Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Диод. Часть 1 | Электроника для всех

Как то я не особо расписывал эту незатейливую детальку. Ну диод и диод. Система ниппель. Пропускает в одну сторону, не пропускает в другую, чего уж проще. В принципе да, но есть нюансы. О них, да немного о прикидочном выборе данной детальки и будет эта статья.

▌Клапан
В двух словах, в нашей канализационной электрике для сантехников диод это клапан. Вот типа вот такого:

И да, будет большим допущением считать, что клапан пропускает в одну сторону, а не пропускает в другую. На самом деле все несколько сложней. На самом деле у клапана же есть некая упругость пружины, так вот пока прямое давление не преодолеет эту пружину никакого потока не будет, даже в прямом направлении.

Для диода это справедливо в той же мере. Есть у диода такой параметр как падение напряжения. Оно для диодов Шоттки составляет около 0.2…0.4вольт, а для обычных диодов порядка 0.6…0.8 вольт.

Из этого знания следует три простых вывода.

1) Чтобы ток шел через диод напряжение на диоде должно быть выше его падения напряжения.

2) Какой бы ток через диод не шел, на нем всегда будет напряжение примерно равное его падению напряжения (собственно потому его таки зовут). Т.е. сопротивление диода нелинейно и падает с ростом тока.

3) Включая в цепь диод последовательно с нагрузкой, мы потеряем на нагрузке напряжение равное падению напряжения диода. Т.е. если вы в батарейное питание на 4.5 вольт для защиты от переполюсовки поставите диод, то потеряете от батареек 0.7 вольт, что довольно существенно. Ваше устройство перестанет работать гораздо раньше чем реально сядут батарейки. А батареи не будут высажены до конца. В этом случае лучше ставить диод Шоттки. У него падение ниже чем у простого (но есть свои приколы). А лучше вообще полевой транзистор.

До кучи пусть будет еще и график:

Это вольт-амперная характеристика диода. По которой наглядно видно, что открывается он примерно от 0.7 вольт. До этого ток практически нулевой. А потом растет по параболе вверх с ростом напряжения. У резистора ВАХ была бы прямолинейной в прямом соответствии с законом Ома. А в обратку диод не то чтобы не пропускает, но ток там совсем незначительный, доли миллиампера. Но после определенного напряжения диод резко пробивает и он начинает открываться, падение напряжения устанавливается где-то на уровне предела по обратному напряжению, а после и вовсе сгорает. Ведь рост тока, да большое падение напряжения на диоде означают большие тепловые потери (P=U*I). А диод на них не рассчитан. Вот и сгорает обычно он после пробоя. Но если ограничить ток или время воздействия, чтобы тепловая мощность не превышала расчетную, то электрический пробой является обратимым. Но это касается только обычных диодов, не Шоттки. Тех пробивает сразу и окончательно.

А вот и реальная характеристика диода Vishay 1N4001

Прямая ВАХ, показан один квадрант, рабочий. Начинается гдето с 0.6 вольт. При этом ток там мизерный. А дальше, с ростом напряжения, диод начинает резко открываться. На 0.8 вольтах ток уже 0.2А, на 1 вольте уже под 2.5А и так далее, пока не сгорит 🙂

Вот вам и ответ на вопрос почему нельзя светодиоды втыкать последовательно на источник напряжения без токоограничения. Вроде бы падения скомпенсированы, ну что им будет то? А малейшее изменение напряжения вызывает резкое изменение тока. А источники питания никогда не бывают идеальными и разброс по питанию там присутствует всегда. В том числе и от температуры и нагрузки.

И обратная ВАХ, напряжение в процентах от максимального (т.к. даташит на все семейство диодов, от 4001 до 4007 и у них разное обратное напряжение). Тут токи уже в микроамперах и ощутимо зависят от температуры.

▌Выбор диодов. Быстрые прикидки.
В первом приближении у диода нам интересные три параметра — обратное напряжение, предельный ток и падение напряжения.

Т.е. если вы делаете выпрямитель в сетевое устройство, то диод вам хорошо бы вольт на 400, а лучше на 600 пробивного обратного напряжения. Чтобы с хорошим запасом было.

С предельным током все тоже просто. Он должен быть не меньше, чем через него потечет. Лучше чтобы был запас процентов в 30.

Ну, а падение обычно нужно учитывать для малых напряжений, батарейного питания.

Открываем даташит на … пусть это будет 1N4007 (обычный рядовой диод) и ищем искомые параметры. И сразу же видим искомое, табличку предельных значений Maximum Rating или как то так:

IF(AV) прямой ток. Обозначается всегда как то так. Тут 1А. Предельный ток который этот диод тащит и не дохнет. Импульсно он протаскивает до 30А в течении 8.3мс (IFSM), скажем заряд конденсаторов через себя переживет.

Предельное обратное напряжение определяется параметрами:
VRRM — повторяющееся пиковое значение.
VRMS — действующее значение синусоидального переменного напряжения. На западе принято называть его среднеквадратичным. У нас постепенно тоже приходят к такому обозначению.
VDC — и просто обратное постоянное напряжение.

Ну, а падение смотрим по графикам в том же даташите под конкретный ток.

Есть еще диоды Шоттки, у них меньше внутренняя емкость и поэтому они во первых гораздо быстрей закрываются, что важно для импульсных преобразователей, работающих на большой частоте. А во вторых, имеют втрое ниже падение напряжение. Но, у них мало обратное пробивное напряжение. Классический диод Шоттки выглядит по даташитам примерно так:

Это 1N5819 стоящий в Pinboard II в преобразователе:

Падение напряжения можно измерить мультиметром, в режиме проверки диодов.

Он показывает падение в вольтах. И это падение обязательно надо учитывать, особенно в слаботочных цепях. Например, развязываете вы диодом какой-нибудь вывод микроконтроллера, с уходящим от него сигналом. Например, чтобы при подключении устройства в контроллер не потекло чего лишнего.

А сам контроллер (МК) должен подавать в устройство ХЗ логическую единицу. И, скажем, дает ее как 3.3 вольта. А если падение диода 0.6 вольт и у вас до Х.З. дойдет не 3.3 вольта, а меньше. А тут возникает вопрос, а воспримет ли Х.З. это как логическую единицу? Корректно ли это будет? Ну и, соответственно, решать проблемы если нет.

Светодиодов все это касается в той же мере. Только у них падение напряжения гораздо выше и зависит от цвета. Также, если хотите правильно вычислить ограничение резистора для светодиода, то измеряете его падение напряжения. Вычитаете из питания падение напряжения светодиода (или светодиодной цепи), а потом по полученному напряжению считаете по закону Ома сопротивление.

Например, имеем светодиод на с падением в 3 вольта. Его номинальный ток 10мА, а источник питания у нас 5 вольт. Итак, 5-3 = 2 вольта. Теперь на эти два вольта надо подобрать резистор, чтобы ток был 10мА. 2 / 0,01=200 ом.

Особенно важно правильно подбирать сопротивления для фонарей разных оптронов и прочих оптических датчиков. Иначе характеристики не предсказуемые.

Поэтому, кстати, нельзя включать светодиоды параллельно с общим токоограничивающим резистором. Т.к. диоды имеют разброс по характеристикам, даже если они из одной партии. А из-за малейшего отличия от соседей разница тока через один диод может быть весьма существенная. В результате один из диодов будет работать с перекалом, перегреется и сгорит. Токоограничивающий резистор ставят на каждый диод.

Во второй части этой статьи, которая уже написана, будет более детально расписаны остальные параметры и почему они образуются, исходя из полупроводниковой конструкции диода. А я пока картинки нарисую…

easyelectronics.ru

Диод Шоттки | Характеристики, особенности и применение

Виды диодов

Диод Шоттки относится к семейству диодов. Выглядит он почти также, как и его собраться, но есть небольшие отличия.

Простой диод выглядит на схемах вот так:

обозначение диода на схеме

Стабилитрон уже обозначается, как диод с “кепочкой”

обозначение стабилитрона на схеме

Диод Шоттки имеет две “кепочки”

обозначение диода шоттки на схеме

Чтобы проще запомнить, можно добавить голову и ножки и представить себе человечка, танцующего ламбаду)

Обратное напряжение диода

Итак, как вы помните, диод пропускает электрический ток только в одном направлении, а в другом направлении блокирует прохождение электрического тока до какого-то критического значения, называемым обратным напряжением диода.

Это значение можно найти в даташите

обратное напряжение диода

Для каждой марки диода оно разное

Если превысить это значение, то произойдет пробой, и диод выйдет из строя.

Падение напряжения на диоде Шоттки

Если же подать прямой ток на диод, то на диоде будет “оседать” напряжение. Это падение напряжения называется прямым падением напряжения на диоде. В даташитах обозначается как Vf , то есть Voltage drop.

прямое падение напряжения на диоде

Если пропустить через такой диод прямой ток, то мощность, которая будет на нем рассеиваться, будет определяться формулой:

где

P – мощность, Вт

Vf – прямое падение напряжение на диоде, В

I – сила тока через диод, А

Поэтому, одним из главных преимуществ диода Шоттки является то, что его прямое падение напряжения намного меньше, чем у простого диода. Следовательно, он будет меньше рассеивать тепло, или простым языком, меньше нагреваться.

Давайте рассмотрим один из примеров. Возьмем диод 1N4007. Его прямое падение напряжения составляет 0,83 Вольт, что типично для простого полупроводникового диода.

падение напряжение на диоде в прямом включении

В настоящий момент через него проходит сила тока, равная 0,5 А. Давайте рассчитаем его рассеиваемую мощность в данный момент. P=0,83 x 0,5 = 0,415 Вт.

Если рассмотреть этот случай через тепловизор, то можно увидеть, что его температура корпуса составила 54,4 градуса по Цельсию.

Теперь давайте проведем тот же самый эксперимент с диодом Шоттки 1N5817. Как вы видите, его прямое падение напряжения составило примерно 0,35 В.

падение напряжения на диоде Шоттки при прямом включении

При прохождении силы тока через диод Шоттки в 0,5 А, мы получим рассеиваемую мощность P=0,5 x 0,35 = 0,175 Вт. При этом тепловизор нам покажет, что температура корпуса уже будет 38,2 градуса.

Следовательно, Шоттки намного эффективнее, чем простой полупроводниковый диод в плане пропускания через себя прямого тока, так как он обладает меньшим падением напряжения, а следовательно, меньше рассеивает тепло в окружающее пространство и меньше нагревается.

Прямое падение напряжения можно также посмотреть и в даташитах. Например, прямое падение напряжения на диоде Шоттки 1N5817 можно найти из графика зависимости прямого тока от падения напряжения на диоде Шоттки

график зависимости прямого тока от напряжения

В нашем случае если следовать графо-аналитическому способу, то мы как раз получаем значение 0,35 В

Диод Шоттки в ВЧ цепях

Также диоды Шоттки обладают быстрой скоростью переключения. Это значит, что мы можем использовать их в высокочастотных (ВЧ) цепях.

Итак, возьмем генератор частоты и выставим синус частотой в 60 Гц

Возьмем диод 1N4007 и диод Шоттки 1N5817. Подключим их по простой схеме однополупериодного выпрямителя

и будем снимать с них показания

Как вы видите, оба они прекрасно справляются со своей задачей по выпрямлению сигнала на частоте в 60 Гц.

Но что будет, если мы увеличим частоту до 300 кГц?

Ого! Диод Шоттки более-менее справляется со своей задачей, что нельзя сказать о простом диоде 1N4007. Простой диод не может справиться со своей задачей не пропускать обратный ток, поэтому на осциллограмме мы видим отрицательный выброс

Отсюда можно сделать вывод: диоды Шоттки рекомендуется использовать в ВЧ цепях.

Обратный ток утечки

Но раз уж диоды Шоттки такие крутые, то почему бы их не использовать везде? Почему мы до сих пор используем простые диоды?

Если мы подключим диод в обратном направлении, то он будет блокировать прохождение электрического тока. Это верно, но не совсем. Очень маленький ток все равно будет проходить через диод. В некоторых случаях это не принимают во внимание. Этот маленький ток называется обратным током утечки. На английский манер это звучит как reverse leakage current.

Он очень мал, но имеет место быть.

Проведем простой опыт. Возьмем лабораторный блок питания, выставим на нем 19 В и подадим это напряжение на диод в обратном направлении

Замеряем ток утечки

обратный ток утечки диода

Как вы видите, его значение составляет 0,1 мкА.

Давайте теперь повторим этот же самый опыт с диодом Шоттки

обратный ток утечки диода Шоттки

Ого, уже почти 20 мкА! Ну да, в некоторых случаях это сущие копейки и ими можно пренебречь. Но есть схемы, где все-таки недопустим такой незначительный ток. Например, в схемах пикового детектора

схема пик детектора

В этом случае эти 20 мкА будут весьма значительны.

Но есть также еще один камень преткновения. С увеличением температуры обратный ток утечки возрастает в разы!

зависимость обратного тока утечки от температуры корпуса диода Шоттки

Поэтому, вы не можете использовать Шоттки везде в схемах.

Но и это еще не все. Обратное напряжение для диодов Шоттки в разы меньше, чем для простых выпрямительных диодов. Это можно также увидеть из даташита. Если для диода 1N4007 обратное напряжение составляет 1000 В

То для диода Шоттки 1N5817 это обратное напряжение уже будет составлять всего-то 20 В

Поэтому, если это напряжение превысит значение, которое описано в даташите, мы в итоге получим:

Применение диодов Шоттки

Диоды Шоттки находят достаточно широкое применение. Их можно найти везде, где требуется минимальное прямое падение напряжения, а также в цепях ВЧ. Чаще всего их можно увидеть в компьютерных блоках питания, а также в импульсных стабилизаторах напряжения.

Также эти диоды нашли применение в солнечных панелях, так как солнечные панели генерируют электрический ток только в светлое время суток. Чтобы в темное время суток не было обратного процесса потребления тока от аккумуляторов, в панели монтируют диоды Шоттки

Шоттки в солнечных панелях

В компьютерной технике чаще всего можно увидеть два диода в одном корпусе

При написании данной статьи использовался материал с этого видео

www.ruselectronic.com

напряжение на диоде | Электрознайка. Домашний Электромастер.

Есть другой способ снижения  напряжения на нагрузке, но только для цепей постоянного тока. Про первый способ смотри здесь.

Вместо дополнительного резистора используют цепочку из последовательно включенных, в прямом направлении,  диодов.

Весь смысл состоит в том, что при протекании тока через диод на нем падает «прямое напряжение» равное, в зависимости от типа диода, мощности и тока протекающего через него —  от 0,5 до 1,2 Волта.

На германиевом диоде падает напряжение 0,5 — 0,7 В, на кремниевом от 0,6 до 1,2 Вольта.  Исходя из того, на сколько вольт  нужно понизить напряжение на нагрузке, включают соответствующее количество диодов.

Чтобы понизить напряжение на 6 В необходимо приблизительно включить:  6 В : 1,0 = 6 штук кремниевых диодов, 6 В : 0,6 = 10 штук германиевых диодов. Наиболее популярны и доступны кремниевые диоды.

Выше приведенная схема с диодами, более громоздка в исполнении, чем с простым резистором. Но, выходное напряжение, в схеме с диодами, более стабильно и слабо зависит от нагрузки. В чем разница между этими двумя способами снижения выходного напряжения?

На Рис 1 — добавочное сопротивление — резистор (проволочное сопротивление), Рис 2 — добавочное сопротивление — диод.

У резистора (проволочного сопротивления)  линейная зависимость между током, проходящем через него и падением напряжения на нем. Во сколько раз увеличится ток, во столько же раз увеличится и падение напряжения на резисторе.

Из примера 1: если мы к лампочке подключим параллельно еще одну, то ток в цепи увеличится, с учетом общего сопротивления двух лампочек до 0,66 А. Падение напряжения на добавочном резисторе будет: 12 Ом *0,66 А = 7,92 В.   На лампочках останется: 12 В — 7,92 В = 4,08 В. Они будут гореть в пол накала.

Совсем другая картина будет если вместо резистора будет цепочка диодов.

Зависимость между током протекающем через диод и падающем на нем напряжении нелинейная. Ток может увеличиться в несколько раз, падение напряжения на диоде увеличится всего на несколько десятых вольта.

Т.е. чем больше ток диода, тем (сравнительно с резистором) меньше увеличивается его сопротивление. Падение напряжения на диодах мало зависит от тока в цепи.

Диоды в такой цепи выполняют роль стабилизатора напряжения. Диоды необходимо подбирать по максимальному току в цепи. Максимально допустимый ток диодов должен быть больше, чем  ток в рассчитываемой цепи.

Падения напряжения на некоторых диодах при токе 0,5 А даны в таблице.

В цепях переменного тока, в качестве добавочного сопротивления можно использовать конденсатор, индуктивность, динистор или тиристор (с добавлением схемы управления).

domasniyelektromaster.ru

Падение напряжения на диоде

А Вы знаете, что такое падение напряжения на диоде?

Что такое падение напряжения диода?

Диод — это общее полупроводниковое устройство, используемое во многих различных типах электронных схем.

Падение напряжения на диоде. Конструкция диода включает соединение анода и катода, два куска материала с различными электрическими зарядами.

Когда электрический сигнал проходит через диод, диод потребляет небольшое количество напряжения сигнала при его работе.

Разница между напряжением сигнала, поступающего на диод, и напряжением сигнала, выходящего из диода, является падение напряжения диода.

Хотя падение напряжения диода может относиться к падению напряжения прямого или обратного диода, оно обычно описывает прямое падение напряжения.

Конструкция диода включает соединение анода и катода, два куска материала с различными электрическими зарядами.

Анод положительно заряжен, а катод отрицательно заряжен. В тот момент, когда эти два разных материала встречаются, называемые развязкой, два разных противоположных заряда эффективно отменяют друг друга.

Что такое падение напряжения диода?

Эта область без заряда представляет собой слой истощения диода, который образует изолирующий слой внутри диода между анодом и катодом.

Когда электрический сигнал поступает на катод диода, дополнительная отрицательная сила увеличивает ширину обедненного слоя при его взаимодействии с положительно заряженным анодом.

Более широкий слой истощения будет блокировать сигнал от прохождения через диод и потреблять все напряжение в этом процессе.

Например, если 5 вольт ввести диод, падение напряжения диода будет также 5 вольт. Диод в этом состоянии обращен в обратном направлении, а падение напряжения — падение обратного напряжения диода.

Электрический сигнал, вводимый в диодный анод, создает другой набор условий внутри диода. Отрицательно заряженный сигнал будет проходить через анод, встретить катод и пройти через диод, продолжая остальную часть схемы.

При этом теряется относительно небольшое количество напряжения, преодолевая положительный заряд анода. Для типичного кремниевого диода потерянное напряжение составляет приблизительно 0,7 вольт. Диод в этом состоянии смещен вперед, а падение напряжения — прямое падение напряжения диода.

Разница между прямым и обратным состоянием в диоде позволяет им блокировать сигнал в одном направлении, снижая 100% напряжения, но позволяя ему проходить в другом направлении, немного уменьшая его количество. Поскольку большинство диодов имеют обратное падение напряжения на 100%, предполагается, что термин «падение напряжения диода» относится к прямому падению напряжения, однако это не всегда так.

Существуют специальные диоды, которые не снижают 100% обратного напряжения, такие как варикап или варакторные диоды. В этих диодах заряды катодов и анодов даже не пересекаются с их ширинами. В результате эти диоды могут позволить части сигнала, поступающего на катод, проходить через диоды, даже если они находятся в обратном смещенном состоянии. При описании падения напряжения в этих типах диодов важно различать падение напряжения в прямом и обратном направлениях.

voltstab.ru

Принцип работы диода. Вольт-амперная характеристика. Пробои p-n перехода

Здравствуйте уважаемые читатели сайта sesaga.ru. В первой части статьи мы с Вами разобрались, что такое полупроводник и как возникает в нем ток. Сегодня мы продолжим начатую тему и поговорим о принципе работы полупроводниковых диодов.

Диод – это полупроводниковый прибор с одним p-n переходом, имеющий два вывода (анод и катод), и предназначенный для выпрямления, детектирования, стабилизации, модуляции, ограничения и преобразования электрических сигналов.

По своему функциональному назначению диоды подразделяются на выпрямительные, универсальные, импульсные, СВЧ-диоды, стабилитроны, варикапы, переключающие, туннельные диоды и т.д.

Теоретически мы знаем, что диод в одну сторону пропускает ток, а в другую нет. Но как, и каким образом он это делает, знают и понимают не многие.

Схематично диод можно представить в виде кристалла состоящего из двух полупроводников (областей). Одна область кристалла обладает проводимостью p-типа, а другая — проводимостью n-типа.

На рисунке дырки, преобладающие в области p-типа, условно изображены красными кружками, а электроны, преобладающие в области n-типа — синими. Эти две области являются электродами диода анодом и катодом:

Анод – положительный электрод диода, в котором основными носителями заряда являются дырки.

Катод – отрицательный электрод диода, в котором основными носителями заряда являются электроны.

На внешние поверхности областей нанесены контактные металлические слои, к которым припаяны проволочные выводы электродов диода. Такой прибор может находиться только в одном из двух состояний:

1. Открытое – когда он хорошо проводит ток;
2. Закрытое – когда он плохо проводит ток.

Прямое включение диода. Прямой ток.

Если к электродам диода подключить источник постоянного напряжения: на вывод анода «плюс» а на вывод катода «минус», то диод окажется в открытом состоянии и через него потечет ток, величина которого будет зависеть от приложенного напряжения и свойств диода.

При такой полярности подключения электроны из области n-типа устремятся навстречу дыркам в область p-типа, а дырки из области p-типа двинутся навстречу электронам в область n-типа. На границе раздела областей, называемой электронно-дырочным или p-n переходом, они встретятся, где происходит их взаимное поглощение или рекомбинация.

Например. Oсновные носители заряда в области n-типа электроны, преодолевая p-n переход попадают в дырочную область p-типа, в которой они становятся неосновными. Ставшие неосновными, электроны будут поглощаться основными носителями в дырочной области – дырками. Таким же образом дырки, попадая в электронную область n-типа становятся неосновными носителями заряда в этой области, и будут также поглощаться основными носителями – электронами.

Контакт диода, соединенный с отрицательным полюсом источника постоянного напряжения будет отдавать области n-типа практически неограниченное количество электронов, пополняя убывание электронов в этой области. А контакт, соединенный с положительным полюсом источника напряжения, способен принять из области p-типа такое же количество электронов, благодаря чему восстанавливается концентрация дырок в области p-типа. Таким образом, проводимость p-n перехода станет большой и сопротивление току будет мало, а значит, через диод будет течь ток, называемый прямым током диода Iпр.

Обратное включение диода. Обратный ток.

Поменяем полярность источника постоянного напряжения – диод окажется в закрытом состоянии.

В этом случае электроны в области n-типа станут перемещаться к положительному полюсу источника питания, отдаляясь от p-n перехода, и дырки, в области p-типа, также будут отдаляться от p-n перехода, перемещаясь к отрицательному полюсу источника питания. В результате граница областей как бы расширится, отчего образуется зона обедненная дырками и электронами, которая будет оказывать току большое сопротивление.

Но, так как в каждой из областей диода присутствуют неосновные носители заряда, то небольшой обмен электронами и дырками между областями происходить все же будет. Поэтому через диод будет протекать ток во много раз меньший, чем прямой, и такой ток называют обратным током диода (Iобр). Как правило, на практике, обратным током p-n перехода пренебрегают, и отсюда получается вывод, что p-n переход обладает только односторонней проводимостью.

Прямое и обратное напряжение диода.

Напряжение, при котором диод открывается и через него идет прямой ток называют прямым (Uпр), а напряжение обратной полярности, при котором диод закрывается и через него идет обратный ток называют обратным (Uобр).

При прямом напряжении (Uпр) сопротивление диода не превышает и нескольких десятков Ом, зато при обратном напряжении (Uобр) сопротивление возрастает до нескольких десятков, сотен и даже тысяч килоом. В этом не трудно убедиться, если измерить обратное сопротивление диода омметром.

Сопротивление p-n перехода диода величина не постоянная и зависит от прямого напряжения (Uпр), которое подается на диод. Чем больше это напряжение, тем меньшее сопротивление оказывает p-n переход, тем больший прямой ток Iпр течет через диод. В закрытом состоянии на диоде падает практически все напряжение, следовательно, обратный ток, проходящий через него мал, а сопротивление p-n перехода велико.

Например. Если включить диод в цепь переменного тока, то он будет открываться при положительных полупериодах на аноде, свободно пропуская прямой ток (Iпр), и закрываться при отрицательных полупериодах на аноде, почти не пропуская ток противоположного направления – обратный ток (Iобр). Эти свойства диодов используют для преобразования переменного тока в постоянный, и такие диоды называют выпрямительными.

Вольт-амперная характеристика полупроводникового диода.

Зависимость тока, проходящего через p-n переход, от величины и полярности приложенного к нему напряжения изображают в виде кривой, называемой вольт-амперной характеристикой диода.

На графике ниже изображена такая кривая. По вертикальной оси в верхней части обозначены значения прямого тока (Iпр), а в нижней части — обратного тока (Iобр).
По горизонтальной оси в правой части обозначены значения прямого напряжения Uпр, а в левой части – обратного напряжения (Uобр).

Вольт-амперная характеристика состоит как бы из двух ветвей: прямая ветвь, в правой верхней части, соответствует прямому (пропускному) току через диод, и обратная ветвь, в левой нижней части, соответствующая обратному (закрытому) току через диод.

Прямая ветвь идет круто вверх, прижимаясь к вертикальной оси, и характеризует быстрый рост прямого тока через диод с увеличением прямого напряжения.
Обратная ветвь идет почти параллельно горизонтальной оси и характеризует медленный рост обратного тока. Чем круче к вертикальной оси прямая ветвь и чем ближе к горизонтальной обратная ветвь, тем лучше выпрямительные свойства диода. Наличие небольшого обратного тока является недостатком диодов. Из кривой вольт-амперной характеристики видно, что прямой ток диода (Iпр) в сотни раз больше обратного тока (Iобр).

При увеличении прямого напряжения через p-n переход ток вначале возрастает медленно, а затем начинается участок быстрого нарастания тока. Это объясняется тем, что германиевый диод открывается и начинает проводить ток при прямом напряжении 0,1 – 0,2В, а кремниевый при 0,5 – 0,6В.

Например. При прямом напряжении Uпр = 0,5В прямой ток Iпр равен 50mA (точка «а» на графике), а уже при напряжении Uпр = 1В ток возрастает до 150mA (точка «б» на графике).

Но такое увеличение тока приводит к нагреванию молекулы полупроводника. И если количество выделяемого тепла будет больше отводимого от кристалла естественным путем, либо с помощью специальных устройств охлаждения (радиаторы), то в молекуле проводника могут произойти необратимые изменения вплоть до разрушения кристаллической решетки. Поэтому прямой ток p-n перехода ограничивают на уровне, исключающем перегрев полупроводниковой структуры. Для этого используют ограничительный резистор, включенный последовательно с диодом.

У полупроводниковых диодов величина прямого напряжения Uпр при всех значениях рабочих токов не превышает:
для германиевых — 1В;
для кремниевых — 1,5В.

При увеличении обратного напряжения (Uобр), приложенного к p-n переходу, ток увеличивается незначительно, о чем говорит обратная ветвь вольтамперной характеристики.
Например. Возьмем диод с параметрами: Uобр max = 100В, Iобр max = 0,5 mA, где:

Uобр max – максимальное постоянное обратное напряжение, В;
Iобр max – максимальный обратный ток, мкА.

При постепенном увеличении обратного напряжения до значения 100В видно, как незначительно растет обратный ток (точка «в» на графике). Но при дальнейшем увеличении напряжения, свыше максимального, на которое рассчитан p-n переход диода, происходит резкое увеличение обратного тока (пунктирная линия), нагрев кристалла полупроводника и, как следствие, наступает пробой p-n перехода.

Пробои p-n перехода.

Пробоем p-n перехода называется явление резкого увеличения обратного тока при достижении обратным напряжением определенного критического значения. Различают электрический и тепловой пробои p-n перехода. В свою очередь, электрический пробой разделяется на туннельный и лавинный пробои.

Электрический пробой.

Электрический пробой возникает в результате воздействия сильного электрического поля в p-n переходе. Такой пробой является обратимый, то есть он не приводит к повреждению перехода, и при снижении обратного напряжения свойства диода сохраняются. Например. В таком режиме работают стабилитроны – диоды, предназначенные для стабилизации напряжения.

Туннельный пробой.

Туннельный пробой происходит в результате явления туннельного эффекта, который проявляется в том, что при сильной напряженности электрического поля, действующего в p-n переходе малой толщины, некоторые электроны проникают (просачиваются) через переход из области p-типа в область n-типа без изменения своей энергии. Тонкие p-n переходы возможны только при высокой концентрации примесей в молекуле полупроводника.

В зависимости от мощности и назначения диода толщина электронно-дырочного перехода может находиться в пределах от 100 нм (нанометров) до 1 мкм (микрометр).

Для туннельного пробоя характерен резкий рост обратного тока при незначительном обратном напряжении – обычно несколько вольт. На основе этого эффекта работают туннельные диоды.

Благодаря своим свойствам туннельные диоды используются в усилителях, генераторах синусоидальных релаксационных колебаний и переключающих устройствах на частотах до сотен и тысяч мегагерц.

Лавинный пробой.

Лавинный пробой заключается в том, что под действием сильного электрического поля неосновные носители зарядов под действием тепла в p-n переходе ускоряются на столько, что способны выбить из атома один из его валентных электронов и перебросить его в зону проводимости, образовав при этом пару электрон — дырка. Образовавшиеся носители зарядов тоже начнут разгоняться и сталкиваться с другими атомами, образуя следующие пары электрон – дырка. Процесс приобретает лавинообразный характер, что приводит к резкому увеличению обратного тока при практически неизменном напряжении.

Диоды, в которых используется эффект лавинного пробоя используются в мощных выпрямительных агрегатах, применяемых в металлургической и химической промышленности, железнодорожном транспорте и в других электротехнических изделиях, в которых может возникнуть обратное напряжение выше допустимого.

Тепловой пробой.

Тепловой пробой возникает в результате перегрева p-n перехода в момент протекания через него тока большого значения и при недостаточном теплоотводе, не обеспечивающем устойчивость теплового режима перехода.

При увеличении приложенного к p-n переходу обратного напряжения (Uобр) рассеиваемая мощность на переходе растет. Это приводит к увеличению температуры перехода и соседних с ним областей полупроводника, усиливаются колебания атомов кристалла, и ослабевает связь валентных электронов с ними. Возникает вероятность перехода электронов в зону проводимости и образования дополнительных пар электрон — дырка. При плохих условиях теплоотдачи от p-n перехода происходит лавинообразное нарастание температуры, что приводит к разрушению перехода.

На этом давайте закончим, а в следующей части рассмотрим устройство и работу выпрямительных диодов, диодного моста.
Удачи!

Источник:

1. Борисов В.Г — Юный радиолюбитель. 1985г.
2. Горюнов Н.Н. Носов Ю.Р — Полупроводниковые диоды. Параметры, методы измерений. 1968г.

sesaga.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о