Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

ДВА ПРОСТЫХ РЕГУЛЯТОРА НАПРЯЖЕНИЯ

Собранный однажды простейший регулятор напряжения на одном транзисторе был предназначен для определённого блока питания и конкретного потребителя, никуда больше его подключать было конечно не нужно, но как всегда наступает момент, когда правильно поступать мы перестаём. Следствием этого являются хлопоты и раздумья как жить-быть дальше и принятие решения восстанавливать сотворённое ранее или продолжать творить.

Схема номер 1

Имелся стабилизированный импульсный блок питания, дающий на выходе напряжение 17 вольт и ток 500 миллиампер. Требовалось периодическое изменение напряжения в пределе 11 – 13 вольт. И общеизвестная схема регулятора напряжения на одном транзисторе с этим прекрасно справлялась. От себя добавил к ней только светодиод индикации да ограничительный резистор. К слову, светодиод здесь это не только «светлячок» сигнализирующий о наличии выходного напряжения. При правильно подобранном номинале ограничительного  резистора, даже небольшое изменение выходного напряжения отражается на яркости свечения светодиода, что даёт дополнительную информацию о его повышении или понижении.

Напряжение на выходе можно было изменять от 1,3 до 16 вольт.

КТ829 – мощный низкочастотный кремниевый составной транзистор, был установлен на мощный металлический радиатор и казалось, что при необходимости он вполне может выдержать и большую нагрузку, но случилось короткое замыкание в схеме потребителя и он сгорел. Транзистор отличается высоким коэффициентом усиления и применяется в усилителях низкой частоты – видно действительно его место там а не в регуляторах напряжения.

Слева снятые электронные компоненты, справа приготовленные им на замену. Разница по количеству в два наименования, а по качеству схем, бывшей и той, что решено было собрать, она несопоставима. Напрашивается вопрос – «Стоит ли собирать схему с ограниченными возможностями, когда существует более продвинутый вариант «за те же деньги», в прямом и переносном смысле этого изречения?»

Схема номер 2

В новой схеме также присутствует трёхвыводной эл. компонент (но это уже не транзистор) постоянный и переменный резисторы, светодиод со своим ограничителем. Добавлено только два электролитических конденсатора. Обычно на типовых схемах указаны минимальные значения C1 и C2 (С1=0,1 мкФ и С2=1 мкФ) которые необходимы для устойчивой работы стабилизатора. На практике значения емкостей составляют от десятков до сотен микрофарад. Ёмкости должны располагаться как можно ближе к микросхеме. При больших емкостях обязательно условие C1>>C2. Если ёмкость конденсатора на выходе будет превышать ёмкость конденсатора на входе, то возникает ситуация при которой выходное напряжение превышает входное, что приводит к порче микросхемы стабилизатора. Для её исключения устанавливают защитный диод VD1.

У этой схемы уже совсем другие возможности. Входное напряжение от 5 до 40  вольт, выходное 1,2 – 37 вольт. Да, имеется падение напряжения вход – выход равное примерно 3,5 вольтам, однако роз без шипов не бывает. Зато микросхема КР142ЕН12А именуемая линейным регулируемым стабилизатором напряжения имеет неплохую защиту по превышению тока нагрузки и кратковременную защиту от короткого замыкания на выходе. Её рабочая температура до + 70 градусов по Цельсию, работает с внешним делителем напряжения. Выходной ток нагрузки до 1 А при длительной работе и 1,5 А при непродолжительной. Максимально допустимая мощность при работе без теплоотвода 1 Вт, если микросхему установить на радиатор достаточного размера (100 см.кв.) то Р макс. = 10 Вт.

Что получилось

Сам процесс обновлённого монтажа занял времени ни сколько не больше чем предыдущий. При этом получен не простой регулятор напряжения, который подключается к блоку питания стабилизированного напряжения, собранная схема при подключении даже к сетевому понижающему трансформатору с выпрямителем на выходе сама даёт необходимое стабилизированное напряжение. Естественно, что выходное напряжение трансформатора должно соответствовать допустимым параметрам входного напряжения микросхемы КР142ЕН12А. Вместо неё можно использовать и импортный аналог интегральный стабилизатор LM317Т. Автор Babay iz Barnaula.

   Форум по ИП

   Форум по обсуждению материала ДВА ПРОСТЫХ РЕГУЛЯТОРА НАПРЯЖЕНИЯ

простые самодельные схемы для повторения

В электрических схемах для изменения уровня выходного сигнала используется регулятор напряжения.

Основное его назначение — изменять подаваемую на нагрузку мощность. C помощью устройства управляют оборотами электродвигателей, уровнем освещённости, громкостью звука, нагревом приборов. В радиомагазинах можно приобрести готовое изделие, но несложно изготовить регулятор напряжения своими руками.

Описание устройства

Регулятором напряжения называется электронный прибор, служащий для повышения или понижения уровня выходного сигнала, в зависимости от величины разности потенциалов на его входе. То есть это устройство, с помощью которого можно управлять значением мощности, подводимой к нагрузке. При этом регулировать подаваемый уровень энергии можно как на реактивной, так и активной нагрузке.

Самым простым устройством, с помощью которого можно изменять уровень сигнала, считается реостат. Он представляет собой резистор, имеющий два вывода, один из которых подвижный. При перемещении ползункового вывода реостата изменяется сопротивление. Для этого он подключается параллельно нагрузке.

Фактически это делитель напряжения, позволяющий регулировать величину разности потенциалов на нагрузке в пределах от нуля до значения, выдаваемого источником энергии.

Использование реостата ограничено мощностью, которую можно через него пропустить. Так как при больших значениях тока или напряжения он начинает сильно нагреваться и в итоге перегорает, поэтому на практике применение реостата ограничено. Его используют в параметрических стабилизаторах, элементах электрического фильтра, усилителях звука и регуляторах освещённости небольшой мощности.

Разновидности приборов

По виду выходного сигнала регуляторы разделяют на стабилизированные и нестабилизированные. Также они могут быть аналоговыми и цифровыми (интегральными). Первые строятся на основе тиристоров или операционных усилителей. Их управление осуществляется путём изменения параметров RC цепочки обратной связи.

Совместно с ними для повышения мощности применяются биполярные или полевые транзисторы. Работа же интегральных устройств связана с использованием широтно-импульсной модуляции (ШИМ), поэтому в цифровой схемотехнике используются микроконтроллеры и силовые транзисторы, работающие в ключевом режиме.

При изготовлении самодельного регулятора напряжения могут быть использованы следующие элементы:

  • резисторы;
  • тиристоры или транзисторы;
  • цифровые или аналоговые интегральные микросхемы.

Первые два типа имеют несложные схемы и довольно просты к самостоятельной сборке. Их можно изготавливать без использования печатной платы с помощью навесного монтажа, в то время как импульсные регуляторы на основе микроконтроллеров требуют более обширных знаний в радиоэлектронике и программировании.

Характеристика регулятора

По своему виду приспособления могут изготавливаться в портативном или стационарном исполнении. Устанавливаются они в любом положении: вертикальном, потолочном, горизонтальном.

Устройства могут крепиться с использованием дин-рейки или встраиваться в различные блоки и приборы. Конструктивно регуляторы возможно изготовить как корпусными, так и без помещения в корпус.

К основным характеристикам устройств относят следующие параметры:

  1. Плавность регулировки. Обозначает минимальный шаг, с которым происходит изменение величины разности потенциалов на выходе. Чем он плавнее, тем точнее можно выставить значение напряжения на выходе.
  2. Рабочая мощность. Характеризуется значением силы тока, которое может пропускать через себя прибор продолжительное время без повреждения своих электронных связей.
  3. Максимальная мощность. Пиковая величина, которую кратковременно выдерживает устройство с сохранением своей работоспособности.
  4. Диапазон входного напряжения. Это значения входного сигнала, с которым устройство может работать.
  5. Диапазон изменяемого сигнала на выходе устройства. Обозначает значения разности потенциалов, которое может обеспечить устройство на выходе.
  6. Тип регулируемого сигнала. На вход устройства может подаваться как переменное, так и постоянное напряжение.
  7. Условия эксплуатации. Обозначает условия, при которых характеристики регулятора не изменяются.
  8. Способ управления. Выставление выходного уровня сигнала может осуществляться пользователем вручную или без его вмешательства.

Особенности изготовления

Изготовить регулирующее приспособление можно несколькими способами. Самый лёгкий -приобрести набор, содержащий уже готовую печатную плату и радиоэлементы, необходимые для сборки своими руками. Кроме них, набор содержит электрическую и принципиальную схему с описанием последовательности действий. Такие наборы называются KIT и предназначены для самых неопытных радиолюбителей.

Другой путь подразумевает самостоятельное приобретение радиокомпонентов и изготовление в случае необходимости печатной платы. Используя второй способ, можно будет сэкономить, но он занимает больше времени.

Существует множество схем разного уровня сложности для самостоятельного изготовления. Но чтобы сделать регулятор напряжения, кроме схемы, понадобится подготовить следующие инструменты, приборы и материалы:

  • паяльник;
  • мультиметр;
  • припой;
  • пинцет;
  • кусачки;
  • флюс;
  • технический спирт;
  • соединительные медные провода.

Если планируется собирать устройство, состоящее из 6 и более элементов, то целесообразно будет смастерить печатную плату. Для этого необходимо иметь фольгированный текстолит, хлорное железо и лазерный принтер.

Техника изготовления печатной платы в домашних условиях называется лазерно-утюжной (ЛУТ). Её суть заключается в распечатывании печатной платы на глянцевом листе бумаги, и переносом изображения на текстолит с помощью проглаживания утюгом. Затем плату погружают в раствор хлорного железа. В нём открытые участки меди растворяются, а закрытые с переведённым изображением формируют необходимые соединения.

При самостоятельном изготовлении прибора важно соблюдать осторожность и помнить про электробезопасность, особенно при работе с сетью переменного тока 220 В. Обычно правильно собранный регулятор из исправных радиодеталей не нуждается в настройке и сразу начинает работать.

Простые схемы

Для управления величиной выходного напряжения для слабо мощных устройств можно собрать простой регулятор напряжения на 2 деталях. Понадобится лишь транзистор и переменный резистор. Работа схемы проста: с помощью переменного резистора происходит индуцирование (отпирание транзистора).

Если управляющий вывод резистора находится в нижнем положении, то напряжение на выходе схемы равно нулю. А если вывод перемещается в верхнее положение, то транзистор максимально становится открытым, а уровень выходного сигнала будет равен напряжению источника питания за вычетом падения разности потенциалов на транзисторе.

При изменении сопротивления регулируется величина напряжения на выходе. В зависимости от типа транзистора изменяется и схема включения. Чем номинал переменного резистора будет меньше, тем регулировка будет плавней. Недостатком схемы является чрезмерный нагрев транзистора, поэтому чем больше будет разница между Uвх и Uвых, тем он будет сильнее нагреваться.

Такую схему удобно применять для регулировки вращения компьютерных вентиляторов или других слабых двигателей, а также светодиодов.

Симисторный вид

Для регулировки переменного напряжения используются симисторные регуляторы, с помощью которых можно управлять мощностью паяльника или лампочки. Собрав схему на недорогом и доступном симисторе BT136, можно изменять мощность нагрузки в пределах 100 ватт.

Для сборки схемы понадобится:

НаименованиеНоминалАналог
Резистор R1470 кОм
Резистор R210 кОм
Конденсатор С10,1 мкФ х. 400 В
Диод D11N40071SR35–1000A
Светодиод D2BL-B2134GBL-B4541Q
Динистор DN1DB3HT-32
Симистор DN2BT136КУ 208

Принцип работы регулятора заключается в следующем: через цепочку, состоящую из динистора DN1, конденсатора C1 и диода D1, ток поступает на симистор DN2, что приводит к его открытию. Момент открытия зависит от ёмкости C1, которая заряжается через резисторы R1 и R2. Соответственно, изменением сопротивления R1 управляется скорость заряда C1.

Несмотря на простоту, такая схема отлично справляется с регулировкой вольтажа нагревательных устройств, использующих вольфрамовую нить. Но так как такая схема не имеет обратной связи, использовать её для управления оборотами коллекторного электродвигателя нельзя.

Реле напряжения

Для автолюбителей важным элементом является устройство, поддерживающее напряжение бортовой сети в установленных пределах при изменении различных факторов, например, оборотов генератора, включении или выключении фар. Использующиеся для этого приборы работают по одинаковому принципу – стабилизация напряжения путём изменения тока возбуждения. Иными словами, если уровень сигнала на входе изменяется, то устройство уменьшает или увеличивает ток возбуждения.

Собранная схема своими руками реле-регулятора напряжения должна:

  • работать в широком диапазоне температур;
  • выдерживать скачки напряжения;
  • иметь возможность отключения во время запуска мотора;
  • обладать малым падением разности потенциалов.

Упрощённо принцип работы можно описать в следующем виде: при величине напряжения, превышающей установленное значение, ротор отключается, а при её нормализации запускается вновь. Основным элементом схемы является ШИМ стабилизатор LM 2576 ADJ.

Микросхема TC4420EPA предназначена для моментального переключения транзистора. С помощью резистора R3, конденсатора C1 и стабилитронов VD1, VD2 осуществляется защита микросхемы и полевого транзистора. Резисторы R1 и R2 задают опорное напряжение для стабилизатора. DD1 управляет работой полевого транзистора и ротора. Диод D2 используется для ограничения управляющего напряжения. Индуктивность L1 обеспечивает плавность разрядки ротора через диоды D4 и D5 при размыкании цепи.

Управляемый блок питания

Конструируя различные схемы, радиолюбители часто собирают источники напряжений. Спаяв регулятор постоянного напряжения своими руками, его можно будет использовать как управляемый блок питания в диапазоне от 0 до 12В.

Собираемый источник напряжения состоит из 2 частей: блока питания и параметрического регулятора напряжения. Первая часть изготавливается по классической схеме: понижающий трансформатор — выпрямительный блок. Типом используемого трансформатора, выпрямительных диодов и транзистора определяется мощность устройства. Переменное напряжение сети понижается в трансформаторе до 11 вольт, после чего попадает на диодный мост VD1, где становится постоянным. Конденсатор C1 используется как сглаживающий фильтр. Сигнал поступает на параметрический стабилизатор, состоящий из резистора R1 и стабилитрона VD2.

Параллельно стабилитрону подключён резистор R2, которым и изменяется уровень выходного напряжения. Транзисторы включены по упрощённой схеме эмиттерного повторителя, и при появлении на их переходах напряжения начинают работать в режиме усиления тока. То есть сигнал, снятый с R2, поступает на выход прибора через транзисторы, которые снижают его значение на величину своего насыщения. Таким образом, чем больше подаётся на них напряжение, тем сильнее они открываются и больше мощности поступает на выход.

Этот регулируемый блок питания может работать с нагрузкой до трёх ампер, то есть обеспечивать мощность до 30 ватт. Если есть опыт, то схема паяется навесным монтажом с использованием проводов любого сечения.

4 схемы на Регулятор напряжения своими руками 0-220в

8 основных схем регуляторов своими руками. Топ-6 марок регуляторов из Китая. 2 схемы. 4 Самых задаваемых вопроса про регуляторы напряжения.+ ТЕСТ для самоконтроля

Регулятор напряжения – это специализированный электротехнический прибор, предназначенный для плавного изменения или настройки напряжения, питающего электрическое устройство.

Регулятор напряжения

Важно помнить! Приборы этого типа предназначены для изменения и настройки питающего напряжения, а не тока. Ток регулируется полезной нагрузкой!

ТЕСТ:

4 вопроса по теме регуляторов напряжения

  1. Для чего нужен регулятор:

а) Изменение напряжения на выходе из прибора.

б) Разрывание цепи электрического тока

  1. От чего зависит мощность регулятора:

а) От входного источника тока и от исполнительного органа

б) От размеров потребителя

  1. Основные детали прибора, собираемые своими руками:

а) Стабилитрон и диод

б) Симистор и тиристор

  1. Для чего нужны регуляторы 0-5 вольт:

а) Питать стабилизированным напряжением микросхемы

б) Ограничивать токопотребление электрических ламп

Ответы.

а,а,б,а.

2 Самые распространенные схемы РН 0-220 вольт своими руками

Схема №1.

Самый простой и удобный в эксплуатации регулятор напряжения — это регулятор на тиристорах, включенных встречно. Это создаст выходной сигнал синусоидального вида требуемой величины.

СНиП 3.05.06-85

Входное напряжение величиной до 220в, через предохранитель поступает на нагрузку, а по второму проводнику, через кнопку включения синусоидальная полуволна попадает на катод и анод тиристоров VS1 и VS2. А через переменный резистор R2 производится регулировка выходного сигнала. Два диода VD1 и VD2, оставляют после себя только положительную полуволну, поступающую на управляющий электрод одного из тиристоров, что приводит к его открытию.

Важно! Чем выше токовый сигнал на ключе тиристора, тем сильнее он откроется, то есть тем больший ток сможет пропустить через себя.

Для контроля входного питания предусмотрена индикаторная лампочка, а для настройки выходного – вольтметр.

Схема №2.

Отличительная особенность этой схемы — замена двух тиристоров одним симистором. Это упрощает схему, делает ее компактней и проще в изготовлении.

СНиП 3.05.06-85

В схеме, также присутствует предохранитель и кнопка включения, и регулировочный резистор R3, а управляет он базой симистора, это один из немногих полупроводниковых приборов с возможностью работать с переменным током. Ток, проходя через резистор R3, приобретает определенное значение, оно и будет управлять степенью открытия симистора. После этого оно выпрямляется на диодном мосту VD1 и через ограничивающий резистор попадает на ключевой электрод симистора VS2. Остальные элементы схемы, такие как конденсаторы С1,С2,С3 и С4 служат для гашения пульсаций входного сигнала и его фильтрации от посторонних шумов и частот нерегламентированной частоты.

Как избежать 3 частых ошибок при работе с симистором.

  1. Буква, после кодового обозначения симистора говорит о его предельном рабочем напряжении: А – 100В, Б – 200В, В – 300В, Г – 400В. Поэтому не стоит брать прибор с буквой А и Б для регулировки 0-220 вольт — такой симистор выйдет из строя.
  2. Симистор как и любой другой полупроводниковый прибор сильно нагревается при работе, следует рассмотреть вариант установки радиатора или активной системы охлаждения.
  3. При использовании симистора в цепях нагрузок с большим потреблением тока, необходимо четко подбирать прибор под заявленную цель. Например, люстра, в которой установлено 5 лампочек по 100 ватт каждая будет потреблять суммарно ток величиной 2 ампера. Выбирая по каталогу необходимо смотреть на максимальный рабочий ток прибора. Так симистор МАС97А6 рассчитан всего на 0,4 ампера и не выдержит такой нагрузки, а МАС228А8 способен пропустить до 8 А и подойдет для этой нагрузки.

3 Основных момента при изготовлении мощного РН и тока своими руками

Прибор управляет нагрузкой до 3000 ватт. Построен он на использовании мощного симистора, а затвором или ключом его управляет динистор.

Динистор – это тоже, что и симистор, только без управляющего вывода. Если симистор открывается и начинает пропускать через себя ток, когда на его базе возникает управляющее напряжение и остается открытым пока оно не пропадет, то динистор откроется, если между его анодом и катодом появится разность потенциалов выше барьера открытия. Он будет оставаться незапертым, пока между электродами не упадет ток ниже уровня запирания.

СНиП 3.05.06-85

Как только на управляющий электрод попадет положительный потенциал, он откроется и пропустит переменный ток, и чем сильнее будет этот сигнал, тем выше будет напряжение между его выводами, а значит и на нагрузке. Что бы регулировать степень открытия используется цепь развязки, состоящая из динистора VS1 и резисторов R3 и R4. Эта цепь устанавливает предельный ток на ключе симистора, а конденсаторы сглаживают пульсации на входном сигнале.

2 основных принципа при изготовлении РН 0-5 вольт

  1. Для преобразования входного высокого потенциала в низкий постоянный используют специальные микросхемы серии LM.
  2. Питание микросхем производится только постоянным током.

Рассмотрим эти принципы подробнее и разберем типовую схему регулятора.

Микросхемы серии LM предназначены для понижения высокого постоянного напряжения до низких значений. Для этого в корпусе прибора имеется 3 вывода:

  • Первый вывод – входной сигнал.
  • Второй вывод – выходной сигнал.
  • Третий вывод – управляющий электрод.

Принцип работы прибора очень прост – входное высокое напряжение положительной величины, поступает на входной выход и затем преобразуется внутри микросхемы. Степень трансформации будет зависеть от силы и величины сигнала на управляющей «ножке». В соответствии с задающим импульсом на выходе будет создаваться положительное напряжение от 0 вольт до предельного для данной серии.

СНиП 3.05.06-85

Входное напряжение, величиной не выше 28 вольт и обязательно выпрямленное подается на схему. Взять его можно с вторичной обмотки силового трансформатора или с регулятора, работающего с высоким напряжением. После этого положительный потенциал поступает на вывод микросхемы 3. Конденсатор С1 сглаживает пульсацию входного сигнала. Переменный резистор R1 величиной 5000 ом задает выходной сигнал. Чем выше ток, который он пропускает через себя, тем выше больше открывается микросхема. Выходное напряжение 0-5 вольт снимается с выхода 2 и через сглаживающий конденсатор С2 попадает на нагрузку. Чем выше емкость конденсатор, тем ровнее оно на выходе.

Регулятор напряжения 0 — 220в

Топ 4 стабилизирующие микросхемы 0-5 вольт:

  1. КР1157 – отечественная микросхема, с пределом по входному сигналу  до 25 вольт и током нагрузки не выше 0.1 ампер.
  2. 142ЕН5А – микросхема с максимальным выходным током 3 ампера, на вход подается не выше 15 вольт.
  3. TS7805CZ – прибор с допустимыми токами до 1.5 ампер и повышенным входным напряжением до 40 вольт.
  4. L4960 – импульсная микросхема с максимальным током нагрузки до 2.5 А. Входной вольтаж не должен превышать 40 вольт.

РН на 2 транзисторах

Данный вид применяется в схемах особо мощных регуляторов. В этом случае ток на нагрузку также передается через симистор, но управление ключевым выводом происходит через каскад транзисторов. Это реализуется так: переменным резистором регулируется ток, который поступает на базу первого маломощного транзистора, а тот через коллектор-эмиторный переход управляет базой второго мощного транзистора и уже он открывает и закрывает симистор. Это реализует принцип очень плавного управления огромными токами на нагрузке.

СНиП 3.05.06-85

Ответы на 4 самых частых вопроса по регуляторам:

  1. Какое допустимое отклонение выходного напряжения? Для заводских приборов крупных фирм, отклонение не будет превышать +-5%
  2. От чего зависит мощность регулятора? Выходная мощность напрямую зависит от источника питания и от симистора, который коммутирует цепь.
  3. Для чего нужны регуляторы 0-5 вольт? Эти приборы чаще всего используют для питания микросхем и различных монтажных плат.
  4. Зачем нужен бытовой регулятор 0-220 вольт? Они применяются для плавного включения и выключения бытовых электроприборов.

4 Схемы РН своими руками и схема подключения

Коротко рассмотрим каждую из схем, особенности, преимущества.

Схема 1.

Очень простая схема для подключения и плавной регулировки паяльника. Используется, чтобы предотвратить разгорание и перегрев жала паяльника. В схеме используется мощный симистор, которым управляет цепочка тиристор-переменный резистор.

СНиП 3.05.06-85

Схема 2.

Схема основанная на использовании микросхемы фазового регулирования типа 1182ПМ1. Она управляет степенью открытия симистора, который управляет нагрузкой. Применяются для плавного регулирования степени светимости лампочек накаливания.

СНиП 3.05.06-85

Схема 3.

Простейшая схема регулирования накалом жала паяльника. Выполнена по очень компактной схеме с использованием легкодоступных компонентов. Управляет нагрузкой один тиристор, степень включения которого регулирует переменный резистор. Также присутствует диод, для защиты от обратного напряжения.

СНиП 3.05.06-85

Схема 4.

Схема, предназначенная для управления уровнем освещения в комнате. Может регулировать степень накала лампочки. Выполнена на основе одного тиристора, который управляется диммером. Поворотом ручки резистора, изменяется воздействие на ключевой вывод тиристора, что изменяет его пропускную способность по электрическому току.

СНиП 3.05.06-85

В наше время товары из Китая стали довольно популярной темой, от общей тенденции не отстают и китайские регуляторы напряжения. Рассмотрим самые популярные китайские модели и сравним их основные характеристики.

НазваниеМощностьНапряжение стабилизацииЦенаВесСтоимость одного ватта
Module ME4000 Вт0-220 В6. 68$167 г0.167$
SCR Регулятор10 000 Вт0-220 В12.42$254 г0.124$
SCR Регулятор II5 000 Вт0-220 В9.76$187 г0.195$
WayGat 44 000 Вт0-220 В4.68$122 г0.097$
Cnikesin6 000 Вт0-220 В11.07$155 г0.185$
Great Wall2 000 Вт0-220 В1.59$87 г0.080$

Существует возможность выбрать любой регулятор именно под свои требования и необходимости. В среднем один ватт полезной мощности стоит менее 20 центов, и это очень выгодная цена. Но все же, стоит обращать внимание на качество деталей и сборки, для товаров из Китая она по-прежнему остается очень низким.

Подборка тематических выдержек из статей

Простейший регулятор напряжения 220в – Морской флот

Всем привет! В прошлой статье я расказывал, как сделать регулятор напряжения для постоянного тока. Сегодня мы сделаем регулятор напряжения для переменного тока 220в. Конструкция довольно-таки проста для повторения даже начинающими. Но при этом регулятор может брать на себя нагрузку даже в 1 киловатт! Для изготовления данного регулятора нам понадобится несколько компонентов:

1. Резистор 4.7кОм млт-0.5 (пойдет даже 0.25 ватт).
2. Перменный резистор 500кОм-1мОм, с 500ком будет регулировать довольно плавно, но только в диапазоне 220в-120в. С 1 мОм – будет регулировать более жестко, тоесть будет регулировать промежутком в 5-10вольт, но зато диапазон возрастет, возможно регулировать от 220 до 60 вольт! Резистор желательно ставить со встроеным выключателем (хотя можно обойтись и без него, просто поставив перемычку).
3. Динистор DB3. Взять такой можно из ЛСД экономичных ламп. (Можно заменить на отечественный Kh202).
4. Диод FR104 или 1N4007, такие диоды встречаются практически в любой импортной радиотехнике.
5. Экономичные по току светодиоды.
6. Симистор BT136-600B или BT138-600.
7. Винтовые клемники. (обйтись можно и без них, просто припаяв провода к плате).
8. Небольшой радиатор (до 0,5кВт он не нужен).
9. Пленочный конденсатор на 400вольт, от 0.1 микрофарадп, до 0.47 микрофарад.

Схема регулятора переменного напряжения:

Приступим к сборке устройства. Для начало вытравим и пролудим плату. Печатная плата – её рисунок в LAY, находится в архиве. Более компактный вариант, представленный товарищем sergei – тут.

Далее припаяем симистор, и переменный резистор.

Затем паяем конденастор. На фото конднесатор со стороны лужения, т.к у моего экземпляра конденсатора были слишком коротки ножки.

Паяем динистор. У динистора полярности нет, так-что вставляем его как вам угодно. Припаиваем диод, резистор, светодиод, перемычку и винтовой клемник. Выглядит оно примерно так:

И в конце концов последний этап – это ставим на симистор радиатор.

А вот фото готового устройства уже в корпусе.

Регулятор какой-нибуть дополнительно настройки не требует. Видео работы данного устройства:

Хочу заметить, что ставить его можно не только в сеть 220В на обычные приборы и электроинструменты, но и на любой другой источник переменного тока с напряжением от 20 до 500В (ограничивается предельными параметрами радиоэлементов схемы). С вами был [PC]Boil-:D

Обсудить статью РЕГУЛЯТОР ПЕРЕМЕННОГО НАПРЯЖЕНИЯ

В последнее время в нашем быту все чаще применяются электронные устройства для плавной регулировки сетевого напряжения. С помощью таких приборов управляют яркостью свечения ламп, температурой электронагревательных приборов, частотой вращения электродвигателей.

Подавляющее большинство регуляторов напряжения, собранных на тиристорах, обладают существенными недостатками, ограничивающими их возможности. Во-первых, они вносят достаточно заметные помехи в электрическую сеть, что нередко отрицательно сказывается на работе телевизоров, радиоприемников, магнитофонов. Во-вторых, их можно применять только для управления нагрузкой с активным сопротивлением — электролампой или нагревательным элементом, и нельзя использовать совместно с нагрузкой индуктивного характера — электродвигателем, трансформатором.

Между тем все эти проблемы легко решить, собрав электронное устройство, в котором роль регулирующего элемента выполнял бы не тиристор, а мощный транзистор.

Принципиальная схема

Транзисторный регулятор напряжения (рис. 9.6) содержит минимум радиоэлементов, не вносит помех в электрическую сеть и работает на нагрузку как с активным, так и индуктивным сопротивлением. Его можно использовать для регулировки яркости свечения люстры или настольной лампы, температуры нагрева паяльника или электроплитки, скорости вращения электродвигателя вентилятора или дрели, напряжения на обмотке трансформатора. Устройство имеет следующие параметры: диапазон регулировки напряжения — от 0 до 218 В; максимальная мощность нагрузки при использовании в регулирующей цепи одного транзистора — не более 100 Вт.

Регулирующий элемент прибора — транзистор VT1. Диодный мост VD1. VD4 выпрямляет сетевое напряжение так, что к коллектору VT1 всегда приложено положительное напряжение. Трансформатор Т1 понижает напряжение 220 В до 5. 8 В, которое выпрямляется диодным блоком VD6 и сглаживается конденсатором С1.

Рис. Принципиальная схема мощного регулятора сетевого напряжения 220В.

Переменный резистор R1 служит для регулировки величины управляющего напряжения, а резистор R2 ограничивает ток базы транзистора. Диод VD5 защищает VT1 от попадания на его базу напряжения отрицательной полярности. Устройство подсоединяется к сети вилкой ХР1. Розетка XS1 служит для подключения нагрузки.

Регулятор действует следующим образом. После включения питания тумблером S1 сетевое напряжение поступает одновременно на диоды VD1, VD2 и первичную обмотку трансформатора Т1.

При этом выпрямитель, состоящий из диодного моста VD6, конденсатора С1 и переменного резистора R1, формирует управляющее напряжение, которое поступает на базу транзистора и открывает его. Если в момент включения регулятора в сети оказалось напряжение отрицательной полярности, ток нагрузки протекает по цепи VD2 — эмиттер-коллектор VT1, VD3. Если полярность сетевого напряжения положительная, ток протекает по цепи VD1 — коллектор-эмиттер VT1, VD4.

Значение тока нагрузки зависит от величины управляющего напряжения на базе VT1. Вращая движок R1 и изменяя значение управляющего напряжения, управляют величиной тока коллектора VT1. Этот ток, а следовательно, и ток, протекающий в нагрузке, будет тем больше, чем выше уровень управляющего напряжения, и наоборот.

При крайнем правом по схеме положении движка переменного резистора транзистор окажется полностью открыт и «доза» электроэнергии, потребляемая нагрузкой, будет соответствовать номинальной величине. Если движок R1 переместить в крайнее левое положение, VT1 окажется запертым и ток через нагрузку не потечет.

Управляя транзистором, мы фактически регулируем амплитуду переменного напряжения и тока, действующих в нагрузке. Транзистор при этом работает в непрерывном режиме, благодаря чему такой регулятор лишен недостатков, свойственных тирис-торным устройствам.

Конструкция и детали

Теперь перейдем к конструкции прибора. Диодные мостики, конденсатор, резистор R2 и диод VD6 устанавливаются на монтажной плате размером 55×35 мм, выполненной из фольгированного ге-тинакса или текстолита толщиной 1. 2 мм (рис. 9.7).

В устройстве можно использовать следующие детали. Транзистор — КТ812А(Б), КТ824А(Б), КТ828А(Б), КТ834А(Б,В), КТ840А(Б), КТ847А или КТ856А. Диодные мосты: VD1. VD4 – КЦ410В или КЦ412В, VD6 — КЦ405 или КЦ407 с любым буквенным индексом; диод VD5 — серии Д7, Д226 или Д237.

Переменный резистор — типа СП, СПО, ППБ мощностью не менее 2 Вт, постоянный — ВС, MJIT, ОМЛТ, С2-23. Оксидный конденсатор – К50-6, К50-16. Сетевой трансформатор — ТВЗ-1-6 от ламповых телевизоров, ТС-25, ТС-27 — от телевизора «Юность» или любой другой маломощный с напряжением вторичной обмотки 5. 8 В.

Предохранитель рассчитан на максимальный ток 1 А. Тумблер — ТЗ-С или любой другой сетевой. ХР1 — стандартная сетевая вилка, XS1 — розетка.

Все элементы регулятора размещаются в пластмассовом корпусе с габаритами 150x100x80 мм. На верхней панели корпуса устанавливаются тумблер и переменный резистор, снабженный декоративной ручкой. Розетка для подключения нагрузки и гнездо предохранителя крепятся на одной из боковых стенок корпуса.

С той же стороны сделано отверстие для сетевого шнура. На дне корпуса установлены транзистор, трансформатор и монтажная плата. Транзистор необходимо снабдить радиатором с площадью рассеяния не менее 200 см2 и толщиной 3. 5 мм.

Рис. Печаная плата мощного регулятора сетевого напряжения 220В.

Регулятор не нуждается в налаживании. При правильном монтаже и исправных деталях он начинает работать сразу после включения в сеть.

Рекомендации

Теперь несколько рекомендаций тем, кто захочет усовершенствовать устройство. Изменения в основном касаются увеличения выходной мощности регулятора. Так, например, при использовании транзистора КТ856 мощность, потребляемая нагрузкой от сети, может составлять 150 Вт, для КТ834 — 200 Вт, а для КТ847 — 250 Вт.

Если необходимо еще больше увеличить выходную мощность прибора, в качестве регулирующего элемента можно применить несколько параллельно включенных транзисторов, соединив их соответствующие выводы.

Вероятно, в этом случае регулятор придется снабдить небольшим вентилятором для более интенсивного воздушного охлаждения полупроводниковых приборов. Кроме того, диодный мост VD1. VD4 потребуется заменить на четыре более мощных диода, рассчитанных на рабочее напряжение не менее 600 В и величину тока в соответствии с потребляемой нагрузкой.

Для этой цели подойдут приборы серий Д231. Д234, Д242, Д243, Д245 ..Д248. Необходимо будет также заменить VD5 на более мощный диод, рассчитанный на ток до I А. Также больший ток должен выдерживать предохранитель.

Регуляторы мощности получили широкое применение в повседневной жизни. Их использование очень разнообразное: от регулирования величины яркости освещения до управления оборотами различных двигателей, с их помощью можно выставлять требуемую температуру различных нагревательных приборов. Таким образом, регулировать мощность можно для нагрузки любого вида как реактивной, так и активной.

Регулятор мощности представляет собой определённую электронную схему, с помощью которой можно контролировать значение энергии, подводимой к нагрузке.

Виды и характеристики регуляторов

Устройства, предназначенные для управления значениями мощности, разделяют по способу регулировки:

  • тиристорные;
  • симисторные;
  • фазовые (диммер).

По виду выходного сигнала:

  • стабилизированные;
  • не стабилизированные.

Регулировка осуществляется при питании как от постоянного, так и переменного напряжения. Управлять можно величиной напряжения или тока.

По своему виду расположения регуляторы могут быть портативными и стационарными, устанавливаться в любом положении: вертикальном, потолочном, горизонтальном, крепиться на специальную дин рейку или встраиваться. Конструктивно выполняются как на специализированных печатных платах, так и с помощью навесного монтажа.

Основными характеристиками, на которые следует обращать внимание, являются следующие параметры:

  • плавность регулировки;
  • рабочая и пиковая подводимая мощность;
  • диапазон входного рабочего напряжения;
  • диапазон задания напряжения, поступающего на нагрузку;
  • условия эксплуатации.

Тиристорный регулятор мощности

Схема и принцип работы такого устройства не отличается особой сложностью. Основное назначение тиристорного преобразователя — управление устройствами с малой мощностью, но в редких случаях и большой. В основе работы лежит использование задержки включения тиристорного ключа на полупериоде переменного тока. Главным компонентом такой схемы является тиристор, работающий в режиме ключа. При появлении разности потенциалов на управляющем контакте он открывается. Чем больше задержка при включении, тем меньше мощности поступает в нагрузку.

Простейшая схема, кроме тиристора, содержит два биполярных транзистора, два резистора, задающих рабочую точку, и конденсатор. Транзисторы, работая в режиме ключа, формируют управляющий сигнал. Как только разность потенциалов на конденсаторе достигает значения, равному рабочему, то транзисторы открываются, и подаётся сигнал на управляющий контакт. Конденсатор начинает разряжаться до следующего полупериода.

Преимущества этого типа регулятора в том, что он не требует настройки, а недостаток в чрезмерном нагреве. Для борьбы с перегревом используется как активная, так и пассивная система охлаждения.

Применяется тиристорный регулятор для управления мощностью бытовых (паяльники, электронагреватели, лампы накаливания ) и производственных приборов (плавный запуск мощных силовых установок). Агрегат может быть однофазным и трёхфазным.

Изготовление устройства самостоятельно

Если есть необходимость использовать тиристорный регулятор мощности, можно своими руками сделать прибор неплохого качества. Для этого нужно в специализированной точке продаж приобрести набор, содержащий подробную схему с описанием принципа сборки и работы. Или можно использовать любую схему из интернета или литературы и спаять устройство самостоятельно.

В качестве тиристоров можно использовать любой тип, например, отечественный КУ202Н или импортный bt151, в зависимости от необходимой мощности. Кроме тиристора, значение последней будет также зависеть от параметров диодного моста, применяемого в схеме. Регулировка мощности осуществляется с помощью переменного резистора. Если нет возможности или желания изготовить печатную плату, можно собрать прибор с помощью навесного монтажа. При этом необходимо тщательно заизолировать все места соединений во избежание короткого замыкания.

Симисторный регулятор мощности

Симистор является полупроводниковым элементом, предназначенным для использования в цепях переменного тока. Отличительной чертой прибора является то, что его выводы не имеют разделения на анод и катод. В отличие от тиристора, проводящего ток только в одну сторону, симистор проводит ток в обоих направлениях. Именно из-за этой способности симистор и применяется в сетях переменного тока.

Мощность регулируется в этом случае путём изменения количества полупериодов напряжения, которые действуют на нагрузку. Главное отличие от тиристорных схем в том, что здесь не используется выпрямительное устройство. Работа схемы основана на принципе фазного управления, то есть на изменении момента открытия симистора относительно перехода сетевого напряжения через ноль.

Этот прибор используется для управления нагревательными элементами, лампами накаливания, оборотами двигателя. Сигнал на выходе устройства имеет пилообразную форму с управляемой длительностью импульса.

Самостоятельное изготовление прибора даже проще, чем изготовление тиристорного регулятора. Широкую популярность получили симисторы средней мощности типа BT137−600E или MAC97A6. Схема регулятора мощности на симисторе с использованием этих элементов отличается простотой изготовления.

Фазовый регулятор

Фазовое регулирование используется для плавного запуска двигателей различного типа или управления током при заряде аккумулятора. Один из видов таких приборов является диммер.

Основа работы лежит в изменении угла открытия ключевого тиристора, в результате чего на нагрузку поступают сигналы с отрезанной начальной частью полупериода, снижается действующая величина напряжения.

Достоинство такого типа регулирования — низкая стоимость ввиду применения недорогих радиодеталей. А вот основной недостаток — значимый коэффициент пульсаций и низкий коэффициент мощности выходного сигнала.

Нередко в конструкции такого вида регуляторов используются микросхемы низкочастотного типа. Благодаря этому регулятор способен быстро изменять мощность. Фазовые регуляторы редко стабилизируют с помощью стабилитронов, обычно роль стабилизатора выполняют попарно работающие тиристоры.

Регулятор мощности для паяльника своими руками

Рассмотрим пример изготовления регулятора тока своими руками. Например, будем регулировать мощность паяльника. Регулирование в таком устройстве позволяет не перегревать место пайки и способно защищать жало паяльника от выгорания.

Такого типа устройства выпускаются достаточно давно. Одним из видов его был отечественный прибор, носящий название «Добавочное устройство для электропаяльника типа П223». Он позволял использовать низковольтный паяльник напряжением 36 вольт, питаемый от сети 220 В.

Регулятор на симисторе КУ208Г

Схема прибора довольно интересная и простая в реализации. Отличительной её особенностью является использование неоновой лампочки.

Конденсатор, величиной порядка 0,1 мкФ, предназначен для генерации пилообразного импульса и защиты схемы управления от помех. Резисторы применяются для ограничения тока, а с помощью переменного резистора ток регулируется, его величина составляет около 220 кОм. Неоновая лампочка позволяет выполнять линейное управление и одновременно является индикатором. По интенсивности её яркости можно контролировать регулировку.

Недостатком такой схемы будет слабая информированность о мощности паяльника. Для наглядного отображения значений выставленного значения, при достаточном уровне радиоподготовки, можно применить микроконтроллер, например, pic16f628a. На нем также возможно будет выполнить электронную регулировку мощности, отказавшись от переменного резистора.

Регулировка на интегральном стабилизаторе

Ещё одним способом управления мощностью является применение интегральных стабилизаторов. Используя такое устройство, очень легко изготовить диммер для 12 вольтового регулятора напряжения. Такое устройство простое в сборке и обладает встроенной защитой, может использоваться как для подключения паяльника на 12 В, так и светодиодной ленты. Обычно переменный резистор подключается к входу управляющего электрода микросхемы. Недостаток — сильный нагрев стабилизирующей микросхемы.

Переменное напряжение сети 220 В понижается через трансформатор до 16−18 вольт. Далее через диодный мост и сглаживающий конденсатор выпрямленное значение поступает на вход линейного стабилизатора. С помощью переменного резистора посредством изменения рабочей характеристики микросхемы выставляется требуемое напряжение на выходе. Такое напряжение будет стабилизированным и для нашего случая составит 12 вольт.

При самостоятельном изготовлении приборов соблюдайте осторожность и помните про технику безопасности при работе с сетью переменного тока 220 В. Как правило, верно выполненный регулятор из исправных деталей не требует настройки и сразу начинает работать.

Простые схемы регуляторов напряжения и тока

Как сделать простой регулятор напряжения своими руками

В электрических схемах для изменения уровня выходного сигнала используется регулятор напряжения. Основное его назначение — изменять подаваемую на нагрузку мощность. C помощью устройства управляют оборотами электродвигателей, уровнем освещённости, громкостью звука, нагревом приборов. В радиомагазинах можно приобрести готовое изделие, но несложно изготовить регулятор напряжения своими руками.

Описание устройства

Регулятором напряжения называется электронный прибор, служащий для повышения или понижения уровня выходного сигнала, в зависимости от величины разности потенциалов на его входе. То есть это устройство, с помощью которого можно управлять значением мощности, подводимой к нагрузке. При этом регулировать подаваемый уровень энергии можно как на реактивной, так и активной нагрузке.

Самым простым устройством, с помощью которого можно изменять уровень сигнала, считается реостат. Он представляет собой резистор, имеющий два вывода, один из которых подвижный. При перемещении ползункового вывода реостата изменяется сопротивление. Для этого он подключается параллельно нагрузке. Фактически это делитель напряжения, позволяющий регулировать величину разности потенциалов на нагрузке в пределах от нуля до значения, выдаваемого источником энергии.

Использование реостата ограничено мощностью, которую можно через него пропустить. Так как при больших значениях тока или напряжения он начинает сильно нагреваться и в итоге перегорает, поэтому на практике применение реостата ограничено. Его используют в параметрических стабилизаторах, элементах электрического фильтра, усилителях звука и регуляторах освещённости небольшой мощности.

Разновидности приборов

По виду выходного сигнала регуляторы разделяют на стабилизированные и нестабилизированные. Также они могут быть аналоговыми и цифровыми (интегральными). Первые строятся на основе тиристоров или операционных усилителей. Их управление осуществляется путём изменения параметров RC цепочки обратной связи. Совместно с ними для повышения мощности применяются биполярные или полевые транзисторы. Работа же интегральных устройств связана с использованием широтно-импульсной модуляции (ШИМ), поэтому в цифровой схемотехнике используются микроконтроллеры и силовые транзисторы, работающие в ключевом режиме.

При изготовлении самодельного регулятора напряжения могут быть использованы следующие элементы:

  • резисторы;
  • тиристоры или транзисторы;
  • цифровые или аналоговые интегральные микросхемы.

Первые два типа имеют несложные схемы и довольно просты к самостоятельной сборке. Их можно изготавливать без использования печатной платы с помощью навесного монтажа, в то время как импульсные регуляторы на основе микроконтроллеров требуют более обширных знаний в радиоэлектронике и программировании.

Характеристика регулятора

По своему виду приспособления могут изготавливаться в портативном или стационарном исполнении. Устанавливаются они в любом положении: вертикальном, потолочном, горизонтальном.

Устройства могут крепиться с использованием дин-рейки или встраиваться в различные блоки и приборы. Конструктивно регуляторы возможно изготовить как корпусными, так и без помещения в корпус.

К основным характеристикам устройств относят следующие параметры:

  1. Плавность регулировки. Обозначает минимальный шаг, с которым происходит изменение величины разности потенциалов на выходе. Чем он плавнее, тем точнее можно выставить значение напряжения на выходе.
  2. Рабочая мощность. Характеризуется значением силы тока, которое может пропускать через себя прибор продолжительное время без повреждения своих электронных связей.
  3. Максимальная мощность. Пиковая величина, которую кратковременно выдерживает устройство с сохранением своей работоспособности.
  4. Диапазон входного напряжения. Это значения входного сигнала, с которым устройство может работать.
  5. Диапазон изменяемого сигнала на выходе устройства. Обозначает значения разности потенциалов, которое может обеспечить устройство на выходе.
  6. Тип регулируемого сигнала. На вход устройства может подаваться как переменное, так и постоянное напряжение.
  7. Условия эксплуатации. Обозначает условия, при которых характеристики регулятора не изменяются.
  8. Способ управления. Выставление выходного уровня сигнала может осуществляться пользователем вручную или без его вмешательства.

Особенности изготовления

Изготовить регулирующее приспособление можно несколькими способами. Самый лёгкий -приобрести набор, содержащий уже готовую печатную плату и радиоэлементы, необходимые для сборки своими руками. Кроме них, набор содержит электрическую и принципиальную схему с описанием последовательности действий. Такие наборы называются KIT и предназначены для самых неопытных радиолюбителей.

Другой путь подразумевает самостоятельное приобретение радиокомпонентов и изготовление в случае необходимости печатной платы. Используя второй способ, можно будет сэкономить, но он занимает больше времени.

Существует множество схем разного уровня сложности для самостоятельного изготовления. Но чтобы сделать регулятор напряжения, кроме схемы, понадобится подготовить следующие инструменты, приборы и материалы:

  • паяльник;
  • мультиметр;
  • припой;
  • пинцет;
  • кусачки;
  • флюс;
  • технический спирт;
  • соединительные медные провода.

Если планируется собирать устройство, состоящее из 6 и более элементов, то целесообразно будет смастерить печатную плату. Для этого необходимо иметь фольгированный текстолит, хлорное железо и лазерный принтер.

Техника изготовления печатной платы в домашних условиях называется лазерно-утюжной (ЛУТ). Её суть заключается в распечатывании печатной платы на глянцевом листе бумаги, и переносом изображения на текстолит с помощью проглаживания утюгом. Затем плату погружают в раствор хлорного железа. В нём открытые участки меди растворяются, а закрытые с переведённым изображением формируют необходимые соединения.

При самостоятельном изготовлении прибора важно соблюдать осторожность и помнить про электробезопасность, особенно при работе с сетью переменного тока 220 В. Обычно правильно собранный регулятор из исправных радиодеталей не нуждается в настройке и сразу начинает работать.

Простые схемы

Для управления величиной выходного напряжения для слабо мощных устройств можно собрать простой регулятор напряжения на 2 деталях. Понадобится лишь транзистор и переменный резистор. Работа схемы проста: с помощью переменного резистора происходит индуцирование (отпирание транзистора).

Если управляющий вывод резистора находится в нижнем положении, то напряжение на выходе схемы равно нулю. А если вывод перемещается в верхнее положение, то транзистор максимально становится открытым, а уровень выходного сигнала будет равен напряжению источника питания за вычетом падения разности потенциалов на транзисторе.

При изменении сопротивления регулируется величина напряжения на выходе. В зависимости от типа транзистора изменяется и схема включения. Чем номинал переменного резистора будет меньше, тем регулировка будет плавней. Недостатком схемы является чрезмерный нагрев транзистора, поэтому чем больше будет разница между Uвх и Uвых, тем он будет сильнее нагреваться.

Такую схему удобно применять для регулировки вращения компьютерных вентиляторов или других слабых двигателей, а также светодиодов.

Симисторный вид

Для регулировки переменного напряжения используются симисторные регуляторы, с помощью которых можно управлять мощностью паяльника или лампочки. Собрав схему на недорогом и доступном симисторе BT136, можно изменять мощность нагрузки в пределах 100 ватт.

Для сборки схемы понадобится:

НаименованиеНоминалАналог
Резистор R1470 кОм
Резистор R210 кОм
Конденсатор С10,1 мкФ х. 400 В
Диод D11N40071SR35–1000A
Светодиод D2BL-B2134GBL-B4541Q
Динистор DN1DB3HT-32
Симистор DN2BT136КУ 208
Принцип работы регулятора заключается в следующем: через цепочку, состоящую из динистора DN1, конденсатора C1 и диода D1, ток поступает на симистор DN2, что приводит к его открытию. Момент открытия зависит от ёмкости C1, которая заряжается через резисторы R1 и R2. Соответственно, изменением сопротивления R1 управляется скорость заряда C1.

Несмотря на простоту, такая схема отлично справляется с регулировкой вольтажа нагревательных устройств, использующих вольфрамовую нить. Но так как такая схема не имеет обратной связи, использовать её для управления оборотами коллекторного электродвигателя нельзя.

Реле напряжения

Для автолюбителей важным элементом является устройство, поддерживающее напряжение бортовой сети в установленных пределах при изменении различных факторов, например, оборотов генератора, включении или выключении фар. Использующиеся для этого приборы работают по одинаковому принципу – стабилизация напряжения путём изменения тока возбуждения. Иными словами, если уровень сигнала на входе изменяется, то устройство уменьшает или увеличивает ток возбуждения.

Собранная схема своими руками реле-регулятора напряжения должна:

  • работать в широком диапазоне температур;
  • выдерживать скачки напряжения;
  • иметь возможность отключения во время запуска мотора;
  • обладать малым падением разности потенциалов.

Упрощённо принцип работы можно описать в следующем виде: при величине напряжения, превышающей установленное значение, ротор отключается, а при её нормализации запускается вновь. Основным элементом схемы является ШИМ стабилизатор LM 2576 ADJ.

Микросхема TC4420EPA предназначена для моментального переключения транзистора. С помощью резистора R3, конденсатора C1 и стабилитронов VD1, VD2 осуществляется защита микросхемы и полевого транзистора. Резисторы R1 и R2 задают опорное напряжение для стабилизатора. DD1 управляет работой полевого транзистора и ротора. Диод D2 используется для ограничения управляющего напряжения. Индуктивность L1 обеспечивает плавность разрядки ротора через диоды D4 и D5 при размыкании цепи.

Управляемый блок питания

Конструируя различные схемы, радиолюбители часто собирают источники напряжений. Спаяв регулятор постоянного напряжения своими руками, его можно будет использовать как управляемый блок питания в диапазоне от 0 до 12В.

Собираемый источник напряжения состоит из 2 частей: блока питания и параметрического регулятора напряжения. Первая часть изготавливается по классической схеме: понижающий трансформатор — выпрямительный блок. Типом используемого трансформатора, выпрямительных диодов и транзистора определяется мощность устройства. Переменное напряжение сети понижается в трансформаторе до 11 вольт, после чего попадает на диодный мост VD1, где становится постоянным. Конденсатор C1 используется как сглаживающий фильтр. Сигнал поступает на параметрический стабилизатор, состоящий из резистора R1 и стабилитрона VD2.

Параллельно стабилитрону подключён резистор R2, которым и изменяется уровень выходного напряжения. Транзисторы включены по упрощённой схеме эмиттерного повторителя, и при появлении на их переходах напряжения начинают работать в режиме усиления тока. То есть сигнал, снятый с R2, поступает на выход прибора через транзисторы, которые снижают его значение на величину своего насыщения. Таким образом, чем больше подаётся на них напряжение, тем сильнее они открываются и больше мощности поступает на выход.

Этот регулируемый блок питания может работать с нагрузкой до трёх ампер, то есть обеспечивать мощность до 30 ватт. Если есть опыт, то схема паяется навесным монтажом с использованием проводов любого сечения.

Блок питания с регулировкой напряжения и тока

Друзья, сегодня хочу рассказать вам о своей новой самоделке, это блок питания с регулировкой напряжения и тока о котором мечтают все без исключения начинающие и опытные радиолюбители. Устройство можно использовать, как в качестве лабораторного блока для питания различных самоделок, так и в качестве зарядного устройства для зарядки автомобильных аккумуляторов. Блок питания имеет стабилизированный регулятор напряжения и систему ограничения силы тока, защиту от переполюсовки клейм аккумулятора со световой индикацией, а также автоматический регулятор скорости вентилятора, изменяющий обороты в зависимости от нагрева радиатора. На этом рисунке изображена схема блока питания с регулировкой напряжения и тока рассчитанная на ток до 10А. К этой схеме можно подключать любой трансформатор или импульсный источник питания от 12 до 30В. Для тех кто любит по мощнее, в этой статье вы также найдете схему рассчитанную на ток до 25А. Не буду торопить события. Внимательно читайте статью до конца.

Схема блока питания с регулировкой напряжения и тока 1.2…30В 10А

Регулируемый стабилизатор напряжения LM317 позволяет плавно регулировать напряжение в диапазоне от 1.2 до 30В. Регулировка напряжения выполняется переменным резистором Р1. Транзистор Т1 MJE13009 выполняет роль ключа пропускающего через себя большой ток.

Система ограничения силы тока выполнена на полевом транзисторе Т2 IRFP260, позволяет ограничивать ток от 0 до 10А, управление током осуществляется переменным резистором Р2, что позволяет использовать данный блок питания в качестве зарядного устройства для зарядки автомобильных аккумуляторов. Мощный резистор R6 с сопротивлением 0.1 Ом 20 Вт выполняет роль шунта. Купить его не проблема в Китае на Али Экспресс. Если не хочется долго ждать можно соединить несколько резисторов параллельно тогда получится один мощный резистор. Обратите внимание на то, что при параллельном соединении резисторов применяется специальная формула.

Общее сопротивление резисторов делится на количество резисторов. Как определить общее сопротивление, одинаковых резисторов? Надо просто взять сопротивление одного резистора и разделить на количество резисторов. Например, у меня есть 4 резистора, сопротивление каждого резистора 1 Ом и рассеиваемая мощность 10 Вт, следовательно общее сопротивление всех резисторов 1 Ом, если их соединить параллельно, то получится общее сопротивление четырех резисторов 0.25 Ом 40 Вт. Мощность всех резисторов суммируется. Таким образом можно сделать резистор любой мощности. На фотографиях и в видеоролике в моем блоке питания вы увидите сборку из 4 резисторов по 1 Ом 10 Вт с общим сопротивлением 0.25 Ом и мощностью 40 Вт. Сделал я так потому, что в тот момент у меня не было под рукой, да и в магазине тоже мощного резистора на 0.1 Ом 20 Вт. Но вот чудо, оказалось, что регулировка тока в данной схеме отлично работает даже с сопротивлением в 0.25 Ом. Мне стало интересно и я решил провести серию экспериментов с резисторами пришедшими через пару недель из Китая, с сопротивлением в 0.1 Ом, 0.25 Ом, 0.5 Ом, и пришел к выводу, что с любым из этих сопротивлений регулировка тока работает отлично. То есть, в данную схему можно поставить резисторы с любым сопротивлением в диапазоне от 0.1 Ом до 0.5 Ом, что делает эту схему доступной для сборки начинающим радиолюбителям. Ведь не всегда можно найти в магазине резисторы с нужным сопротивлением и мощностью. Ещё я пробовал заменить резистор куском нихромовой спирали от электроплитки, все тоже самое на работу регулировки тока это никак не повлияло, единственный минус в том, что спираль сильно нагревалась и её пришлось залить в бетон.

В схеме имеется встроенная защита от переполюсовки. При правильном подключении блока питания к аккумулятору загорается зеленый светодиод Led1. В случае не правильного подключения загорается красный светодиод Led2, сигнализирующий о ошибке подключения. Система корректно работает только при выключенном питании блока питания. То есть сначала подключаем аккумулятор, когда загорится зеленый светодиод включаем блок питания в сеть.

Автоматический регулятор оборотов вентилятора предназначен для уменьшения уровня шума возникающего в процессе работы блока питания. Стабилизатор напряжения L7812CV поддерживает постоянное напряжение 12В поступающее на делитель состоящий из терморезистора R8 установленного на радиаторе и подстроечного резистора Р3. Напряжение с делителя поступает на базу транзистора Т3. В процессе работы блока питания от большой нагрузки радиатор нагревается, сопротивление терморезистора R8 установленного в радиаторе становится меньше сопротивления подстроечного резистора Р3, напряжение на базе транзистора увеличивается и транзистор приоткрывается, тем самым увеличивая скорость вращения вентилятора. Настройка чувствительности регулятора осуществляется подстроечным резистором Р3.

В данной схеме регулируемого блока питания имеется возможность подключения разных моделей вольтметров и амперметров, стрелочных и электронных. С аналоговой классикой обозначенной на схеме буквами V вольтметр и A амперметр все понятно подключаем согласно схеме. Амперметр лучше покупать со встроенным шунтом, так гораздо компактней и дешевле. Класс точности вольтметра и амперметра с Али Экспресс должен быть 2.5 эти приборы работают нормально. А вот с китайскими электронными придется повозиться. На данный момент существует две модели китайских универсальных измерительных приборов (КУИП). Первая модель с синим проводом со встроенным шунтом более точная менее глючная, в последнее время её трудно найти на Али Экспресс. Вторая модель с желтым проводом и встроенным шунтом не точная и очень глючная с прыгающими показаниями амперметра от 0 до 0.25А на холостом ходу без нагрузки. Не понятно зачем её вообще продают? Если вы будете ставить электронный КУИП, тогда надо разорвать участок электрической цепи отмеченный на схеме красным крестиком. По другому в данной схеме электронный КУИП работать правильно не будет .

А эта схема для тех, кто любит мощные блоки питания. Как и обещал до 25А.

Схема блока питания с регулировкой напряжения и тока 1.2…30В 25А

В схему добавлен дополнительный мощный транзистор Т2 TIP35C способный выдерживать ток до 25А и резистор R3 200 Ом. Диодный мост заменен на более мощный. Транзистор IRFP250 выдерживает 30А, а транзистор IRFP260 49А.

На этом рисунке изображена печатная плата блока питания с регулировкой напряжения и тока на 10А.

Печатная плата блока питания с регулировкой напряжения и тока 1.2…30В 10А

На этом рисунке изображена печатная плата блока питания с регулировкой напряжения и тока на 25А.

Печатная плата блока питания с регулировкой напряжения и тока 1.2…30В 25А

Стабилизатор напряжения LM317, транзисторы TIP35C, IRFP250, 260 устанавливаем на радиатор через изолирующие термопрокладки и термошайбы. Транзистор MJE13009 устанавливаем на радиатор без изоляции, иначе от сильного нагрева и плохого отвода тепла через термопрокладку будет перегреваться и выходить из строя. Стабилизатор напряжения L7812CV и транзистор BD139 устанавливаем на разные радиаторы. Терморезистор вставляем в просверленное в радиаторе отверстие и закрепляем с помощью Поксипола или Эпоксидной смолы. В процессе установки терморезистора проверяйте мультиметром отсутствие электрического контакта, между терморезистором и радиатором. Переменные резисторы, а также светодиоды при необходимости можно соединить проводами и вынести за пределы платы.

Готовый блок питания начинает работать сразу после подачи питания на плату. Единственное что надо настроить, так это скорость вращения вентилятора. Для этого надо при холодном радиаторе с помощью подстроечного резистора Р3 выставить напряжение на вентиляторе примерно 1 вольт. Вентилятор начнет вращаться при температуре радиатора примерно 45 градусов, обороты будут подниматься прямо пропорционально температуре радиатора. При охлаждении радиатора обороты вентилятора будут снижаться. Так работает автоматический регулятор оборотов вентилятора.

Как же пользоваться блоком питания?
Очень просто. Включаем питание и выставляем регулируемым резистором Р1 нужное вам напряжение. Ручку регулируемого резистора Р2 ставим в крайнее правое положение соответствующее максимальной силе тока. Подключаем нагрузку к блоку питания, при необходимости добавляем напряжение. Если надо резистором Р2 можно ограничить ток.

Как заряжать аккумулятор?
Легко! При подключении аккумулятора блок питания должен быть выключен из сети. Ставим ручки резисторов Р1 и Р2 в крайнее левое положение, минимальное напряжение и минимальный ток. Подключаем аккумулятор к блоку питания. Должен загореться зеленый светодиод, это означает что аккумулятор подключен правильно. В случае ошибки подключения загорится красный светодиод. После того, как вы убедились в правильности подключения аккумулятора, включите блок питания в сеть. Переменным резистором Р1 установите напряжение 14.5В. Далее резистором Р2 установите силу тока равную 10% от емкости аккумулятора, то есть для 60А/ч батареи начальный ток должен быть не более 6А.

После установки силы тока произойдет падение напряжения примерно до 13В. По мере заряда аккумулятора напряжение будет постепенно подниматься до 14.5В, а сила тока будет снижаться до 0.1А это будет означать, что батарея полностью заряжена.

Что будет с блоком питания в случае короткого замыкания?
Ничего страшного не произойдет. В случае короткого замыкания сработает защита ограничения тока. Согласно закону Ома: чем больше сопротивление цепи, тем меньше сила тока будет в нем. Следовательно при коротком замыкании будет максимально возможный ток. Напряжение упадет, а сила тока будет той, которую вы ограничили резистором Р2.

Радиодетали для сборки блока питания с регулировкой напряжения и тока на 10А

  • Диодный мост KBPC2510, KBPC3510, KBPC5010
  • Конденсатор С1 4700mf 50V
  • Регулируемый стабилизатор напряжения LM317
  • Транзисторы Т1 MJE13009, T2 IRFP250, IRFP260, T3 КТ815, BD139
  • Переменные резисторы Р1 5К, Р2 1К, Р3 10К
  • Стабилитрон 12V 5W 1N5349BRLG
  • Резисторы R1, R2 200R 0.25W, R3 1K 5W, R4 100R 0.25W, R5 47R 0.25W, R6 0.1R 20W, R7 3K 0.25W
  • Терморезистор R8 B57164-K 103-J сопротивление 10К
  • Светодиоды 5мм красный и зеленый, напряжение питания 3В
  • Радиатор 100х63х33 мм 1шт, радиатор KG-487-17 (HS 077-30) 2шт
  • Вентилятор 70х70 мм

Радиодетали для сборки блока питания с регулировкой напряжения и тока на 25А

  • Диодный мост KBPC2510, KBPC3510, KBPC5010
  • Конденсатор С1 4700mf 50V
  • Регулируемый стабилизатор напряжения LM317
  • Транзисторы Т1 MJE13009, T2 TIP35C, T3 IRFP250, IRFP260, T4 КТ815, BD139
  • Переменные резисторы Р1 5К, Р2 1К, Р3 10К
  • Стабилитрон 12V 5W 1N5349BRLG
  • Резисторы R1, R2, R3 200R 0.25W, R4 1K 5W, R5 100R 0.25W, R6 47R 0.25W, R7 0.1R 20W, R8 3K 0.25W
  • Терморезистор R9 B57164-K 103-J сопротивление 10К
  • Светодиоды 5мм красный и зеленый, напряжение питания 3В
  • Радиатор 100х63х33 мм 1шт, радиатор KG-487-17 (HS 077-30) 2шт
  • Вентилятор 70х70 мм

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как сделать блок питания с регулировкой напряжения и тока

ДВА ПРОСТЫХ РЕГУЛЯТОРА НАПРЯЖЕНИЯ

Собранный однажды простейший регулятор напряжения на одном транзисторе был предназначен для определённого блока питания и конкретного потребителя, никуда больше его подключать было конечно не нужно, но как всегда наступает момент, когда правильно поступать мы перестаём. Следствием этого являются хлопоты и раздумья как жить-быть дальше и принятие решения восстанавливать сотворённое ранее или продолжать творить.

Схема номер 1

Имелся стабилизированный импульсный блок питания, дающий на выходе напряжение 17 вольт и ток 500 миллиампер. Требовалось периодическое изменение напряжения в пределе 11 – 13 вольт. И общеизвестная схема регулятора напряжения на одном транзисторе с этим прекрасно справлялась. От себя добавил к ней только светодиод индикации да ограничительный резистор. К слову, светодиод здесь это не только «светлячок» сигнализирующий о наличии выходного напряжения. При правильно подобранном номинале ограничительного резистора, даже небольшое изменение выходного напряжения отражается на яркости свечения светодиода, что даёт дополнительную информацию о его повышении или понижении. Напряжение на выходе можно было изменять от 1,3 до 16 вольт.

КТ829 — мощный низкочастотный кремниевый составной транзистор, был установлен на мощный металлический радиатор и казалось, что при необходимости он вполне может выдержать и большую нагрузку, но случилось короткое замыкание в схеме потребителя и он сгорел. Транзистор отличается высоким коэффициентом усиления и применяется в усилителях низкой частоты – видно действительно его место там а не в регуляторах напряжения.

Слева снятые электронные компоненты, справа приготовленные им на замену. Разница по количеству в два наименования, а по качеству схем, бывшей и той, что решено было собрать, она несопоставима. Напрашивается вопрос – «Стоит ли собирать схему с ограниченными возможностями, когда существует более продвинутый вариант «за те же деньги», в прямом и переносном смысле этого изречения?»

Схема номер 2

В новой схеме также присутствует трёхвыводной эл. компонент (но это уже не транзистор) постоянный и переменный резисторы, светодиод со своим ограничителем. Добавлено только два электролитических конденсатора. Обычно на типовых схемах указаны минимальные значения C1 и C2 (С1=0,1 мкФ и С2=1 мкФ) которые необходимы для устойчивой работы стабилизатора. На практике значения емкостей составляют от десятков до сотен микрофарад. Ёмкости должны располагаться как можно ближе к микросхеме. При больших емкостях обязательно условие C1>>C2. Если ёмкость конденсатора на выходе будет превышать ёмкость конденсатора на входе, то возникает ситуация при которой выходное напряжение превышает входное, что приводит к порче микросхемы стабилизатора. Для её исключения устанавливают защитный диод VD1.

У этой схемы уже совсем другие возможности. Входное напряжение от 5 до 40 вольт, выходное 1,2 – 37 вольт. Да, имеется падение напряжения вход – выход равное примерно 3,5 вольтам, однако роз без шипов не бывает. Зато микросхема КР142ЕН12А именуемая линейным регулируемым стабилизатором напряжения имеет неплохую защиту по превышению тока нагрузки и кратковременную защиту от короткого замыкания на выходе. Её рабочая температура до + 70 градусов по Цельсию, работает с внешним делителем напряжения. Выходной ток нагрузки до 1 А при длительной работе и 1,5 А при непродолжительной. Максимально допустимая мощность при работе без теплоотвода 1 Вт, если микросхему установить на радиатор достаточного размера (100 см.кв.) то Р макс. = 10 Вт.

Что получилось

Сам процесс обновлённого монтажа занял времени ни сколько не больше чем предыдущий. При этом получен не простой регулятор напряжения, который подключается к блоку питания стабилизированного напряжения, собранная схема при подключении даже к сетевому понижающему трансформатору с выпрямителем на выходе сама даёт необходимое стабилизированное напряжение. Естественно, что выходное напряжение трансформатора должно соответствовать допустимым параметрам входного напряжения микросхемы КР142ЕН12А. Вместо неё можно использовать и импортный аналог интегральный стабилизатор LM317Т. Автор Babay iz Barnaula.

Обсудить статью ДВА ПРОСТЫХ РЕГУЛЯТОРА НАПРЯЖЕНИЯ

Простые схемы регуляторов напряжения и тока

В сети очень много схем регуляторов напряжения для самых разных целей, а вот с регуляторами тока дела обстоят иначе. И я хочу немного восполнить этот пробел, и представить вам три простые схемы регуляторов постоянного тока, которые стоит взять на вооружение, так, как они универсальны и могут быть использованы во многих самодельных конструкциях.

Регуляторы тока по идее не многим отличается от регуляторов напряжения. Прошу не путать регуляторы тока со стабилизаторами тока, в отличии от первых они поддерживают стабильный выходной ток не зависимо от напряжения на входе и выходной нагрузки.

Стабилизатор тока — неотемлимая часть любого нормального лабораторного блока питания или зарядного устройства, предназначен он для ограничения тока подаваемого на нагрузку. В этой статье мы рассмотрим пару стабилизаторов и один регулятор общего применения.

Во всех трех вариантах в качестве датчика тока использованы шунты, по сути низкоомные резисторы. Для увеличения выходного тока любой из перечисленных схем нужно будет снизить сопротивление шунта. Нужное значение тока выставляют вручную, как правило вращением переменного резистора. Все три схемы работают в линейном режиме, а значит силовой транзистор при больших нагрузках будет сильно нагреваться.

Первая схема отличается максимальной простотой и доступностью компонентов. Всего два транзистора, один из них управляющий, второй является силовым, по которому и протекает основной ток.

Датчик тока представляет из себя низкоомный проволочный резистор. При подключении выходной нагрузки на этом резисторе образуется некоторое падение напряжения, чем мощнее нагрузка, тем больше падение. Такого падения напряжения достаточно для срабатывания управляющего транзистора, чем больше падение, тем больше приоткрыт транзистор. Резистор R1, задает напряжение смещения для силового транзистора, именно благодаря ему основной транзистор находится в открытом состоянии. Ограничение тока происходит за счет того, что напряжение на базе силового транзистора, которое было образовано резистором R1 грубо говоря затухаеться или замыкается на массу питания через открытый переход маломощного транзистора, этим силовой транзистор будет закрываться, следовательно, ток протекающий по нему уменьшается вплоть до полного нуля.

Резистор R1 по сути обычный делитель напряжения, которым мы можем задать как бы степень приоткрытия управляющего транзистора, а следовательно, управлять и силовым транзистором ограничивая ток протекающий по нему.

Вторая схема построена на базе операционного усилителя. Ее неоднократно использовал в зарядных устройствах для автомобильного аккумулятора. В отличии от первого варианта — эта схема является стабилизатором тока.

Как и в первой схеме тут также имеется датчик тока (шунт), операционный усилитель фиксирует падение напряжения на этом шунте, все по уже знакомой нам схеме. Операционный усилитель сравнивает напряжение на шунте с опорным, которое задается стабилитроном. Переменным резистором мы искусственно меняем опорное напряжение. Операционный усилитель в свою очередь постарается сбалансировать напряжение на входах путем изменения выходного напряжения.

Выход операционного усилителя управляет мощным полевым транзистором. То есть принцип работы мало чем отличается от первой схемы, за исключением того, что тут имеется источник опорного напряжения выполненный на стабилитроне.

Эта схема также работает в линейном режиме и силовой транзистор при больших нагрузках будет сильно нагреваться.

Последняя схема построена на базе популярной интегральной микросхеме стабилизатора LM317. Это линейный стабилизатор напряжения, но имеется возможность использовать микросхему в качестве стабилизатора тока.

Нужный ток задается переменным резистором. Недостатком схемы является то, что основной ток протекает именно по ранее указанному резистору и естественно тот нужен мощный, очень желательно использование проволочных резисторов.

Максимально допустимый ток для микросхемы LM317 1,5 ампера, увеличить его можно дополнительным силовым транзистором. В этом случае микросхема уже будет в качестве управляющей, поэтому нагреваться не будет, взамен будет нагреваться транзистор и от этого никуда не денешься.

Регулятор тока своими руками: схема и инструкция. Регулятор постоянного тока

На сегодняшний день многие приборы производятся с возможностью регулировки тока. Таким образом пользователь имеет возможность контролировать мощность устройства. Работать указанные приборы способны в сети с переменным, а также постоянным током. По своей конструкции регуляторы довольно сильно отличаются. Основной деталью устройства можно назвать тиристоры.

Также неотъемлемыми элементами регуляторов являются резисторы и конденсаторы. Магнитные усилители используются только в высоковольтных приборах. Плавность регулировки в устройстве обеспечивается за счет модулятора. Чаще всего можно встретить именно поворотные их модификации. Дополнительно в системе имеются фильтры, которые помогают сглаживать помехи в цепи. За счет этого ток на выходе получается более стабильным, чем на входе.

Схема простого регулятора

Схема регулятора тока обычного типа тиристоры предполагает использовать диодные. На сегодняшний день они отличаются повышенной стабильностью и прослужить способны много лет. В свою очередь, триодные аналоги могут похвастаться своей экономичностью, однако, потенциал у них небольшой. Для хорошей проводимости тока транзисторы применяются полевого типа. Платы в системе могут использоваться самые разнообразные.

Для того чтобы сделать регулятор тока на 15 В, можно смело выбирать модель с маркировкой КУ202. Подача запирающего напряжения происходит за счет конденсаторов, которые устанавливаются в начале цепи. Модуляторы в регуляторах, как правило, применяются поворотного типа. По своей конструкции они довольно просты и позволяют очень плавно изменять уровень тока. Для того чтобы стабилизировать напряжение в конце цепи, применяются специальные фильтры. Высокочастотные их аналоги могут устанавливаться только в регуляторах свыше 50 В. С электромагнитными помехами они справляются довольно хорошо и большой нагрузки на тиристоры не дают.

Устройства постоянного тока

Схема регулятора постоянного тока характеризуется высокой проводимостью. При этом тепловые потери в устройстве являются минимальными. Чтобы сделать регулятор постоянного тока, тиристор требуется диодного типа. Подача импульса в данном случае будет высокой за счет быстрого процесса преобразования напряжения. Резисторы в цепи должны быть способны выдерживать максимальное сопротивление 8 Ом. В данном случае это позволит привести к минимуму тепловые потери. В конечном счете модулятор не будет быстро перегреваться.

Современные аналоги рассчитаны примерно на предельную температуру в 40 градусов, и это следует учитывать. Полевые транзисторы ток способны пропускать в цепи только в одном направлении. Учитывая это, располагаться в устройстве они обязаны за тиристором. В результате уровень отрицательного сопротивления не будет превышать 8 Ом. Высокочастотные фильтры на регулятор постоянного тока устанавливаются довольно редко.

Модели переменного тока

Регулятор переменного тока отличается тем, что тиристоры в нем применяются только триодного типа. В свою очередь, транзисторы стандартно используются полевого вида. Конденсаторы в цепи применяются только для стабилизации. Встретить высокочастотные фильтры в устройствах данного типа можно, но редко. Проблемы с высокой температурой в моделях решаются за счет импульсного преобразователя. Устанавливается он в системе за модулятором. Низкочастотные фильтры используются в регуляторах с мощностью до 5 В. Управление по катоду в устройстве осуществляется за счет подавления входного напряжения.

Стабилизация тока в сети происходит плавно. Для того чтобы справляться с высокими нагрузками, в некоторых случаях применяются стабилитроны обратного направления. Соединяются они транзисторами при помощи дросселя. В данном случае регулятор тока должен быть способным выдерживать максимум нагрузкуи в 7 А. При этом уровень предельного сопротивления в системе обязан не превышать 9 Ом. В этом случае можно надеяться на быстрый процесс преобразования.

Как сделать регулятор для паяльника?

Сделать регулятор тока своими руками для паяльника можно, используя тиристор триодного типа. Дополнительно потребуются биполярные транзисторы и низкочастотный фильтр. Конденсаторы в устройстве применяются в количестве не более двух единиц. Снижение тока анода в данном случае должно происходить быстро. Чтобы решить проблему с отрицательной полярностью, устанавливаются импульсные преобразователи.

Для синусоидального напряжения они подходят идеально. Непосредственно контролировать ток можно за счет регулятора поворотного типа. Однако кнопочные аналоги также встречаются в наше время. Чтобы обезопасить устройство, корпус используется термостойкий. Резонансные преобразователи в моделях также можно встретить. Отличаются они, по сравнению с обычными аналогами, своей дешевизной. На рынке их часто можно встретить с маркировкой РР200. Проводимость тока в данном случае будет невысокой, однако управляющий электрод со своими обязанностями справляться должен.

Приборы для зарядного устройства

Чтобы сделать регулятор тока для зарядного устройства, тиристоры необходимы только триодного типа. Запирающий механизм в данном случае будет контролировать управляющий электрод в цепи. Полевые транзисторы в устройствах используются довольно часто. Максимальной нагрузкой для них является 9 А. Низкочастотные фильтры для таких регуляторов не подходят однозначно. Связано это с тем, что амплитуда электромагнитных помех довольно высокая. Решить эту проблему можно просто, используя резонансные фильтры. В данном случае проводимости сигнала они препятствовать не будут. Тепловые потери в регуляторах также должны быть незначительными.

Применение симисторных регуляторов

Симисторные регуляторы, как правило, применятся в устройствах, мощность которых не превышает 15 В. В данном случае они предельное напряжение способны выдерживать на уровне 14 А. Если говорить про приборы освещения, то они использоваться могут не все. Для высоковольтных трансформаторов они также не подходят. Однако различная радиотехника с ними способна работать стабильно и без каких-либо проблем.

Регуляторы для активной нагрузки

Схема регулятора тока для активной нагрузки тиристоры предполагает использовать триодного типа. Сигнал они способны пропускать в обоих направлениях. Снижение тока анода в цепи происходит за счет понижения предельной частоты устройства. В среднем данный параметр колеблется в районе 5 Гц. Напряжение максимум на выходе должно составлять 5 В. С этой целью резисторы применяются только полевого типа. Дополнительно используются обычные конденсаторы, которые в среднем способны выдерживать сопротивление 9 Ом.

Импульсные стабилитроны в таких регуляторах не редкость. Связано это с тем, что амплитуда электромагнитных колебаний довольно большая и бороться с ней нужно. В противном случае температура транзисторов быстро возрастает, и они приходят в негодность. Чтобы решить проблему с понижающимся импульсом, преобразователи используются самые разнообразные. В данном случае специалистами также могут применяться коммутаторы. Устанавливаются они в регуляторах за полевыми транзисторами. При этом с конденсаторами они соприкасаться не должны.

Как сделать фазовую модель регулятора?

Сделать фазовый регулятор тока своими руками можно при помощи тиристора с маркировкой КУ202. В этом случае подача запирающего напряжения будет проходить беспрепятственно. Дополнительно следует позаботиться о наличии конденсаторов с предельным сопротивлением свыше 8 Ом. Плата для этого дела может быть взята РР12. Управляющий электрод в этом случае обеспечит хорошую проводимость. Импульсные преобразователи в регуляторах данного типа встречаются довольно редко. Связано это с тем, что средний уровень частоты в системе превышает 4 Гц.

В результате на тиристор оказывается сильное напряжение, которое провоцирует возрастание отрицательного сопротивления. Чтобы решить эту задачу, некоторые предлагают использовать двухтактные преобразователи. Принцип их работы построен на инвертировании напряжения. Изготовить самостоятельно регулятор тока данного типа в домашних условиях довольно сложно. Как правило, все упирается в поиски необходимого преобразователя.

Устройство импульсного регулятора

Чтобы сделать импульсный регулятор тока, тиристор потребуется триодного типа. Подача управляющего напряжения осуществляется им с большой скоростью. Проблемы с обратной проводимостью в устройстве решаются за счет транзисторов биполярного типа. Конденсаторы в системе устанавливаются только в парном порядке. Снижение тока анода в цепи происходит за счет смены положения тиристора.

Запирающий механизм в регуляторах данного типа устанавливается за резисторами. Для стабилизации предельной частоты фильтры могут применяться самые разнообразные. Впоследствии отрицательное сопротивление в регуляторе не должно превышать 9 Ом. В данном случае это позволит выдерживать большую токовую нагрузку.

Модели с плавным пуском

Для того чтобы сконструировать тиристорный регулятор тока с плавным пуском, нужно позаботиться о модуляторе. Наиболее популярными на сегодняшний день принято считать поворотные аналоги. Однако они между собой довольно сильно отличаются. В данном случае многое зависит от платы, которая применяется в устройстве.

Если говорить про модификации серии КУ, то они работают на самых простых регуляторах. Особой надежностью они не выделяются и определенные сбои все же дают. Иначе обстоят дела с регуляторами для трансформаторов. Там, как правило, применяются цифровые модификации. В результате уровень искажений сигнала значительно сокращается.

Простой источник питания с регулируемым напряжением

Что делает источник питания?

Вначале необходимо понять назначение источника питания.
• Он должен преобразовывать переменный ток, полученный из сети переменного тока, в постоянный ток.
• Он должен выдавать напряжение по выбору пользователя, в диапазоне от 2 В до 25 В.

Основные преимущества:
• Недорогой.
• Простой и удобный в применении.
• Универсальный.

Список необходимых компонентов

1. Понижающий трансформатор на 2 А (с 220 В до 24 В).
2. Регулятор напряжения lm317 IC с радиатором теплообменника.
3. Конденсаторы (поляризованные):
2200 микрофарад 50 В;
100 микрофарад 50 В;
1 микрофарада 50 В.
(замечание: номинал напряжения конденсаторов должен быть выше напряжения, подаваемого на их контакты).
4. Конденсатор (неполяризованный): 0.1 микрофарад.
5. Потенциометр 10 кОм.
6. Сопротивление 1 кОм.
7. Вольтметр с ЖК-дисплеем.
8. Плавкий предохранитель 2.5 А.
9. Винтовые зажимы.
10. Соединительный провод с вилкой.
11. Диоды 1n5822.
12. Монтажная плата.

Составление электрической схемы

• В верхней части рисунка трансформатор подключен к сети переменного тока. Он понижает напряжение до 24 В, но при этом ток остается переменным с частотой 50 Гц.
• В нижней половине рисунка показано соединение четырех диодов в мост выпрямителя. Диоды 1n5822 пропускают ток при прямом смещении, и блокируют прохождение тока при обратном смещении. В результате выходное напряжение постоянного тока пульсирует с частотой в 100 Гц.

• На этом рисунке добавлен конденсатор емкостью в 2200 микрофарад, который фильтрует выходной ток и обеспечивает устойчивое напряжение в 24 В постоянного тока.
• На этом этапе можно последовательно включить в схему плавкий предохранитель для обеспечения ее защиты.
• Итак, мы имеем:
1. Понижающий трансформатор переменного тока до 24 В.
2. Преобразователь перемененного тока в пульсирующий постоянный ток с напряжением до 24 В.
3. Отфильтрованный ток для получения чистого и стабильного напряжения 24 В.
• Все это будет подключено к схеме регулятора напряжения lm317, описанной ниже

Введение в Lm317

• Теперь наша задача заключается в управлении выходным напряжением, изменяя его в соответствие с нашими нуждами. Для этого мы используем регулятор напряжения lm317.
• Lm317, как показано на рисунке, имеет 3 контакта. Это контакт регулировки (pin1 — ADJUST), контакт вывода (pin2 — OUNPUT), и контакт ввода (pin3 — INPUT).
• Регулятор lm317 во время работы выделяет тепло, поэтому ему требуется радиатор теплообменника
• Радиатор теплообменника представляет собой металлическую пластину, соединенную с интегральной схемой для рассеивания выделяемого ею тепла в окружающее пространство.

Объяснение схемы подключения Lm317

• Это продолжение предыдущей электрической схемы. Для лучшего понимания, схема подключения lm317 показана здесь подробно.
• Для обеспечения фильтрации на входе рекомендуется использовать конденсатор емкостью в 0.1 микрофарады. Очень желательно не размещать его вблизи основного фильтрующего конденсатора (в нашем случае, это конденсатор емкостью 2200 микрофарад).
• Использование конденсатора в 100 микрофарад рекомендуется для улучшения гашения ряби. Он предотвращает усиление ряби, возникающее при увеличении устанавливаемого напряжения.
• Конденсатор емкостью в 1 микрофараду улучшает переходную характеристику, но не является необходимым для стабилизации напряжения.
• Диоды защиты D1 и D2 (оба — 1n5822) обеспечивают путь разряда с низким импедансом, предотвращая разряд конденсатора в выход регулятора напряжения.
• Сопротивления R1 и R2 нужны для установки выходного напряжения
• На рисунке приведено уравнение управления. Здесь сопротивление R1 равно 1 кОм, а сопротивление R2 (потенциометр с сопротивлением 10 кОм) является переменным. Поэтому получаемое на выходе напряжение, согласно данному аппроксимированному уравнению, задается изменением сопротивления R2.
• При необходимости получить дополнительную информацию по характеристикам lm317 на интегральной схеме, такую информацию найти в Интернете.
• Теперь выходное напряжение можно подключить к вольтметру с ЖК-дисплеем, или можно использовать мультиметр для замера напряжения.
• Замечание: Величины сопротивлений R1 и R2 выбираются из соображений удобства. Другими словами, нет какого-либо твердого правила, которое говорило бы, что сопротивление R1 должно всегда быть 1 кОм, а сопротивление R2 должно быть переменным до 10 кОм. Кроме того, если нужно фиксированное выходное напряжение, то можно установить фиксированное сопротивление R2 вместо переменного. Используя приведенную управляющую формулу, можно выбирать параметры R1 и R2 по своему усмотрению.

Завершение составления электрической схемы

• Окончательная электрическая схема выглядит так, как показано на рисунке.
• Теперь, пользуясь потенциометром (т.е. R2), можно получать требуемое напряжение на выходе.
• На выходе будет получено чистое, свободное от ряби, стабильное и постоянное напряжение, требуемое для питания конкретной нагрузки.

Радиосхемы. – Простые регуляторы напряжения

Простые радиосхемы для начинающих

материалы в категории

Фазовые регуляторы напряжения довольно широко распространены в быту. Самая частая область их применения это устройства для регулировки яркости освещения.
Ниже приводится несколько простых схем регулировки напряжения для самостоятельного повторения для начинающих радиолюбителей.

Внимание!! Все схемы предназначены для работы с сетевым напряжением 220 Вольт, поэтому при сборке и настройке следует соблюдать осторожность!!

Данная схема  является наиболее распространённой  в различных  зарубежных  бытовых приборах, как самая простая и надёжная, но у нас более широкое распространение получила вот такая схема:


В качестве тиристора чаще всего применялся тиристор КУ202Н, но следует учесть что если вы планируете применять мощную нагрузку, то тиристор потребуется установить на радиатор.


Еще одна особенность данной схемы- это динистор КН102А. Так-же не самый распространенный радиоэлемент, но его можно заменить транзисторным аналогом и тогда схема регулятора напряжения получится вот такая:


Ну и последняя схема- на однопереходном транзисторе:


Все рассмотренные конструкции очень просты, надёжны, прекрасно  регулируют напряжение, но не лишены недостатков, из-за которых не переводятся энтузиасты предложить свои схемы, пусть и более сложные.  Главной проблемой  выше приведённых схем является  инверсная зависимость фазового угла от уровня питающего напряжения, т.е. при падении напряжения  в сети фазовый угол открытия тиристора или симистора  увеличивается, что приводит  к  непропорциональному  снижению напряжения на нагрузке.  Небольшое снижение напряжения  вызовет заметное уменьшение яркости ламп и наоборот.  Если в питающей сети имеются небольшие пульсации, например от работы сварочного аппарата,  мерцание ламп  станет  гораздо заметнее.

Ещё  одной проблемой  этих схем  является ограниченный диапазон регулировки выходного напряжения – невозможно регулировать напряжение до 100% из-за  наличия  “ступеньки” срабатывания  порогового узла, запускающего тиристор или симистор.

Автор Кравцов В.Н. http://kravitnik.narod.ru
Обсудить на форуме

Простой регулятор напряжения на одном транзисторе

Собранный однажды простейший регулятор напряжения на одном транзисторе был предназначен для определённого блока питания и конкретного потребителя, никуда больше его подключать было конечно не нужно, но как всегда наступает момент, когда правильно поступать мы перестаём. В данной статье рассмотрим простой регулятор напряжения своими руками.

Имелся стабилизированный импульсный блок питания, дающий на выходе напряжение 17 вольт и ток 500 миллиампер. Требовалось периодическое изменение напряжения в пределе 11 – 13 вольт. И общеизвестная схема регулятора напряжения на одном транзисторе с этим прекрасно справлялась.

От себя добавил к ней только светодиод индикации да ограничительный резистор. К слову, светодиод здесь это не только «светлячок» сигнализирующий о наличии выходного напряжения. При правильно подобранном номинале ограничительного резистора, даже небольшое изменение выходного напряжения отражается на яркости свечения светодиода, что даёт дополнительную информацию о его повышении или понижении. Напряжение на выходе можно было изменять от 1,3 до 16 вольт.

КТ829 – мощный низкочастотный кремниевый составной транзистор, был установлен на мощный металлический радиатор и казалось, что при необходимости он вполне может выдержать и большую нагрузку, но случилось короткое замыкание в схеме потребителя и он сгорел. Транзистор отличается высоким коэффициентом усиления и применяется в усилителях низкой частоты – видно действительно его место там а не в регуляторах напряжения.

Слева снятые электронные компоненты, справа приготовленные им на замену. Разница по количеству в два наименования, а по качеству схем, бывшей и той, что решено было собрать, она несопоставима. Напрашивается вопрос – «Стоит ли собирать схему с ограниченными возможностями, когда существует более продвинутый вариант «за те же деньги», в прямом и переносном смысле этого изречения?»

Довольно часто необходима регулировка мощности электрического тока. К примеру, уменьшить напряжение электролампы в доме или отрегулировать температуру жала паяльника. Для этих целей хорошо подойдет регулятор напряжения. Основной его задачей является регулирование подаваемой мощности на потребителя. Этот прибор регулирует уровень звука, освещения, обороты двигателя и т.д.

Для того, чтобы задействовать регулятор, его можно приобрести в магазинах по продаже радиодеталей либо изготовить самому.

Описание регуляторов напряжения

Данный прибор предназначен для регулирования уровня исходящего сигнала, который передается на какое-либо устройство. Наиболее простым таким устройством является реостат. Это устройство имеет ползунок, благодаря которому можно механически отрегулировать подаваемую мощность. Значительным недостатком такого прибора является возможность его использования только в цепях с небольшой мощностью. Если напряжение достаточно велико, то реостат быстро перегреется и выйдет из строя.

Для понимания, какие элементы понадобятся для изготовления регулятора, необходимо понимать, какие могут быть разновидности данных приборов. Все они делятся по виду выходного сигнала:

  • нестабилизированные и стабилизированные;
  • аналоговые и цифровые.

Первые виды могут быть использованы без применения печатных плат и микросхем. Поэтому выбирая элементы для самостоятельного изготовления регулятора лучше остановить свой выбор на резисторах транзисторах либо тиристорах. А вот применение аналоговых либо цифровых печатных схем без специальных знаний в радиоэлектронике вряд ли получится.

Характеристика регулятора

Самостоятельно изготовленные регуляторы могут быть изготовлены и установлены в качестве временного либо стационарного прибора. Основными характеристиками, которыми должен обладать регулятор, являются:

  1. Возможность постепенной регулировки. Лучше всего, если на регуляторе будет специальной колесико, с помощью которого можно плавно отрегулировать разность приема и отдачи сигнала.
  2. Мощность, при которой регулятор может стабильно функционировать. Чем выше показатель силы тока, при котором он будет работать без негативных последствий для себя, тем лучше для самого прибора.
  3. Показатель максимальной мощности, которую способен выдержать регулятор в течение небольшого временного отрезка.
  4. Диапазон входящего напряжения.
  5. Тип сигнала, который может регулироваться (постоянный либо переменный ток).
  6. Управление регулятором. Оно может быть механическое (с использованием различных механизмов) либо электронное (устанавливается с помощью пультов либо программирования).

Что понадобится для изготовления?

Изготовить регулятор самостоятельно можно =, используя 2 возможных варианта:

  • Приобретение платы и радиоэлементов и дальнейшая их сборка;
  • Покупка радиоэлементов и самостоятельное изготовление печатной платы.

Для реализации второго варианта понадобятся: паяльник, канифоль, припой, пинцет, провода, кусачки либо пассатижи.

Самостоятельно можно изготовить такие типы регулятора напряжения:

  1. Простую схему – предполагает использование транзисторов, один из которых будет определять напряжение, а другой – пропускать соответствующее электричество на прибор.
  2. Симистор – регулятор, регулирующий управление мощностью нагревательными элементами;
  3. Реле напряжения – большую популярность данный вид регулятора имеет у автолюбителей. Благодаря реле, электроприборы, используемые в автомобиле, получают стабильное напряжение, при изменении показателя напряжения в сети.
  4. Блок управления питанием – его используют для подключения приборов, которые работают в сетях с напряжением 12В.

Всем давно известно, что без нормального регулируемого блока питания не возможно запустить ни один девайс сделанный своими руками. Ведь блок питания это основа радиолюбительской лаборатории, поэтому в этой статье я расскажу, как сделать простой регулируемый блок питания из доступных деталей всего на двух транзисторах. На этом рисунке изображена простая для изготовления схема регулируемого блока питания.

Схема регулируемого блока питания на транзисторах

Эта схема очень неприхотлива в радиодеталях по этому, собрать её может каждый начинающий радиолюбитель практически из того, что имеется под рукой. Диодный мост Br1 пойдет практически любой с силой тока не менее 3А. Если нет диодного моста, замените его подходящими диодами. Конденсатор С1 можно заменить любым от 1000 мкФ до 10 000 мкФ. Переменный резистор Р1 от 5 до 10 кОм. Транзистор Т1 КТ815, BD137, BD139 транзистор Т2 КТ805, КТ819, TIP41, MJE13009 и многие другие советские и импортные аналоги, подбираются согласно требуемой нагрузке и мощности источника питания.

Диод D1 с силой тока не менее 3А, можно вообще заменить перемычкой, он защищает конденсатор C2 от переполюсовки при подключении к блоку питания аккумулятора. Источником питания для этой схемы может служить любой трансформатор от 12 до 30 вольт. Для своего блока питания я использовал тороидальный трансформатор от музыкального центра с двумя последовательно соединенными обмотками по 13,5В и силой тока 3,5А. После выпрямления напряжения на выходе получилось 30 вольт.

Все детали блока питания я, как всегда разместил на печатной плате размером 6,5 на 4,5 см. При установке транзисторов обратите внимание на цоколевку. Например у транзистора КТ819 ножки располагаются так ECB, а у транзистора MJE13009 так BCE, по этому транзисторы лучше всего соединить с платой небольшими кусочками провода и тогда у вас не возникнет проблем с правильной установкой транзисторов на радиаторе.

Печатная плата регулируемого блока питания 0-30В

Два транзистора установите на одном радиаторе без изоляционных прокладок потому, что коллекторы транзисторов на схеме соединяются вместе. Не забудьте места крепления транзисторов смазать термопастой. Диодную сборку желательно закрепить на небольшом радиаторе, она тоже не слабо нагревается. Для контроля выходных характеристик желательно установить универсальный китайский измерительный прибор (УКИП) обозначенный на схеме V/A1.

Все компоненты блока питания я разместил в стандартном корпусе от компьютерного блока питания. Только из за большого размера тороидального трансформатора от музыкального центра вентилятор пришлось разместить снаружи, но это на технические характеристики блока питания особо не влияет.

Благодаря мощному 3,5 амперному тороидальному трансформатору этот универсальный регулируемый блок питания я использую для питания различных самоделок и в качестве зарядного устройства для небольших аккумуляторов.

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том как работает регулируемый блок питания.

Электроника 102 – Урок 4

На предыдущем уроке мы улучшили усилитель, смоделировали его и продемонстрировали производительность с использованием SPICE.

В этом уроке мы собираемся разработать регулятор напряжения – сердце любого источника питания.

Потребность в регуляторах напряжения

Назначение регуляторов напряжения – обеспечить стабильное напряжение питания в цепях. вы проектируете.

Это самые распространенные схемы (каждая электронная система, независимо от ее функции, есть хотя бы один), и все же ими часто пренебрегают из-за их утилитарности природа.

Нам нужны регуляторы напряжения, потому что источники первичного питания (например, обычные батареи, или напряжение переменного тока, которое мы получаем от сетевой розетки) обычно не очень стабильны или нестабильны достаточно, чтобы гарантировать, что наши схемы работают в пределах своих спецификаций.

Например, напряжение, которое мы получаем от автомобильного аккумулятора, может варьироваться от 14,4 В. когда двигатель работает и генератор заряжает аккумулятор, и при низком уровне 8 или 9 В при запуске двигателя холодным утром.Потому что может быть положительный или отрицательные всплески, наложенные на напряжение батареи из-за другого оборудования, большинство автомобильное оборудование рассчитано на работу с напряжением до 16 В. Внутри некоторых цепей для правильной работы требуется стабильное напряжение, например микропроцессор, используемый для управления магнитолой. Большинство микропроцессоров работают от источника питания 3 В или 5 В, которое должно регулироваться с точностью до доли вольт. Например, многие микросхемы, рассчитанные на работу от номинального напряжения 5 В. требуется, чтобы напряжение оставалось в пределах 4.5 и 5,5 Вольт.

Опорное напряжение

Для работы регуляторам напряжения требуется ссылка. Опорное напряжение – это часть или цепь, обеспечивающая стабильное напряжение при выходе за пределы параметров, таких как напряжение питания или температура меняется.

Наиболее распространенным источником опорного напряжения является стабилитрон ([1]). Стабилитрон – это диод, в котором наблюдается лавинный обратный пробой. оптимизированы и количественно определены таким образом, чтобы диод мог безопасно работать в этой области.

Мы можем использовать SwitcherCAD, чтобы проиллюстрировать поведение стабилитрона.


<Зинер-1.png>

Эта простая схема будет использоваться для демонстрации еще одной функции программного обеспечения SPICE. Мы попросим программу развернуть напряжение от источника V1 и построить график напряжения на стабилитрон в результате.

Создайте схему сейчас, вам не нужно пока вводить какое-либо значение в Source V1. Не беспокойтесь о.Заявление постоянного тока в нижней части схемы, это просто строка текста, которую я поместил туда для справки. Когда вы закончите создание схемы, нажмите Simulate-> Edit Simulation Cmd. затем выберите «Развертка по постоянному току».

Введите следующие значения:

  • Название 1-го источника для проверки: V1
  • Тип развертки: линейный
  • Начальное значение: -4
  • Стоповое значение: 16
  • Приращение: 0,1
Нажмите «ОК», затем «Выполнить» и выберите «V (вывод)» в окне графика.

У вас должен получиться такой сюжет:


<Зинер-2.png>

Мы можем заметить, что в диапазоне от -0,5 до примерно 6 В выходной сигнал напряжение следует за входным напряжением. Ниже этого стабилитрон становится прямым. смещен, а напряжение на нем составляет от -0,5 до -0,6 В, просто вроде штатный диод.

При напряжениях источника выше примерно 6 В стабилитрон начинает проводить ток и напряжение на нем составляют около 6.2 В, что является номинальным Напряжение стабилитрона для этой части.

Область отрицательного напряжения интересна тем, что показывает, что Стабилитрон похож на настоящий диод, когда он смещен в прямом направлении. Однако мы не собираемся использовать стабилитрон в этой области.

Самая интересная часть – это область обратного смещения (когда напряжения от V1 равны положительный). Эффект Зенера обеспечивает напряжение около 6,2 В, что вполне достаточно. стабильно по сравнению с напряжением источника.

Чтобы выяснить, насколько стабильна, давайте повторно запустим симуляцию, но с разверткой исходного кода. между 8 и 18 В.


<Зинер-3.png>

Изменение выходного напряжения по сравнению с изменением входного напряжения, которое вызвало он называется Line Rules .

Регулировка линии = дельта (В

на выходе ) / дельта (В на выходе )

В этом случае изменение выходного напряжения при вводе изменение напряжения с 14 до 16 В (изменение на 2 В) составляет 20 мВ, поэтому Стабилизация линии между 14 и 16 В составляет 1%.

Если бы мы заменили источник V1 автомобильным аккумулятором, мы бы ожидайте, что регулируемое напряжение стабилитрона будет варьироваться от 6,24 до 6,38 В, в то время как напряжение батареи изменяется с 8 до 16 В, что является значительным улучшением.

Давайте посмотрим, как влияет температура, добавив оператор .STEP к моделирование.

Щелкните значок Текст и введите в текстовое поле следующее: “.STEP TEMP LIST 0 25 50”, затем нажмите “Директива”, “ОК” и запустите снова симуляция.


<Зинер-4.png>

Теперь общее изменение составляет от 6,24 до 6,39 Вольт, все еще отлично.

Шунтирующие регуляторы

Этот тип схемы называется шунтирующим регулятором , потому что регулирующая элемент находится параллельно (а не последовательно) с нагрузкой. Пока наши схема не показывает нагрузку (пока), нагрузка запитана от любой цепи от регулируемого напряжения, поэтому они будут подключены параллельно с стабилитроном.

Особенность шунтирующего регулятора, которая может быть как преимуществом, так и неудобством. в зависимости от того, где и как используется схема, шунтирующий регулятор тянет постоянный ток от источника. Ток, взятый из источника, является ток, протекающий через последовательный резистор. Поскольку текущий ток через последовательный резистор зависит только от напряжения источника, Напряжение стабилитрона и номинал резистора постоянны до тех пор, пока напряжение источника постоянно и не зависит от тока нагрузки.

Преимущество заключается в том, что ток источника не зависит от тока нагрузки.

Недостатком является то, что КПД схемы очень низок при малые токи нагрузки, поэтому схема не оптимизирована для работы от батареи.

Трудно представить более простую схему, она состоит всего из двух основных компонентов.

С другой стороны, доступный ток ограничен. Посмотрим, какой ток мы можем получить от этой схемы.

Расчет максимального тока нагрузки

В этой модифицированной схеме я добавил резистор R2, чтобы представить схему, которая будет используйте опорное напряжение. Резистор пока не имеет значения, он нужен для иллюстрации. Этот резистор составляет нагрузку и потребляет определенный ток. Нам нужно убедиться, что регулятор может обеспечивать ток, необходимый для цепи. представлен резистором R2.


<Зенера-5.png >>

Ток, проходящий через D1 и R2, должен исходить от резистора R1, поэтому ток ток через R1 будет делиться между R2 и стабилитроном.

Я

R1 = Я D1 + Я R2 В нашей примерной схеме, когда напряжение источника равно 12 В, напряжение на стабилитроне равно 6,34 В, поэтому напряжение на резисторе R1 составляет 5,66 В, поэтому ток в резисторе будет 5,66 / 1000 или 5,66 мА.

По мере уменьшения значения R2 ток через него будет увеличиваться, а ток через D1 уменьшится на такую ​​же величину.

Если ток нагрузки (ток через R2) приближается к 5,66 мА, стабилитрон будет голодать (ток через него будет очень низким или нулевым), и он не будет делать свое работа по регулированию напряжения. Давайте узнаем, сколько тока мы можем пропустить D1, посмотрев на спецификацию.

Чтобы просмотреть весь документ, нажмите на картинку.


Из раздела «Максимальные характеристики» спецификации видно, что максимальная мощность рассеивание при использовании обычных материалов для печатных плат, таких как FR-4, и при температуре окружающей среды 25 ° C составляет 225 мВт. Нам известно напряжение стабилитрона, поэтому легко вычислить, какой ток мы можем приложить к детали.

I

макс. = P макс. / V стабилитрон В этом случае максимальный ток равен 0.225 / 6,2 = 0,036 А или 36 мА.

Если вы прочитаете примечания в листе технических данных, вы увидите, что 225 мВт – это Абсолютный максимальный рейтинг при температуре окружающей среды 25 ° C. В техническом паспорте также указаны вы можете определить тепловое сопротивление и номинальные характеристики для температур выше 25 градусов.

Не вдаваясь в детали этих расчетов прямо сейчас, хороший практика проектирования заключается в ограничении максимального тока в нашей цепи до не более более 50% от абсолютного максимума рейтинга.Это 18 мА.

Если наша схема такова, что ток нагрузки может изменяться от нуля до некоторого значения, мы должны убедиться, что через R1 проходит не более 18 мА.

При выбранном нами (несколько произвольно) значении R1 мы достигнем 18 мА. когда напряжение от V1 составляет 6,2 + (1000 * 0,018) = 24,2 В, где 6,2 – это номинальное напряжение стабилитрона, а (1000 * 0,018) – это напряжение, которое нам нужно приложить через R1, чтобы через него протекал ток 18 мА.Итак, похоже, что у нас есть довольно большой запас прочности относительно максимальной рассеиваемой мощности в стабилитроне.

Теперь нам нужно рассмотреть, что происходит при минимальном напряжении питания. На примере автомагнитолы минимальное напряжение от аккумулятора может быть всего 8 В. При напряжении питания 8 В ток через R1 будет Только:

I

R1 = (V источник – V стабилитрон ) / R1 Это равняется 1.8 мА.

Итак, если эта схема использовалась в автомобильном радиоприемнике для обеспечения регулируемого напряжения 6,2 В некоторые чувствительные схемы, мы можем потреблять до 1,8 мА без потери регулирования, и не рискуя взорвать стабилитрон при максимальном напряжении батареи.

На практике, точно так же, как мы снижали максимальный ток, мы не хотели бы полностью заморозить стабилитрон и убедиться, что напряжение остается в норме, мы должны поддерживать минимальный ток в стабилитроне.В таблице данных перечислены напряжение стабилитрона для 3 значений тока 1, 5 и 20 мА, так что пока оно допустимо интерполировать между данными значениями, менее рекомендуется используйте часть за пределами указанного диапазона значений, поэтому мы должны сохранить минимум 1 мА хоть стабилитрон, чтобы он работал нормально.

Это означает, что у нас есть доступный ток нагрузки до 0,8 мА.

Увеличение тока с помощью регулятора прохода серии

Что делать, если 0.8 мА мало?

Что ж, мы могли либо:

  1. Уменьшите значение R1. Мы видели, что при текущем значении 1 кОм мы не сможем достичь безопасного максимального рассеивания мощности до тех пор, пока напряжение питания составляет 24,2 В. Мы можем уменьшить значение R1 так, чтобы максимальная безопасная мощность рассеивание достигается при 18 В, что является максимальным напряжением питания, которое мы нужно проектировать для.
  2. Переконструируйте схему, установив стабилитрон с более высокой номинальной мощностью (и уменьшите значение резистора R1, чтобы через него протекал больший ток), или
  3. Добавьте усилитель тока, используя один или несколько транзисторов.

Решение 1 легко реализовать и стоит недорого, но оно не дает многого. улучшения. В этом случае максимальный ток стабилитрона 18 мА, это также максимально возможный ток нагрузки.

В общем, решение 2 не имеет особого смысла, потому что стабилитрон большей мощности их труднее достать, и цепь быстро потратит много энергии. В связи с тенденцией к оборудованию с батарейным питанием важно знать решения, которые не тратят впустую электроэнергию и не тратят минимум, необходимый для выполнения функции.

Решение 3 немного сложнее, но предлагает большую гибкость и больше эффективный.

Итак, попробуем решение 3.

Есть хорошо известная схема, выполняющая нужную нам функцию, поэтому без лишних слов, вот оно:


<Регулятор-1.png>

Вы должны сразу заметить пару вещей. У нас появился новый символ SPICE I1, который является текущим источником.Теперь вы знакомы с источником напряжения, например, V1 в этой схеме. Источник напряжения запрограммирован на напряжение и обеспечивает это напряжение независимо от того, какой ток нам нужен. Это красота SPICE, не имеющая ограничений реального железа 🙂

Точно так же источник тока будет генерировать любое напряжение, необходимое для количество тока, которое мы запросили.

Вы можете выбрать текущий источник из меню «Компонент», просто найдите и нажмите на «текущий».

Источники тока не так интуитивно понятны, как источники напряжения, поэтому не беспокойтесь если концепция кажется странной. Просто следите за тем, что мы будем делать с этим, и снова раз он станет вам знакомым.

Еще одна вещь, которую вы могли заметить, если действительно наблюдательны, – это то, что мы есть стабилитрон с каталожным номером BZX84C5V6L, которого не было в библиотеке.

Я жульничал. Я хотел продемонстрировать известную схему – стабилизатор на 5 В.Предыдущая схема представляла собой стабилизатор на 6,2 В, которого было достаточно для этой цели. упражнения, используется редко. 5 В – гораздо более распространенное напряжение, а Стабилитрон 5,6 В часто используется в схеме, подобной той, которую я только что описал. Но в библиотеке SwitcherCAD не было стабилитрона на 5,6 В.

Если вы обратитесь к спецификации Motorola (полный документ в формате pdf, а не выдержка выше), вы увидите, что некоторые номера деталей выделены жирным шрифтом. В примечании указано что эти номера деталей предпочтительнее , что означает, что они гораздо более вероятны быть в наличии.Часть 5,6 В выделена жирным шрифтом, поэтому разумно предположить, что она должна были в библиотеке. Учитывая, сколько мы заплатили за SwitcherCAD, мы Простите Linear Technology за то, что она не включила все возможные номера деталей.

Так как же мне получить стабилитрон 5,6 В в SwitcherCAD?

Я открыл файл библиотеки диодов, C: \ Program Files \ LTC \ SwCADIII \ lib \ cmp \ standard.dio в текстовом редакторе и добавил BZX84C5V6L следующим образом:

.модель BZX84C5V6L D (Is = 1,66n Rs = 0,5 Cjo = 205p nbv = 3 bv = 5,6 Ibv = 1 м Vpk = 5,6 mfg = Тип двигателя = стабилитрон)
 
Вы можете вырезать и вставить всю строку. Я поместил его прямо над частью BZX84C6V2L в файле. Обратите внимание, что эта модель, вероятно, не так хороша, как другие. Это подходит для приведенный ниже пример, но он может не подходить для более сложного моделирования. Поэтому, когда вы закончите курс, вы можете удалить модель из библиотеки.

Мне пришлось закрыть и снова открыть SwitcherCAD, потому что программа явно читает библиотеки. при запуске программы и после того, как я изменил файл, она не перезагружала его автоматически.

Хорошо, хватит библиотеки SwitcherCAD, транзистор, который мы добавили к шунтирующему стабилизатору, в конфигурации, известной как Emitter-Follower . Это означает, что напряжение на эмиттер следует за напряжением на базе (с небольшим смещением обычно от 0,6 до 0,7 В). Коэффициент усиления по напряжению такой схемы чуть меньше 1.

Таким образом, если напряжение базы поддерживается на уровне 5,6 В, напряжение на эмиттере будет быть примерно от 4,9 до 5.0 Вольт.

Прежде чем двигаться дальше, убедитесь, что вы запрограммировали V1 как источник напряжения 12 В.

Чтобы сделать симуляцию более интересной, мы проведем развертку постоянного тока по току.

Нажмите Simulate-> Edit Simulation Cmd и выберите DC sweep . Введите значения следующим образом:

  • Название 1-го источника для проверки: I1
  • Тип развертки: линейный
  • Начальное значение: 0
  • Стоп-значение 0.1
  • Приращение: 0,001
Нажмите OK, затем нажмите кнопку «Выполнить», чтобы начать моделирование. Выберите V (выход). У вас должно получиться что-то вроде этого:


<Регулятор-2.png >>

Изменение выходного напряжения по сравнению с изменением выходного тока, которое вызвало это называется Правила нагрузки . Обычно измеряется, когда выходной ток изменяется в определенном указанном диапазоне, например от 50% до 100%.

Регулировка нагрузки выражается в процентах от выходного напряжения или в абсолютном значении.

Если мы выразим это как изменение напряжения по сравнению с изменением тока, которое вызвало он будет называться Выходное сопротивление , поскольку значение сопротивления равно равным отношению напряжения на нем к проходящему через него току.

Регулировка нагрузки = дельта (В

на выходе ) / Среднее В на выходе

Выходное сопротивление = Дельта (В

на выходе ) / Дельта (I на выходе ) В этом случае изменение выходного напряжения при изменении тока нагрузки от 50 до 100 мА составляет 40 мВ, поэтому выходное сопротивление равно.04 / 0,05 = 0,8 Ом для изменения тока нагрузки на 50%.

Регулировка нагрузки составляет 0,04 / 4,92 = 0,81%.

Обратите внимание, как напряжение быстро нарастает при малых токах (ниже нескольких мА). Это связано с тем, что при очень малом токе нагрузки базовый ток, который равен = ток нагрузки / Hfe, настолько мал, что базовое напряжение необходимое для его создания становится очень маленьким, намного ниже типичного От 0,6 до 0,7 В.

Я добавил резистор R2 (100 кОм), чтобы обеспечить минимальный ток нагрузки. а без этого резистора напряжение на свету увеличивалось бы еще больше. текущие значения I1.Например, вы можете попробовать поменять R2 на 1000k (1 мегом).

На практике, если бы схема действительно должна была работать до такой низкой токи, было бы неплохо немного уменьшить значение R2 для уменьшения роста напряжения при малых нагрузках.

С другой стороны, обратите внимание, что эта схема теперь выдает 100 мА, пока поддержание регулирования между 4,85 и 5,05 В для токов примерно между 5 мА и 100 мА.

Это было бы идеально для работы с большинством микропроцессоров с питанием 5 В.

Подавление пульсации

Подавление пульсаций – еще одна мера способности регулятора отклонять Колебания сетевого напряжения. Тем не менее, линейное регулирование, определенное выше, измеряется при статических (медленно меняющихся) изменениях входного напряжения, где подавление пульсаций измеряется при быстро меняющемся входном напряжении, обычно при сетевой частоте (60 Гц) или это вторая гармоника (120 Гц).

Если бы мы использовали реальные инструменты, мы бы измерили отклонение пульсаций наложение небольшого переменного напряжения на входное постоянное напряжение, затем измерение амплитуда того же сигнала на выходе регулятора и вычислителя Соотношение. Например, мы могли бы подать пиковое напряжение 1 В переменного тока (2 В размах), потому что это хорошо в пределах диапазона регулирования регулятора и производит расчеты Полегче.

Мы можем использовать ту же технику со Spice, хотя Spice предлагает другой метод, который мы изучим на следующем уроке.Для удобства замерим подавление пульсаций на частоте 1 кГц.

Установите источник тока I1 на фиксированное значение 50 мА, установите источник напряжения V1 на быть источником SINE со смещением 12 В постоянного тока, амплитудой 1 В и частотой 1 кГц, тогда отредактируйте команду моделирования следующим образом:

  • Анализ переходных процессов
  • Время остановки: 5 мс
  • Время начала сохранения данных: 0
Затем вернитесь к схеме, щелкните директиву “; DC” и оставьте комментарий (это должен стать синим), запустите моделирование и отобразите выходное напряжение.

Вот график пульсаций на выходе (обратите внимание на шкалу напряжения):


<Регулятор-3.png

Это график, показывающий входное напряжение и выходное напряжение в одном масштабе, Так легче оценить уменьшение пульсации:


<Регулятор-4.png

График показывает, что при питании цепи от источника пульсации 2 В (размах) (мы устанавливаем источник на 12 В постоянного тока с наложенным на него пиковым сигналом 1 В, вы можете используйте курсор для проверки), он обеспечивает регулируемый выход с пульсацией около 30 мВ размах.

Упражнения

  1. Сколько тока мы можем потребить от регулятора, прежде чем регулирование станет действительно плохим? (вы можете использовать SwitcherCAD для экспериментов).
    Какие факторы ограничивают увеличение тока?
  2. Постройте напряжение на базе транзистора на том же графике, что и выходное напряжение, чтобы увидеть разницу. Объясните разницу.
  3. Вычислите коэффициент подавления пульсаций в дБ. Поскольку пульсация измеряется в Вольты, а не ватты, уравнение составляет 20 * log (V2 / V1).
  4. Постройте график изменения выходного напряжения при температуре 25, 50 и 75 градусов C.
Щелкните здесь, чтобы увидеть ответы.

Выводы этого урока

  • Установлено, что регуляторы напряжения являются необходимой частью большинства современные электронные схемы.
  • Для регуляторов напряжения требуется источник опорного напряжения, обычно стабилитрон.
  • Регуляторы напряжения характеризуются линейным регулированием и регулированием нагрузки, характеристики подавления пульсаций и температурной стабильности.
  • Мы узнали, как использовать SPICE для получения этих значений.

В следующих уроках мы усовершенствуем стабилизатор напряжения с каскадом усиления. отдельно от силового каскада.

Ссылки

  1. Стабилитрон
  2. .

Простой регулятор напряжения с использованием 2N3055

Вы хотите использовать регулятор постоянного тока или узнать о регуляторах напряжения с использованием 2N3055. Зачем нужен этот транзистор? Обычно его можно использовать с нагрузками, которым требуется ток не более 2 А и напряжение не более 30 В.

Этого достаточно для обычных работ. Это транзистор, которым люди пользуются долгое время. Поэтому найти легко и очень дешево. Схем, использующих 2N3055, очень много.

Теперь мы рекомендуем вам 2 принципиальные схемы. Обе схемы используют стабилитрон и транзистор.

Схема регулятора постоянного тока 12 В с использованием 2N3055

Вот линейный стабилизатор 12 В 1 А с транзистором и стабилитроном. Это последовательный стабилизатор напряжения, поскольку ток нагрузки проходит через транзистор серии .

Как показано на схеме ниже, входной клемме требуется нерегулируемый источник постоянного тока, от 15 В до 20 В . Затем на нагрузку выйдет регулируемое напряжение.


Линейный стабилизатор напряжения 12 В 1A с транзистором 2n3055 и стабилитроном

Для начала, электрический ток, протекающий через резистор-R1 до , ограничивает ток на стабилитроне. Таким образом, он обеспечивает опорное напряжение.
Там же, напряжение базы транзистора-Q1 также является постоянным.

Когда ZD1 составляет 12 В, базовое напряжение также равно 12 В.

Рекомендуем: Что такое стабилитрон и принцип работы

Если поставить транзистор в таком виде. Выходное напряжение такое же, как напряжение на стабилитроне . И мы всегда называем это эмиттер-повторителем. На практике выходное напряжение ниже ZD1. Потому что при транзисторе работает. Он должен иметь напряжение база-эмиттер.

  • VBE = напряжение база-эмиттер
  • VZD = напряжение стабилитрона
  • Vout = выходное напряжение

Vout = VZD – VBE
VBe = 0.6V
Vout = 12V – 0.6V = 11.4V

Посмотрите на рисунок, и вы поймете больше.

Это напряжение по-прежнему подходит для многих нагрузок, использующих источник питания 12 В , таких как радиоприемники.

Поскольку это блок питания , регулирует определенную выходную мощность.

В схеме транзистор имеет правильное усиление, этому помогает изменение VBE.

  • Когда нагрузка потребляет больше тока. Обычно выходное напряжение низкое. Но напряжение база-эмиттер повышается, транзистор Q1 работает больше.Таким образом, он поддерживает постоянное выходное напряжение.
  • Затем, если нагрузка использует меньший ток. Выходное напряжение увеличивается. Но на выходе по-прежнему фиксированное напряжение. Поскольку напряжение база-эмиттер меньше, транзистор Q1 тоже работает меньше.

Преимущество этой схемы, мы можем использовать крошечный ток на стабилитрон и базу транзистора. Таким образом, он имеет гораздо более стабильный выход.

Функции других компонентов

  • C1 – сглаживающий конденсатор на входе.
  • C2 поддерживает более стабильное опорное напряжение.
  • C3 – это развязывающий конденсатор емкостью 0,047 мкФ для фильтрации переходных шумов.
  • R1 увеличивает стабильность цепи нагрузки
  • Вы знаете, что такое переходные шумы?
    Блок питания имеет паразитное магнитное поле. Схема будет вводить их в переходной шум. Транзистор 2N3055 может питать ток нагрузки до . Но так жарко. Так что нужен правильный радиатор.

Потери мощности в цепи последовательного регулятора

Хорошая конструкция цепи питания.Это должно свести к минимуму потери энергии в цепи. Конечно, энергия будет выражаться теплом.

В эту серию проходят транзисторные стабилизаторы. Транзистор-Q1 работает как резистор. Когда мы учитываем потерю мощности. Он должен рассеять или уменьшить его.

Вы видите изображение? Это просто. Позвольте мне вам объяснить.

Рассмотрим три случая ниже:

В этих трех примерах A, B и C. Выходы – 15 В, 12 В и 5 В. На 1А ток.

Знаете ли вы, какой транзистор имеет наибольшие тепловые потери? Или…
Какой транзистор нагревается больше всего?
Да, пример C.Почему?
Потому что причина проста.

На транзисторе C падает максимальное напряжение. Это фактически капельный резистор, который должен рассеивать тепло в соответствии с законом Ома.

Вот пример каждого случая:

  • В случае A:
    Напряжение на транзисторе (VCE) составляет 20 В -15 В = 5 В.
    Требуется рассеиваемая мощность 5 В x 1 А = 5 Вт.
  • В случае B:
    напряжение на транзисторе (VCE) составляет 20 В -12 В = 7 В.
    Требуется рассеиваемая мощность 7 В x 1 А = 7 Вт.

Но…

  • В случае C :
    VEC составляет 20 В-5 В = 15 В; Итак, мощность 15 Вт.

Короткозамкнутый корпус

При коротком замыкании источника питания. Все входное напряжение будет падать на силовой транзистор. И это приведет к огромным проблемам с отоплением.

Итак, по этой причине мы должны держать его холодным с помощью эффективного радиатора.

Источник питания 38 В с использованием 2N3055

Мой друг изучает ЧПУ, ему нужен регулируемый источник питания 38 В для серводвигателя.У нас есть много способов использовать это, но то, что лучше для него. Эта схема – один из правильных вариантов. Потому что у него есть все оборудование. Не нужно покупать новый.

Как работает эта схема

В качестве основной идеи мы используем простой стабилизатор напряжения на стабилитроне и два транзистора для увеличения тока нагрузки на 1–2 А.

Этот регулируемый источник питания включает в себя трансформатор-T1, мост-D1… D4 и цепи стабилизатора напряжения с фильтрацией постоянного тока 38 В, которые состоят из C1, C2, R1, R2, R3, Q1 и Q2.

При наличии 230 ВА или 120 В переменного тока (США) понижающий трансформатор T1 изменяет переменный ток в линии питания примерно на 30 В переменного тока. Двухполупериодный выпрямительный мост с D1 по D4 для преобразования переменного тока в пульсирующий постоянный ток, который затем фильтруется C1.

Конденсатор C1, C3 действует как накопительный конденсатор или фильтрует шум и выбросы переменного тока. Стабилитрон 40 В ZD1 поддерживает постоянное напряжение на базе транзистора Q1 NPN BD139 и транзистора Q2-2N3055 в форме Дарлингтона.

Электролитический конденсатор C2 используется для сглаживания напряжения стабилитрона.Это обеспечивает постоянное напряжение 38 В и высокую мощность на резисторе R3 и на выходных клеммах (+) и (-).

Когда выход подключен к низкоомной нагрузке, силовой транзистор Q2 сильно нагревается, поэтому мы всегда используем на нем радиатор.

CR: 2N3055, фото STS

Детали, которые вам понадобятся

Полупроводники:

  • D1-D1: 1N4002, 100V 1A Диоды
  • ZD1: 40V 1w Zener D 80 В 1.5A NPN транзистор
  • Q2: 2N3055 или TIP3055 100V, 15A, NPN транзистор

Резисторы (все 0,25 Вт, 5% металлическая / углеродная пленка, если не указано иное)

Электролитические конденсаторы

    : 470 мкФ 50 В
  • C2: 47 мкФ 50 В
  • C3: 100 мкФ 50 В

T1: 230 В или 120 В переменного тока первичная обмотка на 30 В, вторичный трансформатор 1A-2A

SW1: Переключатель питания
F1: предохранитель 0,5 A

Примечание:
Вы можете использовать мостиковый диод 2A-4A 200 В вместо D1-D4.Трансформатор используется минимум 2А для нагрузки 1-2А. Эта схема имеет

Вернуться к просмотру:

Транзисторный регулятор напряжения

ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ

Я всегда стараюсь сделать Electronics Learning Easy .

Регуляторы напряжения, схемы, типы, принцип работы, конструкция, применение

Регулятор напряжения предназначен для автоматического «регулирования» уровня напряжения. Он в основном снижает входное напряжение до желаемого уровня и поддерживает его на том же уровне во время подачи питания.Это гарантирует, что даже при приложении нагрузки напряжение не падает.

Таким образом, регулятор напряжения используется по двум причинам: –

  1. Для регулирования или изменения выходного напряжения цепи.
  2. Для поддержания постоянного выходного напряжения на желаемом уровне, несмотря на колебания напряжения питания или тока нагрузки.

Чтобы узнать больше об основах этого предмета, вы также можете обратиться к Регулируемый источник питания .

Регуляторы напряжения

находят свое применение в компьютерах, генераторах переменного тока, электростанциях, где схема используется для управления мощностью установки.Регуляторы напряжения можно разделить на электромеханические и электронные. Его также можно классифицировать как регуляторы переменного тока или регуляторы постоянного тока.

Мы уже рассказали о регуляторах напряжения IC .

Электронный регулятор напряжения

Все электронные регуляторы напряжения имеют стабильный источник опорного напряжения, который обеспечивается рабочим диодом обратного напряжения пробоя, называемым стабилитроном. Основная причина использования регулятора напряжения – поддержание постоянного выходного напряжения постоянного тока.Он также блокирует пульсации переменного напряжения, которые не могут быть заблокированы фильтром. Хороший регулятор напряжения может также включать в себя дополнительные схемы защиты, такие как короткое замыкание, схему ограничения тока, тепловое отключение и защиту от перенапряжения.

Электронные регуляторы напряжения разработаны на основе любого из трех или комбинации любого из трех регуляторов, указанных ниже.

1. Транзисторный стабилизатор напряжения с стабилитроном

Стабилизатор напряжения, управляемый стабилитроном, используется, когда эффективность регулируемого источника питания становится очень низкой из-за высокого тока.Существует два типа транзисторных стабилизаторов напряжения, управляемых стабилитроном.

Стабилизатор напряжения серии управляемых транзисторов Зенера

Такую схему еще называют регулятором напряжения с эмиттерным повторителем. Он назван так потому, что используемый транзистор подключен по схеме эмиттерного повторителя. Схема состоит из транзистора N-P-N и стабилитрона. Как показано на рисунке ниже, выводы коллектора и эмиттера транзистора включены последовательно с нагрузкой. Таким образом, этот регулятор имеет в себе именную серию.Используемый транзистор представляет собой транзистор с последовательным проходом.

Стабилизатор напряжения на управляемых стабилитронах серии

Выходной сигнал выпрямителя, который отфильтрован, затем подается на входные клеммы, и на нагрузочном резисторе Rload получается регулируемое выходное напряжение Vload. Опорное напряжение обеспечивается стабилитроном, а транзистор действует как переменный резистор, сопротивление которого изменяется в зависимости от рабочих условий тока базы Ibase.

Основной принцип работы такого регулятора заключается в том, что большая часть изменения напряжения питания или входного напряжения возникает на транзисторе, и, таким образом, выходное напряжение имеет тенденцию оставаться постоянным.

Таким образом, выходное напряжение можно записать как

.

Ваут = Взенер – Вбе

Напряжение базы транзистора Vbase и напряжение стабилитрона Vzener равны, поэтому значение Vbase остается почти постоянным.

Эксплуатация

Когда входное напряжение питания Vin увеличивается, выходное напряжение Vload также увеличивается. Это увеличение Vload вызовет снижение напряжения Vbe эмиттера базы транзистора, поскольку напряжение стабилитрона Vzener является постоянным.Это уменьшение Vbe вызывает снижение уровня проводимости, что дополнительно увеличивает сопротивление коллектор-эмиттер транзистора и, таким образом, вызывает увеличение напряжения коллектор-эмиттер транзистора, и все это вызывает уменьшение выходного напряжения Vout. Таким образом, выходное напряжение остается постоянным. Работа аналогична при уменьшении входного напряжения питания.

Следующим условием будет влияние изменения выходной нагрузки на выходное напряжение. Рассмотрим случай, когда ток увеличивается за счет уменьшения сопротивления нагрузки Rload.Это вызывает уменьшение значения выходного напряжения и, таким образом, вызывает увеличение напряжения эмиттера базы транзистора. Это вызывает уменьшение сопротивления коллектора-эмиттера из-за увеличения уровня проводимости транзистора. Это приводит к небольшому увеличению входного тока и, таким образом, компенсирует уменьшение сопротивления нагрузки Rload.

Самым большим преимуществом этой схемы является то, что изменения тока стабилитрона уменьшаются в β раз, и, таким образом, эффект стабилитрона значительно снижается, и получается гораздо более стабильный выходной сигнал.

Выходное напряжение последовательного регулятора Vout = Vzener – Vbe. Ток нагрузки Iload схемы будет максимальным током эмиттера, который может пройти транзистор. Для обычного транзистора, такого как 2N3055, ток нагрузки может доходить до 15 А. Если ток нагрузки равен нулю или не имеет значения, то ток, потребляемый от источника питания, можно записать как Izener + Ic (min). Такой регулятор напряжения с эмиттерным повторителем более эффективен, чем обычный стабилизатор напряжения. Обычный стабилитрон, в котором есть только резистор и стабилитрон, должен обеспечивать ток базы транзистора.

Ограничения

Ограничения, перечисленные ниже, доказали, что использование этого последовательного регулятора напряжения подходит только для низких выходных напряжений.

  1. С повышением температуры в помещении значения Vbe и Vzener имеют тенденцию к уменьшению. Таким образом, выходное напряжение нельзя поддерживать постоянным. Это еще больше увеличит напряжение эмиттера базы транзистора и, следовательно, нагрузку.
  2. Нет возможности изменить выходное напряжение в цепи.
  3. Из-за небольшого процесса усиления, обеспечиваемого только одним транзистором, схема не может обеспечить хорошее регулирование при высоких токах.
  4. По сравнению с другими регуляторами, этот регулятор имеет плохое регулирование и подавление пульсаций при изменении входного сигнала.
  5. Рассеиваемая мощность проходного транзистора велика, потому что она равна Vcc Ic, и почти все изменения возникают при Vce, а ток нагрузки приблизительно равен току коллектора. Таким образом, при прохождении больших нагрузочных токов транзистор должен рассеивать большую мощность и, следовательно, нагреваться.

Шунтирующий стабилизатор напряжения транзистора с стабилитроном

На изображении ниже показана принципиальная схема шунтирующего регулятора напряжения.Схема состоит из NPN-транзистора и стабилитрона, а также последовательного резистора Rseries, подключенного последовательно с входным источником питания. Стабилитрон подключен к базе и коллектору транзистора, который подключен к выходу.

Транзисторный шунтирующий стабилизатор напряжения с стабилитроном

Operation

Поскольку в последовательном сопротивлении Rseries наблюдается падение напряжения, вместе с ним уменьшается и нерегулируемое напряжение. Величина падения напряжения зависит от тока, подаваемого на нагрузку Rload.Величина напряжения на нагрузке зависит от стабилитрона и напряжения эмиттера базы транзистора Vbe.

Таким образом, выходное напряжение можно записать как

Vout = Vzener + Vbe = Vin – I.Rseries

Выход остается почти постоянным, поскольку значения Vzener и Vbe почти постоянны. Это условие объясняется ниже.

Когда напряжение питания увеличивается, выходное напряжение и напряжение эмиттера базы транзистора увеличивается и, таким образом, увеличивается базовый ток Ibase и, следовательно, увеличивается ток коллектора Icoll (Icoll = β.Ibase).

Таким образом, напряжение питания увеличивается, вызывая увеличение тока питания, который, в свою очередь, вызывает падение напряжения на последовательном сопротивлении Rseries и тем самым снижает выходное напряжение. Этого уменьшения будет более чем достаточно, чтобы компенсировать первоначальное увеличение выходного напряжения. Таким образом, выпуск остается почти постоянным. Работа, описанная выше, происходит в обратном порядке, если напряжение питания снижается.

Когда сопротивление нагрузки Rload уменьшается, ток нагрузки Iload увеличивается из-за уменьшения токов через базу и коллектор Ibase и Icoll.Таким образом, на Rseries не будет падения напряжения, а входной ток останется постоянным. Таким образом, выходное напряжение останется постоянным и будет разницей между напряжением питания и падением напряжения на последовательном сопротивлении. Это происходит наоборот, если увеличивается сопротивление нагрузки.

Ограничения

Последовательный резистор вызывает огромные потери мощности.

1. Ток питания через транзистор будет больше, чем через нагрузку.

2. В цепи могут быть проблемы, связанные с перенапряжением.

2. Дискретный транзисторный регулятор напряжения

Дискретные транзисторные регуляторы напряжения можно разделить на два. Они объясняются ниже. Эти две схемы способны производить регулируемое выходное постоянное напряжение, которое регулируется или поддерживается на заданном уровне, даже если входное напряжение изменяется или нагрузка, подключенная к выходному зажиму, изменяется.

Стабилизатор напряжения на дискретных транзисторах

Блок-схема дискретного стабилизатора напряжения транзисторного типа приведена ниже.Элемент управления размещен для сбора нерегулируемого входа, который контролирует величину входного напряжения и передает его на выход. Затем выходное напряжение возвращается в схему выборки, затем сравнивается с опорным напряжением и отправляется обратно на выход.

Стабилизатор напряжения

на дискретных транзисторах Таким образом, если выходное напряжение имеет тенденцию к увеличению, схема компаратора выдает управляющий сигнал, чтобы заставить элемент управления уменьшать величину выходного напряжения, пропуская его через схему выборки и сравнивая его, тем самым поддерживая постоянное значение. и стабильное выходное напряжение.

Предположим, что выходное напряжение имеет тенденцию к снижению, схема компаратора выдает управляющий сигнал, который заставляет последовательный элемент управления увеличивать величину выходного напряжения, таким образом поддерживая стабильность.

Шунтирующий стабилизатор напряжения на дискретных транзисторах

Блок-схема дискретного транзисторного шунтирующего стабилизатора напряжения приведена ниже. Как следует из названия, регулирование напряжения обеспечивается за счет отвода тока от нагрузки. Элемент управления шунтирует часть тока, возникающего в результате входного нерегулируемого напряжения, подаваемого на нагрузку.Таким образом, напряжение регулируется на нагрузке. Из-за изменения нагрузки, если есть изменение выходного напряжения, оно будет скорректировано путем подачи сигнала обратной связи в схему компаратора, которая сравнивается с опорным напряжением и передает выходной управляющий сигнал на элемент управления для корректировки величины. сигнала, необходимого для отвода тока от нагрузки.

Шунтирующий стабилизатор напряжения на дискретных транзисторах

Если выходное напряжение увеличивается, шунтирующий ток увеличивается и, таким образом, создается меньший ток нагрузки и поддерживается стабилизированное выходное напряжение.Если выходное напряжение уменьшается, ток шунта уменьшается и, таким образом, создается больший ток нагрузки и поддерживается постоянное регулируемое выходное напряжение. В обоих случаях важную роль играют схема выборки, схема компаратора и элемент управления.

Ограничения транзисторных регуляторов напряжения

Устойчивое и стабилизированное выходное напряжение, получаемое от регулятора, ограничено диапазоном напряжения (30-40) вольт. Это связано с малым значением максимального напряжения коллектор-эмиттер транзистора (50 Вольт).Это ограничивает использование транзисторных источников питания.

3. Электромеханический регулятор

Как следует из названия, это регулятор, сочетающий в себе электрические и механические характеристики. Процесс регулирования напряжения осуществляется спиральным измерительным проводом, который действует как электромагнит. Магнитное поле создается соленоидом в соответствии с протекающим через него током. Это магнитное поле притягивает движущийся материал сердечника из железа, который связан с натяжением пружины или силой тяжести.Когда напряжение увеличивается, ток усиливает магнитное поле, поэтому сердечник притягивается к соленоиду. Магнит физически связан с механическим переключателем. Когда напряжение уменьшается, магнитное поле, создаваемое сердечником, уменьшается, поэтому натяжение пружины заставляет сердечник втягиваться. Это замыкает механический переключатель и позволяет току течь.

Если конструкция механического регулятора чувствительна к небольшим колебаниям напряжения, к соленоиду может быть добавлен селекторный переключатель в диапазоне сопротивлений или обмотки трансформатора для постепенного повышения и понижения выходного напряжения или для изменения положения подвижного элемента. катушка регулятора переменного тока.

Ранее автомобильные генераторы и генераторы переменного тока содержали механические регуляторы. В регуляторах такого типа процесс осуществляется одним, двумя или тремя реле и различными резисторами, чтобы установить выходную мощность генератора чуть более 6 или 12 вольт, и этот процесс не зависит от частоты вращения двигателя или нагрузки, изменяющейся на транспортном средстве. электрическая система. Реле используются для выполнения широтно-импульсной модуляции для регулирования выходной мощности генератора и управления током возбуждения, проходящим через генератор.

Регулятор, используемый для генераторов постоянного тока, отключается от генератора, когда он не работает, чтобы предотвратить обратный поток электричества от батареи к генератору. В противном случае он будет работать как мотор.

4. Автоматический регулятор напряжения (АРН)

Этот активный системный регулятор в основном используется для регулирования выходного напряжения очень больших генераторов, которые обычно используются на кораблях, нефтяных вышках, больших зданиях и т. Д. Схема AVR сложна и состоит из всех активных и пассивных элементов, а также микроконтроллеров.Основной принцип работы AVR такой же, как и у обычного регулятора напряжения. Входное напряжение возбудителя генератора контролируется АРН, и когда напряжение генератора увеличивается или уменьшается, выходное напряжение генератора автоматически увеличивается или уменьшается. Будет предопределенная уставка, по которой АРН определяет величину напряжения, которое должно передаваться на возбудитель каждую миллисекунду. Таким образом регулируется выходное напряжение. Та же операция становится более сложной, когда только один АРН используется для регулирования нескольких генераторов, подключенных параллельно.

5. Трансформатор постоянного напряжения (CVT)

В некоторых случаях вариатор также используется в качестве регулятора напряжения. CVT состоит из резонансной обмотки высокого напряжения и конденсатора, который производит регулируемое выходное напряжение для любого типа входного переменного тока. Как и обычный трансформатор, вариатор имеет первичную и вторичную обмотки. Первичная обмотка находится на стороне магнитного шунта, а вторичная обмотка – на противоположной стороне с настроенной цепью катушки. Регулирование поддерживается за счет магнитного насыщения вторичных обмоток.Чтобы узнать больше о вариаторах, ознакомьтесь с нашей статьей – Трансформатор постоянного напряжения .

Некоторые применения регуляторов напряжения

  • Используется во всех блоках питания электронных гаджетов для регулирования напряжения и спасения устройства от повреждений
  • Используется с генератором двигателей внутреннего сгорания для регулирования выходной мощности генератора.
  • Используется для электронных схем для подачи точного количества напряжения

Примечание: Стабилизаторы напряжения отличаются от стабилизаторов напряжения.Регуляторы используются для понижения напряжения до желаемого уровня, тогда как стабилизатор «стабилизирует» напряжение. Регуляторы в основном используются для постоянного тока, а стабилизаторы – для переменного тока. Стабилизаторы удерживают напряжение от слишком высокого или слишком низкого, чтобы не повредить подключенное к нему устройство, например телевизор или холодильник.

Простые регуляторы напряжения Часть 1: Шум

Простые регуляторы напряжения

Часть 1.4: Тесты и графики

[Итальянская версия]

Двухтранзисторный шунтирующий регулятор

Это разновидность простой конструкции шунтирующего регулятора, которая витала в сети.Это усилитель с единичным усилением (благодаря обратной связи через C1), который состоит из элемента усиления Q1 и повторителя Q2. В этом конкретном случае коэффициент усиления разомкнутого контура Q1 увеличивается сверх обычного за счет резистора R3 с большим номиналом, соединенного с промежуточным напряжением питания 15 В между капельницами R2 и R10. Это избыточное усиление служит для уменьшения выходного сопротивления замкнутого контура этого регулятора до 50 мОм, вплоть до 1 МГц. Возможны альтернативные схемы, которые дают еще больший коэффициент усиления без обратной связи, а именно с использованием активной нагрузки для Q1.Работа с этим усилением может потребовать некоторой формы компенсации для поддержания стабильности схемы: действительно, одна из моих четырех реализаций время от времени прерывается в слабые (*) колебания, если между коллектором Q1 и землей не присутствует 22 пФ.

(* «Слабые» в отличие от «диких» колебаний TL431: дискретный шунт излучает чистый синусоидальный сигнал 8 мВ на частоте около 1 кГц, в то время как 431 генерирует 100 мВ или более широкополосного хэша.)

Как и следовало ожидать, шум такой же низкий, как и у фильтрованного стабилитрона, и он остается таким же полностью независимо от наличия или размера выходного конденсатора.Гармоники 100 Гц, связанные с сетью, также исчезли.


Щелочные батареи

Батареи имеют репутацию идеальных источников питания для аудио. Что ж, давайте проверим это! Путем быстрого взлома несколько батарей были подключены к плюсу тестового усилителя (розовые следы на графиках). Для справки был использован обойденный LM337 для отрицательного питания (синие кривые).

Верхний график представляет собой щелочную батарею 9 В, используемую без выходного конденсатора, а нижний график такой же, теперь с конденсатором ZL 220 мкФ.Результаты довольно хороши и почти на одном уровне с двумя активными источниками с фильтром Зенера. Есть недостаток: это неперезаряжаемый аккумулятор, поэтому эксплуатационные расходы могут быть высокими, хотя это никогда не мешало японскому производителю высокого класса Final выпускать ряд фонокорректоров, предусилителей и усилителей мощности, работающих от неперезаряжаемых аккумуляторов.


Никель-кадмиевые аккумуляторные батареи

Но для этого у нас есть NiCd, не так ли?

Нет, действительно: шум никель-кадмиевого выхода значительно выше, чем у щелочного, особенно в нижних частях.(Это без выходного конденсатора).

По какой-то причине я затем снова измерил то же самое и обнаружил, что спектр выше: отличный от первого. Ах, значит, никель-кадмиевые даже не остаются стабильными во времени.

Затем я измерил еще раз, увеличив ток нагрузки с 10 мА до 35 мА.

Наконец добавил конденсатор на 220 мкФ. Все это очень подозрительно, поэтому давайте посмотрим на записанную форму выходного напряжения батареи:

Приведенный выше образец является полностью репрезентативным: имеется постоянный минимальный уровень шума, перемежающийся с внезапными переходными процессами и последующим медленным восстановлением.


Свинцовые аккумуляторные батареи

У меня нет свинцово-кислотных обвинений, но вышеупомянутый сюжет был любезно подарен другим мастером-мастером ALW (оригиналы можно найти здесь). Имейте в виду, что испытательная установка отличалась от моей, поэтому результаты нельзя сравнивать с вышеуказанными измерениями шума. Шум разгруженной батареи – розовый график. Это действительно на 10 дБ ниже, чем синяя кривая, полученная от дискретного малошумящего регулятора. Однако увеличение тока нагрузки до 35 мА дает голубой след для батареи: как минимум на 20 дБ хуже, чем у регулятора!

[ Страница 1 ] [ страница 2 ] [страница 3] [страница 4]

© Copyright 2004 Вернер Ожирс, www.tnt-audio.com

Типы регуляторов напряжения: работа и их ограничения

В источнике питания регуляторы напряжения играют ключевую роль. Итак, прежде чем переходить к обсуждению регулятора напряжения, мы должны знать, какова роль источника питания при проектировании системы? Например, в любой рабочей системе, такой как смартфон, наручные часы, компьютер или ноутбук, источник питания является важной частью для работы системы Owl, поскольку он обеспечивает последовательное, надежное и непрерывное питание внутренних компонентов системы.В электронных устройствах источник питания обеспечивает стабильную, а также регулируемую мощность для правильной работы цепей. Источники питания бывают двух типов, например, источник питания переменного тока, который поступает от сетевых розеток, и источник питания постоянного тока, который поступает от батарей. Итак, в этой статье рассматривается обзор различных типов регуляторов напряжения и их работы.


Что такое регулятор напряжения?

Регулятор напряжения используется для регулирования уровней напряжения. Когда требуется стабильное и надежное напряжение, предпочтительным устройством является регулятор напряжения.Он генерирует фиксированное выходное напряжение, которое остается постоянным при любых изменениях входного напряжения или условий нагрузки. Он действует как буфер для защиты компонентов от повреждений. Стабилизатор напряжения – это устройство с простой конструкцией с прямой связью, в котором используются контуры управления с отрицательной обратной связью.

Регулятор напряжения

Существует два основных типа регуляторов напряжения: линейные регуляторы напряжения и импульсные регуляторы напряжения; они используются в более широких приложениях. Линейный регулятор напряжения – самый простой тип регулятора напряжения.Он доступен в двух типах, которые являются компактными и используются в системах с низким энергопотреблением и низким напряжением. Обсудим различные типы регуляторов напряжения.

Основными компонентами , используемыми в регуляторе напряжения , являются

  • Цепь обратной связи
  • Стабильное опорное напряжение
  • Цепь управления проходным элементом

Процесс регулирования напряжения очень прост благодаря использованию трех вышеуказанных компонентов. Первый компонент регулятора напряжения, такой как цепь обратной связи, используется для обнаружения изменений в выходном напряжении постоянного тока.На основе опорного напряжения, а также обратной связи может быть сгенерирован управляющий сигнал, который приводит в действие элемент Pass для компенсации изменений.

Здесь проходной элемент – это один из видов твердотельного полупроводникового устройства, похожий на BJT-транзистор, PN-Junction Diode в противном случае MOSFET. Теперь выходное напряжение постоянного тока можно поддерживать приблизительно стабильным.


Работа регулятора напряжения

Схема регулятора напряжения используется для создания, а также для поддержания постоянного выходного напряжения, даже когда входное напряжение в противном случае изменяется.Регулятор напряжения получает напряжение от источника питания, и его можно поддерживать в диапазоне, который хорошо подходит для остальных электрических компонентов. Чаще всего эти регуляторы используются для преобразования мощности постоянного / постоянного тока, переменного / переменного тока или переменного / постоянного тока.

Типы регуляторов напряжения и их работа

Эти регуляторы могут быть реализованы посредством интегральных схем или дискретных компонентных схем. Стабилизаторы напряжения подразделяются на два типа: линейный регулятор напряжения и импульсный регулятор напряжения.Эти регуляторы в основном используются для регулирования напряжения в системе, однако линейные регуляторы работают с низким КПД, а импульсные регуляторы работают с высоким КПД. В импульсных регуляторах с высоким КПД большая часть i / p-мощности может передаваться на o / p без рассеивания.

Типы регуляторов напряжения

В основном существует два типа регуляторов напряжения: линейный регулятор напряжения и импульсный регулятор напряжения.

  • Существует два типа линейных регуляторов напряжения: последовательные и шунтовые.
  • Существует три типа импульсных регуляторов напряжения: повышающие, понижающие и инверторные регуляторы напряжения.

Линейные регуляторы напряжения

Линейный регулятор действует как делитель напряжения. В омической области используется полевой транзистор. Сопротивление регулятора напряжения меняется в зависимости от нагрузки, что приводит к постоянному выходному напряжению. Линейные регуляторы напряжения – это оригинальный тип регуляторов, используемых для регулирования источников питания. В этом типе регулятора переменная проводимость активного проходного элемента, такого как MOSFET или BJT, отвечает за изменение выходного напряжения.

Как только нагрузка объединена, изменения на любом входе, в противном случае нагрузка приведет к разнице в токе по всему транзистору, чтобы поддерживать постоянный выход. Чтобы изменить ток транзистора, он должен работать в активной, иначе омической области.

Во время этой процедуры этот тип регулятора рассеивает много энергии, потому что сетевое напряжение падает внутри транзистора и рассеивается подобно теплу. Как правило, эти регулирующие органы делятся на разные категории.

  • Положительный Регулируемый
  • Отрицательный Регулируемый
  • Фиксированный выход
  • Отслеживание
  • Плавающий
Преимущества

К преимуществам линейного регулятора напряжения относятся следующие.

  • Обеспечивает низкую пульсацию выходного напряжения
  • Быстрое время отклика на нагрузку или изменение линии
  • Низкие электромагнитные помехи и меньший шум
Недостатки

К недостаткам линейного регулятора напряжения относятся следующие.

  • Очень низкий КПД
  • Требуется большое пространство – необходим радиатор
  • Напряжение выше входа не может быть увеличено
Регуляторы напряжения серии

В последовательном регуляторе напряжения используется регулируемый элемент, последовательно включенный с нагрузкой. Изменяя сопротивление этого последовательного элемента, можно изменить падение напряжения на нем. И напряжение на нагрузке остается постоянным.

Количество потребляемого тока эффективно используется нагрузкой; это главное преимущество последовательного регулятора напряжения.Даже когда нагрузка не требует тока, последовательный регулятор не потребляет полный ток. Следовательно, последовательный стабилизатор значительно эффективнее шунтирующего регулятора напряжения.

Шунтирующие регуляторы напряжения

Шунтирующий регулятор напряжения работает, обеспечивая путь от напряжения питания к земле через переменное сопротивление. Ток через шунтирующий регулятор отклоняется от нагрузки и бесполезно течет на землю, что делает эту форму, как правило, менее эффективной, чем последовательный регулятор.Однако он проще, иногда состоит только из диода опорного напряжения и используется в схемах с очень низким энергопотреблением, в которых потери тока слишком малы, чтобы вызывать беспокойство. Эта форма очень распространена для схем опорного напряжения. Шунтирующий регулятор обычно может только поглощать (поглощать) ток.

Применение шунтирующих регуляторов

Шунтирующие регуляторы используются в:

  • Импульсные источники питания с низким выходным напряжением
  • Цепи источника и приемника тока
  • Усилители ошибки
  • Регулируемые линейные и импульсные источники питания напряжения или тока
  • Напряжение Мониторинг
  • Аналоговые и цифровые схемы, требующие точных эталонов
  • Прецизионные ограничители тока

Импульсные регуляторы напряжения

Импульсный регулятор быстро включает и выключает последовательные устройства.Рабочий цикл переключателя устанавливает количество заряда, передаваемого нагрузке. Это контролируется механизмом обратной связи, аналогичным линейному регулятору. Импульсные регуляторы эффективны, потому что последовательный элемент либо полностью проводит ток, либо выключен, потому что он почти не рассеивает мощность. Импульсные регуляторы способны генерировать выходное напряжение, превышающее входное напряжение, или противоположную полярность, в отличие от линейных регуляторов.

Импульсный регулятор напряжения быстро включается и выключается для изменения выхода.Он требует управляющего генератора, а также заряжает компоненты накопителя.

В импульсном регуляторе с частотно-импульсной модуляцией, изменяющейся частотой, постоянным рабочим циклом и спектром шума, налагаемым PRM, изменяются; отфильтровать этот шум труднее.

Импульсный стабилизатор с широтно-импульсной модуляцией, постоянной частотой, изменяющимся рабочим циклом, эффективен и легко отфильтровывает шум.
В импульсном регуляторе ток в непрерывном режиме через катушку индуктивности никогда не падает до нуля.Это обеспечивает максимальную выходную мощность. Это дает лучшую производительность.

В импульсном стабилизаторе ток в прерывистом режиме через катушку индуктивности падает до нуля. Это дает лучшую производительность при низком выходном токе.

Топологии коммутации

Имеется два типа топологий: диэлектрическая изоляция и неизолированная.

Изолированный

Он основан на радиации и интенсивных средах. Опять же, изолированные преобразователи подразделяются на два типа, в том числе следующие.

  • Обратные преобразователи
  • Прямые преобразователи

В перечисленных выше изолированных преобразователях рассматривается тема импульсных источников питания.

Без изоляции

Он основан на небольших изменениях Vout / Vin. Примеры: повышающий регулятор напряжения (Boost) – увеличивает входное напряжение; Step Down (Buck) – снижает входное напряжение; Повышение / Понижение (повышение / понижение) Регулятор напряжения – понижает, повышает или инвертирует входное напряжение в зависимости от контроллера; Зарядный насос – обеспечивает многократный ввод без использования индуктора.

Опять же, неизолированные преобразователи подразделяются на разные типы, однако наиболее важными из них являются

  • Понижающий преобразователь или понижающий регулятор напряжения
  • Повышающий преобразователь или повышающий регулятор напряжения
  • Понижающий или повышающий преобразователь

Преимущества топологий коммутации

Основными преимуществами импульсного источника питания являются эффективность, размер и вес. Это также более сложная конструкция, способная обеспечить более высокую энергоэффективность.Импульсный регулятор напряжения может обеспечивать выходной сигнал, который больше или меньше, или инвертирует входное напряжение.

Недостатки топологий коммутации

  • Повышенное пульсирующее напряжение на выходе
  • Более медленное переходное время восстановления
  • EMI производит очень шумный выходной сигнал
  • Очень дорогой

Повышающие переключающие преобразователи, также называемые повышающими импульсными регуляторами, обеспечивают более высокое выходное напряжение за счет увеличения входного напряжения.Выходное напряжение регулируется до тех пор, пока потребляемая мощность находится в пределах выходной мощности схемы. Для управления гирляндой светодиодов используется повышающий импульсный регулятор напряжения.

Повышающие регуляторы напряжения

Предположим, что вывод цепи без потерь = Pout (входная и выходная мощности одинаковы)

Тогда V на входе I на входе = V на выходе I на выходе ,

I на выходе / I in = (1-D)

Из этого следует, что в этой схеме

  • мощности остаются прежними
  • Напряжение увеличивается
  • Ток уменьшается
  • Эквивалентно трансформатору постоянного тока
Понижающее (понижающее) напряжение Регулятор

Понижает входное напряжение.

Понижающие регуляторы напряжения

Если входная мощность равна выходной мощности, то

P на входе = P на выходе ; V вход I вход = V выход I выход ,

I выход / I дюйм = V вход / V выход = 1 / D

Понижающий преобразователь эквивалентен к трансформатору постоянного тока, в котором коэффициент передачи находится в диапазоне 0-1.

Повышение / Понижение (повышение / понижение)

Его также называют инвертором напряжения.Используя эту конфигурацию, можно повышать, понижать или инвертировать напряжение в соответствии с требованиями.

  • Выходное напряжение имеет полярность, противоположную входной.
  • Это достигается за счет прямого смещения VL-диода с обратным смещением во время выключения, выработки тока и зарядки конденсатора для выработки напряжения во время выключения.
  • Используя этот тип импульсного стабилизатора, можно достичь эффективности 90%.
Повышающие / понижающие регуляторы напряжения

Регуляторы напряжения генератора

Генераторы переменного тока вырабатывают ток, необходимый для удовлетворения электрических требований транспортного средства при работе двигателя.Он также восполняет энергию, которая используется для запуска автомобиля. Генератор переменного тока может производить больше тока на более низких скоростях, чем генераторы постоянного тока, которые когда-то использовались в большинстве транспортных средств. Генератор состоит из двух частей.

Регулятор напряжения генератора

Статор – это неподвижный компонент, который не движется. Он содержит набор электрических проводников, намотанных катушками на железный сердечник.
Ротор / Якорь – Это движущийся компонент, который создает вращающееся магнитное поле любым из следующих трех способов: (i) индукцией (ii) постоянными магнитами (iii) с помощью возбудителя.

Электронный регулятор напряжения

Простой регулятор напряжения может быть изготовлен из резистора, соединенного последовательно с диодом (или серией диодов). Из-за логарифмической формы кривых V-I на диоде напряжение на диоде изменяется незначительно из-за изменений потребляемого тока или изменений на входе. Когда точный контроль напряжения и эффективность не важны, эта конструкция может работать нормально.

Электронный регулятор напряжения

Транзисторный регулятор напряжения

Электронные регуляторы напряжения имеют источник нестабильного опорного напряжения, который обеспечивается стабилитроном, который также известен как рабочий диод обратного напряжения пробоя.Он поддерживает постоянное выходное напряжение постоянного тока. Пульсации переменного напряжения заблокированы, но фильтр не может быть заблокирован. Регулятор напряжения также имеет дополнительную схему защиты от короткого замыкания, схему ограничения тока, защиту от перенапряжения и тепловое отключение.

Основные параметры регуляторов напряжения

  • Основные параметры, которые необходимо учитывать при работе регулятора напряжения, в основном включают напряжение i / p, напряжение o / p, а также ток включения / выключения. Как правило, все эти параметры в основном используются для определения топологии типа VR, хорошо согласованной или нет с ИС пользователя.
  • Другие параметры этого регулятора: частота коммутации, ток покоя; напряжение обратной связи тепловое сопротивление может применяться на основе требования
  • Ток покоя является значительным, если эффективность во всех режимах ожидания или небольшая нагрузка является основной проблемой.
  • Если рассматривать частоту коммутации как параметр, использование частоты коммутации может привести к решениям небольшой системы. Кроме того, термическое сопротивление может быть опасным для отвода тепла от устройства, а также для отвода тепла от системы.
  • Если контроллер имеет полевой МОП-транзистор, после этого все кондуктивные, а также динамические потери будут рассеиваться внутри корпуса и должны учитываться при измерении предельной температуры регулятора.
  • Наиболее важным параметром является напряжение обратной связи, поскольку оно определяет меньшее напряжение включения / выключения, которое может выдержать ИС. Это ограничивает меньшее напряжение o / p, а точность влияет на регулирование выходного напряжения.

Как правильно выбрать регулятор напряжения?

  • Ключевые параметры играют ключевую роль при выборе регулятора напряжения разработчиком, например Vin, Vout, Iout, системные приоритеты и т. Д.Некоторые дополнительные ключевые функции, такие как включение управления или индикация состояния питания.
  • Когда разработчик описал эти потребности, используйте таблицу параметрического поиска, чтобы найти лучшее устройство, отвечающее предпочтительным потребностям.
  • Для дизайнеров эта таблица очень ценна, потому что она предоставляет несколько функций, а также пакеты, доступные для удовлетворения необходимых параметров для требований дизайнера.
  • Устройства MPS доступны со своими техническими описаниями, в которых подробно описаны необходимые внешние части, как измерить их значения, чтобы получить стабильную, эффективную конструкцию с высокой производительностью.
  • Это техническое описание в основном помогает в измерении значений таких компонентов, как выходная емкость, сопротивление обратной связи, индуктивность выхода и т. Д.
  • Кроме того, вы можете использовать некоторые инструменты моделирования, такие как программное обеспечение MPSmart / DC / DC Designer и т. Д. MPS предоставляет различные регуляторы напряжения с компактными линейными, разнообразными эффективными и переключаемыми типами, такими как семейство MP171x, семейство HF500-x, MPQ4572-AEC1, MP28310, MP20056 и MPQ2013-AEC1.

Ограничения / недостатки

Ограничения регуляторов напряжения включают следующее.

  • Одним из основных ограничений регуляторов напряжения является их неэффективность из-за рассеивания большого тока в некоторых приложениях.
  • Падение напряжения на этой ИС похоже на падение напряжения на резисторе. Например, когда на входе регулятора напряжения 5 В, а на выходе получается 3 В, тогда падение напряжения между двумя клеммами составляет 2 В.
  • Эффективность регулятора может быть ограничена до 3 В или 5 В, что означает, что эти регуляторы применимы с меньшим количеством дифференциалов Vin / Vout.
  • В любом приложении очень важно учитывать ожидаемое рассеивание мощности для регулятора, потому что при высоком входном напряжении рассеиваемая мощность будет высокой, что может привести к повреждению различных компонентов из-за перегрева.
  • Еще одним ограничением является то, что они просто способны к понижающему преобразованию по сравнению с переключательными типами, поскольку эти регуляторы обеспечивают понижающее преобразование и преобразование.
  • Регуляторы, такие как импульсные, очень эффективны, однако у них есть некоторые недостатки, такие как экономическая эффективность по сравнению с регуляторами линейного типа, более сложные, большие по размеру и могут генерировать больше шума, если их внешние компоненты не выбраны осторожно.

Речь идет о различных типах регуляторов напряжения и принципах их работы. Мы считаем, что информация, представленная в этой статье, поможет вам лучше понять эту концепцию. Кроме того, по любым вопросам относительно этой статьи или любой помощи в реализации проектов в области электротехники и электроники вы можете обратиться к нам, оставив комментарий в разделе комментариев ниже. Вот вам вопрос – где мы будем использовать регулятор напряжения генератора?

Регуляторы напряжения – источники питания

Источники энергии

В идеале на выходе большинства источников питания должно быть постоянное напряжение.К сожалению, это трудно достичь. Есть два фактора, которые могут вызвать изменение выходного напряжения. Во-первых, линия переменного тока напряжение не постоянное. Так называемый переменный ток 120 вольт (используется в США) может варьироваться от 114 до 126 вольт. Это означает, что пиковое напряжение переменного тока, до которого Ответ выпрямителя может варьироваться от 161 вольт до 178 вольт. Только напряжение сети переменного тока может вызвать 10-процентное изменение выходного напряжения постоянного тока. В Второй фактор, который может изменить выходное напряжение постоянного тока, – это изменение сопротивления нагрузки.В комплексе электронное оборудование, нагрузка может изменяться при включении и выключении цепей. В телевизионном приемнике нагрузка на конкретный блок питания может зависеть от яркости экрана, настроек управления или даже выбранный канал.

Эти колебания сопротивления нагрузки приводят к изменению приложенного напряжения постоянного тока, поскольку источник питания имеет фиксированное внутреннее сопротивление. Если сопротивление нагрузки уменьшается, внутреннее сопротивление источника питания падает больше напряжения. Это вызывает снижение напряжения на нагрузке.

Многие схемы предназначены для работы с определенным напряжением питания. Когда напряжение питания изменения, это может отрицательно повлиять на работу схемы. Следовательно, некоторые виды оборудования должны иметь источники питания, которые производят одинаковое выходное напряжение независимо от изменений нагрузки сопротивление или изменения сетевого напряжения переменного тока. Это постоянное выходное напряжение может быть достигнуто добавлением Схема называется стабилизатором напряжения на выходе из фильтра. Есть много разных типов регуляторов, используемых сегодня, и их обсуждение выходит за рамки этого раздела.

Регулирование нагрузки

Обычно используемый показатель качества для источника питания составляет процентов от нормы . Показатель качества дает нам представление о том, насколько выходное напряжение изменяется в диапазоне нагрузки. значения сопротивления. Процент регулирования помогает в определении типа регулирования нагрузки нужный. Процент регулирования определяется уравнением:

Это уравнение сравнивает изменение выходного напряжения при двух крайних значениях нагрузки с напряжением Выпускается при полной загрузке ( В, фЛ ).Например, предположим, что блок питания выдает 12 вольт, когда нагрузка ток равен нулю ( В нЛ ). Если выходное напряжение упадет до 10 вольт когда протекает ток полной нагрузки, процент регулирования составляет:

В идеале выходное напряжение не должно изменяться во всем рабочем диапазоне. То есть блок питания на 12 вольт должен выдавать 12 вольт на холостом ходу, при полной нагрузке, и во всех точках между ними. В этом случае процент регулирования будет:

Таким образом, регулирование нагрузки с нулевым процентом является идеальной ситуацией.Это означает, что выходное напряжение постоянно при любых условиях нагрузки. Хотя вы должны стремиться к регулированию нулевой нагрузки, в практических схемах вы должны довольствоваться чем-то менее идеальным. Даже в этом случае, используя регулятор напряжения, вы можете удерживать процент регулирования до очень низкого значения.

Основные типы

Существует два основных типа регуляторов напряжения. Базовые регуляторы напряжения классифицируются как серия или шунт , в зависимости от расположения или положения регулирующего элемента (ов) по отношению к сопротивление нагрузки цепи.

Шунтирующий регулятор

Шунтирующий регулятор, будучи одним из простейших полупроводниковых регуляторов, обычно наименее эффективен. Может использоваться для обеспечения регулируемого выхода где нагрузка относительно постоянна, напряжение от низкого до среднего, а выходной ток высокий. В шунтирующем регуляторе используется принцип делителя напряжения. для регулирования выходного напряжения.

На рисунке ниже показан шунтирующий регулятор в приведенном виде. Он называется шунтирующим регулятором. потому что регулирующее устройство подключено параллельно с сопротивлением нагрузки.Постоянный резистор R s включен последовательно с параллельной комбинацией резистор нагрузки, R L , и переменный резистор, R reg , и образует делитель напряжения во входной цепи.

Шунтирующий регулятор напряжения.

Краткое описание работы основного шунтирующего регулятора поможет объяснить способ, которым достигается регулирование выходного напряжения.

Весь ток, протекающий в полной цепи, проходит через серию резистор, R с .Величина этого тока и, следовательно, значение падение напряжения на R с контролируется переменным сопротивлением R рег . Напряжение на R с равно разности между большим напряжением источника постоянного тока и выходным напряжением на сопротивление нагрузки R L . Разница напряжений на R с составляет варьируется действием сопротивления R reg , по мере необходимости, для компенсации для изменения схемы и поддержания выходного напряжения на постоянном уровне нагрузки по желаемому значению.

Если входное напряжение в цепи регулятора уменьшается, напряжение на нагрузочный резистор, R L , и переменное сопротивление, R reg , имеет тенденцию к уменьшению. Чтобы противодействовать этому снижению, сопротивление R reg увеличивается, что уменьшает общий ток через R s и тем самым падение напряжения на нем. Таким образом, уменьшая разность напряжений R с для компенсации уменьшения входное напряжение, выходное напряжение остается постоянным на своем номинальном значении.И наоборот, если входное напряжение увеличивается, напряжение на R L и R reg имеет тенденцию к увеличению. Чтобы противодействовать увеличению, сопротивление из R рег уменьшено. Это приводит к большему току через R s и, следовательно, увеличение напряжения, развиваемого на нем. Увеличение разности напряжений компенсирует увеличение входное напряжение, и опять же, выходное напряжение остается постоянным на регулируемом значении.

Шунтирующий регулятор должен выдерживать все выходное напряжение. источника постоянного тока; однако он не должен пропускать ток полной нагрузки, если только требуется регулировка от состояния холостого хода до состояния полной нагрузки. Поскольку последовательно понижающий резистор R s , используемый с шунтирующим регулятором, имеет относительно высокая мощность рассеивания, общая эффективность этого типа Регулятор может быть меньше, чем у других типов. Одно из преимуществ шунта Регулятор представляет собой внутреннюю предлагаемую защиту от перегрузки и короткого замыкания.Последовательный резистор R s находится между источником постоянного тока и нагрузкой; и, таким образом, короткое замыкание или перегрузка просто уменьшают выходное напряжение. от цепи регулятора. Обратите внимание, что в условиях холостого хода шунтирующее регулирующее устройство должно рассеивать полную мощность; следовательно, шунт Регулятор чаще всего используется в приложениях с постоянной нагрузкой.

Из общего обсуждения, приведенного в предыдущих параграфах, можно видно, что шунтирующий регулятор напряжения по сути представляет собой схему делителя напряжения, с постоянным выходным напряжением на нагрузке, независимо от изменений входного напряжения или тока нагрузки.Управляющее действие требуется для варьирования сопротивления R reg и, следовательно, к развивают переменное падение напряжения, полностью автоматическое. Этот основной принцип регулирования напряжения используется в транзисторных, шунтирующих напряжениях. регуляторы, которые будут описаны позже в этом разделе.

Регулятор серии

Регулятор серии, как следует из названия, размещает регулирующее устройство в серия с грузом; регулирование происходит в результате изменения напряжения Разработанный для серийного устройства, серийный регулятор предпочтительнее для высоких приложения с напряжением и средним выходным током, где нагрузка может со значительным разбросом.Наиболее важные полупроводниковые приложения требуют что в регулируемом источнике напряжения используется последовательный регулятор; и как В результате существует множество конфигураций схем регуляторов. Эти схемы конфигурации меняются от одного приложения к другому, в зависимости от регулирование, которое необходимо поддерживать в заданном диапазоне температур.

Последовательный регулятор можно сравнить с последовательно включенным переменным резистором. с источником постоянного тока и нагрузкой, образуя делитель напряжения. Действие переменного сопротивления последовательного регулирующего устройства поддерживает выходное напряжение на сопротивлении нагрузки при постоянном значении.

Простая схема последовательного регулятора напряжения показана на рисунке ниже, чтобы помочь объяснить. это принцип регулирования напряжения. Переменный резистор, R с , находится в серия с нагрузочным сопротивлением R L ; таким образом, два сопротивления в последовательно образуют делитель напряжения на входном напряжении. Ток нагрузки проходит через R s и вырабатывает напряжение на нем. Развиваемое напряжение через R с зависит от значения сопротивления R с и ток нагрузки через него.Поскольку входное напряжение в цепи регулятора всегда больше, чем желаемое выходное напряжение, напряжение, развиваемое на последовательный резистор R с изменяется для получения желаемого значения выходной мощности по сопротивлению нагрузки R L .

Регулятор напряжения серии

.

Если входное напряжение в цепи регулятора уменьшается, напряжение на нагрузочный резистор R L и переменный резистор R s также уменьшаются.Чтобы противодействовать этому снижению напряжения, сопротивление переменного резистора R s уменьшается, так что меньшее напряжение развивается через R s , и напряжение на нагрузочном резисторе возвращается к прежнему значению. стоимость. И наоборот, если входное напряжение в цепи регулятора увеличивается, напряжение на нагрузочном резисторе R L также увеличивается. Чтобы противодействовать При увеличении напряжения сопротивление R с увеличивается, так что большее падение напряжения происходит на R s , и напряжение на нагрузке возвращается к своему прежнему значению.

Из анализа, проведенного в предыдущих параграфах, очевидно, что последовательный (а также шунтирующий) регулятор напряжения по сути схема делителя напряжения с выходным напряжением, создаваемым на нагрузке быть практически постоянным, независимо от входного напряжения или тока нагрузки вариации. Управляющее действие, необходимое для изменения серии регулирующих устройство и, следовательно, для создания соответствующего переменного напряжения по R s полностью автоматический.

Шунтирующий стабилизатор стабилитрона

Стабилитрон, шунтирующий стабилизатор используется в качестве регулятора напряжения, где нагрузка относительно постоянная. Эта схема часто используется в более сложные схемы регуляторов в качестве источника опорного напряжения и предварительного регулятора в транзисторных регуляторах серии.

Характеристики

  • Использует стабилитрон в качестве шунтирующего регулирующего устройства.
  • Регулируемое выходное напряжение на нагрузке почти постоянно, даже если оно меняется. входного напряжения или изменения тока нагрузки.
  • Используется принцип делителя напряжения с использованием постоянного резистора и Стабилитрон последовательно включенный; регулируемая нагрузка берется поперек диода.
  • Изменение в основной цепи позволяет регулировать положительное или отрицательное напряжение.

Стабилитрон-диод – это простейшая форма шунтирующего регулятора. Схема регулятора состоит из постоянного резистора, соединенного последовательно с стабилитроном. Регулируемое выходное напряжение создается на диоде; следовательно, нагрузка подключен через диод.Схема регулятора развивает определенный выход напряжение, зависящее от характеристик конкретного стабилитрона.

Простые стабилитроны.

Стабилитрон – это PN переход, который был модифицирован во время его изготовления. для создания определенного уровня напряжения пробоя; он работает с относительно жесткие допуски по напряжению в значительном диапазоне обратного тока. Зенера Диод подвержен изменению сопротивления при изменении температуры диода.

Работа схемы

На рисунке выше схемы «A» и «B» иллюстрируют используемый стабилитрон. в базовой схеме регулятора напряжения. Резистор R 1 есть последовательный резистор; semiconductor D 1 – стабилитрон. Схема в “A” обеспечивает регулировку положительного входного напряжения, в то время как схема в «B» обеспечивает регулировку отрицательного входного напряжения.

Последовательный резистор R 1 нужен только для стабилизации нагрузки; Это компенсирует любую разницу между рабочим напряжением диода и нерегулируемым входное напряжение.Величина последовательного резистора зависит от комбинированного токи стабилитрона и нагрузки. Последовательный резистор обычно выбирается с учетом следующих факторов: минимальное значение входного напряжения (нерегулируемый), максимальное значение тока нагрузки, минимальное значение стабилитрона ток диода, и (зная характеристики диода) значение максимальное напряжение, которое должно развиваться на стабилитроне и его параллели сопротивление нагрузки. Как только значение последовательного резистора R 1 равно определяется максимальная рассеиваемая мощность в диоде. учитывая максимальное значение входного напряжения (нерегулируемое), минимальное значение тока нагрузки и минимальное значение напряжения, развиваемого на диод (используя значение последовательного сопротивления установлен для R 1 ).Для стабильной работы Стабилитрон должен работать так, чтобы его обратный ток находился в пределах минимального значения. и максимальные значения для указанного напряжения. Важно отметить, что в условиях холостого хода стабилитрон должен рассеивать полную выходную мощность.

Если входное напряжение в цепи регулятора уменьшается, напряжение уменьшение появляется на стабилитроне, D 1 , и сразу ток через диод уменьшается. Таким образом, полный ток через серию резистор R 1 уменьшается, и напряжение, развиваемое на R 1 уменьшается пропорционально, так что для всех практических целей выходное напряжение на нагрузке сопротивление (и стабилитрон) осталось прежним.И наоборот, если вход напряжение в цепи регулятора увеличивается, появляется повышение напряжения через стабилитрон, и сразу ток через диод увеличивается. Таким образом, полный ток через последовательный резистор R 1 увеличивается, и напряжение, развиваемое на R 1 увеличивается пропорционально, так что для для всех практических целей выходное напряжение на сопротивлении нагрузки (и Стабилитрон) остается прежним.

Если ток, потребляемый сопротивлением нагрузки, уменьшается или увеличивается, общий ток, потребляемый от источника входного сигнала, не изменяется.Вместо, происходит соответствующее изменение тока через стабилитрон и ток, потребляемый от источника, остается постоянным, так что выходное напряжение сопротивление нагрузки остается постоянным.

Регулятор серии

на транзисторах

На рисунке ниже показаны упрощенные чертежи последовательного транзисторного регулятора. На этом рисунке схема «A» показывает стабилизатор положительного напряжения питания, а на схеме «B» показан регулятор отрицательного напряжения питания. Обратите внимание, что этот регулятор имеет транзистор ( Q 1 ) вместо переменный резистор (потенциометр), найденный в регулятор базовой серии.Полярность Регулируемое питание определяет тип используемого транзистора. Поскольку полный ток нагрузки проходит через этот транзистор, иногда он называется «проходным транзистором». Другие компоненты, составляющие схемы: токоограничивающий резистор R 1 и стабилитрон Д 1 .

Последовательно-транзисторные регуляторы.

Положительный регулятор в “A” использует транзистор NPN в качестве регулятора. Коллектор регулирующего транзистора подключен к нерегулируемому источник питания.Для правильного смещения на NPN-транзисторе положительный потенциал должен применяться к коллектору. База должна быть отрицательной по отношению к коллектор (или менее положительный). Эмиттер должен быть наиболее отрицательным (или наименьшим положительный) потенциал на транзисторе. Постоянный (эталонный) потенциал равен поддерживается на базе с помощью стабилитрона. В результате транзистор имеет прямое смещение, эмиттер к базе, и обратное смещение, коллектор к базе. Реверсивный приложенные полярности к транзистору PNP на схеме “B” рисунка выше применит правильную полярность для правильного смещения этого транзистора.

Чтобы понять регулирующее действие, подумайте о транзисторе как о замене резистор R с показан на регулятор базовой серии. С прямым уклоном приложенный к переходу эмиттер-база, транзистор проводит, в результате чего часть нерегулируемое напряжение питания, передаваемое от коллектора к эмиттеру через транзистор. Остальное нерегулируемое напряжение питания составляет разворачивается по нагрузке. Напряжение, развиваемое на нагрузке, – это регулируемое напряжение. Чтобы изменить проводящее сопротивление транзистора, надо менять прямое смещение.Увеличение прямого смещения причин увеличение проводимости и, следовательно, уменьшение проводящего сопротивления. Уменьшение прямого смещения вызывает увеличение сопротивления проводимости. Поскольку базовый потенциал поддерживается постоянным стабилитроном, единственный изменение смещения может быть вызвано попыткой изменения потенциала нагрузки, или регулируемый потенциал питания на эмиттере.

Таким образом, изменение прямого смещения дает тот же результат, что и поворот ручка потенциометра в регуляторе базовой серии.Чтобы проиллюстрировать этот момент, рассмотрим увеличение тока нагрузки. Это увеличение вызвано уменьшением сопротивления нагрузки (как при включении другого параллельный путь для тока). Напряжение нагрузки имеет тенденцию к снижению с нагрузкой сопротивление. Это рассматривается как изменение прямого смещения на регуляторе. транзистор. Поскольку напряжение на эмиттере уменьшается, прямое смещение равно выросла. В результате транзистор (последовательно с нагрузкой) проводит новый более высокий ток нагрузки, и проводимость сопротивление транзистора уменьшается.Снижение сопротивления вызывает меньше напряжения питания, которое должно развиваться на транзисторе, оставляя почти такое же напряжение, доступное для нагрузки, которое было до изменение нагрузки.

Теперь рассмотрим увеличение нерегулируемого напряжения питания. Было показано Судя по характеристикам транзистора из предыдущих уроков, изменение коллектора напряжение оказывает незначительное влияние на ток коллектора. Регулируемое напряжение, как в результате отсутствия изменения тока через коллектор (следовательно, через транзистор), меняться не будем.

Транзистор, используемый в качестве регулятора, должен выдерживать нагрузку. ток безопасно. Обычно силовой транзистор используется из-за необходимости выдерживать высокие токи нагрузки. Если один транзистор не справится весь ток, транзисторы можно ставить параллельно.

Основы электроники: регулятор напряжения

Создание регулятора напряжения

Теория предыстории: как работает регулятор напряжения?


Название говорит само за себя: регулятор напряжения.Аккумулятор в вашем автомобиле, который заряжается от генератора переменного тока, розетка в вашем доме, которая обеспечивает все необходимое вам электричество, сотовый телефон , который вы, вероятно, будете держать под рукой каждую минуту дня, все они требуют определенного напряжения, чтобы функция. Колеблющиеся выходы, выходящие за пределы ± 2 В, могут вызвать неэффективную работу и, возможно, даже повредить ваши зарядные устройства. Колебания напряжения могут происходить по разным причинам: состояние электросети, включение и выключение других приборов, время суток, факторы окружающей среды и т. Д.Из-за необходимости постоянного постоянного напряжения введите регулятор напряжения.

Регулятор напряжения – это интегральная схема (ИС), которая обеспечивает постоянное фиксированное выходное напряжение независимо от изменения нагрузки или входного напряжения. Это можно сделать разными способами, в зависимости от топологии схемы внутри, но для того, чтобы этот проект оставался базовым, мы в основном сосредоточимся на линейном регуляторе. Линейный регулятор напряжения работает, автоматически регулируя сопротивление через контур обратной связи, учитывая изменения как нагрузки, так и входа, при этом сохраняя постоянное выходное напряжение.

Микросхема стабилизатора напряжения в корпусе ТО-220 С другой стороны, для импульсных регуляторов, таких как понижающий (понижающий), повышающий (повышающий) и понижающий-повышающий (повышающий / понижающий), требуется несколько дополнительных компонентов, а также повышенная сложность как различные компоненты повлияют на результат. Импульсные регуляторы намного более эффективны с точки зрения преобразования энергии, где эффективность играет большую роль, но линейные регуляторы очень хорошо работают как регуляторы напряжения в низковольтных приложениях.

В зависимости от приложения, стабилизатору напряжения может также потребоваться больше внимания для улучшения других параметров, таких как пульсирующее напряжение на выходе, переходная характеристика нагрузки, падение напряжения и выходной шум.Такие приложения, как аудиопроекты, более чувствительны к шуму и помехам, поэтому потребуется дополнительная фильтрация, особенно в импульсных регуляторах, где пульсации на выходе могут быть значительными. Большую часть информации, включая схемы, можно найти в техническом описании микросхемы стабилизатора напряжения, с которой вы работаете, в разделе «Примечания по применению».


Указания по применению для регулятора 7805T У
Afrotechmods также есть информативное видео о работе с популярным регулятором напряжения LM317T для получения регулируемого выхода.


Проект

Комплект регулятора напряжения макетной платы – отличный набор для пайки для любого новичка. Он выдает чистое 5 В постоянного тока с максимальным выходным током 500 мА. Он способен принимать входное напряжение в диапазоне 6-18 В постоянного тока и имеет контакты, размер которых идеально подходит для любой стандартной макетной платы с шагом 0,1 дюйма.

В комплект входит:

(1) Печатная плата
(1) Выключатель питания
(1) Разъем питания постоянного тока 2,1 мм
(1) Электролитический конденсатор 10 мкФ
(1) 0.Монолитный конденсатор 1 мкФ
(1) Резистор 1 кОм
(1) Красный светодиодный индикатор питания
(1) Разъемы контактов
(1) Руководство пользователя

Вам понадобятся:
• Паяльник
• Припой
• Фрезы
• Сетевой адаптер 6-18В (Mean Well GS06U-3PIJ)


Комплект регулятора напряжения макетной платы Solarbotics 34020
Направление:

1. Резистор и конденсатор 0,1 мкФ:
Удалите ленту и согните выводы резистора, затем вставьте его в положение, обозначенное R1.Припаяйте его с другой стороны и отрежьте лишние выводы. Сделайте то же самое для конденсатора 0,1 мкФ в позиции C2. Неважно, как эти детали установлены – они не поляризованы .

2. Регулятор напряжения и цилиндрический разъем:
Припаяйте регулятор напряжения в положение V-REG. Убедитесь, что сторона табуляции выровнена с жирной линией на символе – обратное направление не работает! Затем обрежьте лишние провода. Защелкните цилиндрический домкрат в положение B1 и припаяйте его на место.

Шаг 1 Шаг 2
3. Конденсатор 10 мкФ и индикатор питания:
Установите электролитический конденсатор 10 мкФ в положение C1. Позиционирование имеет решающее значение. Убедитесь, что более длинный провод входит в площадку, отмеченную (+). Убедитесь, что он находится в правильном положении, убедившись, что полоса на стороне конденсатора находится ближе всего к этикетке PWR. Сделайте то же самое со светодиодом; более длинный вывод входит в круглую площадку. Вы можете убедиться, что светодиод находится в правильном положении, заметив небольшую выемку на светодиоде на стороне символа светодиода с линией (рядом с квадратной площадкой).

4. Контакты выключателя питания и макетной платы:
Выключатель питания просто устанавливается в положение PWR. С выводами на макетной плате посложнее – они идут снизу, и их сложнее удерживать при пайке. Тщательно припаяйте их как можно ровнее вручную или, если вы уверены, вставьте длинную сторону контактов в макет так, чтобы они совпали с отверстиями в печатной плате, затем припаяйте их, пока макетная плата удерживает все выровненные.

Шаг 3 Шаг 4
5.Настройка Power Rails:
ЭТО ВАЖНО.
Если вы забудете это сделать, ваша доска не будет работать! Выберите, на какой стороне макета вы хотите установить плату (в этом примере мы используем левую сторону). Обратите внимание на полярность направляющих макетной платы «+» внизу и «-» вверху. Найдите, какой набор контактных площадок на плате соответствует этому расположению, и нанесите каплю припоя на маленькие полумесяцы.

Если вы планируете переключить полярность питания на направляющих, вы можете установить номер детали SWT7 на контактные площадки между контактными площадками. Не оставляйте капли на подушечках, если вы это сделаете. Обратите внимание, что это не рекомендуемая модификация.

Подайте питание на плату от любого источника постоянного тока диаметром 2,1 мм с номинальным напряжением 6–18 В – не превышайте максимальное значение 35 В постоянного тока! Регулятор мощности нагревается при питании от более 12 В (это нормально). Если вы не хотите использовать его на макетной плате, используйте контактные площадки с маркировкой «+ -» на конце, ближайшем к гнезду цилиндра, для регулируемой выходной мощности 5 В.


Шаг 5
SWT7 Навесной

Вопросы для обсуждения


1.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *