Простой контроллер заряда Li-Ion аккумуляторов
Этот простейший контроллер заряда я применил в самодельной Bluetooth колонке для заряда батареи из двух Li-Ion аккумуляторов типа 18650. Зарядное устройство выполнено на распространенном регулируемом стабилизаторе напряжения LM317. Достоинства этого зарядного устройства это простота настройки, дешевизна и применение самых распространенных электронных компонентов. Также среди достоинств следует отметить отсутствие высокочастотных помех и наводок, поэтому можно заряжать блютуз колонку, в которой я применил этот контроллер заряда во время воспроизведения музыки. Никаких импульсных помех зарядное устройство не даёт. Недостатком является сравнительно низкий КПД, присущий линейным стабилизаторам напряжения и тока и необходимость установки микросхемы LM317 на радиаторе. По этой причине не рекомендуется устанавливать зарядный ток более 500 — 800 мА. В моей колонке зарядный ток равен 500 мА. В качестве источника питания я применил импульсный сетевой адаптер от старого сетевого хаба на 12В 1А.
Описане принципиальной схемы
U1 — микросхема LM317 в корпусе TO220
Q1 — транзистор BC546 (BC547, BC549)
D1 — диод Шоттки на ток 1A и максимальное напряжение 30 — 40 вольт.
С1, С2 — керамический конденсатор на 1 мкф 50В
R1 — Постоянный резистор 1 Ом 0.5 Вт
R3 — Постоянный резистор 470 Ом 0.125 Вт
R4 — Постоянный резистор 2.2 k 0.125 Вт
R2 — Подстроечный резистор 1К
Зарядное устройство основано на регулируемом интегральном стабилизаторе напряжения LM317. На транзисторе Q1 собран узел ограничения тока заряда. С транзистором BC546 и резистором на 1 ом максимальный зарядный ток у меня составляет около 500мА. Нужно помнить, что через этот резистор течет зарядный ток аккумулятора, поэтому если вы планируете заряжать батарею током более 500 мА стоит применить резистор мощностью 1 Вт. максимальный зарядный ток устанавливается подбором этого резистора. Чем меньше сопротивление тем больше зарядный ток и наоборот.
Подстроечным резистором R2 устанавливаем выходное напряжение устройства. То есть то максимальное напряжение, до которого будет заряжена аккумуляторная батарея. Для двух литий ионных аккумуляторов максимальное напряжение равно 8.4 В. Но для большей безопасности и продления срока службы аккумуляторов я бы посоветовал установить это напряжение в районе 8.2 — 8.3 В. Установку этого напряжения нужно производить не подключая аккумулятор. Вместо аккумулятора подключаем к клемам Out+ и Out- резистор сопротивлением 100 ом и вращением движка R2 устанавливаем напряжение 8.2- 8.3 В. Убираем резистор и подключаем к устройству аккумуляторы. Проверяем ток, который течет через батарею и оставляем батарею заряжаться, периодически измеряя на ней напряжение. Зарядный ток будет уменьшаться по мере приближения напряжения на батарее к установленному уровню. Убедитесь что напряжение на каждом из аккумуляторов в конце заряда не превышает 4.2 вольта. Если даже на одном из аккумуляторов напряжение больше, то придется уменьшить напряжение заряда поворотом движка R2. На этом настройку устройства можно считать законченной
ВНИМАНИЕ! Микросхема LM317 нагревается в процессе заряда аккумуляторов, поэтому ее необходимо устанавливать на небольшом радиаторе.
Печатная плата зарядного устройства была разработана под выводные компоненты в программе DipTrace. Все файлы проекта печатной платы вы можете скачать по ссылке в конце статьи. Плата была изготовлена на моем станке CNC1610 методом гравировки. Как это происходит вы можете посмотреть в видео ролике про самодельную Bluetooth колонку.
Печатная плата зарядного устройстваСкачать проект печатной платы в формате DipTrace
Схема контроллера литий-ионного аккумулятора.
Устройство и принцип работы защитного контроллера Li-ion/polymer аккумулятора
Если расковырять любой аккумулятор от сотового телефона, то можно обнаружить, что к выводам ячейки аккумулятора припаяна небольшая печатная плата. Это так называемая схема защиты, или Protection IC.
Из-за своих особенностей литиевые аккумуляторы требуют постоянного контроля. Давайте разберёмся более детально, как устроена схема защиты, и из каких элементов она состоит.
Рядовая схема контроллера заряда литиевого аккумулятора представляет собой небольшую плату, на которой смонтирована электронная схема из SMD компонентов. Схема контроллера 1 ячейки (“банки”) на 3,7V, как правило, состоит из двух микросхем. Одна микросхема управляющая, а другая исполнительная – сборка двух MOSFET-транзисторов.
На фото показана плата контроллера заряда от аккумулятора на 3,7V.
Микросхема с маркировкой DW01-P в небольшом корпусе – это по сути “мозг” контроллера. Вот типовая схема включения данной микросхемы. На схеме G1 – ячейка литий-ионного или полимерного аккумулятора. FET1, FET2 – это MOSFET-транзисторы.
Цоколёвка, внешний вид и назначение выводов микросхемы DW01-P.
Транзисторы MOSFET не входят в состав микросхемы DW01-P и выполнены в виде отдельной микросхемы-сборки из 2 MOSFET транзисторов N-типа. Обычно используется сборка с маркировкой 8205, а корпус может быть как 6-ти выводной (SOT-23-6), так и 8-ми выводной (TSSOP-8). Сборка может маркироваться как TXY8205A, SSF8205, S8205A и т.д. Также можно встретить сборки с маркировкой 8814 и аналогичные.
Вот цоколёвка и состав микросхемы S8205A в корпусе TSSOP-8.
Два полевых транзистора используются для того, чтобы раздельно контролировать разряд и заряд ячейки аккумулятора. Для удобства их изготавливают в одном корпусе.
Тот транзистор (FET1), что подключен к выводу OD (Overdischarge) микросхемы DW01-P, контролирует разряд аккумулятора – подключает/отключает нагрузку. А тот (FET2), что подключен к выводу OC (Overcharge
) – подключает/отключает источник питания (зарядное устройство). Таким образом, открывая или закрывая соответствующий транзистор, можно, например, отключать нагрузку (потребитель) или останавливать зарядку ячейки аккумулятора.Давайте разберёмся в логике работы микросхемы управления и всей схемы защиты вцелом.
Защита от перезаряда (Overcharge Protection).
Как известно, перезаряд литиевого аккумулятора свыше 4,2 – 4,3V чреват перегревом и даже взрывом.
Если напряжение на ячейке достигнет 4,2 – 4,3V (Overcharge Protection Voltage – VOCP), то микросхема управления закрывает транзистор FET2, тем самым препятствуя дальнейшему заряду аккумулятора. Аккумулятор будет отключен от источника питания до тех пор, пока напряжение на элементе не снизится ниже 4 – 4,1V (Overcharge Release Voltage – VOCR) из-за саморазряда. Это только в том случае, если к аккумулятору не подключена нагрузка, например он вынут из сотового телефона.
Если же аккумулятор подключен к нагрузке, то транзистор FET2 вновь открывается, когда напряжение на ячейке упадёт ниже 4,2V.
Защита от переразряда (Overdischarge Protection).
Если напряжение на аккумуляторе падает ниже 2,3 – 2,5V (Overdischarge Protection Voltage – VODP), то контроллер выключает MOSFET-транзистор разряда FET1 – он подключен к выводу DO.
Далее микросхема управления DW01-P перейдёт в режим сна (Power Down) и потребляет ток всего 0,1 мкА. (при напряжении питания 2V).
Тут есть весьма интересное условие. Пока напряжение на ячейке аккумулятора не превысит 2,9 – 3,1V (Overdischarge Release Voltage – VODR), нагрузка будет полностью отключена. На клеммах контроллера будет 0V. Те, кто мало знаком с логикой работы защитной схемы могут принять такое положение дел за “смерть” аккумулятора. Вот лишь маленький пример.
Миниатюрный Li-polymer аккумулятор 3,7V от MP3-плеера. Состав: управляющий контроллер – G2NK (серия S-8261), сборка полевых транзисторов – KC3J1.
Аккумулятор разрядился ниже 2,5V. Схема контроля отключила его от нагрузки. На выходе контроллера 0V.
При этом если замерить напряжение на ячейке аккумулятора, то после отключения нагрузки оно чуть подросло и достигло уровня 2,7V.
Чтобы контроллер вновь подключил аккумулятор к “внешнему миру”, то есть к нагрузке, напряжение на ячейке аккумулятора должно быть 2,9 – 3,1V (VODR).
Тут возникает весьма резонный вопрос.
По схеме видно, что выводы Стока (Drain) транзисторов FET1, FET2 соединены вместе и никуда не подключаются. Как же течёт ток по такой цепи, когда срабатывает защита от переразряда? Как нам снова подзарядить “банку” аккумулятора, чтобы контроллер опять включил транзистор разряда – FET1?
Дело в том, что внутри полевых транзисторов есть так называемые паразитные диоды – они являются результатом технологического процесса изготовления MOSFET-транзисторов. Вот именно через такой паразитный (внутренний) диод транзистора FET1 и будет течь ток заряда, так как он будет включен в прямом направлении.
Если порыться в даташитах на микросхемы защиты Li-ion/polymer (в том числе DW01-P, G2NK), то можно узнать, что после срабатывания защиты от глубокого разряда, действует схема обнаружения заряда – Charger Detection. То есть при подключении зарядного устройства схема определит, что зарядник подключен и разрешит процесс заряда.
Зарядка до уровня 3,1V после глубокого разряда литиевой ячейки может занять весьма длительное время – несколько часов.
Чтобы восстановить литий-ионный/полимерный аккумулятор можно использовать специальные приборы, например, универсальное зарядное устройство Turnigy Accucell 6. О том, как это сделать, я уже рассказывал здесь.
Именно этим методом мне удалось восстановить Li-polymer 3,7V аккумулятор от MP3-плеера. Зарядка от 2,7V до 4,2V заняла 554 минуты и 52 секунды, а это более 9 часов! Вот столько может длиться “восстановительная” зарядка.Кроме всего прочего, в функционал микросхем защиты литиевых акумуляторов входит защита от перегрузки по току (Overcurrent Protection) и короткого замыкания. Защита от токовой перегрузки срабатывает в случае резкого падения напряжения на определённую величину. После этого микросхема ограничивает ток нагрузки. При коротком замыкании (КЗ) в нагрузке контроллер полностью отключает её до тех пор, пока замыкание не будет устранено.
Главная » Радиоэлектроника для начинающих » Текущая страница
Также Вам будет интересно узнать:
Особенности контроллеров зарядки Li-ion аккумуляторов
В статье рассмотрены некоторые особенности контроллеров зарядки литиево-ионных (Li-Ion) аккумуляторов, созданных на базе линейных и импульсных стабилизаторов.
Введение
Состязание разработчиков и производителей портативных гаджетов по внедрению во вновь создаваемые (и при этом все меньшего размера) устройства аппаратных модулей с расширенными функциональными возможностями вряд ли можно остановить. Большие яркие дисплеи с сенсорными панелями, Wi-Fi, WiMAX, Bluetooth, GSM, GPS, видеокамеры с большим форматом матрицы видеосенсора, аудио- и видеоплееры — всего лишь неполный перечень встроенных модулей и возможностей, предоставляемых современными мобильными устройствами. И, по сути, на пути миниатюризации гаджетов всегда возникают две неразрывно связанные проблемы: отвод рассеиваемой мощности и малые габариты, в которые необходимо все это упаковать. Мобильное устройство должно не только привлекать потребителей своими интеллектуальными возможностями, но и не вызывать при этом ожогов (в прямом смысле этого слова) у пользователя. Минимизация уровня тепловыделения — один из важных приоритетов при разработке. Одним из источников тепла является контроллер зарядного устройства, встроенного в мобильный прибор аккумулятора.
Проблемы
Одним из обязательных компонентов современных портативных устройств является мало в чем изменившийся за последние годы литиево-ионный аккумулятор, отличающийся наилучшими показателями среди ряда других химических источников электроэнергии, предназначенных для использования в портативных приложениях. Бесспорно, емкость его выросла, существенно улучшены и другие характеристики, что позволило расширить функциональные возможности портативных устройств, однако базовый принцип его работы и алгоритм зарядки мало в чем изменились [1–7].
В среднем для полной зарядки литиево-ионного аккумулятора емкостью 1 А·ч при токе зарядки 1 А требуется один час. Часто используемые сегодня USB-адаптеры не могут обеспечить ток более 500 мА, и поэтому время зарядки может растянуться до 2–4 или более часов. Одна из проблем, возникающих при зарядке большим током, — тепловыделение. Поскольку выходное напряжение повсеместно используемых сетевых и USB-адаптеров составляет 5 В, а рабочее напряжение аккумулятора: 3,7…4,2 В, то среднее значение КПД контроллера зарядки, построенного на базе линейного регулятора, не может быть лучше, чем 74% (3,7/5,0), а максимальное — 84% (4,2/5,0). На рисунке 1 приведена зона возможных потерь мощности в контроллере в процессе зарядки аккумулятора. Таким образом, при зарядке аккумулятора током 1 А максимальные потери составят примерно 1,3 Вт. Необходимо отметить, что это не то неизбежное выделение тепла, связанное с накоплением энергии в аккумуляторе для последующего ее использования, а тепловыделение, вызванное нагревом кристалла ИС контроллера зарядки. Чтобы уменьшить нежелательный нагрев кристалла в процессе зарядки аккумулятора, необходимо повышать КПД контроллера, что достигается при использовании контроллеров с импульсным регулированием. Кроме того, их применение позволяет потенциально ускорить продолжительность зарядки.
Рис. 1. Распределение потерь мощности в процессе зарядки аккумулятора |
В контроллерах зарядки, созданных на базе линейных регуляторов с разделением путей протекания токов нагрузки и зарядки (PowerPath Technology), в случае небольшого тока нагрузки напряжение VOUT равно почти 5 В (VIN), а напряжение на аккумуляторе
VBAT = 3,7 В. При этом линейный регулятор контроллера зарядки используется неэффективно. При большом токе через нагрузку к ней дополнительно подключается аккумулятор и при VIN = 5 В, VOUT = VBAT = 3,7 В (см. рис. 2). В этом случае неэффективно используется проходной транзистор контроллера зарядки. И в первом, и во втором случаях сохраняется величина падения напряжения на элементах регулирования VIN – VOUT = 1,3 В или VOUT – VBAT = 1,3 В, что и приводит к нежелательной потере мощности. Особенность приведенной на рисунке 2 структурной схемы состоит в том, что для подключения аккумулятора к нагрузке используется устройство, выполняющее функции «идеального» (далее — идеального, прим. ред.) диода.
Рис. 2. Упрощенная структурная схема устройства зарядки с разделением путей протекания токов нагрузки и зарядки |
Варианты решения
Что же подразумевается под предложенным специалистами компании Linear Technology термином «идеальный» диод? [3, 7]. Широко применяемые диоды Шоттки отличаются по сравнению с другими полупроводниковыми диодами малым прямым падением напряжения и высокой скоростью переключения. При использовании этого диода в качестве полупроводникового ключа, например, в схемах автоматического подключения к нагрузке аккумулятора или сетевого адаптера, как правило, применяется простая схема монтажного ИЛИ, основной недостаток которой — сравнительно большое падение напряжения на диоде. При повышении тока нагрузки растут и потери мощности на нем. Решить эту проблему можно с использованием в качестве диода МОП-транзистора. Идея не нова, однако специалисты компании Linear Technology при замене диода на МОП-транзистор предложили также способ определения момента переключения идеального диода в закрытое и открытое состояния. Для этого осуществляется мониторинг падения напряжения между истоком (анодом) и стоком (катодом) транзистора. В рассматриваемом случае — это МОП-транзистор с каналом N-типа. В момент подключения входного напряжения, конечно, если входное напряжение больше выходного, ток через защитный диод транзистора течет в нагрузку. Транзистор открывается, и падение напряжения на нем равно ILOAD∙RDS, где RDS — сопротивление перехода сток-исток. Как правило, это напряжение примерно в десять раз ниже, чем падение напряжения на диоде Шоттки. Если напряжение на аноде ниже, чем на катоде, транзистор закрывается.
Для мониторинга падения напряжения на транзисторе используется специальный усилитель. Проблема заключается в том, как выбрать значение напряжения порога переключения и величину гистерезиса компаратора. Например, если открывать транзистор при падении напряжения 25 мВ, а закрывать при 5 мВ, это может привести к тому, что при малых токах нагрузки ключ просто закроется. Установка порога на уровне –5 мВ приведет к тому, что ток потечет от нагрузки ко входу. Чтобы исключить эти проблемы, падение напряжения между стоком и истоком открытого транзистора поддерживается с помощью специального следящего усилителя на уровне 25 мВ. При росте тока нагрузки повышается также и управляющее напряжение на затворе транзистора, и соответственно, снижается сопротивление открытого канала. Таким способом падение напряжения на транзисторе поддерживается почти постоянным на уровне 25 мВ.
На определенном этапе при увеличении тока падение напряжения на транзисторе начинает расти пропорционально току (ILOAD∙RDSON). На рисунке 3 приведены вольт-амперные характеристики диода Шоттки (B530C) и идеального диода [3, 7]. Предложенный метод управления МОП-транзистором позволяет реализовать плавное переключение транзистора и даже при небольших токах нагрузки получить минимальную разницу напряжения между стоком и истоком.
Рис. 3. Вольт-амперные характеристики идеального диода и диода Шоттки |
В микросхеме LTC4358 (Linear Technology) материализована идея создания идеального диода на базе встроенного на кристалл МОП-транзистора с каналом N-типа, имеющего сопротивление (RDSON) открытого канала 0,02 Ом. Напряжение питания ИС составляет 9,0…26,5 В; максимальный ток: 5 А; время отключения транзистора при превышении тока ограничения — 0,5 мкс. Микросхема LTC4358 предназначена для замены диодов в схемах переключения источников питания, к которым подключается нагрузка, построенных на основе схемы монтажного ИЛИ. Графики зависимости мощности, рассеиваемой на идеальном диоде (LTC4358) и на диоде Шоттки типа B530C показаны на рисунке 4. Микросхема LTC4358 изготавливается в корпусе 14-DFN и имеет размеры 4×3 мм.
Кроме того, компания Linear Technology предлагает и другие ИС, например, LTC4352/55/57, LTC4411/13/ 16. Микросхемы LTC4352/55/57 и LTC4416, по сути, являются контроллерами идеального диода, и для этой цели используется внешний МОП-транзистор, в микросхемах LTC4411/13 — встроенный. Миниатюрная ИС LTC4411 предназначена для автоматического переключения нагрузки между сетевым адаптером и аккумулятором в схемах, построенных на основе монтажного ИЛИ. Напряжение входного источника 2,6…5,5 В, ток потребления в статическом режиме не более 40 мкА (при токе нагрузки до 100 мА). Максимальное сопротивление открытого канала встроенного МОП-транзистора с каналом P-типа составляет 0,14 Ом, максимальный прямой ток — 2,6 А, ток утечки — менее 1 мкА. В микросхеме предусмотрена защита от перегрева корпуса. Для подключения ИС LTC4411 не требуются дополнительные внешние компоненты. Микросхема LTC4411 изготавливается в корпусе SOT-23-5.
В контроллерах зарядки LTC4066, LTC4085, построенных на основе линейного регулятора, также реализован идеальный диод. Напряжение питания ИС 4,35…5,50 В. Сопротивление идеального диода, используемого для подключения аккумулятора к нагрузке, при токе 3 А составляет всего 50 мОм. В контроллерах предусмотрена возможность ограничения входного тока на уровне 100 или 500 мА. Микросхемы LTC4066 изготавливаются в корпусе 24-QFN (4×4 мм).
а) | б) |
Рис. 4. Графики зависимости мощности, рассеиваемой на ИС LTC4358 и диоде B530C, от протекающего через них тока (а) и схема включения LTC4358 (б) |
Микросхемы LTC4088/LTC4098 — контроллеры зарядки литиево-ионных аккумуляторов, обеспечивающие за счет применения в них импульсного регулятора не только высокий КПД, но и реализацию технологии разделения путей протекания токов нагрузки и зарядки, получившую название Switching PowerPath. ИС LTC4088/98 содержат импульсный понижающий напряжение регулятор и линейный регулятор тока зарядки аккумулятора. В конфигурации, приведенной на рисунке 5, разница напряжения VIN – VOUT хотя и сохраняется почти прежней (см. рис. 2), однако потери мощности существенно меньше, т.к. КПД регулятора достаточно высок (примерно, 92% при выходном токе 300 мА). Напряжение VOUT лишь на несколько сотен милливольт выше VBAT. Принятые в этих микросхемах меры обеспечивают незначительные потери мощности.
Рис. 5. Упрощенная структурная схема LTC4088 |
Микросхема LTC4088 — высокоэффективный контроллер зарядки литиево-ионных аккумуляторов, обеспечивающий максимальный ток зарядки 1,5 А. В качестве внешнего источника питания можно использовать как сетевой адаптер, так и USB-порт. Напряжение питания LTC4088 — 4,25…5,50 В. Допускаются выбросы входного напряжения амплитудой до 7 В. Ток ограничения: 100, 500 или 1000 мА. Частота преобразования понижающего напряжение импульсного стабилизатора составляет 2,25 МГц. Подключение аккумулятора к нагрузке осуществляется с использованием встроенного аналога идеального диода с сопротивлением в открытом состоянии 0,18 Ом. Предусмотрена также возможность подключения дополнительного внешнего МОП-транзистора с каналом P-типа параллельно встроенному идеальному диоду, что позволяет существенно снизить суммарное сопротивление комбинированного ключа (см. рис. 6). Кроме того, в микросхеме LTC4088 реализован автономный стабилизатор напряжения с выходным напряжением 3,3 В, обеспечивающий ток нагрузки до 25 мА.
Рис. 6. Графики зависимости сопротивлений идеального диода (LTC4088) и комбинированного ключа от напряжения на аккумуляторе |
Микросхема LTC4088 изготавливается в корпусе 14-DFN и имеет размеры 4×3 мм. Максимальная температура корпуса 125°C, тепловое сопротивление 37°C/Вт. ИС LTC4098 — в корпусе 20-DFN с размерами 4×3 мм, ее тепловое сопротивление 43°C/Вт. Диапазон рабочих температур: –40…85°C.
Микросхемы bq2410x (Texas Instruments) обеспечивают максимальный ток зарядки аккумулятора до 2 А. Частота преобразования понижающего напряжение импульсного регулятора составляет 1,1 МГц. Микросхемы bq2410x содержат встроенные ключи, выполненные на базе МОП-транзисторов, используемые для подключения к нагрузке сетевого адаптера или аккумулятора. Максимальный КПД — 93%.
Микросхемы bq2410х изготавливаются в корпусе 20-QFN (3,5×4,5 мм). Допустимая мощность рассеивания до температуры кристалла 40°C составляет 1,81 Вт, тепловое сопротивление — 46,87°C/Вт. Диапазон рабочих температур: –40…85 °C.
Как и для ИС, созданных на базе линейных регуляторов (к примеру, MAX1811, LTC4065/69/95, MCP73831/2, MCP73811, bq2402x/3х/6х, bq2057, bq24085), так и в случае использования импульсных преобразователей, есть два варианта подключения нагрузки и аккумулятора: непосредственное подключение (в одну точку) и подключение с возможностью выбора путей протекания зарядного тока и тока нагрузки.
Существует два варианта непосредственного подключения нагрузки к аккумулятору. В первом случае нагрузка подключается после измерительного резистора RSNS (см. рис. 7а), а во втором — до него (см. рис. 7б). В первом варианте входное напряжение VIN преобразуется в напряжение VOUT с высоким КПД. При подключенном сетевом адаптере обеспечивается энергопитание нагрузки и одновременно зарядка аккумулятора, в случае отключения адаптера питание нагрузки осуществляется от аккумулятора.
a) | б) |
Рис. 7. Структурные схемы подключения нагрузки до (а) и после (б) измерительного резистора |
Преимущества первого варианта топологии:
– при отключенном адаптере энергопитание нагрузки осуществляется непосредственно от аккумулятора с минимальными потерями мощности;
– возможно использование технологии динамического управления током зарядки аккумулятора (Dynamic Power Management — DPM), что позволяет за счет динамического снижения тока зарядки предотвратить потенциальную вероятность перегрузки ИС по току зарядки и перегрева ее корпуса при пиковых нагрузках, а, кроме того, сохраняется возможность ограничения суммарного входного тока;
– малы изменения напряжения на нагрузке;
– достаточно просто на программном уровне реализуется режим токового мягкого старта.
При выборе топологии подключения аккумулятора к нагрузке следует принимать во внимание некоторые особенности. Если средний ток нагрузки длительное время достаточно велик, то процесс зарядки затягивается, и возникает ситуация, при которой аккумулятор непрерывно находится в процессе зарядки, что сокращает его срок службы. Поскольку предел ограничения суммарного тока фиксирован на аппаратном уровне, то при достаточно большом токе через нагрузку ток зарядки аккумулятора также снижается, что приводит к чрезмерному увеличению времени зарядки аккумулятора до его полной емкости, и поэтому вполне вероятна ситуация, при которой будет просто невозможно полностью его зарядить.
Если при заряженном аккумуляторе ток нагрузки увеличится, то вследствие падения напряжения на внутреннем сопротивлении аккумулятора выходное напряжение может снизиться до порога, при котором будет инициироваться очередной цикл зарядки, который, в свою очередь, быстро завершится. Таким образом, возможна ситуации, при которой процесс зарядки будет стартовать циклически. При небольшом токе нагрузки интервал времени от момента уменьшения выходного напряжения (за счет падения напряжения на аккумуляторе) до необходимого порога для старта очередного процесса зарядки существенно увеличивается.
В фазе предварительной зарядки (при напряжении на аккумуляторе ниже 3,0 В) ток зарядки составляет примерно 10% номинальной емкости аккумулятора, чего зачастую слишком мало для энергоснабжения продолжающего работать устройства, которое в этом случае вынуждено подпитываться от аккумулятора, а последний соответственно продолжает разряжаться. Кроме того, поскольку для предварительной фазы зарядки отводится определенный задаваемый специальным таймером интервал времени, в течение которого напряжение на аккумуляторе должно достичь порога 3,2 В, то создается ситуация, при которой напряжение на аккумуляторе не возрастает, а таймер начинает сигнализировать, что аккумулятор неисправен.
Не следует забывать, что основной недостаток непосредственного подключения аккумулятора к нагрузке заключается в том, что при полностью или глубоко разряженном аккумуляторе напряжение на нагрузке (даже при условии подключения сетевого адаптера) равно напряжению на аккумуляторе, чего бывает явно недостаточно для работы устройства, и, конечно, во многих случаях это просто недопустимо.
Во втором варианте (см. рис. 7б) нагрузка подключена до измерительного резистора (RSNS). Эта топология, по сравнению с той, в которой нагрузка подключена после резистора, имеет ряд преимуществ. Основным является то, что в ней контролируется ток, протекающий только через аккумулятор, и поэтому все три режима зарядки (предварительный, режим собственно зарядки с током, равным величине емкости аккумулятора и режим завершения) работают без каких-либо проблем, связанных с протеканием тока через нагрузку.
Глубоко разряженный аккумулятор можно без риска подключать к контроллеру зарядки, не опасаясь завершения работы таймера, определяющего безопасную продолжительность предварительной фазы зарядки, еще до окончания этого этапа. Следует также принимать во внимание, что суммарный ток через контроллер зарядки ограничен на уровне максимально допустимого тока через кристалл, а также работой системы защиты от перегрева ИС. Ток зарядки не уменьшается при росте тока нагрузки, поэтому эта топология не используется при больших токах нагрузки.
При больших токах нагрузки и зарядки обеспечить низкий уровень тепловыделения крайне сложно даже при использовании импульсных регуляторов со встроенными транзисторными ключами. Поэтому при больших токах мощные ключи, как правило, не интегрируются на кристалле микросхемы, а размещаются вне ее корпуса.
Примером таких ИС могут служить bq24702/3/5 и bq246хх (Texas Instruments), обеспечивающие ток зарядки до 10 А (bq24610/17). В отличие от bq2410x устройства зарядки, созданные на базе ИС bq246хх, содержат внешние ключи. Частота преобразования импульсного стабилизатора ИС bq24610/17 составляет 600 кГц. Кроме того, в контроллерах bq24610/17 реализована технология динамического управления током зарядки аккумулятора DPM, основанная на мониторинге величины входного тока. Для независимого измерения суммарного (входного) тока и тока зарядки аккумулятора в контроллере bq24610 реализованы два прецизионных усилителя. Для подключения нагрузки к адаптеру, а также аккумулятора к нагрузке используются ключи на мощных внешних МОП-транзисторах.
Микросхемы bq24610/17 изготавливаются в корпусе 24-QFN (4×4 мм). Допустимая мощность, рассеиваемая при температуре 25°C, составляет 2,3 Вт; тепловое сопротивление — 43°C/Вт.
Заключение
В заключение в таблицах 1, 2 приведены параметры некоторых контроллеров зарядки, построенных на основе как линейных, так и импульсных регуляторов.
Таблица 1. Параметры контроллеров зарядки, созданных на базе линейных регуляторов
Наименование | MAX1811 | MCP73831 | bq24020 | bq24085 | LTC4065 | LTC4095 | bq24030 |
Входное напряжение, В | 4,35…6,5 | 3,75…6,0 | 4,35…6,5 | 3,75…5,5 | 4,3…5,5 | 4,35…16,0 | |
Максимальный ток зарядки, А | 0,5 | 0,5 | 1,0 | 0,75 | 0,75 | 0,95 | 2,0 |
Напряжение аккумулятора, В | 4,2 | ||||||
Диапазон рабочих температур, °C | –40…85 | –40…125 | –40…155 | –40…85 | –40…125 | ||
Тип корпуса (размеры, мм) | 8-SO | 8-DFN (2×3), SOT-23-5 | 10-SON (3×3) | 6-DFN (2×2) | 8-DFN (2×2) | 20-QFN (3,5×4,5) |
Таблица 2. Параметры контроллеров зарядки, созданных на базе импульсных регуляторов
Наименование | LTC4088 | LTC4098 | bq24100 | bq24702 | bq24610 |
Входное напряжение, В | 4,35…5,5 | 4,35…16 | 4,5…28 | 5…28 | |
Максимальный ток зарядки, А | 1,5 | 2,0 | 2,0 | 10 | |
Частота преобразователя, МГц | 2,25 | 1,1 | 0,3 | 0,6 | |
Напряжение аккумулятора, В | 4,2 | Программируется | |||
Диапазон рабочих температур, °C | –40…85 | ||||
Тип корпуса (размеры, мм) | 14-DFN (4×4) | 20-QFN (3×4) | 20-QFN (3,5×4,5) | 24-TSSOP | 24-QFN (4×4) |
Схема непосредственного подключения аккумулятора к нагрузке и контроллеру зарядки, созданному на основе линейного регулятора, отличается простотой, а устройства, выполненные на базе этой архитектуры, — более низкой стоимостью. Однако при больших токах нагрузки вряд ли можно рекомендовать использование этой топологии из-за большой вероятности перегрева кристалла ИС. При непосредственном подключении аккумулятора к нагрузке можно достичь минимального изменения уровня напряжения на нагрузке.
Проблема потери мощности сохраняется также и в контроллерах зарядки, созданных на основе непрерывного регулирования, с разделением путей протекания токов нагрузи и зарядки. Более высокого КПД можно достичь за счет применения импульсного регулятора, что позволяет создавать на его базе контроллеры с током зарядки аккумулятора более 10 А. Кроме того, в этих контроллерах зачастую используется технология разделения путей протекания токов нагрузки и зарядки, основным преимуществом которой является высокая надежность.
Более полную информацию о микросхемах зарядки аккумуляторов можно найти в [2–6].
Литература
1. Steven Martin. Speed up Li-ion battery charging and reduce heat with a switching power-path manager. — Linear Technology (www.linear.com).2. LTC4088. High efficiency battery charger/USB power manager. — Linear Technology (www.linear.com).
3. Meilissa Lum. Ideal diode betters a Schottky by a factor of four in power and space consumption.
4. bq24030, bq24031, bq24032A, bq24035, bq24038. Single-chip charge and system power-path management IC (bqTINY™). — Texas Instruments, 2009 (www.ti.com).
5. Implementations of battery charger and power-path management system using bq2410x/11x/12x (bqSWITCHER™). — Texas Instruments, 2006 (www.ti.com).
6. bq24610, bq24617. Stand-alone synchronous switch-mode Li-ion or Li-polymer battery charger with system power selector and low Iq. — Texas Instruments, 2009 (www.ti.com).
7. Pinkesh Sachdev. 0V to 18V ideal diode controller saves Watts and space over Schottky. — Linear Technology (www.linear.com).
Контроллер зарядки литий─ионного аккумулятора
Многие читатели сайта спрашивают о том, что такое контроллер заряда литий─ионного аккумулятора, и для чего он нужен. Этот вопрос кратко упоминался в материалах, где описывались различные типы литиевых аккумуляторов. Этот тип аккумуляторных батарей практически всегда имеет в своём составе контроллер зарядки, ещё называемый платой защиты Battery Monitoring System (BMS). В этой заметке подробнее рассмотрим, что это за устройство, и как оно функционирует.
Содержание статьи
Что представляет собой контроллер зарядки Li─Ion аккумуляторов?
Простейший вариант контроллера зарядки литий─ионных АКБ можно увидеть, если разобрать аккумулятор планшетного компьютера или телефона. Он состоит из банки (аккумуляторного элемента) и печатной платы защиты BMS. Это и есть контроллер зарядки, который можно видеть на фото ниже.
Контроллер зарядки Li─Ion аккумулятора
Основой здесь является микросхема контроллера защиты. Полевые транзисторы используются для раздельного управления защитой при зарядке и разрядке аккумуляторного элемента.
Назначение контроллера защиты в том, что он следит за тем, чтобы банка не заряжалась выше напряжения 4,2 вольта. Литиевый аккумуляторный элемент имеет номинальное напряжение 3,7 вольта. Перезаряд и превышение напряжения выше 4,2 вольта могут привести к тому, что элемент выйдет из строя.
В аккумуляторах смартфонов и планшетов плата BMS следит за процессом заряда и разряда одного элемента (банки). В аккумуляторах ноутбуков таких банок несколько. Обычно от 4 до 8.
Контроллер зарядки и литий─ионные элементы аккумулятора ноутбука
Также контроллер следит за процессом разрядки аккумуляторного элемента. При падении напряжения ниже порогового (обычно 3 вольта) схема отключает банку от потребителя тока. В результате устройство, работающее от аккумулятора, просто выключается.
Среди прочих функций контроллера зарядки стоит отметить защиту от короткого замыкания. На некоторых платах защиты BMS устанавливается терморезистор для защиты аккумуляторного элемента от перегрева.
Вернуться к содержанию
Платы защиты BMS для литий─ионных аккумуляторов
Контроллер, рассмотренный выше, является простейшим вариантом защиты BMS. На самом деле разновидностей таких плат гораздо больше и есть довольно сложные и дорогостоящие. В зависимости от сферы применения выделяют следующие виды:
- Для портативной мобильной электроники;
- Для бытовой техники;
- Применяемые в возобновляемых источниках энергии.
Часто такие платы защиты BMS можно встретить в составе систем с солнечными батареями и в ветряных генераторах. Там, как правило, верхний порог срабатывания защиты по напряжению составляет 15, а нижний – 12 вольт. Сам аккумулятор в штатном режиме выдаёт напряжение 12 вольт. К аккумуляторной батарее подключается источник энергии (например, солнечная панель). Подключение выполняется через реле.
Пример контроллера заряда для солнечной панели
При увеличении напряжения на аккумуляторе более 15 вольт срабатывают реле и размыкают цепь заряда. После этого источник энергии работает на предусмотренный для этого балласт. Как говорят специалисты, в случае с солнечными панелями это может дать нежелательные побочные эффекты.
В случае ветряных генераторов BMS контроллеры применяются обязательно. Контроллеры зарядки литий─ионных аккумуляторов для бытовой техники и мобильных устройств имеют существенные различия. А вот контроллеры аккумуляторов ноутбуков, планшетов и телефонов имеют одинаковую схему. Разница заключается только в количестве контролируемых аккумуляторных элементов.
Вернуться к содержанию
Как зарядить литий─ионных аккумулятор без контроллера?
Здесь сразу стоит сказать, что заряжать Li─Ion банку в обход контроллера крайне не рекомендуется. В этом случае все функции контроллера зарядки вы должны будете выполнять самостоятельно. То есть, нужно будет вовремя отключить заряд при достижении верхнего порога напряжения, а также следить за температурой банки. Поэтому так делать крайне нежелательно.
Зарядка банки аккумулятора телефона без контроллера
Вместе с тем бывают ситуации, когда есть реальная необходимость в такой зарядке. Например, банка сильно разряжена и контроллер не позволяет зарядить её штатным способом. Такое бывает, если устройство долго не использовалось, и аккумулятор испытал глубокий разряд.
Тогда следует отпаять плату BMS, подключить зарядное устройство к выводам банки и провести зарядку. Конкретные параметры зарядки зависят от аккумуляторного элемента. Если банок несколько, как в батарее ноутбука, нужно будет определять разряженные и проводить их зарядку отдельно. В любом случае процесс зарядки литиевого аккумулятора должен идти под контролем. Нужно проверять напряжение элемента и прервать процесс при достижении верхнего порога по напряжению. Кроме того, следует следить за температурой банки.
Вернуться к содержанию
Опрос
Примите участие в опросе!
Загрузка …Если статья оказалась для вас полезной, распространите ссылку на неё в социальных сетях. Это поможет развитию сайта. Голосуйте в опросе ниже и оценивайте материал! Исправления и дополнения оставляйте в комментариях.
Вернуться к содержанию
Схема подключения контроллера и литиевого аккумулятора ма. Контроллер заряда Li-ion аккумулятора. Как правильно заряжать литий-ионные аккумуляторы
Покупался лот из десяти штук, для переделки питания кое-каких устройств на li-ion аккумуляторы (сейчас в них используется 3АА аккумулятора ), но в обзоре я покажу другой вариант применения этой платы, который, хоть и не задействует все её возможности. Просто из этих десяти штук нужны только будут только шесть, а покупать поштучно 6 с защитой и пару без защиты получается менее выгодно.
Основанная на TP4056 плата заряда с защитой для Li-Ion аккумуляторов c током до 1A предназначена для полноценной зарядки и защиты аккумуляторов (к примеру, популярных 18650 ) с возможностью подключения нагрузки. Т.е. данную плату можно легко встроить в различные устройства, такие как фонарики, светильники, радиоприемники и т.д.,с питанием от встроенного литиевого аккумулятора, и заряжать его не вынимая из устройства любой USB-зарядкой через microUSB разъем. Ещё эта плата отлично подойдет для ремонта сгоревших зарядок Li-Ion аккумуляторов.
И так, кучка плат, каждая в индивидуальном пакетике (тут уже конечно меньше чем покупалось )
Выглядит платка вот так:
Можно рассмотреть поближе установленные элементы
Слева microUSB вход питания, питание также продублировано площадками + и – под пайку.
В центре контроллер заряда, Tpower TP4056, над ним пара светодиодов, отображающих либо процесс заряда (красный) либо окончание заряда (синий), под ним резистор R3, изменяя номинал которого можно изменить ток заряда аккумулятора. TP4056 заряжает аккмуляторы по алгоритму CC/CV и автоматически завершает процесс зарядки, если ток заряда снижается до 1/10 от установленного.
Табличка номиналов сопротивления и зарядного тока, согласно спецификации контроллера.
- R (кОм) – I (mA)
- 1.2 – 1000
- 1.33 – 900
- 1.5 – 780
- 1.66 – 690
- 2 – 580
- 3 – 400
- 4 – 300
- 5 – 250
- 10 – 130
С обратной стороны платы нет ничего, так что её можно, например, приклеить.
А теперь вариант применения платы заряда и защиты li-ion аккумуляторов.
Ныне почти во всех видеокамерах любительского формата в качестве источников питания используются li-ion аккумуляторы напряжением 3,7В, т.е. 1S. Вот один из дополнительно купленных аккумуляторов для моей видеокамеры
У меня их несколько, производства (или маркировки ) DSTE модель VW-VBK360 емкостью по 4500мАч (не считая оригинального, на 1790мАч )
Зачем мне столько? Да, конечно, моя камера заряжается от БП с номиналами 5В 2А, и купив отдельно штекер USB и подходящий разъем, я теперь могу её заряжать и от повербанков (и это одна из причин зачем мне, и не только мне, их столько ), да вот только снимать на камеру, к которой ещё и тянется провод – неудобно. Значит надо как-то заряжать аккумуляторы вне камеры.
Я уже показывал в вот такую зарядку
Да-да, это она, с поворачивающейся вилкой американского стандарта
Вот так она легко разделяется
И вот так, в неё вживляется плата заряда и защиты литиевых аккумуляторов
И конечно же, я вывел пару светодиодов, красный – процесс заряда, зеленый – окончание заряда аккумулятора
Вторая плата была установлена аналогично, в зарядку от видеокамеры Sony. Да, конечно, новые модели видеокамер Sony заряжаются от USB, у них даже есть не отсоединяющийся USB-хвостик (глупое на мой взгляд решение ). Но опять же, в полевых условиях, снимать на камеру, к которой тянется кабель от повербанка менее удобно чем без него. Да и кабель должен быть достаточно длинным, а чем длиннее кабель, тем больше его сопротивление и тем больше на нем потери, а уменьшать сопротивление кабеля увеличивая толщину жил, кабель становится более толстым и менее гибким, что не добавляет удобства.
Так что из таких плат для заряда и защиты li-ion аккумуляторов до1А на TP4056 легко можно сделать простое зарядное устройство для аккумулятора своими руками, переделать зарядное устройство на питание от USB, например для зарядки аккумуляторов от повербанка, сделать ремонт зарядного устройства при необходимости.
Все написанное в этом обзоре можно увидеть в видеоверсии:
Для начала нужно определиться с терминологией.
Как таковых контроллеров разряда-заряда не существует . Это нонсенс. Нет никакого смысла управлять разрядом. Ток разряда зависит от нагрузки – сколько ей надо, столько она и возьмет. Единственное, что нужно делать при разряде – это следить за напряжением на аккумуляторе, чтобы не допустить его переразряда. Для этого применяют .
При этом, отдельно контроллеры заряда не только существуют, но и совершенно необходимы для осуществления процесса зарядки li-ion аккумуляторов. Именно они задают нужный ток, определяют момент окончания заряда, следят за температурой и т.п. Контроллер заряда является неотъемлемой частью любого .
Исходя из своего опыта могу сказать, что под контроллером заряда/разряда на самом деле понимают схему защиты аккумулятора от слишком глубокого разряда и, наоборот, перезаряда.
Другими словами, когда говорят о контроллере заряда/разряда, речь идет о встроенной почти во все литий-ионные аккумуляторы защите (PCB- или PCM-модулях). Вот она:
И вот тоже они:
Очевидно, что платы защиты представлены в различных форм-факторах и собраны с применением различных электронных компонентов. В этой статье мы как раз и рассмотрим варианты схем защиты Li-ion аккумуляторов (или, если хотите, контроллеров разряда/заряда).
Контроллеры заряда-разряда
Раз уж это название так хорошо укрепилось в обществе, мы тоже будем его использовать. Начнем, пожалуй, с наиболее распространенного варианта на микросхеме DW01 (Plus).
DW01-Plus
Такая защитная плата для аккумуляторов li-ion встречается в каждом втором аккумуляторе от мобильника. Чтобы до нее добраться, достаточно просто оторвать самоклейку с надписями, которой обклеен аккумулятор.
Сама микросхема DW01 – шестиногая, а два полевых транзистора конструктивно выполнены в одном корпусе в виде 8-ногой сборки.
Вывод 1 и 3 – это управление ключами защиты от разряда (FET1) и перезаряда (FET2) соответственно. Пороговые напряжения: 2.4 и 4.25 Вольта. Вывод 2 – датчик, измеряющий падение напряжения на полевых транзисторах, благодаря чему реализована защита от перегрузки по току. Переходное сопротивление транзисторов выступает в роли измерительного шунта, поэтому порог срабатывания имеет очень большой разброс от изделия к изделию.
Вся схема выглядит примерно вот так:
Правая микросхема с маркировкой 8205А – это и есть полевые транзисторы, выполняющие в схеме роль ключей.
S-8241 Series
Фирма SEIKO разработала специализированные микросхемы для защиты литий-ионных и литий-полимерных аккумуляторов от переразряда/перезаряда. Для защиты одной банки применяются интегральные схемы серии S-8241 .
Ключи защиты от переразряда и перезаряда срабатывают соответственно при 2.3В и 4.35В. Защита по току включается при падении напряжения на FET1-FET2 равном 200 мВ.
AAT8660 Series
LV51140T
Аналогичная схема протекции литиевых однобаночных аккумуляторов с защитой от переразряда, перезаряда, превышения токов заряда и разряда. Реализована с применением микросхемы LV51140T .
Пороговые напряжения: 2.5 и 4.25 Вольта. Вторая ножка микросхемы – вход детектора перегрузки по току (предельные значения: 0.2В при разряде и -0.7В при зарядке). Вывод 4 не задействован.
R5421N Series
Схемотехническое решение аналогично предыдущим. В рабочем режиме микросхема потребляет около 3 мкА, в режиме блокировки – порядка 0.3 мкА (буква С в обозначении) и 1 мкА (буква F в обозначении).
Серия R5421N содержит несколько модификаций, отличающихся величиной напряжения срабатывания при перезарядке. Подробности приведены в таблице:
SA57608
Очередной вариант контроллера заряда/разряда, только уже на микросхеме SA57608 .
Напряжения, при которых микросхема отключает банку от внешних цепей, зависят от буквенного индекса. Подробности см. в таблице:
SA57608 потребляет достаточно большой ток в спящем режиме – порядка 300 мкА, что отличает ее от вышеперечисленных аналогов в худшую сторону (там потребляемые токи порядка долей микроампера).
LC05111CMT
Ну и напоследок предлагаем интересное решение от одного из мировых лидеров по производству электронных компонентов On Semiconductor – контроллер заряда-разряда на микросхеме LC05111CMT .
Решение интересно тем, что ключевые MOSFET”ы встроены в саму микросхему, поэтому из навесных элементов остались только пару резисторов да один конденсатор.
Переходное сопротивление встроенных транзисторов составляет ~11 миллиом (0.011 Ом). Максимальный ток заряда/разряда – 10А. Максимальное напряжение между выводами S1 и S2 – 24 Вольта (это важно при объединении аккумуляторов в батареи).
Микросхема выпускается в корпусе WDFN6 2.6×4.0, 0.65P, Dual Flag.
Схема, как и ожидалось, обеспечивает защиту от перезаряда/разряда, от превышения тока в нагрузке и от чрезмерного зарядного тока.
Контроллеры заряда и схемы защиты – в чем разница?
Важно понимать, что модуль защиты и контроллеры заряда – это не одно и то же. Да, их функции в некоторой степени пересекаются, но называть встроенный в аккумулятор модуль защиты контроллером заряда было бы ошибкой. Сейчас поясню в чем разница.
Важнейшая роль любого контроллера заряда заключается в реализации правильного профиля заряда (как правило, это CC/CV – постоянный ток/постоянное напряжение). То есть контроллер заряда должен уметь ограничивать ток зарядки на заданном уровне, тем самым контролируя количество “заливаемой” в батарею энергии в единицу времени. Избыток энергии выделяется в виде тепла, поэтому любой контроллер заряда в процессе работы достаточно сильно разогревается.
По этой причине контроллеры заряда никогда не встраивают в аккумулятор (в отличие от плат защиты). Контроллеры просто являются частью правильного зарядного устройства и не более.
Кроме того, ни одна плата защиты (или модуль защиты, называйте как хотите) не способен ограничивать ток заряда. Плата всего лишь контролирует напряжение на самой банке и в случае выхода его за заранее установленные пределы, размыкает выходные ключи, отключая тем самым банку от внешнего мира. Кстати, защита от КЗ тоже работает по такому же принципу – при коротком замыкании напряжение на банке резко просаживается и срабатывает схема защиты от глубокого разряда.
Путаница между схемами защиты литиевых аккумуляторов и контроллеров заряда возникла из-за схожести порога срабатывания (~4.2В). Только в случае с модулем защиты происходит полное отключение банки от внешних клемм, а в случае с контроллером заряда происходит переключение в режим стабилизации напряжения и постепенного снижения зарядного тока.
Прогресс идет вперед, и на смену традиционно используемым NiCd (никель-кадмиевым) и NiMh (никель-металлогидридным) всё чаще приходят литиевые аккумуляторы.
При сравнимом весе одного элемента, литий имеет большую ёмкость, кроме того, напряжение элемента у них в три раза выше – 3,6 V на элемент, вместо 1,2 V.
Стоимость литиевых аккумуляторов стала приближаться к обычным щелочным батареям, вес и размер намного меньше, да к тому же их можно и нужно заряжать. Производитель говорит, 300-600 циклов выдерживают.
Размеры есть разные и подобрать нужный не составляет труда.
Саморазряд настолько низкий, что лежат годами и остаются заряженными, т.е. устройство остается рабочим когда оно нужно.
«С» значит Capacity
Часто встречается обозначение вида «xC». Это просто удобное обозначения тока заряда или разряда аккумулятора с долях его ёмкости. Образовано от английского слова «Capacity» (вместимость, ёмкость).Когда говорят о зарядке током 2С, или 0.1С, обычно имеют в виду, что ток должен составлять (2 × емкость аккумулятора)/h или (0.1 × емкость аккумулятора)/h соответственно.
Например, аккумулятор емкостью 720 mAh, для которого ток заряда составляет 0.5С, надо заряжать током 0.5 × 720mAh/h = 360 мА, это относится и к разряду.
А можно сделать самому простое или не очень простое зарядное устройство, в зависимости от вашего опыта и возможностей.
Схема простого зарядного устройства на LM317
Рис. 5.
Схема с применением обеспечивает достаточно точную стабилизацию напряжения, которое устанавливается потенциометром R2.
Стабилизация тока не столь критична, как стабилизация напряжения, поэтому достаточно стабилизировать ток с помощью шунтирующего резистора Rx и NPN-транзистора (VT1).
Необходимый ток зарядки для конкретного литий-ионного (Li-Ion) и литий-полимерного (Li-Pol) аккумулятора выбирается путём изменения сопротивления Rx.
Сопротивление Rx приблизительно соответствует следующему отношению: 0,95/Imax.
Указанное на схеме значение резистора Rx соответствует току в 200 мА, это примерное значение, зависит так же от транзистора.
Надо снабдить радиатором в зависимости от тока заряда и входного напряжения.
Входное напряжение должно быть выше напряжения аккумулятора минимум на 3 Вольта для нормальной работы стабилизатора, что для одной банки составляет?7-9 V.
Схема простого зарядного устройства на LTC4054
Рис. 6.
Можно выпаять контролер заряда LTC4054 из старого сотового телефона, к примеру, Samsung (C100, С110, Х100, E700, E800, E820, P100, P510).
Рис. 7. У этого мелкого 5-ногого чипа маркировка «LTH7» или «LTADY»
Вдаваться в мельчайшие подробности работы с микросхемой я не буду, всё есть в даташите. Опишу только самые необходимые особенности.
Ток заряда до 800 мА.
Оптимальное напряжение питания от 4,3 до 6 Вольт.
Индикация заряда.
Защита от КЗ на выходе.
Защита от перегрева (снижение тока заряда при температуре больше 120°).
Не заряжает аккумулятор при напряжении на нём ниже 2,9 V.
Ток заряда задается резистором между пятым выводом микросхемы и землей по формуле
I=1000/R,
где I – ток заряда в Амперах, R – сопротивление резистора в Омах.
Индикатор разрядки литиевого аккумулятора
Вот простая схема, которая зажигает светодиод, когда батарея разряжена и её остаточное напряжение близко к критическому.
Рис. 8.
Транзисторы любые маломощные. Напряжение зажигания светодиода подбирается делителем из резисторов R2 и R3. Схему лучше подключать после блока защиты, чтоб светодиод не разрядил аккумулятор совсем.
Нюанс долговечности
Производитель обычно заявляет 300 циклов, но если заряжать литий всего на 0,1 Вольта меньше, до 4.10 В, то количество циклов возрастает до 600 и даже более.Эксплуатация и меры предосторожности
Можно с уверенностью сказать, что литий-полимерные аккумуляторы самые «нежные» аккумуляторы из существующих, то есть требуют обязательного соблюдения нескольких несложных, но обязательных правил, из-за несоблюдения которых случаются неприятности.1. Не доспускается заряд до напряжения, превышающего 4.20 Вольт на банку.
2. Не доспускается короткое замыкание аккумулятора.
3. Не доспускается разряд токами, превышающими нагрузочную способность или нагревающими аккумулятор выше 60°С. 4. Вреден разряд ниже напряжения 3.00 Вольта на банку.
5. Вреден нагрев аккумулятора выше 60°С. 6. Вредна разгерметизация аккумулятора.
7. Вредно хранение в разряженном состоянии.
Невыполнение первых трех пунктов приводит к пожару, остальных – к полной или частичной потере ёмкости.
Из практики многолетнего использования могу сказать, что ёмкость аккумуляторов изменяется мало, но увеличивается внутреннее сопротивление и аккумулятор начинает работать меньше по времени при больших токах потребления – создаётся впечатление, что ёмкость упала.
По этому я обычно ставлю ёмкость побольше, какую позволяют габариты устройства, и даже старые банки, которым лет по десять, работают вполне прилично.
Для не очень больших токов подходят старые аккумуляторы от сотовых.
Из старой ноутбучной батареи можно вытащить много вполне рабочих аккумуляторов формата 18650.
Где я применяю литиевые батареи
Давно переделал шуруповерт и электроотвертку на литий. Пользуюсь этими инструментами нерегулярно. Теперь даже через год неиспользования они работают без подзарядки!Маленькие батареи ставлю в детские игрушки, часы и т.д., где с завода стояли 2-3 «таблеточных» элемента. Там где нужно ровно 3V добавляю один диод последовательно и получается как раз.
Ставлю в светодиодные фонарики.
В тестер вместо дорогой и малоёмкой «Кроны 9V» установил 2 банки и забыл все проблемы и лишние затраты.
Вообще ставлю везде, где получается, вместо батареек.
Где я покупаю литий и полезности по теме
Продаются . По этой же ссылке найдёте модули зарядок и пр. полезности для самодельщиков.На счёт ёмкости китайцы обычно врут и она меньше написанной.
Честные Sanyo 18650
И снова устройство для самоделкиных.
Модуль позволяет заряжать Li-Ion аккумуляторы (как защищённые так и незащищённые) от порта USB посредством кабеля miniUSB.
Печатная плата – двусторонний стеклотекстолит с металлизацией, монтаж аккуратный.
Собрана зарядка на базе специализированного контроллера заряда TP4056.
Реальная схема.
Со стороны аккумулятора, устройство ничего не потребляет и его можно оставлять постоянно подключенным к аккумулятору. Защита от КЗ на выходе – есть (с ограничением тока 110мА). Защита от переполюсовки аккумулятора отсутствует.
Питание miniUSB продублировано пятаками на плате.
Работает устройство так:
При подключении питания без аккумулятора, загорается красный светодиод, а синий периодически помаргивает.
При подключении разряженного аккумулятора, красный светодиод гаснет и загорается синий – начинается процесс заряда. Пока напряжение на аккумуляторе меньше 2,9V, ток заряда ограничен величиной 90-100мА. С повышением напряжения выше 2.9V, ток заряда резко возрастает до 800мА с дальнейшим плавным повышением до номинала 1000мА.
При достижении напряжения 4,1V, ток заряда начинает плавно снижаться, в дальнейшем происходит стабилизация напряжения на уровне 4,2V и после уменьшения зарядного тока до 105мА светодиоды начинают периодически переключаться, показывая окончание заряда, при этом заряд всё равно продолжается с переключением на синий светодиод. Переключение идёт в соответствии с гистерезисом контроля напряжения аккумулятора.
Номинальный ток заряда задаётся резистором 1,2кОм. При необходимости, ток можно уменьшить увеличивая номинал резистора согласно спецификации контроллера.
R (кОм) – I (mA)
10 – 130
5 – 250
4 – 300
3 – 400
2 – 580
1.66 – 690
1.5 – 780
1.33 – 900
1.2 – 1000
Конечное напряжение заряда жёстко задано на уровне 4,2V – т.е. не всякий аккумулятор будет заряжен на 100%
Спецификация контроллера.
Вывод: устройство простое и полезное для выполнения конкретной задачи.
Планирую купить +167 Добавить в избранное Обзор понравился +96 +202Защита литий-ионных аккумуляторов (Li-ion). Я думаю, что многие из вас знают, что, например, внутри аккумулятора от мобильного телефона имеется ещё и схема защиты (контроллер защиты), которая следит за тем, чтобы аккумулятор (ячейка, банка, итд…) не был перезаряжен выше напряжения 4.2 В, либо разряжен меньше 2…3 В. Также схема защиты спасает от коротких замыканий, отключая саму банку от потребителя в момент короткого замыкания. Когда аккумулятор исчерпывает свой срок службы, из него можно достать плату контроллера защиты, а сам аккумулятор выбросить. Плата защиты может пригодиться для ремонта другого аккумулятора, для защиты банки (у которой нету схем защиты), либо же просто можно подключить плату к блоку питания, и поэкспериментировать с ней.
У меня имелось много плат защиты от пришедших в негодность аккумуляторов. Но поиск в инете по маркировкам микросхем ничего не давал, словно микросхемы засекречены. В инете находилась документация только на сборки полевых транзисторов, которые имеются в составе плат защиты. Давайте посмотрим на устройство типичной схемы защиты литий-ионного аккумулятора. Ниже представлена плата контроллера защиты, собранная на микросхеме контроллера с обозначением VC87, и транзисторной сборке 8814 ():
На фото мы видим: 1 – контроллер защиты (сердце всей схемы), 2 – сборка из двух полевых транзисторов (о них напишу ниже), 3 – резистор задающий ток срабатывания защиты (например при КЗ), 4 – конденсатор по питанию, 5 – резистор (на питание микросхемы-контроллера), 6 – терморезистор (стоит на некоторых платах, для контроля температуры аккумулятора).
Вот ещё один вариант контроллера (на этой плате терморезистор отсутствует), собран он на микросхеме с обозначением G2JH, и на транзисторной сборке 8205A ():
Два полевых транзистора нужны для того, чтобы можно было отдельно управлять защитой при заряде (Charge) и защитой при разряде (Discharge) аккумулятора. Даташиты на транзисторы находились практически всегда, а вот на микросхемы контроллеров – ни в какую!! И на днях вдруг я наткнулся на один интересный даташит на какой-то контроллер защиты литий-ионного аккумулятора ().
И тут, откуда не возьмись, явилось чудо – сравнив схему из даташита со своими платами защиты, я понял: Схемы совпадают, это одно и то же, микросхемы-клоны! Прочитав даташит, можно применять подобные контроллеры в своих самоделках, а поменяв номинал резистора, можно увеличить допустимый ток, который может отдать контроллер до срабатывания защиты.
Какой принцип работы контроллера для аккумулятора
Контроллер Li-ion аккумулятора или батареи – это электронная плата, которая контролирует работу АКБ и не допускает опасных ситуаций при ее эксплуатации. Это краткий ответ на вопрос, что такое контроллер батареи. Чаще всего его называют BMS платой – от словосочетания Battery Management System.
Ее основные компоненты – это резисторы, MOSFET-транзисторы, накопительный конденсатор и микросхема защиты. Они оберегают батарею от неполадок по цепи питания, не допускают критических отклонений рабочих параметров и преждевременного выхода из строя.
Как выглядит контроллер аккумулятора?
Внешний вид контроллера зависит от типа элементов питания, для которых он предназначен. Например, для защиты Li-ion аккумуляторов популярного типоразмера 18650 используются миниатюрные платы, которые привариваются с помощью сварочной ленты к одному из контактов. В результате незащищенный аккум становится защищенным, его диаметр увеличивается на доли миллиметра, а длина – на 2–3 мм.
Аккумуляторные батареи всегда собираются из незащищенных элементов, а затем оснащаются платой защиты. Она выбирается в зависимости от схемы сборки батареи и необходимых функций. Контроллеры для Li-ion батарей бывают с балансировкой и без нее, разного функционала, рассчитанные на определенные рабочие характеристики и разное количество последовательно соединенных элементов в сборке: 3S, 4S, …, 20S и т.д.
Как работает контроллер аккумулятора?
Принцип работы контроллера батареи заключается в поддержании рабочих параметров в допустимых диапазонах. BMS плата контролирует работу АКБ сразу по нескольким параметрам:
- По напряжению – она не допускает критического снижения напряжения (глубокого разряда аккумуляторов) и перезаряда аккумуляторов. Когда напряжение достигает критического минимума или максимума, контроллер отключает батарею от нагрузки или зарядного устройства. Для большинства литий-ионных аккумуляторов рабочее напряжение должно поддерживаться в диапазоне от 2,5 В в разряженном состоянии до 4,25 В в заряженном. В зависимости от типа аккумулятора, эти значения могут быть другими. В любом случае задача BMS платы – не допустить выхода напряжения за границы, установленные для конкретного типа АКБ. Тем самым контроллер оберегает элементы питания от деградации, потери емкости, вздутия, перегрева, риска возгорания и взрыва.
- По току – контроллер отключает АКБ от нагрузки, если ток разряда превышает допустимые значения. Уровень токоотдачи у разных Li-ion аккумуляторов может составлять от 1С до 25С. И если в условиях, где нужны высокотоковые аккумуляторы, использовать обычные модели, они быстро придут в негодность. Контроллер защиты не допустит этого и просто отключит АКБ, если она не рассчитана на такие нагрузки. Также он защищает аккумуляторы от короткого замыкания.
- По температуре – функция контроля температуры предусмотрена не во всех аккумуляторных контроллерах, но она важна для защиты АКБ от перегрева. Поэтому в схемы многофункциональных BMS плат обязательно входит терморезистор.
Некоторые BMS платы кроме основных функций умеют выполнять балансировку ячеек в аккумуляторной батарее – выравнивать напряжение всех аккумуляторов в сборке. Это помогает избежать несоответствий по уровню заряда и продлить срок службы батареи.
Причины блокировки аккумулятора контроллером
Если контроллер блокирует работу аккумулятора, причина может заключаться в следующем:
- короткое замыкание внутри элемента питания;
- глубокий разряд – критическое падение напряжения на ячейках.
Разрядившуюся батарею нужно скорее поставить на зарядку. Если же хранить ее в таком состоянии, дальнейший саморазряд приведет к полному разряду, и зарядить АКБ не получится. Контроллер в целях безопасности просто не позволит запустить процесс зарядки.
Это объясняется тем, что при хранении разряженных аккумуляторов в их структуре происходят необратимые процессы деградации, образуются кристаллы лития, возникает опасный контакт между полюсами и опасность взрыва. Задача контроллера – не допустить подобных последствий, поэтому он блокирует дальнейшее использование аккумуляторов с напряжением, упавшим ниже критического минимума.
Предыдущая статья блога VirtusTec посвящена литиевым АКБ для погрузчиков, штабелеров, и других видов складской техники.
Модуль контроллера заряда TP4056 + защита для аккумуляторов или Вторая жизнь миксера из Икеи
Речь пойдет про очень удобную плату с контроллером заряда на основе TP4056. На плате дополнительно установлена защита для аккумуляторов li-ion 3.7V.Подходят для переделок игрушек и бытовой техники с батареек на аккумуляторы.
Это дешевый и эффективный молуль (зарядный ток до 1А).
Хоть про модули на чипе TP4056 написано уже много, добавлю немного от себя.
Совсем недавно узнал про платы зарядки на TP4056, которые стоят чуть дороже, по размерам чуть больше, но дополнительно имеют в своем составе BMS модуль (Battery Monitoring System) для контроля и защиты аккумулятора от переразряда и перезаряда на основе S-8205A и DW01, которые отключают батарею при превышении напряжения на ней.
Платы предназначены для работы с элементами 18650 (в основном из-за зарядного тока 1А), но при некоторой переделке (перепайка резистора — уменьшение зарядного тока) подойдут для любые аккумуляторов на 3.7В.
Разводка платы удобная — присутствуют контактные площадки под пайку на вход, на выход и для аккумулятора. Штатно питать модули можно от Micro USB. Статус зарядки отображается встроенным светодиодом.
Размеры примерно 27 на 17 мм, толщина небольшая, самое «толстое» место — это MicroUSB коннектор
Specifications:
Type: Charger module
Input Voltage: 5V Recommended
Charge Cut-off Voltage: 4.2V (±)1%
Maximum Charging Current: 1000mA
Battery Over-discharge Protection Voltage: 2.5V
Battery Over-current Protection Current: 3A
Board Size: Approx. 27 * 17mm
Status LED: Red: Charging; Green: Complete Charging
Package Weight: 9g
По ссылке в заголовке продается лот из пяти штук, то есть цена одной платы около $0.6. Это чуть дороже, чем одна плата зарядки на TP4056, но без защиты — эти продаются пачками за полтора доллара. Но для нормальной работы нужно покупать отдельно BMS.
Коротко о подстройке зарядного тока для TP4056
Модуль контроллера заряда TP4056 + защита для аккумуляторов S-8205A/B Series BATTERY PROTECTION ICПроизводит защиту от перезарядки, переразрядки, тройная защита от перегрузки и короткого замыкания.
Максимальный зарядный ток: 1 А
Максимальный постоянный ток разряда: 1 А (пик 1.5А)
Ограничение напряжения зарядки: 4.275 В ±0. 025 В
Ограничение (отсечка) разрядки: 2.75 В ±0. 1 В
Защита аккумулятора, чип: DW01.
B+ соединяется с положительным контактом аккумулятора
B- соединяется с отрицательным контактом аккумулятора
P- подключается к отрицательному контакту точки подключения нагрузки и зарядки.
На плате присутствует R3 (маркировка 122 — 1.2кОм), для выбора нужного тока зарядки элемента выбираем резистор согласно таблице и перепаиваем.
На всякий случай типовое включение TP4056 из спецификации.
Лот модулей TP4056+BMS берется уже не первый раз, уж оказался очень удобен для беспроблемных переделок бытовой техники и игрушек на аккумуляторы.
Размеры модулей небольшие, По ширине как раз меньше двух АА батареек, плоские — замечательно подходят с установкой старых аккумуляторов от сотовых телефонов.
Для зарядки используется стандартный источник на 5В от USB, вход — MicroUSB. Если платы используются каскадом — можно припаять к первой в параллель, на фото видно контакты минуса и плюса по сторонам от MicroUSB разъема.
С обратной стороны ничего нет — это может помочь при креплении на клей или скотч.
Используются разъемы MicroUSB для питания. У старых плат на TP4056 встречался MiniUSB.
Можно спаять платы вместе по входу и только одну подключать к USB — таким образом можно заряжать 18650 каскадами, например, для шуруповертов.
Выходы — крайние контактные площадки для подключения нагрузки (OUT +/–), в середине BAT +/– для подключения ячейки аккумулятора.
Плата небольшая и удобная. В отличие от просто модулей на TP4056 — здесь присутствует защита ячейки аккумуляторов.
Для соединения каскадом нужно соединить выходы под нагрузку (OUT +/–) последовательно, а входы по питанию параллельно.
Модуль идеально подходит для установки в различные бытовые приборы и игрушки, которые предусматривают питание от 2-3-4-5 элементов АА или ААА. Это во-первых, приносит некоторую экономию, особенно при частой замене батареек (в игрушках), а, во-вторых, удобство и универсальность. Использовать для питания можно элементы, взятые из старых аккумуляторов от ноутбуков, сотовых телефонов, одноразовых электронных сигарет и так далее. В случае, если есть три элемента, четыре, шесть и так далее, нужно использовать StepUp модуль для повышения напряжения от 3.7V до 4.5V/6.0V и т.д. В зависимости от нагрузки, конечно. Также удобен вариант на двух ячейках аккумуляторов (2S, две платы последовательно, 7.4V) со StepDown платой. Как правило, StepDown имеют регулировку, и можно подстроить любое напряжение в пределах напряжения питания. Это лишний объем для размещения вместо батареек АА/ААА, но тогда можно не переживать за электронику игрушки.
Конкретно, одна из плат была предназначена для старого икеевского миксера. Уж очень часто приходилось заменять батарейки в нем, а на аккумуляторах он работал плохо (в NiMH 1.2В вместо 1.5В). Моторчику все равно, будет ли его питать 3В или 3.7В, так что я обошелся без StepDown. Даже слегка бодрее крутить стал.
Аккумулятор 08570 от электронной сигареты практически идеальный вариант для любых переделок (емкость около 280мАч, а цена — бесплатно).
Но в данном случае несколько длинноват. Длина АА батарейки 50 мм, а этого аккумулятора 57 мм, не влез. Можно, конечно, сделать «надстройку», например, из пластика полиморфа, но…
В итоге взял мелкий модельный аккумулятор с такой же емкостью. Очень желательно снизить ток зарядки (до 250…300 мА) увеличением резистора R3 на плате. Можно штатный нагреть, отогнуть один конец, и припаять любой имеющийся на 2-3 кОм.
Слева привел картинку по старому модулю. На новом модуле размещение компонентов другое, но все те же самые элементы присутствуют.
Подключаем аккумулятор (Припаиваем) в клеммам в середине BAT +/–, отпаиваем контакты моторчика от пластин-контактор для АА батареек (их вообще убираем), припаиваем нагрузку-моторчик к выходу платы (OUT +/–).
В крышке дремелем можно прорезать отверстие под USB.
Я сделал новую крышку — старую совсем выкинул. В новой продуманы пазы для размещения платы и отверстие под MicroUSB.
Гифка работы миксера от аккумулятора — крутит бодро. Емкости 280мАч хватает на несколько минут работы, заряжать приходится в 3-6 дней, смотря как часто использовать (я пользуюсь редко, можно и за один раз посадить, если увлечься.). Из-за снижения тока зарядки заряжает долго, чуть меньше часа. Зато любой зарядкой от смартфона.
Если использовать StepDown контроллер для р/у машинок, то лучше взять два 18650 и две платы и соединить их последовательно (а входы для заряжания — параллельно), как на картинке. Где общий OUT ставится любой понижающий модуль и регулируется до нужного напряжения (например, 4.5V/6.0V) В этом случае машинка не будет медленно ездить, когда «сядут» батарейки. В случае разряда модуль просто резко отключится.
Модуль на TP4056 со встроенной защитой BMS – очень практичный и универсальный.
Модуль рассчитан на зарядный ток 1А.
Если соединяете каскадом — учитывайте суммарный ток при зарядке, например, 4 каскада для питания аккумуляторов шуруповерта «попросят» 4А на зарядку, а это з/у от сотового телефона не выдержит.
Модуль удобен для переделки игрушек — машинок на радиоуправлении, роботов, различных светильников, пультов… — всех возможных игрушек и техники, где приходится часто менять батарейки.
Сейчас комплект из пяти модулей на TP4056 со встроенной защитой BMS можно приобрести за $2.99 с купоном MICR.
Спецификация контроллера заряда TP4056.
Спецификация на защиту для аккумуляторов S-8205A/B Series BATTERY PROTECTION IC
Update: если минус сквозной, то с запаралелливанием сложнее все.
См комментарии.
Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.
Лучшее руководство по покупке литий-ионного солнечного контроллера заряда (2021)
Почему литий-ионный солнечный контроллер заряда?Автономная фотоэлектрическая солнечная энергетическая система, подключенная к батареям, требует контроллера заряда. Контроллер заряда используется для регулирования зарядки аккумулятора или аккумуляторного блока. Без контроллера заряда аккумулятор не будет заряжаться эффективно и может выйти из строя из-за перезарядки или разрядки.
Литий-ионный солнечный контроллер заряда аналогичным образом требуется для LifePO4 Battery и литий-ионных аккумуляторов.На рынке доступны различные типы батарей с технологическим прогрессом, обеспечивающим высокую эффективность, и варианты, доступные в химии для этого.
Литий-ионный аккумулятор не является исключением в этой гонке аккумуляторов и очень эффективен по сравнению с другими аккумуляторными технологиями. Контроллер заряда обеспечивает максимально возможный уровень работы аккумулятора, а его использование в случае литий-ионного аккумулятора делает накопление энергии более эффективным.
Полезная тема : Сравнение 10 лучших литиевых контроллеров заряда от солнечных батарей и рейтинги 2020-2021 гг.
Что такое литий-ионный контроллер заряда солнечных батарей?Контроллер заряда, который регулирует зарядку литий-ионной батареи, представляет собой контроллер заряда литиевой батареи от солнечных батарей.
Литий-ионный аккумулятор [1] : Одна треть мирового рынка аккумуляторов занимает литий-ионная технология из-за их высокой плотности и легкости. У них высокое напряжение элемента, быстрая зарядка и низкий саморазряд, а также хороший срок службы при глубоком цикле. Высокая стоимость и безопасность – два ограничивающих фактора литий-ионных батарей. Литий-ионные батареи на ватт дороже, чем свинцово-кислотные. Чтобы защитить аккумулятор от теплового разгона, литий-ионный аккумулятор требует встроенной схемы, в противном случае он может загореться или взорваться.Эти батареи не должны подвергаться воздействию воды, так как они обладают высокой реакционной способностью по отношению к ним.
Энергия накапливается в ионах лития, которые мигрируют от катода к аноду в перезаряжаемой литий-ионной батарее. Электроны освобождаются от анода, подвергающегося окислению, чтобы проводить ток во время разряда, катод приобретает электроны в том же процессе, подвергаясь восстановлению. В этих батареях катод состоит из оксида металлического лития, а анод – из пористого углерода. Жидкий электролит присутствует в большинстве литий-ионных батарей, а некоторые содержат полимерный (гелевый) электролит для переноса заряда между анодом и катодом.Литий-ионный аккумулятор заряжается поэтапно, что видно на графике ниже:
График заряда литий-ионных аккумуляторовКонтроллер заряда солнечных батарей : Электроэнергия, вырабатываемая солнечными панелями, всегда имеет разный уровень напряжения и тока, в зависимости от погодных условий и времени суток. Контроллер заряда регулирует поток заряда от солнечной панели к батарее. Кроме того, он регулирует поток заряда от аккумулятора к подключенной нагрузке. Контроллеры солнечного заряда в основном бывают двух типов:
Контроллер зарядаPWM (широтно-импульсная модуляция) для lifepo4: менее эффективен, но довольно дешев.
Контроллер зарядаMPPT (отслеживание максимальной мощности) для lifepo4: это очень эффективно, но дорого.
Установщик или покупатель выбирают ШИМ или MPPT, поскольку обе технологии могут использоваться для регулирования зарядки литий-ионных аккумуляторов.
Как и когда использовать литий-ионный солнечный контроллер заряда?Контроллер заряда солнечной батареи PWM или MPPT используется для регулирования заряда батареи в автономной солнечной фотоэлектрической системе.Контроллер заряда литий-ионной солнечной батареи используется, когда литий-ионная батарея используется в качестве накопителя энергии в системе. Следует использовать контроллер заряда, специально разработанный для литий-ионных аккумуляторов, поскольку аккумулятор Lifepo4 имеет особый алгоритм зарядки. В солнечной фотоэлектрической системе, генерирующей электричество с определенным напряжением и током от панели или массива панелей, сначала передается на контроллер заряда.
Регулирование заряда происходит в зависимости от типа солнечного контроллера заряда литиевой батареи (PWM или MPPT).Очень важно регулировать заряд, так как он подключается к аккумулятору для его зарядки. В случае зарядки литиевых аккумуляторов от солнечной энергии контроллер заряда настроен на поэтапную зарядку литий-ионных аккумуляторов. В этом случае важна эффективная зарядка и разрядка аккумулятора, и это свидетельствует об успешной установке, если эффективность системы может быть сохранена на максимальном уровне.
На zhcsolar.com поставляется множество различных типов контроллеров заряда солнечных батарей с разной силой тока и мощностью.Выбор правильной емкости контроллера заряда в зависимости от емкости и типа батареи имеет важное значение для производительности системы. Как и модель WP5048D с сайта zhcsolar.com, можно использовать литий-ионные аккумуляторы на 40-50А.
от ZHCSolar: WP5048D 50 А, 48 В Контроллер заряда от солнечных батарей
Очень важно иметь все компоненты солнечной системы в соответствующем соотношении, не меньше или больше, чем требуется. В зависимости от потребности в нагрузке или подключенной (ожидаемой) нагрузки, которая будет обеспечиваться солнечной фотоэлектрической генерацией, должны быть установлены солнечные панели, соответствующие панелям, должны быть установлены контроллеры заряда и батареи.Потери в системе следует учитывать при проектировании и внедрении всей системы.
Литий-ионные аккумуляторыс жидким или гелевым электролитом являются эффективным вариантом для хранения энергии наиболее подходящим способом. Поскольку эти батареи являются дорогостоящими по сравнению с другими типами батарей, они должны работать с максимально возможной эффективностью и производительностью, чтобы прослужить их долго. Специальные контроллеры заряда солнечных батарей для этих аккумуляторов могут сделать это возможным, и они должны оставаться приоритетом в системе.
Где можно использовать литий-ионный солнечный контроллер заряда?Автономная система солнечной генерации с аккумулятором в виде литий-ионного аккумулятора требует этого контроллера заряда. Это специальный контроллер солнечного заряда для литий-ионных аккумуляторов и устанавливается на него же. Любой объект, такой как жилые автофургоны, яхты, лодки, водяные насосы, гибридные автомобили или любые автономные объекты, где используется батарея Lifepo4, требует этого конкретного солнечного контроллера заряда.
Он должен быть установлен таким образом, чтобы не возникало потерь при передаче, где бы он ни был установлен.Линии передачи от панелей к контроллеру и от контроллера к батарее должны быть эффективными с минимальными потерями. Контроллер солнечной батареи с литиевой батареей может храниться рядом с батареей, чтобы управлять им по мере необходимости.
Свинцово-кислотные батареи против литий-ионных: что лучше для солнечных батарей?В системах солнечной энергии все чаще используются литиевые батареи, и даже есть тенденция полностью заменять свинцово-кислотные батареи.
Вот несколько основных отличий:
- Долговечность / Срок службы батареи : срок службы свинцово-кислотных батарей обычно составляет около 2 лет, в то время как литиевые батареи более долговечны, срок службы более 4-5 лет.цикл полностью заряженной и разряженной свинцово-кислотной батареи обычно составляет 300 раз, в то время как литиевые батареи полностью заряжаются и разряжаются за цикл более 500 раз.
- Эффективность : Литиевые батареи более эффективны при зарядке и разрядке. Это означает, что вы можете хранить и использовать больше солнечной энергии в одних и тех же условиях. Например, свинцово-кислотные батареи обычно имеют КПД только 80-85%. Это означает, что если у вас есть 1000 Вт солнечной энергии, поступающей в аккумулятор, после процесса зарядки и разрядки будет доступно только 800-850 Вт.Литиевые батареи имеют КПД более 95%. При тех же условиях у вас будет доступная мощность более 950 Вт. Более высокая эффективность означает, что ваша батарея заряжается быстрее. В зависимости от конфигурации вашей системы это также может означать, что вы можете сэкономить больше денег.
- Вес : Плотность энергии литий-ионной солнечной батареи обычно составляет 200 ~ 260 Вт · ч / г, а литиевая батарея в 3-5 раз превышает свинцово-кислотную, что означает, что при той же емкости вес свинцовой батареи кислотная батарея в 3 ~ 5 раз больше литиевой батареи, поэтому в легком устройстве хранения энергии литиевая батарея занимает абсолютное преимущество.Свинцово-кислотные батареи обычно находятся в диапазоне от 50 до 70 Вт · ч / г, с низкой плотностью энергии и слишком громоздкими.
- Техническое обслуживание : Литиевые батареи не требуют специального обслуживания и могут обеспечивать стабильное питание в течение длительного времени, в то время как свинцово-кислотные батареи требуют различного обслуживания в зависимости от типа.
- Безопасность : Литиевые батареи из-за стабильности материала катода и надежной конструкции безопасности, литий-железо-фосфатные батареи были тщательно протестированы на безопасность, даже при сильных столкновениях не будут вызывать взрыва, литий-железо-фосфатная высокая термостойкость, окисление электролита емкость мала, а значит, и безопасность.Свинцово-кислотные батареи при зарядке и разряде или использовании будут разряжать газ, если вентиляционное отверстие заблокировано, это приведет к разряду газа, где произойдет взрыв, электролит (разбавленная серная кислота), извергнутый, является коррозионной жидкостью, будет вызывать коррозию. много предметов, а газ, образующийся в процессе зарядки, взрывоопасен.
- Система управления батареями : В настоящее время литиевые батареи становятся все более интеллектуальными и функциональными. Литиевую батарею теперь можно отрегулировать в соответствии с потребностями пользователя, продолжительностью использования и т. Д.Многие литиевые батареи могут быть установлены с системой управления BMS, которая может проверять состояние батареи в режиме реального времени на мобильном телефоне. BMS также может определять ток и напряжение аккумулятора, и в случае отклонения от нормы система BMS может автоматически регулировать его.
В сегодняшней глобальной тенденции развития новой энергии, по сравнению со свинцово-кислотными батареями, литиевые солнечные батареи относительно экологичны как при производстве, так и при переработке.
Типы солнечных литиевых аккумуляторовСамыми популярными являются литий-железо-фосфатные батареи, батарея не похожа на свинцово-кислотные батареи с эффектом памяти, после более чем 1600 зарядов емкость аккумулятора все еще может достигать 85%, по сравнению со свинцово-кислотными батареями, литиевые батареи имеют Преимущества легкого веса, большой емкости, длительного срока службы.
Преимущества литиевой батареи для солнечнойЭкологичность и экологичность
Литиевый аккумулятор может быть установлен непосредственно под солнечной панелью, он имеет небольшой размер и легкий вес для снижения затрат на строительство
Длительный срок службы, аккумулятор lifepo4 в 3-5 раз дольше традиционных свинцово-кислотных аккумуляторов;
Устойчивость к высоким и низким температурам, может использоваться в среде -4 ° F -140 ° F, специальная литиевая батарея может использоваться в среде -49 ° F;
Не требует обслуживания, хорошая производительность
ЗаключениеОбязательно использовать контроллер заряда для зарядки аккумулятора 18650 и его эффективного использования.В случае с аккумулятором LiFePo4 еще более важным становится использование контроллера заряда. Литий-ионный аккумулятор дороже, чем другие доступные варианты, и по сравнению с ним более эффективен. Из-за больших затрат становится необходимым использовать специальный контроллер заряда, как упоминалось выше, чтобы продлить срок службы литий-ионного аккумулятора и сделать его безопасным. Такие компании, как zhcsolar, предлагают ряд опций контроллера заряда солнечной батареи, которые можно использовать для регулирования потока заряда литий-ионных аккумуляторов или литий-ионных аккумуляторов.
[ratemypost]Обзор продуктов редактора : 10 лучших литиевых солнечных контроллеров заряда, сравнение и рейтинги 2020-2021 гг.
Как выбрать лучший контроллер заряда от солнечной батареи MPPT для литиевой батареи:
ZHCSolar предлагает лучший контроллер заряда от солнечных батарей MPPT на рынке, получите бесплатную доставку и купите сейчас.
Для получения дополнительной информации см. Полное руководство по контроллеру заряда MPPT (2021 г.)
Калькулятор размеров для выбора правильного регулятора тока готов к использованию.
БанкнотыОзнакомьтесь с этим списком Best Choice List контроллера заряда солнечной батареи для литий-ионной батареи и литиево-ионной батареи для солнечной батареи RV
[1] http://eecs.ucf.edu/seniordesign/fa2011sp2012/g10/docs/PMCC_Group%2010_SD1.pdf
ОбзорЛучший литиевый контроллер заряда от солнечных батарей (2021 г.) – ZHCSolar
Контроллер заряда от солнечных батарей – это своего рода контроллер заряда, специально оптимизированный для зарядки литиево-ионных аккумуляторов и аккумуляторов LifePo4.
Долгое время солнечные контроллеры поддерживают только зарядку свинцово-кислотных аккумуляторов, но поскольку литий-ионные аккумуляторы стали более широко использоваться в автономных солнечных системах, все большее количество контроллеров теперь поддерживает зарядку литий-ионных аккумуляторов.
Разница между литиевым контроллером заряда от солнечных батарей и общим контроллером заряда
Самая большая разница между литиевым контроллером заряда солнечной батареи и свинцово-кислотным контроллером заряда – это система управления питанием. литиевые солнечные зарядные устройства используют режим зарядки постоянным током и должны иметь встроенную плату защиты.
Как и другие специализированные солнечные контроллеры, солнечные контроллеры с литиевыми батареями имеют тип MPPT и тип PWM. Контроллер заряда MPPT Solar Charge – это контроллер заряда, который использует алгоритм отслеживания точки максимальной мощности для сбора максимальной энергии от солнечной батареи.
Контроллер зарядаPWM обычно имеет емкость преобразования 70% по сравнению с режимом MPPT. Режим MPPT настоятельно рекомендуется в большинстве случаев, но некоторые контроллеры заряда PWM также выделяются на практике.
Мы выбрали самые популярные контроллеры заряда литиевых батарей и солнечных батарей на рынке, чтобы провести сравнение и составить рейтинг.
Лучший контроллер заряда литиевых батарей от солнечных батарей в 2021 году- EPever TracerAN MPPT Контроллер заряда от солнечных батарей
- ZHCSolar SCF60 MPPT Контроллер заряда от солнечных батарей
- Контроллер заряда ESmart MPPT
- MC RV MPPT Контроллер заряда
- HP6024 60 A Контроллер заряда от солнечных батарей (PWM)
- WP5048D Контроллер заряда от солнечных батарей (ШИМ)
- Литиевый контроллер заряда солнечной батареи SL03 Series (PWM)
- HQST 30 A Контроллер заряда от солнечных батарей (PWM)
1.EPEVER TracerAN MPPT Контроллер заряда от солнечных батарей
Контроллер заряда от солнечных батарей Epever TracerAN MPPT оснащен системой автоматического распознавания напряжения от 12 до 24 В и функцией автоматического сохранения конфигурации. Его также можно связать с программным обеспечением ПК или трекером MT50 для постоянного наблюдения с многофункциональной схемой ЖК-дисплея для отображения данных. Контроллер заряда работает с гелевыми, герметичными и залитыми литиевыми батареями и имеет ряд режимов управления, включая ручной режим, освещение и таймер освещения.Не только это, но также контроллер поставляется в комплекте с безопасностью, включая перенапряжение батареи, перегрузку нагрузки, кратковременную PV или обратную полярность и многое другое.
Обзор контроллера заряда Epever 30A MPPT Спецификация
Тип: MPPT
Напряжение батареи: 12-24 В
Максимальное входное напряжение: 100 В
Максимальный выходной ток: 20 А, 30 А, 40 А
Макс. Входное напряжение солнечной батареи: 100 В постоянного тока
Вес: 2,87 фунта.
Размеры: 9,84 x 5,91 x 6,3 дюйма
2.
ZHCSolar SCF60 60A MPPT Контроллер зарядаЭто высокопроизводительный контроллер заряда MPPT на 60 А, который поддерживает автоматическую идентификацию и автоматическое переключение системного напряжения 12 В 24 В 36 В 48 В.также поддерживает широкий диапазон входного напряжения солнечной батареи от 18 до 150 В. Эффективность преобразования MPPT контроллера составляет до 99%, и он разработан с вентиляторным охлаждением, чтобы гарантировать, что машина всегда будет иметь высокую выходную мощность, не будет падения нагрузки даже при высокой температуре и будет поддерживать полную выходную мощность в течение всего дня без снижение номинальных характеристик. Этот контроллер имеет широкий спектр применения и может быть установлен и использован в нескольких сценах.
Этот контроллер заряда от солнечных батарей SCF60 60A MPPT отличается высокой эффективностью отслеживания> 99.5% и пиковый коэффициент конверсии> 97,8%. Напряжение системы 12 В / 24 В / 36 В / 48 В Автоматический переключатель, макс. Входное напряжение фотоэлектрических модулей: 150 В, макс. Входная мощность фотоэлектрических модулей: 900 Вт (12 В), 1800 Вт (24 В), 2600 Вт (36 В), 3400 Вт (48 В)
поддерживает различные типы батарей: герметичные, гелевые, AGM, заливные, литиевые, и определяемый пользователем тип, литиевая батарея также поддерживается этим контроллером, в то время как большинство контроллеров на рынке не поддерживаются.
3. Контроллер заряда ESmart MPPT 40 А 60 А
Этот контроллер заряда ESmart MPPT от солнечной батареи имеет версию 40A и 60A, контроллер MPPT – это контроллер солнечной энергии MPPT 3-го поколения, на основе опыта 1-го поколения и отзывов клиентов мы оптимизировали отображение, режим управления, режим подключения и внутренняя структура, принимает алгоритм управления MPPT, может быстро отслеживать точку максимальной мощности фотоэлектрической батареи и улучшать использование солнечной энергии, ЖК-дисплей и дизайн управления ПК удобный пользователь для просмотра, записи и установки параметров, продукты могут широко использоваться в солнечная автономная система базовой станции связи, система домашнего использования, система RV, система уличного освещения и полевой мониторинг и т. д.
Этот контроллер заряда MPPT поддерживает 48V 36V 24V 12V Auto и обрабатывает максимум 150V PV, поддерживает зарядку литиевых свинцово-кислотных аккумуляторов LiFePO.
Контроллер заряда esmart mppt 60a 40a4. ZHCSolar MC RV MPPT контроллер заряда
В этом контроллере заряда MPPT серии MC используется технология Power Catcher для эффективной и надежной зарядки солнечных батарей . серия имеет модели на 20, 30, 40 и 50 ампер на выбор, контроллер MPPT этой серии специально разработан для жилых автофургонов и зарядки морских аккумуляторов.
Этот новый и улучшенный контроллер заряда ZHCSolar MPPT RV предлагает гораздо больше, чем стандартный контроллер заряда MPPT с новейшими технологиями Power Catcher High Tech. Контроллер совместим с литий-ионным аккумулятором , гелевыми аккумуляторами, герметичными аккумуляторами, открытыми аккумуляторами . Этот высокоэффективный контроллер заряда предохраняет аккумуляторы от чрезмерного заряда или разряда. Эта функция защиты увеличивает срок службы аккумуляторной батареи.
Обзор контроллера заряда MPPT 30 ампер на солнечной батарееMC 30 ампер контроллер заряда MPPT для дома на колесах
5.Контроллер заряда от солнечных батарей HP6024 PWM
Этот контроллер заряда от солнечных батарей 60 А представляет собой интеллектуальный регулятор заряда с автоматической идентификацией 12 В и 24 В, опорную прокладку, гель, открытую свинцово-кислотную батарею и литиевую батарею для зарядки . Макс. Входное напряжение составляет 55 В, а максимальная входная мощность панели составляет 900 Вт для аккумуляторной системы 12 В, 1800 Вт для аккумуляторной системы 24 В.
Обновление 3-ступенчатого алгоритма зарядки PWM, чрезмерной разрядки или регулярного выравнивающего заряда аккумулятора, эффективно предотвращает разбалансировку аккумулятора или явление отверждения, эффективно продлевает срок службы аккумулятора (коллоидные, литиевые батареи исключены).
Этот ШИМ-контроллер заряда HP6024 от солнечных батарей был самым качественным ШИМ-контроллером заряда на рынке. Настоятельно рекомендую проект с ограниченным бюджетом.
ШИМ-контроллер заряда HP60246. WP5048D ШИМ-контроллер заряда от солнечных батарей
Этот контроллер заряда 50a представляет собой новое поколение многофункциональных интеллектуальных контроллеров заряда и разряда солнечных батарей, которые могут работать с максимальной входной мощностью 100 В и имеют систему автоматической идентификации 12 В / 24 В / 36 В / 48 В. Инновационная конструкция конструкции делает установку контроллера более безопасной и надежной.
Оптимизированное управление зарядкой и разрядкой значительно увеличивает срок службы аккумулятора. В то же время на большом ЖК-дисплее отображается больше информации, диаграмма становится более красивой и понятной, а упрощенное управление дисплеем позволяет максимально отображать рабочее состояние и параметры системы. Интеллектуальное управление подсветкой хорошо видно даже в темноте. Можно установить множество параметров управления для удовлетворения различных потребностей приложения.
WP5048D поддерживает свинцово-кислотную батарею и литиевую батарею Зарядка также может работать от солнечной панели, когда напряжение литиевой батареи равно 0 (ноль) В.
Обзор контроллера заряда солнечных батарей WP5048D7. SL03 ШИМ-контроллер заряда для литиевой батареи
Контроллеры серииSL03 представляют собой разновидности интеллектуальных многофункциональных контроллеров заряда и разряда солнечных батарей. В этой серии используется новый 32-битный микропроцессор для сбора и вычисления различных параметров, который намного точнее и быстрее, чем прежний 8-битный микропроцессор, настраиваемый ЖК-дисплей с широким диапазоном температур с ярким рабочим интерфейсом.последняя запатентованная технология решает проблему отображения напряжения солнечных панелей. почти все параметры можно отображать и гибко настраивать. все мультиметры и другие приборы для измерения напряжения и тока могут быть заменены этим контроллером, который может удовлетворить ваши различные требования.
Этот контроллер поддерживает различные типы батарей: литиевая батарея , гелевая батарея, автомобильная батарея и даже старая батарея.
SL03 Контроллер заряда от солнечных батарей с ШИМ-сигналом8. Контроллер заряда от солнечных батарей 30 А HQST
Контроллер заряда от солнечных батарейHQST 30A Amp – это интеллектуальный и многофункциональный контроллер заряда от солнечных батарей с двумя портами USB для зарядки электронных устройств.Он имеет заряд литиевой батареи и двойной разряд USB. Обратной стороной является обычная положительная конструкция, которая не подходит для солнечных систем для автофургонов.
Обзор контроллера заряда солнечных батарей HQST на 30 АЗаключение:
Best Lithium Charge Controller – это контроллер, который заряжает литиевую батарею и батарею LifePo4, заряд литиевой батареи имеет некоторые отличия от зарядки свинцово-кислотных батарей. Этот тип батареи должен иметь защищенную плату внутри и иметь специальный протокол управления питанием для зарядки литий-ионных батарей.Для справки мы выбрали лучший контроллер заряда mppt и контроллер заряда PWM.
[ratemypost]Обзоры экспертов по теме:
MPPT против ШИМ: какой контроллер заряда выбрать?
Обзор лучшего 60-амперного контроллера заряда MPPT
Лучший контроллер заряда MPPT на 30 А в 2021 году
Лучший контроллер заряда от солнечных батарей 2021 года
Обзор лучшего контроллера заряда 48 В для солнечных батарей
Loom 10 amp, Контроллер заряда от солнечных батарей для зарядки литиевых батарей
Возврат
Наша политика действует 7 дней.Если с момента покупки прошло 7 дней, к сожалению, мы не сможем предложить вам возврат или обмен. Если вы хотите отменить заказ, сделайте это в течение 24 часов с момента его размещения. Все товары могут быть возвращены в течение 7 рабочих дней со дня доставки.
Чтобы иметь право на возврат, ваш товар должен быть неиспользованным и в том же состоянии, в котором вы его получили. Он также должен быть в оригинальной упаковке.
Некоторые виды товаров не подлежат возврату. Скоропортящиеся товары, такие как продукты питания, цветы, газеты или журналы, возврату не подлежат.Мы также не принимаем товары интимного или гигиенического назначения, опасные материалы или легковоспламеняющиеся жидкости или газы.
Дополнительные невозвратные товары:
Подарочные карты
Загружаемые программные продукты
Некоторые товары для здоровья и личной гигиены
Для завершения возврата нам потребуется квитанция или подтверждение покупки.
Не отправляйте товар обратно производителю.
Существуют определенные ситуации, когда предоставляется только частичное возмещение (если применимо)
Книга с явными признаками использования
CD, DVD, кассета VHS, программное обеспечение, видеоигра, кассета или виниловая пластинка, которая была открыта
Любой предмет, не указанный в его первоначальное состояние, повреждены или отсутствуют детали по причинам, не связанным с нашей ошибкой
Любой товар, возвращенный более чем через 30 дней после доставки
Возврат (если применимо)
Как только ваш возврат будет получен и проверен, мы отправим вам электронное письмо, чтобы уведомить вас о том, что мы получили ваш возвращенный товар.Мы также сообщим вам об утверждении или отклонении вашего возмещения.
Если вы одобрены, то ваш возврат будет произведен в той же форме, в той же форме, в которой был произведен платеж, в течение 7 рабочих дней
Поздний возврат или отсутствие возврата (если применимо)
Если вы еще не получили возмещение, сначала проверьте свой банковский счет еще раз.
Затем обратитесь в компанию, обслуживающую вашу кредитную карту. Прежде чем ваш возврат будет официально опубликован, может пройти некоторое время.
Затем обратитесь в свой банк. Перед отправкой возврата часто требуется некоторое время на обработку.
Если вы сделали все это, но еще не получили возмещение, свяжитесь с нами по адресу [email protected]
Предметы со скидкой (если применимо)
Возврату подлежат только товары по обычной цене, к сожалению, товары со скидкой не подлежат возврату.
Обмен (если применимо)
Мы заменяем товары только в том случае, если они неисправны или повреждены. Если вам нужно обменять его на такой же, отправьте нам электронное письмо по адресу [email protected] и отправьте его по адресу: Участок № 21/1 Mathura Road, Faridabad Haryana IN 121003.
Подарки
Если товар был отмечен как подарок при покупке и доставке непосредственно вам, вы получите подарочный кредит на сумму вашего возврата. После получения возвращенного товара вам будет отправлен подарочный сертификат.
Если товар не был помечен как подарок при покупке, или если даритель получил заказ, чтобы передать его вам позже, мы отправим дарителю возмещение, и он узнает о вашем возврате.
Отгрузка
Чтобы вернуть продукт, отправьте его по почте по адресу: Plot No.21/1, Mathura Road Faridabad Haryana IN 121003
Вы несете ответственность за собственные расходы по доставке при возврате товара. Стоимость доставки не возвращается. Если вы получите возмещение, стоимость обратной доставки будет вычтена из вашего возмещения.
В зависимости от того, где вы живете, время, необходимое для того, чтобы обмененный товар был доставлен вам, может варьироваться.
Если вы отправляете товар по цене более Rs. 1000, вам следует рассмотреть возможность использования отслеживаемой службы доставки или приобретения страховки доставки.Мы не гарантируем получение возвращенного вами товара.
Политика возврата
Мы хотим быть организацией, ориентированной на клиентов. Следовательно, каждое наше решение и руководящие принципы политики направлены на то, чтобы сделать покупку солнечной энергии счастливой. Поскольку мы хотим стать супербрендом Индии в области солнечной энергии к 2025 году. Это невозможно без превосходного качества обслуживания клиентов. Вот почему мы сохраняем прозрачность нашей политики возврата и отмены для более быстрого разрешения проблем.
Транзитный урон
Маленькие пакеты отправляются через курьерскую службу Bluedart, Delhivery или Ecom. Если в этом случае будет обнаружен какой-либо предмет, поврежденный во время транспортировки, будут предприняты следующие действия.
Незначительные повреждения, возврат 20% от стоимости товара.
Серьезный ущерб, возврат 50% стоимости товара.
Неправильная доставка товара
Мы отправляем сотни пакетов каждый день, наши сотрудники могут ошибаться. В случае доставки не того товара, будут предприняты следующие действия:
Будет возвращен не тот товар. Как только предмет дойдет до склада солнечных батарей, полная сумма будет возвращена.
Тем временем покупатель может сделать новую покупку, чтобы получить тот же товар.
Отмена, пока товар находится в пути
Обычно мы отправляем товар на следующий день с намерением доставить товар в течение 3 дней по Индии. Как только товар отправляется в путь, при отмене существующего заказа взимается 10% сборов за отмену.
Отмена по неизбежным причинам
Бывают случаи, когда возникает некоторая неизбежная причина. В случае, если идентификатор заказа был сгенерирован и частично оплачен, за отмену существующего заказа взимается плата за отмену в размере 10% от общей стоимости продукта.
Отмена из-за неработоспособности солнечной системы:
На эффективность солнечной системы влияет множество факторов, таких как ситуация с электричеством в городе, способ установки панелей, электрические параметры и т. Д.После установки система не может быть возвращена.
Руководство покупателя – нужен ли мне контроллер заряда солнечной энергии с ШИМ или MPPT?
Зачем нужен контроллер солнечного заряда
Посмотреть все контроллеры заряда от солнечных батарей: Щелкните здесь
Контроллер заряда солнечной батареи (часто называемый регулятором) похож на обычное зарядное устройство, т.е. он регулирует ток, протекающий от солнечной панели в батарею, чтобы избежать перезарядки батарей. (Если вам не нужно понимать причины, прокрутите до конца простую блок-схему) . Как и в случае с обычным качественным зарядным устройством, используются различные типы аккумуляторов, можно выбрать напряжение поглощения, напряжение холостого хода, а иногда также можно выбрать периоды времени и / или остаточный ток. Они особенно подходят для литий-железо-фосфатных батарей, так как после полной зарядки контроллер остается на установленном плавающем или удерживающем напряжении около 13,6 В (3,4 В на элемент) в течение оставшейся части дня.
Наиболее распространенный профиль заряда – это та же базовая последовательность, что и на качественном сетевом зарядном устройстве, то есть объемный режим> режим абсорбции> плавающий режим. Вход в режим оптовой заправки происходит по адресу:
- восход утром
- , если напряжение аккумулятора падает ниже определенного напряжения в течение более установленного периода времени, например 5 секунд (повторный вход)
Этот повторный вход в объемный режим хорошо работает со свинцово-кислотными аккумуляторами, поскольку падение и падение напряжения хуже, чем для литиевых аккумуляторов, которые поддерживают более высокое и стабильное напряжение на протяжении большей части цикла разряда.
Литиевые батареи (LiFePO4) не получают выгоды от повторного входа в объемный режим в течение дня, так как внутреннее сопротивление литиевых батарей увеличивается при высоком (и низком) состоянии заряда, как показано оранжевыми вертикальными линиями в таблице ниже и необходимо только время от времени балансировать ячейки, что может быть сделано только вокруг напряжения поглощения. Связанная с этим причина состоит в том, чтобы избежать быстрого и большого изменения напряжения, которое будет происходить в этих регионах при включении и выключении больших нагрузок.
Литиевые батареине имеют определенного «напряжения холостого хода», и поэтому «напряжение холостого хода» контроллера должно быть установлено равным или чуть ниже «напряжения колена заряда» (как указано в таблице ниже) заряда LiFePO4. профиль, т.е. 3,4 В на элемент или 13,6 В для аккумулятора 12 В. Контроллер должен удерживать это напряжение в течение оставшейся части дня после полной зарядки аккумулятора.
Разница между контроллерами солнечного заряда PWM и MPPT
Суть различия:
- С ШИМ-контроллером ток выводится из панели чуть выше напряжения батареи, тогда как
- С контроллером MPPT ток выводится из панели на панели «максимальное напряжение питания» (подумайте о контроллере MPPT как о «интеллектуальном преобразователе постоянного тока в постоянный»).
Вы часто видите лозунги, такие как «вы получите 20% или более энергии, собираемой контроллером MPPT».Эта дополнительная плата на самом деле значительно различается, и ниже приводится сравнение, предполагая, что панель находится на полном солнце, а контроллер находится в режиме объемной зарядки. Игнорирование падений напряжения и использование простой панели и простой математики в качестве примера:
Максимальный ток питания панели (Имп.) = 5,0 А
Максимальное напряжение питания панели (Vmp) = 18 В
Напряжение аккумулятора = 13 В (напряжение аккумулятора может варьироваться от 10,8 В до 14,4 В в режиме абсорбционной зарядки).При 13 В усилитель панели будет немного выше, чем максимальный усилитель мощности, скажем, 5,2 А
.С контроллером PWM потребляемая мощность панели составляет 5,2 А * 13 В = 67,6 Вт. Это количество энергии будет потребляться независимо от температуры панели, при условии, что напряжение панели остается выше напряжения батареи.
С контроллером MPPT мощность панели составляет 5,0 А * 18 В = 90 Вт, т.е. на 25% больше. Однако это слишком оптимистично, поскольку напряжение падает с ростом температуры; Таким образом, если предположить, что температура панели повышается, скажем, на 30 ° C выше температуры стандартных условий испытаний (STC), составляющей 25 ° C, и напряжение падает на 4% на каждые 10 ° C, т.е.е. всего 12%, тогда мощность, потребляемая MPPT, будет 5 А * 15,84 В = 79,2 Вт, то есть на 17,2% больше мощности, чем у ШИМ-контроллера.
Таким образом, наблюдается увеличение сбора энергии с помощью контроллеров MPPT, но процентное увеличение сбора значительно варьируется в течение дня.
Различия в работе ШИМ и MPPT:
ШИМ:
Контроллер ШИМ (широтно-импульсной модуляции) можно рассматривать как (электронный) переключатель между солнечными панелями и батареей:
- Переключатель находится в положении ВКЛ, когда режим зарядного устройства находится в режиме объемной зарядки
- Переключатель «щелкает» ВКЛ и ВЫКЛ по мере необходимости (широтно-импульсная модуляция), чтобы поддерживать напряжение батареи на уровне напряжения поглощения.
- Выключатель выключен в конце абсорбции, в то время как напряжение батареи падает до плавающего.
- Переключатель снова включается и выключается по мере необходимости (широтно-импульсная модуляция), чтобы удерживать напряжение батареи на уровне плавающего напряжения.
Обратите внимание, что когда переключатель находится в положении ВЫКЛ, напряжение панели будет равным напряжению холостого хода (Voc), а когда переключатель включен, напряжение панели будет равно напряжению батареи + напряжение между панелью и контроллером будет падать.
Лучшая панель для ШИМ-контроллера:
Лучшая панель для ШИМ-контроллера – это панель с напряжением, которое чуть выше, чем требуется для зарядки аккумулятора, и с учетом температуры, как правило, панель с Vmp (максимальное напряжение питания) около 18 В для зарядки аккумулятора. Аккумулятор 12 В. Их часто называют панелями на 12 В, хотя их напряжение в напряжении около 18 В.
MPPT:
Контроллер MPPT можно рассматривать как «интеллектуальный преобразователь постоянного тока в постоянный», т.е.е. он понижает напряжение панели (следовательно, можно использовать «домашние панели») до напряжения, необходимого для зарядки аккумулятора. Ток увеличивается в той же пропорции, что и падение напряжения (без учета потерь на нагрев в электронике), как в обычном понижающем преобразователе постоянного тока в постоянный.
«Умный» элемент в преобразователе постоянного тока в постоянный – это контроль точки максимальной мощности панели, которая будет меняться в течение дня в зависимости от силы света и угла наклона, температуры панели, затенения и состояния панели (ей).Затем «умные устройства» регулируют входное напряжение преобразователя постоянного тока в постоянный – на «инженерном языке» он обеспечивает согласованную нагрузку на панель.
Лучшая панель для контроллера MPPT:
Для согласования панели с контроллером MPPT рекомендуется проверить следующее:
- Напряжение холостого хода панели (Voc) должно быть ниже допустимого напряжения.
- Voc должен быть выше «пускового напряжения», чтобы контроллер «сработал».
- Максимальный ток короткого замыкания панели (Isc) должен находиться в пределах указанного диапазона
- Максимальная мощность массива – некоторые контроллеры допускают “завышение размера”, например.g Redarc Manager 30 может иметь подключенную мощность до 520 Вт
Выбор подходящего солнечного контроллера / регулятора
ШИМ – хороший недорогой вариант:
• для небольших систем
• где эффективность системы не критична, например, капельная зарядка.
• для солнечных панелей с максимальным напряжением питания (Vmp) до 18 В для зарядки аккумулятора 12 В (36 В для аккумулятора 24 В и т. Д.).
Лучший контроллер MPPT:
• Для более крупных систем, где целесообразно использование дополнительных 20% * или более энергии
• Когда напряжение солнечной батареи значительно выше, чем напряжение батареи e.г. с помощью домашних панелей, для зарядки аккумуляторов 12В
* Контроллер MPPT даст более высокую отдачу по сравнению с контроллером PWM при увеличении напряжения панели. Т.е. панель eArche мощностью 160 Вт, использующая 36 обычных монокристаллических ячеек с максимальной мощностью 8,4 А, будет обеспечивать около 8,6 А при 12 В; в то время как панель мощностью 180 Вт, имеющая еще 4 ячейки, будет обеспечивать такую же силу тока, но 4 дополнительных ячейки увеличивают напряжение панели на 2 В. Контроллер PWM не будет собирать дополнительную энергию, но контроллер MPPT будет собирать дополнительные 11.1% (4/36) от панели 180 Вт.
По тому же принципу для всех панелей, использующих элементы SunPower с более чем 32 ячейками, требуется контроллер заряда MPPT, в противном случае контроллер PWM будет собирать ту же энергию от панелей с 36, 40, 44 ячейками, что и с панели с 32 ячейками.
НАЖМИТЕ ЗДЕСЬ, чтобы увидеть продукты
Характеристики и опции солнечного контроллера заряда
Smart Bluetooth
КонтроллерыVictron SmartSolar имеют встроенный Bluetooth для удаленного мониторинга MPPT путем сопряжения его со смартфоном или другим устройством через приложение Victron.
НАЖМИТЕ ЗДЕСЬ, чтобы увидеть продукты
Контроллеры Boost MPPT
Контроллеры заряда Genasun «Boost» MPPTпозволяют заряжать батареи, которые имеют более высокое напряжение, чем панель.
НАЖМИТЕ ЗДЕСЬ, чтобы увидеть продукты
Комбинированное зарядное устройство MPPT и DC-DC
Функция MPPT является естественным дополнением к функции зарядного устройства DC-DC, и есть несколько качественных брендов, которые предоставляют ее в стадии разработки.
Один блок можно использовать отдельно, поскольку он автоматически переключается между зарядкой генератора и зарядкой от солнечной энергии. Для более крупных систем мы предпочитаем использовать отдельный контроллер MPPT для фиксированных панелей на крыше и использовать комбинированный MPPT / DC-DC с переносными панелями. В этом случае разъем Андерсона размещается на внешней стороне автофургона, который затем подключается к солнечному входу блока MPPT / DC-DC.
Обратите внимание, что емкость аккумулятора должна быть достаточной, чтобы суммарный зарядный ток от одновременной зарядки от генератора переменного тока и солнечных панелей на крыше не превышал максимальный зарядный ток, рекомендованный производителями.
НАЖМИТЕ ЗДЕСЬ, чтобы увидеть продукты
Варианты дешевле
Дешевые контроллеры могут быть помечены как MPPT, но тестирование показало, что некоторые из них на самом деле являются контроллерами PWM.
Дешевые контроллеры могут не иметь защиты аккумулятора от перенапряжения, что может привести к перезарядке аккумулятора и потенциальному повреждению аккумулятора, поэтому покупатель будет осторожен.
Несколько солнечных зарядных устройств
При правильном подключении можно добавить несколько солнечных зарядных устройств (любая комбинация типа и мощности) для зарядки аккумулятора.Правильная проводка означает, что каждое солнечное зарядное устройство в идеале подключается отдельно и непосредственно к клеммам аккумулятора. Этот идеальный случай означает, что каждый контроллер «видит» напряжение батареи и на него не влияет ток, исходящий от других контроллеров заряда. Контроллеры, очевидно, не будут иметь идентичных зарядных характеристик и могут иметь разные настройки; и они будут заряжаться в соответствии со своими запрограммированными характеристиками. Эта ситуация ничем не отличается от зарядки аккумулятора от сети / генератора одновременно с зарядкой от солнечной батареи.В современных контроллерах ток не будет течь обратно от батареи к контроллеру (за исключением очень небольшого тока покоя).
Простая блок-схема
Мне нужен контроллер солнечного заряда
Vmp солнечной панели больше:
– 19 В для батареи 12 В
– 34 В для батареи 24 В
– 49 В для батареи 36 В
– 64 В для батареи 48 В
Vmp солнечной панели находится в пределах:
– 17-19 В для батареи 12 В
– 30-34 В для батареи 24 В
– 43-49 В для батареи 36 В
– 56-64 В для батареи 48 В
Vmp солнечной панели меньше:
– 13 В для батареи 12 В
– 26 В для батареи 24 В
– 41 В для батареи 36 В
– 43 В для батареи 48 В
Щелкните ссылки для получения дополнительной информации о том, как выбирать между брендами.
Портативная складная солнечная панель мощностью 60 Вт, контроллер заряда 10 А и комплект литий-ионных аккумуляторов 12 В – Магазин инверторов
Описание
Портативная складная солнечная панель мощностью 60 Вт, контроллер заряда 10 А и комплект литий-ионных аккумуляторов 12 В
Бесплатная доставка в 48 штатов. Скидка 10% при покупке комплектом!
Технические характеристики: Портативная складная солнечная панель мощностью 60 Вт
High Performance: светопропускание до 93%
КПД ячейки: 22.3% (один из самых высоких)
КПД модуля: 19,2% (один из самых высоких)
Максимальная мощность: 60 Вт
Допустимая мощность (например, +/- 5%): +/- 5%
Максимальное напряжение системы: 600 В постоянного тока ( UL)
Максимальное напряжение питания (Vmp): 19,8 В
Максимальный ток мощности (Imp): 3 A
Напряжение холостого хода (Voc): 23,7 В
Ток короткого замыкания (Isc): 3,6 A
Допуск мощности: 0 = + 3W
Максимальный номинал предохранителя: 10 A Класс пожарной безопасности
: класс A
Диапазон температур: от -40 F до 185 F
Количество ячеек: 2 x 6 x 3
Контроллер заряда PV Провод: 10 AWG с лопаткой легко подключается к различным зарядам контроллеры
Температурные коэффициенты ⁰C:
ISC (%): +2.6
Voc (%): -50,6
Prm (%): -,38
Im (%): +2,2
Vm (%): -60,8
Размеры: Расширенный 33 X 15,8 X 0,19 дюйма. В сложенном виде 11,22 x 15,85 x 0,6 дюйма
Вес: 2,85 фунта
Сертификаты: CE, ETL, TUV и RoHS
Чемодан:
Водонепроницаемость
Прочная резиновая ручка
Легкие боковые скользящие пряжки
Удобный карман на молнии для проводов и хранения контроллера заряда
5-летняя гарантия, 10-летняя производительность 80%
НАЖМИТЕ ЗДЕСЬ ДЛЯ БОЛЕЕ ПОДРОБНОЙ ИНФОРМАЦИИ ПО СОЛНЕЧНОЙ ПАНЕЛИ
Характеристики батареи
Номинальное напряжение 12.8V
Номинальная емкость (при 0,5C, 77 ° F) 50Ah
Минимальная емкость (при 0,5C, 77 ° F) 47,5Ah
Ожидаемый срок службы> 4000 циклов со скоростью заряда и разряда 1C, при 77 ° F, 80% DOD
Метод заряда – интеллектуальное зарядное устройство, постоянный ток, постоянное напряжение
Диапазон напряжения заряда (макс. 14,6 В) 14,4 – 14,6 В
Постоянный ток заряда 50 А макс.
Температура заряда от 32 ° F до 113 ° F
Постоянный ток разряда 50 А макс. Мгновенный ток разряда (10 секунд) 100A
Отключение при перенапряжении 15.6 +/-. 2V
Напряжение отключения разряда 8V = / – .5V
Температура разряда: от -4 ° F до 149 ° F
Температура хранения: от -4 ° F до 113 ° F
Саморазряд (сохраняется при 50% SOC) <3% / месяц
Вт-час 1200 Вт-час
Физические характеристики:
7,8 ″ Д x 6,5 ″ Ш x 6,7 ″ В
Вес 17,75 фунта
Транспортный вес 19 фунтов
Размер группы 1250
Размер батарейного отсека 5/16 ″
Щелкните здесь, чтобы получить дополнительную информацию об аккумуляторе
Технические характеристики контроллера заряда :
• Номинальный ток: 10A
• Напряжение постоянного тока: 12/24 В
• Максимальная выходная мощность: 120 Вт при 12 В и 240 Вт при 24 В
• Максимальное напряжение солнечной батареи: <50 В
• Отключение при низком напряжении: 10.7 / 21,4 В
• Повторное подключение при низком напряжении: 12,5 / 25,2 В
• Плавающий заряд: 13,7 / 27,4 В
• Общий заряд: 14,2 В
• Собственное потребление: 0,5 Вт
• Эффективность: 99%
• Корпус: ABS и алюминий. Отводит тепло.
• USB: двойной 5V / 2A
• Температурная компенсация: -4 мВ / элемент / C
• Рабочая температура: от -13F до 140F
• Защита от обратной полярности, короткого замыкания, перенапряжения и разрядки
• Автоматическое повторное включение нагрузки и определение напряжения
• 3-ступенчатая зарядка: глубокий цикл, герметичный, гель, AGM, заливной и литиевый
• ЖК-дисплей – регулируемые настройки
• Рекомендуется провод 12 AWG
НАЖМИТЕ ЗДЕСЬ ДЛЯ ДОПОЛНИТЕЛЬНОЙ ИНФОРМАЦИИ ПО КОНТРОЛЛЕРУ ЗАРЯДА
Пожалуйста, свяжитесь с нами сегодня!
Руководство нажмите здесь
Комплект солнечных батарей мощностью 390 Вт с литий-ионной батареей 12 В, гибкими солнечными панелями и контроллером заряда ETA Конец августа – Магазин инверторов
Обзор
В этом солнечном комплекте используется новейшая технология резервного питания с использованием литиевой батареи и гибкой, простой в установке панели.Этот комплект идеально подходит для жилых автофургонов, лодок, автобусов, фургонов, грузовиков или любого мобильного предприятия, в котором достаточно места для 3 солнечных панелей. Панели очень легкие, тонкие и легко устанавливаются. Поскольку этот комплект требует небольшой настройки, он идеально подходит для использования в небольшой каюте / кемпере для освещения, телевизоров, видеоигр, компьютеров, сотовых телефонов и небольших приборов, когда вы добавляете инвертор постоянного тока в переменный. Мы гарантируем, что вы не потратите время в отпуске на создание сложной солнечной системы!
Размер панели солнечных батарей 53.1 X 21,25 X 0,12 дюйма и вес <4 фунтов
Литиевая батарея 12 В – это половина веса обычной батареи 12 В глубокого разряда, что обеспечивает простое мобильное решение для питания, не ломая вам спину. Технология литиевых аккумуляторов не «привередлива» к глубине разряда, поэтому вы можете использовать полную емкость аккумулятора, не вызывая повреждений.
Поставляемый в комплекте контроллер заряда солнечной батареи на 30 А может поддерживать входы 12 В или 24 В, обеспечивая гибкость, если вы решите добавить дополнительную батарею или панель.В комплект входят все провода / кабели / разъемы, которые можно отрезать до нужной длины с помощью простых кусачков.
Добавьте инвертор постоянного тока в переменный 12 В для бытовой электросети в дороге. Этот комплект позволит зарядить полностью разряженную батарею менее чем за 4 часа при ярком солнечном свете.
Описание
БЕСПЛАТНАЯ ДОСТАВКА В 48 ГОСУДАРСТВ. 10% ЭКОНОМИЯ ПРИ ПОКУПКЕ НАБОРА.
КОМПЛЕКТ ВКЛЮЧАЕТ:
Количество 3 – Гибкие солнечные панели мощностью 130 Вт
Нажмите здесь, чтобы получить информацию о солнечных батареях
Количество 1 – литиевая батарея 12 В 100 Ач – Группа 31
Щелкните здесь, чтобы получить информацию о литиевой батарее
Количество 1 – Контроллер заряда MPPT 30 А
Нажмите здесь, чтобы получить информацию о контроллере заряда
PV провод 10AWG для панелей к контроллеру заряда – 15 футов, включает штекерные и розеточные разъемы MC4, которые соединяют панели с контроллером заряда
PV Провод 10AWG для контроллера заряда аккумулятора – 16 футов, который можно отрезать до необходимой длины.Один конец имеет проушины, а другой конец – неизолированный провод для ввода в контроллер заряда.
Пластина кабельного ввода с выводами 10 футов
Линейный предохранитель
Новинок на 2020 год
Технология литиевых батарей
В то время как аккумуляторы AGM имеют больше возможностей благодаря проверенной технологии, литий быстро становится сильным конкурентом. Новые литиевые технологии в сочетании с инновационным дизайном Go Power! Означают аккумулятор, который вы можете использовать в автономном режиме.Доступный в вариантах 100 Ач и 250 Ач, Go Power! есть подходящий аккумулятор!
Узнайте больше о новом Go Power! Литиевые батареи здесь:
Модернизированный контроллер 30 AMP с беспроводной технологией Bluetooth
Контроллер заряда солнечной батареи является важным компонентом вашей фотоэлектрической системы. Контроллер продлевает срок службы батареи, защищая ее от перезарядки. Когда ваша батарея достигнет 100% уровня заряда, контроллер предотвращает перезарядку, ограничивая ток, протекающий в батареи от вашей солнечной батареи.Теперь вы можете улучшить свою игру с помощью беспроводной технологии Bluetooth.
Возможности
Используя Go Power! Подключите, вы можете подключиться к своему контроллеру PWM-30-UL к:
- Установите тип аккумулятора и профиль зарядки
- Включите совместимый Go Power! Инвертор ISW вкл. Или выкл.
- Переключить режим максимальной мощности
- Просмотр важной статистики батареи, в том числе:
- Напряжение аккумулятора
- PV Ток зарядки
- Состояние заряда аккумулятора (SOC)
Узнайте больше о новом Go Power! 30-амперный контроллер Bluetooth здесь:
Наши панели Solar Flex объединяют много энергии в высокоэффективную монокристаллическую тонкопленочную солнечную панель , которая обеспечивает выдающуюся производительность и экономичную солнечную энергию для высокопроизводительных автономных и мобильных приложений.