Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Ограничения в использовании умных светодиодов WS2812, WS2801 и подобных в современных проектах декоративной светотехники

Уже несколько лет на рынке светотехники можно встретить такие названия, как: «smart led strip», «smart led pixel» и подобные. Как правило, «умный пиксель» — это сборка из миниатюрного 3-х канального светодиодного драйвера (с интегрированным стабилизатором тока, PWM модулятором и сдвиговым регистром), подключенная к RGB светодиоду. На базе таких пикселей многие производители выпускают «умные» гибкие светодиодные ленты, LED «гвозди» и LED кластера. Также можно встретить такие модели чипов, как WS2812, WS2813, с интегрированным LED драйвером непосредственно в корпус 5050 RGB светодиода. Малые габариты, большое количество последовательно включенных пикселей (более 1000 шт.), простота управления по 1(2) проводу и сравнительно низкая стоимость решения — более чем оправдывают их применение.

Эта моя первая публикация на Хабре, в которой я хочу донести мой опыт использования и обозначить недостатки таких пикселей. За несколько последних лет я успел поработать со следующими LED драйверами: LPD6803, WS2801, WS2811, WS2812(B), TM1903, UCS1903, TM1804, TM1803, SM16716 и другими менее ходовыми. В интернете часто можно встретить такой термин как «светодиодная лента с пиксельной адресацией» — я с этим совершенно не согласен, и это является первым ограничением.

Информация в такие ленты/пиксели загружается по последовательному каналу, а именно через сдвиговые регистры с 24-х битной разрядностью (как правило), т.е. 3 канала по 8 бит для RGB. Никаких адресов такие LED пиксели не помнят и работают исключительно по последовательному принципу. Отсутствие сигнала управления на линии данных или синхронизации (если таковая есть), служит командой для преобразования значений в регистрах в PWM сигналы для RGB светодиодов. По этой причине, при выходе из строя информационного канала одного из пикселей, последующие пиксели перестанут корректно работать. Многие неопытные LED «рекламисты» наступили на эти грабли, применяя такие пиксели для уличных экранов.

Рисунок ниже демонстрирует «битые» полоски.

Второе ограничение связанно с температурой использования. В большинстве случаев у пикселей, что управляются только по одному проводу «DATA», к примеру, WS2812B — нижняя температура использования -25 градусов. На практике, часто от -15 градусов. Это связанно с отсутствием хорошего кварцевого блока регенерации сигнала внутри чипа. Таким образом, при низких температурах пиксель перестает корректно работать, наблюдаются «сверчки» и т.п. до полного отсутствия картинки. Другое дело — чипы с синхронизацией: WS2801, LPD6803, к примеру. Здесь имеется хорошая регенерация сигналов по уровням, по времени — регенерация не нужна, поскольку имеется линия синхронизации. Рабочая температура в этом случае от -40 градусов. Но и стоят эти чипы вдвое дороже.

Третье ограничение — глубина цвета.

Рисунок ниже демонстрирует экраны собранный на чипах WS2801.

Не вооруженным глазом заметно, что экран с фоном засвечен. Низкие уровни градиента «умные пиксели» (WS2812, WS2801 и т.п. практически все) не способны воспроизводить так, как это делают современные экраны. Это связанно с низкой разрядностью интегрированного в чип PWM генератора (всего 8 бит на канал) и как следствие – отсутствие полноценной гамма коррекции. Проще говоря, светодиод светит слишком ярко, когда хочется совсем чуть-чуть и ничего с этим нельзя поделать.

Ощутимым минусом, во всяком случае для меня, было отсутствие хорошего софта подготовки и конвертирования анимации, непосредственно для вывода на «железки». Это явилось четвертым ограничением.

Поначалу я использовал софт «LedEdit».

«LedEdit» обеспечивает возможность создания и редактирования видео анимации, захвата и последующего конвертирования на «железо». Но использовать этот софт я могу только совместно с их контроллерами. Также я выявил большие недостатки софта «LedEdit» в плане качества видео захвата и стабильности обработки кадров.

Поскольку в этой теме я был очень заинтересован и обладал неплохими знаниями в области программирования, в том числе микроконтроллеров, я написал свой «граббер» видео с последующей конвертацией на «пиксели». Идею объединить в одной программе возможности создания и конвертирования анимации я сразу отложил, поскольку это не профессиональный подход. Анимацию нужно создавать и редактировать в специализированных программах, к примеру, я выбрал FREE программное обеспечение «Jinx!».

На выходе ПО «Jinx!» можно получить открытый бинарный файл *.out представляющих битовое представление данных прямоугольной матрицы из пикселей для каждого кадра. Теперь дело остается за немногим: сопоставить прямоугольную матрицу из данных для каждого кадра с реальным расположением «умного пикселя» на пиксельном поле и произвести граб анимации. Так у меня родилось FREE программное обеспечение «LS Terminal».

Сейчас ПО «LS Terminal» позволяет работать с большинством видео форматов *.avi, *.flv и д.р., использовать десятки портов, качественно обрабатывать видео захват для десятков тысяч «умных пикселей» расставленных по полю пользователем. Для обработки и визуализации видео я использовал библиотеки OpenCV и OpenGL. Выгрузку данных на «умные пиксели» осуществляю посредством микроконтроллера, который считывает данных с SD карты.

В целом, я привел все основные недостатки «умных пикселей» и если их вынести за скобки, то мы можем увидеть десятки тысяч реализованных проектов. Вот некоторые из них выполненные с помощью моего граббера видео:

— для LED костюмов:

— небольшой изогнутый экран на WS2812:

— в этом объекте несколько тысяч «умных пикселей» WS2801:

habr.com

Программируемая подсветка для колёс велосипеда 128 RBG LED

Готовь сани летом, а велосипед ранней весной, ибо зимой готовить его холодно =). Одно из ключевых условий в вечернее и ночное время суток для велосипедиста — это быть видимым для других низколетящих участников дорожного движения. Компании из Китая, всяко этому способствуют, выдавай «на-гора» различные фонари, стопы, рюкзаки и прочие товары для освещения и обозначения велосипеда на дороге. Производитель позиционирует этот девайс не только как дополнительный источник света, но и как штуку для создания «Вау эффекта».

18.* — Товар предоставлен магазином…

✔ ХАРАКТЕРИСТИКИ

Кол-во LED: 128
Шаблонов в памяти: 18
Самостоятельное программирование новых картинок: Да
Переключатель: ручной кнопочный переключатель + интеллектуальная индукция
Лампы: RGB 5050 LED lamp
Срок службы светодиодов: 100000 часов
Батарея: 18650 Перезаряжаемая батарея (в комплекте)
Время работы от батареи: до 15 часов
Уровень водонепроницаемости: IPX6
Длина продукта: 530 x 90 x 50mm
Вес: 432g
Гарантия: 1 год
Package included:
1 x DIY Programmable Cartoon Style IPX6 Colorful 128-LED Bike Cycling Wheel Light,1 x 18650 Battery, 1 x Battery Charger, 1 x USB Cable, 1 x Bag of Cable Tie, 1 x User Manual

✔ УПАКОВКА И КОМПЛЕКТАЦИЯ

Штука не хрупкая, но магазин дополнительно упаковал коробочку в толстый картон.

Хотя боковины немного пострадали. На упаковке ничего не сказано ни про модель, ни про производителя — оригинальный «ноунейм».

Внутри картонной коробки в отдельных нишах пеночтототам находятся все детали «светоколеса».

Общая комплектация, простите, фокус уплыл.

Упаковщик видно пил чай, или поставил на инструкцию чашку =). Инструкцию рекомендую один раз просмотреть, чтобы понять, как крепить, переключать и записывать рисунки.

За диск с ПО и различными картинками спасибо, но актуальней ссылка на файловое хранилище.

Для зарядки Li-Ion аккумуляторной батареи из комплекта прилагается универсальное зарядное, с европейской вилкой. Выдаёт 3.7 В и 450 мА.

Для подключения девайса к USB порту ПК и закачивания изображений, в комплекте находится вот такой кабель.

Кроме этого различные стяжки для крепления и магнит.

Бокс с аккумуляторной батареей, в месте крепления на втулку наклеен двухсторонний скотч.

Кнопка включения или выключения девайса.

Внутри находится аккумуляторная батарея 18650 ёмкостью 2200mAh.

Резиновые уплотнительные кольца на резьбе присутствуют.

Сам девайс представляет из себя полоску со светодиодами, с небольшим отростком для подключения питания или программирования исходящий из пластиковой части посередине.

Уплотнительное резиновое кольцо для обеспечения влагозащиты.

Светодиоды размещены на подложке, напоминающей текстолит, сверху вся поверхность залита прозрачным лаком.

Кнопки управления, переключение режимов и сброс.

Общая мощность составляет 0,6 Ватт.

На одном конце светодиодной полосы, в белом квадрате, находится датчик магнитного поля (датчик Холла). В комплекте с магнитом из комплекта, необходим для корректировки позиционирования изображения.

Длина полосы 52 сантиметра, ширина 2 сантиметра. Вес — 432 грамм. Подойдёт на колесо 26″ и выше.

Первое включение — хаотично загораются блоки светодиодов различного цвета.

✔ УСТАНОВКА НА ВЕЛОСИПЕД

Я решил закрепить на переднем колесе — ибо монтаж проще.

Можно использовать толстые белые стяжки из комплекта, но уж шибко они толстые. Я крепил простыми чёрными из комплекта.

С помощью двух стяжек и двухстороннего скотча, прикрепляем блок с аккумулятором к втулке.

Магнитик, также, крепится стяжками к вилке. Рекомендую перед установкой ослабить винт, что бы потом можно было отрегулировать зазор между LED полосой и магнитом — он должен быть в районе 1-1,5 см.


✔ ПО

Устанавливаем программное обеспечение и драйвера с CD диска. На моей Win10 x64 никаких проблем с подключением или запуском ПО не возникло.
Программа в управлении очень проста и без русификации интуитивно понятна.
Подключаем LED ленту к ПК и убеждаемся, что значок 1 стал зелёным, и пропала надпись No devices found.
2 — Открываем jpg изображение.
3 — Увеличиваем/уменьшаем зум.
4 — Смотрим, как это изображение будет «на колесе» и при необходимости с помощью линий различной толщины (5) и цвета (6) дорисовываем или правим рисунок.
7- Оригинальное загруженное изображение.
8 — Очищаем память в LED ленте — при необходимости.
9 — Загружаем изображение в память LED ленты. В памяти может находиться до 18 различных изображений.

В момент загрузки, LED лента светится зелёным

✔ В РАБОТЕ

Даже не в полной темноте рисунок видно, правда не так ярко и чётко Нормально рисунок начинает отображаться на скорости более 12-15 км/ч.

Если скорости недостаточно, то отображается только фрагмент.

К сожалению, в видео обзоре камера не смогла уловить рисунок, глазами, как и фотоаппаратом нормально видно. Загрузил в LED ленту, несколько тестовых изображений с CD диска. Изображения могут переключаться автоматически, каждые 5 секунд, или можно выбрать какой изображение отображать при езде.

Если движения нет, то через 15-20 секунд LED полоска выключается, при движении — включается автоматически.

Вот так это смотрится в темноте.




✔ ВИДЕООБЗОР

✔ ИТОГО

К устройствам первой необходимости отнести этот девайс я не могу, но если хочется разнообразия, вау-эффекта, то к покупке стоит рассматривать. К плюсам могу отнести простоту в монтаже и очень простое ПО. К минусам отнесу крепление на стяжках, аля колхоз-тюнинг, лучше бы придумали нормальное крепление к спицам.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

mysku.ru

Гайд по адресной светодиодной ленте

Итак, данный гайд посвящен адресной светодиодной ленте, я решил сделать его познавательным и подробным, поэтому дойдя до пункта “типичные ошибки и неисправности” вы сможете диагностировать и успешно излечить косорукость сборки даже не читая вышеупомянутого пункта. Что такое адресная лента? Рассмотрим эволюцию светодиодных лент.

Обычная светодиодная лента представляет собой ленту с напаянными светодиодами и резисторами, на питание имеет два провода: плюс и минус. Напряжение бывает разное: 5 и 12 вольт постоянки и 220 переменки. Да, в розетку. Для 5 и 12 вольтовых лент нужно использовать блоки питания. Светит такая лента одним цветом, которой зависит от светодиодов.

RGB светодиодная лента. На этой ленте стоят ргб (читай эргэбэ – Рэд Грин Блю) светодиоды. Такой светодиод имеет уже 4 выхода, один общий +12 (анод), и три минуса (катода) на каждый цвет, т.е. внутри одного светодиода находится три светодиода разных цветов. Соответственно такие же выходы имеет и лента: 12, G, R, B. Подавая питание на общий 12 и любой из цветов, мы включаем этот цвет. Подадим на все три – получим белый, зелёный и красный дадут жёлтый, и так далее. Для таких лент существуют контроллеры с пультами, типичный контроллер представляет собой три полевых транзистора на каждый цвет и микроконтроллер, который управляет транзисторами, таким образом давая возможность включить любой цвет. И, как вы уже поняли, да, управлять такой лентой с ардуино очень просто. Берем три полевика, и ШИМим их analogWrit’ом, изи бризи.

Адресная светодиодная лента, вершина эволюции лент. Представляет собой ленту из адресных диодов, один такой светодиод состоит из RGB светодиода и контроллера. Да, внутри светодиода уже находится контроллер с тремя транзисторными выходами! Внутри каждого! Ну дают китайцы блэт! Благодаря такой начинке у нас есть возможность управлять цветом (то бишь яркостью r g b) любого светодиода в ленте и создавать потрясающие эффекты. Адресная лента может иметь 3-4 контакта для подключения, два из них всегда питание (5V и GND например), и остальные (один или два) – логические, для управления.

Лента “умная” и управляется по специальному цифровому протоколу. Это означает, что если просто воткнуть в ленту питание не произойдет ровным счётом ничего, то есть проверить ленту без управляющего контроллера нельзя. Если вы потрогаете цифровой вход ленты, то скорее всего несколько светодиодов загорятся случайными цветами, потому что вы вносите случайные помехи, которые воспринимаются контроллерами диодов как команды. Для управления лентой используются готовые контроллеры, но гораздо интереснее рулить лентой вручную, используя, например, платформу ардуино, для чего ленту нужно правильно подключить. И вот тут есть несколько критических моментов:

alexgyver.ru

Цифровое управление светодиодными источниками света

Сегодня мы подробно поговорим об особой группе светодиодных источников света, которые способны украсить любой праздник, сделать ярче самую крутую вечеринку или же привлечь внимание именно к вашей продукции, витрине или вывеске. Речь пойдет о трех типах источников света с цифровым управлением:

Все они устроены на базе RGB светодиодов, каждый из которых состоит из кристаллов красного (Red), зелёного (Green) и синего (Blue) свечения. Особенностью же этого класса светодиодного оборудования является наличие микросхем управления, которые монтируются на саму ленту или внутрь светодиодных модулей. Эти микросхемы делают возможным управление каждым отдельным светодиодом или группой из нескольких светодиодов. Один управляемый элемент называется «пиксель», а само освещение «пиксельным».

В зависимости от необходимого напряжения питания, варьируется и количество светодиодов в пикселе. Так в 5-вольтовых лентах и модулях управление происходит каждым светодиодом в отдельности, т.е. один пиксель состоит из одного светодиода. В таком случае микросхема может быть расположена в корпус самого светодиода. Если напряжение питания источников освещения составляет 12 В, то обычно один пиксель содержит 3 RGB светодиода, а для 24 В – 6 светодиодов. Встречаются также ленты с питанием 12 В и управлением каждым светодиодом отдельно.

Общее управление выполняется контроллером, созданным специально для цифрового управления пиксельным освещением. Их можно подразделить на три группы:

  1. Контроллеры, световые эффекты которых были запрограммированы при их изготовлении. Число и набор программ в них постоянны и не изменяемы. Пользователь может лишь выбирать интересующую программу и настраивать скорость эффекта. Но, несмотря на это, подобные контроллеры всё равно могут продемонстрировать всю красоту динамической светодиодной подсветки, ведь некоторые из них, в зависимости от модели, могут содержать в своей памяти до 300 различных программ.

  2. Контроллеры, программы которых были созданы пользователем на своем компьютере с помощью специальных программ и впоследствии записаны на SD-карту, которая устанавливается в контроллер.

  3. Контроллеры, работающие онлайн. Управление ими происходит в режиме реального времени с персонального компьютера. Программы также составляются при помощи специализированного ПО, а подключение происходит через USB порт или при помощи сетевой карты компьютера через локальную сеть.

Важно обеспечить соответствие цвета в программе, воспроизводимому цвету, поэтому при настройке большинства контроллеров есть возможность указать необходимую последовательность каналов на светодиодной ленте, например, RGB, RBG, BGR и др. Для правильного воспроизведения эффектов также задается количество и расположение пикселей.

Микросхема, вмонтированная в светодиодную ленту или флеш-модуль, представляет собой особый микроконтроллер, принимающий цифровой сигнал, сформированный управляющим контроллером, и преобразующий его в визуальное изменение свечения, яркости или цвета светодиода. Такие микроконтроллеры часто называют «чип» или «драйвер». Последнее понятие мы и будем использовать дальше в статье.

Не все контроллеры и драйверы совместимы между собой, но большинство контроллеров могут работать с несколькими моделями драйверов. О том, с какими типами драйверов совместим тот или иной контроллер, указывается в подробных технических характеристиках или в его программном обеспечении, если оно используется. Вид драйвера также указывается в параметрах светодиодных лента, флеш-модулей и «гибкого неона». Всё это нужно, чтобы правильно выбрать и настроить совместную работу контроллера и управляемых устройств. С течением времени списки совместимости контроллеров и драйверов расширяются, т.к. технический прогресс не стоит на месте.

Сами драйверы по принципу работы также подразделяются на два кардинально разных типа:

  1. SPI-драйверы – в их работе применяется цифровой интерфейс SPI, от английского «Serial Peripheral Interface» — последовательный периферийный интерфейс. Эта группа более обширная, такие драйверы используются чаще.

  2. DMX-драйверы – соответственно используют цифровой протокол управления DMX, от английского Digital Multiplex – цифровое мультиплексирование.

Каждый из типов драйверов имеет свои достоинства, о них мы и поговорим более подробно далее.

Цифровой интерфейс SPI

Основная особенность применения этого протокола заключается в последовательной передачи информации от пикселя к пикселю по всей длине подключенной цепочки. При этом нет необходимости присваивать адрес каждому пикселю, поскольку его адрес определяется расположением пикселя в цепи. Контроллер формирует определённую цифровую последовательность управления и отправляет её на первый пиксель. Его драйвер, принимает первые данные, а остальную цифровую последовательность передаёт далее, на следующий пиксель. Второй драйвер действует по тому же принципу: первую часть полученной информации «забирает» себе, а остальное передаёт далее.

Передача информации, в зависимости от типа драйвера, может осуществляться по двум сигнальным проводам (DATA и CLK) или с использованием только одного сигнала (DATA). Первый вариант требует более сложного монтажа, но обеспечивает более устойчивую работу на высоких скоростях обмена, что гарантирует меньшую задержку распространения информации и, соответственно, более высокую частоту обновления информации, что важно, например, при создании мультимедийных экранов. В нашей таблице указаны основные параметры SPI-драйверов, используемых Arlight (список микросхем пополняется с появлением новых устройств).

Тип драйвера ТМ1804 ТМ1812 WS2801 WS2811 WS2812 LPD6803 UCS1903 TLS3001
Использование в оборудовании Arlight Ленты/ модули Ленты Модули Ленты/ модули Ленты/ модули Модули Модули Модули
Напряжение питания лент и модулей Arlight 12/24В 12В 5/12В 5/12/24В 5/12/24В 5/12В
Количество RGB светодиодов в пикселе для лент Arlight 1 или 3 шт. 1, 2 или 3 шт 3 шт. 1 шт.
Сигналы управления DATA DATA DATA, CLK DATA DATA DATA, CLK DATA DATA
Исполнение микросхемы В отдельном корпусе В отдельном корпусе В отдельном корпусе В отдельном корпусе Встроена в светодиод В отдельном корпусе В отдельном корпусе В отдельном корпусе
Количество обслуживаемых драйвером пикселей 1 (3 канала) 4 (12 каналов) 1 (3 канала) 1 (3 канала) 1 (3 канала) 1 (3 канала) 1 (3 канала) 1 (3 канала)
Количество цветов 16 млн 16 млн 16 млн 16 млн 16 млн 32768 16 млн 4096

С помощью приведённых структурных схем Вы сможете самостоятельно подключить SPI-ленты к пиксельному контроллеру.

Рис. 1. Структурная схема подключения SPI-ленты к пиксельному контроллеру с передачей сигнала по двум сигнальным проводам (DATA и CLK)


Рис. 2. Структурная схема подключения SPI-ленты к пиксельному контроллеру с передачей сигнала по одному сигнальному проводу (DATA)

Цифровой протокол DMX

В отличие от протокола SPI, особенностью цифрового протокола DMX является параллельная подключение всех драйверов к шине управления. Это отлично видно на структурной схеме. (Рис. 3)


Преимущество этой системы состоит в том, что, если из строя выйдет один драйвер, это не нарушит работу всей последующей цепочки. С другой стороны, необходимо учитывать, что для правильной работы системы, каждый драйвер должен иметь свой индивидуальный и вполне определенный адрес, чтобы информация от контроллера попала по назначению. В случае, если в такой системе драйверы поменять местами, световой эффект будет нарушен.

Рис. 3. Структурная схема подключения DMX светодиодной ленты к пиксельному контроллеру (сигнал ADR используется только при записи адресов DMX каналов)

Компания Arlight в своём оборудовании используют современные DMX драйверы типа WS2821. Обратим ваше внимание на то, что они применяют протокол DMX, но не используют полноценный симметричный интерфейс, используемый в стандартных устройствах DMX. Для передачи информации используется сигнал DATA+ и не используется DATA-.

Первоначально DMX адреса светодиодных лент, «гибкого неона» и флеш-модулей прописываются при их производстве. Каждая катушка ленты или «гибкого неона» или цепочка модулей номеруется по порядку, начиная с первого. Подключая последовательно более одной катушки ленты или группы модулей необходимо производить запись адресов самостоятельно, при помощи редактора адресов. Сначала соединяются все отрезки ленты или модули, а затем прописываются адреса. Запись происходит с автоматическим распределением адресов, последовательно, начиная от ближайшего к контроллеру пикселя. Таким образом, гарантируется уникальность адресов и правильное отображение эффектов.

Для того, чтобы производить перезапись DMX адресов необходимы специальные редакторы, например RA-DMX-ID-WS2821. Некоторые модели пиксельных контроллеров имеют встроенные редакторы адресов, например, DMX K-1000D или DMX K-8000D. В процессе записи адресов используется провод с маркировкой ADR (ADI, ADIN), который впоследствии, для воспроизведения программ уже не применяется. Если в выбранном контроллере нет встроенного редактора или выхода для подключения провода ADI, то он должен быть соединён с общим проводом GND, что предотвратит влияние на него внешних помех и наводок.

В итоге хотелось бы вкратце осветить положительные стороны обоих протоколов SPI и DMX.

Преимущества оборудования использующего интерфейс SPI:

  1. Не нужно записывать адреса, а значит, и покупать редактор адресов.

  2. Можно спокойно менять местами пиксели (отрезки ленты или модули), это не повлечёт за собой изменения в рисунке эффекта.

  3. При необходимости возможно соединение более 1024 пикселей. Для этого нужен контроллер, поддерживающий такое количество пикселей, и максимально аккуратный и продуманный монтаж цепей управления.

Преимущества использования протокола DMX:

  1. Возможность совместной работы с оборудованием, использующим стандартный протокол управления DMX512, таким как различные DMX пульты или, например, с устройствами системы MADRIX.

  2. В случае выхода из строя одного из пикселей, работа последующих пикселей цепи продолжается, как и раньше, картинка не нарушается.

При совместной работе со стандартным оборудованием DMX512, на одну DMX шину может быть подключено до 170 пикселей (по 3 адреса на каждый пиксель, суммарно 510 адресов). При использовании специализированных пиксельные DMХ контроллеров для светодиодных лент и флеш-модулей на один порт контроллера обычно может быть подключено до 1024 пикселей.

На нижеприведённой иллюстрации изображена схема подключения нескольких светодиодных лент «Бегущий огонь».

В конце нашей статьи обозначим основные рекомендации, которые помогут максимально правильно спроектировать и установить управляемые светодиодные системы. Эти рекомендации подходят ко всем пиксельным светодиодным лентам, управляемому «гибкому неону» и флеш-модулям, независимо от протокола, которым они управляются.

  1. Важно соблюдать направление передачи данных. Оно обозначено стрелками на самой ленте или флеш-модулях и указывает направление от контроллера. Кроме того, на оборудование зачастую нанесена и специальная маркировка: контакты «DI» или «DIN» (вход) подсоединяются к выходу контроллера, «DO» или «DOUT» (выход) – к следующим пикселям.

  2. Запрещено подключать светодиодную ленту к источнику питания с выходным напряжением выше, чем её номинальное напряжение питания. Подобные действия лишь испортят ленту.

  3. К такому же результату приведёт и подача напряжения питания на вход данных или несоблюдение полярности при подключении блока питания.

  4. Запрещено последовательно подавать питание от ленты к ленте. Катушки светодиодной ленты, и «гибкого неона» всегда имеют максимально допустимую длину. При последовательном подключении нескольких катушек, провода DATA и GND присоединяются от выхода одной светодиодной ленты ко входу другой, но питание подаётся отдельно на каждую из них. Возможен и вариант, когда один мощный источник питания используется сразу для нескольких лент. В таком случае, от блока питания ведётся отдельный кабель к каждой светодиодной ленте. Такой способ может стать причиной падения напряжения на проводах, что приводит к искажению цвета свечения и неполадкам в управлении пикселями. Сечения проводов для управляемых светодиодных лент рассчитываются также, как и для обычных, основываясь на мощности ленты и длине провода. Наш калькулятор поможет Вам всё легко рассчитать. Но наиболее рациональным методом подключения может стать использование отдельных блоков питания невысокой мощности для каждой светодиодной ленты, размещённых непосредственно рядом. Это позволит избежать проблем, связанных с падением напряжения на проводах питания.

  5. Подключая светодиодные ленты высокой плотности с напряжением питания 5 В, питайте их с обоих концов. Иначе из-за падения напряжения на дорожках ленты и высоких значений потребляемого тока, её цвет в начале и конце может значительно отличаться. Кроме того, из-за нехватки напряжения на конце ленты, могут возникнуть проблемы с её управлением. Подобные недостатки особенно ярко заметны при включении постоянного белого цвета на всех светодиодах, т.к. тогда потребляемый лентой ток максимален. Определённые модели контроллеров могут частично решить эту проблему, автоматически снижая яркость свечения белого цвета при питании в 5 В.

  6. Нет необходимости питать контроллеры и светодиодные ленты с помощью блоков питания с одинаковым напряжением, ведь напряжение на управляющих линиях DATA и CLK не зависит от модели контроллера и его напряжения питания. Оно может принимать только 2 значения – 0 и 5 В (уровни TTL). Таким образом, возможно одновременное использование пятивольтовой светодиодной ленты и двенадцативольтового контроллера. Важно, чтобы блок питания и подключаемое к нему оборудование соответствовали друг другу. В случае, если напряжение питания контроллера и светодиодной ленты совпадает, можно использовать один общий блок питания.

  7. Передача сигналов управления от контроллера к управляемым источникам освещения должна осуществляться с помощью экранированного кабеля или кабеля для компьютерных сетей UTP (витая пара). Он должен быть не длиннее 10 м. Если нужно управлять системой с большего расстояния (до 200 м), можно использовать конверторы сигнала TTL в RS485 со стороны контроллера RS485 в TTL со стороны ленты. Для передачи и приема сигнала по кабелю можно использовать конвертер Th3010-485.

  8. Если система содержит более 1024 пикселей, нужно применять контроллеры с несколькими выходными портами, распределяя равномерно пиксели между портами.

Применяя на практике это руководство, Вы можете дать волю фантазии и создавать огромное множество эффектов от простых световых дорожек «Бегущий огонь» до огромных мультимедийных экранов с разнообразными изображениями.

arlight.ru

RGB-светодиоды: адресуемая светодиодная лента — Arduino+

В данной статье мы расскажем о цветных светодиодах, отличии простого RGB-светодиода от адресуемого, дополним информацией о сферах применения, о том, как они работают, каким образом осуществляется управление со схематическими картинками подключения светодиодов.

1. Вводная информация о светодиодах

Светодиоды – электронный компонент, способный излучать свет. Сегодня они массово применяются в различной электронной технике: в фонариках, компьютерах, бытовой технике, машинах, телефонах и т.д. Многие проекты с микроконтроллерами так или иначе используют светодиоды.

Основных назначений у них два:

• демонстрация работы оборудования или оповещение о каком-либо событии;
• применение в декоративных целях (подсветка и визуализация).

Внутри светодиод состоит из красного (red), зеленого (green) и синего (blue) кристаллов, собранных в одном корпусе. Отсюда такое название – RGB (рис.1).

2. С помощью микроконтроллеров

С помощью него можно получить множество различных оттенков света. Управление RGB-светодиодом осуществляется с помощью микроконтроллера (MK), например, Arduino (рис.2).

Конечно, можно обойтись простым блоком питания на 5 вольт, резисторами в 100-200 Ом для ограничения тока и тремя переключателями, но тогда управлять свечением и цветом придется вручную. В таком случае добиться желаемого оттенка света не получится (рис.3-4).

Скетч Arduino для управления трехцветным светодиодом написать несложно, можно найти множество примеров в интернете с полным описанием подключения. Мы уже делали такую программу для Wemos — посмотрите здесь, и для Arduino — здесь.

Проблема появляется тогда, когда нужно подсоединить к микроконтроллеру сотню цветных светодиодов. Количество выводов у контроллера ограничено, а каждому светодиоду нужно питание по четырем выводам, три из которых отвечают за цветность, а четвертый контакт является общим: в зависимости от типа светодиода он может быть анодом или катодом.

3. Контроллер для управление RGB

Для разгрузки выводов МК применяются специальные контроллеры WS2801 (5 вольт) или WS2812B (12 вольт) (рис.5).

С применением отдельного контроллера нет необходимости занимать несколько выходов MK, можно ограничиться лишь одним сигнальным выводом. МК подает сигнал на вход «Data» управляющего контроллера светодиода WS2801.

В таком сигнале содержится 24-битная информация о яркости цвета (3 канала по 8 бит на каждый цвет), а также информация для внутреннего сдвигового регистра. Именно сдвиговый регистр позволяет определять, к какому светодиоду информация адресовывается. Таким образом можно соединять несколько светодиодов последовательно, при этом использовать все так же один вывод микроконтроллера (рис.6).

4. Адресуемый светодиод

Это RGB-светодиод, только с интегрированным контроллером WS2801 непосредственно на кристалле. Корпус светодиода выполнен в виде SMD компонента для поверхностного монтажа. Такой подход позволяет расположить светодиоды максимально близко друг другу, делая свечение более детализированным (рис.7).

В интернет-магазинах можно встретить адресные светодиодные ленты, когда в одном метре умещается до 144 штук (рис.8).

Стоит учесть, что один светодиод потребляет при полной яркости всего 60-70 мА, при подключении ленты, например, на 90 светодиодов, потребуется мощный блок питания с током не менее 5 ампер. Ни в коем случае не питайте светодиодную ленту через контроллер, иначе он перегреется и сгорит от нагрузки. Используйте внешние источники питания (рис.9).

5. Недостаток адресуемых светодиодов

Адресуемая светодиодная лента не может работать при слишком низких температурах: при -15 контроллер начинает подглючивать, на более сильном морозе велик риск его выхода из строя.

Второй недостаток в том, что если выйдет из строя один светодиод, следом по цепочке откажутся работать и все остальные: внутренний сдвиговый регистр не сможет передать информацию дальше.

6. Применение адресуемых светодиодных лент

Адресуемые светодиодные ленты можно применять для декоративной подсветки машины, аквариума, фоторамок и картин, в дизайне помещений, в качестве новогодних украшений и т.д.

Получается интересное решение, если светодиодную ленту использовать в качестве фоновой подсветки Ambilight для монитора компьютера (рис.10-11).

Если вы будете использовать микроконтроллеры на базе Arduino, вам понадобится библиотека FastLed для упрощения работы со светодиодной лентой (скачать здесь).

arduinoplus.ru

Программируемый мигающий светодиод на микроконтроллере Attiny13

Эта крошечная схема представляет собой программируемый мигающий светодиод, который работает под управлением микроконтроллера Attiny13. Оно является, наверное, самым простым устройством, которое можно построить на микроконтроллере.

Программирование производится при помощи попеременного затемнения фоторезистора R3. Устройство обнаруживает изменения в освещенности R3, записывает их в память микроконтроллера и затем воспроизводит их.

Описание работы мигающего светодиода

Фоторезистор применен в качестве входного датчика для обнаружения изменения освещения. Он подключен  к АЦП (аналого-цифровой преобразователь) порту микроконтроллера Attiny13.

 

Устройство имеет два режима работы: программирование последовательности мигания и  воспроизведение записанной последовательности.

Если контроллер обнаруживает короткие световые изменения (темно, светло, темно или наоборот), он переключается в режим программирования. Он записывает световую комбинацию мигания продолжительностью до 10 секунд, с частотой выборки  40 Гц.  Затем он переключается в режим воспроизведения и воспроизводит записанную последовательность мигания светодиода.

Чтобы сделать схему как можно проще, в устройстве применен внутренний генератор.  Внутренний генератор контроллера позволяет работать на частоте 1,2МГц, которая является более чем достаточной.

Если в схеме использовать  другой светодиод или иное напряжение питания, то следует изменить сопротивление резистора R2. Его сопротивление можно рассчитать по следующей формуле:

R2 = (Uпит. – Uled) / 0,002А

При использовании двух слаботочных светодиодов вместо одного, формула расчета будет выглядеть следующим образом:

R2 = (Uпит. – 2*Uled) / 0,002А

Для того чтобы добиться наилучшего отклика фоторезистора при программировании мигания светодиода, необходимо подобрать сопротивление резистора R4 в зависимости от сопротивления применяемого фоторезистора. Как запрограммировать микроконтроллер можно почитать здесь.

Скачать прошивку (1,1 Mb, скачано: 1 922)

Источник: www.instructables.com

www.joyta.ru

Светодиоды c пиксельной адресацией WS2812B

Когда то давным давно, еще до эпохи РК86 и ZX-Spectrum, делом чести каждого начинающего радиолюбителя был собрать цветомузыку.

На транзисторах, тиристорах и даже тиратронах МТХ90, с лапочками, крашеными цапонлаком и самопальными рассеивателями.

С тех пор интерес к созданию различных светодинамических установок остался, а возможности в эру светодиодов выросли многократно. Хочу рассказать о светодиодах с пиксельной адресацией и что из них можно сотворить.

Речь пойдет о продукции китайской компании WORLDSEMI CO.,LIMITED — светодиодах с пиксельной адресацией с использованием микросхем WS2811.

Описание WS2811

Микросхема WS2811 представляют собой 3-х канальный контроллер/ШИМ драйвер с управлением по одному проводу.
Выпускаются WS2811 в корпусах DIP-8 и SOP-8
WS2811 подключаются последовательно друг за другом.
К каждой микросхеме подключается три светодиода с питанием от 5В

или три цепочки с питанием от 12В

На вход первой в цепочке микросхемы подается сигнал из прямоугольных импульсов частотой 400 или 800КГц. Импульсы, в зависимости от скважности, кодируют 0 или 1 для одного бита информации. Длинный (50мс) низкий уровень означает RESET или старт новой последовательности. Первая микросхема считывает 24 бита, в которых закодирован RGB сигнал по трем каналам светодиодов. Остальные импульсы пропускает на выходную шину. Следующие 24 бита достаются второй микросхеме и т.д. Всего каскадом может объединяться 1024 микросхем, информация в которых может обновляться 30 раз в секунду.

Подробнее изучить протокол управления микросхемами WS2811 можно изучить в даташите

Микросхемы WS2811 размещали на светодиодных лентах рядом с трехцветными RGB светодиодами. Но прогресс не стоит на месте. И микросхемы стали размещать прямо в корпусе светодиодов 5050. Так появились светодиоды WS2812

WS2812 и WS2812B отличаются количеством ног. У WS2812B их количество сократили с 6-ти до 4-х

Для тех, кто не хочет самостоятельно паять, сделано множество готовых изделий с WS2811/WS12

Я купил светодиоды WS2812B россыпью для самостоятельной пайки на ТАОБАО.

Доставка со всеми процентами Мистера Тао вышла $7. Получилась итоговая цена $0.13 за один диод

Пришли светодиоды в специальной ленте, которую можно заряжать в устройство автоматического монтажа SMD компонентов

Почему то в описании на ТАО указана модель WS2813-4. На самом деле светодиоды полностью соответствуют описанию WS2812B

Продавец подошел серьезно к продаже и положил в подарок две таких ручки :))

Что можно сделать из таких деталек?

Обычные линейки, которые можно использовать в различных СДУ, иллюминации и прочих поделках со световыми эффектами.


Подробно об изготовлении таких линеек читайте в моей статье

Видео, показывающее работу линейки

Такие линейки, наравне с обычной светодиодной летной на WS2812 подойдут для изготовления системы фоновой динамической подсветки телевизора или монитора.

Следующей моей поделкой стал светодиодный дисплей.


Здесь можно почитать про его изготовление, скачать эскизы печатной платы и демо скетчи для ардуины.

Демонстрация работы дисплея на WS2812B

Пока работал, испортил несколько светодиодов. Нет, не перегревом. Когда паял, фиксировал диоды к плате тем что подвернулось под руку, а именно, маленьким зубастым «крокодильчиком». Так вот, осторожнее, светодиоды WS2812 очень легко повредить механически, так как кристаллы и проводочки там за тонкой прозрачной пленочкой.

К Новому году собираюсь сделать цифро-аналоговые часы, которые могут работать, как светодинамическая установка с подгружаемыми эффектами.

О ней я тоже напишу в своем блоге

Подведем итог

— Товар полностью соответствует своему описанию
— Цена минимальная для изделий такого рода
— Светодиоды предоставляют огромные возможности для творчества в домашних самоделках.
— Тем кому не хочется возится с платой, можно купить такие светодиоды на ленте

Полезная информация

Описание микросхемы WS2811 на английском языке
Даташит на WS2811 на английском языке
Даташит на WS2812/WS2812S в корпусе SMD5050 с 6-ю контактами
Даташит на WS2812B в корпусе SMD5050 с 4-ми контактами
Библиотека Adafruit Neo Pixel для работы с WS2811/12 для ардуино

Кот похоже скоро будет разбираться в контроллерах лучше меня 😉

P.S Для тех, кто не любит покупать на ТАОБАО
Ссылка на похожий лот на АЛИ

Там по поиску «WS2812» очень много всего находится

mysku.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о