Электричество без проводов – Энергетика и промышленность России – № 3 (31) март 2003 года – WWW.EPRUSSIA.RU
Газета “Энергетика и промышленность России” | № 3 (31) март 2003 года
Биография американского изобретателя, серба по происхождению, Николы Теслы достаточно известна, и мы на ней останавливаться не будем. Но сразу уточним: прежде чем продемонстрировать свой уникальный эксперимент, Тесла, сначала в 1892 году в Лондоне, а через год в Филадельфии, в присутствии специалистов продемонстрировал возможность передачи электрической энергии по одному проводу, не используя при этом заземления второго полюса источника энергии. И тогда же у него возникла идея использовать в качестве этого единственного провода… Землю!И в этом же году на съезде ассоциации электрического освещения в Сант-Льюисе он продемонстрировал электрические лампы, горящие без подводящих проводов, и работающий без подключения к электрической сети электромотор. Эту необычную экспозицию он прокомментировал следующим образом:
«Несколько слов об идее, постоянно занимающей мои мысли и касающейся всех нас.
Увидя столь эффектную демонстрацию, такие известные олигархи, как Дж. Вестингауз и Дж. П. Морган, вложили в это перспективное дело свыше миллиона долларов, купив у Теслы его патенты (громадные, кстати, по тем временам деньги!). На эти средства в конце 90-х годов XIX века Тесла сооружает в Колорадо-Спрингс свою уникальную лабораторию.
Подробные сведения об экспериментах в лаборатории Теслы изложены в книге его биографа Джона О’Нейла «Электрический Прометей» (в нашей стране ее перевод был опубликован в журнале «Изобретатель и рационализатор» №4-11 за 1979 год).
Приведем здесь лишь краткую выдержку из нее, чтобы не ссылаться на более поздние перепечатки:«В Колорадо-Спрингс Тесла провел первые испытания беспроводной передачи электроэнергии. Он смог питать током, извлекаемым из Земли во время работы гигантского вибратора, 200 электрических лампочек накаливания, расположенных на расстоянии 42 километров от его лаборатории. Мощность каждой составляла 50 ватт, так что суммарный расход энергии составлял 10 кВт, или 13 л.с. Тесла был убежден, что с помощью более мощного вибратора он смог бы зажечь дюжину электрических гирлянд по 200 лампочек в каждой, разбросанных по всему земному шару».
Самого же Теслу настолько вдохновили успехи этих экспериментов, что он заявил в широкой печати, что намерен осветить Всемирную промышленную выставку в Париже, которую предполагалось провести в 1903 году, энергией электростанции, расположенной на Ниагарском водопаде и переданной в Париж без проводов.
Известно по многочисленным фотографиям и описаниям очевидцев и помощников изобретателя, что представлял собой генератор энергии, передаваемой на 42 километра без проводов (правда, это чисто журналистский термин: один провод, в качестве которого выступала Земля, в этой цепи присутствует, и об этом прямо говорят и сам Тесла, и его биограф).
То, что Тесла называл вибратором, было гигантским трансформатором его системы, имевшим первичную обмотку из нескольких витков толстого провода, намотанных на ограде диаметром 25 метров, и размещенную внутри нее многовитковую однослойную вторичную обмотку на цилиндре из диэлектрика. Первичная обмотка вместе с конденсатором, индукционной катушкой и искровым промежутком образовывала колебательный контур-преобразователь частоты.
Над трансформатором, располагавшимся в центре лаборатории, возвышалась деревянная башня высотой 60 метров, увенчанная большим медным шаром. Один конец вторичной обмотки трансформатора соединялся с этим шаром, другой – заземлялся. Все устройство питалось от отдельной динамо-машины мощностью 300 л.с. В нем возбуждались электромагнитные колебания частотой 150 килогерц (длина волны 2000 метров). Рабочее напряжение в высоковольтной цепи составляло 30 000 В, а резонирующий потенциал шара достигал 100 000 000 В, порождая искусственные молнии длиной в десятки метров!
Вот как объясняет работу вибратора Теслы его биограф:
«В сущности, Тесла «накачивал» в Землю и извлекал оттуда поток электронов. Частота накачки составляла 150 кГц. Распространяясь концентрическими кругами все дальше от Колорадо-Спрингс, электрические волны сходились затем в диаметрально противоположной точке Земли. Там вздымались и опадали волны большой амплитуды в унисон с поднятыми в Колорадо. Опадая, такая волна посылала электрическое эхо обратно в Колорадо, где электрический вибратор усиливал волну, и она мчалась обратно.
Если привести всю Землю в состояние электрической вибрации, то в каждой точке ее поверхности мы будем обеспечены энергией. Ее можно будет улавливать из мечущихся между электрическими полюсами волн простыми устройствами наподобие колебательных контуров в радиоприемниках, только заземленными и снабженными небольшими антеннами высотой с сельский коттедж. Эта энергия будет обогревать дома и освещать их с помощью трубчатых ламп Теслы, не требующих проводов. Для электромоторов переменного тока понадобились бы только преобразователи частоты». Сведения об экспериментах Теслы по передаче электроэнергии без проводов вдохновили и других исследователей на работы в этой области. Сообщения об аналогичных экспериментах часто появлялись в печати в начале прошлого века. Стоит привести в связи с этим выдержку из статьи A.M. Горького «Беседы о ремесле», опубликованной в 1930 году:
«В текущем году Маркони передал по воздуху электроток из Генуи в Австралию и зажег там электрические лампы на выставке в Сиднее. Это же было сделано 27 лет тому назад у нас, в России, литератором и ученым М.М. Филипповым, который несколько лет работал над передачей электротока по воздуху и в конце концов зажег из Петербурга люстру в Царском Селе (то есть на расстоянии 27 километров. -В.П.). Тогда на этот факт не было обращено должного внимания, но Филиппова через несколько дней нашли мертвым в своей квартире, а аппараты и бумаги его конфисковала полиция».
Эксперименты Теслы произвели большое впечатление и на другого литератора – Алексея Толстого, бывшего инженером по образованию. А когда Тесла, а затем и Маркони сообщили в печати, что их аппараты принимают странные сигналы внеземного, по-видимому, марсианского происхождения, это вдохновило писателя на написание фантастического романа «Аэлита».
Однако построить свою «мировую систему» для обеспечения электроэнергией населения земного шара без использования проводов Тесле не удалось. Как только в 1900 году он начал возводить на острове Лонг-Айленд под Нью-Йорком научно-исследовательскую лабораторию-городок на 2000 сотрудников и громадную металлическую башню с гигантской медной тарелкой на верхушке, сспохватились и «проводные» электрические олигархи: ведь повсеместное внедрение системы Теслы грозило им разорением. На миллиардера Дж.П. Моргана, финансировавшего строительство, последовал жестокий нажим, в том числе и от подкупленных конкурентами правительственных чиновников.
Начались перебои с поставками оборудования, строительство застопорилось, а когда Морган под этим нажимом прекратил финансирование, и вовсе прекратилось. В начале Первой мировой войны, по наущению тех же конкурентов, правительство США распорядилось взорвать уже готовую башню под надуманным предлогом, что ее могут использовать в целях шпионажа. Ну а затем электротехника пошла привычным путем.
Долгое время никто не мог повторить эксперименты Теслы хотя бы потому, что потребовалось бы создать аналогичную по размерам и мощности установку. Но в том, что Тесле удалось найти способ передачи электрической энергии на расстояние без проводов, более ста лет назад никто не сомневался. Авторитет Теслы, имевшего рейтинг второго после Эдисона изобретателя, во всем мире был достаточно высок, а его вклад в развитие электротехники переменного тока (в пику Эдисону, ратовавшему за постоянный ток) несомненен. При его экспериментах присутствовало много специалистов, не считая прессы, и никто никогда не пытался уличить его в каких-либо фокусах или подтасовке фактов. О высоком авторитете Теслы свидетельствует и название его именем единицы напряженности магнитного поля.
Вот только вывод Теслы о том, что во время эксперимента в Колорадо-Спрингс энергия была передана на расстояние 42 километра с к.п.д., равным около 90%, слишком оптимистичен. Напомним, что общая мощность зажженных на расстоянии ламп составляла 10 кВт, или 13 л.с., в то время как мощность динамо-машины, питавшей вибратор, достигала 300 л.с. То есть можно говорить о к.п.д. всего лишь порядка 4-5%, хотя и эта цифра поразительна.
Физическое обоснование экспериментов Теслы по беспроводной передаче электроэнергии до сих пор волнует многих специалистов. Одним из них было высказано интересное предположение, что своеобразным аккумулятором энергии, возвращавшим в Землю извлеченный из нее заряд, было громадное, сильно ионизированное облако, возникающее вокруг шара на верхушке мачты установки Теслы, с которого во время ее работы били громадные искусственные молнии. Иначе говоря, был создан своеобразный пульсирующий насос, периодически менявший заряд всей Земли (кстати, не такой уж большой).
Желающим подсчитать емкость Земли как конденсатора напомним, что емкость шара численно равна его радиусу в сантиметрах, а «сантиметр» емкости условно равен одной пикофараде.И лишь спустя сто лет после знаменитой демонстрации Теслы появились сведения о первых попытках воспроизвести их на современном оборудовании. Причем пришлось начать сначала – с эксперимента Теслы по передаче электроэнергии по одному проводу. Эксперименты проводились в июле 1990 года в лаборатории Московского энергетического института. В присутствии комиссии из специалистов их проводил инженер С. Авраменко. Источником энергии был модифицированный трансформатор Теслы, к одной из клемм которого подключалась линия длиной около трех метров (опыт был лабораторный). В усложненном варианте опыта линия представляла собой тончайшую вольфрамовую проволоку диаметром 15 микрон и с громадным сопротивлением. Но по ней удалось передать мощность в 1,3 кВт для гирлянды электрических лампочек, а провод при этом оставался холодным, словно он приобрел свойства сверхпроводника.
В более раннем эксперименте 1989 года на опыты Авраменко приехали посмотреть заместитель министра энергетики и начальники главков. Удивлялись и разводили руками точно так же, как и присутствовавшие сто лет назад на демонстрации Теслы в Лондоне тамошние специалисты. Ну а к 1991 году Авраменко увеличил длину линии передачи электроэнергии по одному проводу до 160 метров.
Кстати, характерна в этом отношении история электромобилей, появившихся более ста лет назад и еще тогда по своим параметрам успешно конкурировавших с автомобилями. С современными аккумуляторами они могут успешно соревноваться с ними и сейчас, но автомобильные олигархи делают все, чтобы не выпустить этого, по всем статьям опережающего автомобиль конкурента на мировой рынок.
Как работала Башня Тесла по передаче энергии — собственное «расследование»
Несколько лет назад мы – авторы данного материала – изрядно покопавшись в патентах, дневниках и лекциях Н.Теслы (благо, образование позволяло) пришли к выводу, что пресловутая Башня Тесла по передаче энергии не «фейк», а вполне рабочая конструкция.
В результате нескольких лет исследований, размышлений, изучения первоисточников, сопоставления данных, формирования и отсеивания гипотез и т.п. – появилась красивая и, по сути, простая модель, которая строго вписалась в классическую физику и была подтверждена численным моделированием в пакете Ansoft HFSS. С момента начала проекта, мы провели некоторое количество дискуссий в различных сообществах, где от нас требовали «статью для технарей» — в результате появился данный материал.
Этот материал не является строгой теорией (т.е. теорией, учитывающей все возможные аспекты работы Башни Теслы). Тем не менее, мы постарались достаточно полно осветить предлагаемую концепцию и привести адекватные численные оценки основных характеристик процесса. Так что, если Вам интересно разобраться в модели и поучаствовать в конструктивной дискуссии – приглашаем ознакомиться с материалами.
Итак, в нашей науч-поп статье изложено начало концепции – по сути, отправная точка исследований (на формулирование которой, к слову, потребовалось изрядное кол-во времени).
Можно в нескольких предложениях описать суть поста ниже, с пометкой «внимание — не для специалистов». Тогда суть можно было бы сформулировать так: Башня создает резонанс токов–напряжений в длинной линии, где в качестве длинной линии (проводника, одним концом подсоединенного к задающему генератору – т.е. к Башне) берется вся Земля. Сопротивление Земли оказывается крошечным (почему — разобрано ниже). Потери от ЭМ излучения также не носят драматических последствий, т.к. “спасает” ионосфера, от которой отлично отражается низкочастотное ЭМ–излучение, а отразившись – взаимодействует с Землей, снова переходя в токи в длинной линии – Земле (модель волновода). И возникает устойчивая картина стоячих волн токов–напряжений–зарядов в земле, сопровождаемая слабым ЭМ–излучением между землей и ионосферой.
Начали мы с того, что досконально изучили режим работы Башни Тесла следуя его записям и патентам. А из этого уже родилось понимание – какие физ-процессы может вызывать такое устройство в планете Земля, и из этого понимания – возникла уверенность, что передача энергии предложенным (и апробированным) Теслой путем вполне возможна. При этом, мы отталкиваемся от того, что в патенте Теслы присутствует вся полнота описания и нет «скрытых/спрятанных» параметров/процессов. Так что “идеи”, активно муссируемые желтой прессой и СМИ – о том, что Тесла с помощью своей Башни пытался “качать энергию эфира”, использовать “радиантную энергию” и т.п. – полагаем являются лишь фантазиями журналистов, далеких от физики. По нашему мнению, работа Башни полностью укладывается в известные физические законы, не требует привлечения каких бы то ни было новых концепций или физических эффектов, и в этом смысле наша работа (и будущий планируемый эксперимент) носит сугубо прикладной характер – а не характер фундаментальных исследований. Если материал ниже сложен для понимания, то можно ознакомиться со статьей по ссылке выше (она написана для гуманитариев, и содержит ряд неточностей, граничащих с некорректностью, но дает хорошее качественное понимание).
За сим, приступим.
Башня Тесла: характеристики работы
Если отсечь все невозможное, то Башня Тесла (за вычетом не существенных здесь технических нюансов) есть не что иное, как заземленный одним концом спиральный четвертьволновой резонатор (характеризующийся распределенными параметрами), с дополнительной ёмкостью на верхнем конце спирали. Этот резонатор раскачивается задающим генератором (синусоидальный сигнал, частота ниже 20 кГц — если исходить из патентов Тесла,
US787412и
US1119732).
Иначе говоря, принципиальная схема башни выглядит следующим образом:
Слева показана физическая уединенная ёмкость на вершине башни (дополнительная к собственной ёмкости катушки), справа – условная эквивалентная схема, где отдельно подчеркнуто, что ёмкость – уединенная, т.е. формально – ёмкость между Башней и бесконечностью, а не между Башней и Землей (т.к. в противном случае получим банальный LC-контур, замкнутый через землю). Для того чтобы минимизировать паразитную ёмкость между башней и землей — т.е. замыкание LC-контура Башни через землю — очевидно, необходимо поднять уединенную ёмкость от грунта (простая оценка показывает, что достаточно поднять ёмкость на высоту, равную нескольким средним диаметрам такой ёмкости — при выполнении такого условия, ёмкость между Башней и Землей уменьшится до значения сопоставимого с собственной уединенной ёмкости Башни).
Как известно из классической электротехники, в режиме резонанса такого резонатора ёмкостное и индуктивное сопротивления взаимно компенсируют друг друга, так что генератор “видит” только активное сопротивление резонатора. В спирали возникает стоячая волна – с узлом напряжения в точке генератора, и пучностью тока там же (при этом на конце резонатора наоборот – пучность напряжения и узел тока). Подробную аналитическую теорию работы такого резонатора можно посмотреть например вот здесь. Если материал по этой ссылке сложен для понимания – то можно упростить без потери сущности: спиральный резонатор такого рода это не что иное как просто четвертьволновая длинная линия, свернутая в спираль – т.е. как и в “вытянутой” длиной линии, в таком резонаторе на резонансной частоте будет существовать стоячая волна токов-напряжений, с узлом напряжения на одном конце линии, и узлом тока – на противоположном конце линии; существенное отличие от “вытянутой” длинной линии – только в усиленной индуктивной и ёмкостной связи между соседними участками такой линии в силу их геометрической близости в спиральной конфигурации, что немного (не в разы) — меняет резонансную частоту и скорость распространения волны вдоль линии.
На рисунке — стоячие волны в длинной линии. Распределение волн: а – напряжения; б – тока в однопроводниковой линии в различные моменты времени (иллюстрация с сайта)
Иначе говоря, Башня является буфером заряда – уединенной ёмкостью, в которую задающий силовой генератор “гоняет” заряд из земли.
При этом, ЭМ-излучение в смысле радиоволн (т.е. поле в дальней, волновой зоне Башни) для нашего диапазона рабочих параметров – фактически отсутствует. Покажем это.
В радиофизике есть понятие спиральных антенн, которое, на первый взгляд, можно соотнести с таким спиральным резонатором. Однако, в отличие от антенн, электрическая длина витка Башни на 3-5 порядков меньше длины волны (т.е. кол-во витков исчисляется тысячами – при том, что вся длина обмотки примерно равна четверти длины волны). При этом, бОльшая часть токов (пучность тока) сосредоточена в нижней половине башни. Иначе говоря, в смысле внешнего ЭМ-излучения, такая структура работает как обычная классическая сосредоточенная индуктивность. Т.е. обычный магнитный диполь.
Известна формула, задающее сопротивление излучения электрически короткой магнитной рамки (магнитного диполя) с длиной волны λ (сопротивление излучения характеризует потери проводника на излучение ЭМ-волн — т.е. потери энергии тока на излучение рассматриваются как формальное активное сопротивление, потери на котором равны потерям на излучения):
(формула 4.30 по ссылке выше)
Где эквивалентная длина диполя lэ связана с радиусом «а» рамки соотношением:
Для случая N витков формула домножается на коэффициент N2 (из очевидных соображений – плотность энергии излучения пропорциональна квадрату амплитуды поля рамки, т.е. квадрату кол-ва витков в рамке).
Итого,
Подставляя наши параметры (частота 10 кГц, т.е. длина волны 30 000 м, радиус катушки – пусть 2 метра, длина обмотки – 10 км, кол-во витков около 800) получаем сопротивление излучения равное 390 наноом. Что пренебрежимо мало по сравнению с потерями на активном сопротивлении системы (составляющем, как минимум, единицы Ом).
Но, помимо тангенциальной составляющей тока в таком резонаторе, есть и осевая компонента (результирующий вертикальный ток) благодаря которой Башня дает, в том числе, излучение обычного короткого электрического диполя, для которого сопротивление излучения связано с длиной диполя l и длиной волны λ как:
(формула 4.27 по ссылке выше)
Таким образом, сопротивление излучения (относительно тока, идущего через генератор) для вертикальной компоненты тока и для наших параметров (высоте башни в десятки метров – пусть будет 30 метров для конкретики, и частоты в 10 кГц) можно оценить примерно в 1 миллиОма.
В итоге видим, что оба вида излучения (и от тангенциальной, и от осевой составляющих тока) пренебрежимо малы относительно потерь на активном сопротивлении контура, при том что это оценки сверху (т.к. для них величина тока полагается одинаковой на всём протяжении обмотки катушки, в то время как на самом деле ток падает по синусу – и на “горячем конце” катушки имеется узел тока – т. е. ноль тока, и реальное излучение будет в разы меньше оценок выше). Так что любые идеи о том, что Башня работает как антенна – не имеют под собой абсолютно никаких оснований (во всяком случае, до тех пор, пока мы следуем патентам Теслы, а не занимаемся фантазированием). Башня не является антенной в классическом понимании – её радиоизлучение (те. ЭМ-поле в дальней, волновой зоне) пренебрежимо мало, и всё что она позволяет делать – это быть эффективным накопителем для заряда, который генератор заводит-выводит из почвы на частоте работы генератора. Так что “гениальные” возражения вида “у вас обычная спиральная антенна – КПД передачи энергии будет ниже плинтуса”, и прочие “аргументы” исходящие из радиоизлучения такой структуры – лишь демонстрируют полное непонимание оппонентом самых базовых концепций радиофизики.
С Башней разобрались, теперь идем к Земле
Для простоты, начнем с элементарных аналогий – от которых постепенно перейдем к итоговой концепции.
Пусть у нас есть электрически-длинный проводник с разрывом на одном конце, заземленный вторым концом через источник переменного напряжения (электрически длинный — означает, что длина проводника сопоставима/больше длины волны от генератора, исходя из частоты генератора и скорости распространения волны — близкой к скорости света в вакууме):
В такой длинной линии, в случае если потери в линии малы – возникает стоячая волны токов-напряжений (т. е. суперпозиция падающих волн от генератора и волн, отраженных от свободного конца длинной линии). Характерным примером таких линий и таких волн являются обычные электрические вибраторы (то бишь классические антенны), как показано на рисунке ниже.
Распределение тока в симметричных вибраторах различной длины.
Суть стоячих волн в длинной линии достаточно простая для понимания. Можно мысленно разбить весь проводник на отрезки в половину длины волны. Каждый такой отрезок является ёмкостью (т.к. у проводника есть распределенная вдоль него ёмкость) и индуктивностью (аналогично). Соответственно стоячие волны это не что иное как волны токов, заряжающих такие ёмкости — т.е. энергия в такой стоячей волне попеременно запасается то в виде заряда, распределенного вдоль проводника (по синусу) — и в этот момент токи равны нулю, то в виде токов распределенных вдоль проводника (так же по синусу) — и в этот момент поверхностная плотность зарядов вдоль проводника равна нулю. Что по сути повторяет режим работы обычной LC-цепи (катушка индуктивности последовательно соединенная с ёмкостью-конденсатором), но только с учетом распределенного характера ёмкости и индуктивности. Токи в полуволне «стекаются» к центру такого выделенного отрезка — создавая пучность напряжения (т.е. появление поверхностного заряда на проводнике), а в соседнем отрезке «растекаются» от аналогичного центра — создавая заряд противоположного знака, далее этот процесс повторяется (в противоположную сторону — создавая противоположные по знаку заряды на поверхности проводника). Разумеется вышесказанное относится к идеальной линии (без потерь) разомкнутой на конце, в реальной линии с потерями (и/или линии с нагрузкой на конце) процессы несколько сложнее — но принципиальная суть от этого не меняется.
Если переходить к элементарным механическим аналогиям, то наиболее близким процессом будут волны сжатия-растяжения в длинной пружине, возникающие в том случае когда такую пружину (лежащую на опоре с нулевым трением) начинают качать туда-сюда вдоль оси пружины на одном из концов пружины — при закрепленном втором конце. При этом току — соответствует скорость движения соответствующего участка пружины, а напряжению — соответствует степень сжатия пружины. Т.е. в какой-то момент времени все участки пружины будут иметь нулевую скорость — а степень растяжения пружины будет меняться по синусу вдоль ней (эдакие чередующиеся сгустки и разряжения) — чему соответствует нулевой ток в стоячей волне и одновременно максимум напряжения (т.е. максимум поверхностной плотности заряда на проводнике), а в другой момент времени — через четверть периода колебания — наоборот вся пружина будет не деформированной, но мгновенная скорость её участков будет изменяться по синусу вдоль оси пружины (чему соответствует момент нулевой плотности заряда вдоль проводника длинной линии — но максимуму тока в нем).
Потери для такой ситуации в целом можно разделить на 2 составляющих: омические потери, и потери на излучение.
В случае большой длины проводника, и его малом омическом сопротивлении, основной вклад в потери будет давать излучение (т.е. сопротивление излучения).
Как известно, если окружить такую линию заземленным проводящим экраном, то потери на излучение будут нивелированы, и такая структура носит название коаксиального волновода – причем, в нашем примере, волна в таком коаксиальном волноводе будет существовать в виде ТЕМ-моды (портом возбуждения при этом, по сути, является генератор, подключенный через землю — к внутреннему и внешнему проводникам волновода).
По сути, режим ТЕМ-моды можно трактовать, как режим индуктивной связи внутреннего и внешнего проводников волновода через поле ближней зоны токов на этих проводниках (изменение тока на внутренней жиле — вызывает соответственно ЭДС на внешнем экране, причем наведенный на внешнем экране ток направлен против изменения тока на внутренней жиле — т.е. по сути обычная индукция в ближнем поле тока), так что поперечные потоки энергии не просто нулевые в среднем по времени (как для ТЕ или ТМ мод), но нулевые в любой момент времени. Не происходит переотражений от границ волновода – поток энергии носит только продольный характер (т.е. направлен вдоль оси, и соответственно вектор Пойнтинга направлен так же строго параллельно направлению распространения волны – вдоль оси такого коаксиального резонатора).
Поэтому режим ТЕМ-моды в коаксиальном волноводе характеризуется хорошими параметрами (относительно режимов ТЕ или ТМ мод) в части передачи энергии и в части малости коэффициента затухания волны в волноводе, и при необходимости передачи энергии по коаксиальному волноводу – как правило, стремятся использовать именно режим ТЕМ-моды.
Однако, даже если мы удалим заземление внешнего экрана такого волновода, по всей длине экрана кроме его концевых участков – экран будет отлично выполнять свою функцию.
Ведь такой экран в любом случае есть длинная линия, в качествен генератора для которой выступает ЭДС от переменного тока на внутреннем проводнике-жиле. И только на краях экрана – в силу очень малой ёмкости таких краев, будет существовать некоторая пучность напряжения, а на всей остальной длине такого экрана – он будет нормально функционировать. Что подтверждается элементарным моделированием в HFSS.
Далее, что будет, если мы не просто уберем заземление внешнего экрана – но “замкнем” края как показано на рисунке ниже (так что внешний экран станет этакой “капсулой”)? Ответ вполне ясен – эта ситуация не будет отличаться от рассмотренной выше. Экран будет работать по всей длине, а на таких вот окончаниях внешней “капсулы” – будут пучности напряжений (и узлы тока соответственно).
Далее, если внутренний и внешний проводники сделать уже в виде сфер – то мы придем к общей модели предполагаемого эксперимента (пропорции на рисунке, разумеется, не соблюдены):
Как не трудно догадаться, внутренняя проводящая сфера – это Земля, внешняя проводящая сфера – это верхние слои атмосферы (в основном ионосфера). А общая геометрия такого резонатора – это обычный концентрический сферический резонатор (в котором говорить про ТЕМ моду, в строгом смысле – уже нельзя, т.к. в нем существуют только ТЕ и ТМ моды), только с немного необычным способом возбуждения ТМ-моды (т.е. порт возбуждения – не связывает между собой внешнюю и внутреннюю обкладки, как это делается в «классической» электротехнике).
Хотя, в силу переменного сечения внутреннего и внешнего проводников, амплитуды стоячих волн токов и напряжений будут уменьшаться по мере удаления от генератора, общая суть при этом остается той же самой – ТЕМ мода коаксиального (или же ТМ-мода сферического) резонатора, возбуждаемая соответствующим источником (Башней Тесла).
На первый взгляд, идея странная: известно, что проводимость грунта Земли, и ионосферы (в ясный день на освещенной стороне) около 0.001 См/м (плюс-минус порядок), в то время как проводимость например меди – около 58 000 000 См/м. Однако, давайте посмотрим на этот вопрос исходя из численных оценок, а не из интуитивных соображений. И для начала разберемся с сопротивлением грунта Земли. Общая мысль состоит в том, что с точки зрения процессов протекания тока, деление на диэлектрики, полупроводники и проводники – достаточно условно по своей сути, т.к. при достаточно большом сечении диэлектрика – он становится вполне хорошим проводником (т.е. обладает малым итоговым сопротивлением).
Как известно, при достаточной толщине проводника, ток имеет существенное значение только на некоторой глубине, называемой глубиной скин-слоя, которая рассчитывается по формуле:
Где — удельное сопротивление, — относительная магнитная проницаемость, — частота.
Разумеется, это упрощенная формула, применимая для проводника, а не диэлектрика – однако на наших сверхнизких частотах потери связанные с диэлектрической проницаемостью грунта — малы, так что в качестве оценки – такая формула вполне применима.
Для диапазона частот 1-10 кГц, и диапазона проводимостей 0.001-0.00001 См/м глубина скин-слоя лежит в диапазоне от сотни метров до нескольких километров. При этом, чем ниже будет частота – тем больше толщина скин-слоя, т.е. тем меньше омические потери в планетарном резонансе (обратно пропорционально корню из частоты).
Таким образом, мы приходим к выводу, что, рассматривая чисто активное сопротивление Земли (как шара из грунта, т.е. материала имеющего проводимость на уровне 0.01-0.0001 См/м), и подразумевая диапазон частот не ниже 1 кГц (т.к. еще меньшие частоты не реализуемы с практической точки зрения — исходя из требуемых технических параметров Башни Тесла) необходимо ограничиться километровым слоем. Отметим, что Тесла, видимо, не вполне отдавал себе в этом отчет – и искренне полагал, что токи от его установки идут вглубь земли (а не бегут по поверхности оной), как это указано в нашей научно-популярной статье. Согласно современным данным по электродинамике – этого, разумеется, не может быть.
Сопротивление между двумя стержнями, погруженными в плохо проводящую среду (например в грунт) задается формулой:
Где
Здесь L – длина стержней, D – расстояние между ними, r1 – радиус сечения стержней, — удельная проводимостью среды.
Интересно отметить, что исходя из этой формулы, начиная с расстояния между стержнями много большего длины стержней – сопротивление между стержнями фактически становится константой (перестает расти по мере роста расстояния).
Так, например, для двух стержней длиной 30м, диаметром 0.2 м, и проводимости грунта около 0.04 См/м (что корректно для верхних слоев почвы) характерное сопротивление (между ними) лежит в диапазоне 1-3 Ом – начиная с расстояния в метры, и далее (без ограничения дальности расстояния) остается таковым при любом увеличении расстояния между стержнями. Так что идея о том, что Земля – плохой проводник (как объект в целом) – это, разумеется, интуитивное заблуждение, и будь так – заземление просто не имело бы смысла.
Так же особенностью данной формулы является тот факт, что начиная с некоторой длины стержней – дальнейший рост длины стержня не приводит к заметному уменьшению сопротивления между стержнями (т.е. иначе говоря, итоговое сопротивление между приёмником и передатчиком – слабо зависит от глубины скин-слоя). Что в целом является известным фактов в части заземляющих систем (данный характерный график взят с этой страницы).
Таким образом, у нас есть все основания для оптимизма по части сопротивления всей поверхности Земли.
Сделаем теперь более строгие оценки
Постоянная затухания, характеризующая потери на стенках волновода в силу активного сопротивления,
для ТЕМ-моды коаксиального волновода(к которому близка большая, центральная часть Земли-резонатора как показано на рисунке выше) задается формулой (см. например тут):
где Rs1 и Rs2 — поверхностные сопротивления металла внутреннего и внешнего цилиндров волновода, которые можно определить по формуле:
Здесь мю – это абсолютная магнитная проницаемость (для подавляющей части поверхностного грунта – это соответственно просто магнитная постоянная).
Сразу отметим, что под корнем стоит отношение частоты и проводимости – т.е. меньшая по сравнению с металлами проводимость во многом компенсируется килогерцевым диапазоном частот (в то время как коаксиальные волноводы применяют для частот в гигагерцы), а то что отношение стоит под знаком корня – еще больше “улучшает” ситуацию. Итого, для наших параметров (f=3 кГц, и σ=0.01 См/м получаем величину в 1.06 Ом) характерная величина поверхностного сопротивления (и земли и ионосферы) порядка одного Ома, плюс-минус порядок.
Один Ом – это, казалось бы, всё еще достаточно большая величина. Однако, добротность объемного резонатора пропорциональна его линейным размерам (т.к. кол-во энергии в резонаторе пропорционально объему оного, а потери – пропорциональны площади стенок резонатора). Что находит отражение в формуле в числителе. Радиусы D и d в нашем случае имеют колоссальное значение (D=6 600 000 м, d = 6 400 000 м,), что с лихвой перекрывает относительно большую величину поверхностной проводимости стенок волновода, так что постоянная затухании для наших параметров может быть оценена по формулам выше как 10-8-10-9 1/м.
В реальности, бОльшая часть поверхности планеты покрыта хорошим электролитом (соленая океаническая вода) – т.е. данная оценка это оценка сверху.
Постоянная затухания равная 10-9 означает, что за всю длину пути «x» волны до противоположной точки Земного Шара (примерно 20 000 км) амплитуда волны упадет на величину =2%.
Чему соответствует крайне высокая добротность резонатора Земля-Ионосфера (на порядки выше, чем сотня) для такой моды, в отличие от механизма распространения обычных радиоволн через переотражение от границ земли-ионосферы. И даже ухудшение оценочной проводимости на 1-3 порядка (что имеет смысл для ионосферы) не приводит к фатальным последствиям в части самой возможности существования такого резонанса.
Мы убедились, что в принципе, искомый резонанс (исходя из фактических параметров резонатора) может иметь место, хотя реальная добротность такого резонанса может иметь вилку примерно в 2-3 порядка (но даже при самом худшем сочетании параметров – не должна быть ниже сотни).
Аналогичные оценки возможной высокой добротности ТМ-мод в резонаторе Земля-ионосфера даны в работе М.В. Давидовича – “моды многослойного концентрического сферического резонатора”.
Если говорить про строгий подход, то разумеется необходимо рассматривать полноценный концентрический резонатор в режиме ТМ-мод (например, неплохой обзор по этому вопросу можно найти по этой ссылке, для интересующихся более глубокими теоретическими аспектами — можно порекомендовать вот эту и вот эту работы).
Первые гармоники нулевой ТМ-моды – соответствуют явлению т.н. резонанса Шумана. Однако, если говорить про частоты в районе нескольких килогерц, то помимо нулевой моды – так же будут возбуждаться и следующие за ней моды (для 10 кГц – это номера мод в диапазоне 0-6).
Действительно, из формулы
для первой моды – низшая гармоника будет иметь частоту около 1.5 кГц, для второй моды – 3 кГц, и т.п.
При этом, как следует из формулы задающей частоты гармоник для каждой из таких мод, начиная с первой моды и далее – “плотность” расположения гармоник по частотной оси крайне велика (если для нулевой моды гармоники идут с шагом порядка 10 Гц, то для остальных мод попадающих в диапазон ниже 10 кГц – с шагом порядка 0.01-0.1 Гц). Так что, осуществляя возбуждение ТМ-мод такого резонатора на частотах в диапазоне нескольких килогерц, по сути невозможно говорить о какой-то конкретной моде/гармонике: итоговая картина стоячих волн будет соответствовать чрезвычайно большому количеству гармоник, сразу для нескольких мод. Что принципиально отличает такой резонанс от резонанса Шумана.
Есть и другое принципиальное отличие. Как известно (например, см. здесь – стр. 8), для пассивного резонатора, добротность гармоник растет с ростом частоты – примерно пропорционально корню из оной. Однако, резонатор Земля-ионосфера не является пассивным. В самом деле, электрическая машина Земли поддерживает примерно постоянную разность потенциалов между обкладками планетарного конденсатора (грунт-атмосфера). В случае удара молнии, данный потенциал уменьшается – однако восстанавливается за характерное время измеряемое секундами, при этом характерная плотность тока дозарядки – составляет порядка 0.1-1 ампера (стр. 6-8) на квадратный километр. Иначе говоря, Земля работает по сути как источник ЭДС, выравнивающий (впрочем, весьма медленно) разность потенциалов на некоем среднем уровне. Очевидно, что в случае сверх-низкочастотных колебаний, соответствующих резонансу Шумана (первые гармоники нулевой ТМ-моды резонатора), наличие такого источника ЭДС приводит к резкому ухудшению добротности резонанса: в случае отклонения потенциала от среднего уровня, этот источник ЭДС стремится скомпенсировать отклонение, что означает активное подавление ТМ-моды – а учитывая планетарные масштабы явления, это подавление может носить значительный характер. К сожалению, данный фактор не учитывает ни в одной из известных нам моделей резонанса ТМ-мод в резонаторе Земля-ионосфера – и причины этого понятны: до сих пор нет единой однозначной модели механизма возникновения этого источника ЭДС, и более того – как и всякие явления связанные с атмосферным электричеством, данный механизм существенно нелинеен, так что сколь-нибудь адекватное моделирование (учет) этого фактора для ТМ-мод резонатора пока не возможен – не достаточно данных.
Тем не менее, известны данные по добротности первых гармоник нулевой ТМ-моды резонатора Земля-ионосфера (данные свежие – 2011 год):
Из этих данных видно, что с ростом номера гармоники – фактическая добротность растет быстрее, чем корень из частоты (т.е. быстрее, чем для пассивного резонатора). Учитывая относительную “медленность” механизма дозарядки планетарного конденсатора, именно для низших гармоник нулевой моды данный механизм будет оказывать наиболее сильное влияние – т.к. с ростом частоты можно ожидать роста добротности резонанса с существенно большей скоростью, нежели корень из частоты.
Интересно отметить, что в 2011 году (что отражено в данных по ссылке выше) были обнаружены токи в ионосфере (соответствующие резонансу Шумана) на высотах (400-800 км), для которых все известные предыдущие модели давали полное отсутствие таких токов. Де-факто, существующие модели проводимости ионосферы оказались некорректными – и их нельзя использовать для построения моделей резонанса ТМ-мод в резонаторе Земля-Ионосфера.
Таким образом, есть основания для проведения прямых замеров добротности итогового резонанса на частотах в несколько килогерц – как исходя из теоретических предпосылок, так и исходя из фактических результатов, полученных Теслой. Прямой же аналитический (или численный) расчет невозможен – слишком сложным и плохо известным объектом является Земля сразу в большом кол-ве своих параметров/характеристик.
Предлагаемая же схема эксперимента фактически не имеет отношения ни к резонансу Шумана (принципиально другие добротности, а так же дополнительные ТМ-моды и гармоники резонанса), ни к передаче энергии радиоволнами (т. е. волнами ЭМ-поля дальней волновой зоны обычных радиоизлучателей) — о чем прямо и заявлял Тесла.
Разумеется, как уже упоминалось выше, поскольку сечение резонатора не является постоянным, то и волновое сопротивление (задающее отношение напряжения в линии — к току в ней же) будет так же переменным: максимум напряжения будет иметь место на пучностях вблизи от башни (и противоположного конца планеты), минимум – на “экваторе” от Башни, что подтверждается численным расчетом в HFSS (и соответствующими аналитическими формулами например для нулевой ТМ-моды такого резонатора).
На рисунке приведено распределение амплитуд электрического E и магнитного B полей для первых 3-х гармоник нулевой ТМ-моды резонатора Земля-ионосфера.
“Заземление” для резонатора Земля-Ионосфера
Откуда мы возьмем “заземление”, к которому подключается генератор для накачки такого резонатора на ранее приведенном рисунке?
Ответ прост – поскольку мы ранее уже провели анализ работы Башни Тесла. С точки зрения генератор, Башня Тесла с практической точки зрения ничем не отличается от некоей внешней земли (подключенной через активное сопротивление Башни). Т.к. генератор “видит” только активное сопротивление башни, но никак не реагирует на величину заряда, накопленного на башне (ибо ёмкостное и индуктивное сопротивления в режиме резонанса – компенсируют друг друга) — иначе говоря, для генератора башня это и есть “заземление” через сопротивление, равное активному сопротивлению башни.
Разумеется, как уже отмечалось выше, такой заряд вызывает перераспределение зарядов в грунте в окрестности от Башни – но чем выше поднят накопитель заряда Башни, тем менее значим этот фактор (т.к. уменьшается ёмкость Башня-Земля). Достаточно поднять накопитель заряда на высоту заметно большую, чем размер накопителя – чтобы Башня Тесла стала действительно “внешней землей” для задающего генератора (т.е. достаточно минимизировать ёмкость между башней и землей — так, чтобы собственная уединенная ёмкость Башни стала хотя-бы одного порядка с ёмкостью Башня-Земля).
КПД передачи энергии
После установления по всей планете стоячих волн напряжений и токов (при этом токи будут иметь крайне малую амплитуду – в отличие от напряжений) возможно эффективное снятие этой энергии аналогичной системой (Башней – но уже без генератора). Физ-процессы при работе приёмника характеризуются созданием связи между резонансными контурами (башни-приёмника), что позволяет получать высокий КПД передачи даже при крайне низком коэффициенте связи источника и приёмника (строго в соответствии с классической электротехникой).
Рассмотрим данный вопрос подробнее.
В случае расположения приёмника (т.е. аналогичного контура) в пучности напряжения (и узле тока) итоговой стоячей волны, переменный потенциал поверхности будет являться источником ЭДС для приёмника. При этом, в приёмнике будет возбужден резонанс – полностью аналогичный резонансу в источнике, соответственно приёмник будет генерировать стоячую волну так же полностью аналогично источнику. При этом, поскольку приёмник расположен в пучности напряжения (и узле тока), то генерируемая им волна будет, очевидно, создавать дополнительную нагрузку на источник – тем самым создавая систему в виде т. н. резонансных связанных контуров (беглый обзор по этому вопросу можно найти здесь и здесь). Действительно, в пучности напряжения внешней волны – приёмник имеет узел напряжения (и пучность тока), и работает на той же частоте, т.е. в области расположения источника – приёмник будет создавать пучность напряжения (и узел тока), которую источник и будет “видеть” как дополнительную нагрузку. Что отлично видно на видео (соответствующего моделировании в HFSS).
На видео, и на рисунке выше – источник расположен в левой верхней области, область расположения приёмника выделена в правой около-центральной части. Видно, что в области приёмника постоянный минимум поля – что и означает эффективную откачку энергии из планетарного резонанса. Так же хорошо видна интерференционная картина волн, испускаемых приёмником и источником.
Для такого рода систем (т.е. резонансных связанных контуров), КПД передачи энергии определяется произведением коэффициента связи систем k и их добротности Q. Коэффициент связи — это, грубо говоря, коэффициент, определяющий — какую часть энергии резонанса контура-источника «видит» контур-приёмник. Например, для близко расположенных катушек индуктивности (особенно если они намотаны на одном сердечнике) коэффициент связи стремится к единице, и падает по мере разнесения катушек (т.к. по мере такого разнесения — падает ЭДС, наводимая катушками друг в друге). Типичный график зависимости КПД от произведения коэффициента связи на добротность – приведен ниже (взят из документа по ссылке выше):
Физический смысл этой зависимости очевиден: даже если за один период колебаний приёмник «забирает» лишь малый процент энергии источника, но за этот же период (в силу высокой добротности резонанса) потери энергии в суммарном резонансе малы – то КПД передачи (определяющий отношение переданной и рассеянной энергий) будет высоким. Т.е. для высокого КПД передачи в общем случае не требуется высокий коэффициент связи контуров — большая добротность резонанса может компенсировать малость коэффициента связи.
Оценим коэффициент связи между источником и приёмником – в предположении высокой добротности резонатора Земля-ионосфера (для чего, как указывалось выше – есть все основания).
Пусть частота — 10 кГц. Это значит, что Земля поделена на «кольца» шириной 30 км, коих соответственно на длину половины периметра — приходится около 700. Ёмкость Земли как уединенного проводника — около 700 мкФ. Пусть ток в Башне (источнике) — 1 кА (это соответствует мощности генератора как минимум в несколько мегаватт). Для длинной линии-Земли, наши «кольца» — это параллельные ёмкости. Т.е. ёмкость, приходящуюся на одну длину волны в районе «экватора» от башни — можно оценить в c1=1 мкФ (700 мкФ/700 волн). Что при токе в 1 кА (идущем на подзаряд каждой из таких ёмкостей) дает напряжение около 15 кВ (по стандартной формуле U=I*Rc=I/(c1*w) ). Всё поле (для ТМ-моды) сосредоточено примерно на длине, равной половине длины волны (перпендикулярно грунту), как это следует из моделирования в HFSS (и/или из соответствующих аналитических формул на которые приводились ссылки выше). Для 10 кГц — это 15 км.
Что означает напряженность поля около грунта — всего один вольт на метр (при фоновой напряженности вертикальной составляющей поля — около 130 вольт на метр). Это — «на экваторе», а в ближайших к башне пучностях (т.к. ёмкость меньше на 1-2 порядка) будет соответственно на 1-2 порядка больше. Т.е. башня-приёмник «увидит» напряжение в сотню киловольт (и напряженность поля будет около 10 в/м) — если расположена на дистанции в десятки км от источника. В данной ситуации — переменный потенциал грунта велик, но напряженность поля — мала, ибо поле распределено вертикально на большой дистанции — в десятки км (что вполне позволяет говорить даже при гигаватную мощность передатчика — так чтобы не выходить за фоновый уровень напряженности поля около поверхности Земли). В случае если мы говорим про «экватор», при указанных параметрах, и итоговом резонансном напряжении в источнике, например, в мегавольт (а на экваторе, как следует из оценки выше, в 10 киловольт) — коэффициент связи, соответственно, около 1% (и десятки % на дистанции в десятки км от источника), т.к. коэффициент связи можно определить как отношение напряжений на индуктивности приёмника (при разомкнутом контуре приёмника) – и работающего источника (разумеется, при одинаковых параметрах приёмника и источника). Исходя из возможной добротности резонанса в районе нескольких сотен, такой коэффициент связи означает КПД передачи как минимум в десятки % — для экватора, и вполне может дать цифру выше 90% — для дистанции в десятки км (что соответствует заявлениям, сделанным Тесла по соответствующим экспериментам). Однако, в силу проблем с моделирование и расчетом реальной добротности резонанса, пытаться сделать более точные оценки, по сути, смысла нет (по большому счету, всё зависит от реальной добротности резонанатора-Земли, и резонатора-башни – моделирование же может дать ошибки в порядки). Так что единственный адекватный вариант – это постановка полномасштабного эксперимента — для чего, очевидно, необходимо построить полный аналог башни Тесла. Это позволит как воспроизвести «ту самую Башню Тесла» и «тот самый эксперимент», так и расставить все «точки над и» в вопроса КПД передачи для больших расстояний. В то же время, у нас нет никаких сомнений в высоком КПД передачи для конфигурации эксперимента, соответствующей параметрам исходных экспериментов Тесла (т. е. для расстояния в сотню километров), что в любом случае интересно с практической точки зрения.
Дополнительные соображения
Помимо собственно патентов, посвященных Башне, Тесла так же запатентовал устройство для детекции стоячих волн напряжений в грунте, возникающих вследствие удара молний. Данное устройство описано в патенте
US787412. Суть данного детектора, переводя на современный язык — состоит в организации т.н. синхронного детектора (или
lock-in amplifier). Вот что написано по этому поводу в википедии:
The lock-in amplifier is commonly believed to be invented by Princeton University physicist Robert H. Dicke who founded the company Princeton Applied Research (PAR) to market the product. However, in an interview with Martin Harwit, Dicke claims that even though he is often credited with the invention of the device, he believes he read about it in a review of scientific equipment written by Walter C Michels, a professor at Bryn Mawr College. This was probably a 1941 paper by Michels and Curtis, which in turn cites a 1934 paper by C. R. Cosens.
Очевидно, как и многие другие идеи и патенты Теслы по которым он объективно имел приоритет — его современники не разобрались в том, что и как делал Тесла, так что приоритет относят не к нему и датируют датой на пару — тройку десятилетий позже. Однако внимательный анализ устройства по детекции стоячих волн, использованного Теслой, не оставляет никаких сомнений в том, что приоритет изобретения синхронного детектора принадлежит именно Тесле.
В самом деле, суть устройства использованного Теслой состояла в том, что на заданной частоте (и заданной скважности — см. патент) он создавал поочередное замыкание одного из контактов конденсатора-накопителя с грунтом (в это время второй контакт конденсатора находился «в воздухе»), чисто механическим способом — используя скользящие контакты на соответствующем барабане (F на рисунке ниже).
Таким образом, при условии совпадения частоты стоячей волны в грунте, и частоты замыкания контактов в приёмнике, конденсатор Т постепенно накапливал заряд — а затем принудительно разряжался через приёмник R (позволяющий регистрировать ток разряда такого конденсатора-накопителя). Что в явном виде и является логикой синхронного детектора. При этом, поскольку длина проводов соединяющих конденсатор с грунтом — была много меньше длины волны, то говорить об ЭМ-наводках на такие провода (от ударов молний) не приходится — они будут ничтожными.
Вот что писал по этому поводу сам Тесла — и с чего начался его путь в этой области:
The date I shall never forget — when I obtained the first decisive experimental evidence of a truth of overwhelming importance for the advancement of humanity. A dense mass of strongly charged clouds gathered in the west and towards the evening a violent storm broke loose which, after spending its fury in the mountains, was driven away with great velocity over the plains. Heavy and long persisting arcs formed almost in regular time intervals. My observations were now greatly facilitated and rendered more accurate by the experiences already gained. I was able to handle my instruments quickly and I was prepared. The recording apparatus being properly adjusted, its indications became fainter and fainter with the increasing distance of the storm until they ceased altogether. I was watching in eager expectation. Surely enough, in a little while the indications again began, grew stronger and stronger and, after passing thru a maximum, gradually decreased and ceased once more. Many times, in regularly recurring intervals, the same actions were repeated until the storm, which, as evident from simple computations, was moving with nearly constant speed, had retreated to a distance of about three hundred kilometers. Not did these strange actions stop then, but continued to manifest themselves with undiminished force. Subsequently, similar observations were also made by my assistant, Mr. Fritz Lowenstein, and shortly afterwards several admirable opportunities presented themselves which brought out still more forcibly and unmistakably, the true nature of the wonderful phenomenon. No doubt whatever remained: I was observing stationary waves.
Исходя из фактического устройства детектора, нет никаких сомнений в том, что факт работы такого детектора — а именно, периодическое синусоидальное изменение амплитуды энергетики процесса по мере хода и удаления грозы (на сотни миль), регистрируемого детектором — однозначно свидетельствовал именно о стоячих волнах напряжения на грунте Земли, что и было для Тесла отправной точкой его исследований.
По совокупности информации, приведенной выше — есть все основания для постановки полномасштабного эксперимента с целью окончательного подтверждения работоспособности Башни Тесла.
Если представленный материал слишком сложен для понимания — то более «гуманитарное» изложение (местами граничащее с некорректностью, но дающее хорошее понимание того, что мы собираемся сделать в плане эксперимента) можно найти, например, по этой ссылке.
Авторы: Сергей Плеханов, Леонид Плеханов
F.A.Q.
Ниже — список наиболее часто задаваемых вопросов, с ответами. Если у Вас есть вопрос — пожалуйста, прежде чем задавать его, убедитесь, что его нет в списке ниже, либо приведите аргументацию — почему приведенный ниже ответ на такой вопрос является неубедительным.
• Если эта идея рабочая — то не убьют ли токи в грунте земли всё живое что там есть?
Таких рисков нет. Просто потому, что плотность тока в поверхностном слое Земли будет мизерная (возьмем 2 килоампера в Башне, и распределим такой ток по периметру в 20 000 км длиной, и 100 метров глубиной; получим плотность тока — порядка 1 мкА на квадратный метр, что не ощутит ни один живой организм). Т.е. большой переменный внешний потенциал от заряда на грунте (киловольты и выше) — сочетается с очень малыми токам, и одновременно вертикальная составляющая напряженности электрического поля около грунта — мала (много меньше фоновой величины в 130 вольт на метр). По мере роста высоты — напряженность поля (и без того малая) будет падать, так что самолетам и спутникам -) тоже ничего не грозит.
• Вы делаете планетарную микроволновку.
К механизму нагрева вещества микроволновым излучением процессы связанные с Башней Тесла не имеют абсолютно никакого отношения. Омические потери, разумеется, будут — но даже гигаватт, распределенный на площадь всей планеты — это все равно, что спичкой греть море.
• У вас модель в HFSS некорректная — вы взяли две сферы из металла и конечно получили ТМ-моду.
Нет, мы не брали сферы из проводников — а честно заложили проводимости грунта и ионосферы, исходя из их табличных значений. Соответственно и размер модели — большой (чтобы благодаря площади сечения диэлектрика-грунта, его можно было рассматривать как проводник).
• Понятно, что ТМ-моду можно возбудить. Но как на практике можно пробросить порт от грунта до ионосферы?
А этого и не надо делать — см. в статье выше. Достаточно подключения генератора только к грунту, остальное будет автоматически наведено переменными токами в окрестности Башни. Т.е. формально можно считать антенной — круговую область грунта около башни, с радиусом порядка длины волны.
• Земля — диэлектрик, так что ток не проводит, и ничего не получится.
Грунт отлично проводит ток, см выше. На заре ЖД индустрии обратным проводником служила как раз Земля, и совершенно замечательно работала в качестве такового (не внося сколь-нибудь заметного сопротивления). К тому же, будь грунт в целом — плохим проводником, обычное заземление было бы бесполезно (т.е. не работало бы — а практика показывает обратное).
• У вас обычная радиоантенна, КПД передачи будет ничтожным.
Как показано выше, к радиоантеннам Башня не имеет ни малейшего отношения — т. к. собственно радиоизлучение у неё в практическом смысле — отсутствует (т.е. оно на очень много порядков меньше потерь на омическое сопротивление Башни).
• Чем это всё отличается от Шумана? Обычный резонанс Шумана, все это знают и поэтому идея не работоспособна. И ничего нового в этом нет.
Резонанс Шумана — это не резонанс конкретной моды, а явление шума на первых гармониках нулевой ТМ-моды, связанное с наличием импульсной накачки резонатора Земля-Ионосфера на частоте около первой моды (10 Гц — т.к. в среднем в секунду происходит около 40-50 разрядов молний, из которых по статистике только 20%-25% бьют в землю), и с тем фактом что средняя частота разрядов распределена по поверхности планеты не равномерно (с характерным масштабом неоднородности такого распределения — порядка длины волны первых гармоник). Иначе говоря, шум резонанса Шумана — связан с наличием (хотя и слабой) пространственно-временной когерентности ударов молний. Т.е. если бы молнии били равномерно по всей поверхности — резонанса Шумана (т. е. шума на частотах первых гармоник) не было бы. Или если бы средняя частота удара молний была бы не 10 Гц, а 10 кГц, то максимум энергии был бы совершенно на других гармониках/модах. Кроме того, в резонансе Шумана возбуждается только нулевая ТМ-мода, а для наших частот — будут активно участвовать и следующие моды. Таким образом, хотя косвенная связь с резонансом Шумана и есть — но наш случай это не резонанс Шумана. Принципиально новых физических эффектов мы действительно не предлагаем – всё строго в рамках того, что уже давно известно в соответствующих разделах физики. Мы лишь “склеили” известные знания в объяснение работоспособности Башни Тесла.
• Добротность резонанса будет низкой — потому как у вас, по сути, Шуман, так что стоячей волны не получится, будет бегущая волна с большим затуханием.
Не верно, во-первых у нас не Шуман — см. вопросы выше, во-вторых даже для первых гармоник нулевой ТМ-моды (т.е. для резонанса Шумана) добротность доходит до 10-ки (см. пруфы выше), что означает время затухания энергии в несколько десятых секунды — т.е. очень много. И согласно фактически экспериментальным данным, добротность с ростом номера гармоники (т.е. с ростом частоты) — растет, причем быстрее, чем корень из частоты. Так что стоячая волна — будет, и ожидаемая добротность на нашем диапазоне частот составляет как минимум несколько сотен.
• Если в грунте будут проводники электрически-длинные относительно длины волны — у вас волна будет на них концентрироваться и затухать.
Не верно, проводники в грунте (например, трубы систем отопления и т.п.) означают локально улучшенную проводимость грунта, что приведет только к возрастанию добротности резонанса — т.е. увеличению КПД передачи энергии. Реально в качестве такого «оттягивающего» проводника может работать только проводник достаточной длины, находящийся не в грунте, но — заземленный одним концом. Таковых не наблюдается (провода линий ЛЭП, при том что они достаточной длины, разумеется не заземлены — т. е «не видят» переменного потенциала грунта, а наводки от внешнего поля грунта буду слабы — т.к. мала напряженность поля, см. выше — велик только переменный потенциал самого грунта, но не поле от такого потенциала).
• При таком подходе невозможна адресная доставка энергии, так что в такой технологии — даже если она заработает — нет никакого смысла.
Можно идти не путем адресной доставки, а путем контроля доставки. Любой приёмник будет генерировать волну, которую можно элементарно засечь. Для отбора сколь-нибудь высокого по плотности потока энергии — потребуется очень хорошее заземление и высокодобротный приёмник (т.е. фундаментальная и дорогая конструкция). Так что делать фундаментальную конструкцию, для того чтобы её функционирование было пресечено на следующий день — экономически не целесообразно.
• А вы не боитесь, что создадите второй Тунгусский метеорит? Можно ли как-то защититься от поля, создаваемого установкой?
Нет, не боимся. Чтобы всерьез об этом говорить, надо иметь четкую модель того что такое тунгусский метеорит и как его вызвать Башней. У нас такой модели нет. Если же есть острое параноидальное желание защититься от поля, создаваемого стоячей волной – то, разумеется, это можно сделать (например — заглубив объект под землю, т.е. по сути просто хорошо заземлив всю его внешнюю поверхность – что просто и недорого, либо же поставив отдельный приёмник — снимающий и отводящий энергию при достижении некоего порога плотности энергии).
• Вы не учли возможную электрохимию при протекании тока в грунте.
Да, разумеется. Как только вы дадите нам подробную карту (с разрешением хотя-бы в километр) электрохимических свойств грунта всех материков Земли (на глубину хотя-бы в 100 метров) — мы непременно учтем это в модели. Но в обозримом будущем таких данных не предвидится.
• Вы влезете в диапазон СДВ-связи, и/или связи подлодок, и «за вами придут».
Во первых, отдельный чистый синус — не сможет нарушить связь (т. е. фильтруется совершенно элементарно). Во вторых, при высоком значении переменного потенциала грунта Земли, напряженность поля будет малой (в силу достаточно большой области распределения поля в вертикальном направлении). В третьих, эксперимент разумеется нужно проводить под эгидой одного из НИИ, в этом случае соответствующие «разрешения» на эксперимент — проблемой не станут.
• Как будет сказываться факт работы нескольких башен/приёмников одновременно?
Никак. Если частоты башен одинаковы — то итоговая стоячая волна будет просто несколько более сложной формы (как результат интерференции волн от нескольких башен), чем от одной Башни — что никак не скажется на работоспособности системы. Если же частоты разные — то в силу очень высокой добротности контуров (у источника и приёмника), частотная избирательность контуров будет огромной, т.е. башни по сути просто «не будут видеть» никаких частот кроме собственной. Т.е. суммарное поле в резонаторе Земля-ионосфера будет существовать в форме биения частоты, но на работе системы это никак не скажется.
• Не возникнет ли большого шагового напряжения — аналогично тому как это происходит при падении на грунт оборванного конца ЛЭП?
Нет, не возникнет. Если, например, взять амплитуду переменного потенциала грунта в пучности напряжения стоячей волны равную 15 киловольт, и длину волны в 30 000 м (что соответствует частоте 10 кГц, и мощности источника много больше мегаватта), то это даст «шаговое напряжение» (т.е. градиент потенциала вдоль поверхности земли) около 2 вольта на метр. Что совершенно безопасно. Основное отличие от обрыва провода ЛЭП в том, что площадь контакта провода ЛЭП с грунтом минимальна — что дает очень большое сопротивление заземления. В результате подавляющая часть напряжения падает на небольшой (короткой) окрестности от конца провода, что и приводит к высокому шаговому напряжению для такого случая. В случае же стоячей волны от Башни Тесла, «область локализации» напряжения очень велика (половина длины волны — т.е. десятки км), так что шаговое напряжение — мало.
//——————————————————————————–//
UPDATE 2017.02.26:
Поскольку практическая реализация исходной идеи оказалась значительно сложнее первоначальных ожиданий, и в теорчасти и в плане проведения проверочных экспериментов, то этот проект находится на паузе.
Мы решили сфокусироваться на более прикладных аспектах применения технологии дистанционной беспроводной передачи электроэнергии. Два года назад мы стали компанией в США, и за это время прошли большой путь развития — налаживание бизнес контактов, получение инвестиций, договоренности по пилотным проектам и т.п. В настоящий момент мы сфокусировали свои усилия на cоздании и внедрении в массовую коммерческую эксплуатацию промышленной системы для подзарядки дронов на лету. Суть системы та же что и в статье выше, резонансные связанные контуры. Было сделано несколько прототипов с последовательным наращиванием уровня мощности/КПД/дистанции и достигнуты серьезные результаты. Видео полета большого дрона, полностью запитанного посредством беспроводной передачи энергии, можно найти по этой ссылке.
Для реализации этой (и не только) задачи мы открываем инженерный офис в России (100% дочернее предприятие головной корпорации) и набираем в команду инженеров имеющих хороший практический опыт в области силовой импульсной схемотехники, от проектирования до сборки и отладки железа. Т.е. нужны руки из плеч, большой опыт и активная позиция в проекте — готовность разбираться с непонятным, и самостоятельно формулировать/решать нестандартные/нетривиальные задачи в русле основного направления проекта. Дополнительным плюсом является умение программировать контроллеры, знание тепловых расчетов, опыт работы с вопросами электромагнитной совместимости, знание ограничений по госрегулированию в области радиоизлучения на диапазон 10-100 кГц в США/Европе, опыт прохождения сертификации по FCC.
Работа в проекте будет крайне насыщенной и интересной т.к. решаемые задачи далеки от областей имеющих устоявшиеся решения. Режим работы — фуллтайм, в дружном коллективе, с конкурентной зарплатой и хорошим техническим обеспечением. Дислокация — Москва/ближнее подмосковье.
Если Вы соответствует описанным выше требованиям и у вас есть желание работать в таком проекте, то пишите в личку, с радостью пообщаемся, расскажем все подробности и с узнаем о ваших достижениях и увлечениях. В комментах по этой теме ничего отвечать не буду дабы не начинался холивар.
ПЕРЕДАЧА ТОКА БЕЗ ПРОВОДОВ МЕТОДОМ ИНДУКЦИИ
В одной из предыдущих тем мы с вами рассмотрели, как знаменитый сербский ученый Никола Тесла передавал электрический ток без проводов при помощи своего же изобретения – резонансного генератора (катушки Теслы), а как он это делал – подробно описано тут. Тесле удавалось передавать ток на очень большие расстояния, но кроме метода предложенного Теслой, существует еще один – индукционный. Такой метод конечно не предназначен для дальний передач тока.
Метод индукции не нашел массового применения в науке и технике из-за очень больших потерь модулируемого тока (потерии достигают 60%), к тому же таким методом передать ток более, чем на 1 метр не возможно (теоретически конечно можно, но нет смысла из-за сильного рассеяния поля).
Устройство такой передачи очень простое – два контура, один из них подключен к генератору высокой частоты (в несколько килогерц). Подобное устройство можно легко изготовить дома, простой мультивибратор который расчитан на 20-50 килогерц подключен к усилительному каскаду, к последнему подключен контур который содержит от 10 до 100 витков, второй контур аналог первого. Самое главное в индукционном принципе передачи тока то, что у контуров отсутствует магнитный сердечник, то есть они никак не присоединены друг к другу, а ток передается по воздуху методом индукции.
На практике, как говорилось выше, данным метод применяют очень редко. Такой принцип передачи известен давно – еще со времен Майкла Фарадея (уже 200 лет). И вот в наше время корпорация Нокия решила использовать данный способ и создала концепт мобильного телефона, у которого нет порта зарядки, телефон пока не выпускают серийно, но покупателям такой мобильник точно понравится. В нем встроен приемный контур, а передающий спрятан в подставке. Работает все это очень просто – ставим телефон на поставку и телефон заряжается.
Но это далеко не все преимущества чудо-телефона. Телефон может зарядится и другим способом. Известно, что теле и радио станции модулируют радиоволны, а телефон их собирает приемником и превращает в ток которым телефон заряжается. Такой принцип, и принцип индукционной передачи тока стали использовать и другие производители мобильных телефонов и ноутбуков, и сейчас на рынке стало уже возможно найти такие чудо-устройства. Автор: Ака.
Форум по вопросам беспроводной передачи энергии
Форум по обсуждению материала ПЕРЕДАЧА ТОКА БЕЗ ПРОВОДОВ МЕТОДОМ ИНДУКЦИИ
По заветам и технологиям Николы Тесла – беспроводная передача электроэнергии на большие расстояния уже реальность
Сербско-американский физик и изобретатель Никола Тесла более ста лет назад представил технологию беспроводной передачи электроэнергии. Основой технологии был электрический резонансный трансформатор «Катушка Тесла». Технология была работоспособной даже при тех технических возможностях и доступных материалах. На демонстрациях трансформатор передавал энергию на несколько метров, зажигая лампы накаливания. И конечно мечты и стремления Николы Тесла выходили далеко за пределы этого прототипа. Он уже тогда представлял мир будущего, где человечество использует электрические машины во всех сферах жизнедеятельности, а электроэнергия для их работы передаётся без помощи проводов.
В интервью для «The American Magazine» Тесла описал своё видение будущего так: «Может быть, что в ближайшем будущем электричество для коммерческих целей, таких как освещение домов, работа транспорта, будет передаваться без проводов. Я открыл основные принципы этого процесса, и остаётся только развивать их коммерчески. Когда это будет сделано, вы сможете отправиться в любую точку мира — на вершину горы с видом на вашу ферму, в Арктику или в пустыню — и установить небольшое устройство, которое даст вам тепло, чтобы готовить, и свет, чтобы читать».
Башня Уорденклиффа (Wardenclyffe Tower)К сожалению, мечтам Теслы тогда не суждено было реализоваться. Финансирование проекта строительства передающей «Башни Уорденклиффа» (Wardenclyffe Tower) было прекращено Джей-Пи Морганом, после чего Тесла обанкротился, а проект беспроводной передачи электроэнергии был фактически уничтожен, как и сама башня, в 1917 году. Кто-то на этих основаниях строит конспирологические теории, но на самом деле всё элементарно, и предельно просто и прозаично. Всё дело в деньгах. Примерно в те же годы, появившиеся раньше ДВС, электромобили начали сдавать свои позиции под натиском бензиновых автомобилей. Ведь проще качать нефть и «перегонять» её в бензин, чем строить электростанции, зарядные станции… Просто человечество тогда ещё не было психологически и интеллектуально готово к эре электрификации транспорта, и беспроводной передачи энергии. И на десятилетия города погрузилось в смог от ДВС, и угольных ТЭС, а над головами растянулись паутины линий электропередач, от высоковольтных ЛЭП, до линий питания троллейбусов, трамваев, и железнодорожных поездов.
беспроводная зарядка смартфонаНо всё изменилось в 21-ом веке. Имя Николы Тесла было поднято на знамёна автомобильными компаниями Tesla Илона Маска, и Nikola motor Тревора Милтона, а интерес к технологии «Катушки Тесла» неосознанно, но начали закладывать даже с детсадовского возраста, показывая детям и школьникам «Тесла-шоу».
детские «тесла-шоу»И история покатилась в новом направлении. Электромобили стали не просто мейнстримом, они постепенно начинают вытеснять ископаемотопливные чадилки из производства, с улиц, и что самое главное, из сознания людей. Беспроводными зарядками сейчас уже никого не удивишь. Так заряжают не только телефоны, но уже существует соответствующее оборудование для беспроводной зарядки электромобилей, и электробусов. Кстати, из городов постепенно исчезают троллейбусы и необходимая им проводная сеть электропередачи. Это тоже признак наступления новой эры, о которой мечтал Тесла.
беспроводная зарядка электробусаВообще говоря, беспроводная передача энергии может быть достигнута с помощью различных методов, включая:
- Индуктивная связь
- Магнитно-резонансная индукция
- Электростатическая индукция
- Резонансная индуктивная связь
- Передача микроволновой энергии
- Передача мощности лазера
Первые четыре варианта применимы только для коротких дистанций, в то время как последние два специально разработаны для беспроводной передачи энергии на большие расстояния.
Но что до самой передачи больших объёмов электроэнергии на расстояния?Технология Николы Тесла не исчезла, и никуда не пропала. В Новой Зеландии стартап Emrod разработал метод безопасной и беспроводной передачи электроэнергии на большие расстояния без использования проводов, и работает по внедрению этой технологии на островах со вторым по величине дистрибьютором электроэнергии в стране, Powerco. Emrod подали заявки на патенты, и представили прототип передающих и принимающих трансформаторов в 2019 году. По сути, это открытие миру доступа к энергии с помощью первой коммерчески жизнеспособной технологии беспроводной передачи электроэнергии на большие расстояния.
установка оборудования EmrodEmrod — «Нас в Emrod вдохновляет работа Николы Тесла и его мечта о беспроводной энергетической системе. Наша технология значительно отличается от Wardenclyffe Tower Теслы, мы приближаемся к реализации его концепции беспроводной передачи энергии на большие расстояния. Более века назад Никола Тесла попытался воплотить в жизнь свое видение беспроводной передачи энергии, и хотя ему не удалось конкретно реализовать свое видение, он заложил идею, которая захватила воображение многих людей, в том числе и наше.
Нас часто спрашивают о разнице между технологиями беспроводной передачи энергии на большие расстояния (WPT) Emrod и Tesla. Наука и технологии, лежащие в основе этих двух систем, существенно различаются концептуально и технически. Emrod разработал однонаправленную систему WPT, передающую мощность от одной конкретной точки к другой. Тесла разрабатывал всенаправленную систему WPT, предназначенную для передачи энергии во всех направлениях через землю.
За столетие, последовавшее за экспериментами Теслы, было много прорывов, и теперь мы находимся в то время, когда коммерчески жизнеспособные приложения WPT с большим радиусом действия стали реальностью. В Emrod мы разработали эффективную систему WPT для передачи энергии на большие расстояния без проводов и с достаточной эффективностью, чтобы быть жизнеспособной альтернативой линиям электропередач в определенных случаях использования.Хотя наша технология значительно отличается от того, над чем работал Тесла, мы вдохновлены его работой и разделяем его видение беспроводного будущего. Его изобретения легли в основу многих электронных технологий, которые изменили цивилизацию, включая технологию беспроводной связи. Он открыл умы людей для возможности создания систем беспроводной передачей энергии на большие расстояния. Теперь, более века спустя, это становится реальностью»
Совместный проект Emrod и Powerco должен показать свою эффективности, как технологической, так и с коммерческой точек зрения. В рамках проекта планируется передать энергию от солнечной электростанции на Северном острове клиентам, находящимся в нескольких километрах от неё. Электрическая мощность будет передаваться в виде узкого луча микроволн. Это устранит два фундаментальных недостатка в плане Теслы. Один из них заключался в том, как взимать с людей плату за электричество, которое они могут просто «черпать из воздуха». Другой — необходимость преодолеть закон распространения излучения, который утверждает, что сила сигнала обратно пропорциональна квадрату расстояния, которое он прошёл от передатчика. В результате мощность сигнала резко падает даже на коротких расстояниях. Передача мощности узким лучом вместо излучения во всех направлениях помогает свести к минимуму эту проблему.
Схематическая модель телеэнергетической системы EmrodEmrod использует лучи в диапазоне ISM (промышленный, научный и медицинский) с частотами, обычно используемыми в WiFi, Bluetooth и RfID. Двухточечная передача означает, что мощность передаётся напрямую между двумя точками. Вокруг луча нет излучения, как при передаче по высоковольтному проводу. Маломощная лазерная защитная завеса (система безопасности) гарантирует, что передающий луч немедленно отключится до того, как какой-либо приходящий объект (например, птица или вертолёт) достигнет пространства главного луча, гарантируя, что он никогда не коснется чего-либо, кроме чистого воздуха. Система снижает риск поражения электрическим током, что возможно при проводной передачи электроэнергии.
антенна Emrod на арктической станцииТехнология энергетического излучения, которую использует Emrod, была опробована и раньше, но в основном для военных целей или для использования в космическом пространстве. В 1975 году НАСА использовало микроволновые излучатели для передачи 34 кВт электроэнергии на расстояние 1,6 км. И это всё ещё является рекордом по мощности и расстоянию передачи.
антенна Emrod — тестовая уксплуатацияНо, как вы понимаете, тогда никто и не думал попробовать применить эту технологию в коммерческих целях. Представляете, сколько денег из-за неё потеряют только металлургические заводы, у которых пропадут заказы на сотни тысяч километров высоковольтных проводов.
По словам основателя Emrod, Грега Кушнира, они начнут с передачи «нескольких киловатт» на 1,8 км, а затем они будут постепенно увеличивать мощность и расстояние. Важнейшей переменной является эффективность, с которой это можно сделать. По словам Кушнира, сейчас это около 60%. Это, как он считает, уже достаточно хорошо, чтобы сделать передачу энергии коммерчески жизнеспособной в некоторых обстоятельствах, например, в удалённых районах, не тратя деньги на дорогостоящие линии электропередачи. Но, чтобы улучшить КПД, у Emrod есть ещё два козыря в рукаве. Один из них — использовать реле. Другой — добавить в приемники так называемые метаматериалы.
никаких проводов на дистанции передачи энергииРеле, которые представляют собой пассивные устройства, которые не потребляют энергию, работают как линзы, перефокусируя микроволновый луч и отправляя его по своему пути с минимальными потерями при передаче. Они также могут направить его, если необходимо, в новом направлении. Это означает, что передатчик и приёмник не обязательно должны находиться в зоне прямой видимости друг друга.
Метаматериалы — это композиты, содержащие крошечные количества проводящих металлов и изолирующие пластмассы, расположенные таким образом, что они определенным образом взаимодействуют с электромагнитным излучением, таким как микроволны. Они уже используются в так называемых маскирующих устройствах, которые помогают военным кораблям и военным самолётам укрываться от радаров. Но их также можно использовать в приёмной антенне для более эффективного преобразования электромагнитных волн в электричество. То есть тут мы имеем дело с фактически применением стелс-технологии в гражданских целях. И в этом, кстати, нет ничего удивительного. Ранее SpaceX фактически ввело в гражданский обиход технологию фазированной антенной решётки, которая стала основой приёмо-передающей антенны, входящей в комплект абонентского оборудования Starlink. Ранее эта технология, всего каких-то пять лет назад, применялась только военным.
Распространение мощных микроволн по воздуху сопряжено с риском. В конце концов, подобные волны — это средства, с помощью которых микроволновые печи нагревают то, что в них помещено.
Emrod говорит, что кратковременное воздействие его лучей не должно причинить никакого вреда людям или животным, поскольку плотность мощности излучения относительно низкая. Тем не менее, чтобы избежать несчастных случаев, лучи будут окружены так называемыми лазерными завесами. Это маломощные лазерные лучи, которые сами по себе не вредны. Но если «занавес» сдвигается из-за внешнего вмешательства, такого как птицы или низколетящие вертолёты (которые в Новой Зеландии используются для контроля отар овец), это прерывание будет немедленно обнаружено, и микроволновая передача временно отключится. Батареи на принимающей стороне будут заряжаться во время любых отключений.
Идеи Николы Тесла распространяются по миру, и находят всё больше сторонников концепция TransferFiРазработкой систем беспроводной передачи электроэнергии заняты ещё несколько компаний в мире. К примеру, TransferFi из Сингапура, разрабатывает систему, которая формирует лучи радиоволн, которые обычно имеют более низкую частоту, чем микроволны, для передачи мощности конкретным приёмным устройствам, предназначенным для зарядки гаджетов на фабриках, офисах, и в домах.
концепция PowerLight TechnologiesАмериканская фирма PowerLight Technologies работает с вооруженными силами над использованием лазеров для передачи энергии на удалённые базы, а также для питания беспилотных летательных аппаратов, когда они находятся в воздухе. Компания также уделяет внимание коммерческим приложениям.
Японская Mitsubishi Heavy Industries изучает возможности использования этой технологии для передачи энергии на Землю с геостационарных спутников, оснащенных солнечными панелями. Для этого потребуется передать его на расстояние более 35 000 км.
передача энергии с орбитыТак что мечты Николы Тесла постепенно сбываются. И как электромобили сейчас, через более чем сто лет, стали магистральным путём развития мирового автопрома, так и технология беспроводной передачи электроэнергии также найдёт свое коммерческое применение, и станет элементом повседневной реальности. Всё только начинается!
___________________________
Уважаемые читатели, чтобы не пропустить наши свежие статьи вы можете подписаться на наш Телеграм-канал. Оставляйте комментарии, ставьте лайки, делайте репосты (кнопки соцсетей есть в конце каждого материала). Ваше участие нам очень важно!
статью прочитали: 1 021
Поделиться ссылкой:
Понравилось это:
Нравится Загрузка…
ПохожееПо заветам и технологиям Николы Тесла – беспроводная передача электроэнергии на большие расстояния уже реальность | Зелёная Точка Старта
Сербско-американский физик и изобретатель Никола Тесла более ста лет назад представил технологию беспроводной передачи электроэнергии. Основой технологии был электрический резонансный трансформатор “Катушка Тесла”. Технология была работоспособной даже при тех технических возможностях и доступных материалах. На демонстрациях трансформатор передавал энергию на несколько метров, зажигая лампы накаливания. И конечно мечты и стремления Николы Тесла выходили далеко за пределы этого прототипа. Он уже тогда представлял мир будущего, где человечество использует электрические машины во всех сферах жизнедеятельности, а электроэнергия для их работы передаётся без помощи проводов.
По заветам и технологиям Николы Тесла – беспроводная передача электроэнергии на большие расстояния уже реальностьВ интервью для «The American Magazine» Тесла описал своё видение будущего так: «Может быть, что в ближайшем будущем электричество для коммерческих целей, таких как освещение домов, работа транспорта, будет передаваться без проводов. Я открыл основные принципы этого процесса, и остаётся только развивать их коммерчески. Когда это будет сделано, вы сможете отправиться в любую точку мира — на вершину горы с видом на вашу ферму, в Арктику или в пустыню — и установить небольшое устройство, которое даст вам тепло, чтобы готовить, и свет, чтобы читать».Башня Уорденклиффа (Wardenclyffe Tower)
Башня Уорденклиффа (Wardenclyffe Tower)
К сожалению, мечтам Теслы тогда не суждено было реализоваться. Финансирование проекта строительства передающей “Башни Уорденклиффа” (Wardenclyffe Tower) было прекращено Джей-Пи Морганом, после чего Тесла обанкротился, а проект беспроводной передачи электроэнергии был фактически уничтожен, как и сама башня, в 1917 году. Кто-то на этих основаниях строит конспирологические теории, но на самом деле всё элементарно, и предельно просто и прозаично. Всё дело в деньгах. Примерно в те же годы, появившиеся раньше ДВС, электромобили начали сдавать свои позиции под натиском бензиновых автомобилей. Ведь проще качать нефть и “перегонять” её в бензин, чем строить электростанции, зарядные станции… Просто человечество тогда ещё не было психологически и интеллектуально готово к эре электрификации транспорта, и беспроводной передачи энергии. И на десятилетия города погрузилось в смог от #ДВС , и угольных #ТЭС , а над головами растянулись паутины линий электропередач, от высоковольтных ЛЭП, до линий питания троллейбусов, трамваев, и железнодорожных поездов.
беспроводная зарядка смартфонабеспроводная зарядка смартфона
Но всё изменилось в 21-ом веке. Имя Николы Тесла было поднято на знамёна автомобильными компаниями #Tesla Илона Маска, и #Nikola motor Тревора Милтона, а интерес к технологии “Катушки Тесла” неосознанно, но начали закладывать даже с детсадовского возраста, показывая детям и школьникам #Тесла-шоу .
детские “тесла-шоу”детские “тесла-шоу”
И история покатилась в новом направлении. #Электромобили стали не просто мейнстримом, они постепенно начинают вытеснять ископаемотопливные чадилки из производства, с улиц, и что самое главное, из сознания людей. Беспроводными зарядками сейчас уже никого не удивишь. Так заряжают не только телефоны, но уже существует соответствующее оборудование для беспроводной зарядки электромобилей, и электробусов. Кстати, из городов постепенно исчезают троллейбусы и необходимая им проводная сеть электропередачи. Это тоже признак наступления новой эры, о которой мечтал Тесла.
беспроводная зарядка электробусабеспроводная зарядка электробуса
Вообще говоря, #беспроводная передача энергии может быть достигнута с помощью различных методов, включая:
- Индуктивная связь
- Магнитно-резонансная индукция
- Электростатическая индукция
- Резонансная индуктивная связь
- Передача микроволновой энергии
- Передача мощности лазера
Первые четыре варианта применимы только для коротких дистанций, в то время как последние два специально разработаны для беспроводной передачи энергии на большие расстояния.
Но что до самой передачи больших объёмов электроэнергии на расстояния?
Технология Николы Тесла не исчезла, и никуда не пропала.
В Новой Зеландии стартап Emrod разработал метод безопасной и беспроводной передачи электроэнергии на большие расстояния без использования проводов, и работает по внедрению этой технологии на островах со вторым по величине дистрибьютором электроэнергии в стране, Powerco. Emrod подали заявки на патенты, и представили прототип передающих и принимающих трансформаторов в 2019 году. По сути, это открытие миру доступа к энергии с помощью первой коммерчески жизнеспособной технологии #беспроводной передачи электроэнергии на большие расстояния.
установка оборудования Emrod По заветам и технологиям Николы Тесла – беспроводная передача электроэнергии на большие расстояния уже реальностьПо заветам и технологиям Николы Тесла – беспроводная передача электроэнергии на большие расстояния уже реальностьПо заветам и технологиям Николы Тесла – беспроводная передача электроэнергии на большие расстояния уже реальностьустановка оборудования Emrod
Emrod – “Нас в Emrod вдохновляет работа Николы Тесла и его мечта о беспроводной энергетической системе. Наша технология значительно отличается от Wardenclyffe Tower Теслы, мы приближаемся к реализации его концепции беспроводной передачи энергии на большие расстояния. Более века назад Никола Тесла попытался воплотить в жизнь свое видение беспроводной передачи энергии, и хотя ему не удалось конкретно реализовать свое видение, он заложил идею, которая захватила воображение многих людей, в том числе и наше.
Нас часто спрашивают о разнице между технологиями беспроводной передачи энергии на большие расстояния (WPT) Emrod и Tesla. Наука и технологии, лежащие в основе этих двух систем, существенно различаются концептуально и технически. Emrod разработал однонаправленную систему WPT, передающую мощность от одной конкретной точки к другой. Тесла разрабатывал всенаправленную систему WPT, предназначенную для передачи энергии во всех направлениях через землю.
За столетие, последовавшее за экспериментами Теслы, было много прорывов, и теперь мы находимся в то время, когда коммерчески жизнеспособные приложения WPT с большим радиусом действия стали реальностью. В Emrod мы разработали эффективную систему WPT для передачи энергии на большие расстояния без проводов и с достаточной эффективностью, чтобы быть жизнеспособной альтернативой линиям электропередач в определенных случаях использования.
Хотя наша технология значительно отличается от того, над чем работал Тесла, мы вдохновлены его работой и разделяем его видение беспроводного будущего. Его изобретения легли в основу многих электронных технологий, которые изменили цивилизацию, включая технологию беспроводной связи. Он открыл умы людей для возможности создания систем беспроводной передачей энергии на большие расстояния. Теперь, более века спустя, это становится реальностью”
Совместный проект Emrod и Powerco должен показать свою эффективности, как технологической, так и с коммерческой точек зрения. В рамках проекта планируется передать энергию от солнечной электростанции на Северном острове клиентам, находящимся в нескольких километрах от неё. Электрическая мощность будет передаваться в виде узкого луча микроволн. Это устранит два фундаментальных недостатка в плане Теслы. Один из них заключался в том, как взимать с людей плату за электричество, которое они могут просто “черпать из воздуха“. Другой – необходимость преодолеть закон распространения излучения, который утверждает, что сила сигнала обратно пропорциональна квадрату расстояния, которое он прошёл от передатчика. В результате мощность сигнала резко падает даже на коротких расстояниях. Передача мощности узким лучом вместо излучения во всех направлениях помогает свести к минимуму эту проблему.
Схематическая модель телеэнергетической системы EmrodСхематическая модель телеэнергетической системы Emrod
Emrod использует лучи в диапазоне ISM (промышленный, научный и медицинский) с частотами, обычно используемыми в #WiFi , #Bluetooth и RfID. Двухточечная передача означает, что мощность передаётся напрямую между двумя точками. Вокруг луча нет излучения, как при передаче по высоковольтному проводу. Маломощная лазерная защитная завеса (система безопасности) гарантирует, что передающий луч немедленно отключится до того, как какой-либо приходящий объект (например, птица или вертолёт) достигнет пространства главного луча, гарантируя, что он никогда не коснется чего-либо, кроме чистого воздуха. Система снижает риск поражения электрическим током, что возможно при проводной передачи электроэнергии.
антенна Emrod на арктической станцииантенна Emrod на арктической станции
Технология энергетического излучения, которую использует Emrod, была опробована и раньше, но в основном для военных целей или для использования в космическом пространстве. В 1975 году НАСА использовало микроволновые излучатели для передачи 34 кВт электроэнергии на расстояние 1,6 км. И это всё ещё является рекордом по мощности и расстоянию передачи.
антенна Emrod – тестовая уксплуатацияантенна Emrod – тестовая уксплуатация
Но, как вы понимаете, тогда никто и не думал попробовать применить эту технологию в коммерческих целях. Представляете, сколько денег из-за неё потеряют только металлургические заводы, у которых пропадут заказы на сотни тысяч километров высоковольтных проводов.
По словам основателя Emrod, Грега Кушнира, они начнут с передачи «нескольких киловатт» на 1,8 км, а затем они будут постепенно увеличивать мощность и расстояние. Важнейшей переменной является эффективность, с которой это можно сделать. По словам Кушнира, сейчас это около 60%. Это, как он считает, уже достаточно хорошо, чтобы сделать передачу энергии коммерчески жизнеспособной в некоторых обстоятельствах, например, в удалённых районах, не тратя деньги на дорогостоящие линии электропередачи. Но, чтобы улучшить КПД, у Emrod есть ещё два козыря в рукаве. Один из них – использовать реле. Другой – добавить в приемники так называемые метаматериалы.
никаких проводов на дистанции передачи энергииникаких проводов на дистанции передачи энергии
Реле, которые представляют собой пассивные устройства, которые не потребляют энергию, работают как линзы, перефокусируя микроволновый луч и отправляя его по своему пути с минимальными потерями при передаче. Они также могут направить его, если необходимо, в новом направлении. Это означает, что передатчик и приёмник не обязательно должны находиться в зоне прямой видимости друг друга.
Метаматериалы – это композиты, содержащие крошечные количества проводящих металлов и изолирующие пластмассы, расположенные таким образом, что они определенным образом взаимодействуют с электромагнитным излучением, таким как микроволны. Они уже используются в так называемых маскирующих устройствах, которые помогают военным кораблям и военным самолётам укрываться от радаров. Но их также можно использовать в приёмной антенне для более эффективного преобразования электромагнитных волн в электричество. То есть тут мы имеем дело с фактически применением стелс-технологии в гражданских целях. И в этом, кстати, нет ничего удивительного. Ранее SpaceX фактически ввело в гражданский обиход технологию фазированной антенной решётки, которая стала основой приёмо-передающей антенны, входящей в комплект абонентского оборудования Starlink. Ранее эта технология, всего каких-то пять лет назад, применялась только военным.
Распространение мощных микроволн по воздуху сопряжено с риском. В конце концов, подобные волны – это средства, с помощью которых микроволновые печи нагревают то, что в них помещено.
Emrod говорит, что кратковременное воздействие его лучей не должно причинить никакого вреда людям или животным, поскольку плотность мощности излучения относительно низкая. Тем не менее, чтобы избежать несчастных случаев, лучи будут окружены так называемыми лазерными завесами. Это маломощные лазерные лучи, которые сами по себе не вредны. Но если “занавес” сдвигается из-за внешнего вмешательства, такого как птицы или низколетящие вертолёты (которые в Новой Зеландии используются для контроля отар овец), это прерывание будет немедленно обнаружено, и микроволновая передача временно отключится. Батареи на принимающей стороне будут заряжаться во время любых отключений.
Идеи Николы Тесла распространяются по миру, и находят всё больше сторонников
концепция TransferFiконцепция TransferFi
Разработкой систем беспроводной передачи электроэнергии заняты ещё несколько компаний в мире. К примеру, TransferFi из Сингапура, разрабатывает систему, которая формирует лучи радиоволн, которые обычно имеют более низкую частоту, чем микроволны, для передачи мощности конкретным приёмным устройствам, предназначенным для зарядки гаджетов на фабриках, офисах, и в домах.
концепция PowerLight Technologiesконцепция PowerLight Technologies
Американская фирма PowerLight Technologies работает с вооруженными силами над использованием лазеров для передачи энергии на удалённые базы, а также для питания беспилотных летательных аппаратов, когда они находятся в воздухе. Компания также уделяет внимание коммерческим приложениям.
Японская Mitsubishi Heavy Industries изучает возможности использования этой технологии для передачи энергии на Землю с геостационарных спутников, оснащенных солнечными панелями. Для этого потребуется передать его на расстояние более 35 000 км.
передача энергии с орбитыПо заветам и технологиям Николы Тесла – беспроводная передача электроэнергии на большие расстояния уже реальностьпередача энергии с орбиты
Так что мечты Николы Тесла постепенно сбываются. И как электромобили сейчас, через более чем сто лет, стали магистральным путём развития мирового автопрома, так и технология беспроводной передачи электроэнергии также найдёт свое коммерческое применение, и станет элементом повседневной реальности.
Всё только начинается!
___________________________
Уважаемые читатели, не забывайте кликнуть кнопку “Подписаться ” на наш канал здесь в Дзене по прочтении статьи .
Можете подписаться и на наш Телеграм-канал , чтобы не пропустить новые материалы, и делиться ссылками на них со своими друзьями в новом мессенджерах . Оставляйте комментарии, ставьте лайки, делайте репосты.
Ваше участие нам очень важно!
Н.Тесла и беспроводное электричество. — TechnoAttic
1 Н.Тесла и его вклад в мировую науку
Никола Тесла – выдающийся мировой изобретатель. Перечислить все его заслуги и достижения вкратце очень сложно. Его патенты затрагивают почти все ветви науки, даже такие современные темы как компьютерная логика или аэродинамика.
В современном мире электричество привычно почти так же, как воздух и вода. Крупнейшие из сооруженных человеком механизмов и самые повседневные бытовые приборы работают на электрическом токе. Не будет преувеличением сказать, что современная цивилизация существует благодаря электричеству.
Сейчас мало кто вспоминает о том, что первые серьезные исследования этого явления начались всего два-три столетия назад. Многие великие ученые трудились над тем, чтобы постичь феномен заряженных частиц и обратить их на службу человеку, достаточно назвать имена Ампера, Фарадея, Максвелла, Герца. Среди этих великих имен особое место занимает сербский ученый Никола Тесла. Без его работ мир не был бы таким, каким он является сегодня.
Теслу, во многом опередившего свое время, называют «изобретателем ХХ века». Впрочем, существует мнение, что он «изобрел» и ХХI век. Его имя окутано ореолом тайны, и отделить истину от домыслов бывает трудно[1].
Тесла был гением во многих областях физики. Пожалуй, его можно назвать самым разносторонним изобретателем всех времен и народов. Его сфера деятельности – работа с рентгеновскими лучами, вакуумными трубами, радиационным и космическим излучением.
Разработки инженера, посвященные дистанционному управлению, робототехнике, радарным технологиям и лазерам, стали огромным вкладом в научно-технический прогресс. Последний известный патент Теслы, зарегистрированный в начале 1928 года, — самолет с вертикальным взлетом, еще одно свидетельство широты его инженерного мышления.
Опубликованные в 1931 году работы ученого предлагают систему извлечения энергии, добывая электричество при посредстве температурных колебаний в водах мирового океана.
Тесла широко известен благодаря своему вкладу в создание устройств, работающих на переменном токе, многофазных систем и электродвигателя, позволивших совершить так называемый второй этап промышленной революции.
Также он известен как сторонник существования эфира: известны многочисленные его опыты и эксперименты, имевшие целью показать наличие эфира как особой формы материи, поддающейся использованию в технике.
После демонстрации радио и победы в «Войне токов» (против постоянных токов Эдисона) Тесла получил повсеместное признание как выдающийся инженер-электротехник и изобретатель. Ранние работы Тесла проложили путь современной электротехнике, его открытия раннего периода имели инновационное значение. В США по известности Тесла мог конкурировать с любым изобретателем или учёным в истории или популярной культуре [2].
2 Вымыслы и реальность
Существуют две основные точки зрения на творческую деятельность Николы Теслы «мистическая» и скептическая.
Сторонники первого направления полагают, что признаваемые официальной наукой заслуги Теслы в области электротехники лишь верхушка айсберга. Основных своих достижений исследователь будто бы добился во второй половине своей жизни, когда занялся глобальными исследованиями по извлечению электрической энергии из тела Земли и практическому использованию её в военной области для создания «непробиваемого щита», то есть электромагнитного поля большой мощности, способного закрывать границы государств от иностранного вторжения, а так же «лучей смерти», призванных наносить удары огромной силы по вражеским объектам.
Н.Тесла писал в 1927 г. «Более чем 25 лет назад мои усилия передать большое количество энергии через атмосферу привели к разработке многообещающего изобретения, которое с той поры получило название «Лучи смерти». Основополагающая идея заключалась в создании проводимости в воздухе приемлемым ионизирующим излучением и передачи токов с высоким потенциалом вдоль пути лучей… Эксперименты, проводимые в больших масштабах, показали, что с напряжением много миллионов вольт фактически неограниченное количество энергии может быть передано…»
Журнал «Time» писал 23 июля 1934г.: «На прошлой неделе доктор Тесла объявил комбинацию из четырех изобретений, которые сделают войну бессмысленной. Существом идеи являются смертоносные лучи – концентрированный пучек субмикронных частиц, перемещаемых со скоростью, близкой к скорости света. Пучек, по словам Тесла, будет поражать армию на маршруте полета, сбивая эскадрильи самолетов на дистанции 250 миль (400км). Тесла будет разряжать луч путем использования: прибора для сведения к нулю эффекта задержки частиц в атмосфере; метода создания высокого потенциала; процесс усиления этого потенциала до 50 миллионов вольт; создания гигантской электрической силы воздействия» [3], [8].
Тесла будто бы даже провел успешный эксперимент такого рода: так называемый Тунгусский метеорит, 30 июня 1908 года принесший в район реки Подкаменная Тунгуска огромные разрушения, якобы был делом его рук.
В последствии ученый, осознавая свою ответственность в случае, если столь смертоносное оружие окажется в руках беспринципных политиков, предпочел приостановить, а затем и вовсе уничтожить плоды своих работ. Тот факт, что его архив сразу после смерти оказался в руках ФБР и до сих пор недоступен для ученых, косвенно это подтверждает.
Существует еще множество историй, связанных с изобретениями Теслы. Одной из них стал электромобиль без внешнего источника электроэнергии. Другая – запуск управляемой ракеты на электрической тяге. Есть иные, неподтвержденные данные о причастности Тесла к работам в лаборатории Лос-Аламос (США) и конструировании НЛО, о использовании его проектов в «Филадельфийском эксперименте» и т.п. В интернете можно обнаружить множество сайтов, которые публикуют подобную информацию.
С точки зрения оппонентов, это ровным счетом ничего не доказывает. Имеющиеся в руках исследователей материалы свидетельствуют лишь о более или менее удачных футуристических предсказаниях Николы Теслы, но не более того. Никаких конструктивных текстов, которые бы доказывали, что он конкретно разработал, к примеру, принцип работы Интернета, не имеется. Есть лишь общие рассуждения такого рода. Однако, кроме Теслы, известны и другие люди, умевшие предвидеть будущие технические открытия, например, французский писатель Жюль Верн.
По всей видимости, в этом споре разумнее всего занять промежуточное положение. Из того, что современная наука не в состоянии воспроизвести опыты Теслы, еще не следует, что это не сумеет сделать наука будущего, что они в принципе не воспроизводимы. При этом слепо настаивать на том, что Тесла, не склонный различать мыслительный и реальный, физический, виды экспериментов, всегда и во всем прав, тоже неосмотрительно. Грань между истиной и самообманом в таких случаях очень тонка и опасна [5].
Таким образом, вопрос о наследии Николы Теслы остается открытым. Многие его замыслы еще ждут проверки и, возможно, реализации. Современные инженеры продолжают искать более эффективные способы получения энергии из солнечного света, ветра, морской воды и даже из открытого космоса: необходимость беречь ресурсы нашей планеты становится всё актуальнее.
Тесла подчеркивал необходимость быть экономным более ста лет назад, когда проблема истощения земной коры еще не стояла так остро. Возможно, бережное отношение связано с религиозными убеждениями ученого: он признавался в том, что в глубине души является очень верующим человеком. Известно, что помимо христианского богословия, Тесла много читал восточные учения, в частности Буддизм. Возможно, оттуда он вынес ощущение взаимосвязанности всех происходящих на земле процессов и хрупкости пронизывающей мир гармонии.
Знакомство с основными концепциями Николы Теслы входит в обязательную программу всех, кто изучает электротехнику на Западе. Многие ведущие университеты США например, Калифорнийский университет в Беркли и Массачусетский технологический институт – уделяют особое внимание наследию инженера. Его труды активно изучаются на родине – в Сербии и Хорватии [1].
В последнее время в России так же стали уделять внимание разработкам Теслы. Это стоит особо отметить. В последние десять лет в России опубликованы в переводе с английского все известные труды Николы Теслы. Его творчеству посвящены или его творчеством инспирированы десятки книг российских авторов. Учёному посвящены многочисленные научно-популярные программы на российском телевидении, его имя ставится в один ряд с именем В.И.Вернадского. Было бы вполне естественно, если бы российские учёные получили доступ к огромному массиву ещё не опубликованных и не изученных документов и материалов научного наследия Николы Теслы, объём которого в музее-архиве в шесть раз превышает всё то, что на сегодняшний день опубликовано во всём мире.
Предложение по созданию Российско-сербского общества (института) по изучению научного наследия Николы Теслы было высказано Велимиром Абрамовичем, доктором философии науки (физики и математики) из Белграда. «Я имел возможность познакомиться с некоторыми частями неопубликованного архива и был поражён, когда в одном из документов прочитал описание Теслой того, как остановить распад радиоактивных элементов радия и изотопов урана. Многие современные российские учёные-физики воспринимают идеи Теслы гораздо серьёзнее, чем где-либо в мире. Поэтому считаю, что настало время совместно с российскими коллегами осуществить систематическое изучение драгоценной научной документации Николы Теслы, что могло бы послужить исходной базой не только для новых чистых технологий, но и для ещё более важной цели – познания смысла самой науки»[4].
«…В связи со съёмками своих документальных фильмов о Николе Тесле мне довелось общаться в Белграде не только с учёными разных стран, изучающих наследие Теслы, и руководством Музея Н.Теслы, но и поработать в архиве этого музея. По единодушному мнению исследователей Сербии и других стран, а также хранителей архива, этот архив может подарить мировому сообществу большое число неизвестных идей и разработок Николы Теслы, в которых так нуждается современное человечество. При этом сербские друзья не раз подчёркивали, что в этом благородном и важном для всего человечества деле одна из главных надежд Сербии – на Россию, на её учёных и просто людей, неравнодушных к имени великого Николы Теслы, научное наследие которого целенаправленно замалчивалось в течение многих десятков лет.» — В.Правдивцев, сценарист, режиссёр, писатель, кандидат технических наук.
3 Беспроводная передача электроэнергии
В этом разделе приведены факты и последовательный ход мысли ученого, результатами которых действительно стал реальный коммерческий проект по передаче электроэнергии и радиоволн в любую точку планеты – «Мировая система». Для Теслы уже в то время было несомненно, что должен быть открыт способ передачи электроэнергии и вовсе без проводов. Эта проблема стала предметом внимания ученого в конце 1889 года.
Как одна из частных задач Теслу заинтересовала возможность использовать открытие Максвеллом и Герцем электромагнитной природы света. У него возникла мысль: если свет представляет собой электромагнитные колебания с определенной длиной волны, нельзя ли искусственно получить его не путем нагрева нити электрической лампы накаливания (что дает возможность использовать лишь 5 процентов энергии, превращающейся в световой поток), а путем создания таких колебаний, которые вызвали бы появление световых волн?
В 1889 году Тесла принялся за конструирование генератора переменного тока большой частоты и вскоре создал машину, статор которой состоял из 348 магнитных полюсов. Этот генератор давал возможность получать переменный ток с частотой в 10 тысяч периодов в секунду (10 кГц). Вскоре ему удалось создать и еще более высокочастотный генератор и начать изучение различных явлений при частоте 20 тысяч периодов в секунду [5].
Рисунок 3 – Генератор переменного тока 10кГцДля получения значительно большего числа периодов и значительно более высоких напряжений, чем это могло быть достигнуто созданными им генераторами токов высокой частоты, необходимо было найти и опереться на иные принципы. Тесла создает свой резонансный трансформатор.
Открытые им в 1890 году принципы электрической настройки резонансного трансформатора и возможность изменять емкость для изменения длины волны электромагнитных колебаний, создаваемых трансформатором, стали одним из наиболее важных оснований радиотехники.
В 1896 году невдалеке от Нью-Йорка Тесла построил небольшую радиостанцию и передавал сигналы на расстояние до 32 километров. К этому времени он увеличил частоту тока на своей отправительной станции (уменьшил длину волны), доведя его до 2 МГц — величины, ранее недостижимой. Сигналы его отправительной установки в Нью-Йорке принимали на судах, движущихся по Гудзону на расстоянии свыше 25 километров. Тесла занялся разработкой схемы передачи радиоволн для управления различными механизмами. В начале 1898 года Тесла создал первую конструкцию судна, управляемого радиосигналами на значительном расстоянии, и испытал его модель в лаборатории на Хьюстон-стрит. 1 июля 1898 года он подал заявку на патент. Примерно в этот же период Тесла получает патент на однопроводную передачу электричества, хотя первые демонстрации свечения ламп, подключенных к передающему проводу только одним контактом проходили еще в 1891г.
В сентябре 1898 года в Медисон-сквер-гардене (один из крупнейших залов Нью-Йорка) проходила ежегодная электрическая выставка. В центре зала был устроен большой бассейн. На одной из стенок его сделали причал, к которому пришвартовывался небольшой ковчег с длинным тонким металлическим стержнем посредине и металлическими трубками, заканчивающимися электрическими лампочками на корме и на носу. Тонкий стержень был приемной антенной, а сам ковчег — первым в мире управляемым по радио судном, одним из наиболее важных изобретений Николы Теслы.
Рисунок 4 – Радиоуправляемое судно8 ноября 1898 года на это изобретение Николе Тесле был выдан патент в США, а затем и в других странах, в том числе и в России (30 июля 1905 года по заявке от 26 октября 1898 года). Описания опытов в Медисон-сквер-гардене и патента Теслы заполнили страницы газет и журналов. О них писали не только в США, но и в России, Франции, Англии. Снова Тесла стал в центре внимания всех электротехников мира. Таким образом, появилось новое изобретение и новая наука, для которой предложено и новое название — «телеавтоматика», что означает техника управления движениями и действиями автоматов, удаленных на расстояние». Тесла всесторонне разработал основные положения этой новой техники. Чтобы иметь возможность управлять различными автоматами или частями одного автомата, не вызывая действия других, необходима настройка их приемных устройств на разные частоты, посылаемые с одной центральной станции. Это показывает, что Тесла с замечательной прозорливостью понял значение радиоизбирательности, чего другие изобретатели в области радио тогда еще не оценили в должной мере.
Построенные Теслой суда, управляемые по радио, уплывали в открытое море на расстояние в 25 морских миль от управляющей станции, совершали все маневры, требуемые оператором, а затем благополучно возвращались в Нью-Йоркскую гавань [5].
Эти работы имели большое значение для развития той области науки и техники, которая только впоследствии приобрела огромное значение и стала широко известной под названием «инженерная кибернетика», возникшая под влиянием идей «телеавтоматики». Современные управляемые по радио сложные автоматы, ракеты, торпеды, подводные лодки, беспилотная авиация и множество других устройств подобного рода являются результатом продолжения работ Николы Теслы, привлекших внимание последующих изобретателей. И хотя имя Теслы, как одного из основоположников всей современной телеавтоматики и кибернетических машин, не всегда упоминается в литературе, историческая правда заключается в том, что именно ему более чем кому-либо мир обязан зарождением и прогрессом многих важнейших направлений современной техники.
В 1899 года, Тесла переехал в местечко Colorado Springs «Компания колорадских источников», где основал небольшую лабораторию для исследования грозовых разрядов.
Рисунок 5 – Лаборатория в Колорадо СпрингсНаблюдения над грозами и сопровождавшими их изменениями потенциала Земли Тесла вел с помощью специально сконструированной им установки. Это был трансформатор, один конец первичной обмотки которого был заземлен, а второй, заканчивавшийся шаром, поднят на большую высоту. Так как емкость шара зависела от высоты его подъема над землей, вывод, на котором он был укреплен, сделали составным, позволяющим изменять высоту подъема. Во вторичную обмотку этого трансформатора было включено высокочувствительное самонастраивающееся устройство, соединенное с записывающим прибором.
Всякое изменение потенциала Земли вызывало в витках первичной обмотки импульсы тока, создававшие во вторичной обмотке вторичные токи, отмечаемые регистрирующим прибором. Наблюдение за этими приборами показало, что потенциал Земли непрерывно колеблется. Особенно значительны были эти колебания в период гроз и разрядов молнии. Приборы отмечали более сильные колебания потенциала Земли при отдаленных разрядах, чем при разрядах, происходивших вблизи от них. Наконец во время одной из гроз разгадка была найдена. Тесла так описал это открытие:
«Третьего июля — я никогда не забуду этой даты — я получил первое неопровержимое экспериментальное доказательство истины, имеющей огромное значение для прогресса человечества. Плотная масса сильно заряженных облаков скопилась на западе, и к вечеру разразилась страшная гроза. Растратив большую часть своей ярости в горах, она понеслась с невероятной скоростью над равнинами. Через почти регулярные интервалы времени возникали длительные грозовые разряды. Мои наблюдения теперь облегчились и стали более точными за счет приобретенного опыта. Я научился уже быстро оперировать своими приборами и приготовился к наблюдению. Регистрирующие приборы были соответствующим образом отрегулированы, и их показания становились все слабее по мере возрастания расстояния до грозы, пока совсем не исчезли. Как я и думал, немного погодя показания прибора появились вновь, становясь все сильнее и, пройдя через максимум, постепенно спадали и снова прекращались. То же самое повторялось много раз через регулярные интервалы времени, до тех пор пока гроза, которая, как следовало из простых подсчетов, двигалась с почти неизменной скоростью, не удалилась на расстояние примерно трех сотен километров. Однако и тогда эти странные явления не прекратились, а продолжались с неубывающей интенсивностью. Впоследствии аналогичные наблюдения были выполнены моим ассистентом Фрицем Ловенштейном, и вскоре собранные сведения позволили неопровержимо установить истинную природу этого чудесного явления. Не оставалось никаких сомнений — я наблюдал стоячие волны»[6].
Одна из важнейших задач, разрешить которую Тесла стремился в Колорадской лаборатории, заключалась в получении ясного ответа на вопрос: является ли Земля электрически заряженным телом или нет? Однако наблюдение явления стоячих волн в Земле ясно указывало и на наличие электрического заряда Земли и на возможность вызывать в ней стоячие волны искусственно.
Выяснение этого факта позволило Тесле осуществить эксперимент, имевший весьма важное значение для возможного осуществления его дальнейших планов. Можно ли создавать искусственно путем мощного разряда стоячие волны в Земле, вызывать в ней резонансные колебания и затем использовать их для различных целей?
В высоком деревянном здании лаборатории с раскрывающейся, как у астрономических обсерваторий, крышей был смонтирован усиливающий трансформатор. Он состоял из двух катушек: на огромное заборообразное основание были намотаны витки необычайной по своим размерам первичной катушки. Вторичная катушка этого «усиливающего передатчика» соединялась с мачтой, возвышавшейся на 50 метров над землей и заканчивавшейся медным шаром диаметром в 1 метр. Мачта состояла из отдельных секций и могла быть удлинена или укорочена. Благодаря тому, что крыша над зданием была раздвижной, вокруг вторичной катушки и мачты на значительном расстоянии не было никаких предметов.
Все обмотки этих катушек были рассчитаны так, что при пропускании через первичную катушку тока напряжением в несколько тысяч вольт и при стандартной частоте переменного тока (60 периодов в секунду) во вторичной катушке можно было получить ток весьма высокого напряжения и высокой частоты. При разрядке этой катушки на землю напряжение достигало несколько миллионов вольт при частоте до 150 тысяч периодов в секунду. Первое включение устройства Теслы вывело из строя генератор городской электростанции питавшей его лабораторию и не рассчитанный на такие большие токи. В итоге работ Тесла подтвердил возможность вызвать в Земле явление электрического резонанса и получить стоячие волны. Он предполагал, что распространение возникших в ней волн происходило от «Колорадских источников» по всем направлениям, все расширяющимися окружностями, по поверхности Земли. Они с возрастающей интенсивностью сходились затем в точке, диаметрально противоположной Колорадо, где-то около французских островов Новый Амстердам и Св. Павла, между южной оконечностью Африки и юго-западным углом Австралии. Возвращаясь обратно в «Колорадские источники», эхо волны вновь усиливалось осциллятором (усиливающим трансформатором) и отправлялось обратно к антиподам, к противоположной точке земного шара[5].
Деревянная изгородь вокруг катушек и сидящего в центре Н.Теслы – это первичная обмотка огромного резонансного трансформатора.
Рисунок 6 – Лаборатория в Колорадо Спрингс (внутренний интерьер)
В ходе проведений экспериментов в местных газетах был описан факт зажигания Н.Теслой под аплодисменты собравшейся публики, двух сотен лампочек и запуска электромоторов на расстоянии 42 км от лаборатории.
Продолжение экспериментов последовало уже в гораздо больших масштабах. В 1900г. на острове Лонг-Айленд Тесла основывает комплекс Уорденклиф. 20 акров пустыря были расчищены под здание лаборатории, на остальном участке предполагалось создать городок с населением не менее 2 тысяч человек, приглашенных на строительство сложных сооружений. Затем по мере завершения работ городок должны были заселить тысячи сотрудников лаборатории и самой мощной в мире радиостанции [5] . Подробное описание на английском языке [8]. Завод по производству электроэнергии должен был передавать электричество и радиосигналы беспроводным способом.
«Уорденклиф будет радиотехнической столицей мира», — думал Тесла, руководя развернувшимися работами по созданию мощной радиостанции, предназначенной не только для передачи на самых различных волнах любых сообщений, но и для многих, известных лишь в наше время применений радиотехники: телеуправления, локации и других. Вторую станцию для передачи во все точки земного шара электроэнергии для силовых нужд и освещения он намеревался построить у Ниагарского водопада. Едва ли кто-либо другой, кроме самого изобретателя, твердо верил в осуществимость этого грандиозного проекта. Фантастичность его мечтаний поражала всех, кто был с ними знаком.
Радиостанция Теслы должна была представлять деревянную каркасную башню высотой в 57-60 метров, на вершине которой помещался огромный медный шар. Техника того времени не знала случаев строительства подобных зданий из дерева. Когда же в 1902 году башня была закончена, Тесла переселился туда же в небольшой коттедж, где и жил в последующие несколько лет.
Рисунок 7 – Башня Н.Тесла в Уорденклиф (США) – «Мировая система»Описывая свои открытия и изобретения, на которых основано действие «Мировой системы», Тесла называл свой резонансный трансформатор, осциллятор для получения токов высокой частоты, усиливающий трансформатор для возбуждения стоячих волн в земле и другие приборы и аппараты. Тесла считал одним из важнейших своих открытий, имеющих огромную практическую ценность, обнаружение стоячих волн во время опытов в Колорадо Спрингс. Изобретение избирательной передачи, то есть возможности одновременной передачи бесконечного множества различных сигналов без взаимных помех и воздействия их на различные приемные устройства или их части, должно было обеспечить развитие «телеавтоматики», значение которой не раз показывал Тесла в своих предыдущих статьях.
Все эти и многие другие его изобретения, описанные в брошюре о «Мировой системе», обеспечивали, по мнению Теслы, беспроводную передачу бесплатной электроэнергии в любых количествах в любую точку земного шара. Подробная конструкция, кажущегося фантастическим, проекта описана в патенте США №1119732 от 1 декабря 1914г. «Устройство для передачи электроэнергии»[7]. Отдельные составляющие части системы еще в 4-5 (или более) патентах.
Рисунок 8 – Пробный запуск башни в УорденклифПробный пуск невиданного сооружения состоялся в 1903 году и произвел потрясающий эффект. «Тесла зажег небо над океаном на тысячи миль», — писали газеты. С помощью катушки размером в 61 метр, полюс которой возглавляла большая медная сфера, возвышающаяся над его лабораторией, Тесла генерировал потенциалы, которые разряжались стрелами молний длинной до 40 метров. Гром от высвобождаемой энергии мог быть услышан за многие мили. Люди, идущие по улицам были поражены, наблюдая искры, скачущие между их ногами и землей, и электрические огни, выпрыгивающие из крана, когда его открывали. Вокруг экспериментальной башни пылал шар диаметром в 30 метров. Лошади в сбруе получили шоковые электроудары через их металлические подковы и металлические предметы привязи на стойлах. Даже насекомые были повреждены: бабочки стали наэлектризованными и беспомощно кружились кругами на своих крыльях, бьющих струями синих ореолов «Огней Святого Эльма» (The July 14th-17th 1903 reports from «The New York Sun»).
Однако строительство не было закончено. «Увы, — писал Тесла, — по сей день моя установка «беспроволочной передачи энергии» не построена; ее сооружение за последние два года продвигается слишком медленно. Та установка, которую я сейчас строю, представляет собой всего игрушку. Генератор с максимальной мощностью всего в 10 миллионов лошадиных сил может произвести лишь легкое сотрясение планеты знаком и словом — телеграфом и телефоном. Когда же я увижу завершенной эту первую установку, этот большой генератор, который я сейчас разрабатываю, установку, от которой ринется сквозь землю ток напряжением в сто миллионов вольт? Установка, которая даст энергию порядка одной тысячи миллионов лошадиных сил, равная мощности ста Ниагарских водопадов…»
От Моргана Тесла получил письмо с уведомлением о прекращении финансирования. Одна из версий следующая: против ученого ополчилась вся мировая энергетика, основанная на проводном способе передачи энергии. Если бы система Теслы победила, произошел бы всемирный крах уже сложившейся энергетики. Особенно были обеспокоены «энергетические короли» в самих США. На финансировавшего строительство «Мировой системы» Дж. П. Моргана было оказано политическое и финансовое давление, и работы были остановлены [4]. В начале Первой мировой войны уже построенную башню взорвали по причине, что ею могут воспользоваться немецкие шпионы для наведения на Нью-Йорк начиненных взрывчаткой радиоуправляемых самолетов.
Тесла всю жизнь оставался убежденным в том, что его предложение об использовании Земли в качестве среды для передачи электромагнитных волн дало бы такой же, а может быть, еще более важный для практических целей результат, как и осуществляемая в наши дни передача их через воздух.
В последние годы своей жизни Тесла часто говорил, что он, по-видимому, действительно слишком рано требовал от людей понимания его проектов и, представляя себе значение их для развития науки и техники, не представлял условий, при которых они могли бы получить полное развитие. Критически оценивая результаты своей работы в области передачи электроэнергии без проводов, он говорил: — «Пожалуй, я действительно зашел слишком далеко вперед. Без нее еще можно обходиться до тех пор, пока моя многофазная система удовлетворяет потребности мира. Но на тот случай, когда возникнет необходимость, система передачи электроэнергии без проводов уже готова».
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
[1] Никола Тесла / А.В. Жаркова// 100 человек, которые изменили ход истории. – 2009 №93.
[2] Википедия [Электронный ресурс].
[3] Стребков, Д.С. Резонансные методы передачи и применения электрической энергии. Изд. 3-е, перераб. и доп. / Стребков Д.С., Некрасов А.И. – М.: ГНУ ВИЭСХ, 2008. – 352с.
[4] Дельфис [Электронный ресурс]. – www.delphis.ru/journal/article/nasledie-ntesly-prishlo-vremya-izuchat#anc0
[5] Ржонсницкий, Б. Н. Никола Тесла. / Ржонсницкий Б. Н. – М.: «Молодая гвардия», 1959. — 224 с
[6] Тесла, Н. Колорадо-Спрингс. Дневники. 1899-1900 / Тесла. Н – Самара: Издательский дом «Агни», 2008. – 460 с: ил.
[7] Тесла, Н. Патенты / Тесла. Н – Самара: Издательский дом «Агни», 2009. – 496с.
[8] The Wardenclyffe Laboratory & the World Wireless System – http://teslaresearch.jimdo.com/wardenclyffe-lab-1901-1906/
[9] Цифровые цветные фото – Rex Hebert http://www.magnetricity.com/Tesla/Tesla.php#Gallery
Беспроводное электричество: от идеи до реализации
Из всех идей, над которыми работал инженер и физик Никола Тесла, а в этом списке были переменный ток, радио, пульт дистанционного управления (и это в конце XIX века), самой фантастической и трудно осуществимой была передача электрической энергии без проводов. И дело не в том, что сербский изобретатель не знал, как осуществить свой проект. Идея беспроводного электричества, как и электродвигатель, созданный в эпоху бурного развития нефтяной промышленности, не была оценена по достоинству и не получила поддержку от инвесторов и научного сообщества. Спустя десятилетия, когда электроприборы стали неотъемлемой частью нашего быта, система беспроводной передачи электричества (БПЭ) снова будоражит умы инженеров по всему миру. Каких результатов уже удалось достичь, и какие способы используется сегодня?
Беспроводная передача электричества: что это«Когда это будет сделано, вы сможете отправиться в любую точку мира — на вершину горы с видом на вашу ферму, в Арктику или в пустыню — и установить небольшое оборудование, которое даст вам тепло для приготовления пищи, а свет для чтения. Это оборудование поместиться в небольшой сумке, как обычный чемодан. В ближайшие годы беспроводные светильники будут столь же распространены на фермах, как и обычные электрические светильники в наших городах».
Никола Тесла, «The American Magazine», апрель 1921 года
«Беспроводной» — одно из самых трендовых слов последнего времени: интернет, мобильные телефоны, наушники, зарядные устройства, радио. Эти технологии тоже можно считать видом беспроводной передачи энергии, но в них главенствующая роль отводиться информации (качеству ее передачи, скорости), а в случае с электричеством показателем эффективности является сохранность передаваемой энергии без использования электрической цепи из токопроводящих элементов.
Кто изобрел беспроводное электричество?Во время выставки в Чикаго в 1893 году Никола Тесла продемонстрировал беспроводное освещение при помощи люминесцентных ламп. Сегодня подобный эксперимент может повторить кто угодно, достаточно встать с лампой дневного света под линией высокого напряжения. А в то время — было похоже на магический сеанс, поэтому пресса и очевидцы вознесли изобретателя на вершину популярности.
Но в научном мире нет единства, что именно Тесла создал беспроводное электричество: считается, что он доработал идею, которую уже развивали другие ученые.
В 1820 году Андре Мари Ампер записал закон, названный впоследствии в его честь, указывающий на то, что во время использования электрического тока образуется магнитное поле.
Спустя 11 лет Майклом Фарадеем был открыт закон индукции: в ходе опыта установил, что магнитное поле, генерируемое в одном проводнике, способно индуцировать ток в другом проводнике.
В 1864 году Джеймс Максвелл объединил имеющиеся теории, и вывел уравнение, описывающее электромагнитное поле и его связь с электрическими зарядами и токами в вакууме и сплошных средах.
В 1891 году Никола Тесла улучшил передатчик волн, изобретенный Генрихом Герцом тремя годами ранее, и запатентовал его как устройство для радиочастотного энергоснабжения: патент No 454,622; «Система электрического освещения». Параллельно с сербским ученым, исследования электромагнитных волн ведут Александр Попов (Россия), Гульельмо Маркони (Италия), Джагдиш Боше (Индия).
Как работает беспроводное электричество: индукцияНесмотря на то, что последние десятилетия технологии активно развивались, один из самых популярных способов передачи электроэнергии без проводов, мало чем отличается от того, которым пользовался Фарадей. Одна резонансная медная катушка подключается к источнику питания, вторая — играет роль приемника.
Видео работы беспроводного электричества с использованием двух катушек наглядно демонстрирует и простоту технологии, и ее главную проблему – небольшой радиус действия. Также с его помощью невозможно передавать большие объемы энергии (катушки расплавятся) при том, что КПД около 40% (Тесла об этом писал еще в 1899 году).
Однако, нельзя сказать, что магнитная индукция не нашла своего применения. Сегодня технология активно используется для производства беспроводных зарядных устройств. Компания Apple 2017 году презентовала свои беспроводные зарядные устройства, как нечто революционное, хотя фактически этой новинке больше 100 лет.
Беспроводное электричество: популярные технологииПомимо индукции, на которую делают главные ставки производители электрокаров и гаджетов, известны еще 3 способа: лазеры, микроволны, ультразвук. Ученые убеждены, что каждое из этих направлений может получить развитие в будущем.
- Лазеры. Энергия передается путем преобразования ее в луч, которые направляется на фотоэлемент приемника. Таким способом можно передавать большие объемы энергии, но эти планы разбиваются об атмосферу Земли, из-за которой большая часть (около 60%) энергии рассеивается. Но в безвоздушных пространствах технология вполне жизнеспособна. Именно поэтому компании, осваивающие космические просторы, продолжают изучение лазерных технологий: в 2009 году NASA даже был организован конкурс с призовым фондом в $900 тыс. по лазерной БПЭ. Первое место заняла Laser Motive: на 1км и 0,5 кВт переданной непрерывной мощности. При том, что конечно цели достигли только 10% энергии, эксперимент назвали успешным.
- Микроволны. Теоретически радиоволновую передачу энергии можно сделать направленной, используя полупроводники или лампы (циклотронный преобразователь энергии). Полупроводники сейчас активно используются во всем мире, но что касается передачи больших объемов энергии, то необходимо использовать и большее количество полупроводников. Это не только увеличивает стоимость проекта, но и появляется переизлучение, т.е. находиться близко у таких панелей – не безопасно. Но полупроводниковые системы показали высокую эффективность: более 80%. Это доказал еще Вильям Бараун в 1975 году, передав 30 квт на расстояние более 1 км. Создателями циклотронного преобразователя энергии являются советские ученые Владимир Савин и Владимир Ванке, хотя его КПД не превышает 70-80%, надежность достаточно высокая.
- Ультразвук. Технология была представлена в 2011 году на выставке «The All Things Digital» (D9). Студенты Пенсильванского университета использовали ультразвуковой передатчик и приемник (преобразовывал улавливающее электричество). Радиус действия – около 10 метров. Недостатки: должна быть прямая видимость между «узлами», низкий КПД. Но, передаваемые ультразвуковые частоты, не оказывают воздействия на людей или животных.
Самым востребованным и популярным девайсом с использованием беспроводной передачи электроэнергии являются зарядные устройства. Это может быть не только смартфон или планшет поддерживающий технологию, но и робот-пылесос, электросамокат, электровелосипед и электрическая зубная щетка.
Универсальность беспроводных зарядок – несомненный плюс технологии. Их создают по стандарту Qi (читается как «Ци»), разработанному Консорциумом беспроводной электромагнитной энергии (Wireless Power Consortium): заряд на расстоянии до 4 см. Samsung и Xiaomi также выпускают универсальные беспроводные зарядки. Кстати, если Samsung EP-PG950 не может заряжать гаджеты через чехол, то для Xiaomi Mi Wireless Charging Pad – это не проблема.
Индукционные зарядки для электрических электросамокатов (кикскутеров) устанавливают в Германии. Easy Charge, созданная компаниями Metz и Intis, универсальная и может взаимодействовать с устройствами разных производителей, а благодаря тому, что зарядное выпускается в нескольких модификация (на одно или 5 мест), его можно использовать и в общественных местах.
Джошуа Смит (сотрудник компании Intel) совместно с Марин Солджачич – доцент кафедры физики MIT (Massachusetts Institute of Technology) основали проект WiTricity. Они сосредоточили свои силы на разработке системы БПЭ среднего диапазона, за основу взята магнитно-резонансная связь. В результате в 2017 году появились универсальные беспроводные зарядные устройства для электрокаров DRIVE 11. Приемник устанавливается на днище авто, а передатчики – где угодно (в общественных местах, на станциях заправки или в гаражах владельцев электрокаров).
Автомобильный концерн BMW также запустил продажи беспроводной индуктивной зарядки. Комплект состоит из индукционной зарядной станции – GroundPad, которая подходит для помещений и установки на открытом воздухе, второй элемент — CarPad (система зарядки автомобиля). После того, как авто оказывается над зарядкой, GroundPad генерирует магнитное поле, а CarPad индуцирует электрический ток, который затем передается в аккумулятор. За 3,5 часа батарея будет полностью заряжена. Аналогичную систему концерн разрабатывает и для мотоциклов.
В Швеции в 2018 году появилась целая электрифицированная дорога eRoadArlanda. Это 2-км участок дороги вблизи Стокгольма, с установленными отбойниками-троллеями. Пока электрокар находится над этой линией, подвижные токосъемники заряжают батареи.
Использовать ее могут электрогрузовики, разработанные в рамках проекта eRoadArlanda, в будущем технологию будут совершенствовать, чтобы сделать универсальной.
А вот в норвежском Осло разрабатывают систему бесконтактной подзарядки именно для легковых электромобилей в такси. В рамках государственной программы «ElectriCity» будет реализована зарядная система, которая позволит заряжать аккумуляторы, не теряя рабочего времени: например, пока водитель ожидает новый заказ или ждет клиентов.
Инженеры стартапа Emrod пошли дальше: беспроводная система передачи электроэнергии на большие расстояния уже тестируется в Новой Зеландии. Хотя инженеры Emrod не раскрывают точных деталей своей разработки известно, что технология подразумевает использование микроволнового излучения. Устройству, работающему в широком спектре частот, не обязательно находиться вблизи непосредственных потребителей. Это позволяет электрифицировать удаленные населенные пункты, при этом не производить вырубку деревьев для прокладки линии электропередач. Кроме того, технология должна снизить цену на электроэнергию.
Что касается безопасности, то по заверению создателей, излучение неионизирующее (не наносит вред человеку, животным, растительности). Также для дополнительной защиты установки укомплектованы сигнальным, лазерным лучом малой мощности, который сканирует линию передачи на наличие помех, и в случае их выявления, автоматически останавливает работу устройства. Примерно через полгода можно будет сделать выводы о его эффективности и создании полноценной системы. Примечательно, что поддержку стартапу Emrod оказывает один из главных дистрибьюторов электроэнергии в Новой Зеландии – Powerco. Это говорит о том, что крупные игроки энерго-рынка понимают важность поиска альтернатив в «зеленом» сегменте.
В XIX веке, в котором зарождались и беспроводная энергия и беспроводная связь, приоритет был отдан второму открытию. Возможно, теперь, когда связь уже налажена, ученые уделят внимание беспроводным технологиям передачи энергии, сделав их доступнее и дешевле. Это, в свою очередь, ускорило бы переход от двигателей внутреннего сгорания к электрокарам, решив часть проблем экологии.
Tesla’s Wireless Power – Научный центр Tesla в Wardenclyffe
Спустя более века после его смерти открытие Теслы в области беспроводной связи редко ему приписывают. Томас Эдисон чаще ассоциируется с изобретением электричества; однако его эксперименты не увенчались успехом. Фактически, переменные токи переменного тока Теслы оказались более надежным методом проведения электричества.
Вопреки теории, контакт металла с металлом необходим для проведения электричества, Тесла успешно передавал токи через пластик на короткие расстояния, используя магнитную индукцию.Лаборатория Тесла в Ворденклиффе была его последним местом экспериментов с 185-футовой башней с металлическими прутьями, простирающимися под землей. Сегодня на ум приходит изображение электрических болтов, идущих от вершины башни, где катушки обмениваются электрическими токами.
Эксперименты Tesla с беспроводной связью
В конце 19 века в работе Теслы над башней исследовалась электрическая передача с использованием радиочастотного резонанса для создания электрической энергии через две катушки для генерации высокого напряжения и высокочастотных токов.В его экспериментах использовались индуктивная и емкостная связи в ближнем поле. Индуктивное поле ближнего поля – это беспроводной физический уровень малого радиуса действия, который передает маломощное, нераспространяющееся магнитное поле между устройствами. Емкостные муфты передают мощность между двумя сетями путем смещения токов, создаваемых электрическими полями.
Tesla продемонстрировала перед толпой демонстрацию того, как лампы накаливания можно зажигать без проводов, когда они находятся рядом с катушкой. По мере продвижения своих исследований он тестировал передачу на большие расстояния с использованием LC-цепей.
Тесла продолжил свои исследования по разработке метода передачи на большие расстояния на большой высоте в Колорадо-Спрингс. Его теория заключалась в том, что воздух низкого давления, присутствующий на высоте 30 000 футов, позволит электрической передаче перемещаться на гораздо большие расстояния. Он предположил, что может использовать всю планету для проведения электричества, посылая импульсы переменного тока в землю. Наши учебники по истории на сегодняшний день не отражают, что он добился каких-либо успехов в доказательстве этой теории.
Тем не менее, он точно предсказал успех Интернета и сотовых телефонов, работающих с беспроводными передачами на большие расстояния.Он считал, что беспроводная передача данных может решить множество глобальных проблем, предоставляя средства мгновенной связи, «будет сделан большой шаг к объединению и гармоничному существованию различных рас, населяющих земной шар».
Современные приложения беспроводной технологии Tesla
КатушкаТесла все еще используется в некоторых наших теле- и радиотехнических конструкциях, но не имеет большого практического применения. Однако его метод резонансной индуктивной связи применяется в наших беспроводных системах малого радиуса действия.
На пороге предоставления бесплатной энергии всем исследование Tesla было подавлено влиятельными людьми, которые не хотели, чтобы энергия стала бесплатным товаром. Банкиры отказали Тесле в финансировании, и его теория о всемирной передаче данных была опровергнута; однако его исследование имело такое значение, что после его смерти оно было конфисковано ФБР.
Исследования Tesla в области беспроводного электропитания по-прежнему имеют потенциал для будущих инноваций, поскольку наша технология развивается с учетом новых технологий искусственного интеллекта.
Технология беспроводного передатчика Николы Тесла
Никола Тесла был одним из первых, кто предвидел беспроводное будущее. В 1900 году он утверждал, что будет точная беспроводная передача сигналов, которые будут приниматься устройствами размером не больше часов. Он, конечно, описывает то, что мы теперь называем радиоволнами, основу работы нашей современной подключенной электроники.
Тесла, по сути, настолько поверил в идею беспроводной связи и передачи энергии, что начал строительство передающей станции в Нью-Йорке, чтобы доказать свою точку зрения.Названный Teslas «Мировая система беспроводной связи», он, к сожалению, так и не был завершен из-за того, что у Tesla закончились деньги.
С учетом сказанного, у нас все еще есть планы Tesla в отношении этой беспроводной технологии, поэтому мы можем поближе познакомиться с ее конструкцией и тем, как она могла бы работать.
Идея Теслы о беспроводной передаче данных
После того, как Тесла уже сделал себе имя в области науки и электротехники, он начал открывать лаборатории в Нью-Йорке. В 1888 году он проводил эксперименты в одной из лабораторий, специально посвященных переменному току.
Благодаря этим экспериментам и испытаниям он смог разработать метод преобразования постоянного тока и даже низкочастотных переменных токов в токи высокой частоты.
СВЯЗАННЫЙ: КАК ВИДЕНИЕ НАШЕГО МИРА НИКОЛА ТЕСЛА СТАНОВИЛОСЬ РЕАЛЬНОСТЬЮ
Именно во время разработки этих трансформаторов и генераторов он понял, что цепи переменного тока все еще могут функционировать, если они не полностью завершены. Скорее, ток все еще может течь только по одному проводу от одной заземленной клеммы ко второй заземленной клемме, и схема все равно будет работать.Тесла обнаружил, что когда источник тока имеет достаточно высокую частоту, он может использовать землю как часть цепи.
Если заземленная клемма имеет достаточно высокое заземленное напряжение, а к другой клемме подключен провод, ток может протекать по проводу за счет емкости проводящего тела, подключенного к другому его концу.
Емкости, скажем, лампочки было достаточно, чтобы потреблять ток от цепи, чтобы зажечь ее, что похоже на то, как работают радиопередатчики.
Беспроводная станция Tesla Wardenclyffe, расположенная в Шорхэме, штат Нью-Йорк, видна в 1904 году. Испытательная установка должна была быть трансатлантической радиотелеграфной станцией и беспроводным передатчиком энергии, но так и не была завершена из-за истощения финансирования . Источник: ВикимедиаВ том же духе Тесла придумал блестящую идею беспроводной передачи данных. Он должен был использовать землю в качестве проводника для передачи токов. Как описано в лекции Теслы в 1893 году, устройство соединит генератор между землей и сферическим проводником, поднятым в воздух.
Электромагнитные частоты, создаваемые генератором в этой установке, должны гарантировать, что переменный ток будет иметь знак, противоположный земному. Вследствие этого Тесла считал, что землю – землю – можно привести в состояние колебаний с небольшим рассеянием энергии.
Благодаря открытию способности земли использоваться в качестве среды передачи, Тесла разработал план по посылке высокочастотных токов через землю, которые распространялись бы в любой точке земного шара и принимались резонансным приемником.
Электропроводность почвы и воды намного меньше, чем у металлов, но сопротивление между клеммой заземления передатчика и заданной удаленной точкой будет очень маленьким из-за большой площади поперечного сечения Земли.
Формула для тока передатчика, который будет распространяться по земле по беспроводной сети, выглядит следующим образом:
I = 2πfCV
I – ток в амперах, f – частота в герцах, C – собственная емкость сфера передатчика и Земля в фарадах, а V – напряжение между сферой и землей.
Тесла использовал это уравнение, чтобы построить свою станцию на Лонг-Айленде, где он впервые начал тестировать свою идею. Генератор использовался для выработки 10 миллионов вольт при 700 амперах и 10 килогерцах. Высокое напряжение было необходимо для выработки достаточно сильного тока для его идеи беспроводной передачи, поэтому он постоянно выходил за пределы того, что он мог генерировать с помощью своих машин.
К этому времени у Теслы был полуработающий прототип, и он начал патентовать свою технологию беспроводной передачи и приема примерно в 1897 году.Его патент был выдан после рассмотрения в 1900 году с одной из схем устройства, показанной ниже.
Источник: Н. Тесла / ВикимедиаХотя детали приемника и передатчика изобретения Теслы были ясны в его патентной заявке, многие принципы работы и внутреннее устройство устройства не были подробно объяснены. Он предположил, что если он сможет передавать достаточно высокое напряжение и ток, он сможет передавать полезные уровни беспроводной энергии в любую точку мира.
СВЯЗАННЫЙ: YOUTUBER ИГРАЕТ АФРИКУ TOTO НА ВЫСОКОВОЛЬТНЫХ КАТУШКАХ TESLA, И СЛУШАТЬ ЭТО АБСОЛЮТНОЕ УДОВОЛЬСТВИЕ
Машина также была способна производить такое большое количество электричества, что теоретически их можно было использовать для создания искусственного сияния borealis, или северное сияние.
Осциллирующие устройства Тесла
Генераторы, передатчики и колебательные устройства Тесла были революционными для своего времени. Помимо простой электронной передачи электричества, его кинетические колебательные устройства также были не менее интересны.Используя колебания в земле и структурах, Тесла считал, что он может передавать энергию в виде кинетических волн через материю, которые затем могут быть преобразованы обратно в электрическую энергию на принимающей стороне.
Чтобы достичь этого, он построил паровое колебательное устройство, которое могло управлять его частотами. Когда частота колебательного устройства совпадет с резонансной частотой приемника, механическое движение будет преобразовано обратно в полезную электрическую энергию.
Tesla действительно смогла заставить эту технологию работать. Он построил свой первый механический генератор в 1897 году, а в 1898 году он смог возбудить свою лабораторию с помощью всего лишь небольшого генератора. Расположенное в Нью-Йорке в непосредственной близости от соседей, колебания и тряски в здании были достаточными, чтобы соседи в конце концов вызвали полицию, опасаясь, что происходит что-то очень плохое.
Только в 1912 году была опубликована первая статья о резонаторном устройстве Теслы.
Тесла, будучи в некотором роде блестящим умом, брал свое маленькое вибрационное устройство и испытывал его на различных сооружениях в городах. Согласно журналу The World Today Magazine за 1912 год,
«Он сунул свой маленький вибратор в карман пальто и пошел охотиться на наполовину возведенное стальное здание. Внизу, в районе Уолл-стрит, он нашел один, десять этажей из стали. каркас без кирпича или камня, положенного вокруг него. Он прижал вибратор к одной из балок и возился с регулировкой, пока не получил ее.В конце концов Тесла сказал, что конструкция начала скрипеть и ткаться, и рабочие стали в панике спустились на землю, полагая, что произошло землетрясение. Вызвали полицию. Тесла положил вибратор в карман и ушел. Еще десять минут, и он мог бы выложить здание прямо на улице. И с тем же вибратором он мог бы сбросить Бруклинский мост в Ист-Ривер менее чем за час ».
Эта ссылка создает довольно хитрую и интересную картину того, как Тесла проезжает по Нью-Йорку, тестируя свои различные изобретения.Tesla продвинула эту технологию дальше, даже в областях, о которых вы, возможно, не знали.
Он разработал способ использования колебаний, создаваемых его парогенератором, для анализа подземных условий Земли. Создавая сейсмические волны с помощью осциллятора, отраженные волны могут дать Тесле и другим исследователям информацию о нижележащих слоях породы.
СВЯЗАННЫЙ: НИКОЛА ДОПУСКАЕТ ПРОТОТИП АВТОМОБИЛЯ, ПРЕДНАЗНАЧЕННЫЙ В РЕКЛАМНОМ ВИДЕО, ДЕЙСТВИТЕЛЬНО ПРОСТО СТАЛ ВНИЗ И НЕ РАБОТАЕТ образцы.Фактически, принцип использования генератора колебаний, который создает сейсмические волны для изучения подземных условий, все еще используется сейсмологами сегодня.
Сегодня оборудование, конечно, намного более высокотехнологичное, но оно по-прежнему во многом обязано изобретению Теслы, сделанному более века назад.
Добро пожаловать в эпоху беспроводного электричества
Беспроводное электричество – это мечта столетней давности, которая может стать реальностью в ближайшие годы. Появление беспроводной зарядки, электромобилей, 5G и необходимость большей устойчивости привели к развитию полностью работоспособных технологий беспроводной передачи данных в разных частях мира.
От американской Wave Inc. до японской Space Power Technologies и новозеландского энергетического стартапа Emrod – ряд компаний в настоящее время работают над технологией беспроводной передачи энергии. Для некоторых систем также начались полевые испытания, и будет интересно посмотреть, кто из них окажется первым в этой гонке и предложит эффективное, экономичное и жизнеспособное решение для беспроводного электроснабжения.
История и наука, лежащая в основе беспроводной передачи энергии
Источник: Limor Zellermayer / UnsplashПрежде чем мы перейдем к различным революционным инициативам, касающимся беспроводной передачи электроэнергии, важно понять их происхождение и основную концепцию, лежащую в основе этой технологии, которая делает ее популярной. надежный выбор для будущих потребностей в электроэнергии.
В 1891 году сербско-американский изобретатель Никола Тесла сконструировал катушку Тесла, уникальное устройство, работающее на принципе электрического резонанса и способное передавать электричество без проводов. Однако катушка могла проводить электричество без проводов только на короткие расстояния, и из-за ее ограниченного потенциала она не оказалась практическим применением для беспроводной передачи электроэнергии.
Никола Тесла. Источник: Tonnelé and Co./Wikiemedia CommonsТесла все еще был одержим своей идеей беспроводной энергии, поэтому в последующие годы он работал над строительством энергетической станции, которая могла бы проводить высоковольтную беспроводную передачу энергии (WPT).С помощью этого эксперимента Тесла стремился передавать сообщения по беспроводной сети на большие расстояния, используя либо серию стратегически расположенных башен, либо систему подвешенных воздушных шаров.
Он построил станцию беспроводной передачи на Лонг-Айленде (названную Башней Тесла или Варденклиф), которая, по его мнению, могла продемонстрировать возможность беспроводной передачи электроэнергии на большие расстояния. К сожалению, инвестор Дж. П. Морган отказался предоставить дополнительные средства для своих экспериментов, и проект был закрыт в 1906 году, а затем снесен.
Никола Тесла, возможно, умер в 1943 году, когда его мечта о беспроводном электричестве не была осуществлена, но за последние 100 лет ряд экспериментов и исследований доказывают, что гениальный изобретатель, возможно, был на правильном пути в своем подходе использование земли вместо проводов в качестве среды для беспроводной передачи энергии.
Сегодня разрабатываются различные методы беспроводной передачи энергии, и продолжаются исследования для их широкомасштабного внедрения:
Передача через спутник солнечной энергии
Это многообещающий метод это предполагает использование спутников на солнечной энергии, выводимых на высокую околоземную орбиту.Спутник будет преобразовывать солнечный свет в энергию; эта энергия состоит из микроволн. Эти микроволновые сигналы затем будут передаваться на антенну на земле или на главную станцию энергосистемы.
Оттуда сигналы будут передаваться на базовую станцию электросети, которая преобразует микроволны в электричество постоянного тока. На сетевой станции электричество также будет преобразовано в пакеты энергии, аналогичные пакетам данных в Интернете, которые будут передаваться в отдельные дома и храниться в приемнике энергии.
Недавно Калтех объявил, что член совета директоров Дональд Брен, который также является владельцем инвестиционной компании Irvine Company, пожертвует 100 миллионов долларов на проект космической солнечной энергии (SSPP) Калифорнийского технологического института. Этот амбициозный проект направлен на создание спутниковой и беспроводной сети на базе микроволнового излучения, которая могла бы обеспечивать бесперебойную подачу электроэнергии в любую точку Земли.
Передача микроволновой энергии
В этом методе микроволновое излучение преобразуется в электрическую энергию постоянного тока с помощью микроволнового приемника и выпрямителя постоянного тока.Наивысший КПД, достигнутый при передаче микроволновой энергии, составил 84%, что было зарегистрировано в 1975 году группой из Японии, но системы с более высокой выходной мощностью имели более низкий КПД. Следующая цель – добиться высокоэффективной передачи энергии на большие расстояния.
Исследование, опубликованное в августе 2021 года в Университете Цукуба, Япония, показывает, что микроволновое излучение высокой энергии может выступать в качестве эффективного беспроводного источника энергии для запуска ракет в космос. Когда ракета отправляется в космос, на долю топлива приходится около 90% ее веса, и эту нагрузку можно устранить, используя эту технологию беспроводной связи на основе микроволновой энергии.
Было показано, что наиболее эффективными преобразователями постоянного тока в лазер являются твердотельные лазерные диоды, подобные тем, которые используются в коммерческих целях в волоконно-оптических линиях связи и лазерной связи в свободном пространстве. Лазерная передача позволяет фотоэлектрическому приемнику принимать лазерные лучи и вырабатывать из них электрическую энергию. Достоинством лазерной передачи энергии является то, что лазерными лучами можно легче управлять для беспроводной передачи электроэнергии на большие расстояния.
Беспроводная энергетика больше не является мечтой для Новой Зеландии
Источник: Samuel Ferrara / UnsplashЭнергетический стартап Emrod скоро протестирует прототип беспроводной энергетической инфраструктуры в Новой Зеландии.Если испытание пройдет успешно, это станет большим толчком для реализации планов правительства Новой Зеландии по организации беспроводной передачи энергии по всей стране.
Emrod разработал уникальную телеэнергетическую технологию, в которой используется беспроводная сеть антенн и выпрямляющих антенн, переносящих энергию в виде электромагнитных волн дальнего действия от одной точки к другой. Сначала электричество передается через антенны в виде неионизирующего луча, имеющего частоту, эквивалентную радиоволнам.
По заявлению компании, «защитная завеса маломощного лазера гарантирует, что передающий луч немедленно отключается до того, как какой-либо временный объект (например, птица или вертолет) достигнет главного луча, гарантируя, что он никогда не коснется чего-либо, кроме чистого воздух.”
Emrod утверждает, что эта технология хорошо подходит для гористой местности Новой Зеландии и может выдерживать различные погодные условия региона. Технология беспроводной передачи электроэнергии на основе ректенн также считается благом для регионов, где традиционные электрические сети не могут быть установлены из-за финансовых или географических ограничений.
Хотя проект поддерживается правительством Новой Зеландии, генеральный директор Emrod Грег Кушнир ожидает, что люди могут выступать против беспроводного электричества так же, как они скептически относятся к технологии 5G. Он считает, что настоящая проблема, связанная с этим проектом, состоит в том, чтобы убедить людей, что беспроводное электричество от Emrod не приводит к вредному излучению.
Emrod также имеет офис в Бостоне, и есть большая вероятность, что следующий проект компании по производству беспроводной электросети может быть реализован в США.
Некоторые другие новаторские инициативы в области беспроводной передачи энергии
Источник: Donald Giannatti / UnsplashНовое десятилетие 21-го века требует экологически чистых и безграничных энергетических решений. Беспроводное электричество, которое является отличной альтернативой традиционным источникам энергии, может произвести революцию в секторе чистой энергии. Это также причина того, что в сегменте WPT происходит так много интересных разработок:
- Wireless Advanced Vehicle Electrification (WAVE) – американская технологическая компания, которая производит решения для беспроводной связи для электромобилей средней и большой мощности.Системы зарядки, предоставляемые Wave, могут быть установлены под землей, под дорогами или на парковках и способны обеспечивать беспроводную мощность до 1 МВт.
Недавние отчеты предполагают, что будущий электрический грузовик Tesla Semi может использовать технологию индуктивной беспроводной зарядки от Wave для удовлетворения своих потребностей в электроэнергии. - Beyond Earth – это некоммерческий исследовательский институт, который предложил концепцию создания полностью функциональной системы передачи энергии через спутник Солнца.Институт утверждает, что предлагаемая беспроводная система может обеспечивать работу промышленных приложений на Земле, а также операций человека на Луне.
Предлагаемая энергосистема будет состоять из двух основных блоков; космический солнечный спутник, который будет получать энергию от Солнца и обрабатывать ее через свои фотоэлектрические элементы, концентраторы и субблоки БПЭ, а также приемник ректенны, который будет передавать энергию на Землю или Луну в соответствии с требованиями.
Институт рекомендует завершить строительство предлагаемой солнечной спутниковой беспроводной системы электроснабжения к 2030 году. - Департамент транспорта Индианы (INDOT) объединил усилия с Университетом Пердью и немецкой цементной компанией Magment для тестирования дорог с магнитным цементом, которые могут заряжать электромобили во время движения. На первом этапе Purdue проведет лабораторные испытания, чтобы подтвердить жизнеспособность предлагаемых намагниченных дорог.
После утверждения университетом тестовая трасса длиной 1312 футов (400 метров) будет построена с использованием магнитного цемента от Magment, а затем будут проведены дорожные испытания с грузовиками с двигателем мощностью 200 кВт.Если испытания окажутся успешными, государство будет использовать эту технологию и в дальнейшем для развития дорог общего пользования.
Этот проект наземной беспроводной зарядки является частью инициативы ASPIRE (Повышение устойчивости с помощью энергетической инфраструктуры для электрификации дорог), поддерживаемой Национальным научным фондом и многими другими государственными и частными институтами. - WiTricity, американская компания, также работает над технологией парковки и зарядки, которая направлена на зарядку электромобилей с помощью магнитных резонаторов, когда автомобили припаркованы.
Наряду с IoT и AI, беспроводная передача энергии также является неизбежным технологическим развитием, которое человечество испытает на совершенно новом уровне в ближайшие годы.
Emrod против технологии беспроводной связи Tesla
Этот тип системы позволяет передавать большие объемы энергии управляемым и направленным образом, поэтому он подходит в качестве альтернативы линиям электропередач.
Другие примеры применения БПЭ с узким лучом включают питание беспилотных летательных аппаратов в полете, питание удаленных населенных пунктов и передачу энергии из космоса на землю.В 1964 и 1968 годах Уильям С. Браун применил всенаправленную WPT к летающему дрону. Хироши Мацумото успешно привел в действие небольшой самолет в 1992 году. С тех пор было проведено множество успешных экспериментов с различными уровнями мощности, расстояния и эффективности.
Заключение
Беспроводная передача энергии – это обширная область, в которой существует множество различных приложений и технологий. Существуют значительные различия между различными технологиями в этой области, которые необходимо учитывать при сравнении двух систем и их приложений.Характеристика, которую мы рассмотрели в этой статье, всенаправленная или однонаправленная, описывает, передает ли система мощность без точного обнаружения цели (всенаправленная) или от одной определенной точки к другой (однонаправленная).
Видение Николы Теслы в отношении беспроводной энергии описывается как «собирать и распределять энергию со всего мира с основным использованием для питания изолированных домов». Первоначальная технология, которую он разработал для достижения этой цели, Башня Тесла, была всенаправленной системой WPT.
В Emrod мы сосредоточили наши усилия на разработке системы, которая может передавать большие объемы энергии на большие расстояния эффективным, надежным, безопасным и коммерчески жизнеспособным способом в качестве альтернативы инфраструктуре линий электропередач. Наша система является однонаправленной, передавая энергию по беспроводной сети от передающей антенны к приемной антенне через столбчатый луч со встроенными функциями безопасности. Используя запатентованную технологию реле, система Emrod может передавать мощность на большие расстояния.
Хотя наша технология значительно отличается от того, над чем работал Тесла, мы вдохновлены его работой и разделяем его видение беспроводного будущего. Его изобретения легли в основу многих электронных технологий, которые привели современное общество к тому, чем оно является сегодня, включая технологию беспроводной связи. Он открыл умы людей возможности мира с беспроводной энергией большого радиуса действия. Теперь, более века спустя, это становится реальностью.
Объяснение генерации беспроводной энергии из магнитного поля
Узнайте, как работает беспроводное электричество и как его используютИспользование магнитных полей для генерации электрического тока.
Science in Seconds (www.scienceinseconds.com) (издательский партнер Britannica)Выписка
[Музыка в]RHEANNA SAND: Итак, мы наконец-то перережем шнур. Попрощайтесь с беспорядком из кабелей, сыплющимся из вашего стола, или с одним раздражающим проводом, идущим от ваших динамиков. Электропитание становится беспроводным.
Эта концепция существует уже более века. Никола Тесла придумал это вскоре после открытия переменного тока.Переменный ток – это поток электронов через проводник, который чередуется вперед и назад. Тесла знал, что при переменном токе создается магнитное поле. И наоборот, если вы создаете колебание магнитного поля и вставляете в него провод, этот провод будет проводить переменный ток.
Беспроводное электричество работает следующим образом: передатчик преобразует переменный ток в магнитное поле. Устройство принимает поле и преобразует его обратно в переменный ток. Звучит довольно просто, но на то, чтобы стать жизнеспособным, потребовалось более века.Камнем преткновения стало то, что называется передачей энергии магнитного резонанса. Без этого явления беспроводное электричество не будет передаваться достаточно далеко, чтобы быть полезным. Вот как это работает: все магнитные поля вибрируют с резонансной частотой. Если два соседних поля имеют одинаковую резонансную частоту, передаваемая энергия эффективно изменяется на больших расстояниях. Так, например, оперная певица может разбить стекло одним голосом.
В беспроводном электроснабжении передатчик и устройство вибрируют с одинаковой резонансной частотой.Это была непростая задача для Теслы, хотя в 1899 году он запитал 200 лампочек с расстояния 26 миль.
Современные достижения сделали это намного проще. И теперь беспроводное электричество вот-вот выйдет на рынок с размахом. Только представьте передатчики, которые выглядят как рамки для фотографий, обеспечивающие питание света, и ноутбуки или зарядные устройства для телефонов, которые начинают заряжать ваш телефон, когда вы садитесь за свой стол. Возможности действительно потрясающие.
[Без музыки]
Ниже приведены прошлые газетные статьи, которым более 100 лет и которые были взяты из коллекции Tesla.Это уникальные оригинальные статьи о беспроводной передаче электроэнергии, напечатанные еще при жизни Теслы.Статей:
Вверху: знаменитая башня Тесла, возведенная в Шорхэме, Лонг-Айленд, Нью-Йорк. Йорк был 187 футов в высоту, сферическая вершина – 68 футов в диаметре. Башня, которую должен был использовать Никола Тесла, является его «Всемирной беспроводной связью». так и не был закончен. Вверху: New York American, 22 мая 1904 года: Башня Теслы – удивительная схема великого изобретателя, чтобы подавать миллионы вольт электричества по воздуху из Ниагарского водопада, а затем подавать его в города, фабрики и частные дома с вершин реки. Башни без проводов. Вверху: Статья американской газеты – Электрический экспериментатор, сентябрь 1917 года. Статья описывает разрушение знаменитой Башни Тесла, возведенной в Шорхэме, Лонг-Айленд, Нью-Йорк. Тесла хотел передавать в мир электричество от электростанции в Ниагарском водопаде, используя свою Башню. Вверху: беспроводная «мировая система» Теслы, которая превратит Землю в некогда гигантское динамо. Вверху: The New York Journal, воскресенье, 8 августа 1897 года: «Тесла зажег искру, вспыхнувшую вокруг света» Вверху: The New York Journal, воскресенье, 8 августа 1897 года: «Тесла зажег искру, вспыхнувшую вокруг света» Вверху: The New York Journal, воскресенье, 8 августа 1897 года: «Тесла зажег искру, вспыхнувшую вокруг света» |
(PDF) Беспроводная передача энергии с использованием твердотельных катушек Тесла
1
Аннотация. Электроэнергия имеет решающее значение для современных систем.От
самых маленьких датчиков и бионических имплантатов до спутников,
самолетов / автомобилей / роботов и нефтяных платформ с дистанционным управлением, важно иметь возможность
доставлять электроэнергию с помощью средств, отличных от проводов или линий передачи. Использование
беспроводной передачи энергии в большем масштабе, чем используется
устройствами магнитной индукции, позволило бы системам управлять
удаленно без необходимости в относительно больших устройствах накопления энергии
или регулярном техническом обслуживании.Он также будет использоваться в случаях, когда соединительные провода
неудобны, опасны или невозможны, например
, например, во влажных средах, вращающихся или подвижных соединениях, а также для питания удаленного телекоммуникационного оборудования
.
В этой статье исследуются существующие схемы беспроводной передачи энергии
и их практическая применимость. Он также углубляется в теорию, дизайн и конструкцию
метода передачи энергии через пространство. С этой целью
, конфигурация твердотельной катушки Тесла используется в качестве основы для
генерации высокого напряжения, высокочастотной электроэнергии.
Ключевые слова: беспроводная связь, катушка Тесла, электроэнергия, индукция.
I. ВВЕДЕНИЕ
Идея передачи энергии через пространство
была задумана более века назад, при этом новаторские идеи и эксперименты
Николы Теслы, возможно, были наиболее известными ранними попытками
сделать это [1] . Его видение состояло в том, чтобы
распределять энергию по беспроводной сети на большие расстояния с использованием ионосферы Земли
.
Большинство подходов к беспроводной передаче энергии используют электромагнитное (ЭМ) поле
некоторой частоты в качестве средства передачи энергии посредством
.На высокочастотном конце спектра
находятся оптические методы, которые используют лазеры для передачи энергии
через коллимированный луч света на удаленный детектор, где принятые фотоны
преобразуются в электрическую энергию.
При таком подходе
возможна эффективная передача на большие расстояния; однако для поддержания надлежащего согласования между
движущихся передатчиков и / или приемников необходимы сложные механизмы наведения и отслеживания
.Кроме того, объекты, которые
попадают между передатчиком и приемником, могут блокировать луч,
прерывают передачу энергии и, в зависимости от уровня мощности
, могут причинять вред. На микроволновых частотах
аналогичный подход может использоваться для эффективной передачи мощности
на большие расстояния с использованием излучаемого поля EM
от соответствующих антенн. [2] Однако аналогичные предостережения
1 Бенард Мумо Макаа, Сельскохозяйственный университет Джомо Кеньятта и
Технологии, Департамент электротехники и электроники
(+254716518555; электронная почта: benmakaa @ gmail.com)
о безопасности и сложности системы применяются для этих радиационных подходов
.
Также можно передавать мощность с использованием безызлучательных полей
. Например, работу трансформатора
можно рассматривать как форму беспроводной передачи энергии, поскольку он использует принцип магнитной индукции
для передачи энергии от первичной катушки
к вторичной катушке без прямого электрического соединения
. .Индуктивные зарядные устройства, такие как те, которые обычно используются в электрических зубных щетках
, работают по тому же принципу.
Однако для того, чтобы эти системы работали эффективно, первичная катушка
(источник) и вторичная катушка (устройство) должны быть расположены в непосредственной близости
и тщательно расположены по отношению к одной
другой. С технической точки зрения это означает, что магнитная связь
между катушками источника и устройства должна быть большой
для правильной работы.
Для преодоления вышеуказанных проблем, то есть для передачи
на несколько большее расстояние или большей свободы в
позиционировании источника и устройства относительно друг друга, в этой статье
исследуется использование безызлучательного подхода, который использует
резонанс для повышения эффективности передачи энергии.
II. ОБЗОР ЛИТЕРАТУРЫ
A. Историческая перспектива
• В 1864 году Джеймс К. Максвелл предсказал существование
радиоволн с помощью математической модели [3].
• В 1884 году Джон Х. Пойнтинг понял, что вектор Пойнтинга
будет играть важную роль в количественном определении
электромагнитной энергии.
• В 1888 году, опираясь на теорию Максвелла, Генрих Герц
впервые смог продемонстрировать экспериментальное свидетельство радиоволн
своим искровым радиопередатчиком.
предсказание и свидетельство радиоволн в конце
19 века было началом беспроводной передачи энергии.
• Никола начал работу по беспроводной передаче данных в 1891 году на
своей «экспериментальной станции» в Колорадо [4]. Небольшой резонансный контур лампы накаливания
, заземленный с одного конца, был успешно зажжен.
Беспроводная передача энергии с использованием твердотельных
Катушек Тесла
Труды конференции
по устойчивым исследованиям и инновациям (SRI)
6-8 мая 2015
.