Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Мощность резистора по размеру

Внезапно, возникла проблема: на резисторах мощностью до 2 Вт не указана их мощность. А всё потому, что их мощность определяется размером:

Таблица размер-мощность аксиальных (цилиндрических) резисторов. Начиная с 1 Вт и выше мощность резистора на схемах обозначается римскими цифрами (I, II, III, V и т. д.)

Но, всё не так однозначно. Бывают резисторы одинаковой мощности разного размера и разной мощности одинакового размера:

Аксиальные (с осевыми выводами) резисторы с внезапной маркировкой на них мощности ваттах (W)

Мощность чип-резисторов тоже связана с их размером:

Правая часть второй колонки (код типоразмера, состоящий из 4-х цифр) — кодирует длину (первые две цифры) и ширину (вторые две цифры) детали в 1/100 долях дюйма (точнее в 1/1000, а между двумя цифрами подразумевается десятичная точка)

Значения мощности в третьей колонке указаны при температуре 70°С и это некие «стандартные» значения, которые являются «круглыми» долями одного ватта: 0.

031 — это 1/32 ватта, 0.05 — 1/20, 0.063 — 1/16 и т. д. Также у разных производителей существуют резисторы такого же размера повышенной мощности [Panasonic High Power SMD Resistors] и пониженной [зато плоские; Thick Film Chip Resistors].

Что такое мощность резистора?

Вообще, мощность (измеряемая в ваттах) — это энергия (измеряемая в джоулях), передаваемая (или потребляемая, или отдаваемая) в секунду. Энергия электрического тока в проводнике состоит из кинетической энергии скорости электронов и их количества (сила тока, I), и потенциальной энергии сжатости электронного газа (напряжение, U). Мощность электрического тока, проходящего через резистор, определяется по формуле  P=U·I=R·I2, где U — падение напряжения на выводах резистора, R — заявленное сопротивление резистора.

Электроны врезаются в молекулы полупроводника-резистора и нагревают их (увеличивают амплитуду колебаний), энергия электронного тока частично переходит в тепловую энергию нагрева резистора.

Резистор рассеивает это тепло в окружающую среду (воздух), спасаясь от перегрева, и чем быстрее он это делает (чем больше джоулей тепла в секунду отдаёт во вне) тем больше его мощность [рассеивания] и тем более мощный ток он может через себя пропустить. Соответственно, резистор тем мощнее, чем больше поверхность его тушки (или радиатора, к которому он привинчен), чем холоднее и плотнее окружающая среда (воздух, вода, масло), чем большую температуру разогрева себя, любимого, может выдержать резистор.

Так вот, мощность резистора — это максимальная мощность тока, проходящего через резистор, которую резистор выдерживает бесконечно долго, не ломаясь от перегрева и не меняя слишком сильно своего исходного (номинального; при 25°С) сопротивления.


Как же может сломаться резистор, если он сделан из таких материалов как графит (температура плавления >3800°С), керамика (>2800°С), сплава «константан» (=1260°С), нихрома, … ?  Ломаются резисторы обычно путём трескания напополам их тщедушного тельца или отваливания (отгорания) от тела колпачков-выводов на концах. Обугливание краски

Мощный резистор, целый, но обуглилась краска на нём, так что пропала маркировка

поломкой не считается. Но чтобы не терять маркировку, в последнее время стало модно запихивать  резистор мощностью ≥ 3 Вт в керамический параллелепипед, который снаружи выглядит как новый даже после многих лет напряжённой работы-разогрева резистора.

Т.к. мощный резистор сильно греется, по сути печка, нагревательный элемент, то его обычно на платах подвешивают в пространстве на длинных ножках,

Дистанцирование мощного резистора от платы

чтобы удалить от деталей на плате, особенно от и без того бодро иссыхающих со временем электролитических конденсаторов.

Полезные ссылки:

  1. Параметры чип-резисторов — даташит от Panasonic
  2. Мощность-размер советских резисторов (МЛТ, ВС, КИМ, УЛМ) — картинка-скан таблицы

Мощность SMD резистора. Как её узнать?

Определяем мощность SMD-резисторов по их размерам

Также, как и выводные резисторы, SMD-резисторы для монтажа на поверхность рассчитаны на определённую мощность рассеивания. Но, как её узнать?

На самом деле, определить мощность SMD резистора не так уж и сложно. Мощность рядовых чип-резисторов, которых в современной электронике огромное множество, можно определить исходя из их размеров.

Далее представлена таблица №1, в которой указано соответствие типоразмера SMD-резистора и его мощности рассеивания. Отмечу, что в таблице указан типоразмер в дюймовой системе кодировки, а реальные размеры указаны в миллиметрах (длина и ширина). Сделано это исходя из удобства.

Дело в том, что до сих пор наибольшее распространение получила система кодирования типоразмера чип-резисторов в дюймах. Её используют все: производители, поставщики и магазины. А для того, чтобы определить типоразмер, а, следовательно, и мощность, мы должны замерить длину и ширину резистора обычной линейкой или другим более точным инструментом, шкала которого проградуирована в миллиметрах.

Если у вас на руках имеется SMD-резистор, мощность которого требуется узнать, то, сделав замеры обычной линейкой, можно быстро определить его типоразмер и соответствующую ему мощность рассеивания.

Таблица №1. Соответствие мощности SMD-резистора и его типоразмера.

Типоразмер (дюймовый, inch)Мощность (Power Rating at 70°C)Мощность, Вт.Длина (L) /Ширина (W), мм.
00751/50W0,02 Вт0,3/0,15
010051/32W0,03 Вт0,4/0,2
02011/20W0,05 Вт0,6/0,3
04021/16W, 1/8W0,063 Вт; 0,125 Вт1,0/0,5
06031/10W, 1/5W0,1 Вт; 0,2 Вт1,6/0,8
08051/8W, 1/4W0,125 Вт; 0,25 Вт2,0/1,25
12061/4W, 1/2W0,25 Вт; 0,5 Вт3,2/1,6
12101/2W0,5 Вт3,2/2,5
12181W; 1,5W1 Вт; 1,5 Вт3,2/4,8
18121/2W, 3/4W0,5 Вт; 0,75 Вт4,5/3,2
20103/4W0,75 Вт5,0/2,5
25121W; 1,5W; 2W1 Вт; 1,5 Вт; 2 Вт6,4/3,2
Мощность SMD-резисторов с широкими электродами (Long side termination chip resistors)
04060,25. ..0,3W0,25…0,3 Вт1,0/1,6
06120,75…1W0,75…1 Вт1,6/3,2
10201W1 Вт2,5/5,0
12181W1 Вт3,2/4,6
12252W2 Вт3,2/6,4

В таблице №1 также указаны типовые мощности и для SMD-резисторов с широкими боковыми электродами (выводами). В документации такие резисторы называются Long Side Termination Chip Resistors или Wide Terminal Chip Resistors.

Хочу обратить внимание на то, что в колонке (Мощность, Power Rating at 70°C) для некоторых типоразмеров указано несколько значений мощности. Дело в том, что производители выпускают разные серии SMD-резисторов. В одной серии мощность резисторов для типоразмера 1206 нормирована на уровне 0,5 Вт, а в другой 0,25 Вт.

Например, чип-резисторы серии CRM фирмы Bourns® рассчитаны на повышенную мощность: CRM0805 (0,25W), CRM1206 (0,5W), CRM2010 (1W). Используются такие в импульсных источниках питания в качестве токовых датчиков, токоограничительных резисторов, снабберов (демпфирующих резисторов).

Такое положение дел нужно учитывать, если вы собираетесь использовать резистор, мощность которого была определена исходя из размеров. При этом, нужно остановиться на наименьшем значении мощности, взятом из таблицы №1.

Если этим пренебречь, то может случится так, что вам попадётся резистор с меньшей мощностью, например, 0,25W вместо 0,5W, а это уже чревато его перегревом и выходом из строя при работе в реальной схеме.

Хотелось бы отметить, что сведения в таблице №1 в основном относятся к стандартным SMD-резисторам, то есть таким, которые широко и в большом количестве используются при производстве электроники.

Как правило, это чип резисторы на основе толстой плёнки (thick film chip resistors), так как они являются самыми дешёвыми, и, как следствие, самыми распространёнными. Примером могут служить серии стандартных толстоплёночных SMD резисторов D/CRCW e3 (Vishay®), ERJ (Panasonic) или RC (Yageo).

Не секрет, что существует огромное количество узкоспециализированных SMD-резисторов, которые имеют свои особенности. К таким можно отнести резисторы, которые работают при повышенных температурах (до 230°C), в условии агрессивной среды (Antisulfur), миллиомные чип резисторы, SMD резисторы-перемычки. Если такие резисторы и встречаются на печатных платах от потребительской электроники, то, как правило, их количество невелико, они применяются в определённых цепях электронных схем.

Их характеристики, в том числе и мощность рассеивания, может существенно отличатся от усреднённых значений, которые приведены в таблице №1 и являются типовыми для стандартных SMD-резисторов, количество которых в электронной схеме может быть просто огромным.

Типовые мощности тонкоплёночных резисторов (Thin film chip resistors) также соответствуют значениям из таблицы №1. Резисторы для некоторых областей применения, например, для автомобильной электроники (avtomotive grade), могут иметь мощность чуть выше той, что указана в таблице №1.

Как узнать мощность резисторных SMD-сборок?

Для резисторных SMD-сборок мощность в технической документации указывается на элемент (per element), а иногда ещё и на сборку вцелом (per package). Обычно, чип-сборка состоит из набора 2, 4, или 8 резисторов стандартного типоразмера. Например, набор типоразмера 0408 соответствует четырём SMD резисторам типоразмера 0402.

Так вот, типовая мощность одного резистора в такой сборке мало чем отличается от стандартной мощности отдельного SMD-резистора такого же типоразмера.

Так, для резисторных SMD-сборок 0202 (0201 × 2) мощность на элемент обычно составляет 0,03W (1/32W). Для тех, кто ещё не знает, сборка типоразмера 0202, – это два резистора 0201 в наборе.

Для сборок 0404 (0402 × 2), 0408 (0402 × 4) мощность на элемент обычно не превышает значения в 0,063W (1/16W).

Для сборок 0606 (0603 × 2), 0612 (0603 × 4), 0616 (0602 × 8) мощность на элемент составляет 0,063…0,125W.

Чип-сборка типоразмера 0612 на 4 резистора с выводами типа convex (т. е. выпуклыми). Мощность на элемент 0,1W.

На следующем фото резисторная чип-сборка 8×1206 с материнской платы старого, но очень крутого промышленного компьютера. На современных платах наборы такого типоразмера встречаются очень редко.

Ориентировочная мощность такой сборки 0,25W на элемент. Это если исходить из соображения, что типовая мощность для типоразмера 1206 составляет минимум 0,25W.

Хотя, стоит иметь ввиду, что в документации на стандартные современные сборки типоразмера 4×1206 минимальная мощность обычно 0,125W (1/8W) на элемент, что в 2 раза меньше. Так что, тут можно и поспорить, но я всё же остановлюсь на значении в 0,25W.

Кривая снижения мощности SMD-резистора и диапазон рабочей температуры.

В англоязычной тех. документации мощность рассеивания называется Power Dissipation (иногда Rated dissipation), а обозначается как P70. Нижнему индексу (70) соответствует температура окружающей среды, при которой резистор способен долговременно выдерживать указанную мощность.

Каждая серия резисторов рассчитана на работу в определённом интервале температур. В большинстве своём, рабочая температура обычных чип-резисторов на основе толстой плёнки (thick film) лежит в интервале от -55°C до +155°C. Но, для микроминиатюрных типоразмеров от 0075 до 0201 максимальная температура, как правило, ограничена на уровне +125°C.

Как уже говорилось, в технической документации мощность SMD-резисторов указывается для температуры окружающей среды +70°C. Если резистор, эксплуатируется при температуре выше +70°C, то мощность, которая выделяется на нём в процессе работы должна быть снижена. Проще говоря, при повышенной температуре резистор просто не успевает охлаждаться.

На графике снижения мощности (Power Derating Curve) по шкале Rated Load (%) указан процент от номинальной мощности, которую способен выдержать SMD-резистор при соответствующей температуре окружающей среды (Ambient Temperature, °C).

Так, при температуре в +120°C мощность должна быть снижена до уровня 40% для изделий, рассчитанных на работу в температурном диапазоне -55°C. ..+155°C. Если у нас резистор на 1 ватт, то при данной температуре он способен долговременно выдерживать мощность в 0,4 ватта. Нетрудно заметить, что температура в 155°C соответствует нулевой мощности.

Приведённый график является типовым для стандартных толстоплёночных резисторов. Для специализированных SMD-резисторов график снижения мощности может существенно отличаться. Например, так он выглядит для резисторов серии PHT (Vishay).

Это высокостабильные тонкоплёночные чип резисторы для работы при повышенной температуре окружающей среды (от -55°C до +215°C). Даже к установке таких резисторов на печатную плату предъявляются определённые требования, чтобы эффективно отводить тепло от резистивного слоя.

Мощные SMD-резисторы.

Существует мнение, что максимальная мощность рассеивания SMD резисторов ограничена их физическими размерами и параметрами резистивного слоя, например, сечением. И это так. Несмотря на это, среди резисторов для поверхностного монтажа есть и модели повышенной мощности.

К таким можно отнести чип резисторы серии PCAN (Vishay). Особенностью данных резисторов является подложка из нитрида алюминия (aluminum nitride, AlN), которая обладает повышенной теплопроводностью. 90% тепла от резистивного слоя SMD-резистора проходит через тело компонента, то есть через его подложку (substrate). Керамика на основе алюмонитрида (нитрида алюминия) обладает высокой теплопроводностью, что позволяет быстрее отводить тепло от резистивного слоя. К тому же, керамика на основе алюмонитрида нетоксична.

Кроме этого нижняя часть контактных электродов данных чип-резисторов имеет увеличенную площадь, за счёт которой удаётся уменьшить тепловое сопротивление между проводящим слоем резистора и контактными площадками на печатной плате.

Такое сочетание технических решений позволяет преодолеть мощностные ограничения для стандартных типоразмеров смд-резисторов. Для сравнения, приведу значения мощности рассеивания для четырёх типоразмеров, доступных в данной серии.

Тонкоплёночные прецизионные чип резисторы повышенной мощности серии PCAN (Vishay)
Типоразмер, inchМощность, W
06030,5
08051
12062
25126

Как видим, для типоразмера 2512 мощность составляет 6 Вт. Стандартный SMD-резистор такого же типоразмера, как правило, имеет мощность не более 1 или 2 Вт.

Так же есть чип-резисторы с более скромными характеристиками, например, серии PHP (Vishay). В ней уже используется подложка из рядового, хотя, и высокочистого оксида алюминия (alumina, Al2O3), который широко используется в качестве материала для подложки в стандартных SMD-резисторах.

Из особенностей: увеличенная площадь нижних электродов Wraparound-типа. Допустимая мощность для типоразмера 2512 данной серии составляет 2,5 Вт. Это на 0,5…1,5 ватта больше, чем у стандартных резисторов аналогичного размера.

Работа чип-резисторов на таких мощностях возможна с одной оговоркой, – это соблюдение правил монтажа на печатную плату. Об этом прямо сообщается в технической документации на серию.

Какие бы технические ухищрения не использовались для увеличения мощностных характеристик SMD-резисторов, но тепло всё равно отводить куда-то надо. Именно поэтому, к таким резисторам предъявляются особые требования монтажа их на плату.

Основными способами отвода избытка тепла от резистивного слоя SMD-резистора являются соединительные контакты медных проводников, поверхность печатной платы и внешнее охлаждение.

В печатных платах под поверхностный монтаж элементов, избытки тепла от элементов отводятся в толщу платы и медные полигоны, которые служат своеобразным радиатором. В некоторых случаях может применятся принудительное внешнее охлаждение (например, вентиляторы).

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

Какой формулой рассчитать мощность резисторов

Резисторы применяются практически во всех электросхемах. Это наиболее простой компонент, в основном, служащий для ограничения или регулирования тока, благодаря наличию сопротивления при его протекании.

Резисторы

Виды резисторов

Внутреннее устройство детали может быть различным, но преимущественно это изолятор цилиндрической формы, с нанесённым на его внешнюю поверхность слоем либо несколькими витками тонкой проволоки, проводящими ток и рассчитанными на заданное значение сопротивления, измеряемое в омах.

Существующие разновидности резисторов:

  1. Постоянные. Имеют неизменное сопротивление. Применяются, когда определенный участок электроцепи требует установки заданного уровня по току или напряжению. Такие компоненты необходимо рассчитывать и подбирать по параметрам;
  2. Переменные. Оснащены несколькими выводными контактами. Их сопротивление поддается регулировке, которая может быть плавной и ступенчатой. Пример использования – контроль громкости в аудиоаппаратуре;
  3. Подстроечные – представляют собой вариант переменных. Разница в том, что регулировка подстроечных резисторов производится очень редко;
  4. Есть еще резисторы с нелинейными характеристиками – варисторы, терморезисторы, фоторезисторы, сопротивление которых меняется под воздействием освещения, температурных колебаний, механического давления.

Важно! Материалом для изготовления практически всех нелинейных деталей, кроме угольных варисторов, применяемых в стабилизаторах напряжения, являются полупроводники.

Параметры резисторного элемента

  1. Для резисторов применяется понятие мощности. При прохождении через них электротока происходит выделение тепловой энергии, рассеиваемой в окружающее пространство. Мощность детали является параметром, который показывает, сколько энергии она может выделить в виде тепла, оставаясь работоспособной. Мощность зависит от габаритов детали, поэтому у маленьких зарубежных резисторов ее определяют на глаз, сравнивая с российскими, технические характеристики которых известны;

Важно! Импортные резисторные элементы идентичной мощности имеют несколько меньшие размеры, так как российские производятся с некоторым запасом по этому показателю.

На схеме мощность показана следующим образом.

Условное обозначение мощности

  1. Второй параметр – сопротивление элемента. На российских деталях типа МЛТ и крупных импортных образцах оба параметра указываются на корпусе (мощность – Вт, сопротивление – Ом, кОм, мОм). Для визуального определения сопротивления миниатюрных импортных элементов применяется система условных обозначений с помощью цветных полосок;

Цветовая маркировка резисторов

  1. Допуски. Невозможно изготовить деталь с номинальным сопротивлением, в точности соответствующим заявленному значению. Поэтому всегда указываются границы погрешности, называемые допуском. Его величина – 0,5-20%;
  2. ТКС – коэффициент температуры. Показывает, как варьируется сопротивление при изменении внешней температуры на 1°С. Желательно, но не обязательно подбирать элементы с близким или идентичным значением этого показателя для одной цепи.

Расчет резисторов

Для расчета сопротивления резистора формула применяемая в первую очередь – это закон Ома:

I = U/R.

Исходя из этой формулы, можно вывести выражение для сопротивления:

R = U/I,

где U – разность потенциалов на выводных контактах резистора.

Пример. Необходимо провести зарядку аккумулятора 2,4 В зарядным током 50 мА от автомобильной 12-вольтовой батареи. Прямое соединение сделать нельзя из-за слишком высоких показателей по току и напряжению. Но возможно поставить в схему сопротивление, которое обеспечит нужные параметры.

Предварительно нужно рассчитать резистор:

  • Расчет начинается с определения падения напряжения, которое должен обеспечить резисторный элемент:

U = 12-2,4 = 9,6 B

  • Протекающий по детали ток – 50 мА. Следовательно, R = 9,6/0,05 = 192 Ом

Теперь можно уже подобрать нужный резистор по одному показателю.

Если рассчитанной детали не нашлось, можно применить соединение из нескольких резисторных элементов, установив их последовательно или параллельно. Расчет сопротивлений при этом имеет свои особенности.

Последовательное соединение

Последовательно соединенные сопротивления складываются:

R = R1+ R2.

Если нужно получить общий результат 200 Ом, и имеется один резистор на 120 Ом, то расчет другого:

R2 = R-R1 = 200-120 = 80 Ом.

Последовательное соединение

Параллельное соединение

При параллельной схеме другая зависимость:

1/R = 1/R1 + 1/R2.

Или преобразованный вариант:

R = (R1 x R2)/ (R1 + R2).

Важно! Параллельное соединение можно использовать, когда в наличии детали с большим сопротивлением, чем требуется, последовательное наоборот.

Пример. Необходимо сопротивление 200 Ом. Имеется деталь R2 на 360 Ом. Какое сопротивление подобрать еще? R1 = R2/(R2/R-1) = 360/(360/200-1) = 450 Ом.

Параллельное соединение

Смешанное соединение

В смешанных схемах присутствуют последовательно-параллельные комбинации. Расчет таких схем сводится к их упрощению путем преобразований. На рисунке ниже представлено, как упростить схему, рассчитывая общий показатель для шести резисторов с учетом их соединения.

Расчет сопротивления в смешанной схеме

Мощность

Определив сопротивление, еще нельзя выбрать деталь. Чтобы обеспечить надежную работу схемы, необходимо найти и другой параметр – мощность. Для этого надо знать, как рассчитать мощность резисторного элемента.

Формулы, по которым можно рассчитать мощность резистора:

Пример. I = 50 мА; R = 200 Ом. Тогда P = I² x R = 0,05² x 200 = 0,5 Вт.

Если не учитывать значение тока, расчет мощности резистора ведется по другой формуле.

Пример. U = 9,6 В, R = 200 Ом. P = U²/R = 9,6²/200 = 0,46 Вт. Получился тот же результат.

Теперь, зная точные параметры рассчитываемого резисторного элемента, подберем радиодеталь.

Важно! При выборе деталей возможно их заменить на резисторы с мощностью, больше рассчитанной, но обратный вариант не подходит.

Это основные формулы для расчета резисторных деталей, на основании которых производится анализ узлов схемы, где главным является определение токов и напряжений, протекающих через конкретный элемент.

Видео

Оцените статью:

Резистор и сопротивление [База знаний]

Резистор и сопротивление

Теория

КОМПОНЕНТЫ
ARDUINO
RASPBERRY
ИНТЕРФЕЙСЫ ПЕРЕДАЧИ ДАННЫХ

Резистор — искусственное «препятствие» для тока. Сопротивление в чистом виде. Резистор ограничивает силу тока, переводя часть электроэнергии в тепло. Сегодня невозможно изготовить ни одно, сколько-нибудь функциональное, электронное устройство без резисторов. Они используются везде: от компьютеров до систем охраны.

Сопротивление резистора — его основная характеристика. Основной единицей электрического сопротивления является Ом. На практике используются также производные единицы — килоом (кОм), мегаом (МОм), гигаом (ГОм), которые связаны с основной единицей следующими соотношениями:

1 кОм = 1000 Ом,
1 МОм = 1000 кОм,
1 ГОм = 1000 МОм

Ниже на рисунке видна маркировка резисторов на схемах:

Наклонные линии обозначают мощность резистора до 1 Вт. Вертикальные линии и знаки V и X (римские цифры), указывают на мощность резистора в несколько Ватт, в соответствии со значением римской цифры.

 

Для соединения резисторов в схемах используются три разных способа подключения: параллельное, последовательное и смешанное. Каждый способ обладает индивидуальными качествами, что позволяет применять данные элементы в самых разных целях.

 


Последовательное соединение резисторов

Последовательное соединение резисторов применяется для увеличения сопротивления. Т.е. когда резисторы соединены последовательно, общее сопротивление равняется сумме сопротивлений каждого резистора. Например, если резисторы R1 и R2 соединены последовательно, их общее сопротивление высчитывается по формуле: Rобщ = R1 + R2

Это справедливо и для большего количества соединённых последовательно резисторов:

Rобщ = R1 + R2 + R3 + … + Rn

Цепь из последовательно соединённых резисторов будет всегда иметь сопротивление большее, чем у любого резистора из этой цепи.

При последовательном соединении резисторов изменение сопротивления любого резистора из этой цепи влечёт за собой как изменение сопротивления всей цепи так и изменение силы тока в этой цепи.

Мощность при последовательном соединении

При соединении резисторов последовательно электрический ток по очереди проходит через каждое сопротивление. Значение тока в любой точке цепи будет одинаковым. Данный факт определяется с помощью закона Ома. Если сложить все сопротивления, приведенные на схеме, то получится следующий результат: R = 200 + 100 + 51 + 39 = 390 Ом

Учитывая напряжение в цепи, равное 100 В, по закону Ома сила тока будет составлять

I = U/R = 100 В/390 Ом = 0,256 A

На основании полученных данных можно рассчитать мощность резисторов при последовательном соединении по следующей формуле:

P = I2 x R = 0,2562 x 390 = 25,55 Вт

Таким же образом можно рассчитать мощность каждого отдельно взятого резистора:

P1 = I2 x R1 = 0,2562 x 200 = 13,11 Вт;
P2 = I2 x R2 = 0,2562 x 100 = 6,55 Вт;
P3 = I2 x R3 = 0,2562 x 51 = 3,34 Вт;
P4 = I2 x R4 = 0,2562 x 39 = 2,55 Вт.

Если сложить полученные мощности, то общая Р составит:

Робщ = 13,11 + 6,55 + 3,34 + 2,55 = 25,55 Вт

 


Параллельное соединение резисторов

Параллельное соединение резисторов необходимо для уменьшения общего сопротивления и, как вариант, для увеличения мощности нескольких резисторов по сравнению с одним.

Расчет параллельного сопротивления двух параллельно соединённых резисторов R1 и R2 производится по следующей формуле:

Rобщ = (R1 × R2) / (R1 + R2)

Параллельное соединение трёх и более резисторов требует более сложной формулы для вычисления общего сопротивления:

1 / Rобщ = 1 / R1 + 1 / R2 + … + 1 / Rn

Сопротивление параллельно соединённых резисторов будет всегда меньше, чем у любого из этих резисторов.

Параллельное соединение резисторов часто используют в случаях, когда необходимо сопротивление с большей мощностью. Для этого, как правило, используют резисторы с одинаковой мощностью и одинаковым сопротивлением. Общая мощность, в таком случае, вычисляется умножением мощности одного резистора на количество параллельно соединённых резисторов.

Мощность при параллельном соединении

При параллельном подключении все начала резисторов соединяются с одним узлом схемы, а концы – с другим. В этом случае происходит разветвление тока, и он начинает протекать по каждому элементу. В соответствии с законом Ома, сила тока будет обратно пропорциональна всем подключенным сопротивлениям, а значение напряжения на всех резисторах будет одним и тем же. 1/R = 1/200 + 1/100 + 1/51 + 1/39 ≈ 0,06024 Ом
R = 1 / 0,06024 ≈ 16,6 Ом

Используя значение напряжения 100 В, по закону Ома рассчитывается сила тока

I = U/R = 100 В x 0,06024 Ом = 6,024 A

Зная силу тока, мощность резисторов, соединенных параллельно, определяется следующим образом

P = I2 x R = 6,0242 x 16,6 = 602,3 Вт

Расчет силы тока для каждого резистора выполняется по формулам:

I1 = U/R1 = 100/200 = 0,5 A;
I2 = U/R2 = 100/100 = 1 A;
I3 = U/R3 = 100/51 = 1,96 A;
I4 = U/R4 = 100/39 = 2,56 A

На примере этих сопротивлений прослеживается закономерность, что с уменьшением сопротивления, сила тока увеличивается.

Существует еще одна формула, позволяющая рассчитать мощность при параллельном подключении резисторов:

P1 = U2/R1 = 1002/200 = 50 Вт;
P2 = U2/R2 = 1002/100 = 100 Вт;
P3 = U22/R3 = 1002/51 = 195,9 Вт;
P4 = U22/R4 = 1002/39 = 256,4 Вт

Если сложить полученные мощности, то общая Р составит:

Робщ = 50 + 100 + 195,9 + 256,4 = 602,3 Вт

 


Калькулятор


Цветовая маркировка резисторов

Наносить номинал резистора на корпус числами — дорого и непрактично: они получаются очень мелкими. Поэтому номинал и допуск кодируют цветными полосками. Разные серии резисторов содержат разное количество полос, но принцип расшифровки одинаков. Цвет корпуса резистора может быть бежевым, голубым, белым. Это не играет роли. Если не уверены в том, что правильно прочитали полосы, можете проверить себя с помощью мультиметра или калькулятора цветовой маркировки.


Калькулятор цветовой маркировки резисторов

Основные характеристики

Сопротивление (номинал)RОм
Точность (допуск)±%
МощностьPВатт

Переменный резистор

Переменный резистор — это резистор, у которого электрическое сопротивление между подвижным контактом и выводами резистивного элемента можно изменять механическим способом. Переменные резисторы (их также называют реостатами или потенциометрами) предназначены для постепенного регулирования силы тока и напряжения. Разница в том, что реостат регулирует силу тока в электрической цепи, а потенциометр — напряжение. Выглядят переменные резисторы так:

На радиосхемах переменные резисторы обозначаются прямоугольником с пририсованной к их корпусу стрелочкой.

Регулировать величину сопротивления переменных резисторов можно с помощью вращения специальной ручки. Те из резисторов, у которых регулировка сопротивления резистора может осуществляться только с помощью отвертки или специального ключа-шестигранника, называются подстроечными переменными резисторами.


Термисторы, варисторы и фоторезисторы

Кроме реостатов и потенциометров есть и другие виды резисторов: термисторы, варисторы и фоторезисторы. Термисторы, в свою очередь, делятся на термисторы и позисторы. Позистор – это термистор, у которого сопротивление возрастает вместе с ростом температуры окружающей среды. У термисторов, наоборот, чем выше температура вокруг, тем меньше сопротивление. Это свойство обозначают как ТКС – тепловой коэффициент сопротивления.

В зависимости от ТКС (отрицательный он или положительный) обозначают на схеме термисторы следующим образом:

Следующий особый класс резисторов – это варисторы. Они изменяют силу сопротивления в зависимости от подаваемого на них напряжения. Зная свойства варистора, можно догадаться, что такой резистор защищает электрическую цепь от перенапряжения.

На схемах варисторы обозначаются так:

В зависимости от интенсивности освещения изменяет свое сопротивление еще один вид резисторов – фоторезисторы. Причем не важно, каков источник освещения: искусственный или естественный. Их особенность еще и в том, что ток в них протекает как в одном, так и в другом направлении, то есть еще говорят, что фоторезисторы не имеют p-n перехода.

А на схемах изображаются так:


Как проверить резистор мультиметром на исправность, как прозвонить резистор?

При работе с электрической схемой возникают ситуации, когда необходимо проверить сопротивление резистора. Это может понадобиться при проверке исправности или подгонке его величины под требуемое значение, которое отличается от номинального. Проверять сопротивление можно, не выпаивая резистор, или после его выпайки. В этой статье я расскажу, как правильно проверить резистор мультиметром.

Содержание статьи

Особенности измерения сопротивления резистора мультиметром

Для того, чтобы узнать сопротивление резистора, нужно воспользоваться обычным мультиметром. Принцип измерений основан на законе Ома, который гласит, что сила тока находится в прямой пропорциональной зависимости от напряжения и обратно пропорциональной от сопротивления. Определение сопротивления происходит косвенным путем по формуле R = U/I. То есть, при известных напряжении и силе тока легко определить сопротивление.

Если ранее применялись стрелочные тестеры, то сегодня радиолюбители для проверки исправности резисторов чаще всего используют цифровые мультиметры с круговым переключателем, с помощью которого выставляется тип рабочего режима и диапазон измерений.

Цифровой тестер для проверки резисторов

Для измерения величины R переключатель выставляют в диапазон Ω. В комплекте к такому прибору идет один комплект щупов, имеющих разную расцветку. Принято красный щуп вставлять в отверстие com, а черный – VΩCX+.

Как проверить резистор не выпаивая: визуальная проверка

Процесс проверки резистора на работоспособность непосредственно на плате без полной выпайки является довольно трудоемким занятием, поэтому предварительно можно определить сгоревшую деталь визуально. Прежде всего осматривают корпус на предмет повреждений и сколов, надежности закрепления выводов.

О неисправностях свидетельствуют:

  • Потемнение корпуса. Сгоревший резистор имеет потемневшую поверхность – полностью или частично в виде колечек. Слабое потемнение не свидетельствует о неисправности, а только о перегреве, который не привел к полному выходу детали из строя.
  • Появление характерного запаха.
  • Стирание маркировки.
  • Наличие на плате сгоревших дорожек

Если условия позволяют, то неисправный резистор выпаивают, а на его место впаивают новый с таким же номиналом.

Внимание! Осмотр не гарантирует точного определения исправности, резистор может выглядеть как новый даже при оборванном контакте.

Подготовка мультиметра к проведению измерений: какие установить настройки

Перед измерениями прибор готовят к работе. Для этого его включают и концы щупов закорачивают между собой. Если на дисплее появляются нули, то прибор исправен и в цепи нет обрыва. На дисплее могут отражаться не нули, а доли Ома.

Подготовка прибора к проверке

При разомкнутых щупах на исправном мультиметре отображается цифра 1 и диапазон измерений. Кабельные шнуры подключают в соответствии с тем режимом, который вам необходим, – «Прозвонка» или «Измерение».

Как прозвонить резистор

Режим «Прозвонка» (имеется не во всех тестерах) применяется, чтобы убедиться, что в цепях, идущих через резистор или параллельных ему, отсутствует короткое замыкание. Для его установки регулятор поворачивают к значку диода. Если между точками установки щупов есть токопроводящая цепь, то через динамик генерируется звуковой сигнал.

Режим прозвонки

Этот режим применяют только для резисторов, номинал которых не превышает 70 Ом. Для деталей с большим номиналом его использовать не имеет смысла, поскольку сигнал настолько слаб, что его можно не услышать.

Как определить номинал резистора по маркировке

Для определения работоспособности желательно знать номинал. Как определить номинал резистора по цветовой маркировке, мы подробно рассказали в этой статье.

Немного дополним информацию о способах маркировки SMD резисторов. Из-за малого размера на них практически невозможно нанести традиционную цветовую маркировку, поэтому предусмотрена особая система идентификации. В обозначение входят: 3 или 4 цифры, 2 цифры и буква.

В первой системе первые две или три цифры характеризуют численное значение резистора, а последняя является показателем множителя, обозначающим степень, в которую возводят 10 для получения окончательного результата. Если сопротивление ниже 1 Ом, то для определения местонахождения запятой служит символ R. Например, сопротивление 0,05 Ом выглядит как 0R05.

Высокоточные (прецизионные) резисторы имеют очень малые размеры, поэтому нуждаются в компактной маркировке. Она состоит из трех цифр – первые две являются кодом, а третья – множителем. Каждому коду соответствует трехзначное значение сопротивления, определяемое по таблице. Такая маркировка выполняется в соответствии со стандартом EIA-96, разработанным для резисторов с допуском по сопротивлению не выше 1%.

Таблица кодов для прецизионных резисторов

Код Значение Код Значение Код Значение Код Значение Код Значение Код Значение
01 100 17 147 33 215 49 316 65 464 81 681
02 102 18 150 34 221 50 324 66 475 82 698
03 105 19 154 35 226 51 332 67 487 83 715
04 107 20 158 36 232 52 340 68 499 84 732
05 110 21 162 37 237 53 348 69 511 85 750
06 113 22 165 38 243 54 357 70 523 86 768
07 115 23 169 39 249 55 365 71 536 87 787
08 118 24 174 40 255 56 374 72 549 88 806
09 121 25 178 41 261 57 383 73 562 89 825
101242618242267583927457690845
111272718743274594027559091866
121302819144280604127660492887
131332919645287614227761993909
141373020046294624327863494931
151403120547301634437964995953
161433221048309644538066596976

Проверка сопротивления постоянного резистора

После подготовки прибора к работе приступают к измерениям. Для этого выпаивают одну из ножек сопротивления. Один из щупов подсоединяется к запаянной ножке, второй – к свободной. Если резистор исправен, то на дисплее появится показание, соответствующее номинальному значению в пределах допуска.

Как проверяют сопротивление резистора

При обрыве цепи на экране горит «1».

Внимание! Регулятором перед измерением выставляют переключатель на ближайшее к номиналу значение большего достоинства. Если регулятором была выполнена настройка на значение, меньшее, чем номинал детали, то на дисплее результаты измерений отображаться не будут, поскольку срабатывает внутренняя блокировка тестера.

Если с одной стороны от резистора в схеме впаян конденсатор, то ножку с этой стороны условно можно считать свободно висящей. И в этом случае можно провести измерения, не выпаивая резистор.

СМД-резисторы – компоненты поверхностного монтажа, измерение сопротивления которых осложняется их малыми размерами. Их обычно проверяют, как и все постоянные резисторы, выпайкой одной ножки.

Проверка переменного резистора

Проверка без выпайки из схемы переменных резисторов, имеющих как минимум три ножки, более сложная, по сравнению с проверкой постоянного резистора.

Переменный резистор

Наиболее легким вариантом является положение резистора в самом начале схемы, поскольку одна из крайних «ножек» подключается через емкость. Поэтому по постоянному току приравнивается к свободно висящей. Такой способ измерения позволяет определить общее сопротивление, которое присутствует между крайними контактами.

Провести точные измерения сопротивления резистора позволяет его выпайка из схемы. Аналогично выпаянной, проверяется и новая деталь. Этапы измерений:

  • Мультиметр включают в режим измерения.
  • Щупальца подсоединяют к крайним ножкам. Это позволяет определить общее сопротивление. Значение на дисплее не должно отличаться от номинала более чем на положенный допуск. Величина допуска характеризуется последним кольцом в цветовой маркировке. Она выражается в процентах от номинального значения.
  • Если общее сопротивление соответствует номинальному, то измеряют сопротивление между средней и крайней ножками. После подсоединения «крокодилов» вращают ручку переменного резистора в одном из направлений. Сопротивление либо плавно возрастает до ранее установленного общего значения, либо снижается до нулевого значения. При самой частой неисправности (пропадании контакта токосъемника) прибор показывает бесконечность.

Видео: как проверить резистор мультиметром


Была ли статья полезна?

Да

Нет

Оцените статью

Что вам не понравилось?


Другие материалы по теме


Анатолий Мельник

Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.


Как рассчитать мощность рассеивания резистора | Энергофиксик

Резистор – это один из главных радиоэлементов, у которого есть целый ряд важнейших параметров. Сегодня речь пойдет о мощности рассеивания, ведь этот параметр отвечает за надежную и стабильную работу любого резистора.

Что такое мощность и рассеиваемая мощность

Для начала давайте освежим в памяти, что такое мощность постоянного тока, для этого следует вспомнить очень простую формулу:

Из выше представленного выражения вполне ясно, что мощность зависит от таких величин как напряжение и ток.

Если мы рассмотрим реальную схему, то в процессе ее работы через резисторы, расположенные в схеме, будет протекать ток определенной величины, а так как они (резисторы) обладают определенным сопротивлением, то под действием тока на резисторе будет выделяться тепло. Это тепло и есть та мощность, которая рассеивается на резисторе.

Так вот, если мы в схему установим резистор с меньшей мощностью рассеивания, чем это требуется, то резистор будет перегреваться. Это приведет к его быстрому выходу из строя.

Поэтому очень важно соблюдать следующее правило: заменяемый резистор должен соответствовать по мощности рассеивания сгоревшему резистору, либо этот параметр должен быть больше, но никак не меньше.

Все выпускаемые резисторы соответствуют стандартному ряду, который выглядит так:

1. 0,125 Вт, 0,25 Вт, 0,5 Вт, 1 Вт, 2 Вт, и более

Обычно, соблюдается следующее правило: чем больший размер у резистора, тем на большую рассеиваемую мощность он рассчитан.

Давайте рассмотрим пример. Допустим нам нужно установить резистор с сопротивлением 100 Ом, а ток через него будет протекать 0,1 Ампер.

Для того, чтобы рассчитать требуемую мощность рассеивания нашего резистора воспользуемся следующей формулой:

Итак, получается, что в данном примере нам потребуется резистор с мощностью рассеивания в один Ватт.

Примечание. Для стабильной и надежной работы следует обязательно брать резистор с запасом по мощности рассеивания. Это позволит обеспечить требуемую надежность и долговечность работы схемы.

Но что делать, если вы не знаете, какой ток будет протекать через резистор. Для расчета требуемой мощности рассеивания можно воспользоваться уже другой формулой:

Все вышеперечисленное справедливо для того случая, когда нужно заменить единичный резистор, но довольно часто в схемах можно найти так называемой составной резистор (несколько резисторов соединены параллельно, последовательно или же смешанно).

Итак, давайте для начала рассмотрим последовательное соединение.

При последовательном соединении через резисторы будет протекать одинаковый ток. И получается если нам нужно найти замену резистору на 100 Ом, через который протекает ток в 0,1 А и он рассчитан на мощность рассеивания в 1 Вт, его можно заменить двумя последовательно соединенными резисторами на 80 Ом и 20 Ом.

Если воспользоваться выше представленными формулами и рассчитать на какую мощность должен быть рассчитан каждый резистор, то получим следующий результат:

R1 – 20 Ом (0,2 Вт)

R2 – 80 Ом (0,8 Вт)

Теперь смотрим таблицу со стандартным рядом и выбираем ближайший наибольший номинал. Получается, что в нашем случае подойдут резисторы с мощностью рассеивания R1 – 0.5 Вт, R2 – 1 Вт.

При параллельном же соединении учитывайте тот факт, что через резистор с меньшим сопротивлением будет течь больший ток.

Смешанное соединение на практике практически не используется.

Как обойтись без расчетов

В принципе можно обойтись без формул и подсчетов, достаточно следовать следующему правилу:

Мощность каждого резистора, который входит в составляемую цепь (параллельную или последовательную) должен быть равен мощности рассеивания заменяемого резистора. Проще говоря, если вы хотите заменить резистор на 1 Вт составным резистором, то каждый из них должен быть не менее 1 Вт по мощности рассеивания.

Это все, что я хотел вам рассказать о расчете мощности рассеивания резистора и правилах его замены. Если статья оказалась вам полезна, то оцените ее лайком и спасибо за ваше внимание!

Мощность резистора: обозначение на схеме, как увеличить, что делать, если нет подходящего

Всех приветствую, кто заглянул на огонек. Речь в обзоре пойдет, как вы наверно уже догадались, о том, как сделать простую резистивную USB нагрузку для длительного тестирования емкости повербанков (ПБ), анализа качества кабелей и сетевых адаптеров.

Это одна из нескольких возможных статей о самостоятельном изготовлении резистивной нагрузки (на балластных резисторах), при удачном раскладе возможно руки дойдут и до электронной нагрузки, с регулировкой и стабилизацией тока.

Данная нагрузка служит уже достаточно давно и постоянно мелькает в моих обзорах, поэтому если заинтересовало, прошу под кат. В последнее время, такая самоделка уже не очень актуальна, т.к. появились бюджетные электронные нагрузки, поэтому имеет смысл доплатить и купить готовую.

Я же покупал еще по старому курсу, да и электронных нагрузок особо не было. Поэтому, если нужна именно резистивная, то приступим…

Возможные пути приобретения/изготовления резистивной нагрузки:

1) купить готовую плату-нагрузку с резисторами: Плюсы: + готовое работающее устройство (минимум телодвижений) + не нужны штекеры и провода (минимум потерь) + переключатель на 1А/2А (индикация) + небольшие размеры + небольшая стоимость Минусы: — очень сильно нагревается (около 180°С при токе 1А и около 230°С при токе 2А) и начинает жутко вонять (судя по отзывам, сам такой не имею) — не имеет корпуса, токоведущие/нагревающиеся части открыты (можно обжечься/прожечь что-нибудь, закоротить) — сложно прикрепить радиатор Так как изготовление хорошего нагрузочного модуля отнимает силы и время, то можно воспользоваться данной приблудой, но оставлять без присмотра не стоит 2) найти в закромах мощные резисторы (советские ПЭВ, ППБ и подобные), рассеиваемая им мощность для продолжительной работы должна быть не менее 10 Вт Плюсы: + меньший, но все равно достаточно высокий нагрев + не нужно покупать/средняя стоимость (наличие дома/покупка в магазе) + регулировка сопротивления, т. е. можно плавно изменять ток в широких пределах (только некоторые резюки, либо небольшая доработка) Минусы: — нужно припаивать штекер и провода — большие размеры — невозможность крепления радиатора (на большинстве) — нет переключателя (можно переделать, нужен второй резистор) — не имеет корпуса, токоведущие/нагревающиеся части также открыты (можно обжечься/прожечь что-нибудь) Я не имею таких резисторов в наличие, поэтому выбор за вами.

3) покупка резисторов 25-100 Вт в металлическом корпусе для отвода тепла и сборка своего модуля с кожухом

Плюсы: + средний нагрев (могут без опаски работать без доп. радиаторов) + средняя стоимость + возможность крепления дополнительного радиатора Минусы: — нужно припаивать штекер и провода — большие размеры — нет переключателя (можно переделать, нужен второй резистор) При этом они могут работать и без дополнительного охлаждения, но при этом неплохо греются, в пределах нормы, конечно. Я включал 25W резюки на полную разрядку моего ПБ — выдержали, но сильно грелись. Я рекомендую купить 100W резисторы, тогда дополнительный радиатор может совсем не пригодиться.

Итак, если решили собрать самодельный стенд из похожих резисторов, то приступим. Необходимые компоненты:

1) два резистора 25-100W по 4,7 Ом каждый. Как на зло, цены поднялись и многих номиналов уже не стало в продаже. Но наебайке есть 25W, 100W. Ищем по «Power resistor». 2) выключатель, я покупал тут 3) разборный USB штекер «папа», к примеру тут или тут 4) небольшой кусок медного многожильного провода большого сечения, к примеру, акустический провод 5) небольшой алюминиевый радиатор (по желанию) 6) пластиковая коробка

Номиналы резисторов рассчитываются по знакомой всем формуле закона Ома — I=U/R или R=U/I, где R – сопротивление (Ом), I –ток (А) и U – напряжение (V). К примеру, нам нужен ток 2А, поэтому для нагрузки 5V адаптеров нам нужен резюк 2,5Ома, т.к. 5/2=2,5 Ом.

Для 1А рассчитываем аналогично — 5/1=5 Ом. Так как большинство адаптеров/БП снижают напряжение под нагрузкой, то необходимо делать поправку на это и считать в среднем от 4,8V. Тогда на ток 2А нужен будет резюк R= U/I=4,8V/2А=2,4Ома, а для 1А — R= U/I=4,8V/1А=4,8Ома.

Также нужно помнить, что соединительные провода, выключатель и USB штекер также имеют некоторое сопротивление. Напомню одну хитрость, что при последовательном соединении резисторов общее сопротивление складывается, а при параллельном – будет чуть меньше самого маленького резистора.

Общее сопротивление нескольких резисторов можно посчитать здесь.

Чтобы не искать подходящие номиналы и не мудрить со схемой, я рекомендую сделать по моему варианту, правда с другими номиналами – 2 резистора по 4,7 Ом и небольшой выключатель. Для 1А будет задействован один резистор, для 2А – два в параллель. При этом, если мощность резистора или сопротивление не подходят, можете группировать несколько по указанным выше формулам. В своем нагрузочном модуле я использовал 2 резистора: 5,1Ом и 6Ом, т.к. я их выиграл на аукционе наEbay’ки за копейки, на другие номиналы тогда аукционов не было. При соединении параллельно, я получаю 2,7Ома для тока в 2А (в действительности 1,75А), а для тока в 1А (0,95А)задействую 1 резюк на 5,1 Ом. Они чуток не подходят, идеальный вариант был бы при использовании двух резюков по 4,7Ома, но таких лотов на аукционе не было.

Непосредственная сборка:

До этого пользовался вот таким простеньким модулем, он годился даже для длительных нагрузок, хотя при длительной работе он сильно нагревался, но не вонял и не перегорал (доставать, правда, его не удобно, можно было обжечься). Как только приехал второй резюк на 6 Ом, начал собирать стенд. Вот размеры типичных 25W резисторов в алюминиевом корпусе: Обратная сторона неровная и покрыта лаком, к тому же проушины для крепления имеют заусенцы, поэтому резисторы могут неплотно прилегать к радиатору, я рекомендую пройтись нулевой наждачкой: Сам радиатор я взял из старых запасов. Это распиленный пополам радиатор от бюджетных кулеров GlacialTech для процессоров на Socket A. В сервис центрах по ремонту компьютеров и бытовой техники за 50-100р вам отдадут целую пачку, на любой вкус и цвет. Можно использовать цельный радиатор, температура нагрева будет еще меньше. Мой нагрузочный стенд на 2А (точнее 1,75А) выше 70гр не нагревается. К тому же, к цельному радиатору можно приспособить небольшой вентилятор, тогда можно гонять модуль на высоких токах. При использовании 100Вт резисторов радиатор может вообще не понадобиться. Вот тот самый радиатор: Подошва у радиатора неровная, лучше отшлифовать. Можно оставить и так, теплообмен будет чуть похуже. Размеры моего радиатора: Вот что нам понадобится для изготовления модуля (наждачная бумага/шкурка на 1000/2000, стекло, в качестве идеально ровной поверхности, дрель, сверла, метчики для нарезки резьбы и машинное масло): Идеально полировать с пастой ГОИ не имеет особого смысла, хватит и 2000 наждачки. Затем сверлим отверстия и метчиком нарезаем резьбу (как это делать рассказывать не буду, см. в интернете). Если нет подходящего инструмента, то используйте термоклей/термоскотч/термопрокладки (ссылки внизу), сверлить ничего не придется. От себя добавлю, чтобы не сломать инструмент, капайте масло и через два полных оборота метчика, делайте пол оборота назад. Так вы 100% не сломаете метчик. По возможности пройдите чистовым метчиком (смотрите по количеству рисок на нем). Получается в итоге что-то вроде этого: В качестве кожуха я использовал защитный экран от старого холодильника. Можно использовать что угодно: от органики до любых пластиковых штуковин. Оргстекло небольшой толщины легко гнется при нагреве, я как-то гнул его над жалом мощного паяльника, только потом края придется немного подровнять. В общем, используем все, что есть под рукой. Перед окончательной сборкой пройдитесь по отверстиям сверлом большего диаметра, чтобы убрать заусенцы, иначе резюки плотно прилегать не будут (раззенковать): Далее намазываем тонкий слой термопасты на резисторы, можно просто выдавить каплю пасты, при затяжке она сама расползется. Я использовал российскую «народную» термопасту КПТ-8 (покупается в магазинах электрики): У нее средняя эффективность, со временем она подсыхает, но зато стоит копейки и продается в любых магазинах радиоэлектроники, для нашего модуля сгодится. Прикручиваем винты и загибаем вывода резисторов (можно до крепежа): Как видите, излишки термопасты вылезли наружу, они мешать не будут: Берем штекер USB «папа», желательно с позолоченными контактами (см. предыдущие пункты) и акустический провод с медными (не омедненными!) жилами толстого сечения. Для защиты от термического и механического воздействия я натянул термоусадку. Так как провод толстый, ножиком раздраконьте выходное отверстие: Берем выключатель, он будет вкл/выкл режим «2А». Подойдет любой силовой. Я использовал простенький KCD11, рассчитанный на 220V и 3А. В качестве окантовки использовал старый кабель-канал, немного срезав края. В одном из них вырезаем окошко под выключатель. Затем припаиваем выключатель к выводам резисторов: Сам провод припаиваем к резистору, который будет работать на 1А «по умолчанию». В моем случае это резистор 5,1 Ома. Если вы используете два одинаковых резюка по 4,7Ом, то припаиваем к любому: Одна сторона выводов будет соединена через выключатель, т.е. в положении «выкл» ток – 1А, в положении «вкл» — 2А, т.к. включается второй резюк в параллель. Получается вот такая простая схема: Далее прикручиваем кожух: Ставим верхнюю планку из того же кабель-канала или чего-нибудь похожего на место проема. Получается довольно неплохо: Ну и подклеиваем режимы работы, бумага и скотч в помощь: В итоге при хорошем адаптере имеем следующее (0,95А и 1,75А): Температура радиатора при токе 2А (1,75А) ни разу не поднималась выше 70°С, при 0,95А в районе 60°С: Итого: устройство работает, сильно не нагревается, не воняет, свои функции выполняет на 100%. Да, с номиналами чуток не повезло, но ничего страшного. Все мои обзоры ПБ протестированы именно с этой нагрузкой, при желании можно расширить диапазон токов, к примеру, на 0,5А/1А/1,5А/2А/2,5А…

Кисулька:

Мощность при параллельном соединении формула

О том, как соединять конденсаторы и рассчитывать их общую ёмкость уже рассказывалось на страницах сайта. А как соединять резисторы и посчитать их общее сопротивление? Именно об этом и будет рассказано в этой статье.

Резисторы есть в любой электронной схеме, причём их номинальное сопротивление может отличаться не в 2 – 3 раза, а в десятки и сотни раз. Так в схеме можно найти резистор на 1 Ом, и тут же неподалёку на 1000 Ом (1 кОм)!

Поэтому при сборке схемы либо ремонте электронного прибора может потребоваться резистор с определённым номинальным сопротивлением, а под рукой такого нет. В результате быстро найти подходящий резистор с нужным номиналом не всегда удаётся. Это обстоятельство тормозит процесс сборки схемы или ремонта. Выходом из такой ситуации может быть применение составного резистора.

Для того чтобы собрать составной резистор нужно соединить несколько резисторов параллельно или последовательно и тем самым получить нужное нам номинальное сопротивление. На практике это пригождается постоянно.

Знания о правильном соединении резисторов и расчёте их общего сопротивления выручают и ремонтников, восстанавливающих неисправную электронику, и радиолюбителей, занятых сборкой своего электронного устройства.

Последовательное соединение резисторов

В жизни последовательное соединение резисторов имеет вид:

Принципиальная схема последовательного соединения выглядит так:

На схеме видно, что мы заменяем один резистор на несколько, общее сопротивление которых равно тому, который нам необходим.

Подсчитать общее сопротивление при последовательном соединении очень просто. Нужно сложить все номинальные сопротивления резисторов входящих в эту цепь. Взгляните на формулу.

  • Общее номинальное сопротивление составного резистора обозначено как Rобщ.
  • Номинальные сопротивления резисторов включённых в цепь обозначаются как R1, R2, R3,…RN.
  • Применяя последовательное соединение, стоит помнить одно простое правило:

Из всех резисторов, соединённых последовательно главную роль играет тот, у которого самое большое сопротивление. Именно он в значительной степени влияет на общее сопротивление.

Так, например, если мы соединяем три резистора, номинал которых равен 1, 10 и 100 Ом, то в результате мы получим составной на 111 Ом.

Если убрать резистор на 100 Ом, то общее сопротивление цепочки резко уменьшиться до 11 Ом! А если убрать, к примеру, резистор на 10 Ом, то сопротивление будет уже 101 Ом.

Как видим, резисторы с малыми сопротивлениями в последовательной цепи практически не влияют на общее сопротивление.

Параллельное соединение резисторов

Можно соединять резисторы и параллельно:

Принципиальная схема параллельного соединения выглядит следующим образом:

Для того чтобы подсчитать общее сопротивление нескольких параллельно соединённых резисторов понадобиться знание формулы. Выглядит она вот так:

Эту формулу можно существенно упростить, если применять только два резистора. В таком случае формула примет вид:

Есть несколько простых правил, позволяющих без предварительного расчёта узнать, каково должно быть сопротивление двух резисторов, чтобы при их параллельном соединении получить то, которое требуется.

Если параллельно соединены два резистора с одинаковым сопротивлением, то общее сопротивление этих резисторов будет ровно в два раза меньше, чем сопротивление каждого из резисторов, входящих в эту цепочку.

  Акб обратная полярность что это

Это правило исходит из простой формулы для расчёта общего сопротивления параллельной цепи, состоящей из резисторов одного номинала. Она очень проста. Нужно разделить номинальное сопротивление одного из резисторов на общее их количество:

Здесь R1 – номинальное сопротивление резистора. N – количество резисторов с одинаковым номинальным сопротивлением.

Ознакомившись с приведёнными формулами, вы скажите, что все они справедливы для расчёта ёмкости параллельно и последовательно соединённых конденсаторов. Да, только в отношении конденсаторов всё действует с точностью до «наоборот”. Узнать подробнее о соединении конденсаторов можно здесь.

Проверим справедливость показанных здесь формул на простом эксперименте.

Возьмём два резистора МЛТ-2 на 3 и 47 Ом и соединим их последовательно. Затем измерим общее сопротивление получившейся цепи цифровым мультиметром. Как видим оно равно сумме сопротивлений резисторов, входящих в эту цепочку.

  1. Теперь соединим наши резисторы параллельно и замерим их общее сопротивление.
  2. Измерение сопротивления при параллельном соединении
  3. Как видим, результирующее сопротивление (2,9 Ом) меньше самого меньшего (3 Ом), входящего в цепочку. Отсюда вытекает ещё одно известное правило, которое можно применять на практике:
  4. При параллельном соединении резисторов общее сопротивление цепи будет меньше наименьшего сопротивления, входящего в эту цепь.

Что ещё нужно учитывать при соединении резисторов?

Во-первых, обязательно учитывается их номинальная мощность. Например, нам нужно подобрать замену резистору на 100 Ом и мощностью 1 Вт. Возьмём два резистора по 50 Ом каждый и соединим их последовательно. На какую мощность рассеяния должны быть рассчитаны эти два резистора?

Поскольку через последовательно соединённые резисторы течёт один и тот же постоянный ток (допустим 0,1 А), а сопротивление каждого из них равно 50 Ом, тогда мощность рассеивания каждого из них должна быть не менее 0,5 Вт. В результате на каждом из них выделится по 0,5 Вт мощности. В сумме это и будет тот самый 1 Вт.

Данный пример достаточно грубоват. Поэтому, если есть сомнения, стоит брать резисторы с запасом по мощности.

Подробнее о мощности рассеивания резистора читайте тут.

Во-вторых, при соединении стоит использовать однотипные резисторы, например, серии МЛТ. Конечно, нет ничего плохого в том, чтобы брать разные. Это лишь рекомендация.

Резистор – это элемент электрической схемы, который обладает сопротивлением электрическому току. Классифицируют два типа резисторов: постоянные и переменные (подстроечные). При моделировании той или иной электрической схемы, а также при ремонте электронных изделий, возникает необходимость использовать резистор определенного номинала.

Хотя и существует множество различных номиналов постоянных резисторов, в данный момент под рукой может не оказаться требуемого, либо резистора с таким номиналом не существует. Чтобы выйти из такой ситуации, можно использовать как последовательное так и параллельное соединение резисторов.

О том, как правильно произвести расчет и подбор различных номиналов сопротивлений, будет рассказано в этой статье.

Последовательное соединение резисторов – это самая элементарная схема сборки радиодеталей, оно применяется для увеличения общего сопротивления цепи.

При последовательном соединении, сопротивление используемых резисторов просто складывается, а вот при параллельном соединении необходимо производить расчет по нижеописанным формулам.

Параллельное соединение необходимо для снижения результирующего сопротивления, а также для увеличения мощности, несколько параллельно подключенных резисторов имеют большую мощность, чем у одного.

  Температура плавления клея для клеевого пистолета

  • На фотографии можно увидеть параллельное подключение резисторов.
  • Общее номинальное сопротивление необходимо рассчитывать по следующей схеме:
  • — R(общ) – общее сопротивление;
  • — R1, R2, R3 и Rn – параллельно подключенные резисторы.
  • Когда параллельное соединение резисторов состоит всего из двух элементов, в таком случае общее номинальное сопротивление можно высчитать по следующей формуле:
  • — R(общ) – общее сопротивление;
  • — R1, R2 – параллельно подключенные резисторы.
  • В радиотехнике существует следующее правило: если параллельное подключение резисторов состоит из элементов одного номинала, то результирующее сопротивление можно высчитать, разделив номинал резистора на количество соединенных резисторов:
  • — R(общ) – общее сопротивление;
  • — R – номинал параллельно подключенного резистора;
  • — n – количество соединенных элементов.
  • Важно учитывать, что при параллельном соединении результирующее сопротивление всегда будет ниже, чем сопротивление самого малого по номиналу резистора.
  • Приведем практический пример: возьмем три резистора, со следующими значениями номинального сопротивления: 100 Ом, 150 Ом и 30 Ом. Проведем расчет общего сопротивления, по первой формуле:
  • После расчета формулы мы видим, что параллельное соединение резисторов, состоящее из трех элементов, с наименьшим номиналом 30 Ом, в результате дает общее сопротивление в электрической цепи 21,28 Ом, что ниже наименьшего номинального сопротивления в цепи почти на 30 процентов.

Параллельное соединение резисторов чаще всего используют в тех случаях, когда необходимо получить сопротивление с большей мощностью.

В таком случае необходимо взять резисторы одинаковой мощности и с одинаковым сопротивлением.

Результирующая мощность в таком случае рассчитывается путем умножения мощности одного элемента сопротивления на общее количество параллельно подключенных резисторов в цепи.

Например: пять резисторов с номиналом в 100 Ом и с мощностью 1 Вт в каждом, подключенные параллельно, имеют общее сопротивление 20 Ом и мощность 5 Вт.

При последовательном подключении тех же резисторов (мощность так же складывается), получим результирующую мощность 5 Вт, общее сопротивление составит 500 Ом.

Параллельное соединение резисторов — одно из двух видов электрических соединений, когда оба вывода одного резистора соединены с соответствующими выводами другого резистора или резисторов. Зачастую резисторы соединяют последовательно или параллельно для того, чтобы создать более сложные электронные схемы.

Схема параллельного соединения резисторов показан на рисунке ниже. При параллельном соединении резисторов, напряжение на всех резисторах будет одинаковым, а протекающий через них ток будет пропорционален их сопротивлению:

Формула параллельного соединения резисторов

  1. Общее сопротивление нескольких резисторов соединенных параллельно определяется по следующей формуле:
  2. Ток, протекающий через отдельно взятый резистор, согласно закону Ома, можно найти по формуле:

Параллельное соединение резисторов — расчет

Пример №1

При разработке устройства, возникла необходимость установить резистор с сопротивлением 8 Ом. Если мы просмотрим весь номинальный ряд стандартных значений резисторов, то мы увидим, что резистора с сопротивлением в 8 Ом в нем нет.

Выходом из данной ситуации будет использование двух параллельно соединенных резисторов. Эквивалентное значение сопротивления для двух резисторов соединенных параллельно рассчитывается следующим образом:

Данное уравнение показывает, что если R1 равен R2, то сопротивление R составляет половину сопротивления одного из двух резисторов. При R = 8 Ом, R1 и R2 должны, следовательно, иметь значение 2 × 8 = 16 Ом. Теперь проведем проверку, рассчитав общее сопротивление двух резисторов:

Таким образом, мы получили необходимое сопротивление 8 Ом, соединив параллельно два резистора по 16 Ом.

Пример расчета №2

Найти общее сопротивление R из трех параллельно соединенных резисторов:

  Как открутить болт с фиксатором резьбы

  • Общее сопротивление R рассчитывается по формуле:
  • Этот метод расчета может быть использованы для расчета любого количества отдельных сопротивлений соединенных параллельно.

Один важный момент, который необходимо запомнить при расчете параллельно соединенных резисторов – это то, что общее сопротивление всегда будет меньше, чем значение наименьшего сопротивления в этой комбинации.

Как рассчитать сложные схемы соединения резисторов

Более сложные соединения резисторов могут быть рассчитаны путем систематической группировки резисторов. На рисунке ниже необходимо посчитать общее сопротивление цепи, состоящей из трех резисторов:

Для простоты расчета, сначала сгруппируем резисторы по параллельному и последовательному типу соединения.

Резисторы R2 и R3 соединены последовательно (группа 2). Они в свою очередь соединены параллельно с резистором R1 (группа 1).

Обозначение мощности резистора на схеме, как её увеличить, что делать, если нет подходящего по мощности резистора

Обозначение мощности резистора на схеме, как её увеличить, что делать, если нет подходящего по мощности резистора

Резистор — пассивный элемент электрических цепей, обладающий определённым или переменным значением электрического сопротивления, предназначенный для линейного преобразования силы тока в напряжение и напряжения в силу тока, ограничения тока, поглощения электрической энергии и др. Весьма широко используемый компонент практически всех электрических и электронных устройств.

В схемах радиоэлектронной аппаратуры одним из наиболее часто встречающихся элементов является резистор, другое его название это сопротивление. У него есть целый ряд характеристик, среди которых есть мощность. В этой статье мы поговорим о резисторах, что делать, если у вас нет подходящего по мощности элемента, и почему они сгорают.

Характеристики резисторов

1. Основной параметр резистора – это номинальное сопротивление.

2. Второй параметр, по которому его выбирают – это максимальная (или предельная) рассеиваемая мощность.

3. Температурный коэффициент сопротивления – описывает, насколько изменяется сопротивление, при изменении его температуры на 1 градус Цельсия.

4. Допустимое отклонение от номинала. Обычно разброс параметров резистора от одного заявленного в пределах 5-10%, это зависит от ГОСТ или ТУ по которому он произведен, существуют и точные резисторы с отклонением до 1%, обычно стоят дороже.

5. Предельное рабочее напряжение, зависит от конструкции элемента, в бытовых электроприборах с напряжением питания 220В могут применяться практически любые резисторы.

6. Шумовые характеристики.

7. Максимальная температура окружающей среды. Это такая температура, которая может быть при достижении максимальной рассеиваемой мощности самого резистора. Об этом подробнее поговорим позже.

8. Влаго- и термоустойчивость.

Есть еще две характеристики, о которых начинающие чаще всего не знают, это:

1. Паразитная индуктивность.

2. Паразитная ёмкость.

Оба параметра зависят от типа и конструктивных особенностей резистора. Индуктивность имеет в любом проводнике, вопрос в её величины. Типовые величины паразитных индуктивностей и емкостей приводить бессмысленно. Паразитные составляющие следует учитывать при проектировании и ремонте высокочастотных приборах.

На низких частотах (например, в пределах звукового диапазона до 20 кГц), существенного влияния в работу схемы они не вносят. В высокочастотных приборах, с рабочими частотами в сотни тысяч и выше герц существенное влияние вносит даже расположение дорожек на плате и их форма.

  • Мощность резистора
  • Из курса физики многие отлично помнят формулу мощности для электричества, это: P=U*I
  • Отсюда следует, что она линейно зависит от тока и напряжения. Ток же через резистор зависит от его сопротивления и приложенного к нему напряжению, то есть:
  • I=U/R
  • Падение напряжения на резисторе (сколько на его выводах остаётся напряжения от приложенного к цепи, в которой он установлен), так же зависит от тока и сопротивления:
  • I=U/R
  • Теперь объясним простыми словами, что такое мощность у резистора и куда она выделяется.

У любого металла есть своё удельное сопротивление, это такая величина, которая зависит от структуры этого самого металла. Когда носители зарядов (в нашем случае электроны), под воздействием электрического тока протекают через проводник, они сталкиваются с частицами, из которого состоит металл.

В результате этих столкновений затрудняется движение тока. Если очень обобщенно сказать, то получается, так, что чем плотнее структура металла, тем сложнее протекать току (тем больше сопротивление).

На картинке пример кристаллической решетки, для наглядности.

Из-за этих столкновений выделяется тепло. Это можно представить, как если бы вы шли через толпу (большое сопротивление), где вас еще и толкают, или если бы шли по пустому коридору, где вы сильнее вспотеете?

То же самое происходит и с металлом. Мощность выделяется в виде тепла. В некоторых случаях это плохо, потому что так снижается коэффициент полезного действия прибора. В других ситуациях – это полезное свойство, например в работе ТЭНов. В лампах накаливания за счет своего сопротивления спираль раскаляется до яркого свечения.

Но как это относится к резисторам?

Дело в том, что резисторы применяют для ограничения тока при питании каких-либо устройств, или элементов цепи, или для задания режимов работы полупроводниковым приборам. Из формулы выше станет ясно, что ток снижается, за счет снижения напряжения. Лишнее напряжение можно сказать, что сгорает в виде тепла на резисторе, мощность при этом считается по той же формуле, что и общая мощность:

P=U*I

Здесь U – это количество вольт «сожженных» на резисторе, а I – это ток, который через него протекает. 2/1=144/1=144 Вт.

Всё сходится. Резистор будет выделять тепло с мощностью в 144Вт. Это условные значения, взятые в качестве примера. На практике таких резисторов вы не встретите в радиоэлектронной аппаратуре, исключением являются большие сопротивления для регулирования двигателей постоянного тока или пуска мощных синхронных машин в асинхронном режиме.

Какие бывают резисторы и как они обозначаются на схеме

Ряд мощностей резисторов стандартен: 0.05 (0.62) – 0.125 – 0.25 – 0.5 – 1 – 2 – 5

Это типовые номиналы распространенных резисторов, бывают и большие значения, или другие величины. Но этот ряд наиболее распространен. При сборке электроники используют схему электрическую принципиальную, с порядкового номера элементов. Реже указываться номинальное сопротивление, еще реже указывается номинальное сопротивление и мощность.

Чтобы быстро определить мощность резистора на схеме были введены соответствующие УГО (условные графические обозначения) по ГОСТ. Внешний вид таких обозначений и их расшифровка представлены в таблице ниже.

Вообще эти данные, а также название конкретного типа резистора указываются в перечне элементов, там же указывается и разрешенный допуск в %.

Внешне, они отличаются размером, чем мощнее элемент, тем больше его размер. Больший размер увеличивает площадь теплообмена резистора с окружающей средой. Поэтому тепло, которое выделяется при прохождении тока через сопротивление, быстрее отдаётся воздуху (если окружающая среда воздух).

Это значит, что резистор может греться с большей мощностью (выделять определенное количество тепла в единицу времени). Когда температура сопротивления достигает определенного уровня, сначала начинает выгорать внешний слой с маркировкой, дальше сгорает резистивный слой (пленка, проволока или что-то другое).

Чтобы вы оценили, как сильно может греться резистор, взгляните на нагрев спирали разобранного мощного резистора (более 5 Вт) в керамическом корпусе.

В характеристиках был такой параметр, как допустимая температура окружающей среды. Она указывается, для правильного подбора элемента.

Дело в том, что раз мощность резистора ограничена способностью отдать тепло и, при этом, не перегреться, а для отдачи тепла, т.е.

охлаждения элемента путем конвекции или принудительным потоком воздуха должна быть как можно большая разница температур элемента и окружающей среды.

Поэтому если вокруг элемента слишком жарко он быстрее нагреется и сгорит, даже если электрическая мощность на нем ниже максимально рассеиваемой. Нормальной температурой является 20-25 градусов Цельсия.

Что делать, если нет резистора нужной мощности?

Частой проблемой радиолюбителей является отсутствия резистора нужной мощности. Если у вас есть резисторы мощнее, чем нужно – ничего страшного в этом нет, можно ставить не задумываясь. Лишь бы он влез по размеру. Если все имеющиеся резисторы по мощности меньше, чем нужно – это уже проблема.

На самом деле решить этот вопрос достаточно просто. Вспомните законы последовательного и параллельного соединения резисторов.

1. При последовательном соединении резисторов сумма падений напряжений на всей цепочке равняется сумме падений на каждом из них. А ток, протекающий через каждый резистор равен общему току, т.е. в цепи из последовательно соединенных элементов протекает ОДИН ток, но приложенные к каждому из них напряжения РАЗНЫЕ, определяются по закону Ома для участка цепи (см. выше) Uобщ=U1+U2+U3

2. При параллельном соединении резисторов падение на всех напряжения равны, а ток, протекающий в каждой из ветвей обратно пропорционален сопротивлению ветви. Общий ток цепочки из параллельно соединенных резисторов равен сумме токов каждой из ветвей.

На этой картинке изображено всё вышесказанное, в удобной для запоминания форме.

Так, как при последовательном соединении резисторов снизится напряжение на каждом из них, а при параллельном соединении ток, то если P=U*I

Мощность, выделяемая на каждом из них, снизится соответствующим образом.

Поэтому, если у вас нет резистора 100 Ом на 1 Вт, его можно почти всегда заменить 2 резисторами на 50 Ом и 0. 5 Вт соединенными последовательно, или 2 резисторами на 200 Ом и 0.5 Вт соединенными параллельно.

Я не просто так написал «ПОЧТИ ВСЕГДА».

Дело в том, что не все резисторы одинаково хорошо переносят ударные токи, в некоторых цепях, например связанные с зарядом конденсаторов большой ёмкости, в первоначальный момент времени переносят большую ударную нагрузку, которая может повредить его резистивный слой. Такие связки нужно проверять на практике или путем долгих расчетов и чтением технической документации и ТУ на резисторы, чем почти никогда и никто не занимается.

Заключение

Мощность резистора – это величина не менее важная, чем его номинальное сопротивление. Если не уделять внимания подбору сопротивлений нужно мощности, то они будут перегорать и сильно греться, что плохо в любой цепи.

При ремонте аппаратуры, особенно китайской, ни в коем случае не пытайтесь ставить резисторы меньшей мощности, лучше поставить с запасом, если есть такая возможность поместить его по габаритам на плате.

Для стабильной и надежной работы радиоэлектронного устройства нужно подбирать мощность, как минимум, с запасом в половину от предполагаемой, а лучше в 2 раза больше. Это значит, что если по расчетам на резисторе выделяется 0.9-1 Вт, то мощность резистора или их сборки должна быть не меньше, чем 1.5-2 Вт.

Ранее ЭлектроВести писали, что JinkoSolar объявила, что она установила новый рекорд эффективности для монокристаллических PERC-панелей, который составил 24,38%.

Компания также разработала модуль мощностью 469,3 Вт.

Кроме того, китайский производитель фотоэлектрических элементов поравнялся с фирмой Trina Solar, которая на прошлой неделе заявила о рекордном 24,58% показателе КПД монокристаллических панелей n-типа.

Резистор

Радиоэлектроника для начинающих

Резистор служит для ограничения тока в электрической цепи, создания падений напряжения на отдельных её участках и пр. Применений очень много, всех и не перечесть.

Другое название резистора – сопротивление. По сути, это просто игра слов, так как в переводе с английского resistance – это сопротивление (электрическому току).

Когда речь заходит об электронике, то порой можно встретить фразы типа: «Замени сопротивление», «Два сопротивления сгорели». В зависимости от контекста под сопротивлением может подразумеваться именно электронная деталь.

На схемах резистор обозначается прямоугольником с двумя выводами. На зарубежных схемах его изображают чуть-чуть иначе. «Тело» резистора обозначают ломаной линией – своеобразная стилизация под первые образцы резисторов, конструкция которых представляла собой катушку, намотанную высокоомным проводом на изоляционном каркасе.

Рядом с условным обозначением указывается тип элемента (R) и его порядковый номер в схеме (R1). Здесь же указано его номинальное сопротивление. Если указана только цифра или число, то это сопротивление в Омах.

Иногда, рядом с числом пишут Ω – так, греческой заглавной буквой «Омега» обозначают омы. Ну, а, если так, – 10к, то этот резистор имеет сопротивление 10 килоОм (10 кОм – 10 000 Ом).

Про множители и приставки «кило», «мега» можете почитать здесь.

Не стоит забывать о переменных и подстроечных резисторах, которые всё реже, но ещё встречаются в современной электронике. Об их устройстве и параметрах я уже рассказывал на страницах сайта.

Основные параметры резисторов

  • Номинальное сопротивление.
    Это заводское значение сопротивления конкретного прибора, измеряется это значение в Омах (производные килоОм – 1000 Ом, мегаОм – 1000000 Ом). Диапазон сопротивлений простирается от долей Ома (0,01 – 0,1 Ом) до сотен и тысяч килоОм (100 кОм – 1МОм). Для каждой электронной цепи необходимы свои наборы номиналов сопротивлений. Поэтому разброс значений номинальных сопротивлений столь велик.
  • Рассеиваемая мощность.
    Более подробно о мощности резистора я уже писал здесь.
    При прохождении электрического тока через резистор происходит его нагрев. Если пропускать через него ток, превышающий заданное значение, то токопроводящее покрытие разогреется настолько, что резистор сгорает. Поэтому существует разделение резисторов по рассеиваемой мощности.
    На графическом обозначении резистора внутри прямоугольника мощность обозначается наклонной, вертикальной или горизонтальной чертой. На рисунке обозначено соответствие графического обозначения и мощности указанного на схеме резистора.

    К примеру, если через резистор потечёт ток 0,1А (100 mA), а его номинальное сопротивление 100 Ом, то необходим резистор мощностью не менее 1 Вт. Если вместо этого применить резистор на 0,5 Вт, то он вскоре выйдет из строя. Мощные резисторы применяются в сильноточных цепях, например, в блоках питания или сварочных инверторах.
    Если необходим резистор мощностью более 2 Вт (5 Вт и более), то внутри прямоугольника на условном графическом обозначении пишется римская цифра. Например, V – 5 Вт, Х – 10 Вт, XII – 12 Вт.
  • Допуск.
    При изготовлении резисторов не удаётся добиться абсолютной точности номинального сопротивления. Если на резисторе указано 10 Ом, то его реальное сопротивление будет в районе 10 Ом, но никак не ровно 10. Оно может быть и 9,88 и 10,5 Ом. Чтобы как-то обозначить пределы погрешности в номинальном сопротивлении резисторов, их делят на группы и присваивают им допуск. Допуск задаётся в процентах. Если вы купили резистор на 100 Ом c допуском ±10%, то его реальное сопротивление может быть от 90 Ом до 110 Ом. Узнать точное сопротивление этого резистора можно лишь с помощью омметра или мультиметра, проведя соответствующее измерение. Но одно известно точно. Сопротивление этого резистора не будет меньше 90 или больше 110 Ом.
    Строгая точность номиналов сопротивлений в обычной аппаратуре важна не всегда. Так, например, в бытовой электронике допускается замена резисторов с допуском ±20% от того номинала, что требуется в схеме. Это выручает в тех случаях, когда необходимо заменить неисправный резистор (например, на 10 Ом). Если нет подходящего элемента с нужным номиналом, то можно поставить резистор с номинальным сопротивлением от 8 Ом (10-2 Ом) до 12 Ом (10+2 Ом). Считается так (10 Ом/100%) * 20% = 2 Ом. Допуск составляет -2 Ом в сторону уменьшения, +2 Ом в сторону увеличения.
    Для тех, кто ещё не знает, существует ещё одна возможность подобрать необходимое сопротивление – его можно составить, соединив вместе несколько резисторов разных номиналов. Об этом читайте в статье про соединение резисторов.
    Существует аппаратура, где такой трюк не пройдёт – это прецизионная аппаратура. К ней относится медицинское оборудование, измерительные приборы, электронные узлы высокоточных систем, например, военных. В ответственной электронике используются высокоточные резисторы, допуск их составляет десятые и сотые доли процента (0,1-0,01%). Иногда такие резисторы можно встретить и в бытовой электронике.
    Стоит отметить, что в настоящее время в продаже можно встретить резисторы с допуском не более 10% (обычно 1%, 5% и реже 10%). Высокоточные резисторы имеют допуск в 0,25…0,05%.
  • Температурный коэффициент сопротивления (ТКС).
    Под влиянием внешней температуры или собственного нагрева из-за протекающего тока, сопротивление резистора меняется. Иногда в тех пределах, которые нежелательны для работы схемы. Чтобы оценить изменение сопротивления из-за воздействия температуры, то есть термостабильность резистора, используется такой параметр, как ТКС (Температурный Коэффициент Сопротивления). За рубежом принято сокращение T.C.R.
    В маркировке резистора величина ТКС, как правило, не указывается. Для нас же необходимо знать, что чем меньше ТКС, тем лучше резистор, так как он обладает лучшей термостабильностью. Более подробно о таком параметре, как ТКС, я рассказывал тут.

Первые три параметра основные, их надо знать!

Перечислим их ещё раз:

  • Номинальное сопротивление (маркируется как 100 Ом, 10кОм, 1МОм…)
  • Рассеиваемая мощность (измеряется в Ваттах: 1 Вт, 0,5 Вт, 5 Вт…)
  • Допуск (выражается в процентах: 5%, 10%, 0,1%, 20%).

Так же стоит отметить конструктивное исполнение резисторов.

Сейчас можно встретить как микроминиатюрные резисторы для поверхностного монтажа (SMD-резисторы), которые не имеют выводов, так и мощные, в керамических корпусах.

Существуют и невозгораемые, разрывные и прочее. Перечислять можно очень долго, но основные параметры у них одинаковые: номинальное сопротивление, рассеиваемая мощность и допуск.

В настоящее время номинальное сопротивление резисторов и их допуск маркируют цветными полосами на корпусе самого элемента.

Как правило, такая маркировка применяется для маломощных резисторов, которые имеют небольшие габариты и мощность менее 2…3 ватт.

Каждая фирма-изготовитель устанавливает свою систему маркировки, что вносит некоторую путаницу. Но в основном присутствует одна устоявшаяся система маркировки.

Новичкам в электронике хотелось бы рассказать и о том, что кроме резисторов, цветовыми полосами маркируют и миниатюрные конденсаторы в цилиндрических корпусах. Иногда это вызывает путаницу, так как такие конденсаторы ложно принимают за резисторы.

Таблица цветового кодирования

Рассчитывается сопротивление по цветным полосам так. Например, три первых полосы – красные, последняя четвёртая золотистого цвета. Тогда сопротивление резистора 2,2 кОм = 2200 Ом.

Первые две цифры согласно красному цвету – 22, третья красная полоса, это множитель. Стало быть, по таблице множитель для красной полосы – 100. На множитель необходимо умножить число 22. Тогда, 22 * 100 = 2200 Ом.

Золотистая полоса соответствует допуску в 5%. Значит, реальное сопротивление может быть в пределе от 2090 Ом (2,09 кОм) до 2310 Ом (2,31 кОм).

Мощность рассеивания зависит от размеров и конструктивного исполнения корпуса.

На практике широкое распространение имеют резисторы с допуском 5 и 10%. Поэтому за допуск отвечают полосы золотого и серебристого цвета. Понятно, что в таком случае, первая полоса находится с противоположной стороны элемента. С неё и нужно начинать считывание номинала.

Но, как быть, если резистор имеет небольшой допуск, например 1 или 2% ? С какой стороны считывать номинал, если с обеих сторон присутствуют полосы красного и коричневого цветов?

Этот случай предусмотрели и первую полосу размещают ближе к одному из краёв резистора. Это можно заметить на рисунке таблицы. Полоски, обозначающие допуск расположены дальше от края элемента.

Конечно, бывают случаи, когда нет возможности считать цветовую маркировку резистора (забыли таблицу, стёрта/повреждена сама маркировка, некорректное нанесение полос и пр.).

В таком случае, узнать точное сопротивление резистора можно только, если измерить его сопротивление мультиметром или омметром. В таком случае вы будете 100% знать его реальную величину. Также при сборке электронных устройств рекомендуется проверять резисторы мультиметром для того, чтобы отсеить возможный брак.

Главная » Радиоэлектроника для начинающих » Текущая страница

Также Вам будет интересно узнать:

Простой способ определить Vf светодиода, чтобы выбрать подходящий резистор

Вы неправильно понимаете, как работает светодиод, так как Vf — это не напряжение, которое вы кладете на светодиод, чтобы заставить его работать, а напряжение, которое появляется (падает) на светодиод, когда ток пропускается через него.

Если вы посмотрите на соответствующий лист данных, вы увидите Vf (min), Vf и Vf (max), заданные для определенного тока, и это означает, что, если вы подадите указанный ток через светодиод, вы можете ожидать Vf падать где-нибудь между Vf (мин) и Vf (макс.), причем Vf является типичным значением.

Итак, ответ на ваш вопрос:

  • Источником питания является любой источник переменного напряжения, R обеспечивает балласт для светодиода, снижая его чувствительность к изменениям источника питания.
  • Это не даст светодиоду испускать свой волшебный дым, если вы случайно запустите источник питания слишком далеко, и его значение [R] не критично, в разумных пределах.
  • Например, если вы используете резистор 1000 Ом и пытаетесь протолкнуть 20 мА через светодиод, эти 20 мА также должны пройти через R, поэтому R будет падать:
  •  E = IR = 0,02 A × 1000 Ом = 20 вольт, E = IRзнак равно0.02A×1000Ωзнак равно20 вольт,
  • и вам понадобится запас для светодиодов.
  • «A» — это амперметр, используемый для измерения тока через светодиод, а «V» — вольтметр, используемый для измерения напряжения на светодиоде.

При использовании, то, что вам нужно сделать, это запустить источник питания с нуля вольт, а затем провернуть его до тех пор, пока амперметр не покажет 20 миллиампер, тогда напряжение, отображаемое на вольтметре, будет Vf для этого конкретного диода при данном конкретном токе и температуре окружающей среды. температура.

  1. Возвращаясь к вашему вопросу, способ определить, какое значение последовательного сопротивления является «правильным» для вашего светодиода, состоит в том, чтобы сначала определить его Vf при желаемом прямом токе (если), а затем использовать закон Ома для определения значения сопротивления, так:
  2. R =  Vс — VеяеR = Вs-Веяе
  3. Если предположить, что Vs (напряжение питания) составляет 12 вольт, то Vf равно 2 вольтам, а If — 20 мА, мы получим
  4. R =  12 В- 2 В0,02 А= 500 ОмR = 12В-2В0. 02Aзнак равно500 Ом
  5. Затем, чтобы определить мощность рассеиваемого резистора, мы можем написать:
  6. Pd = (Vs — Vf) × If = 10 В × 0,02 А = 0,2 Вт  Pd = (Vs — Vf)×Если знак равно 10V×0.02Aзнак равно0,2 Вт
  7. 510 Ом — это самое близкое значение E24 (+/- 5%), которое будет сохраняться, если на консервативной стороне 20 мА, и резистор 1/4 Вт должен быть в порядке.
  8. Утиный суп, а? 😉
Резисторы

– learn.sparkfun.com

Добавлено в избранное Любимый 48

Номинальная мощность

Номинальная мощность резистора – одно из наиболее скрытых значений. Тем не менее, это может быть важно, и это тема, которая возникает при выборе типа резистора.

Мощность – это скорость преобразования энергии во что-то другое. Он рассчитывается путем умножения разности напряжений в двух точках на ток, протекающий между ними, и измеряется в ваттах (Вт).Например, лампочки превращают электричество в свет. Но резистор может превратить проходящую через него электрическую энергию только в тепла . Хит обычно не лучший друг для электроники; слишком много тепла приводит к дыму, искрам и пожару!

Каждый резистор имеет определенную максимальную номинальную мощность. Чтобы резистор не перегревался слишком сильно, важно убедиться, что мощность на резисторе не превышает его максимального значения. Номинальная мощность резистора измеряется в ваттах и ​​обычно находится между & frac18; Вт (0.125 Вт) и 1 Вт. Резисторы с номинальной мощностью более 1 Вт обычно называются силовыми резисторами и используются специально из-за их способности рассеивать мощность.

Определение номинальной мощности резистора

Номинальную мощность резистора обычно можно определить, наблюдая за размером его корпуса. Стандартные сквозные резисторы обычно имеют номинальную мощность ¼ или ½ Вт. Силовые резисторы более специального назначения могут указывать свою номинальную мощность на резисторе.

Эти силовые резисторы могут выдерживать гораздо большую мощность, прежде чем они сработают.Сверху справа и снизу слева приведены примеры резисторов 25 Вт, 5 Вт и 3 Вт со значениями 2 Ом, 3 Ом; 0,1 & Ом; и 22кОм ;. Меньшие силовые резисторы часто используются для измерения тока.

О номинальной мощности резисторов для поверхностного монтажа обычно можно судить также по их размеру. Резисторы типоразмера 0402 и 0603 обычно рассчитаны на 1/16 Вт, а резисторы 0805 могут потреблять 1/10 Вт.

Измерение мощности через резистор

Мощность обычно рассчитывается путем умножения напряжения на ток (P = IV).Но, применяя закон Ома, мы также можем использовать значение сопротивления при расчете мощности. Если нам известен ток, протекающий через резистор, мы можем рассчитать мощность как:

Или, если нам известно напряжение на резисторе, мощность можно рассчитать как:



← Предыдущая страница
Расшифровка маркировки резистора Номинальная мощность резистора

| Рассеивание мощности на резисторах

Введение

Резисторы могут быть оценены на основе двух значений. Первый основан на сопротивлении резистора. Второе основано на мощности в ваттах, которую резистор может безопасно рассеивать.

Номинальная мощность резистора может быть определена как потеря электрической энергии в виде тепла в резисторе, когда через него протекает ток в присутствии напряжения.

Резисторы могут использоваться в любой цепи в зависимости от требований в любой комбинации тока и напряжения. Эти различные комбинации токов и напряжений выбираются таким образом, чтобы номинальная рассеиваемая мощность резистора не превышала номинальную мощность резистора, которая указывает количество мощности, которое резистор может преобразовать в тепло, не вызывая его повреждения.Номинальная мощность резистора также может указывать на величину мощности, которую резистор может поглотить без каких-либо повреждений.

Номинальная мощность резистора также называется номинальной мощностью резистора. Номинальная мощность резистора определяется как «количество тепла, которое резистор может рассеивать в течение неопределенного периода времени, не влияя и не ухудшая его характеристики».

Номинальная мощность резистора измеряется в ваттах, которые являются единицами измерения мощности.

Поскольку рассеиваемая мощность зависит от размера объекта, номинальная мощность резистора может варьироваться от такого небольшого значения, как одна десятая ватта, до большого значения, равного сотням ватт, в зависимости от размера, температуры и процедуры изготовления резистора.

Обычно температура, используемая для определения номинальной мощности, – это температура окружающей среды или температура в помещении. Обычно большинство резисторов имеют максимальную номинальную мощность при температуре окружающей среды 70 0 C или ниже.

Вернуться к списку

Рассеиваемая мощность

Резисторы – это основные электрические компоненты, которые подчиняются закону Ома. Когда между выводами резистора с сопротивлением R подается напряжение V, через него протекает ток I. Этот ток I определяется выражением

I = V / R

Движение электронов является причиной этого тока, и они ускоряются электрическим полем из-за приложенного потенциала. Эти ускоренные электроны, обладающие кинетической энергией, пытаются двигаться к положительной стороне материала, и в этом процессе они сталкиваются с атомами и теряют свою энергию. И результатом этого столкновения является преобразование электрической энергии в тепло.

Скорость потери энергии или рассеиваемой мощности можно рассчитать по формуле P = I * V.

Эти три величины тока, напряжения и мощности могут быть наложены в треугольник, называемый треугольником мощности.В этом треугольнике мощность, которая указывает на тепло, рассеиваемое резистором, находится в верхней части треугольника.

Потребляемый ток и приложенное напряжение указаны внизу.

Рисунок треугольника мощности показан ниже.

Из этого треугольника можно рассчитать мощность, рассеиваемую в резисторе, если известны значения напряжения на нем и тока, протекающего через него. Треугольник используется для математического представления отношения между мощностью, током и напряжением.

Мощность рассчитывается как

P = I * V

Ток рассчитывается как

I = P / V

Напряжение рассчитывается как

V = P / I

Закон Ома можно использовать для расчета мощности, рассеиваемой в резисторе, если известно значение сопротивления резистора. Если известны любые два значения, среди которых напряжение, ток и сопротивление, то уравнение мощности можно записать с использованием закона Ома.

P = I * V

Из закона Ома имеем

V = I * R

Следовательно,

P = I 2 * R

И P = V 2 / R

Следовательно, рассеиваемая мощность в резисторе может быть рассчитана с использованием любого из следующих стандартных уравнений

  • Мощность P = V * I

    P = I 2 * R

    P = V 2 / R

где,

  • P – мощность в ваттах

    V – напряжение на резисторе в вольтах.

    I – ток, протекающий через резистор, в амперах

    R – сопротивление резистора в Ом.

Вернуться к списку

Мощность, рассеиваемая на резисторе

Чтобы найти мощность, рассеиваемую резистором, рассматривается резистор с сопротивлением R. Пусть по всей длине резистора приложен потенциал или напряжение V. Пусть Q – заряд, проходящий в данном случае через проводник или резистор за единицу времени. Тогда по определению тока, который представляет собой скорость протекания заряда, ток I, протекающий в резисторе, определяется как

I = Q / т

==> Заряд можно записать как Q = I * t

Где t – время в секундах.

Если между концами резистора приложен потенциал V, то энергия, теряемая в виде тепла во время протекания тока, определяется выражением

Q * V.

Пусть E будет энергия, которая теряется в виде тепла.

Тогда E = Q * V

Используя уравнение Q = I * t в приведенном выше уравнении

Получаем E = I * t * V

Мощность можно определить как скорость выполнения работы. В этом контексте мощность определяется как скорость, с которой электрическая энергия преобразуется в тепло.

∴ P = E / t = I * V

Потери мощности с точки зрения тепловыделения или рассеиваемой мощности составляют,

P = I * V

Это можно переписать разными способами с помощью закона Ома (V = I * R).

P = I * V = I 2 * R = V 2 / R

Вернуться к списку

Ед. Мощности

Единица измерения тока – ампер, кулон в секунду.Единица измерения напряжения – вольт, то есть джоуль на кулон.

Следовательно, единицы мощности могут быть получены путем умножения силы тока на напряжение. Это количество энергии, используемой на единицу времени зарядки, количество единичных зарядов, проходящих в секунду.

∴ ампер * вольт = (кулон / секунда) * (джоуль / кулон) = джоуль / секунда.

Это скорость потока энергии, получившая название Ватт.

Ватт = Джоуль в секунду.

Используя закон Ома, уравнение мощности и ее единиц можно записать следующим образом

P = V * I => Единицы мощности = Вольт * Ампер

P = I 2 * R => Единицы мощности = Амперы 2 * Ом

P = В 2 / R => Единицы мощности = Вольт 2 / Ом

Вернуться к списку

Силовые резисторы

Номинальная мощность резистора определяет допустимое количество тепла, которое может рассеивать резистор.Каждый резистор имеет предварительно определенную номинальную мощность, которая определяется с учетом различных факторов, таких как тип материала и площадь поверхности.

Номинальная мощность указывается в ваттах, и некоторые из доступных стандартных номинальных мощностей резисторов составляют 0,25 Вт, 0,5 Вт, 1 Вт, 2 Вт, 5 Вт и т. Д.

Когда резистор имеет номинальную мощность 2 Вт, на него может подаваться максимальная мощность 2 Вт для всех комбинаций напряжения и тока, насколько это возможно.

Некоторые резисторы рассчитаны на большее рассеивание мощности.Они называются силовыми резисторами. Резисторы с номинальной мощностью не менее 5 Вт относятся к силовым резисторам. Материал, используемый для изготовления силовых резисторов, должен иметь высокую теплопроводность. Силовые резисторы часто поставляются с радиатором, который помогает им рассеивать тепло.

Резисторы мощности с проволочной обмоткой широко распространены, но их можно встретить и других типов. Если резисторы с проволочной обмоткой из нихромового сплава используются с надлежащей непроводящей эмалевой краской, они могут выдерживать температуры до 450 0 C.

Другой тип резисторов, используемых для выдерживания больших токов, – это сеточные резисторы. Сетевые резисторы могут выдерживать ток до 500 А и могут иметь значение сопротивления всего 0,04 Ом. Конструкция сеточных резисторов включает в себя два электрода, между которыми соединены большие металлические полоски в виде матрицы. Сетевые резисторы используются в качестве заземляющих резисторов, тормозных резисторов и фильтров гармоник для электрических подстанций.

Другой тип силовых резисторов – это водные резисторы.Конструкция включает трубки, по которым подается физиологический раствор, с электродами, подключенными к обоим концам трубки. Концентрация физиологического раствора или соленой воды будет определять сопротивление. Из-за наличия воды в трубках водные резисторы обеспечивают большую теплоемкость, что, в свою очередь, приводит к высокому рассеиванию мощности.

Силовые резисторы также могут быть изготовлены в виде устройств поверхностного монтажа. Из-за их небольшого размера рассеиваемая мощность резисторов SMD меньше, чем у резисторов сеточного типа и водяных резисторов.Обычно мощность, рассеиваемая резисторами SMD, составляет порядка нескольких ватт.

Диапазон мощности, рассеиваемой различными типами силовых резисторов, следующий
  • Резисторы SMD – 5 Вт или меньше
  • Спиральная намотка – 50 Вт или менее
  • Краевая обмотка – 3,5 кВт или менее
  • Сеточные резисторы – 100 кВт или менее
  • Водные резисторы – 500 кВт или менее

Вернуться к списку

Примеры номинальной мощности

1. Например, выбрать подходящий резистор номинальной мощностью 800 Ом и напряжением питания 12 В.Доступные значения мощности: 0,25 Вт, 0,5 Вт и 1 Вт.

Мощность P в резисторе равна P = V 2 / R

Следовательно, P = (12) 2 /800 = 0,18 Вт.

Следовательно, следует использовать резистор номинальной мощностью 0,25.

2. Если используется резистор с питанием 12 В и током 100 мА, его максимальная номинальная мощность составляет

P = V * I

P = 12 * 100 * 10 -3

P = 1.2 Вт

Вернуться к списку

Применение силовых резисторов

Каждый резистор рассчитан на максимальную номинальную мощность. Эта номинальная мощность указывает на максимальную мощность, которую резистор может рассеять, не нанося вреда самому себе или цепи. Некоторые приложения требуют меньшего рассеивания мощности, а другие требуют большого рассеяния мощности. Резисторы мощности используются в приложениях, где нам нужно рассеивать большую мощность. Некоторые из применений силовых резисторов:

  • В моторных тормозах тяжелых локомотивов и трамваев используются силовые резисторы.Локомотивы движутся с большой скоростью и обладают высокой кинетической энергией. При остановке этих высокоскоростных локомотивов их кинетическая энергия преобразуется в тепло. В зависимости от скорости локомотивов количество выделяемого тепла может составлять порядка нескольких киловатт. Классические дисковые тормоза нельзя использовать, так как они быстро изнашиваются. Следовательно, в локомотивах используются рекуперативные тормоза или резисторы большой мощности в виде сетевых резисторов.
  • Силовые резисторы используются в качестве заземляющих резисторов для ограничения токов короткого замыкания, высоких напряжений и действуют как защитные реле.Эти резисторы могут быть рассчитаны на ток до 8 килоампер.
  • Силовые резисторы используются в качестве нагрузочных резисторов в турбинах и источниках бесперебойного питания. Они могут иметь регулируемое сопротивление и могут рассеивать мощность до 6 мегаватт. Из-за такой высокой рассеиваемой мощности нагрузочные резисторы оснащены эффективной системой охлаждения, которая контролирует температуру и предотвращает перегорание устройств.

Вернуться к списку

Калькулятор закона Ома

Укажите любые 2 значения и нажмите «Рассчитать», чтобы получить другие значения в уравнениях закона Ома V = I × R и P = V × I.

Связано: счетчик резисторов

Закон Ома

Закон

Ома гласит, что ток через проводник между двумя точками прямо пропорционален напряжению. Это верно для многих материалов в широком диапазоне напряжений и токов, а сопротивление и проводимость электронных компонентов, изготовленных из этих материалов, остаются постоянными. Закон Ома верен для цепей, которые содержат только резистивные элементы (без конденсаторов или катушек индуктивности), независимо от того, является ли управляющее напряжение или ток постоянным (DC) или изменяющимся во времени (AC). Его можно выразить с помощью ряда уравнений, обычно всех трех вместе, как показано ниже.

Где:

В – напряжение в вольтах
R – сопротивление в Ом
I ток в амперах

Электроэнергетика

Мощность – это скорость, с которой электрическая энергия передается по электрической цепи в единицу времени, обычно выражается в ваттах в Международной системе единиц (СИ). Электроэнергия обычно вырабатывается электрическими генераторами и поставляется предприятиям и домам через электроэнергетику, но также может подаваться от электрических батарей или других источников.

В резистивных цепях закон Джоуля можно объединить с законом Ома, чтобы получить альтернативные выражения для количества рассеиваемой мощности, как показано ниже.

Где:

P – мощность в ваттах

Колесо формул закона Ома

Ниже показано колесо формул для соотношений по закону Ома между P, I, V и R. Это, по сути, то, что делает калькулятор, и просто представление алгебраической манипуляции с уравнениями выше. Чтобы использовать колесо, выберите переменную для поиска в середине колеса, а затем используйте соотношение для двух известных переменных в поперечном сечении круга.

Расчет по закону Ома

с мощностью

В четырех таблицах ниже вы можете ввести два из четырех факторов закона Ома. Это Мощность (P) или (Вт), измеренная в ваттах, напряжение (V) или (E), измеренная в вольтах, , ток или сила тока (I), измеренная в ампер, ( ампер, ), и сопротивление (R), измеренное в Ом . Необходимый коэффициент будет рассчитан для вас, когда вы нажмете кнопку «Рассчитать» для этой таблицы.

Хотя это и не является частью первоначальной теории, в более поздние годы мы также относили коэффициент мощности к Ому. Мощность обычно обозначается сокращенно (Вт) и измеряется в Вт . Формула для вычисления мощности обычно следующая:
W = V x I или W = I 2 x R или W = V 2 / R. Другие основные формулы, включающие мощность:
I = W / V или I = (W / R) 2
V = (W x R) 2 или V = W / I
R = V 2 / W или R = W / I 2

Для исходных расчетов по закону Ома, щелкните здесь . Чтобы проверить цветовую кодировку резисторов, используйте нашу таблицу цветовых кодов резисторов и калькулятор . Этот преобразователь требует использования браузеров с поддержкой Javascript .

Факторы закона Ома при мощности

Рассчитать мощность

Вычислить в амперах

Рассчитать вольт

Вычислить Ом

Удельное сопротивление (Вт-см) для обычных металлов при комнатной температуре
Алюминий 2. 828 х 10 -6
Медь 1,676 x 10 -6
Серебро 1,586 x 10 -6
Золото 2,214 х 10 -6
Вольфрам 5,5 10 x 10 -6

Например, провод 10 калибра – 2.588 мм в диаметре.
Сопротивление на см толстой медной проволоки составляет
. 3,186 x 10 -5 Вт / см. Миля этого провода имеет сопротивление 5,13 Вт.

Калькулятор закона Ома и электрические формулы

Используйте закон Ома для расчета напряжения, тока, сопротивления или мощности в электрической цепи. Введите любые два известных значения, чтобы найти два других.Например, введите напряжение и мощность, чтобы найти ток и сопротивление.

Что такое закон Ома?

Закон Ома определяет соотношение между электрическим током, сопротивлением и напряжением. Более конкретно, в нем говорится, что ток через элемент схемы прямо пропорционален приложенной к нему разности потенциалов и обратно пропорционален сопротивлению . [1]

Закон Ома позволяет найти напряжение, ток, мощность и сопротивление, если известны как минимум два значения.

Например, если известны напряжение и сопротивление, калькулятор найдет мощность и ток. В качестве альтернативы калькулятор может вычислить мощность и сопротивление, если известны напряжение и ток.

Формула закона Ома

Формула закона Ома: I = E / R, где I – ток через проводник, измеренный в амперах, E – разность потенциалов на проводе, измеренная в вольтах, а R – измеренное сопротивление проводника. в ом. [2]

I = ER

Таким образом, формула утверждает, что ток I равен напряжению E , деленному на сопротивление R .

Треугольник закона Ома

Треугольник закона Ома показывает, как найти вольт, ампер или ом. Чтобы использовать его, накройте единицу, которую вы хотите вычислить, чтобы открыть формулу для ее решения.

Треугольник закона Ома, где E представляет напряжение, I представляет ток, а R представляет сопротивление.

Например, чтобы найти вольты, прикройте E большим пальцем, чтобы увидеть, что напряжение равно I × R.

Что означают буквы в формуле закона Ома?

В формуле закона Ома E представляет электродвижущую силу или напряжение, I представляет силу или ток, а R представляет сопротивление.

Георг Симон Ом создал закон Ома в статье, опубликованной в 1827 году, [3] задолго до того, как были определены единицы измерения напряжения, тока и сопротивления.

Вольт, ампер и ом были определены только в 1881 году, спустя более 50 лет после того, как был опубликован закон Ома. Это объясняет, почему буквы не относятся к современным единицам, используемым в формуле.

Закон Ватта и формула мощности

Закон Ватта гласит, что электрическая мощность, измеренная в ваттах, равна току в цепи, умноженному на напряжение. Эта формула очень похожа на закон Ома и может помочь найти мощность или мощность.

Мы часто используем формулу мощности в сочетании с законом Ома для определения электрических свойств, когда мощность цепи известна.

P = I × E

Таким образом, формула мощности утверждает, что мощность P равна току I, , умноженному на напряжение E . [4]

Треугольник силы

Треугольник мощности иллюстрирует формулу для определения ватт, вольт или ампер. Как и в случае с другим треугольником, накройте единицу измерения, которую вы хотите решить, чтобы открыть формулу для ее решения.

Например, чтобы найти усилители, прикройте I большим пальцем, чтобы увидеть, что ток равен P / E.

Формула мощности, где P представляет мощность, I представляет ток, а E представляет напряжение.

Наш калькулятор ватт в ампер использует эту формулу, например, для преобразования мощности в ток в электрических цепях.

Колесо закона Ома

Мы можем использовать закон Ома для расчета вольт, ватт, ампер или ом, если известны как минимум два измерения. Формула позволяет нам вывести уравнения для расчета любого измерения с учетом двух других известных значений.

Колесо закона Ома показывает все формулы, которые вы можете использовать, чтобы найти вольт, ватт, ампер или ом. См. Все производные формулы ниже.

Колесо закона Ома со всеми формулами, которые можно использовать для расчета вольт, ампер, ом или ватт.

Вольт Формулы

Найдите напряжение, используя следующие формулы:

Напряжение = ток × сопротивление

Напряжение = мощность ÷ ток

Напряжение = мощность × сопротивление

Ватт формулы

Найдите мощность, используя следующие формулы:

Мощность = Напряжение × Ток

Мощность = Напряжение 2 ÷ Сопротивление

Мощность = Ток 2 × Сопротивление

Формулы усилителя

Найдите ток, используя следующие формулы:

Ток = Напряжение ÷ Сопротивление

Ток = Мощность ÷ Напряжение

Ток = мощность ÷ сопротивление

Ом Формулы

Найдите сопротивление, используя следующие формулы:

Сопротивление = Напряжение ÷ Ток

Сопротивление = Напряжение 2 ÷ Мощность

Сопротивление = мощность ÷ ток 2

Мы используем закон Ома для многих вещей, таких как определение максимального размера микроволн или максимального количества осветительных приборов, с которыми цепь может безопасно обращаться, не создавая опасности возгорания.

Наш калькулятор затрат на освещение может помочь определить потребление энергии на освещение, а наш калькулятор затрат на электроэнергию поможет определить затраты на питание электрических устройств.

Используйте закон Ома, чтобы определить размер электрической цепи или выяснить, какой размер нагревателя можно безопасно использовать в обычной розетке. Вы также можете найти наш калькулятор падения напряжения, чтобы определить падение напряжения, необходимый минимальный размер провода и максимальную длину провода для вашего следующего электрического проекта.

Закон

Ома отвечает на ваши вопросы

Понимание электроники и устранение неисправностей начинается с знания закона Ома.Это несложно и может значительно облегчить вашу работу.

Закон Ома был постоянным спутником моей долгой карьеры инженера радиовещания. Соотношение между вольт, ампером, омом и мощностью сделало все это таким понятным.

Немецкий физик Георг Ом опубликовал эту концепцию в 1827 году, почти 200 лет назад. Позже он был признан законом Ома и был назван наиболее важным ранним количественным описанием физики электричества.

Рис.1 – это список простых формул для использования закона Ома. Ничего сложного, только хорошие ответы на ваши вопросы. Чтобы проводить вычисления, не нужно быть математиком. Калькулятор на вашем смартфоне с этим легко справится.

P – мощность в ваттах, I – ток в амперах, R – сопротивление в омах, а E – напряжение в вольтах. Решите для любого из тех, кто знает два других параметра.

ЗАКОН ОМА НА ТОК

Когда я смотрю на 100-ваттную лампочку, я думаю, что 120 вольт примерно равны нулю.8 ампер (точнее 0,8333 ампера). То есть потребляемая мощность 100 Вт.

Так сколько лампочек можно поставить на выключатель на 15 ампер? Давайте посмотрим – емкость цепи 15 ампер, разделенная на 0,8333 ампера для каждой параллельно включенной лампы = 18 ламп. И наоборот, 18 ламп х 0,8333 ампера на лампу = 14,9994 ампера… прямо на границе автоматического выключателя.

Правило гласит, что нельзя нагружать любой автоматический выключатель для предохранителя более чем на 80 процентов, в данном случае это 14 ламп.Всегда сохраняйте некоторый запас в цепи. Как вы знаете, автоматические выключатели и предохранители используются для защиты от возгораний или других серьезных отказов во время проблем в цепи. Они становятся ненадежными при текущем лимите. Вам не нужны неприятные отключения или перегорание предохранителей из-за слишком близкого движения к линии.

ЗАКОН ОМА

В настоящее время не так много высокоуровневых АМ-передатчиков с пластинчатой ​​модуляцией. Серия Gates BC-1 является примером этой технологии 1950–1970-х годов. Конструкция обычно имеет напряжение 2600 вольт на лампах усилителя мощности RF.

Источники питания, подобные этому, нуждаются в «спускном» резисторе между высоким напряжением и землей, чтобы снизить / стравить высокое напряжение до нуля при выключении передатчика. Это должно произойти всего за секунду или около того. Блок питания может оставаться горячим при высоком напряжении в течение нескольких минут или часов, если размыкающий резистор выходит из строя. Это серьезная проблема безопасности для инженера, работающего над этим, если он или она не может замкнуть конденсатор фильтра высокого напряжения, прежде чем коснуться какой-либо части передатчика.

Прокачка в передатчике Gates BC-1G – это R41, резистор с проволочной обмоткой 100 000 Ом / 100 Вт. Слева на фото вы видите одну ручку на рис. 2.

Закон

Ома гласит, что 2600 вольт на резисторе в квадрате (умноженное на само), затем деленное на сопротивление 100000 Ом, равняется 67,6 Вт рассеиваемой мощности, требуемой на постоянной основе на резисторе 100 Вт. Можно подумать, что запаса прочности в 32,4% будет достаточно. Этот резистор обычно выходил из строя после 10 лет использования.Ответ заключается в вентиляции, которую резистор получает для охлаждения. Тепло 67,6 Вт должно куда-то уходить. Эта модель передатчика имеет небольшой, но не большой воздушный поток внизу, где расположен резистор.

Моим ответом было заменить резистор 100 Вт на резистор мощностью 225 Вт, как показано в центре фотографии. Это дало большую площадь поверхности, поэтому он работал холоднее, а значит, дольше. Резистор на 100 ватт стоит 15,14 доллара против 18,64 доллара за блок мощностью 225 ватт. Это всего лишь разница в 3,50 доллара за значительное повышение надежности и безопасности.Если вы сделаете это изменение, винт, который удерживает его на месте, должен быть длиннее. Ничего страшного.

Да, рядом с резистором и высоковольтным конденсатором есть цепочка резисторов умножителя счетчика. Он измеряет высокое напряжение для вольтметра PA. На высоковольтном конце струны скопилась грязь. Грязь притягивается к высокому напряжению и требует частой очистки для поддержания надежности передатчика. Это обслуживание.

РЧ фиктивная нагрузка в этом передатчике состоит из шести неиндуктивных резисторов на 312 Ом / 200 Вт.Передатчик видит 52 Ом, потому что резисторы включены параллельно. Простая математика, 312 Ом разделить на 6 резисторов = 52 Ом. Да, 52 Ом, 51,5 Ом, 70 Ом и другие импедансы были обычным явлением в прошлом, прежде чем твердотельные передатчики более или менее заставляли стандарт быть 50 Ом. Ламповые передатчики настраиваются практически на любую нагрузку, в то время как твердотельные передатчики рассчитаны на работу с нагрузками 50 Ом… и не дают мне КСВН!

ЗАКОН НАПРЯЖЕНИЯ ОМА

Допустим, мы знаем, что на резистор 100 Ом подается ток 2 ампера.Какое напряжение на резисторе?

Формула 2 ампера х 100 Ом сопротивление = 200 вольт. Исходя из этого, мы можем найти мощность в резисторе. Это 200 вольт х 2 ампера тока = 400 ватт.

ЗАКОН ОМА О МОЩНОСТИ

FM-передатчик Continental 816R-2 FM мощностью 20 кВт может иметь напряжение 7000 вольт на пластине трубки PA при потребляемом токе 3,3 ампера. Закон Ома гласит, что 7000 вольт x 3,3 ампера = 23 100 ватт мощности. Это входная мощность передатчика, а не выходная. Выходная мощность зависит от КПД усилителя мощности, который обычно составляет 75%. Тогда выходная мощность передатчика составляет 17 325 Вт. Это также означает, что 25% потребляемой мощности теряется на тепло. Это 23 100 Вт входной мощности x 0,25 = 5775 Вт тепла.

Не забудьте проверить в технических паспортах производителя точные числа для каждой модели передатчика.

ПОЛОВИНА МОЩНОСТИ?

половинная мощность не означает половину напряжения PA передатчика. Если бы он был наполовину, то ток PA был бы наполовину, а выход RF был бы четвертью.Вы помните, когда местные станции AM класса 4 (теперь класс C) работали 1000 Вт днем ​​и 250 Вт ночью.

Передатчик Gates BC-1 может иметь 2600 Па вольт и 0,51 А силы тока в течение дня. Мы можем определить сопротивление усилителя мощности, взяв напряжение PA, равное 2600, и разделив его на ток PA, равный 0,51 ампера. Ответ 5098 Ом.

Такое же сопротивление PA применяется независимо от уровня мощности передатчика. При четверти мощности напряжение PA составляет 1300 вольт.Закон Ома, использующий те же 5098 Ом, говорит нам, что ток PA должен быть 0,255 ампера. Да, на практике так получилось. Простой трюк заключался в том, чтобы подключить 120 В переменного тока к первичной обмотке высоковольтного трансформатора передатчика для работы в ночное время вместо 240 В переменного тока днем.

При четверти мощности антенный амперметр показал половину, а интенсивность поля сигнала была половиной, а не четвертью. Давайте рассмотрим это. Если у вас антенна на 50 Ом и мощность 1000 Вт, какой ток антенны? Используя закон Ома, разделите 1000 Вт на 50 Ом = 20.Квадратный корень из этого равен 4,47 ампера. Разделите 250 Вт на такое же сопротивление антенны 50 Ом, и вы получите 5. Квадратный корень из этого равен 2,236 ампера, половина дневного тока антенны. Это закон Ома.

Думайте о законе Ома, когда находитесь на работе. Он отвечает на ваши вопросы и имеет смысл.

Mark Persons, WØMH, является сертифицированным профессиональным инженером вещания SBE; он был назван Робертом В. Фландерсом «Инженер года по SBE» за 2018 год. Марк ушел на пенсию после более чем 40 лет работы в бизнесе.Его веб-сайт: www.mwpersons.com.

Подписка

Чтобы получать больше подобных новостей и быть в курсе всех наших ведущих новостей, функций и аналитических материалов, подпишитесь на нашу рассылку новостей здесь.

Калькуляторы и формулы закона Ома

Прежде чем нажимать на каждом калькуляторе закона Ома для ответа, введите числа в уравнение, которое вы хотите использовать. для расчета тока, мощности, сопротивления или напряжения. * Обновлено 8 января 2011 г., чтобы разрешить / заменить запятые точками для тех, которые используют запятые в качестве десятичных разделителей.

Калькуляторы закона Ома

• Калькуляторы тока (I)
• Калькуляторы мощности (P)
• Калькуляторы сопротивления (R)
• Калькуляторы напряжения (E)

Ваш блокировщик рекламы препятствует правильному отображению этой страницы.

Калькуляторы тока

Рассчитать для тока (I)
I = P / E
I = квадратный корень из (P / R)

Калькуляторы мощности

Расчет мощности (P)
P = I 2 x R

Калькуляторы сопротивления

Рассчитайте сопротивление (R)
R = P / I 2

Калькуляторы напряжения

Рассчитать напряжение (E)
E = I x R
E = квадратный корень (P x R)


Следуйте за 12вольт. com
9 февраля 2021 г., вторник • Авторские права © 1999-2021 the12volt.com, Все права защищены. • Политика конфиденциальности и использование файлов cookie

Заявление об отказе от ответственности: * Вся информация на этом сайте (the12volt.com) предоставляется «как есть» без каких-либо гарантий, явных или подразумеваемых, включая, помимо прочего, пригодность для конкретного использования. Любой пользователь принимает на себя весь риск в отношении точности и использования этой информации. Пожалуйста проверьте все цвета проводов и схемы перед применением любой информации.


.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *