увидеть, что к лампе подключен полевой транзистор. Когда напряжение ниже примерно 3 вольт, лампа полностью выключена. Нет тока, протекающего через лампу или полевой транзистор.Когда вы нажимаете кнопку, вы можете видеть, что конденсатор начинает заряжаться (на это указывает восходящая желтая линия и точка пересечения кривой зарядки конденсатора с белой линией, идущей слева направо. Когда полевой транзистор начинает включаться, напряжение на стоке начинает падать (обозначено падающей зеленой линией и точкой, где зеленая кривая пересекается с белой линией). Когда напряжение затвора приближается к пороговому напряжению (~ 3,5 В), напряжение на лампе начинает снижаться. увеличивать.Чем больше он увеличивается, тем ярче становится лампа. После того, как напряжение на затворе достигнет примерно 4 вольт, вы увидите, что лампочка полностью горит (на ее выводах есть полные 12 вольт). Напряжение на полевом транзисторе практически отсутствует. Вы должны заметить, что полевой транзистор полностью выключен при падении напряжения ниже 3 вольт и полностью включен после четырех вольт. Любое напряжение затвора ниже 3 вольт практически не влияет на полевой транзистор. Выше 4 вольт мало влияет.


    Расчетные параметры

    Напряжение затвора:
    Как вы уже знаете, полевой транзистор управляется напряжением затвора.Для этого типа полевого МОП-транзистора максимальное безопасное напряжение на затворе составляет ± 20 вольт. Если на затвор (относительно источника) будет подано более 20 вольт, это приведет к разрушению транзистора. Транзистор будет поврежден, потому что напряжение будет проходить через изолятор, который отделяет затвор от части стока / истока полевого транзистора.

    Сила тока:
    Как и биполярные транзисторы, каждый полевой транзистор предназначен для безопасной передачи определенного количества тока. Если температура полевого транзистора выше 25 ° C (примерно 77 градусов по Фаренгейту), “безопасные” токонесущие способности транзистора будут уменьшены.Безопасная рабочая зона (S.O.A) продолжает уменьшаться при повышении температуры. Когда температура приближается к максимальной безопасной рабочей температуре, номинальный ток транзистора приближается к нулю.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *