Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Транзисторы

Транзистор — это полупроводниковый прибор, составленный из двух pn-переходов, как показано на рис. 21.1. У транзистора три вывода: эмиттер, база и коллектор. Существуют два типа транзисторов: pnp-транзисторы (рис. 21.1(а)) и npn-транзисторы (рис. 21.1(б)). По принципу работы они ничем не отличаются друг от друга, за исключением полярности подава­емого постоянного напряжения смещения.

Рассмотрим транзистор npn-типа (рис. 21.2). Переход база – эмиттер (или просто эмиттерный переход) этого транзистора смещен в прямом направлении напряжением VBE, поэтому электроны из области эмитте­ра будут перетекать через этот переход в область базы, создавая ток Iе. Это обычный прямой ток рта-перехода, смещенного в прямом направлении. Как только электроны попадают в область базы, они начинают испыты­вать притяжение положительного потенциала коллектора. Если область базы сделать очень тонкой, то почти все эти электроны проскочат через нее к коллектору. Только очень малая часть электронов собирается ба­зой, формируя базовый ток Ib. Фактически более 95% всех электронов эмиттерного тока

Iе собираются коллектором и формируют коллектор­ный ток Ic транзистора. Таким образом,

Iе = Ic + Ib.

Так как базовый ток Ib очень мал (чаще всего он измеряется микроампе­рами), то им обычно пренебрегают. Тем самым предполагается, что токи Ic и Iе равны, и каждый из них принято называть током транзистора.

 

   

Рис. 21.1. Транзисторы и их условны: обозначения: (а) pnp-тип, (б) npn-тип.

             Рис. 21.2. Подача напряжений                               Рис. 21.3. Подача напряжений

               смещения npn-транзистора.                                      сме­щения pnp-транзистора.      

 

Обратите внимание, что переход база — коллектор (или просто кол­лекторный переход) смещен в обратном направлении напряжением VCD. Это необходимое условие работы транзистора, поскольку в противном случае электроны не притягивались бы к коллектору. При этом в со­ответствии с правилом выбора направления тока (от положительного по­тенциала к отрицательному) считается, что ток транзистора течет от кол­лектора к эмиттеру.

Для рпр-транзистора полярности подачи постоянных напряжений смещения должны быть изменены на обратные, как показано на рис. 21.3. В этом случае ток транзистора представляет собой перемещение дырок от эмиттера к коллектору или электронов от коллектора к эмиттеру. 

Схемы включения транзистора

Имеются три основные схемы включения транзистора в электронные цепи.

1. Схема с общим эмиттером (ОЭ). Общим выводом здесь является эмиттер: входной сигнал подается между базой и эмиттером, а вы­ходной сигнал снимается между коллектором и эмиттером (рис. 21.4). Эта схема получила наиболее широкое распространение из-за своей гибкости и высокого коэффициента усиления.

2. Схема с общей базой (ОБ). Базовый вывод транзистора является об­щим выводом для входного и выходного сигналов (рис. 21.5).

3. Схема с общим коллектором (ОК). В этой схеме общим выводом для входного и выходного сигналов является коллектор. Ее называют так­же эмиттерным повторителем (рис. 21.6).

Интересно, что на внутреннем уровне транзистор работает во всех схе­мах включения совершенно одинаково, тогда как внешнее поведение его в каждом случае различно.

         

           

 

Рис. 21.4. Схема с общим эмитте­ром (ОЭ).                      Рис. 21.5. Схема с общей базой (ОБ).

                          

Рис. 21.6. Схема с общим коллек­тором (ОК).

Обратите внимание, что выходной сигнал

снимается с эмит­тера.

Каждая схема включения характеризует­ся своим собственным набором основных параметров, в который входят коэффициент усиления, входное и выходное сопротивления и АЧХ.

 

Характеристики транзистора в схеме с общим эмиттером

Поведение транзистора в статических условиях, то есть в отсутствие вход­ного сигнала, определяют характеристики трех типов.

1. Входные характеристики,

или зависимости входного тока от входного напряжения.

2. Выходные характеристики, или зависимости выходного тока от выход­ного напряжения.

3. Передаточные характеристики, или зависимости выходного тока от входного тока.

Описываемые ниже характеристики относятся к npn-транзистору (рис. 21.7). Для pnp-транзистора нужно изменить полярность напряже­ния постоянного тока на отрицательную.

Входные характеристики

На рис. 21.8 представлены входные характеристики для npn -транзистора. Они ничем не отличаются от характеристик pn -перехода диода, смещен­ного в прямом направлении, поскольку вход (переход база — эмиттер)


Рис. 21.8. Входные характеристики транзистора.

как раз и является таким переходом. Заметим, что, как и в диоде, вход­ной ток Ib начинает протекать через эмиттерный переход только тогда, когда на этом переходе устанавливается требуемое значение прямого на­пряжения. Если это напряжение (0,3 В для Ge и 0,6 В для Si) уста­новлено, то в дальнейшем напряжение

Vbe между базой и эмиттером практически не изменяется даже при сильном увеличении тока базы. Таким образом, транзистор можно рассматривать как токовый элемент, допускающий изменение входного тока при постоянном входном напря­жении.

Выходные характеристики

На рис. 21.9 приведено семейство кривых, называемых выходными харак­теристиками транзистора, которые устанавливают связь тока коллектора (выходного тока) Ic с напряжением на коллекторе (выходным напряже­нием) VCE. Для определенных значений тока базы (входного тока) Ib. Эти кривые устанавливают также взаимосвязь между входным током, с одной стороны, и выходным током и выходным напряжением — с другой. На­пример, для транзистора с выходными характеристиками, приведенными на рис. 21.9, при    Ib = 40 мкА и VCE= 6 В ток коллектора Ic = 4 мА. Это значение легко определяется из выходной характеристики, соответству­ющей выбранному току базы.

Характеристика для Ib = 0 соответствует транзистору в непроводя­щем состоянии, т. е. в состоянии отсечки, когда величина напряжения

VCEменьше требуемой величины прямого падения напряжения на эмиттерном переходе. Теоретически ток транзистора равен нулю при Ib = 0; однако реально очень слабый ток утечки всегда протекает через коллекторный переход.

 

Рис. 21.9. Семейство выходных характеристик транзистора.

Статический коэффициент усиления тока β

Очень важным параметром любого транзистора является его коэффициент усиления по постоянному току, называемый статическим коэффициентом усиления тока. Это коэффициент усиления тока для транзистора, находящегося в статическом режиме, то есть в отсутствие входного сигнала. Статический коэффициент усиления тока является без­размерной величиной (отношение величин двух токов) и определяется по формуле

                                                             Выходной ток                 Ic 

                                                 β =       ----------------------------     =   -----

                                                             Входной ток                   

Ib

Величину β можно рассчитать с помощью выходных характеристик транзистора. Например, если транзистор работает в режиме, определяемом точкой Q (рабочая точка), при                    Ib, = 40 мкА и Ic = 4 мА, то

 

Передаточные характеристики

Эти характеристики устанавливают взаимосвязь между входным и вы­ходным токами транзистора (рис. 21.10). С помощью такой характери­стики можно рассчитать статический коэффициент усиления тока. На­пример, если точка Q — рабочая точка транзистора, то

Рис. 21.10. Передаточная характеристика транзистора.

В этом видео рассказывается о принципах работы транзистора:

Добавить комментарий

Режимы работы биполярного транзистора | Основы электроакустики

Биполярный транзистор – полупроводниковый элемент с двумя p-n переходами и тремя выводами, который служит для усиления или переключения сигналов. Они бывают p-n-p и n-p-n типа. На рис.7.1, а и б показаны их условные обозначения.

 Рис.7.1. Биполярные  транзисторы  и  их  диодные  эквивалентные   схемы:  а) p-n-p, б) n-p-n транзистор

Транзистор состоит из двух противоположно включенных диодов, которые обладают одним общим p- или n- слоем. Электрод, связанный с ним, называется базой Б. Два других электрода называются эмиттером Э и коллектором К. Диодная эквивалентная схема, приведенная рядом с условным обозначением, поясняет структуру включения переходов транзистора. Хотя эта схема не характеризует полностью функции транзистора, она дает возможность представить действующие в нем обратные и прямые напряжения. Обычно переход эмиттер – база смещен в прямом направлении (открыт), а переход база – коллектор – в обратном (заперт). Поэтому источники напряжения должны быть включены, как показано на рис.7.2.

Рис.7.2. Полярность включения: а) n-p-n, б) p-n-p транзистора 

Транзисторы n-p-n типа подчиняются следующим правилам (для транзисторов p-n-p типа правила сохраняются, но следует учесть, что полярности напряжений должны быть изменены на противоположные):

1. Коллектор имеет более положительный потенциал, чем эмиттер.

2. Цепи база-эмиттер и база-коллектор работают как диоды (рис.7.1). Обычно переход база-эмиттер открыт, а переход база-коллектор смещен в обратном направлении, т.е. приложенное напряжение препятствует протеканию тока через него. Из этого правила следует, что напряжение между базой и эмиттером нельзя увеличивать неограниченно, так как потенциал базы будет превышать потенциал эмиттера более чем на 0,6 – 0,8 В (прямое напряжение диода), при этом возникает очень большой ток. Следовательно, в работающем транзисторе напряжение на базе и эмиттере связаны следующим соотношением: UБ ≈ UЭ+0,6В; (UБ = UЭ + UБЭ).   

3. Каждый транзистор характеризуется максимальными значениями IК, IБ, UКЭ. В случае превышения этих параметров необходимо использовать еще один транзистор. Следует помнить и о предельных значениях других параметров, например рассеиваемой мощности РК, температуры, UБЭ и др.

4. Если правила 1-3 соблюдены, то ток коллектора прямо пропорционален току базы. Соотношение токов коллектора и эмиттера приблизительно равно 

IК = αIЭ,    где α=0,95…0,99 – коэффициент передачи тока эмиттера. Разность между эмиттерным и коллекторным токами в соответствии с первым законом Кирхгофа (и как видно из рис. 7.2, а) представляет собой базовый ток IБ = IЭ – IК.    Ток коллектора зависит от тока базы в соответствии с выражением: IК = βIБ,   где β=α/(1-α) – коэффициент передачи тока базы, β >>1.

Правило 4 определяет основное свойство транзистора: небольшой ток базы управляет большим током коллектора.

Режимы работы транзистора. Каждый переход биполярного транзистора можно включить либо в прямом, либо в обратном направлении. В зависимости от этого различают следующие четыре режима работы транзистора.

Усилительный или активный режим – на эмиттерный переход подано прямое напряжение, а на коллекторный – обратное. Именно этот режим работы транзистора соответствует максимальному значению коэффициента передачи тока эмиттера. Ток коллектора пропорционален току базы, обеспечиваются минимальные искажения усиливаемого сигнала.

Инверсный режим – к коллекторному переходу подведено прямое напряжение, а к эмиттерному – обратное. Инверсный режим приводит к значительному уменьшению коэффициента передачи тока базы транзистора по сравнению с работой транзистора в активном режиме и поэтому на практике используется только в ключевых схемах.

Режим насыщения – оба перехода (эмиттерный и коллекторный) находятся под прямым напряжением. Выходной ток в этом случае не зависит от входного и определяется только параметрами нагрузки. Из-за малого напряжения между выводами коллектора и эмиттера режим насыщения используется для замыкания цепей передачи сигнала.

Режим отсечки – к обоим переходам подведены обратные напряжения. Так как выходной ток транзистора в режиме отсечки практически равен нулю, этот режим используется для размыкания цепей передачи сигналов.

Основным режимом работы биполярных транзисторов в аналоговых устройствах является активный режим. В цифровых схемах транзистор работает в ключевом режиме, т.е. он находится только в режиме отсечки или насыщения, минуя активный режим.

 

 

В чем различие между PNP и NPN транзистором?

Существует два основных типа транзисторов – биполярные и полевые. Биполярные транзисторы изготавливаются из легированных материалов и могут быть двух типов – NPN и PNP. Транзистор имеет три вывода, известные как эмиттер (Э), база (Б) и коллектор (К). На рисунке, приведенном ниже, изображен NPN транзистор где, при основных режимах работы (активном, насыщении, отсечки) коллектор имеет положительный потенциал, эмиттер отрицательный, а база используется для управления состоянием транзистора.

Физика полупроводников в этой статье обсуждаться  не будет, однако, стоит упомянуть, что биполярный транзистор состоит из трех отдельных частей, разделенных двумя p-n переходами. Транзистор PNP имеет одну N область, разделенную двумя P областями:

Транзистор NPN имеет одну P область, заключенную между двумя N областями:

Сочленения между N и P областями аналогичны переходам в диодах, и они также могут быть с прямым и обратным смещением p-n перехода. Данные устройства могут работать в разных режимах в зависимости от типа смещения:

  • Отсечка: работа в этом режиме тоже происходит при переключении. Между эмиттером и коллектором ток не протекает, практически «обрыв цепи», то еесть «контакт разомкнут».
  • Активный режим: транзистор работает в схемах усилителей. В данном режиме его характеристика практически линейна. Между эмиттером и коллектором протекает ток, величина которого зависит от значения напряжения смещения (управления) между эмиттером и базой.
  • Насыщение: работает при переключении. Между эмиттером и коллектором происходит практически «короткое замыкание» , то есть «контакт замкнут».
  • Инверсный активный режим: как и в активном, ток транзистора пропорционален базовому току, но течет в обратном направлении. Используется очень редко.

В транзисторе NPN положительное напряжение подается на коллектор для создания тока от коллектора к эмиттеру. В PNP транзисторе положительное напряжение подается на эмиттер для создания тока от эмиттера к коллектору. В NPN ток течет от коллектора (К) к эмиттеру (Э):

А в PNP ток протекает от эмиттера к коллектору:

Ясно, что направления тока и полярности напряжения в PNP и NPN всегда противоположны друг другу. Транзисторы NPN требуют питания с положительной полярностью относительно общих клемм, а PNP транзисторы требуют отрицательного питания.

PNP и NPN работают почти одинаково, но их режимы отличаются из-за полярностей. Например, чтобы перевести NPN в режим насыщения, UБ должно быть выше, чем UК и UЭ. Ниже приводится краткое описание режимов работы в зависимости от их напряжения:

Основным принципом работы любого биполярного транзистора является управление током базы для регулирования протекающего тока между эмиттером и коллектором. Принцип работы NPN и PNP транзисторов один и тот же. Единственное различие заключается в полярности напряжений, подаваемых на их N-P-N и P-N-P переходы, то есть на эмиттер-базу-коллектор.

NPN, PNP без выпаивания с платы

Ни одна современная схема не обходится без полупроводниковых приборов. Самый распространённый из них — транзистор и именно он часто выходит из строя. Тому причиной — перепады напряжения, которые есть в наших сетях, нагрузки и т. д. Рассмотрим два способа позволяющие проверить исправность транзистора при помощи мультиметра. 

Содержание статьи

Необходимый минимум сведений

Чтобы понять исправен биполярный транзистор или нет, нам необходимо знать хотя бы в самых общих чертах, как он устроен и работает. Это активный электронный компонент, который является полупроводниковым прибором. Есть два основных вида — NPN и PNP. Каждый из них имеет три электрода: база, эмиттер и коллектор.

Виды транзисторов и принцип работы

Коротко сформулировать принцип работы транзисторов можно таким образом, это управляемый электронный ключ. Он пропускает ток по направлению от коллектора к эмиттеру в случае NPN типа и от эмиттера к коллектору у PNP, при наличии напряжения на базе. Причём изменяя потенциал на базе, меняем степень «открытости» перехода, регулируя величину пропускаемого тока. То есть, если на базу подавать больший ток, имеем больший ток коллектор-эмиттер, уменьшим потенциал на базе, снизим ток, протекающий через транзистор.

Ещё важно знать, это то, что в обратном направлении ток течь не может. И неважно, есть потенциал на базе или нет. Он всегда течёт в направлении, на схеме указанном стрелкой. Собственно, это вся информация, которая нам нужна, чтобы знать как работает транзистор.

Цоколевка

У биполярных транзисторов средней и большой мощности цоколевка одинаковая в основном, слева направо — эмиттер, коллектор, база. У транзисторов малой мощности лучше проверять. Это важно, так как при определении работоспособности, эта информация нам понадобится.

Внешний вид биполярного транзистора средней мощности и его цоколевка

То есть, если вам необходимо определить рабочий или нет биполярный транзистор, нужно искать его цоколевку. Хотите убедиться или не знаете, где «лицо», то ищите информацию в справочнике или наберите на компьютере «имя» вашего полупроводникового прибора и добавьте слово «даташит». Это транслитерация с английского Datasheet, что переводится как «технические данные». По этому запросу вам в выдаче будет перечень характеристик прибора и его цоколёвка.

Как проверить транзистор мультиметром со встроенной функцией

Начнём с того, что есть мультиметры с функцией проверки работоспособности транзистора и определения коэффициента усиления. Их можно опознать по наличию характерного блока на лицевой панели. В ней есть гнездо под установку транзистора, круглая цветная пластиковая вставка с отверстиями под ножки полупроводникового прибора. Цвет вставки может быть любым, но обычно, он выделяется.

Первым делом переводим переключатель диапазонов (большую ручку) в соответствующее положение. Опознать режим можно по надписи — hFE. Перед тем как проверить транзистор мультиметром, определяемся с типом NPN или PNP.

Мультиметр с функцией проверки транзисторов

Далее рассматриваем разъёмы, в которые надо вставлять электроды. Они подписаны латинскими буквами: E — эмиттер, B — база, C — коллектор. В соответствии с надписями, ставим выводы полупроводникового элемента в гнёзда. Через несколько мгновений на экране высвечивается результат измерений, это коэффициент усиления транзистора. Если прибор неисправен, показаний не будет, транзистор неисправен.

Как видите, проверить рабочий транзистор или нет мультиметром со встроенной функцией проверки просто. Вот только в гнёзда нормально вставляются далеко не все электроды. Удобно устанавливать транзисторы с тонкими выводами S9014, S8550, КТ3107, КТ3102. У больших, надо пинцетом или плоскогубцами менять форму выводов, ну а транзистор на плате так не проверишь. В некоторых случаях проще проверить переходы транзистора в режиме прозвонки и определить его исправность.

Проверка на плате

Чтобы проверить транзистор мультиметром не выпаивая или нужен мультиметр с функцией прозвонки диодов. Переключатель переводим в это положение, подключение щупов стандартное: чёрный в общее звено (COM или со значком земли), красный — в среднее (гнездо для измерения сопротивления, тока, напряжения).

Как проверить транзистор мультиметром не выпаивая

Чтобы понять принцип проверки, надо вспомнить структуру биполярных транзисторов. Как уже говорили, они бывают двух типов: PNP и  NPN. То есть это три последовательные области с двумя переходами, объединёнными общей областью — базой.

Строение биполярного транзистора и как его можно представить, чтобы понять как его будем проверять

Условно, мы можем представить этот прибор как два диода. В случае с PNP типом они включены навстречу друг другу, у NPN — в зеркальном отражении. Это представление на картинке в правом столбике и ни в коем случае не отображает устройство этого полупроводникового прибора, но поясняет, что мы должны увидеть при прозвонке.

Проверка биполярного транзистора PNP типа

Итак, начнём с проверки биполярника PNP типа. Вот что у нас должно получиться:

  • Если подать на базу плюс (красный щуп), на эмиттер или коллектор — минус (чёрный щуп), должно быть бесконечно большое сопротивление. В этом случае диоды закрыты (смотрим на эквивалентной схеме).
  • Если подаём на базу минус (чёрный щуп), а на эмиттер или коллектор плюс (красный щуп), видим ток от 600 до 800 мВ. В этом случае получается, что переход открыт.

    Проверка биполярного PNP транзистора мультиметром

  • Если щупами касаемся эмиттера и коллектора, показаний никаких нет, в обеих вариантах переходы оказываются запертыми.

Итак, PNP транзистор будет открыт только тогда, когда плюс подаётся на эмиттер или коллектор. Если во время испытаний есть хоть какие-то отклонения, элемент неработоспособен.

Тестируем исправность NPN транзистор

Как видим, в NPN приборе ситуация будет другой. Практически она диаметрально противоположна:

  • Если подать на базу плюс (красный щуп), а на эмиттер или коллектор минус, переход будет открыт, на экране высветятся показания — от 600 до 800 мВ.
  • Если поменять местами щупы: плюс на коллектор или эмиттер, минус на базу — переходы заперты, тока нет.
  • При прикосновении щупами к эмиттеру и коллектору тока по-прежнему быть не должно.

 

Проверка работоспособности биполярного NPN транзистора мультиметром

Как видим, этот прибор работает в противоположном направлении. Для того чтобы понять, рабочий транзистор или нет, необходимо знать его тип. Только так можем проверить транзистор мультиметром не выпаивая его с платы.

И ещё раз обращаем ваше внимание, картинки с диодами никак не отображают устройство этого полупроводникового прибора. Они нужны только для понимания того, что мы должны увидеть при проверке переходов. Так проще запомнить, и понимать показания на экране мультиметра.

Как определить базу, коллектор и эмиттер

Иногда бывают ситуации, когда нет под рукой справочника и возможности найти цоколёвку в интернете, а надпись на корпусе транзистора стала нечитаемой. Тогда, пользуясь схемами с диодами, можно опытным путём найти базу и определить тип прибора.

Строение биполярного транзистора и как его можно представить чтобы понять как его будем проверять

Путём перебора ищем положение щупов, при котором «звонятся» все три электрода. Тот вывод, относительно которого появляются показания на двух других и будет базой. Потому, плюс или минус подан на базу определяем тип, PNP или NPN. Если на базу подаём плюс — это NPN тип, если минус — это PNP.

Чтобы определить, где эмиттер,а где коллектор, надо сравнить показания мультиметра при измерении. На эмиттере ток всегда больше. Так и найдём опытным путём базу, эмиттер и коллектор.

Как проверить транзистор мультиметром

Поделиться ссылкой:

 

   

Во время ремонта или сборки радиоэлектронных устройств у всех радиолюбителей возникает необходимость проверить транзистор мультиметром. И для этого есть очень простой и самый распространенный способ. В основном эта статья предназначена для начинающих радиолюбителей, поэтому я более доступно для понимания расскажу, как это сделать. Для начала нужно представить, что собой представляет биполярный транзистор (о том, как проверить полевой транзистор будет написано в отдельной статье). Это 2 p-n перехода. Как мы уже знаем диод имеет один переход. Поэтому представим, что транзистор состоит из двух диодов, как на рисунках ниже. N-p-n и p-n-p структур.

n-p-n транзистор p-n-p транзистор

Получается, что транзистор это два встречно включенных диода с отводом от средней точки, который является базой. Но на самом деле его структура намного сложнее. Наша задача заключается в том, чтобы проверить диоды на исправность. Как проверить диод есть уже отдельная статья. Т.е. сначала проверяем диоды в одну сторону, а потом в другую сторону. Как это сделать видно на рисунках ниже. Для примера взят n-p-n транзистор кт315. Мультиметр включается в режим проверки диодов. Напомню, что при проверке диодов при прямом включении, кода плюс (+) мультиметра подсоединен к аноду, а минус (-) к катоду падение напряжения при исправном диоде будет составлять от 0,1 до 0,8 вольта. А при обратном включении, когда полярность щупов мультиметра поменяна, будет максимальным около 3 вольт, потому что сопротивление диода будет стремиться к бесконечности (т.к. не проводит ток в обратном включении).

На фото обозначена полярность щупов, цоколевка транзистора и выделен режим мультиметра. Ножки транзистора я удлиннил для наглядности.

База - коллектор База - эмиттер
Проверка при прямом включении переходов

 

База - коллектор База - эмиттер
Проверка при обратном включении переходов

Если хотя бы один переход пропускает ток в обоих направлениях или не пропускает в обе стороны, то такой транзистор является неисправным. И еще одним этапом проверки транзистора является проверка проводимости между коллектором и эмиттером. Ток не должен проходить ни в одном направлении. Бывает, что пробивает транзистор между коллектором и эмиттером по подложке. Если хотя бы в одном направлении проводит, значит, транзистор не исправен. Как это сделать видно на фото ниже.

Коллектор - эмиттер Эмиттер - коллектор
Проверка перехода между коллектором и эмиттером

Кратко весь процесс можно описать следующим образом. Сначала проверяются переходы «база-коллектор» «база-эмиттер» в одном направлении, потом в обратном. Далее проверяется переход «коллектор-эмиттер» в одном направлении и в другом. По результатам проверки делаются выводы о исправности транзистора. Вся проверка занимает не более 1 минуты. Проверив несколько десятков транзисторов, вы будете делать это уже на «автомате», и за более короткое время. И в заключение хочу сказать, что транзисторы необходимо проверять не только при ремонте радиотехники, но и при создании каких либо радиоэлектронных устройств. Часто бывает так, что купленный в магазине или выпаянный из вторичной платы транзистор оказывается неисправным. Кроме простых биполярных транзисторов существует множество других видов. Это однопереходные, составные и так далее. Которые могут содержать в себе дополнительно резисторы, диоды и предохранители. Методика их проверки иная. Поэтому перед проверкой сначала узнайте характеристики транзисторов.

 


Анекдот:

Открыли супермагазин в котором есть ВСЕ: 
Приходит мужик: 
- Взвесьте мне полкило крокодильего хвоста. 
- Пожалуйста... 
Приходит другой: 
- Дайте мене 2 десятка яиц бурундука. 
- Нет проблем. 
Приходит третий: 
- Дай мене 2 кг ни%уя. 
Продавец немного растерялся - решил позвать директора, тот пришел и 
говорит: 
- Я сам обслужу этого покупателя. 
Приглашает мужика пройти с ним. Заходят они в подвал, свет выключен. 
Директор спрашивает: 
- Что вы видите??? 
Тот: 
- Ни%уя... 
Директор: 
- Здесь как раз 2 кило. Берите и пройдем в кассу!!!

     

Как проверить транзистор | Электрик



Часто в ремонте разной электронной техники возникает подозрение в неисправности биполярных или полевых (Mosfet) транзисторов. Помимо специализированных приборов и пробников для проверки транзисторов, существуют способы доступные всем, из минимума нам подойдет самый простой тестер или мультиметр.

Как мы знаем транзисторы, в основном, бывают двух разновидностей: биполярные и полевые, принцип работы их похож но способы проверки существенно отличаются, поэтому мы рассмотрим разные методы проверки для каждых транзисторов по отдельности.

Проверка биполярных транзисторов


Способы проверки биполярных транзисторов достаточно просты и для удобства нужно помнить что биполярный транзистор условно представляет из себя два диода с точкой по середине, по сути из двух p-n переходов.

Биполярные транзисторы существуют двух типов проводимости: p-n-p и  n-p-n что необходимо помнить и учитывать при проверке.

А диод как мы знаем, пропускает ток только в одну сторону, что мы и будем проверять.
Если так получится что ток проходит в обе стороны перехода то это явно указывает на то что транзистор "пробит" но это все условности, в реальности же при замере сопротивления ни в какой из позиций проверяемых переходов не должно быть "нулевого" сопротивления - поэтому это и есть самый простой способ выявления поломки транзистора.
Ну а теперь рассмотрим более достоверные способы проверки и поподробней.

И так выставляем тестер или мультиметр в режим прозвонки (проверка диодов), дальше нужно убедится в том что щупы вставлены в правильные разъемы (красный и черный), а на дисплее нет значка "разряжен". На дисплее должна быть единица а при замыкание щупов должны высветится нули (или близкие к нулям значения), также должен прозвучать звуковой сигнал. И так мы убедились в выборе правильного режима мультиметра, можем приступать к проверке.

И так поочередно проверяем все переходы транзистора:

  • База - Эмиттер - исправный переход будит вести себя как диод, то есть проводить ток только в одном направление.
  • База - Коллектор - исправный переход будит вести себя как диод, то есть проводить ток только в одном направление.
  • Эмиттер - Коллектор - в исправном состояние сопротивление перехода должно быть "бесконечное", то есть переход не должен пропускать ток или прозваниватmся ни в одном из положений полярности.

В зависимости от полярности транзистора (p-n-p или n-p-n) будит зависить лишь направление "прозвонки" переходов база-эмиттер и база-коллектор, с разной полярностью транзисторов направление будет противоположное.

Как определяется "пробитый" переход?
Если мультиметр обнаружит что какой ли бо из переходов (Б-К или Б-Э) в обоих из включений полярности имеет "нулевое" сопротивление и пищит звуковая индикация то такой переход пробит и транзистор неисправен.

Как определить обрыв p-n перехода?
Если один из переходов в обрыве - он не будит пропускать ток и прозваниватся ни в одну из сторон полярности как бы вы не меняли при этом полярность щупов.

Думаю всем понятно как проверять переходы транзистора, суть проверки такая же как у диодов, черный (минусовой) щуп ставим например на коллектор, а красный щуп (плюсовой) на базу и смотрим показания на дисплее. Затем меняем щупы тестера местами и смотрим показания снова. В исправного транзистора в одном случае должно быть какое то значение, как правило больше 100, в другом случае на дисплее должна быть единица "1" что говорит о "бесконечном" сопротивление.

Проверка транзистора стрелочным тестером


Принцип проверки все тот же, мы проверяем переходы (как диоды)
Отличие лишь в том что такие "омметры" не имеют режима прозвонки диодов и "бесконечное" сопротивление у них находится в начальном состояние стрелки, а максимальное отклонение стрелки будит уже говорить о "нулевом" сопротивление. К этому нужно просто привыкнуть и помнить о такой особенности при проверке.
Измерения лучше всего производить в режиме "1Ом" (можно пробовать и до *1000Ом пределе).

Для проверки в схеме (не выпаивая) стрелочным тестером можно даже более точно определить сопротивление перехода если он в схеме зашунтирован низкоомным резистором, например показания сопротивления в 20 Ом будет уже указывать о том что сопротивление перехода не "нулевое" а значит большая вероятность что переход исправен. С мультиметром же в режиме прозвонки диодов будит такая картина что он попросту будет показывать "кз" и пищать (тоже конечно зависит от точности прибора).

Если не известно где база, а где эмиттер и коллектор. Цоколевка транзистора?


У транзисторов средней и большой мощности вывод коллектора всегда на корпусе который переиначенный для закрепления на радиатора, так что с этим проблем не будит. А уже зная расположение коллектора, найти базу и эмиттер будит намного проще.
Ну а если транзистор малой мощности в пластмассовом корпусе где все выводы одинаковы будим применять такой способ:
Все что нам нужно - поочередно замерить все комбинации переходов прикасаясь щупами поочередно к разным выводам транзистора.

Нам нужно найти два перехода которые покажут бесконечность "1". Например: мы нашли бесконечность между правим-левим и правим-среднем, то есть по сути мы нашли и измеряли обратное сопротивления двух p-n переходов (как диодов) из этого размещение базы стает очевидным - база справа.
Дальше ищем где коллектор а где эмиттер, для этого от базы уже измеряем прямое сопротивление переходов и здесь все стает ясно так как сопротивление перехода база-Коллектор всегда меньше по сравнению с переходом база-Эмиттер.

Быстрая точная проверка транзистора


Если под руками есть мультиметр с функцией тестирования коэффициента усиления транзисторов - замечательно, проверка займет несколько секунд, здесь лишь надо будет определить правильную цоколевку (если конечно она не известна).
У таких мультиметров проверочные гнезда состоят из двух отделов p-n-p и n-p-n, а кроме того каждый отдел имеет три комбинации как можно вставить туда транзистор, то есть вместе не более 6 комбинаций, и только лишь одна правильная которая должна показать коэффициент усиления транзистора, за условий что он исправен.

Простой пробник


В данной схеме транзистор будет работать как ключ, схема очень простая и удобная если нужно часто и много проверять транзисторы.

Если транзистор рабочий - при нажатие кнопки светодиод светится, при отпускание гаснет.
Схема представлена для n-p-n транзисторов, но она универсальна, все что нужно сделать, это поставить параллельно к светодиоду еще один светодиод в обратной полярности, а при проверке p-n-p транзистора - просто менять полярность источника питания.

Если по данной методике что то идет не так, задумайтесь, а транзистор ли перед вами и случайно быть может он не биполярный, а полевой или составной.
Часто бывает путают при проверке составные транзисторы пытаясь их проверить стандартным способом, но нужно в первую очередь смотреть справочник или "даташит" со всем описанием транзистора.


Как проверить составной транзистор Чтобы проверить такой транзистор его необходимо "запустить" то есть он должен как бы работать, для создания такого условия есть простой но интересный способ.
Стрелочным тестером, выставленным в режим проверки сопротивления (предел *1000?) подключаем щупы, плюсовой на коллектор, минусовой на эмиттер - для n-p-n (для p-n-p наоборот) - стрелка тестера не двинется сместа оставаясь в начале шкалы "бесконечность" (для цифрового мультиметра "1")
Теперь если послюнявить палиц и замкнуть им прикоснувшысь к выводам базы и коллектора то стрелка сдвинется с места от того что транзистор немного приоткроется.
Таким же способом можно проверить любой транзистор даже не выпаивая з схемы.
Но следует помнить что некоторые составные транзисторы имеют в своем составе защитные диоды в переходе эмиттер-коллектор что дает им преимущество в работе с индукционной нагрузкой, например с электромагнитным реле.

Проверка полевых транзисторов

Здесь есть один отличительный момент при проверке таких транзисторов - они очень чувствительны к статическому электричеству которое способно вывести из строя транзистор если не соблюдать методы безопасности при проверке а также выпайке и перемещению. И в большей мере подвержены статике именно маломощные и малогабаритные полевые транзисторы.

Какие методы безопасности?
Транзисторы должны находится на столе на металлическом листе который подключен к заземлению. Для того чтобы снять с человека предельный статический заряд - применяют антистатический браслет который надевают на запястье.
Кроме того хранение и транспортировка особо чувствительных полевиков должна быть з закорочеными выводами, как правило выводы просто обматывают тонкой медной проволкой.

Полевой транзистор в отличие от биполярного управляется напряжением, а не током как у биполярного, поэтому прикладывая напряжение к его затвору мы его или открываем (для N-канального) или закрываем (для P-канального).

Проверить полевой транзистор можно как стрелочным тестером так и цифровым мультиметром.
Все выводы полевого транзистора должны показывать бесконечное сопротивление, независимо от полярности и напряжения на щупах.

Но если поставить положительный щуп тестера к затвору (G) транзистора N-типа, а отрицательный - к истоку (S), зарядится емкость затвора и транзистор откроется. И уже измеряя сопротивления между стоком (D) и истоком (S) прибор покажет некоторое значение сопротивления, которое зависит от ряда факторов, например емкости затвора и сопротивления перехода.

Для P-канального типа транзистора полярность щупов обратная. Также для чистоты эксперимента, перед каждой проверкой необходимо закорачивать выводы транзистора пинцетом чтобы снять заряд с затвора после чего сопротивление сток-исток должно снова стать "бесконечным" ("1") - если это не так то транзистор скорее всего неисправен.

Особенностью современных мощных полевых транзисторов (MOSFET'ов) есть то что канал сток-исток прозванивается как диод, встроенный диод в канале полевого транзистора есть особенностью мощных полевиков (явление производственного процесса).
Чтобы не посчитать такую "прозвонку" канала за неисправность просто следует помнить о диоде.

В исправном состояние переход сток-исток MOSFETа должен в одну сторону звониться как диод а в другую показывать бесконечность (в закрытом состояние - после закорачивания выводов) Если переход прозваниваеться в обе стороны с "нулевым" сопротивлением то такой транзистор "пробит" и неисправен

Наглядный способ (экспресс проверка)

  • Необходимо замкнуть выводы транзистора

  • Тестером в режиме прозвонки (диод) ставим плюсовой щуп к истоку, а минусовой к стоку (исправный покажет 0.5 - 0.7 вольта)

  • Теперь меняем щупы местами (исправный покажет "1" или по другому говоря бесконечное сопротивление)
  • Минусовой щуп ставим к истоку, а плюсовой на затвор (открываем транзистор)

  • Минусовой щуп оставляем на истоке, а плюсовой сразу ставим на сток, исправный транзистор будет открыт и покажет 0 - 800 милливольт

  • Теперь можем поменять плюсовой и минусовой щупы местами, в обратной полярности переход сток-исток должен иметь такое же сопротивление.

  • Плюсовой щуп ставим к истоку, а минусовой на затвор - транзистор закроется

  • Можем снова проверить переход сток-исток, он должен показывать снова "бесконечное" сопротивление так как транзистор уже закрыт (но помним про диод в обратной полярности)

Большая емкость затвора некоторых полевых транзисторов (особенно мощных) позволяет некоторое продолжительное время сохранять транзистор открытим, что позволяет нам открыв его проверять сопротивление сток-исток уже убрав плюсовой щуп с затвора. Но у транзисторов с малой емкостью затвора необходимо очень быстро перемещать щупы что бы зафиксировать правильную работу транзистора.


Примечание: для проверки P-канального полевого транзистора, процесс выглядит также но щупы мультиметра должны быть противоположной полярности. Для удобства можно перекинуть их местами (красный на минус, а черный на плюс) и использовать все туже описану выше инструкцию.

Проверяя транзистор по такой методике канал сток-исток можно открывать и закрывать даже пальцем, например чтобы открыть достаточно прикоснутся пальцем к затвору держась при этом второй рукой за плюс, а чтобы закрыть нужно все также прикоснутся к затвору но уже держась другим пальцем или второй рукой за минус. Интересный опыт который дает понимание того что транзистор управляется не током (как у биполярных) а напряжением.

Простая схема пробника для проверки полевых транзисторов


Можно собрать простую и эффективную схему проверки полевиков которая достаточно ясно даст понять о состояние транзистора, к тому же достаточно быстро можно перекидать транзисторы если их предстоит проверять часто и много. В некоторых схемах можно проверить транзистор даже полностью не выпаивая его с платы.

Схема универсальна как для P-канальных так и для N-канальных полевых транзисторов в ней присутствует два светодиода включенных в обратной полярности друг к другу (каждый для своего типа) и все что остается при смене типа проверяемого полевого транзистора - просто поменять полярность источника питания.

вид и обозначение, достоинства и недостатки, принцип работы для чайников


Описание и принцип работы

Транзистор Дарлингтона, названный в честь его изобретателя Сиднея Дарлингтона, состоит из двух стандартных NPN- или PNP-биполярных транзисторов, соединенных между собой. Эмиттер одного транзистора соединен с базой другого, чтобы создать более чувствительный транзистор с большим коэффициентом усиления по току, полезный в приложениях, где требуется усиление или переключение тока.

Пары транзисторов Дарлингтона могут быть изготовлены из двух индивидуально подключенных биполярных транзисторов или из одного устройства, имеющегося в продаже в одной упаковке со стандартом: соединительные провода базы, эмиттера и коллектора. Элементы доступны в широком разнообразии стилей корпуса и разных номиналов напряжения (и тока) и доступны в версиях NPN и PNP.

Биполярный переходный транзистор может работать как выключатель в режиме «вкл.-выкл.», как показано на рисунке.

Когда база NPN-транзистора заземлена (0 вольт) и ток базы Ib отсутствует — не течет от эмиттера к коллектору, и поэтому транзистор переключается в положение «выкл.». Если база смещена в прямом направлении более чем на 0,7 В, ток будет течь от эмиттера к коллектору, и транзистор, как говорят, будет включен «вкл.». При работе в этих двух режимах транзистор работает как переключатель.

Проблема здесь заключается в том, что транзисторная база должна переключаться между нулем и некоторым большим положительным значением, чтобы транзистор насыщался, и в этот момент повышенный базовый ток Ib протекает в устройство, в результате чего ток коллектора Ic становится большим, а напряжение Vce маленьким. Тогда мы можем видеть, что небольшой ток на базе может контролировать намного больший ток, протекающий между коллектором и эмиттером.

Отношение тока коллектора к базовому току (β) известно как коэффициент усиления тока транзистора. Типичное значение β для стандартного биполярного транзистора может находиться в диапазоне от 50 до 200 и варьируется даже между транзисторами с одинаковым номером детали. В некоторых случаях, когда коэффициент усиления по току одного транзистора слишком мал для прямого управления нагрузкой, одним из способов увеличения коэффициента усиления является использование пары Дарлингтона.

Конфигурация транзистора Дарлингтона, также известная как «Дарлингтона пара» или «суперальфа»-цепь, состоит из двух NPN- или PNP-транзисторов, соединенных между собой таким образом, что ток эмиттера первого транзистора TR1 становится базовым током второго транзистора TR2. Затем транзистор TR1 подключается как повторитель эмиттера, а TR2 — общий усилитель эмиттера, как показано ниже.

Также обратите внимание, что в этой конфигурации пары Дарлингтона ток коллектора ведомого или управляющего транзистора, TR1 «синфазен» с током главного переключающего транзистора TR2.

В чем разница между NPN и PNP транзисторами?

Существует два основных типа транзисторов – биполярные и полевые. Биполярные транзисторы изготавливаются из легированных материалов и могут быть двух типов – NPN и PNP. Транзистор имеет три вывода, известные как эмиттер (Э), база (Б) и коллектор (К). На рисунке, приведенном ниже, изображен NPN транзистор где, при основных режимах работы (активном, насыщении, отсечки) коллектор имеет положительный потенциал, эмиттер отрицательный, а база используется для управления состоянием транзистора.

Физика полупроводников в этой статье обсуждаться не будет, однако, стоит упомянуть, что биполярный транзистор состоит из трех отдельных частей, разделенных двумя p-n переходами. Транзистор PNP имеет одну N область, разделенную двумя P областями:

Транзистор NPN имеет одну P область, заключенную между двумя N областями:

Сочленения между N и P областями аналогичны переходам в диодах, и они также могут быть с прямым и обратным смещением p-n перехода. Данные устройства могут работать в разных режимах в зависимости от типа смещения:

  • Отсечка: работа в этом режиме тоже происходит при переключении. Между эмиттером и коллектором ток не протекает, практически «обрыв цепи», то еесть «контакт разомкнут».
  • Активный режим: транзистор работает в схемах усилителей. В данном режиме его характеристика практически линейна. Между эмиттером и коллектором протекает ток, величина которого зависит от значения напряжения смещения (управления) между эмиттером и базой.
  • Насыщение: работает при переключении. Между эмиттером и коллектором происходит практически «короткое замыкание» , то есть «контакт замкнут».
  • Инверсный активный режим: как и в активном, ток транзистора пропорционален базовому току, но течет в обратном направлении. Используется очень редко.

В транзисторе NPN положительное напряжение подается на коллектор для создания тока от коллектора к эмиттеру. В PNP транзисторе положительное напряжение подается на эмиттер для создания тока от эмиттера к коллектору. В NPN ток течет от коллектора (К) к эмиттеру (Э):

А в PNP ток протекает от эмиттера к коллектору:

Ясно, что направления тока и полярности напряжения в PNP и NPN всегда противоположны друг другу. Транзисторы NPN требуют питания с положительной полярностью относительно общих клемм, а PNP транзисторы требуют отрицательного питания.

PNP и NPN работают почти одинаково, но их режимы отличаются из-за полярностей. Например, чтобы перевести NPN в режим насыщения, UБ должно быть выше, чем UК и UЭ. Ниже приводится краткое описание режимов работы в зависимости от их напряжения:

Основным принципом работы любого биполярного транзистора является управление током базы для регулирования протекающего тока между эмиттером и коллектором. Принцип работы NPN и PNP транзисторов один и тот же. Единственное различие заключается в полярности напряжений, подаваемых на их N-P-N и P-N-P переходы, то есть на эмиттер-базу-коллектор.

Похожие материалы:

  • В чем разница между искусственным интеллектом и…
  • В чем разница между датчиками с туннельным (TMR) и…
  • В чем разница между двигателями с электронным…
  • В чем разница между «улучшенной безопасностью…
  • В чем разница между абсолютными и инкрементальными…
  • В чем разница между числами с фиксированной и…

Базовая конфигурация транзистора Дарлингтона

В паре NPN Дарлингтона в качестве примера коллекторы двух транзисторов соединены вместе, а эмиттер TR1 управляет основанием TR2. В этой конфигурации достигается умножение на β, потому что для базового тока i b ток коллектора равен β * i b, где коэффициент усиления по току больше единицы или равен единице, и это определяется как:

Но базовый ток I B2 равен току эмиттера транзистора TR1, I E1, поскольку эмиттер TR1 подключен к базе TR2. Следовательно:

Затем подставим в первое уравнение:

Где β 1 и β 2 — коэффициенты усиления тока отдельных транзисторов.

Это означает, что общее усиление тока β определяется коэффициентом усиления первого транзистора, умноженным на коэффициент усиления второго транзистора, когда коэффициенты усиления тока двух транзисторов умножаются. Другими словами, пара биполярных транзисторов, объединенных вместе для создания одной пары транзисторов Дарлингтона, может рассматриваться как один транзистор с очень высоким значением β и, следовательно, с высоким входным сопротивлением.

Транзисторы.


Трафарет Visio Транзисторы.

Каждой фигурой трафарета Транзисторы, представлены несколько условных обозначений схожих по функциональным особенностям транзисторов. Изменить условное обозначение, можно в контекстном меню фигуры:


Контекстное меню фигуры условного обозначения транзистора.

Некоторые примеры условных обозначений транзисторов, полученных изменение комбинаций команд в контекстном меню фигур: 1. Транзистор биполярный.

Транзистор биполярный PNP.
Транзистор биполярный NPN.
Транзистор биполярный NPN, коллектор соединен с корпусом.
Транзистор лавинный типа NPN.

2. Транзистор однопереходный.

Транзистор однопереходный с P-базой.
Транзистор однопереходный с N-базой.

3. Транзистор двухбазовый.

Транзистор двухбазовый типа PNP.
Транзистор двухбазовый типа NPN.
Транзистор двухбазовый типа PNIP с выводом от i-области.
Транзистор двухразовый типа PNIN с выводом от i-области.

4. Транзистор полевой.

Транзистор полевой с каналом типа N.
Транзистор полевой с каналом типа P.

5. Транзистор полевой с изолированным затвором.

Транзистор полевой с изолированным затвором обедненного типа с N-каналом, с внутренним соединением истока и подложки.
Транзистор полевой с изолированным затвором обедненного типа с Р-каналом, с внутренним соединением истока и подложки.
Транзистор полевой с изолированным затвором обогащенного типа с Р-каналом, с внутренним соединением истока и подложки.
Транзистор полевой с изолированным затвором обедненного типа с N-каналом.
Транзистор полевой с изолированным затвором обедненного типа с Р-каналом.
Транзистор полевой с изолированным затвором обогащенного типа с Р-каналом.

6. Транзистор полевой с двумя изолированными затворами.

Транзистор полевой с двумя изолированными затворами обедненного типа с Р-каналом с выводом от подложки.
Транзистор полевой с двумя изолированными затворами обедненного типа с N-каналом с выводом от подложки.
Транзистор полевой с двумя изолированными затворами обогащенного типа с Р-каналом с выводом от подложки.

7. Транзистор биполярный с изолированным затвором.

Транзистор биполярный с изолированным затвором обедненного типа с N-каналом.
Транзистор биполярный с изолированным затвором обедненного типа с Р-каналом.
Транзистор биполярный с изолированным затвором обогащенного типа с Р-каналом.

Дополнительно, в контекстном меню фигуры условного обозначения транзистора, можно поменять местами вывода как вертикально так и горизонтально, скрыть или показать маркировку выводов, скрыть символ корпуса.

Пример изменения условного обозначения полевого транзистора, видео:

Пример транзистора Дарлингтона

Два NPN-транзистора соединены вместе в виде пары Дарлингтона для переключения галогенной лампы 12 В 75 Вт. Коэффициент усиления прямого тока первого транзистора равен 25, а коэффициент усиления прямого тока (бета) второго транзистора равен 80. Игнорируя любые падения напряжения на двух транзисторах, рассчитайте максимальный базовый ток, необходимый для полного включения лампы.

Сначала ток, потребляемый лампой, будет равен току коллектора второго транзистора, затем:

Используя приведенное выше уравнение, базовый ток определяют как:

Затем мы видим, что очень маленький базовый ток, всего 3,0 мА, такой как ток, подаваемый цифровым логическим вентилем или выходным портом микроконтроллера, может использоваться для включения и выключения лампы мощностью 75 Вт.

Если два одинаковых биполярных транзистора используются для создания одного устройства Дарлингтона, то β1 равно β2, и общее усиление тока будет иметь вид:

Обычно значение β2 намного больше, чем значение 2β, и в этом случае его можно игнорировать, чтобы немного упростить математику. Тогда окончательное уравнение для двух идентичных транзисторов, сконфигурированных как пара Дарлингтона, можно записать в виде:

Тогда мы можем видеть, что для двух одинаковых транзисторов β 2 используется вместо р, действующей как один большой транзистор с огромным количеством выгоды. Легко доступны пары транзисторов Дарлингтона с усилением тока более тысячи с максимальными токами коллектора в несколько ампер. Например: NPN TIP120 и его PNP эквивалентны TIP125.

Преимущество использования такого устройства, заключается в том, что переключающий транзистор гораздо более чувствителен, поскольку для переключения значительно большего тока нагрузки требуется только небольшой базовый ток, так как типичное усиление конфигурации Дарлингтона может превышать 1 000, тогда как обычно одиночная ступень транзистора дает усиление от 50 до 200.

Затем мы видим, что пара Дарлингтона с коэффициентом усиления 1 000 : 1 может переключать выходной ток 1 А в цепи коллектор — эмиттер с входным базовым током всего 1 мА. Тогда это делает транзисторы Дарлингтона идеальными для взаимодействия с реле, лампами и двигателями с микроконтроллером малой мощности, компьютером или логическими контроллерами, как показано на рисунке.

Как работает

Принцип действия устройства похож на работу крана, регулирующего подачу воды, с той лишь разницей, что через него идет поток отрицательных частиц. Прибор пропускает через себя 2 тока:

  • основной «большой»;
  • управляющий «маленький».

Мощность первого зависит от мощности второго. Если изменить показатель малого тока, то изменится интенсивность образования «дырок» на базе: пропорционально изменится амплитуда напряжения на выходе, но частота сигнала сохранится. Поэтому, при подаче на базовую пластину слабого импульса, усиление на выходе не теряется, но значительно возрастает амплитуда.

Тип имеющегося биполярного транзистора можно легко распознать по схеме, основанной на принципе: ток течет от «плюса» к «минусу». В приборе N-P-N базовая плата представлена p-полупроводником (положительными «дырками»), на схеме это показано направлением к эмиттеру от базы. P-N-P-разновидность имеет «отрицательную» n-базу (стрелка на схеме направлена к ней).

Единственное отличие этих типов устройств заключается в том, что схема N-P-N начинается с «плюса», а P-N-P с «минуса» (так как на базовую плату подается минусовой потенциал). Т.е. для транзистора с N-полупроводником характерно «перевёрнутое» поведение: ток не останавливается при заземленной базе и сталкивается с преградой, когда через неё идет ток.

Даже при незначительном отличии типов NPN-устройства более эффективны и распространены в электронной промышленности. Это связано с тем, что носители тока в них представлены электронами, которые более мобильны чем положительные частицы. Поэтому приборы с P-полупроводником более высокочастотны.

Применение транзисторов Дарлингтона

База транзистора Дарлингтона достаточно чувствительна, чтобы реагировать на любой небольшой входной ток от коммутатора или непосредственно от логического элемента КМОП TTL или 5 В. Максимальный ток коллектора Ic (max) для любой пары Дарлингтона такой же, как и для основного переключающего транзистора TR 2, поэтому его можно использовать для управления реле, двигателями постоянного тока, соленоидами и лампами и т. д.

Одним из основных недостатков пары транзисторов Дарлингтона является минимальное падение напряжения между базой и эмиттером при полном насыщении. В отличие от одного транзистора, у которого падение напряжения насыщения составляет от 0,3 до 0,7 В при полном включении, устройство Дарлингтона имеет удвоенное падение напряжения базового эмиттера (1,2 В вместо 0,6 В), поскольку падение напряжения базового эмиттера — это сумма падений диодов базового эмиттера двух отдельных транзисторов, которая может составлять от 0,6 до 1,5 В в зависимости от тока, текущего через транзистор.

Такое высокое падение напряжения на базе эмиттера означает, что для данного тока нагрузки транзистор Дарлингтона может нагреваться сильнее, чем обычный биполярный транзистор, и, следовательно, требует хорошего отвода тепла. Кроме того, транзисторы Дарлингтона имеют более медленное время отклика «вкл.-выкл.», поскольку ведомому транзистору TR1 требуется больше времени, чтобы главный транзистор TR2 полностью включился.

Чтобы преодолеть медленный отклик, повышенное падение напряжения и тепловые недостатки стандартного транзисторного устройства Дарлингтона, дополнительные транзисторы NPN и PNP могут использоваться в одной и той же каскадной схеме для создания транзистора Дарлингтона другого типа, называемого конфигурацией Шиклаи.

Как работает полевой транзистор?

ПТ с индуцированным каналом содержит три электрода — исток (source), сток (drain), и затвор (gate).

Принцип работы ПТ наполовину понятен из графического обозначения и названия электродов.

Канал ПТ – это «водяная труба», в которую втекает «вода» (поток заряженных частиц, образующих электрический ток) через «источник» (исток).

«Вода» вытекает из другого конца «трубы» через «слив» (сток). Затвор – это «кран», который открывает или перекрывает поток. Чтобы «вода» пошла по «трубе», надо создать в ней «давление», т.е. приложить напряжение между стоком и истоком.

Если напряжение не приложено («давления в системе нет»), тока в канале не будет.


Если приложено напряжение, то «открыть кран» можно подачей напряжения на затвор относительно истока.

Чем большее подано напряжение, тем сильнее открыт «кран», больше ток в канале «сток-исток» и меньше сопротивление канала.

В источниках питания ПТ используется в ключевом режиме, т.е. канал или полностью открыт, или полностью закрыт.

Честно сказать, принципы действия ПТ гораздо более сложны, он может работать не только в ключевом режиме. Его работа описывается многими заумными формулами, но мы не будем здесь все это описывать, а ограничимся этими простыми аналогиями.

Скажем только, что ПТ могут быть с n-каналом (при этом ток в канале создается отрицательно заряженными частицами) и p-каналом (ток создается положительно заряженными частицами). На графическом изображении у ПТ с n-каналом стрелка направлена внутрь, у ПТ с p-каналом – наружу.

Собственно, «труба» — это кусочек полупроводника (чаще всего – кремния) с примесями химических элементов различного типа, что обуславливает наличие положительных или отрицательных зарядов в канале.

Теперь переходим к практике и поговорим о том,

Транзисторная пара Шиклаи (Sziklai)

Соединение транзисторов по схеме Шиклаи, названной в честь изобретателя Джорджи Шиклаи, представляет собой особый транзистор Дарлингтона, состоящий из отдельных NPN и PNP комплементарных транзисторов, соединенных между собой, как показано ниже.

Эта каскадная комбинация транзисторов NPN и PNP имеет то преимущество, что пара Шиклаи выполняет основную функцию пары Дарлингтона, за исключением того, что для ее включения требуется только 0,6 В, и, как и в стандартной конфигурации Дарлингтона, коэффициент усиления по току равен β 2 для одинаково согласованных транзисторов или задается произведением двух коэффициентов усиления тока для несогласованных отдельных транзисторов.

Конфигурация транзистора Шиклаи — Дарлингтон

Мы можем видеть, что падение напряжения базы-эмиттера устройства Шиклаи равно падению диода одного транзистора в тракте сигнала. Тем не менее конфигурация Шиклаи не может насытить менее одного полного падения напряжения на диоде, то есть 0,7 В вместо обычных 0,2 В.

Кроме того, как и в случае пары Дарлингтона, пара Шиклаи имеет более медленное время отклика, чем один транзистор. Комплементарные парные транзисторы Шиклаи обычно используются в двухтактных выходных каскадах аудиоустройства класса AB, допускающих только одну полярность выходного транзистора. Обе пары транзисторов Дарлингтона и Шиклаи доступны как в конфигурации NPN, так и в конфигурации PNP.

Транзисторные ИС Дарлингтона

В большинстве электронных приложений управляющей цепи достаточно для непосредственного переключения выходного напряжения или постоянного тока «вкл.» или «выкл.», поскольку для некоторых выходных устройств, таких как светодиоды или дисплеи, требуется лишь несколько миллиампер для работы при низких напряжениях постоянного тока. Как следствие, они могут управляться непосредственно выходом стандартного логического элемента.

Однако, как мы видели выше, иногда для работы устройства вывода, такого как двигатель постоянного тока, требуется больше энергии, чем может быть обеспечено обычным логическим вентилем или микроконтроллером. Если цифровое логическое устройство не может подавать достаточный ток, то для управления устройством потребуются дополнительные схемы.

Одним из таких широко используемых транзисторных чипов Дарлингтона является массив ULN2003. Семейство массивов Дарлингтона состоит из ULN2002A, ULN2003A и ULN2004A, которые представляют собой высоковольтные и сильноточные массивы Дарлингтона, каждый из которых содержит семь пар Дарлингтона с открытым коллектором в одном пакете ИС.

Каждый канал массива рассчитан на 500 мА и может выдерживать пиковые токи до 600 мА, что делает его идеальным для управления небольшими двигателями, лампами или затворами и базами мощных полупроводников. Дополнительные диоды подавления включены для индуктивного управления нагрузкой, а входы прикреплены напротив выходов, чтобы упростить соединения и расположение платы.

ULN2003A Дарлингтонский транзисторный массив

ULN2003A является недорогим однополярным массивом транзисторов Дарлингтона с высокой эффективностью и низким потреблением энергии, что делает его полезным для приведения в движение широкого диапазона нагрузок, включая электромагниты, реле постоянного тока двигателя и светодиодные дисплеи или лампы накаливания. ULN2003A содержит семь пар транзисторов Дарлингтона, каждая с входным контактом слева и выходным контактом справа от него, как показано ниже.

ULN2003A Транзисторная матрица Дарлингтона

Драйвер Дарлингтона ULN2003A имеет чрезвычайно высокий входной импеданс и коэффициент усиления по току, который может управляться напрямую от логического элемента CMOS TTL или + 5V. Для логики CMOS + 15 В используйте ULN2004A, а для более высоких коммутирующих напряжений до 100 В лучше использовать массив Дарлингтона SN75468.

Когда вход (контакты 1–7) переходит в режим «высокий», соответствующий выход переключит «низкий» ток утечки. Аналогично, когда вход приводится в действие «низкий», соответствующий выход переключается в состояние высокого импеданса. Это состояние с высоким импедансом «выкл.» блокирует ток нагрузки и снижает ток утечки через устройство, повышая эффективность.

Контакт 8 (GND) подключен к заземлению нагрузки или 0 вольт, а контакт 9 (Vcc) подключен к источнику питания нагрузки. Затем любая нагрузка должна быть подключена между + Vcc и выходным контактом, контактами 10–16. Для индуктивных нагрузок, таких как двигатели, реле, соленоиды и т. д. контакт 9 всегда должен быть подключен к Vcc.

ULN2003A способен коммутировать 500 мА (0,5 А) на канал, но если требуется больше возможностей переключения тока, то и входы, и выходы пар Дарлингтона могут быть параллельны друг другу для более высокой способности тока. Например, входные контакты 1 и 2 соединены вместе, и выходные контакты 16 и 15 также объединены для переключения нагрузки.

Резюме транзистора Дарлингтона

Дарлингтона транзистор — это полупроводниковое устройство наивысшей мощности, показывающий силу тока и напряжение во много раз выше, чем обычные небольшие плоскостные транзисторы сигнала.

Значения коэффициента усиления постоянного тока для стандартных транзисторов NPN или PNP большой мощности относительно низкие, вплоть до 20 или даже меньше по сравнению с транзисторами с малым сигналом переключения. Это означает, что для переключения данной нагрузки требуются большие базовые токи.

В схеме Дарлингтона используются два объединенных транзистора , один из которых является основным токонесущим транзистором, а другой, являющийся гораздо меньшим «переключающим» транзистором, обеспечивает базовый ток для управления главным транзистором. В результате меньший базовый ток может использоваться для переключения гораздо большего тока нагрузки, поскольку коэффициенты усиления постоянного тока двух транзисторов умножаются. Тогда комбинация из двух транзисторов может рассматриваться как один единственный транзистор с очень высоким значением β и, следовательно, с высоким входным сопротивлением.

Наряду со стандартными парами транзисторов PNP и NPN Дарлингтона имеются также дополнительные транзисторы Шиклаи — Дарлингтона, которые состоят из отдельных согласующих транзисторов NPN и PNP, соединенных вместе в одной и той же паре Дарлингтона для повышения эффективности.

Также доступны массивы Дарлингтона, например ULN2003A, которые позволяют безопасно управлять мощными или индуктивными нагрузками, такими как лампы, соленоиды и двигатели. Управление осуществляется с помощью микропроцессорных и микроконтроллерных устройств в роботизированных и мехатронных приложениях.

Общие сведения

FET или ПТ — полупроводниковый прибор, который при изменении управляющего U, регулирует I (силу тока). Этот тип транзистора называется еще униполярным. Появился он позже обычного транзистора (биполярного), но с ростом технологии получил широкое распространение среди цифровых устройств благодаря низкому энергопотреблению. Основное отличие заключается в методе регулирования I. В биполярном — регулирование I происходит при помощи управляющего I, а полевом — при помощи U (Рисунок 1).

Рисунок 1 — Отличие полевого от биполярного Т.

У ПТ нет I управления, и он обладает высоким входным сопротивлением (R), которое достигает несколько сотен ГОм (ГигаОм) или ТОм (ТерраОм). Для того чтобы узнать сферы применения ПТ, нужно внимательно изучить его. Носителями заряда являются электроны или дырки, а у биполярного — электроны и дырки.

Классификация и устройство

ПТ бывают нескольких видов, обладают различными характеристиками и устройством. Они делятся на 2 типа:

  1. С управляющим p-n — переходом (JFET).
  2. С изолированным затвором (MOSFET).

Кроме того, каждый из типов бывает с N и P каналами. У ПТ с N-каналом носителями заряда являются электроны, а у P-канального — дырки. Принцип работы для P и N аналогичен, отличие лишь в подаче U другой полярности в качестве управляющего.

Устройство JFET ПТ (рисунок 2) простое. Область N образовывает канал между зонами P. К концам канала N подключаются электроды, которые называются условно стоком (С) и истоком (И), так как все зависит от схемы подключения. Затвор (З) — тип электрода, который образовывается при закорачивании полупроводников P. Это обусловлено электрическим соединением при воздействии U. Возле С и И находится область повышенной концентрации или легирование (N+) электронов, что приводит к улучшению проводимости канала. Наличие зоны легирования значительно понижает образование паразитных p-n — переходов, образующихся при присоединении алюминия.

Рисунок 2 — Схематическое устройство ПТ типа JFET.

MOFSET называется МОП или МДП, также делятся на типы — со встроенным и индуцируемым каналами. В каждом из этих типов есть модели с P и N каналами. Полевой транзистор, обозначение которого представлено на рисунке 3, иногда обладает 4 выводами.

Рисунок 3 — Обозначение МДП-транзистора.

Устройство довольно простое и показано на рисунке 4. Для ПТ с N-каналом подложка (покрывается SiO2) обладает электропроводимостью P-типа. Через слой диэлектрика проводятся электроды стока и истока от зон с легированием, а также вывод, который закорачивается с истоком. Слой затвора находится над диэлектриком.

Рисунок 4 — Типичное устройство ПТ с индуцированным каналом.

Принцип работы JFET

JFET работает в 2 режимах. Эта особенность связана с тем, что подается на затвор напряжение положительной и отрицательной составляющей (рис. 5). При подключении U > 0 к стоку, а земли к истоку необходимо подсоединить затвор к земле (Uзи = 0). Во время постепенного повышения U между С и И (Uис) ПТ является обыкновенным проводником. При низких значениях Uис ширина канала является максимальной.

При высоких значениях Uис через канал протекают большие значения силы тока между истоком и стоком (Iис). Это состояние получило название омической области (ОО). В полупроводнике N-типа, а именно в зонах p-n — перехода происходит снижение концентрации свободных электронов. Несимметричное разрастание слоя снижения концентрации свободных электронов называется обедненным слоем. Разрастание случается со стороны подключенного источника питания. Происходит сильное сужение канала при повышении Uис, вследствие которого Iис растет незначительно. Работа ПТ в этом режиме называется насыщением.

Рисунок 5 — Схема работы JFET (Uзи = 0).

При подаче низкого отрицательного U на затворе происходит сильное сужение канала и уменьшение Iис. При уменьшении U произойдет закрытие канала, и ПТ будет работать в режиме отсечки, а U, при котором прекращается подача Iис, называется напряжением отсечки (Uотс). На рисунке 6 изображено графическое представление работы ПТ при Uзи < 0:

Рисунок 6 — Графическое представление принципа работы полевого транзистора типа JFET.

При использовании в режиме насыщения происходит усиление сигнала (рис. 7), так как при незначительных изменениях Uис происходит значительное изменение Iис:

Рисунок 7 — Пример S JFET.

Этот параметр является усилительной способностью JFET и называется крутизной стоко-затворной характеристики (S). Единица измерения — mA/В (милиАмпер/Вольт).

Особености работы MOFSET

При подключении U между электродами С и И любой полярности к MOFSET с индуцированным N-каналом ток не потечет, так как между легитивным слоем находится слой с проводимостью P, которая не пропускает электроны. Принцип работы с каналом P-типа такой же, только необходимо подавать отрицательное U. Если подать положительное Uзи на затвор, то возникнет электрическое поле, выталкивающее дырки из зоны P в направлении подложки (рис. 8).

Под затвором концентрация свободных носителей заряда начнет уменьшаться, а их место займут электроны, которые притягиваются положительным зарядом затвора. При достижении Uзи порогового значения концентрация электронов будет значительно больше концентрации дырок. В результате этого произойдет формирование между С и И канала с проводимостью N-типа, по которому потечет Iис. Можно сделать вывод о прямо пропорциональной зависимости Iис от Uзи: при повышении Uзи происходит расширение канала и увеличение Iис. Этот процесс является одним из режимов ПТ — обогащения.

Рисунок 8 — Иллюстрация работы ПТ с индуцированным каналом (тип N).

ВАХ ПТ с изолированным затвором примерно такой же, как и с управляющим переходом (рис. 9). Участок, на котором Iис растет прямо пропорционально росту Uис, является омической областью (насыщения). Участок при максимальном расширении канала, на котором Iис не растет, является активной областью.

При превышении порогового значения U переход типа p-n пробивается, и ПТ является обычным проводником. В этом случае радиодеталь выходит из строя.

Рисунок 9 — ВАХ ПТ с изолированным затвором.

Отличие между ПТ со встроенным и индуцируемым каналами заключается в наличии между С и И канала проводящего типа. Если к ПТ со встроенным каналом подключить между стоком и истоком U разной полярности и оставить затвор включенным (Uзи = 0), то через канал потечет Iис (поток свободных носителей заряда — электронов). При подключении к затвору U < 0 возникает электрическое поле, выталкивающее электроны в направлении подложки. Произойдет уменьшение концентрации свободных носителей заряда, а сопротивление увеличится, следовательно, Iис — уменьшится. Это состояние является режимом обеднения.

При подключении к затвору U > 0 возникает электромагнитное поле, которое будет притягивать электроны из стока, истока и подложки. В результате этого произойдет расширение канала и повышение его проводимости, а Iис увеличится. ПТ начнет работать в режиме обогащения. Вольт-амперная характеристика (ВАХ) представлена на рисунке 10.

Рисунок 10 — ВАХ ПТ со встроенным каналом.

Несмотря на свою универсальность, ПТ обладают преимуществами и недостатками. Эти недостатки следуют из устройства, способа исполнения и ВАХ приборов.

Как определить конфигурацию контактов биполярного транзистора

Как определить коллектор, базу и эмиттер биполярного транзистора.

Введение

Это практическое руководство, которое поможет вам определить полярность и конфигурацию контактов любого небольшого биполярного транзистора. Здесь есть элемент проб и ошибок. Но поскольку мы имеем дело с ограниченным числом переменных, задача не слишком сложная. Выводов всего три - коллектор - база - и эмиттер.Если в вашем измерителе есть тестер транзисторов - вы можете просто попробовать все шесть возможных конфигураций контактов - в обеих полярностях.

Сравнение транзисторов NPN и PNP

Маленькие биполярные транзисторы делятся на две группы - NPN и PNP. Эмиттер NPN-транзистора подключен к отрицательной линии или к ней. И его коллектор подключен к положительной линии или к ней. Транзистор NPN включается - когда ток течет НА его базовый вывод.И он отключается, когда прекращается этот базовый ток. Маленькая стрелка в символе указывает направление базового тока.

По сравнению с транзисторами NPN - транзисторы PNP соединены в перевернутом виде и работают задом наперед. Коллектор транзистора PNP подключен к отрицательной линии или к ней. И его эмиттер подключен к положительной линии или к ней. Транзистор PNP включается, когда ток течет ИЗ его базового вывода. И он отключается, когда этот базовый ток прекращается.Маленькая стрелка в символе указывает направление базового тока.

Определение полярности транзистора

Если у вас есть измеритель с подвижной катушкой или ваш цифровой измеритель имеет тестер диодов, вы должны начать с определения полярности транзистора. Поскольку мы собираемся использовать измеритель для определения полярности транзистора, полярность выводов измерителя имеет решающее значение. Перед тем как начать - убедитесь, что ваши лиды подключены правильно.Затем начните с поиска коллекторных и эмиттерных диодов. Эти диоды будут проводить - когда красный провод измерителя подключен к клемме «P».

Когда вы определили полярность транзистора и его базовый вывод, одна из следующих небольших схем поможет вам определить коллектор и эмиттер. Соберите схему на своей макетной плате. И воткните свой транзистор. Вы уже знаете, куда должен идти базовый штифт. Используйте метод проб и ошибок, чтобы расположить два других контакта. Если светодиод светится - даже тускло - коллектор и эмиттер подключены неправильно.Если коллектор и эмиттер подключены правильно - светодиод не загорится.

Далее - смочите кончик пальца кончиком языка. И влажным кончиком пальца присоедините коллектор к основанию. Если ваш транзистор работает правильно и правильно подключен, влага будет обеспечивать достаточный базовый ток для включения транзистора. И светодиод загорится.

Если у вас нет измерителя с подвижной катушкой или тестера диодов.

Вы все еще можете использовать эти две схемы для определения полярности транзистора и его конфигурации контактов. Просто используйте методику «Тестера транзисторов», описанную выше. Попробуйте все шесть возможных конфигураций контактов. Первые три наиболее вероятны. Когда можно зажечь светодиод влажным кончиком пальца - транзистор подключен правильно.

Различия между транзисторами NPN и PNP и их создание

Как p-n-p, так и n-p-n транзисторы являются основными транзисторами, которые подпадают под категорию транзисторов с биполярным переходом.Они используются в различных схемах усиления и схемах модуляции. Наиболее частым из его применений является режим полного включения и выключения, называемый переключателем.

Транзисторы NPN и PNP представляют собой транзисторы с биполярным переходом и являются основным электрическим и электронным компонентом, который используется для создания многих электрических и электронных проектов. В работе этих транзисторов участвуют как электроны, так и дырки. Транзисторы PNP и NPN допускают усиление тока.Эти транзисторы используются как переключатели, усилители или генераторы. Транзисторы с биполярным переходом можно найти в большом количестве в виде частей интегральных схем или в виде дискретных компонентов. В транзисторах PNP основными носителями заряда являются дырки, тогда как в транзисторах NPN электроны являются основными носителями заряда. Но полевые транзисторы имеют только один тип носителя заряда.

В основе формирования этих транзисторов лежат диоды с p-n переходом. Как и в транзисторах n-p-n, n-типы являются в большинстве своем, поэтому они включают избыточное количество электронов в качестве носителей заряда.В p-n-p транзисторах есть два p-типа, в результате чего большинство носителей заряда представляют собой дырки.

Основное различие между транзисторами NPN и PNP заключается в том, что транзистор NPN включается, когда ток течет через базу транзистора. В этом типе транзистора ток течет от коллектора (C) к эмиттеру (E). Транзистор PNP включается, когда на базе транзистора нет тока. В этом транзисторе ток течет от эмиттера (E) к коллектору (C).Таким образом, зная это, транзистор PNP включается низким сигналом (земля), тогда как транзистор NPN включается высоким сигналом (током).

Различия между транзисторами NPN и PNP и их изготовление

Транзистор PNP

Транзистор PNP представляет собой биполярный переходной транзистор; В транзисторе PNP первая буква P указывает полярность напряжения, необходимого для эмиттера; вторая буква N указывает полярность цоколя. Работа транзистора PNP прямо противоположна работе транзистора NPN.В транзисторах этого типа большинство носителей заряда - дырки. По сути, этот транзистор работает так же, как транзистор NPN. Материалы, которые используются для изготовления выводов эмиттера, базы и коллектора в транзисторе PNP, отличаются от материалов, используемых в транзисторе NPN. Схема смещения транзистора PNP показана на рисунке ниже. Клеммы база-коллектор PNP-транзистора всегда имеют обратное смещение, поэтому для коллектора необходимо использовать отрицательное напряжение. Следовательно, вывод базы PNP-транзистора должен быть отрицательным по отношению к выводу эмиттера, а коллектор должен быть отрицательным, чем база.

Изготовление транзистора PNP

Конфигурация транзистора PNP показана ниже. Характеристики транзисторов PNP и NPN аналогичны, за исключением того, что смещение направления напряжения и тока меняются местами для любой из трех возможных конфигураций, таких как общая база (CB), общий эмиттер (CE) и общий коллектор (CC). .Напряжение между базой и выводом эмиттера VBE отрицательное на выводе базы и положительное на выводе эмиттера, потому что для транзистора PNP вывод базы всегда смещен отрицательно по отношению к эмиттеру.Кроме того, напряжение эмиттера положительно по отношению к коллектору (VCE).

Источники напряжения подключены к транзистору PNP, который показан на рисунке. Эмиттер подключен к Vcc с помощью RL, этот резистор ограничивает максимальный ток, протекающий через устройство, которое подключено к клемме коллектора. Базовое напряжение VB подключено к базовому резистору RB, который смещен отрицательно по отношению к эмиттеру. Чтобы ток базы протекал через PNP-транзистор, клемма базы должна быть более отрицательной, чем клемма эмиттера, примерно на 2,9%.0,7 В или устройство Si.

Основное различие между PNP и PN-транзисторами заключается в правильном смещении переходов транзистора; направления тока и полярности напряжения всегда противоположны друг другу.

Основы P-N-P

Транзисторы p-n-p сформированы с n-типом, присутствующим между p-типами. Большинство носителей, ответственных за генерацию тока, в этом транзисторе являются дырками. Рабочая операция аналогична работе n-p-n.Но приложения напряжений или токов с точки зрения полярности различаются.

Транзистор NPN

Транзистор NPN представляет собой транзистор с биполярным переходом. В транзисторе NPN первая буква N указывает на отрицательно заряженный слой материала, а P указывает на положительно заряженный слой. Эти транзисторы имеют положительный слой, расположенный между двумя отрицательными слоями. Транзисторы NPN обычно используются в схемах для переключения, усиления электрических сигналов, которые проходят через них.Эти транзисторы содержат три вывода, а именно базу, коллектор и эмиттер, и эти выводы соединяют транзистор с печатной платой. Когда ток протекает через NPN-транзистор, клемма базы транзистора принимает электрический сигнал, коллектор создает более сильный электрический ток, чем тот, который проходит через базу, а эмиттер передает этот более сильный ток на остальную часть схемы. В этом транзисторе ток течет через вывод коллектора к эмиттеру.

Обычно этот транзистор используется потому, что его очень легко изготовить. Чтобы NPN-транзистор работал должным образом, он должен быть сформирован из полупроводникового материала, который пропускает некоторый электрический ток, но не в максимальном количестве, как у очень проводящих материалов, таких как металл. «Si» - один из наиболее часто используемых полупроводников, а транзисторы NPN - самые простые транзисторы, которые можно сделать из кремния. Применение транзистора NPN находится на печатной плате компьютера. Компьютерам необходимо преобразовать всю свою информацию в двоичный код, и этот процесс достигается с помощью множества маленьких переключателей на печатных платах компьютеров.Для этих переключателей можно использовать транзисторы NPN. Мощный электрический сигнал включает переключатель, а отсутствие сигнала выключает его.

Изготовление NPN-транзистора

Конструкция NPN-транзистора показана ниже. Напряжение на выводе базы положительное, а на выводе эмиттера - отрицательное из-за транзистора NPN. Вывод базы всегда положительный по отношению к выводу эмиттера, а также напряжение питания коллектора положительно относительно вывода эмиттера.В NPN-транзисторе коллектор подключен к VCC через нагрузочный резистор RL. Этот нагрузочный резистор ограничивает ток, протекающий через максимальный ток базы. В этом транзисторе движение электронов через вывод базы, составляющее действие транзистора. Основная особенность действия транзистора - связь между входной и выходной цепями. Потому что усилительные свойства транзистора проистекают из последующего управления, которое база применяет к коллектору для эмиттерного тока.

Транзистор - это устройство, работающее от тока. Когда транзистор включен, большой ток IC протекает между коллектором и эмиттером внутри транзистора. Однако это происходит только тогда, когда через базовый вывод транзистора протекает небольшой ток смещения Ib. Это биполярный транзистор NPN; ток - это отношение этих двух токов (Ic / Ib), которое называется усилением постоянного тока устройства и обозначается символом «hfe» или в настоящее время бета. Значение бета может быть большим, вплоть до 200 для стандартных транзисторов, и именно это соотношение между Ic и Ib делает транзистор полезным усилителем.Когда этот транзистор используется в активной области, то Ib обеспечивает вход, а Ic обеспечивает выход. Бета не имеет единиц, так как это соотношение.

Коэффициент усиления транзистора по току от коллектора до эмиттера называется альфа, то есть Ic / Ie, и это функция самого транзистора. Поскольку ток эмиттера Ie является суммой малого тока базы и большого тока коллектора, значение альфа очень близко к единице, а для типичного сигнального транзистора малой мощности это значение находится в диапазоне примерно от 0.950 до 0,999.

Разница между NPN и PNP транзисторами:

Транзисторы с биполярным переходом представляют собой трехконтактные устройства, изготовленные из легированных материалов, часто используемых в приложениях для усиления и переключения. По сути, в каждом BJT есть пара диодов с PN переходом. Когда пара диодов соединяется, образуется сэндвич, который помещает полупроводник между двумя этими типами. Таким образом, существует только два типа биполярных сэндвичей, а именно PNP и NPN.В полупроводниках NPN имеют характерно более высокую подвижность электронов по сравнению с подвижностью дырок. Следовательно, он пропускает большой ток и работает очень быстро. Кроме того, этот транзистор легко сделать из кремния.

  • Транзисторы PNP и NPN состоят из разных материалов, и ток в этих транзисторах также отличается.
  • В транзисторе NPN ток течет от коллектора (C) к эмиттеру (E), тогда как в транзисторе PNP ток течет от эмиттера к коллектору.
  • Транзисторы PNP состоят из двух слоев материала P с зажатым слоем N. Транзисторы NPN состоят из двух слоев материала N и зажаты одним слоем материала P.
  • В транзисторе NPN положительное напряжение подается на вывод коллектора для создания потока тока от коллектора к транзистору PNP положительное напряжение подается на вывод эмиттера для создания потока тока от эмиттера к коллектору.
  • Принцип работы NPN-транзистора таков, что когда вы увеличиваете ток на выводе базы, тогда транзистор включается, и он полностью проводит от коллектора к эмиттеру.Когда вы уменьшаете ток на клемме базы, транзистор включается меньше, и пока ток не станет настолько низким, транзистор больше не будет проводить через коллектор к эмиттеру и выключится.
  • Принцип работы PNP-транзистора таков, что когда ток существует на клемме базы транзистора, транзистор закрывается. Когда на клемме базы транзистора PNP нет тока, транзистор включается.

Это все о разнице между транзисторами NPN и PNP, которые используются для создания многих электрических и электронных проектов.Кроме того, любые вопросы, касающиеся этой темы или проектов в области электротехники и электроники, вы можете оставить, оставив комментарий в разделе комментариев ниже.

Сравнение транзисторов N-P-N и P-N-P

1). В этом присутствует большинство n-типов.
1). В нем присутствует большинство материалов p-типа.

2). Большинство концентраций носителей - электроны.
2). Большинство концентраций носителей в транзисторах этого типа - дырочные.

3). В этом случае, если на клеммную базу подается повышенный ток, транзистор переключается в режим ВКЛ.
3). В этом случае при малых значениях токов транзистор включен. В противном случае при больших значениях токов транзисторы выключены.

4). Символьное представление транзистора n-p-n:

Символ транзистора N-P-N

4). Символьное представление транзистора p-n-p:

Символ транзистора P-N-P

5).В транзисторе n-p-n протекание тока очевидно от коллектора к выводам эмиттера.
5). В p-n-p-транзисторе поток тока можно увидеть от выводов эмиттера к коллектору.

6). В этом транзисторе стрелка указывает.
6). В этом транзисторе стрелка всегда указывает внутрь.

Стрелки на транзисторах n-p-n и p-n-p показывают основные различия между транзисторами. Стрелка в n-p-n направлена ​​в сторону эмиттера, тогда как для p-n-p стрелка направлена ​​в обратном направлении.В обоих случаях стрелка указывает направление потока тока.

Следовательно, конструкция n-p-n и p-n-p проста. Управление будет таким же, но полярности смещения будут разными. Теперь, после обсуждения основ n-p-n и p-n-p, можете ли вы сказать, какой из них предпочтительнее во время амплификации и почему?

Фото:

  • Транзистор NPN и PNP от ggpht
  • Транзистор PNP от wikimedia
  • Изготовление транзистора PNP с помощью руководств по электронике

Напряжения на клеммах транзистора

Транзистор клеммы напряжения


напряжение питания полярности для npn и pnp транзисторы показаны на рисунках ниже.

Напряжение питания полярности для npn транзистора

npn-транзистор образован сэндвичем одного p-типа полупроводниковый слой между двумя n-типами полупроводниковые слои.

Полярность напряжения питания для npn-транзистора указана на рисунок ниже.

напряжение питания между базой и эмиттером обозначается как V BE .База смещена положительно по отношению к эмиттер и стрелка указывают от положительного основания к отрицательный эмиттер. Направление стрелки обозначает направление тока поток.

напряжение питания между коллектором и базой обозначается Автор: V CB . Коллекционер настроен на более высокую положительный уровень, чем базовый, чтобы сохранить коллектор-базу соединение с обратным смещением.

Напряжение питания полярности для pnp транзистора

pnp-транзистор образован сэндвичем одиночного n-типа полупроводниковый слой между двумя полупроводниками p-типа слои.

Полярность напряжения питания для pnp-транзистора указана на рисунок ниже.

напряжение питания между базой и эмиттером обозначается как V BE .База смещена отрицательно по отношению к эмиттер и стрелка указывает от положительного эмиттера к отрицательной базе. Направление стрелки обозначает направление тока.

напряжение питания между коллектором и базой обозначается Автор: V CB . Коллекционер настроен на более высокую отрицательный уровень, чем базовый, чтобы сохранить коллектор-базу соединение с обратным смещением

Типичный напряжения для транзистора

База-излучатель напряжения (V

BE ) для npn и pnp транзисторов

транзистор обычно работает в активной области для усиления электрический ток.В активной области эмиттерный переход (J E ) имеет прямое смещение, а коллекторный переход (J C ) имеет обратное смещение.

типичное напряжение база-эмиттер (V BE ) для обоих npn и pnp транзисторы следующие:

Если транзистор изготовлен из кремниевого материала, Напряжение база-эмиттер (V BE ) будет равно 0.7 В.

Если транзистор изготовлен из германиевого материала, Напряжение база-эмиттер (V BE ) составит 0,3 В.

Коллектор-база напряжения (В

CB ) для npn и pnp транзисторов

типовые напряжения коллектор-база (V CB ) для как npn, так и pnp транзисторы будут иметь напряжение от 3 В до 20 В.



Из вопросов и ответов

с TJ Byers


Полупроводник, объяснение пола

Вопрос:

Можно ли подключить NPN-транзистор как PNP-транзистор? Дело в том, чтобы поменять местами соединения?

Леонард Мэри Томас


Ответ:

Транзисторы

NPN и PNP взаимозаменяемы, если вы помните одно простое правило: биполярный транзистор - это, по сути, два встречных диода с базой, являющейся общим соединением.Чтобы транзистор работал, один диод смещен в прямом направлении, а другой - в обратном. Возьмем, к примеру, усилитель с общим эмиттером, как показано ниже. Слева находится транзистор NPN (отрицательно-положительно-отрицательный), а справа - транзистор PNP (положительно-отрицательно-положительный). Обратите внимание, что обе схемы идентичны, за исключением одного. Обратная полярность источника питания.

В конфигурации NPN эмиттер (вывод, похожий на стрелку диода, обозначенный (E) , идет на отрицательный полюс (земля).База (B) подключается к + V через резистор Rb. Это смещает в прямом направлении диод база-эмиттер, который демонстрирует характерное падение напряжения 0,7 В. Коллектор (C) , с другой стороны, переходит на + V - фактически, смещая этот диод в обратном направлении.

Напряжение переключения этого диода является параметром VCE, указанным в спецификации, и варьируется от одного типа транзистора к другому. Ток через коллектор-эмиттер контролируется током, протекающим через переход база-эмиттер.Величина влияния называется усилением транзистора или hFE.

Замена PNP в цепи меняет местами ток, протекающий через диод база-эмиттер, и напряжение на коллекторе. В итоге, большинство усилителей слабого сигнала будут работать одинаково хорошо, если вы замените NPN на PNP и измените полярность источника питания. А это означает, что если у вас смешанный пол, каждый транзистор должен иметь смену пола. Обратите внимание, я сказал, что большинство - не все - усилители будут работать с этой АТС.(Подвижность электронов и дырок не равны, особенно на более высоких частотах.)

Если ваше приложение предназначено для переключения логики, все, что вам нужно сделать, это поменять местами эмиттер и коллектор в вашей конструкции, чтобы соблюдались правила прямого / обратного смещения, как показано на двух нижних схемах. Загвоздка в том, что когда вы меняете пол, вы меняете и логику. В конфигурации NPN транзистор включается логическим ВЫСОКИМ уровнем. В версии PNP транзистор включается логическим значением LOW. Убедитесь, что вы настроили соответствующим образом.


Историческая справка. Когда я был новичком и новичком в транзисторах - нарезав себе зубы на электронных лампах с регулируемым напряжением - я слышал об этой аналогии с транзисторами, соединенными спина к спине, - и попытался построить сам, используя диоды 1N34A. Угадай, что? Не сработало.

Секрет крутизны транзистора - это крошечный зазор между коллектором и эмиттером, называемый базой, который управляет током, протекающим через транзистор. Разрыв настолько мал, что с 1948 по 1953 год потребовалось почти шесть лет, чтобы усовершенствовать первый надежный коммерческий транзистор: CK722.


Теория транзисторов

ТЕОРИЯ ТРАНЗИСТОРА

Вы должны вспомнить из предыдущего обсуждения, что ориентированный вперед

Переход

PN сопоставим с элементом схемы с низким сопротивлением, поскольку он проходит через ток для заданного напряжения. В свою очередь, PN-переход с обратным смещением сопоставим с высокоомный элемент схемы. Используя формулу закона Ома для мощности (P = I 2 R) и предполагая, что ток остается постоянным, можно сделать вывод, что мощность, развиваемая через высокое сопротивление больше, чем при низком сопротивлении.Таким образом, если кристалл должны были содержать два PN-перехода (один с прямым смещением, а другой с обратным смещением), маломощный сигнал может быть введен в переход с прямым смещением и произвести мощный сигнал на обратносмещенном переходе. Таким образом, прирост мощности будет получается поперек кристалла. Эта концепция, которая является просто продолжением материала Рассмотренная в главе 1, это основная теория усиления транзистора. С этим информация свежая в вашей памяти, давайте перейдем непосредственно к транзистору NPN.

Работа транзистора NPN

Как и в случае диода с PN переходом, материал N, составляющий два конца секции транзистора N P N содержат некоторое количество свободных электронов, в то время как центральная секция P содержит избыточное количество отверстий. Действие на каждом стыке между эти секции такие же, как ранее описанные для диода; то есть истощение области развиваются, и появляется стыковой барьер.Чтобы использовать транзистор в качестве усилителя, каждый из этих переходов должен быть модифицирован некоторым внешним напряжением смещения. Для транзистора чтобы функционировать в этом качестве, первый PN-переход (переход эмиттер-база) смещен в прямое направление или направление с низким сопротивлением. В то же время второй переход PN (переход база-коллектор) смещен в обратном или высокоомном направлении. А Простой способ запомнить, как правильно смещать транзистор, - это наблюдать за NPN или PNP элементы, из которых состоит транзистор.Буквы этих элементов указывают, какая полярность напряжение, используемое для правильного смещения. Например, обратите внимание на транзистор NPN ниже:

Излучатель, который является первой буквой в последовательности PN N , подключен к исходному элементу n . сторона батареи, в то время как основание, которое является второй буквой (N P N), подключено к положительной стороне p . Однако, поскольку второй PN-переход должен быть с обратным смещением для правильной работы транзистора, коллектор должен быть подключен к напряжение противоположной полярности ( p ositive), чем указано его буквой обозначение (НП N ).Напряжение на коллекторе также должно быть положительнее, чем база, как показано ниже:

Теперь у нас есть правильно смещенный NPN-транзистор.

Таким образом, база транзистора N P N должна быть p ositive относительно к эмиттеру, а коллектор должен быть положительнее базы.

NPN ПЕРЕХОД В ПЕРЕДНЕЕ СМЕЩЕНИЕ.- Важный момент, который необходимо вынести на данный момент, который не обязательно упоминалось во время объяснения диода, это тот факт, что N материал на одной стороне перехода с прямым смещением более легирован, чем P материал. Это приводит к тому, что через соединение проходит больше тока большинством электроны-носители из материала N, чем дырки-носители из материала P. Следовательно, проводимость через переход с прямым смещением, как показано на рисунке 2-5, составляет в основном электронами-носителями из материала N (эмиттер).

Рисунок 2-5. - Прямо смещенный переход в NPN-транзисторе.

Когда переход эмиттер-база на рисунке смещен в прямом направлении, электроны покидают отрицательную клемму батареи и попадают в материал N (эмиттер). Поскольку электроны являются основными носителями тока в материале N, они легко проходят через эмиттер, пересеките соединение и совместите с отверстиями в материале P (основание).Для с каждым электроном, заполняющим дырку в материале P, другой электрон покидает P материала (создавая новое отверстие) и введите положительный полюс батареи.

ОБРАТНОЕ СМЕЩЕНИЕ NPN. - второй PN-переход (база-коллектор), или обратносмещенный переход, как его называют (рис. 2-6), блокирует большинство носителей тока от пересечения перекрестка. Однако есть очень слабый ток, о котором говорилось ранее, что действительно проходит через этот перекресток.Этот ток называется миноритарным током или обратным. текущий . Как вы помните, этот ток создавался электронно-дырочными парами. В неосновными носителями для обратносмещенного PN перехода являются электрон в P материал и отверстия в материале N. Эти неосновные перевозчики фактически проводят ток для обратносмещенного перехода, когда электроны из материала P входят в N материала, а отверстия из материала N входят в материал P.Однако меньшинство текущие электроны (как вы увидите позже) играют наиболее важную роль в работе транзистор NPN.

Рисунок 2-6. - Обратно-смещенный переход в NPN-транзисторе.

На этом этапе вы можете задаться вопросом, почему второе соединение PN (база-коллектор) не прямое смещение, как и первый PN переход (эмиттер-база). Если бы оба стыка были с прямым смещением электроны будут иметь тенденцию течь из каждой торцевой секции N Транзистор P N (эмиттер и коллектор) к центральной секции P (база).По сути, мы будет иметь два переходных диода с общей базой, что исключает любые усиление и поражение цели транзистора. Слово предостережения в порядке на данный момент. Если вы ошибочно смещаете второй PN-переход в прямом направлении направлении, чрезмерный ток может выработать достаточно тепла, чтобы разрушить соединения, делая транзистор бесполезным. Поэтому убедитесь, что полярность напряжения смещения правильная. перед выполнением любых электрических подключений.

NPN-ПЕРЕХОДНОЕ ВЗАИМОДЕЙСТВИЕ. - Теперь мы готовы посмотреть, что произойдет, когда мы разместим одновременно работают два перехода NPN-транзистора. Для лучшего Чтобы понять, как эти два соединения работают вместе, обратитесь к рис. 2-7 во время обсуждение.

Рисунок 2-7. - Работа на NPN-транзисторе.

Батареи смещения на этом рисунке имеют маркировку V CC для коллектора. напряжение питания, и V BB для источника напряжения базы.Также обратите внимание на базу Батарея питания довольно мала, на что указывает количество ячеек в батарее, обычно 1 вольт или меньше. Однако запас коллектора в целом намного выше базового. питание, обычно около 6 вольт. Как вы увидите позже, эта разница в напряжениях питания необходимо, чтобы ток протекал от эмиттера к коллектору.

Как указывалось ранее, протекание тока во внешней цепи всегда связано с движение свободных электронов.Следовательно, электроны текут с отрицательных выводов подавать аккумуляторы к эмиттеру N-типа. Это комбинированное движение электронов известно как эмиттер . ток (I E ). Поскольку электроны являются основными носителями в материале N, они будут перемещаться через эмиттер материала N к переходу эмиттер-база. С этим переход смещен вперед, электроны продолжают движение в базовую область. Как только электроны находятся в основе, которая представляет собой материал P-типа, они становятся неосновными носителями .Некоторые из электроны, которые движутся в базу, рекомбинируют с доступными дырками. Для каждого электрона который рекомбинирует, другой электрон движется через вывод базы как базовый ток I B (создавая новое отверстие для возможной комбинации) и возвращается к основной аккумуляторной батарее V

BB

. Электроны, которые рекомбинируют, теряются, что касается коллектора. Поэтому, чтобы сделать транзистор более эффективным, базовая область сделана очень тонкой и слегка допированный.Это уменьшает возможность рекомбинации электрона с дыркой и Потерянный. Таким образом, большая часть электронов, которые перемещаются в базовую область, попадают под влияние обратного смещения большого коллектора. Это смещение действует как смещение вперед для неосновных носителей (электронов) в базе и, как таковые, ускоряет их через переход база-коллектор и далее в коллекторную область. Поскольку коллектор выполнен из материал N-типа, электроны, которые достигают коллектора , снова становятся большинством Носители тока .Попадая в коллектор, электроны легко проходят через N материала и возврат к плюсовой клемме коллекторной аккумуляторной батареи V CC как ток коллектора (I C ).

Для дальнейшего повышения КПД транзистора выполнен коллектор физически больше, чем база, по двум причинам: (1) для увеличения вероятности сбора носители, которые диффундируют в сторону, а также непосредственно через основную область, и (2) к позволить коллектору обрабатывать больше тепла без повреждений.

Таким образом, полный ток в транзисторе NPN проходит через вывод эмиттера. Следовательно, в процентном отношении I E составляет 100 процентов. С другой стороны, поскольку база очень тонкая и слегка легированная, меньший процент от общего тока (ток эмиттера) будет течь в цепи базы, чем в цепи коллектора. Обычно нет от 2 до 5 процентов общего тока составляет базовый ток (I B ), в то время как оставшиеся от 95 до 98 процентов - это ток коллектора (I C ).Очень простые отношения существует между этими двумя токами:

I E = I B + I C

Проще говоря, это означает, что ток эмиттера разделен на базовый и коллекторный ток. Поскольку количество тока, выходящего из эмиттера, зависит исключительно от смещение эмиттер-база, и поскольку коллектор принимает большую часть этого тока, небольшой изменение смещения эмиттер-база будет иметь гораздо большее влияние на величину коллектора. тока, чем он будет иметь на основе текущего.В заключение, относительно небольшой Смещение эмиттер-база управляет относительно большим током эмиттер-коллектор.

Q.6 Для правильного смещения NPN-транзистора, напряжение какой полярности подается на коллектор, и как он соотносится с напряжением базы?
Q.7 Почему проводимость через смещенный в прямом направлении переход NPN-транзистора в первую очередь в одну сторону, а именно от эмиттера к базе?
Q.8 Какой участок NPN-транзистора сделать очень тонким по сравнению с двумя другими? разделы?
В.9 Какой процент тока в NPN-транзисторе достигает коллектора?

Биполярный переходной транзистор

- Engineering LibreTexts

Биполярный переходной транзистор - это полупроводниковое устройство, состоящее из двух P-N-переходов, соединяющих три клеммы, называемые клеммами базы, эмиттера и коллектора. Расположение трех выводов влияет на ток и усиление транзистора. Поведение транзисторов с биполярным переходом также сильно различается для каждой конфигурации схемы.Три разные конфигурации схемы дают разные характеристики схемы в отношении входного сопротивления, выходного сопротивления и усиления. Эти характеристики влияют на то, демонстрирует ли транзистор усиление по напряжению, усиление по току или усиление по мощности. Одна из основных операций транзистора с биполярным переходом - усиление сигнала тока. Транзисторы с биполярным переходом могут регулировать ток так, чтобы величина тока была пропорциональна напряжению смещения, приложенному к клемме базы транзистора.Применение биполярных переходных транзисторов можно найти в устройствах, использующих аналоговые схемы, таких как компьютеры, мобильные телефоны и радиопередатчики.

ВВЕДЕНИЕ

Биполярные транзисторы

имеют три полупроводниковые области. Эти три области - это область эмиттера (E), область базы (B) и область коллектора (c), и эти области по-разному легированы в зависимости от типа биполярного транзистора. Двумя типами биполярных транзисторов являются PNP-транзистор, три области которого относятся к p-типу, n-типу и p-типу соответственно, и NPN-транзистор, чьи области относятся к n-типу, p-типу и n-типу соответственно.Оба типа транзисторов имеют один P-N-переход между коллекторной областью и базой и другой P-N-переход между базовой и эмиттерной областями. Базовая область всегда является центральным соединением структуры с областями эмиттера и коллектора, соединенными с обеих сторон. Оба типа транзисторов также имеют одинаковый принцип работы с единственной разницей в полярности питания и смещении для каждого типа.

Способность биполярных транзисторов

усиливать сигнал посредством регулирования тока позволяет передавать входной сигнал от одной цепи к другой, независимо от разного уровня сопротивления в каждой цепи.Величина тока, протекающего через транзистор, пропорциональна величине напряжения смещения, приложенного к клемме базы. Это позволяет транзистору действовать как переключатель с регулируемым током. В зависимости от того, является ли биполярный транзистор PNP или NPN, регулируемый ток будет течь от коллектора к эмиттеру или от эмиттера к коллектору, в то время как меньший управляющий ток будет течь от базы к эмиттеру или от эмиттера к базе соответственно.

Транзистор содержит максимально допустимый ток, который может ограничивать величину тока, проходящего от клеммы к клемме.В зависимости от порядка клемм в транзисторе, транзистор будет действовать как проводник или как изолятор при наличии контролируемого тока. Эта способность переключаться между этими двумя состояниями, изолятором или проводником, позволяет транзистору действовать как переключатель или как усилитель сигналов малой амплитуды, подаваемых на базу, в зависимости от структуры и порядка трех полупроводниковых областей.

СТРУКТУРА

Биполярные транзисторы

содержат три легированных примесных полупроводниковых области, каждая из которых подключена к цепи.Транзистор не является симметричным из-за разной степени легирования областей эмиттера, коллектора и базы. Базовая область состоит из легированных материалов, обладающих высоким удельным сопротивлением. База расположена между областью сильнолегированного эмиттера и областью слаболегированного коллектора. Коллектор охватывает эмиттерную область, что исключает возможность для электронов, инжектированных в базовую область, покидать базовую область, не собираясь. Область эмиттера сильно легирована, чтобы увеличить коэффициент усиления транзистора по току.

Для высокого коэффициента усиления по току необходимо высокое соотношение носителей, вводимых эмиттером, и несущих, вводимых базой. Повышение эффективности инжекции эмиттера приводит к тому, что большая часть носителей, инжектируемых в переход эмиттер-база, поступает из области эмиттера. Высокая степень легирования областей эмиттера и коллектора также означает, что переход коллектор-база имеет обратное смещение. Следовательно, переход коллектор-база может иметь большое обратное напряжение смещения до того, как переход сломается.Для транзистора в целом фундаментальное различие между NPN-транзистором и PNP-транзистором заключается в направлениях тока и полярности напряжения на переходах транзистора. Убедившись, что эти два элемента всегда находятся напротив друг друга, обеспечивает правильное смещение транзисторов.

Биполярный переходной транзистор NPN

NPN-транзистор с биполярным переходом имеет базу из полупроводника, легированного P, между эмиттером, легированным азотом, и областью коллектора, легированным азотом. Биполярные транзисторы NPN являются наиболее часто используемыми биполярными транзисторами из-за легкости подвижности электронов над подвижностью электронов-дырок.

Для этого типа транзисторов коллекторный и эмиттерный токи большой величины возникают за счет усиления небольшого тока, который проходит через базу. Этот небольшой ток усиливается только тогда, когда транзистор становится активным. В этом активном состоянии положительная разность потенциалов обнаруживается как между основной областью к области коллектора, так и областью эмиттера к области базы, что приводит к току, который переносится электронами между областями коллектора и эмиттера.Конструкция и напряжение на клеммах NPN-транзистора показаны на Рисунке 1 ниже.

Рисунок \ (\ PageIndex {1} \): Схема NPN транзистора.

Для биполярного NPN-транзистора, проводящего коллектор, всегда более положительно по отношению как к базе, так и к эмиттеру. Напряжение между базой и эмиттером (V BE ) положительное на базе и отрицательное на эмиттере. Клемма базы всегда положительна по отношению к эмиттеру. Другой способ отображения NPN-транзистора показан на рисунке 2 ниже.

Рисунок 2 Схема биполярного транзистора NPN.

Ток, вытекающий из транзистора, должен быть равен токам, текущим в транзистор, поскольку ток эмиттера задается как

Ie = Ic + Ib. (1)

Примечание: «Ic» - это ток, протекающий на выводе коллектора, «Ib» - это ток, протекающий на выводе базы, а «Ie» - это ток, вытекающий из вывода эмиттера.

Поскольку физическая конструкция транзистора определяет электрическую взаимосвязь между этими тремя токами (Ib), (Ic) и (Ie), любое небольшое изменение тока базы (Ib) приведет к гораздо большему изменению в коллекторе. ток (Ic).Отношение тока коллектора к току эмиттера называется Alpha (α).

Альфа (α) = Ic / Ie (2)

Коэффициент усиления транзистора по току от вывода коллектора до вывода эмиттера, Ic / Ie, является функцией электронов, диффундирующих через переход. Текущее усиление транзистора от клеммы коллектора до клеммы базы обозначено Beta, (β).

Бета (β) = Ic / Ib (3)

Транзисторы

NPN являются хорошими усилителями, когда значение Beta велико.Бета-значения обычно находятся в диапазоне от 20 до 200 для большинства транзисторов общего назначения. Следовательно, если бета-значение транзистора равно 50, то на каждые 50 электронов, проходящих между выводами эмиттер-коллектор, один электрон будет вытекать из вывода базы.

Комбинируя выражения для Alpha, α и Beta, β, коэффициент усиления транзистора по току может быть задан как:

Бета = (α) / (1-α) (4)

Как видно из приведенных выше уравнений, подвижность электронов между цепями коллектора и эмиттера является единственным связующим звеном между этими двумя цепями.Это звено является главной особенностью действия транзистора. Поскольку действие транзистора определяется начальным движением электронов через область базы, усилительные свойства транзистора обусловлены последующим контролем, который база оказывает на ток между коллектором и эмиттером. Пока поток тока смещения в базовый вывод является устойчивым, базовую область можно рассматривать как вход управления током.

PNP Биполярный переходной транзистор

Биполярный транзистор PNP имеет полупроводниковую базу, легированную азотом, между эмиттером, легированным фосфатом, и областью коллектора, легированным фосфатом.PNP-транзистор имеет очень похожие характеристики с NPN-транзистором, с той разницей, что смещение направления тока и напряжения меняются местами. Для транзисторов PNP ток входит в транзистор через вывод эмиттера. Небольшой ток, выходящий из базы, усиливается на выходе коллектора. Область эмиттера-база смещена в прямом направлении, поэтому будут генерироваться электрическое поле и носители. Источники напряжения подключены к транзистору PNP, как показано на рисунках 3 и 4 ниже.

Рисунок 4 Схема транзистора PNP

Напряжение между базой и эмиттером (V BE ) теперь отрицательное на базе и положительное на эмиттере. Клемма базы всегда смещена отрицательно по отношению к эмиттеру while. Эмиттер положительный по отношению к коллектору (V CE ). В основной части коллектора с обратным смещением образовались отверстия. Из-за электрического поля носители или электроны притягиваются дырками. Для того чтобы транзистор PNP проводил, эмиттер всегда более положительный по отношению как к базе, так и к коллектору.

РЕГИОНЫ ДЕЯТЕЛЬНОСТИ

Биполярные транзисторы имеют четыре различных режима работы. Эти области определяются смещениями на переходе биполярного переходного транзистора.

  1. Отсечка : Область отсечки - это когда транзистор неактивен из-за минимального тока, проходящего через транзистор, из-за чего транзистор выглядит как разомкнутая цепь. И VBE, и VBC имеют обратное смещение, поэтому все края обедненной области имеют небольшую плотность неосновных носителей.Эта область имеет условия смещения, противоположные насыщению.
  1. Прямая активность : Прямая активная область возникает, когда транзистор находится в активном состоянии, что позволяет транзистору усиливать колебания напряжения, присутствующие на базе. Когда переход база-эмиттер смещен в прямом направлении, а переход база-коллектор имеет обратное смещение, транзистор может усиливать напряжение, потому что напряжение между коллектором и эмиттером больше, чем напряжение между базой и эмиттером, а также находится между состояниями отсечки и насыщения.Выходной ток пропорционален базовому току и может быть извлечен на коллекторе.
  1. Обратно-активный : Обратно-активная область возникает, когда транзистор находится в активном состоянии, но максимальный коэффициент усиления по току в обратном активном режиме намного меньше, чем в прямом активном режиме. Условия смещения меняются на противоположные, так что коллекторный переход базы смещен в прямом направлении, а переходы с базовым эмиттером смещены в обратном направлении, что переключает роли коллекторной и эмиттерной областей.База содержит гораздо более низкое обратное напряжение смещения, чем в прямой активной области.
  1. Насыщение : Область насыщения позволяет транзистору проводить ток от эмиттера к коллектору. При прямом смещении как базового коллекторного перехода, так и базового эмиттерного перехода, базовый ток настолько велик, что превышает величину, при которой он может увеличить ток коллектора. В результате в цепи между выводами коллектора и эмиттера возникает короткое замыкание из-за перенасыщения тока.

КОНФИГУРАЦИИ

Существует три метода подключения биполярного переходного транзистора к электронной схеме. Конфигурация с общей базой, конфигурация с общим эмиттером и конфигурация с общим коллектором по-разному реагируют на входной сигнал схемы, таким образом изменяя характеристики каждой конфигурации.

Общая базовая конфигурация

Общая базовая конфигурация имеет сильную высокочастотную характеристику, которая хорошо подходит для схем с одноступенчатым усилителем.Однако это не очень распространено из-за низких характеристик усиления по току и низкого входного сопротивления. Входной сигнал подается между выводами базы и эмиттера, а выходной сигнал берется между выводами базы и коллектора. Для этого необходимо заземлить клемму базы, чтобы опорное напряжение было фиксированной величиной. Общая базовая конфигурация показана ниже.

Рисунок 5 Схема

транзистора с общей базой Этот тип конфигурации усилителя представляет собой схему неинвертирующего усилителя напряжения.Конфигурация имеет усиление сопротивления за счет соотношения между сопротивлением нагрузки (Rload) последовательно с коллектором и резистором Rin. Входной ток, протекающий в эмиттер, представляет собой сумму как базового тока, так и тока коллектора, соответственно, поэтому выходной ток коллектора меньше, чем входной ток эмиттера, что приводит к усилению тока. Его входные характеристики соответствуют прямому смещению диода

.

Конфигурация общего эмиттера

Конфигурация усилителя с общим эмиттером обеспечивает самый высокий коэффициент усиления по току и мощности из всех трех конфигураций биполярных транзисторов, поэтому этот тип конфигурации является наиболее часто используемой схемой для усилителей на основе транзисторов.Входной сигнал, подаваемый между базой и эмиттером, невелик из-за прямого смещения PN-перехода, а выходной сигнал, принимаемый между коллектором и эмиттером, велик из-за обратного смещения PN-перехода.

Это в основном связано с тем, что входной импеданс мал, поскольку он подключен к PN-переходу с прямым смещением, а выходное сопротивление велико, поскольку оно снимается с PN-переходом с обратным смещением. Однако его коэффициент усиления по напряжению намного ниже. Конфигурация общего эмиттера показана ниже.

Рисунок 6 Схема усилителя с общим эмиттером

Конфигурация с общим эмиттером представляет собой схему инвертирующего усилителя. Следовательно, выходной сигнал не совпадает по фазе с сигналом входного напряжения.

Конфигурация общего коллектора

Конфигурация с общим коллектором очень полезна для приложений согласования импеданса из-за очень большого отношения входного импеданса к выходному. Конфигурация имеет входной сигнал, напрямую подключенный к базе. Если область эмиттера соединена последовательно с нагрузочным резистором, ток, протекающий через сопротивление нагрузки, будет иметь то же значение, что и ток эмиттера.Вот почему выходной сигнал берется из нагрузки эмиттера, а коэффициент усиления по току конфигурации приблизительно равен значению β транзистора.

Рис. 7. Схема

транзистора с общим коллектором Этот тип конфигурации биполярного транзистора представляет собой неинвертирующую схему, в которой напряжения сигналов Vin и Vout «синфазны». Сопротивление нагрузки принимает как базовый, так и коллекторный токи, что приводит к большому усилению тока, а также обеспечивает хорошее усиление тока с очень небольшим усилением напряжения.

Вопросы

1. Если ток коллектора (Ic) составляет 50 А, а базовый ток (Ib) равен 2 А, то каково значение бета?

2. В чем разница между биполярным транзистором PNP и биполярным транзистором NPN?

3. Каков коэффициент усиления транзистора по току, если заданная альфа (α) равна 0,5?

Ответы

1. Бета-отношение (β) = Ic / Ib. Значение бета равно 50 амперам, разделенным на 2 ампера, что составляет 25.

2. PNP-транзистор и NPN-транзистор имеют очень похожие характеристики, разница между ними заключается в смещении направлений тока и напряжения.

3. Коэффициент усиления транзистора по току - это бета-коэффициент (β), который равен (α) / (1-α). Значение Beta равно 0,5 / (1-0,5), что равно 0,5

Список литературы

1. Kasap, S. (2006). Принципы электронных материалов и устройств (3-е изд.). Бостон: Макгроу-Хилл.

2. «Учебное пособие по NPN-транзисторам - Биполярный NPN-транзистор». Учебники по основам электроники . 1 сентября 2013 г. Интернет. 8 декабря 2015 г.

3. «Переходный транзистор». Переходный транзистор . Интернет. 8 декабря 2015 г.

4. Все изображения были созданы с помощью программного обеспечения с сайта digikey.com

Авторы

1. К. Битти, MSE (Калифорнийский университет в Дэвисе).

В чем разница между PNP и NPN?

Что такое транзисторы PNP и NPN?

PNP и NPN - это транзисторы с биполярным переходом (BJT).Биполярные транзисторы изготовлены из легированных материалов и допускают усиление тока. Его можно настроить как PNP и NPN. Транзисторы PNP и NPN обеспечивают возможность усиления или переключения.

В чем разница между PNP и NPN?

Легко запомнить, что NPN означает «отрицательно-положительно-отрицательный», а PNP означает положительно-отрицательно-положительные транзисторы. Давайте подробнее рассмотрим, как работают транзисторы NPN и PNP.

Транзистор NPN включается, когда от базы транзистора к эмиттеру подается достаточный ток.Таким образом, база транзистора NPN должна быть подключена к положительному напряжению, а эмиттер - к отрицательному напряжению, чтобы ток протек в базу. Когда от базы к эмиттеру течет достаточно тока, транзистор включает направление тока от коллектора к эмиттеру, а не от базы транзистора к эмиттеру. Транзистор PNP работает наоборот. В транзисторе PNP ток обычно течет от эмиттера транзистора к базе, и когда от эмиттера к базе течет достаточно тока, транзистор включает ток, направляя ток от эмиттера к коллектору.

Вкратце, транзистор NPN требует положительного тока от базы к эмиттеру, а PNP требует отрицательного тока к базе, но ток должен течь от базы к земле.

- базовый терминал; E - вывод эмиттера; C - вывод коллектора

Вот ссылка на видео ниже, которая может объяснить как работают транзисторы NPN и PNP подробнее:

PNP и NPN транзисторный выходной сигнал и нагрузка резистор

Различные оптические, индуктивные, емкостные и др.датчики имеют выходной сигнал, называемый PNP NO, PNP NC, NPN NO, NPN NC, все эти сигналы просто переключатели ВКЛ / ВЫКЛ, но вместо сухого контакта у нас установлен выходной транзистор. Транзистор имеет выходную полярность (в отличие от сухого контакта). Как понимать эти выходы:

PNP - (транзистор PNP) NO - нормально открытый, это означает, что на выходе нет напряжения, пока датчик не сработал (см. Рисунок, выходной разъем датчика PNP - № 4). При срабатывании датчика у нас будет +24 В на разъеме №2.4. Этот сигнал +24 В может быть подключен непосредственно к ПЛК или для любых других функций, таких как срабатывание реле, срабатывание сигнализации. Обычно ограничение тока в датчиках приближения составляет до 200 мА, поэтому на всех схемах показано, что выход подключается через резистор, на самом деле этот резистор встроен в ваш ПЛК, это может быть катушка вашего реле или индикаторная лампа. . Если мы подключим выход непосредственно к GND (минусовой провод), мы получим короткое замыкание, что означает, что ток будет расти и достигнет максимального тока источника питания.Таким образом, если у нас есть, например, источник питания 5A, короткое замыкание превысит предел тока датчика, и он будет поврежден.

Если у нас есть датчик NPN NC, это означает, что наш датчик оснащен транзистором NPN на выходе, а датчик нормально закрыт - это означает, что у нас есть выходной сигнал в высоком состоянии, в то время как датчик не срабатывает. Вместо заземления мы используем положительный кабель.


.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *