Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Защита асинхронного двигателя - способы и схемы

Если правильно эксплуатировать асинхронный двигатель, он прослужит очень долго. Однако существуют факторы, способные сократить срок его службы, и их требуется нейтрализовать. В случае входа в аварийный режим электромотор должен быть быстро и своевременно отключен, иначе он сгорит.

К стандартным и часто встречающимся аварийным ситуациям относятся:

  • Короткое замыкание (КЗ). В этом случае срабатывает защита, которая отключает мотор от сети.
  • Перегрузка, из-за которой происходит перегрев двигателя.
  • Уменьшение или исчезновение напряжения.
  • Отсутствие напряжения на одной фазе.

Для защиты служат плавкие предохранители, магнитные пускатели или реле. Плавкие предохранители является одноразовыми, и после сгорания их приходится заменять. Автоматические переключатели с коммутациями срабатывают и при перегрузках, и при КЗ. Реле и магнитные пускатели бывают многократного действия с автоматическим самовозвратом или с ручным возвратом.

Защита от КЗ настраивается с учетом 10-кратного превышения номинального тока токами пуска и торможения. При местных замыканиях в обмотках мотора защита должна срабатывать, когда ток меньше, чем при пуске. В защите также предусматривают задержку отключения, и она срабатывает, если за это время потребляемый из сети ток сильно возрастет. Если защита от перегрузки действует слишком часто, скорее всего, мощность мотора не соответствует его назначению. Ложные срабатывания устраняют, соответственно выбирая и регулируя компоненты защиты.

Следует помнить, что любые способы и схемы защиты асинхронного электродвигателя должны быть не только просты, но и надежны.

Короткие замыкания, а также защита от перегрузок

Плавкие вставки – простейшая защита от коротких замыканий для моторов мощностью до 100 кВт. Если перегорят не все 3 предохранителя, могут отключиться только 1 или 2 фазные обмотки.

Если переходный процесс длится 2-5 секунд, номинальный ток предохранителя не должен быть меньше 40 % величины пускового тока, а если 10-20 секунд – то минимум 50 %. При неизвестной величине пускового тока и мощности Р мотора меньше 100 кВт примерная величина номинального тока I вставки выбирается так:

  • при U 500 вольт I = 4,5 Р;
  • при U 380 вольт I = 6 Р;
  • при U 2200 вольт I = 10,5 Р.

Тепловая защита

Тепловое реле – это биметаллическая пластина, нагреваемая током обмоток мотора. Деформируясь, она активизирует контакты, отключающие мотор. Тепловые реле могут встраиваться в магнитные пускатели. Следует принимать в расчет максимальное напряжение в сети, при котором допускается применение теплового реле, и ток, при котором реле работает долгое время и не активизируется.

Тепловое реле не может реагировать на токи короткого замыкания. Не действуют на него и недолгие перегрузки, которые недопустимы. Поэтому рекомендуется совмещать использование теплового реле с плавкими вставками.

Специальный датчик тепла защищает электромотор от перегрева еще успешнее. Он устанавливается на самом электромоторе. Некоторые двигатели имеют встроенный биметаллический датчик, представляющий собой контакт, который подключен к защите.

Понижение напряжения и исчезновение фазы

Если асинхронный электромотор работает с полной нагрузкой, а напряжение при этом понижено, то он начинает быстро нагреваться. Если в него встроен температурный сенсор, включится тепловая защита.

Если же температурного сенсора не имеется, надо обеспечить защиту электродвигателя от падения напряжения. В таком случае используются реле. Когда уменьшается напряжение, они срабатывают и подают сигнал на отключение электродвигателя. Исходное состояние защиты может восстанавливаться вручную или автоматически; при этом происходит задержка во времени для каждого электромотора при их группе. В противном случае при одновременном групповом запуске после восстановления напряжение в сети может снова понизиться, и произойдет новое отключение.

Правила устройства и эксплуатации электроустановок требуют защиты от исчезновения фазы тока только в случаях экономически нецелесообразных последствий. Экономически выгоднее не изготавливать и устанавливать такую защитную систему, а устранить причины, приводящие к режиму работы только на двух фазах.

Новейшими устройствами для защиты электромоторов можно назвать автоматические выключатели, способные к воздушному гашению дуги. В некоторых конструкциях совмещаются возможности рубильника, контактора, максимального реле и термореле. В подобных моделях мощная взведенная пружина размыкает контакты. Ее освобождение зависит от того, каков исполнительный элемент – электромагнитный или тепловой.

Таким образом, защита асинхронного двигателя, способы и схемы которой изложены выше, должна реализовываться пользователем в обязательном порядке.


Термозащита электродвигателей от перегрева

Внутренняя защита, встраиваемая в обмотки или клеммную коробку


Для чего нужна встроенная защита двигателя, если электродвигатель уже оснащён реле перегрузки и плавкими предохранителями? В некоторых случаях реле перегрузки не регистрирует перегрузку электродвигателя. Например, в ситуациях:

  • Когда электродвигатель закрыт (недостаточно охлаждается) и медленно нагревается до опасной температуры.
  • При высокой температуре окружающей среды.
  • Когда наружная защита двигателя настроена на слишком высокий ток срабатывания или установлена неправильно.
  • Когда электродвигатель перезапускается несколько раз в течение короткого периода времени и пусковой ток нагревает электродвигатель, что в конечном счёте, может его повредить.

Уровень защиты, который может обеспечить внутренняя защита, указывается в стандарте IEC 60034-11.

Обозначение TP

TP - аббревиатура «thermal protection» - тепловая защита. Существуют различные типы тепловой защиты, которые обозначаются кодом TP (TPxxx). Код включает в себя:

  • Тип тепловой перегрузки, для которой была разработана тепловая защита (1-я цифра)
  • Число уровней и тип действия (2-я цифра)
  • Категорию встроенной тепловой защиты (3-я цифра)

В электродвигателях насосов, самыми распространёнными обозначениями TP являются:

TP 111: Защита от постепенной перегрузки

TP 211: Защита как от быстрой, так и от постепенной перегрузки.

Обозначение

Техническая егрузка и ее варианты (1-я цифра)

Количество уровней и функциональная область (2-я цифра)

Категория 1 (3-я цифра)

ТР 111

Только медленно (постоянная перегрузка)

1 уровень при отключении

1

ТР 112

2

ТР 121

2 уровня при аварийном сигнале и отключении

1

ТР 122

2

ТР 211

Медленно и быстро (постоянная перегрузка, блокировка)

1 уровень при отключении

1

ТР 212

2

ТР 221 ТР 222

2 уровня при аварийном сигнале и отключении

1

2

ТР 311 ТР 321

Только быстро (блокировка)

1 уровень при отключении

1

2

Изображение допустимого температурного уровня при воздействии на электродвигатель высокой температуры. Категория 2 допускает более высокие температуры, чем категория 1.

Все однофазные электродвигатели Grundfos оснащены защитой двигателя по току и температуре в соответствии с IEC 60034-11. Тип защиты двигателя TP 211 означает, что она реагирует как на постепенное, так и на быстрое повышение температуры.

Сброс данных в устройстве и возврат в начальное положение осуществляется автоматически. Трёхфазные электродвигатели Grundfos MG мощностью от 3.0 кВт стандартно оборудованы датчиком температуры PTC. 


Эти электродвигатели были испытаны и одобрены как электродвигатели TP 211, которые реагируют и на медленное, и на быстрое повышение температуры. Другие электродвигатели, используемые для насосов Grundfos (MMG модели D и E, Siemens, и т.п.), могут быть классифицированы как TP 211, но, как правило, они имеют тип защиты TP 111.


Необходимо всегда учитывать данные, указанные на фирменной табличке. Информацию о типе защиты конкретного электродвигателя можно найти на фирменной табличке - маркировка с буквенным обозначением TP (тепловая защита) согласно IEC 60034-11. Как правило, внутренняя защита может быть организована при помощи двух типов устройств защиты: Устройств тепловой защиты или терморезисторов.



Устройства тепловой защиты, встраиваемые в клеммную коробку

В устройствах тепловой защиты, или термостатах, используется биметаллический автоматический выключатель дискового типа мгновенного действия для размыкания и замыкания цепи при достижении определённой температуры. Устройства тепловой защиты называют также «кликсонами» (по названию торговой марки от Texas Instruments). Как только биметаллический диск достигает заданной температуры, он размыкает или замыкает группу контактов в подключённой схеме управления. Термостаты оснащены контактами для нормально разомкнутого или нормально замкнутого режима работы, но одно и то же устройство не может использоваться для двух режимов.

Термостаты предварительно откалиброваны производителем, и их установки менять нельзя. Диски герметично изолированы и располагаются на контактной колодке.

Через термостат может подаваться напряжение в цепи аварийной сигнализации - если он нормально разомкнут, или термостат может обесточивать электродвигатель - если он нормально замкнут и последовательно соединён с контактором. Так как термостаты находятся на наружной поверхности концов катушки, то они реагируют на температуру в месте расположения. Применительно к трёхфазным электродвигателям термостаты считаются нестабильной защитой в условиях торможения или в других условиях быстрого изменения температуры. В однофазных электродвигателях термостаты служат для защиты при блокировке ротора.



Тепловой автоматический выключатель, встраиваемый в обмотки

Устройства тепловой защиты могут быть также встроены в обмотки, см. иллюстрацию.


Они действуют как сетевой выключатель как для однофазных, так и для трёхфазных электродвигателей. В однофазных электродвигателях мощностью до 1,1 кВт устройство тепловой защиты устанавливается непосредственно в главном контуре, чтобы оно выполняло функцию устройства защиты на обмотке. Кликсон и Термик - примеры тепловых автоматических выключателей. Эти устройства называют также PTO (Protection Thermique a Ouverture).



Внутренняя установка

В однофазных электродвигателях используется один одинарный тепловой автоматический выключатель. В трёхфазных электродвигателях - два последовательно соединённых выключателя, расположенных между фазами электродвигателя. Таким образом, все три фазы контактируют с тепловым выключателем. Тепловые автоматические выключатели можно установить на конце обмоток, однако это приводит к увеличению времени реагирования. Выключатели должны быть подключены к внешней системе управления. Таким образом электродвигатель защищается от постепенной перегрузки. Для тепловых автоматических выключателей реле - усилителя не требуется.

Тепловые выключатели НЕ ЗАЩИЩАЮТ двигатель при блокировке ротора.

Принцип действия теплового автоматического выключателя

На графике справа показана зависимость сопротивления от температуры для стандартного теплового автоматического выключателя. У каждого производителя эта характеристика своя. TN обычно лежит в интервале 150-160 °C.


Подключение

Подключение трёхфазного электродвигателя со встроенным тепловым выключателем и реле перегрузки.

Обозначение TP на графике

Защита по стандарту IEC 60034-11:

TP 111 (постепенная перегрузка). Для того чтобы обеспечить защиту при блокировке ротора, электродвигатель должен быть оборудован реле перегрузки.



Терморезисторы, встраиваемые в обмотки

Второй тип внутренней защиты - это терморезисторы, или датчики с положительным температурным коэффициентом (PTC). Терморезисторы встраиваются в обмотки электродвигателя и защищают его при блокировке ротора, продолжительной перегрузке и высокой температуре окружающей среды. Тепловая защита обеспечивается с помощью контроля температуры обмоток электродвигателя с помощью PTC датчиков. Если температура обмоток превышает температуру отключения, сопротивление датчика меняется соответственно изменению температуры.



В результате такого изменения внутренние реле обесточивают контур управления внешнего контактора. Электродвигатель охлаждается, и восстанавливается приемлемая температура обмотки электродвигателя, сопротивление датчика понижается до исходного уровня. В этот момент происходит автоматическое приведение модуля управления в исходное положение, если только он предварительно не был настроен на сброс данных и повторное включение вручную.

Если терморезисторы установлены на концах катушки самостоятельно, защиту можно классифицировать только как TP 111. Причина в том, что терморезисторы не имеют полного контакта с концами катушки, и, следовательно, не могут реагировать так быстро, как если бы они изначально были встроены в обмотку.


Система, чувствительная к температуре терморезистора, состоит из датчиков с положительным температурным коэффициентом (PTC), устанавливаемых последовательно, и твердотельного электронного выключателя в закрытом блоке управления. Набор датчиков состоит из трёх - по одному на фазу. Сопротивление в датчике остаётся относительно низким и постоянным в широком диапазоне температур, с резким увеличением при температуре срабатывания. В таких случаях датчик действует как твердотельный тепловой автоматический выключатель и обесточивает контрольное реле. Реле размыкает цепь управления всего механизма для отключения защищаемого оборудования. Когда температура обмотки восстанавливается до допустимого значения, блок управления можно привести в прежнее положение вручную.

Все электродвигатели Grundfos мощностью от 3 кВт и выше оснащены терморезисторами. Система терморезисторов с положительным температурным коэффициентом (PTC) считается устойчивой к отказам, так как в результате выхода из строя датчика или отсоединении провода датчика возникает бесконечное сопротивление, и система срабатывает так же, как при повышении температуры, - происходит обесточивание контрольного реле.

Принцип действия терморезистора

Критические значения зависимости сопротивление/ температура для датчиков системы защиты электродвигателя определены в стандартах DIN 44081/ DIN 44082.

На кривой DIN показано сопротивление в датчиках терморезистора в зависимости от температуры.


По сравнению с PTO терморезисторы имеют следующие преимущества:

  • Более быстрое срабатывание благодаря меньшему объёму и массе
  • Лучше контакт с обмоткой электродвигателя
  • Датчики устанавливаются на каждой фазе
  • Обеспечивают защиту при блокировке ротора

Обозначение TP для электродвигателя с PTC

Защита двигателя TP 211 реализуется, только когда терморезисторы PTC полностью установлены на концах обмоток на заводе-изготовителе. Защита TP 111 реализуется только при самостоятельной установке на месте эксплуатации. Электродвигатель должен пройти испытания и получить подтверждение о соответствии его маркировке TP 211. Если электродвигатель с терморезисторами PTC имеет защиту TP 111, он должен быть оснащён реле перегрузки для предотвращения последствий заклинивания.

Соединение

На рисунках справа представлены схемы подключения трёхфазного электродвигателя, оснащённого терморезисторами PTC, с расцепителями Siemens. Для реализации защиты как от постепенной, так и от быстрой перегрузки, мы рекомендуем следующие варианты подключения электродвигателей, оснащённых датчиками PTC, с защитой TP 211 и TP 111.

Электродвигатели с защитой TP 111


Если электродвигатель с терморезистором имеет маркировку TP 111, это значит, что электродвигатель защищён только от постепенной перегрузки. Для того чтобы защитить электродвигатель от быстрой перегрузки, электродвигатель должен быть оборудован реле перегрузки. Реле перегрузки должно подключаться последовательно к реле PTC.

Электродвигатели с защитой TP 211


Защита TP 211 двигателя обеспечивается, только если терморезистор PTC полностью встроен в обмотки. Защита TP 111 реализуется только при самостоятельном подключении.

Терморезисторы разработаны в соответствии со стандартом DIN 44082 и выдерживают нагрузку Umax 2,5 В DC. Все отключающие элементы предназначены для приёма сигналов от терморезисторов DIN 44082, т.е терморезисторов компании Siemens.

Обратите внимание: Очень важно, чтобы встроенное устройство PTC было последовательно соединено с реле перегрузки. Многократные повторные включения реле перегрузки могут привести к сгоранию обмотки в случае блокировки электродвигателя или пуска при высокой инерции. Поэтому очень важно, чтобы температурные показатели и данные по потребляемому току устройства PTC и реле.

Основные устройства для защиты электродвигателей

В настоящее время трехфазные асинхронные электродвигатели являются основным преобразователем электрической энергии в механическую. Своему широкому распространению данные устройства обязаны невысокой стоимостью и высоким КПД. Несмотря на невысокую стоимость двигателей, зачастую даже кратковременный простой двигателя, приводят к большим производственным потерям, поэтому  в настоящее время на электротехническом рынке появляется все больше устройств, обеспечивающих их защиту от повреждений, связанных с работой при повышенных нагрузках или неисправностях в питающей цепи.

На данный момент наиболее распространены следующие типы защитного оборудования для трехфазных электродвигателей.

(РТЛ, РТТ, RTLU и т.д.)-данные устройства защищают общепромышленных и крановых электродвигателей, от работы в режимах, когда ток превышает номинальные значения. Обычно устанавливаются на контакторах или магнитных пускателях.

– автоматические выключатели, защищающие от токов перегрузки и короткого замыкания. Отличаются от обычных автоматов возможностью регулировки уставки тока перегрузки и уставкой электромагнитного расцепителя на 13In, что позволяет избежать ложных срабатываний при пуске двигателя под нагрузкой.

– используются для защиты от токов перегрузки и коротких замыканий, обычно используются для двигателей большой мощностью. В основном используются или специализированные автоматы для защиты двигателей или автоматы с полупроводниковыми расцепителями. Во втроом случае пользователь имеет возможность выставить сам необходимые ему значения срабатывания автомата, а также повышается уровень защиты, так как полупроводниковый расцепитель в отличии от термомагнитного независим от температуры окружающей среды.

- устройства защищающие двигатель от обрыва фаз, ассиметрии фаз, перекоса фаз. При отклонениях номинальных заданных значений питающей сети, контакты реле переключаются и срабатывают коммутационные устройства управляющие включением выключением двигателей

Также в последнее время все большую популярность получили универсальные блоки защиты УБЗ производства Новатек Электро. Данные многофункциональные устройства в настоящий момент обеспечивают наиболее полную и комплексную защиту по напряжению, по фазным/линейным токам.

обеспечивают комплексную защиту электродвигателей от перегузок, коротких замыканий, перекоса и обрыва фаз

ПУЭ 7. Правила устройства электроустановок. Издание 7

5.3.55. Для электродвигателей переменного тока должна предусматриваться защита от многофазных замыканий (см. 5.3.56), в сетях с глухозаземленной нейтралью — также от однофазных замыканий, а в случаях, предусмотренных в 5.3.57 и 5.3.58, — кроме того, защита от токов перегрузки и защита минимального напряжения. На синхронных электродвигателях (при невозможности втягивания в синхронизм с полной нагрузкой) дополнительно должна предусматриваться защита от асинхронного режима согласно 5.3.59.

Для электродвигателей постоянного тока должны предусматриваться защиты от КЗ. При необходимости дополнительно могут устанавливаться защиты от перегрузки и от чрезмерного повышения частоты вращения.

5.3.56. Для защиты электродвигателей от КЗ должны применяться предохранители или автоматические выключатели.

Номинальные токи плавких вставок предохранителей и расцепителей автоматических выключателей должны выбираться таким образом, чтобы обеспечивалось надежное отключение КЗ на зажимах электродвигателя (см. 1.7.79 и 3.1.8) и вместе с тем чтобы электродвигатели при нормальных для данной электроустановки толчках тока (пиках технологических нагрузок, пусковых токах, токах самозапуска и т. п.) не отключались этой защитой. С этой целью для электродвигателей механизмов с легкими условиями пуска отношение пускового тока электродвигателя к номинальному току плавкой вставки должно быть не более 2,5, а для электродвигателей механизмов с тяжелыми условиями пуска (большая длительность разгона, частые пуски и т.п.) это отношение должно быть равным 2,0-1,6.

Для электродвигателей ответственных механизмов с целью особо надежной отстройки предохранителей от толчков тока допускается принимать это отношение равным 1,6 независимо от условий пуска электродвигателя, если кратность тока КЗ на зажимах электродвигателя составляет не менее указанной в 3.1.8.

Допускается осуществление защиты от КЗ одним общим аппаратом для группы электродвигателей при условии, что эта защита обеспечивает термическую стойкость пусковых аппаратов и аппаратов защиты от перегрузок, примененных в цепи каждого электродвигателя этой группы.

На электростанциях для защиты от КЗ электродвигателей собственных нужд, связанных с основным технологическим процессом, должны применяться автоматические выключатели. При недостаточной чувствительности электромагнитных расцепителей автоматических выключателей в системе собственных нужд электростанций могут применяться выносные токовые реле с действием на независимый расцепитель выключателя.

Для надежного обеспечения селективности защит в питающей сети собственных нужд электростанций в качестве защиты электродвигателей от КЗ рекомендуется применять электромагнитные расцепители-отсечки.

5.3.57. Защита электродвигателей от перегрузки должна устанавливаться в случаях, когда возможна перегрузка механизма по технологическим причинам, а также когда при особо тяжелых условиях пуска или самозапуска необходимо ограничить длительность пуска при пониженном напряжении. Защита должна выполняться с выдержкой времени и может быть осуществлена тепловым реле или другими устройствами.

Защита от перегрузки должна действовать на отключение, на сигнал или на разгрузку механизма, если разгрузка возможна.

Применение защиты от перегрузки не требуется для электродвигателей с повторно-кратковременным режимом работы.

5.3.58. Защита минимального напряжения должна устанавливаться в следующих случаях:

для электродвигателей постоянного тока, которые не допускают непосредственного включения в сеть;

  • для электродвигателей механизмов, самозапуск которых после останова недопустим по условиям технологического процесса или по условиям безопасности;
  • для части прочих электродвигателей в соответствии с условиями, приведенными в 5.3.52.

Для ответственных электродвигателей, для которых необходим самозапуск, если их включение производится при помощи контакторов и пускателей с удерживающей обмоткой, должны применяться в цепи управления механические или электрические устройства выдержки времени, обеспечивающие включение электродвигателя при восстановлении напряжения в течение заданного времени. Для таких электродвигателей, если это допустимо по условиям технологического процесса и условиям безопасности, можно также вместо кнопок управления применять выключатели, с тем чтобы цепь удерживающей обмотки оставалась замкнутой помимо вспомогательных контактов пускателя и этим обеспечивалось автоматическое обратное включение при восстановлении напряжения независимо от времени перерыва питания.

5.3.59. Для синхронных электродвигателей защита от асинхронного режима должна, как правило, осуществляться с помощью защиты от перегрузки по току статора.

5.3.60. Защита от КЗ в электродвигателях переменного и постоянного тока должна предусматриваться:

1) в электроустановках с заземленной нейтралью — во всех фазах или полюсах;

2) в электроустановках с изолированной нейтралью:

  • при защите предохранителями — во всех фазах или полюсах;
  • при защите автоматическими выключателями — не менее чем в двух фазах или одном полюсе, при этом в пределах одной и той же электроустановки защиту следует осуществлять в одних и тех же фазах или полюсах.

Защита электродвигателей переменного тока от перегрузок должна выполняться:

  • в двух фазах при защите электродвигателей от КЗ предохранителями;
  • в одной фазе при защите электродвигателей от КЗ автоматическими выключателями.

Защита электродвигателей постоянного тока от перегрузок должна выполняться в одном полюсе.

5.3.61. Аппараты защиты электродвигателей должны удовлетворять требованиям гл. 3.1. Все виды защиты электродвигателей от КЗ, перегрузки, минимального напряжения допускается осуществлять соответствующими расцепителями, встроенными в один аппарат.

5.3.62. Специальные виды защиты от работы на двух фазах допускается применять в порядке исключения на электродвигателях, не имеющих защиты от перегрузки, для которых существует повышенная вероятность потери одной фазы, ведущая к выходу электродвигателя из строя с тяжелыми последствиями.

Защита электродвигателей.

Защита электродвигателей.

[Разделы] [Оглавление раздела] [Главная страница СПЭТ] [Назад] [Дальше]


Защита электродвигателей.

1.Виды повреждений и ненормальных режимов работы ЭД.

Повреждения электродвигателей. В обмотках электродвигателей могут возникать замыкания на землю одной фазы статора, замыкания между витками и многофазные КЗ. Замыкания на землю и многофазные КЗ могут также возникать на выводах электродвигателей, в кабелях, муфтах и воронках. Короткие замыкания в электродвигателях сопровождаются прохождением больших токов, разрушающих изоляцию и медь обмоток, сталь ротора и статора. Для защиты электродвигателей от многофазных КЗ служит токовая отсечка или продольная дифференциальная защита, действующие на отключение.

Однофазные замыкания на землю в обмотках статора электродвигателей напряжением 3—10 кВ менее опасны по сравнению с КЗ, так как сопровождаются прохождением токов 5—20 А, определяемых емкостным током сети. Учитывая сравнительно небольшую стоимость электродвигателей мощностью менее 2000 кВт, защита от замыканий на землю устанавливается на них при токе замыкания на землю более 10 А, а на электродвигателях мощностью более 2000 кВт — при токе замыкания на землю более 5 А защита действует на отключение.

Защита от витковых замыканий на электродвигателях не устанавливается. Ликвидация повреждений этого вида осуществляется другими защитами электродвигателей, поскольку витковые замыкания в большинстве случаев сопровождаются замыканием на землю или переходят в многофазное КЗ.

Электродвигатели напряжением до 600 В защищаются от КЗ всех видов (в том числе и от однофазных) с помощью плавких предохранителей или быстродействующих электромагнитных расцепителей автоматических выключателей.

Ненормальные режимы работы. Основным видом ненормального режима работы для электродвигателей является перегрузка их токами больше номинального. Допустимое время перегрузки электродвигателей, с, определяется по следующему выражению:

Рис. 6.1. Зависимость тока электродвигателя от частоты вращения ротора.

где k кратность тока электродвигателя по отношению к номинальному; А — коэффициент, зависящий от типа и исполнения электродвигателя: А == 250 — для закрытых электродвигателей, имеющих большую массу и размеры, А = 150 — для открытых электродвигателей.

Перегрузка электродвигателей может возникнуть вследствие перегрузки механизма (например, завала углем мельницы или дробилки, забивания пылью вентилятора или кусками шлака насоса золоудаления и т. п.) и его неисправности (например, повреждения подшипников и т. п.).

Токи, значительно превышающие номинальные, проходят при пуске и самозапуске электродвигателей. Это происходит вследствие уменьшения сопротивления электродвигателя при уменьшении его частоты вращения.

Зависимость тока электродвигателя I от частоты вращения п при постоянном напряжении на его выводах приведена на рис. 6.1. Ток имеет наибольшее значение, когда ротор электродвигателя остановлен; этот ток, называемый пусковым, в несколько раз превышает номинальное значение тока электродвигателя. Защита от перегрузки может действовать на сигнал, разгрузку механизма или отключение электродвигателя.

После отключения КЗ напряжение на выводах электродвигателя восстанавливается и частота его вращения начинает увеличиваться. При этом по обмоткам электродвигателя проходят большие токи, значения которых определяются частотой вращения электродвигателя и напряжением на его выводах. Снижение частоты вращения всего на 10—25 % приводит к уменьшению сопротивления электродвигателя до минимального значения, соответствующего пусковому току. Восстановление нормальной работы электродвигателя после отключения КЗ называется самозапуском, а токи, проходящие при этом, — токами самозапуска.

На всех асинхронных электродвигателях самозапуск может быть осуществлен без опасности их повреждения, и поэтому их защита должна быть отстроена от режима самозапуска. От возможности и длительности самозапуска асинхронных электродвигателей основных механизмов собственных нужд зависит бесперебойная работа тепловых электростанций. Если из-за большого снижения напряжения нельзя обеспечить самозапуск всех работающих электродвигателей, часть из них приходится отключать. Для этого используется специальная защита минимального напряжения, отключающая неответственные электродвигатели при снижении напряжения на их выводах до 60—70 % номинального.

В случае обрыва одной из фаз обмотки статора электродвигатель продолжает работать. Частота вращения ротора при этом несколько уменьшается, а обмотки двух неповрежденных фаз перегружаются током в 1,5—2 раза большим номинального. Защита электродвигателя от работы на двух фазах применяется лишь на электродвигателях, защищенных предохранителями, если двухфазный режим работы может повлечь за собой повреждение электродвигателя.

На мощных тепловых электростанциях в качестве привода для дымососов, дутьевых вентиляторов и циркуляционных насосов получили широкое распространение двухскоростные асинхронные электродвигатели напряжением 6 кВ. Эти электродвигатели выполняются с двумя независимыми статорными обмотками, каждая из которых подключается через отдельный выключатель, причем обе статорные обмотки одновременно не могут быть включены, для чего в схемах управления предусмотрена специальная блокировка. Применение таких электродвигателей позволяет экономить электроэнергию путем изменения их частоты вращения в зависимости от нагрузки агрегата. На таких электродвигателях устанавливается по два комплекта релейной защиты.

В эксплуатации применяются также схемы электропривода, предусматривающие вращение механизма (например, шаровой мельницы) двумя спаренными электродвигателями, которые присоединяются к одному выключателю. При этом все защиты являются общими для обоих электродвигателей, за исключением токовой защиты нулевой последовательности, которая предусматривается для каждого электродвигателя и выполняется с помощью токовых реле, подключенных к ТТ нулевой последовательности, установленным на каждом кабеле.

2.Защита асинхронных ЭД от междуфазных к.з., перегрузок и замыканий на землю.

Для защиты от многофазных КЗ электродвигателей мощностью до 5000 кВт обычно используется максимальная токовая отсечка. Наиболее просто токовую отсечку можно выполнить с реле прямого действия, встроенными в привод выключателя. С реле косвенною действия применяется одна из двух схем соединения ТТ и реле, приведенных на рис. 6.2 и 6.3. Отсечка выполняется с независимыми токовыми реле. Использование токовых реле с зависимой характеристикой (рис. 6 3) позволяет обеспечить с помощью одних и тех же реле защиту от КЗ и перегрузки. Ток срабатывания отсечки выбирается -по следующему выражению:

где kсх — коэффициент схемы, равный 1 для схемы на рис. 6.3 и v3 для схемы на рис. 6.2; Iпуск —пусковой ток электродвигателя.

Если ток срабатывания реле отстроен от пускового тока, отсечка, как правило, надежно отстроена и от. тока, который электродвигатель посылает в сечь при внешнем КЗ.

Зная номинальный ток электродвигателя Iном и кратность пускового тока kп, указываемую в каталогах, можно подсчитать пусковой ток по следующему выражению:

Рис. 6.2 Схема защиты электродвигателя токовой отсечкой с одним токовым реле мгновенного действия: а — цепи тока, б — цепи оперативного постоянного тока

Как видно по осциллограмме, приведенной на рис. 6.4, на которой показан пусковой ток электродвигателя питательного насоса, в первый момент пуска появляется кратковременный пик намагничивающего тока, превышающий пусковой ток электродвигателя. Для отстройки от этого пика ток срабатывания отсечки выбирается с учетом коэффициента надежности: kн=1,8 для реле типа РТ-40, действующих через промежуточное реле; kн = 2 для реле типов ИТ-82, ИТ-84 (РТ-82, РТ-84), а также для реле прямого действия.

Рис. 6.3. Схема защиты электродвигателя от коротких замыканий и перегрузки с двумя реле типа РТ-84:
а— цепи тока, б — цепи оперативного постоянного тока.

Т

Рис. 6 4. Осциллограмма пускового тока электродвигателя.

оковую отсечку электродвигателей мощностью до 2000 кВт следует выполнять, как правило, по наиболее простой и дешевой однорелейной схеме (см. рис. 6.2). Однако недостатком этой схемы является более низкая чувствительность по сравнению с отсечкой, выполненной по схеме на рис. 6.3, к двухфазным КЗ между одной из фаз, на которых установлен ТТ, и фазой без ТТ. Это имеет место, так как ток срабатывания отсечки, выполненной по однорелейной схеме, согласно (6.1) в vЗ раз больше, чем в двухрелейной схеме.

Поэтому на электродвигателях мощностью 2000—5000 кВт токовая отсечка для повышения чувствительности выполняется двухрелейной. Двухрелейную схему отсечки следует также применять на электродвигателях мощностью до 2000 кВт, если коэффициент чувствительности однорелейной схемы при двухфазном КЗ на выводах электродвигателя меньше двух.

На электродвигателях мощностью 5000 кВт и более устанавливается продольная дифференциальная защита, обеспечивающая более высокую чувствительность к КЗ на выводах и в обмотках электродвигателей. Эта защита выполняется в двухфазном или в трехфазном исполнении с реле типа РНТ-565 (аналогично защите генераторов). Ток срабатывания рекомендуется принимать 2Iном.

Поскольку защита в двухфазном исполнении не реагирует на двойные замыкания на землю, одно из которых возникает в обмотке электродвигателя на фазе В, в которой отсутствует ТТ, дополнительно устанавливается специальная защита от двойных замыканий без выдержки времени.

ЗАЩИТА ОТ ПЕРЕГРУЗКИ

Защита от перегрузки устанавливается только на электродвигателях, подверженных технологическим перегрузкам (мельничных вентиляторов, дымососов, мельниц, дробилок, багерных насосов и т. п.), как правило, с действием на сигнал или разгрузку механизма. Так, например, на электродвигателях шахтных мельниц защита может действовать на отключение электродвигателя механизма, подающего уголь, благодаря чему предотвращается завал мельницы углем.

Защита от перегрузки должна отключать электродвигатель, на котором она установлена, только в том случае, если без остановки электродвигателя нельзя устранить причину, вызвавшую перегрузку. Использование защиты от перегрузки с действием на отключение целесообразно также в установках без обслуживающего персонала.

Ток срабатывания защиты от перегрузки принимается равным:

где kн = 1,1—1,2.

При этом реле защиты от перегрузки смогут сработать от пускового тока, поэтому выдержка времени защиты принимается 10—20 с по условию отстройки от времени пуска электродвигателя. Защита от перегрузки выполняется с помощью индукционного элемента реле типа ИТ-80 (РТ-80) (см. рис 6.3). Если электродвигатель при перегрузках должен отключаться, в схеме защиты используются реле типа ИТ-82 (РТ-82). На электродвигателях, защита которых от перегрузки не должна действовать на отключение, целесообразно использовать реле с двумя парами контактов типа ИТ-84 (РТ-84), обеспечивающие раздельное действие отсечки и индукционного элемента.

Для ряда электродвигателей (дымососов, дутьевых вентиляторов, мельниц), время разворота которых составляет 30—35 с, схема защиты от перегрузки с реле РТ-84 дополняется реле времени типа ЭВ-144, которое приходит в действие после замыкания контакта токового реле. При этом выдержка времени защиты может быть увеличена до 36 с. В последнее время для защиты от перегрузки электродвигателей собственных нужд применяется схема защиты с одним реле тока типа РТ-40 и одним реле времени типа ЭВ-144, а для электродвигателей с временем пуска более 20 с — реле времени типа ВЛ-34 (со шкалой 1—100 с).

3.Защита минимального напряжения.

После отключения КЗ происходит самозапуск электродвигателей, подключенных к секции или системе шин, на которых во время КЗ имело место снижение напряжения. Токи самозапуска, в несколько раз превышающие номинальные, проходят по питающим линиям (или трансформаторам) собственных нужд. В результате напряжение на шинах собственных нужд, а следовательно, и на электродвигателях понижается настолько, что вращающий момент на валу электродвигателя может оказаться недостаточным для его разворота. Самозапуск электродвигателей может не произойти, если напряжение на шинах окажется ниже 55—65 % Iном.

Для того чтобы обеспечить самозапуск наиболее ответственных электродвигателей, устанавливается защита минимального напряжения, отключающая неответственные электродвигатели, отсутствие которых в течение некоторого времени не отразится на производственном процессе. При этом уменьшается суммарный ток самозапуска и повышается напряжение на шинах собственных нужд, благодаря чему обеспечивается самозапуск ответственных электродвигателей.

В некоторых случаях при длительном отсутствии напряжения защита минимального напряжения отключает и ответственные электродвигатели. Это необходимо, в частности, для пуска схемы АВР электродвигателей, а также по технологии производства. Так, например, в случае остановки всех дымососов необходимо отключить мельничные и дутьевые вентиляторы и питатели пыли; в случае остановки дутьевых вентиляторов — мельничные вентиляторы и питатели пыли. Отключение ответственных электродвигателей защитой минимального напряжения производится также в тех случаях, когда их самозапуск недопустим по условиям техники безопасности или из-за опасности повреждения приводимых механизмов.

Наиболее просто защиту минимального напряжения можно выполнить с одним реле напряжения, включенным на междуфазное напряжение. Однако такое выполнение защиты ненадежно, так как при обрывах в цепях напряжения возможно ложное отключение электродвигателей. Поэтому однорелейная схема защиты применяется только при использовании реле прямого действия.

Для предотвращения ложного срабатывания защиты при нарушении цепей напряжения применяются специальные схемы включения реле напряжения. Одна из таких схем для четырех электродвигателей, разработанная в Тяжпромэлектропроекте, показана на рис. 6.5. Реле минимального напряжения прямого действия КVТ1—KVT4 включены на междуфазные напряжения ab и bс. Для повышения надежности защиты эти реле питаются отдельно от приборов и счетчиков, которые подключены к цепям напряжения через трехфазный автоматический выключатель SF3 с мгновенным электромагнитным расцепителем (использованы две фазы автоматического выключателя).

Фаза В цепей напряжения заземлена не глухо, а через пробивной предохранитель FV, чю исключает возможность однофазных КЗ в цепях напряжения и также повышает надежность защиты. В фазе А защиты установлен однофазный автоматический выключатель SFI с электромагнитным мгновенным расцепителем, а в фазе С — автоматический выключатель с замедленным тепловым расцепителем. Между фазами А и С включен конденсатор С емкостью порядка 30 мкФ, назначение которого указано ниже.

Рис. 6 5. Схема защиты минимального напряжения с реле прямого действия типа РНВ

При повреждениях в цепях напряжения рассматриваемая защита будет вести себя следующим образом. Замыкание одной из фаз на землю, как уже отмечалось выше, не приводит к отключению автоматических выключателей, так как цепи напряжения не имеют глухого заземления.

При двухфазном КЗ фаз В и С отключится только автоматический выключатель SF2 фазы С. Реле напряжения KVT1 и KVT2 остаются при этом подключенными к нормальному напряжению и поэтому не запускаются. Реле KVT3 и KVT4, запустившиеся при КЗ в цепях напряжения, после отключения автоматического выключателя SF2 вновь подтянутся, так как на них будет подано напряжение от фазы А через конденсатор С. При КЗ фаз АВ или АС отключится автоматический выключатель SF1, установленный в фазе А. После отключения КЗ реле KVT1 и KVT2 вновь подтянутся под действием напряжения от фазы С, поступающего через конденсатор С. Реле KVT3 и KVT4 не запустятся. Аналогично будут вести себя реле и при обрыве фаз А и С.

Таким образом, рассматриваемая схема защиты не работает ложно при наиболее вероятных повреждениях цепей напряжения. Ложная работа защиты возможна только при маловероятных повреждениях цепей напряжения — трехфазном КЗ или при отключении автоматических выключателей SF1 и SF2.

Сигнализация неисправности цепей напряжения осуществляется контактами реле KV1.1, KV2.1, KV3.1 и контактами автоматических выключателей SF1.1, SF2.1, SF3.1.

В установках с постоянным оперативным током защита минимального напряжения выполняется для каждой секции сборных шин собственных нужд по схеме, приведенной на рис. 6.6. В цепи реле времени КТ1, действующего на отключение неответственных электродвигателей, включены последовательно контакты трех минимальных реле напряжения KV1. Благодаря такому включению реле предотвращается ложное срабатывание защиты при перегорании любого предохранителя в цепях трансформатора напряжения. Напряжение срабатывания реле KV1 принимается порядка 70 % Uном.

Рис. 6.6. Схема защиты минимального напряжения на постоянном оперативном токе:
а — цепи переменного напряжения; б — оперативные цепи I — на отключение неответственных двигателей; II — на отключение ответственных двигателей.

Выдержка времени защиты на отключение неответственных электродвигателей отстраивается от отсечек электродвигателей и устанавливается равной 0,5—1,5 с. Выдержка времени на отключение ответственных электродвигателей принимается 10—15 с, для того чтобы защита не действовала на их отключение при снижениях напряжения, вызванных КЗ и самозапуском электродвигателей.

Как показывает опыт эксплуатации, в ряде случаев самозапуск электродвигателей продолжается 20—25 с при снижении напряжения на шинах собственных нужд до 60—70 %Uном. При этом, если не принять дополнительных мер, защита минимального напряжения (реле KV1), имеющая уставку срабатывания (0,6—0,7) Uном, могла бы доработать и отключить ответственные электродвигатели. Для предотвращения этого в цепи обмотки реле времени КТ2, действующего на отключение ответственных электродвигателей, включается контакт KV2. 1 четвертого реле напряжения KV2. Это минимальное реле напряжения имеет уставку срабатывания порядка (0,4—0,5) Uном и надежно возвращается во время самозапуска. Реле KV2 будет длительно держать замкнутым свой контакт только при полном снятии напряжения с шин собственных нужд. В тех случаях, когда длительность самозапуска меньше выдержки времени реле КТ2, реле KV2 не устанавливается.

В последнее время на электростанциях применяется другая схема защиты, показанная на рис. 6.7. В этой схеме используются три пусковых реле: реле напряжения обратной последовательности KV1 типа РНФ-1М и реле минимального напряжения KV2 и KV3 типа РН-54/160.

Рис. 6.7. Схема защиты минимального напряжения с реле напряжения прямой последовательности:
а — цепи напряжения; б — оперативные цепи

В нормальном режиме, когда междуфазные напряжения симметричны, размыкающий контакт KV1.1 в цепи обмоток реле времени защиты КТ1 и КТ2 замкнут, а замыкающий KV1.2 в цепи сигнализации разомкнут. Размыкающие контакты реле K.V2.1 и KV3.1 при этом разомкнуты.

При снижении напряжения на всех фазах контакт KV1.1 останется замкнутым и поочередно подействуют: первая ступень защиты минимального напряжения, которая осуществляется с помощью реле KV2 (уставка срабатывания 0,7Uном) и КТ1; вторая — с помощью реле KV3 (уставка срабатывания 0,5 Uном) и КТ2. В случае нарушения одной или двух фаз цепей напряжения срабатывает реле KV1, замыкающим контактом которого KV1.2 подается сигнал о неисправности цепей напряжения.

При срабатывании каждой ступени защиты подается плюс на шинки ШМН1 и ШМН2 соответственно, откуда он поступает на цепи отключения электродвигателей. Действие защиты сигнализируется указательными реле КН1 и КН2, имеющими обмотки параллельного включения.


[Разделы] [Оглавление раздела] [Главная страница СПЭТ] [Назад] [Дальше]


Защита электродвигателя - обзор самых эффективных методов. Схемы и принцип действия + инструкция с фото

Наверно все знают, что различные устройства работают на основе электрических двигателей. Но для чего нужна защита электродвигателей осознает лишь малая часть пользователей. Оказывается они могут сломаться в результате различных непредвиденных ситуаций.

Чтобы избежать проблем с высокими затратами на ремонт, неприятных простоев и дополнительных материальных потерь используются качественные защитные устройства. Далее разберемся в их устройстве и возможностях.

Краткое содержимое статьи:

Как создается защита для электродвигателя?

Постепенно рассмотрим основные устройства защиты электродвигателей и особенности их эксплуатации. Но сейчас расскажем об трех уровнях защиты:

  • Внешняя версия защиты для предохранения от короткого замыкания. Обычно относится к разным видам либо представлена в виде реле. Они обладают официальным статусом и обязательны к установке согласно нормам безопасности на территории РФ.
  • Внешняя версия защиты электродвигателей от перегрузки помогает предотвратить опасные повреждения либо критические сбои в процессе работы.
  • Встроенный тип защиты спасет в случае заметного перегрева. И это защитит от критических повреждений либо сбоев в процессе эксплуатации. В этом случае обязательны выключатели внешнего типа иногда применяется реле для перезагрузки.

Из-за чего отказывает электродвигатель?

В процессе эксплуатации иногда появляются непредвиденные ситуации, останавливающие работу двигателя. Из-за этого рекомендуется заранее обеспечить надежную защиту электродвигателя.

Можете ознакомиться с фото защиты электродвигателя различного типа чтобы иметь представление о том, как она выглядит.

Рассмотрим случаи отказа электродвигателей в которых с помощью защиты можно избежать серьезных повреждений:

  • Недостаточный уровень электрического снабжения;
  • Высокий уровень подачи напряжения;
  • Быстрое изменение частоты подачи тока;
  • Неправильный монтаж электродвигателя либо хранения его основных элементов;
  • Увеличение температуры и превышение допустимого значения;
  • Недостаточная подача охлаждения;
  • Повышенный уровень температуры окружающей среды;
  • Пониженный уровень атмосферного давления, если эксплуатация двигателя происходит на увеличенной высоте на основе уровня моря;
  • Увеличенная температура рабочей жидкости;
  • Недопустимая вязкость рабочей жидкости;
  • Двигатель часто выключается и включается;
  • Блокирование работы ротора;
  • Неожиданный обрыв фазы.

Чтобы защита электродвигателей от перегрузки справилась с перечисленными проблемами и смогла защитить основные элементы устройства необходимо использовать вариант на основе автоматического отключения.

Часто для этого используется плавкая версия предохранителя, поскольку она отличается простотой и способна выполнить много функций:

Версия на основе плавкого предохранительного выключателя представлена аварийным выключателем и плавким предохранителем, соединенных на основе общего корпуса. Выключатель позволяет размыкать либо замыкать сеть с помощью механического способа, а плавкий предохранитель создает качественную защиту электродвигателя на основе воздействия электрического тока. Однако выключателем пользуются в основном для процесса сервисного обслуживания, когда необходимо остановить передачу тока.

Плавкие версии предохранителей на основе быстрого срабатывания считаются отличными защитниками от коротких замыканий. Но непродолжительные перегрузки могут привести к поломке предохранителей этого вида. Из-за этого рекомендуется использовать их на основе воздействия незначительного переходного напряжения.

Плавкие предохранители на основе задержки срабатывания способны защитить от перегрузки либо различных коротких замыканий. Обычно они способны выдержать 5-краткое увеличение напряжения в течение 10-15 секунд.

Важно: Автоматические версии выключателей отличаются по уровню тока для срабатывания. Из-за этого лучше использовать выключатель способный выдержать максимальный ток в процессе короткого замыкания, появляющегося на основе данной системы.

Тепловое реле

В различных устройствах используется тепловое реле для защиты двигателя от перегрузок под воздействием тока либо перегрева рабочих элементов. Оно создается с помощью металлических пластин, обладающих различным коэффициентом расширения под воздействием тепла. Обычно его предлагают в связке с магнитными пускателями и автоматической защитой.

Автоматическая защита двигателя

Автоматы для защиты электродвигателей помогают обезопасить обмотку от появления короткого замыкания, защищают от нагрузки либо обрыва любой из фаз. Их всегда используют в качестве первого звена защиты в сети питания мотора. Потом используется магнитный пускатель, если необходимо он дополняется тепловым реле.

Каковы критерии выбора, подходящего автомата:

  • Необходимо учитывать величину рабочего тока электродвигателя;
  • Количество, использующихся обмоток;
  • Возможность автомата справляться с током в результате короткого замыкания. Обычные версии работают на уровне до 6 кА, а лучшие до 50 кА. Стоит учитывать и скорость срабатывания у селективных менее 1 секунды, нормальных меньше 0,1 секунды, быстродействующих около 0,005 секунды;
  • Размеры, поскольку большая часть автоматов можно подключать с помощью шины на основе фиксированного типа;
  • Вид расцепления цепи – обычно применяется тепловой либо электромагнитный способ.

Универсальные блоки защиты

Различные универсальные блоки защиты электродвигателей помогают уберечь двигатель с помощью отключения от напряжения либо блокированием возможности запуска.

Они срабатывают в таких случаях:

  • Проблемы с напряжением, характеризующиеся скачками в сети, обрывами фаз, нарушением чередования либо слипания фаз, перекосом фазного или линейного напряжения;
  • Механической перегруженности;
  • Отсутствие крутящего момента для вала ЭД;
  • Опасных эксплуатационной характеристике изоляции корпуса;
  • Если произошло замыкание на землю.

Хотя защита от понижения напряжения, может быть, организована и другими способами мы рассмотрели основные из них. Теперь у вас есть представление о том зачем необходимо защищать электродвигатель, и как это осуществляется с помощью различных способов.

Фото защиты электродвигателя


Всё о тепловых реле, расчет и выбор теплового реле для защиты двигателя

Всё о тепловых реле, расчет и выбор теплового реле для защиты двигателя

Тепловое реле - реле, которое реагирует на изменение тепловых величин (температуры, теплового потока и т.п.).

Тепловое реле выполняет функцию защиты от затяжных перегрузок, их работа похожа на работу теплового разъединителя в автоматических выключателей. В зависимости от величины перегрузки (отклонению от номинального режима – I/Iн) оно срабатывает через соответствующий промежуток времени, который можно вычислить по время-токовой характеристике теплового реле. Давайте подробно рассмотрим, что такое тепловое реле и как его правильно выбрать.

Назначение и принцип работы

При перегрузке электродвигателей повышается потребляемый ток, соответственно увеличивается его нагрев. Если двигатель перегревается – нарушается целостность изоляции обмоток, быстрее изнашиваются подшипники, они могут заклинить. При этом тепловой расцепитель автомата может и не защитить оборудование. Для этого нужно тепловое реле.

Перегрузки могут возникать из-за перекоса фаз, затрудненного движения ротора, вследствие как повышенной механической нагрузки, так и проблем с подшипниками, при полном заклинивании вала двигателя и исполнительных механизмах.

Тепловое реле реагирует на возросший ток, и в зависимости от его величины разорвет цепь питания через какое-то время, тем самым сохранив обмотки двигателя целыми. После последующего устранения неисправности, при условии исправности статора, двигатель может продолжить работу.

Если реле сработало по неизвестным причинам, и осмотр показал, что всё в порядке, вы можете вернуть контакты реле в исходное состояние, для этого на нем есть кнопка.

Реле может сработать и в случае затяжного пуска электродвигателя. При этом в обмотках протекают повышенные значения токов. Затяжной пуск – процесс, когда двигатель долго выходит на номинальные обороты. Может произойти из-за перегрузки на валу, либо из-за низкого напряжения в питающей сети.

Время, через которое сработает реле, определяется по время-токовой характеристики конкретного реле, в общем виде она выглядит так:

По вертикальной оси расположено время в секундах, через которое контакты разорвут цепь, а по горизонтальной – во сколько раз фактический ток превышает номинальный. Здесь мы видим, что при номинальном токе реле время работы реле стремится к бесконечности, при перегрузке уже в 1.2 раза оно разомкнется примерно за 5000 секунд, при перегрузке по току в 2 раза – за 500 секунд, при перегрузке в 5-8 раз реле сработает за 10 секунд.

Такая защита исключает постоянные отключения двигателя при кратковременных перегрузках и рывках, но спасают оборудование при длительном выходе за пределы допустимых режимов.

Принцип работы

В реле есть пара биметаллических пластин с разным температурным коэффициентом расширения. Пластины жестко соединены друг с другом, если их нагреть, то конструкция изогнется в сторону участка с меньшим температурным коэффициентом расширения.

Греются пластины за счет протекания тока нагрузки или от нагревателя, через который проходит ток нагрузки, на схеме изображено в виде нескольких витков вокруг биметалла. Протекающий ток нагревает пластину до определенного предела. Чем выше ток, тем быстрее нагрев.

Стоит учитывать, что если реле находится в жарком помещении – нужно выставлять ток срабатывания с большим запасом, ведь происходит дополнительный нагрев от окружающей среды. К тому же, если реле только что сработало – контактам нужно некоторое время, чтобы остыть. Иначе может произойти повторное ложное срабатывание.

Давайте рассмотрим конкретный пример. Выше вы видите устройство реле ТРН. Оно является двухфазным. Состоит из трёх ячеек, в крайних нагревательные элементы, посередине температурный компенсатор, регулятор тока срабатывания, расцепитель, размыкающий контакт, рычаг возврата.

Когда ток протекает через нагревательный элемент (1), его температура растёт, когда ток достигает установленного тока перегрузки биметаллическая пластина(2) деформируется. Толкатель (10) перемещается вправо и толкает пластину температурного компенсатора (3). Когда ток перегрузки достигнут, она выгибается вправо и выводит из зацепления защелку (7). Штанга расцепителя (6) поднимается вверх и контакты (8) размыкаются.

Виды тепловых реле

Тепловые реле могут подключаться на все три фазы или на две из трёх, в зависимости от конструкции. Большинство реле конструктивно разработаны для соответствия определенным магнитным пускателям, это нужно для удобства и аккуратности монтажа. Рассмотрим некоторые из них.

РТЛ – подходит для использования с пускателями типа ПМЛ. С набором клемм КРЛ используется как самостоятельный прибор защиты.

РТТ – подходит для монтажа с пускателями ПМЕ и ПМА. Также может использоваться как самостоятельное, если его смонтировать на специальную панель.

РТИ – тепловые реле для пускателей КМИ и КМТ. На лицевой вы можете видеть пару дополнительных блок-контактов, для реализации схем индикации и прочего.

ТРН – двухфазное тепловое реле. Устанавливается в трёхфазных двигателях, при этом подключается в разрыв двух фаз. Температура окружающей среды не влияет на его работу. На регуляторе тока есть 10 делений 5 на уменьшение, 5 на увеличение, цена одного деления – 5%.

На самом деле тепловых реле существует великое множество, но все они выполняют одну функцию.

Реле очень часто монтируют в специальный железный ящик. На фото пускатель ПМА 4-й величина на 63 Ампера, с трёхфазным тепловым реле.

К современным пускателям тепловое реле подключается так как изображено на фото ниже, получается цельная конструкция.

Красная кнопка «test» нужна для пробного отключения реле, и проверки возможности размыкания контактов.

Такой способ подключения позволяет экономить место на дин рейке.

Схема подключения

Как уже было сказано, тепловое реле защищает от долговременной перегрузки электрооборудование. Оно монтируется между источником питания и потребителем.

Контроллируемый ток протекает через нагревательные элементы (1), они выгибаясь размыкают контакты (2) теплового реле, в этой схеме использовано 2-хфазное тепловое реле. Его контакты размыкают цепь катушки контактора или магнитного пускателя, также как если бы вы нажали кнопку «СТОП». В собранном виде эта схема выглядит так:

На первом плане видно как от выходящих контактов пускателя подключены две крайние фазы. На заднем плане видно, что к катушке реле подключена клемма от контактов ТРН.

Если у вас используется реверсная схема магнитных пускателей, то подключение практически аналогичное, ниже это наглядно изображено. Контакты с маркировкой «10» и «12» подключаются в разрыв катушек пускателей КМ1 и КМ2.

Здесь видно что есть нормально-замкнутая пара и нормально-разомкнутый контакт. Это нужно, например, для индикации срабатывания тепловой защиты, т.е. к нему можно подключить лампочку-индикатор или подать сигнал на диспетчерский пульт или АСУ.

На реле РТИ эти контакты размещены на передней панели:

  • NO – нормально-открытый – на индикацию;
  • NC – нормально-закрытый – на пускатель.

Кнопка STOP принудительно переключает контакты. При срабатывании такое реле должно остыть и оно повторно включится. Хотя в конкретном примере возможно и ручное и автоматическое повторное включение. Для этого предназначена синяя кнопка с крестовидной прорезью справа на лицевой панели, при закрытой крышке она заблокирована.

Выбор для конкретного двигателя

Допустим, у нас есть двигатель АИР71В4У2. Его мощность 0.75 кВт. У нас есть трёхфазная сеть с линейным напряжением 380В. Двигатель рассчитан на 220В, если соединить обмотки треугольником и 380В, если звездой. Номинальный ток такого двигателя с обмотками соединенными по схеме звезды 1.94А. Полная информация содержится на его шильдике, который вы видите на фото ниже.

Отсюда следует, что нам нужно подобрать тепловое реле для двигателя с током в 1.94 А. Ток срабатывания теплового реле должен превышать номинальный ток двигателя в 1.2 – 1.3 раза. То есть:

Iреле=IН*1.2…1.3

Пусть двигатель работает в составе механизма, в котором допускаются кратковременные, но значительные перегрузки, например для подъёма малых грузов. Тогда ток уставки выбираем в 1.3 раза больше номинального тока асинхронного электродвигателя.

Iреле=1.94*1.3=2.522

Т.е реле должно сработать при токе 2.5-2.6А. Нам подходят такие реле:

  • РТЛ-1007, с токовым диапазоном 1.5-2.6 А;
  • РТЛ-1008, токовый диапазон 2,4-4 А;
  • РТИ-1307, токовый диапазон 1,6...2,5 А;
  • РТИ-1308, токовый диапазон 2,5...4 А;
  • ТРН-25 3,2А (с помощью регулятора можно понизить или повысить ток на 25%).

Методы регулировки реле

Шаг первый – определить уставку теплового реле:

N1 = (Iн – Iнэ)/cIнэ

где Iн - номинальный ток нагрузки электродвигателя, Iнэ - номинальный ток нагревательного элемента теплового реле, с - коэффициент деления шкалы (например, с = 0,05).

Шаг второй – введение поправки на температуру окружающей среды:

N2 = (T – 30)/10

где Т - температура окружающей среды, °С.

Шаг третий:

N = N1 + N2

Шаг четвертый – выставить регулятор на нужное число делений N.

Поправка на температуру вводится, если температура окружающей среды слишком высокая или низкая. Если на температуру в помещении где установлено реле значительно влияет температура на улице, то поправку следует производить зимой и летом.

Проверка

Рассмотрим на примере реле типа ТРН. Чтобы убедиться в исправности реле нужно:

1. Проверить состояние корпуса, нет ли на нем трещин или сколов.

2. Проверить при подключенной нагрузке с номинальным током.

3. Разобрать реле и проверить целостность контактов, остутствие на них нагара,

4. Проверить, не согнуты ли нагреватели.

5. Проверить расстояние между биметаллом и нагревательными элементами. Оно должно быть одинаковым, если нет, то отрегулировать с помощью крепежных винтов.

6. Подать номинальный ток через один из нагревателей, установить уставку в 1.5 раза больше номинального тока. В таком состоянии реле работает 145 с, затем постепенно поворачивают эксентрик регулировки в положение «-5», до срабатывания реле.

7. После активного охлаждения в течение 15 минут проверяют второй нагревательный элемент таким же способом.

Схема проверочного стенда:

Краткое резюме

Тепловые реле – важный элемент в защите электрооборудования. С его помощью вы защитите своё устройство от перегрузок, а его характеристики позволят переносить кратковременные скачки тока без ложных срабатываний, чего не может обеспечить автоматический выключатель.

Реле могут использоваться как вместе с магнитными пускателями соединяясь с его выходными клеммами напрямую, тем самым образуя единую конструкцию, так и в качестве самостоятельных защитных устройств, размещаться в щитке на дин рейке и в электрошкафах.

Ранее ЭлектроВести писали, что компания Schneider Electric, мировой эксперт в управлении энергией и автоматизации, представляет обновление линейки термомагнитных автоматических выключателей электродвигателей TeSys GV3 - TeSys GV3P73 и GV3P80, рассчитанных на токи 73 A и 80 A соответственно, которые дополнят серию GV3P и полностью заменят серию GV3ME80, снимаемую с производства.

По материалам: electrik.info.

Реле перегрузки | Что такое защита от перегрузки?

Введение в двигатели

Электродвигатели являются неотъемлемой частью промышленного оборудования, игрушек, транспортных средств и электронных устройств. Они предназначены для преобразования электрической энергии в механическую. Эти устройства могут питаться от источников переменного или постоянного тока. Воздуходувки, вентиляторы, компрессоры, краны, экструдеры и дробилки - это несколько важных устройств, оснащенных электродвигателями.

Что такое асинхронный двигатель?

Асинхронный двигатель, также называемый синхронным двигателем, является одним из основных типов электродвигателей переменного тока, используемых в коммерческих и промышленных условиях.Эти двигатели оснащены обмотками Armortisseur и работают по принципу электромагнитной индукции. Электромагнитное поле в роторе создается вращающимся полем статора. Короче говоря, мощность передается на обмотку ротора от статора через индукцию. Существует два основных типа асинхронных двигателей
- однофазные асинхронные двигатели и трехфазные асинхронные двигатели.

Введение в трехфазные асинхронные двигатели

Это один из наиболее широко используемых типов электродвигателей; и является неотъемлемой частью почти 80% промышленных приложений.Его популярность обусловлена ​​прочной конструкцией, отличными рабочими характеристиками, регулировкой скорости и отсутствием коммутатора. Как и любой обычный асинхронный двигатель, этот двигатель также состоит из статора и ротора.

  • Статор: Это неподвижный элемент асинхронного двигателя. Статор представляет собой небольшую цилиндрическую раму, на которой установлен цилиндрический сердечник ротора. Он имеет различные штамповки с прорезями для размещения трехфазных обмоток. Обмотки статора разделены на 120 градусов.
  • Ротор: Это вращающаяся часть двигателя. Ротор имеет многослойные цилиндрические пазы с медными или алюминиевыми проводниками, соединенными концами. Это вал двигателя.

Ротор трехфазного асинхронного двигателя классифицируется как ротор с фазной обмоткой или ротор с контактным кольцом и ротор с короткозамкнутым ротором. Среди этих двух ротор с короткозамкнутым ротором является одним из самых распространенных.

Асинхронные двигатели с короткозамкнутым ротором

Асинхронные двигатели с короткозамкнутым ротором известны как асинхронные двигатели с короткозамкнутым ротором.Они получили свое название, потому что ротор напоминает вращающуюся цилиндрическую «клетку», которую вы можете найти в клетке для домашней белки или хомяка. Эти двигатели доступны в размерах от долей лошадиных сил (л.с.) менее одного киловатта до 10 000 л.с. (десятки мегаватт). Такие факторы, как простота, прочная конструкция и постоянная скорость при различных размерах нагрузки, способствовали их популярности. Как и другие асинхронные двигатели, двигатель с короткозамкнутым ротором состоит из:

  • Ротор: Это деталь цилиндрической формы, установленная на валу.Он содержит продольно организованные токопроводящие шины. Стержни изготовлены из меди или алюминия и вставлены в канавки, которые соединяются на концах, образуя структуру, подобную клетке. Ротор имеет многослойный сердечник, который помогает избежать потерь мощности из-за гистерезиса и вихревых токов. Провода ротора перекошены, что позволяет избежать зазубрин при запуске оборудования. Кроме того, этот перекос обеспечивает улучшенный коэффициент трансформации между ротором и статором.
  • Статор: Состоит из трехфазной обмотки вдоль сердечника.Статор помещен в металлический корпус. Обмотки в статоре организованы так, что они расположены на расстоянии 120 градусов друг от друга в пространстве, и установлены на многослойном железном сердечнике. Этот железный сердечник обеспечивает путь сопротивления для потока, создаваемого токами переменного тока.

Что такое защита от перегрузки?

Когда двигатель потребляет избыточный ток, это называется перегрузкой. Это может вызвать перегрев двигателя и повредить обмотки двигателя. В связи с этим важно защитить двигатель, параллельную цепь двигателя и компоненты параллельной цепи двигателя от условий перегрузки.Реле перегрузки защищают двигатель, параллельную цепь двигателя и компоненты параллельной цепи двигателя от чрезмерного нагрева в условиях перегрузки. Реле перегрузки являются частью пускателя двигателя (блок контактора плюс реле перегрузки). Они защищают двигатель, контролируя ток, протекающий в цепи. Если ток поднимается выше определенного предела в течение определенного периода времени
, то реле перегрузки срабатывает, приводя в действие вспомогательный контакт, который прерывает цепь управления двигателем, обесточивая контактор.Это приводит к отключению питания двигателя. Без питания двигатель и его компоненты цепи не перегреваются и не выходят из строя. Реле перегрузки можно сбросить вручную, а некоторые реле перегрузки автоматически сбрасываются через определенный период времени. После этого мотор можно перезапустить.

Как работает реле перегрузки

Реле перегрузки подключено последовательно с двигателем, поэтому ток, который течет к двигателю во время работы двигателя, также проходит через реле перегрузки.Он сработает на определенном уровне, когда через него протекает избыточный ток. Это приводит к размыканию цепи между двигателем и источником питания. Реле перегрузки можно сбросить вручную или автоматически по истечении заданного времени. Двигатель можно перезапустить после выявления и устранения причины перегрузки.

Типы реле перегрузки

Биметаллическое реле перегрузки

Многие реле перегрузки содержат биметаллические элементы или биметаллические полосы, также называемые нагревательными элементами.Биметаллические ленты изготовлены из двух типов металлов: один с низким коэффициентом расширения, а другой с высоким коэффициентом расширения. Эти биметаллические полосы нагреваются за счет намотки на биметаллическую полосу, по которой проходит ток. Обе металлические полоски расширятся из-за тепла. Однако металл с высоким коэффициентом расширения будет расширяться больше по сравнению с металлом с низким коэффициентом расширения. Такое разное расширение биметаллических полос вызывает изгиб биметалла по направлению к металлу с низким коэффициентом расширения.Когда полоса изгибается, она приводит в действие механизм вспомогательных контактов и вызывает размыкание нормально замкнутого контакта реле перегрузки. В результате цепь катушки контактора прерывается. Количество выделяемого тепла можно рассчитать по закону нагрева Джоуля. Он выражается как H ∝ I2Rt.

  • I - ток перегрузки, протекающий через обмотку вокруг биметаллической ленты реле перегрузки.
  • R - электрическое сопротивление обмотки биметаллической ленты.
  • t - это период времени, в течение которого ток I протекает через обмотку вокруг биметаллической ленты.

Приведенное выше уравнение определяет, что тепло, выделяемое обмоткой, будет прямо пропорционально периоду времени прохождения максимального тока через обмотку. Другими словами, чем ниже ток, тем больше времени потребуется реле перегрузки для срабатывания, и чем выше ток, тем быстрее сработает реле перегрузки, фактически оно сработает намного быстрее, потому что срабатывание реле является функцией текущий квадрат.

Биметаллические реле перегрузки часто указываются, когда требуется автоматический сброс цепи, и происходит потому, что биметалл остыл и вернулся в исходное состояние (форму). Как только это произойдет, двигатель можно будет перезапустить. Если причина перегрузки не устранена, реле снова сработает и сбрасывается с заданными интервалами. При выборе реле перегрузки важно соблюдать осторожность, поскольку повторное отключение и сброс могут сократить механический срок службы реле и вызвать повреждение двигателя.

Во многих случаях электродвигатель устанавливается в месте с постоянной температурой окружающей среды, а реле перегрузки и пускатель электродвигателя могут быть установлены в другом месте, которое подвержено различным температурам окружающей среды. В таких приложениях точка срабатывания реле перегрузки может варьироваться в зависимости от нескольких факторов. Ток, протекающий через двигатель, и температура окружающего воздуха являются двумя факторами, которые могут вызвать преждевременное отключение. В таких случаях используются биметаллические реле перегрузки с компенсацией внешней среды.Реле этого типа имеют два типа биметаллических полос: компенсированная биметаллическая полоса и первичная нескомпенсированная биметаллическая полоса. При температуре окружающей среды обе эти полоски изгибаются одинаково, предотвращая ложное срабатывание реле перегрузки. Однако первичная биметаллическая полоса - единственная полоса, на которую влияет ток, протекающий через нагревательный элемент и двигатель. В случае перегрузки расцепитель будет задействован основной биметаллической полосой.

Реле перегрузки эвтектики

Реле перегрузки этого типа состоит из обмотки нагревателя, механического механизма для активации механизма отключения и эвтектического сплава.Эвтектический сплав - это комбинация двух или более материалов, которые затвердевают или плавятся при определенной известной температуре.

В реле перегрузки эвтектический сплав находится в трубке, которая часто используется вместе с подпружиненным храповым колесом для активации отключающего механизма во время операций по перегрузке. Ток двигателя проходит через небольшую обмотку нагревателя. Во время перегрузки трубка из эвтектического сплава нагревается обмоткой нагревателя. Сплав плавится под действием тепла, освобождая храповое колесо и позволяя ему вращаться.Это действие инициирует размыкание замкнутых вспомогательных контактов в реле перегрузки.

Реле перегрузки Eutectic можно сбросить вручную только после срабатывания. Этот сброс обычно выполняется с помощью кнопки сброса, которая расположена на крышке реле. Нагреватель, установленный на реле, выбирается исходя из тока полной нагрузки двигателя.

Твердотельное реле перегрузки

Эти реле обычно называют электронными реле перегрузки.В отличие от биметаллических и эвтектических реле перегрузки, эти электронные реле перегрузки измеряют ток электронным способом. Несмотря на то, что они доступны в различных исполнениях, они имеют общие особенности и преимущества. Безнагревная конструкция - одно из главных преимуществ этих реле. Такая конструкция помогает снизить затраты и усилия по установке. Кроме того, конструкция без обогревателя нечувствительна к изменению температуры окружающей среды, что помогает свести к минимуму ложные срабатывания. Эти реле также обеспечивают защиту от потери фазы - более эффективно, чем реле перегрузки из биметаллических или эвтектических сплавов.Эти реле могут легко обнаружить обрыв фазы и задействовать вспомогательный контакт для размыкания цепи управления двигателем. Твердотельные реле перегрузки позволяют легко регулировать время срабатывания и уставки.

Срабатывание реле перегрузки

Время срабатывания реле перегрузки будет уменьшаться при увеличении тока. Эта функция нанесена на график обратной зависимости времени ниже и называется классом отключения. Класс отключения также указывает время, необходимое реле для размыкания в состоянии перегрузки.

Классы отключения 5, 10, 20 и 30 являются общими. Эти классы предполагают, что реле перегрузки сработает через 5, 10, 20 и 30 секунд. Это отключение обычно происходит, когда двигатель работает на 720% от своей полной нагрузки. Класс отключения 5 подходит для двигателей, требующих быстрого отключения, тогда как класс 10 обычно предпочтительнее для двигателей с низкой тепловой мощностью, таких как погружные насосы. Классы 10 и 20 используются для приложений общего назначения, тогда как класс 30 используется для нагрузок с высокой инерцией. Реле класса 30 помогают избежать ложных срабатываний.

Мы надеемся, что эта короткая статья дала вам хорошее базовое представление о реле перегрузки. Поищите другие информационные документы от c3controls на c3controls.com/blog.

Отказ от ответственности:
Содержимое, представленное в этом техническом документе, предназначено исключительно для общих информационных целей и предоставляется при том понимании, что авторы и издатели не участвуют в предоставлении технических или других профессиональных консультаций или услуг. Инженерная практика определяется обстоятельствами конкретного объекта, уникальными для каждого проекта.Следовательно, любое использование этой информации должно осуществляться только после консультации с квалифицированным и лицензированным специалистом, который может принять во внимание все соответствующие факторы и желаемые результаты. Информация в этом техническом документе была размещена с разумной тщательностью и вниманием. Однако возможно, что некоторая информация в этих официальных документах является неполной, неверной или неприменимой к определенным обстоятельствам или условиям. Мы не несем ответственности за прямые или косвенные убытки, возникшие в результате использования информации, содержащейся в этом техническом документе, или действий на ее основе.

Перегрузка двигателя - Jade Learning

Расчеты двигателя

- Часть III: Перегрузка двигателя

Автор: Вес Губиц | 02 июля 2018 г.

Расчеты двигателя - Часть III: Перегрузка двигателя

Автор: Вес Губиц

Это третья часть серии статей, призванных помочь объяснить, как правильно рассчитать цепи двигателя. В разделе , Часть I: Двигатель , мы продемонстрировали, как определять нагрузку двигателя для обычных двигателей с помощью 430.6 (A) (1), в котором указано, что для определения допустимой нагрузки проводов должны использоваться значения из таблицы … вместо фактического номинального тока, указанного на паспортной табличке двигателя. Для определения тока полной нагрузки двигателя чаще всего используются таблицы 430.248 для однофазных двигателей переменного тока и 430.250 для трехфазных двигателей переменного тока.

В разделе Part II: Motor Circuit Conductors мы рассмотрели, как правильно рассчитать типичную ответвленную цепь двигателя, используя нагрузку двигателя, определенную в соответствующей таблице, и затем умножая это число на 1.25, ссылка 430.22. Двигатель непрерывного действия рассматривается как непрерывная нагрузка, нагрузка, при которой ожидается, что максимальный ток будет продолжаться в течение трех часов или более . Длительные нагрузки имеют множитель 125%, применяемый при определении размеров ответвленных цепей и защиты от перегрузки по току.



Рис.1 - Цепь двигателя

Защита двигателя от перегрузки

Используйте соответствующую таблицу двигателей вместо фактического номинального тока, указанного на паспортной табличке двигателя , при определении тока полной нагрузки двигателя и проводов параллельной цепи двигателя для общих установок двигателя , 430.6 (А) (1). Ток полной нагрузки двигателя, паспортная табличка FLA, используется для расчета отдельной защиты двигателя от перегрузки, 430,6 (A) (2): Отдельная защита двигателя от перегрузки должна основываться на номинальном токе, указанном на паспортной табличке двигателя. Защита двигателя от перегрузки необходима для защиты двигателя и обеспечения его нормальной работы.

Двигатели, работающие в непрерывном режиме, защищены от перегрузки с помощью отдельного устройства защиты от перегрузки на величину от 115% до 125% от тока полной нагрузки двигателя, указанного на паспортной табличке, FLA.Производители двигателей разработали несколько типов отдельных устройств защиты от перегрузки с чувствительными элементами, которые «срабатывают» при перегрузке двигателя. Устройство защиты от перегрузки должно срабатывать при необходимости, но позволять двигателю запускаться и выдерживать расчетную нагрузку. Устройство защиты от перегрузки не может сработать или вызвать размыкание в цепи двигателя проводов параллельной цепи двигателя во время запуска, а устройство защиты от перегрузки должно позволять двигателю выдерживать нагрузку, работать при полном рабочем токе, 460,32 (C).

Отдельные перегрузки рассчитаны на 460.32 (A) (1): Двигатели с эксплуатационным коэффициентом 1,15 или выше и с указанием превышения температуры 40 ° C или менее имеют размер 125% от номинального значения FLA на паспортной табличке, а все остальные двигатели рассчитаны на 115%. паспортной таблички FLA. Эксплуатационный коэффициент SF и превышение температуры будут указаны на паспортной табличке двигателя, если применимо. Перегрузка может быть выше, чем определенная в 430.32 (A) (1), если чувствительный элемент или настройка устройства защиты от перегрузки, выбранная в соответствии с 460.32 (A) (1)… недостаточны для запуска двигателя или переноски. Загрузка. Ток отключения не должен превышать 140% от паспортной таблички двигателя FLA для двигателей с эксплуатационным коэффициентом 1,15 или выше и с указанием превышения температуры 40 ° C или менее, и 130% для всех остальных, 430,32 (C) .

Проверьте свои знания

Используя паспортную табличку выше:

  1. Что такое лошадиные силы?
  2. Какой номинальный ток полной нагрузки, указанный на паспортной табличке, у этого двигателя с напряжением 460 В?
  3. Какие перегрузки необходимы?
  4. Какой максимально допустимый размер в случае срабатывания перегрузки при номинальной нагрузке?

Ответов с пояснениями:

  1. Это 3-фазный двигатель мощностью 5 л.с.См. Информацию в блоке рядом с «H.P.».
  2. Ток полной нагрузки составляет 7 А при 460 В. Знак «/» указывает на то, что двигатель может работать при более чем одном значении линейного напряжения. Большинство 9-выводных 3-фазных двигателей являются двигателями с двойным напряжением. Это означает, что они могут быть подключены для работы от низкого или высокого напряжения, обычно 230 В / 460 В. Этот двигатель будет работать от 208-230 В и 460 В. Ток соответствует той же схеме: 14,8–14 А, 14,8 А при 208 В, 14 А при 230 В и 7 А при 460 В.
  3. При сетевом напряжении 460 В и токе полной нагрузки 7 А, с коэффициентом обслуживания 1.15 и номинальной температуре 40 ° C, перегрузки рассчитаны на 8,75 А. Перегрузки определены с использованием 125% от номинального тока, 7A x 1,25 = 8,75A.
  4. Максимально допустимый размер перегрузки - 9,8 А. Перегрузка может составлять 140% от FLA, если перегрузка срабатывает при номинальной нагрузке или не позволяет двигателю запуститься, 7A x 1,4 = 9,8A.

Типичный асинхронный двигатель будет превышать значение, указанное на паспортной табличке FLA, при использовании методов запуска от сети и часто при нормальной работе.Это произойдет при запуске, и когда нагрузка, которую несет двигатель или ведет двигатель, превышает расчетную мощность двигателя в лошадиных силах. Большинство асинхронных двигателей имеют пусковой ток, в 6-8 раз превышающий рабочий ток, ток полной нагрузки, FLA. Этот пусковой ток часто называют током заторможенного ротора, и его необходимо учитывать при проектировании цепей двигателя, особенно когда возникает проблема падения напряжения.

Ток заторможенного ротора можно определить с помощью паспортной таблички с указанием буквенного кода заторможенного ротора, нанесенной на паспортную табличку двигателя, и используя информацию в соответствии с таблицей 430.7 (B), буквенные обозначения заторможенного ротора. Использование буквенного кода с множителями, приведенными в таблице, позволит вам рассчитать ожидаемый «мин-макс» ток заторможенного ротора (LRC). Например: множители для двигателя с буквенным кодом, обозначающим заторможенный ротор, равным «K», равны 8,0–8,99. Это означает, что этот двигатель будет иметь от 8 до 8,99 киловольт-ампер на лошадиную силу с заторможенным ротором. Трехфазный двигатель мощностью 10 л.с., 460 В переменного тока будет иметь ток LRC в пределах 100–113 А.

Примените формулу мощности, используя следующую информацию: I = P / E, ток равен мощности, деленной на напряжение.

А = 10 л.с. * 8 кВА / 460 В * 1,732

А = 80 000 ВА / 797 В = 100 А.

Это минимальный ожидаемый LRC, а 113A - максимальный ожидаемый LRC с использованием множителя 8,99 кВА. Типичный трехфазный двигатель мощностью 10 л.с., 460 В с кодом K имеет FLC 14A и LRC 100-113A.

В Части I и Части II этой серии объясняется, как определить нагрузку двигателя, используемую при определении размеров проводов ответвленной цепи двигателя, и как выполнить расчеты, необходимые для определения размеров проводов ответвленной цепи двигателя.В части III: «Перегрузка двигателя» объясняется, как правильно рассчитать защиту от перегрузки для типовой установки двигателя с использованием отдельной защиты от перегрузки, а в части IV обсуждается, как правильно рассчитать параметры защиты двигателя от параллельной цепи, короткого замыкания и замыкания на землю. А пока я призываю каждого из вас работать над тем, чтобы сегодня стать лучшим профессионалом, чем вчера. Знай свой код.

Защита электродвигателя: основы реле перегрузки

Двигатели могут быть повреждены из-за избыточного тепла, вызванного протеканием тока в условиях перегрузки.Некоторые примеры включают заблокированный вал, слишком много систем в цепи, однофазный источник питания в трехфазной цепи. Установка реле перегрузки в ваших приложениях может защитить ваши двигатели.

Когда двигатель запускается, ему обычно требуется в 6 раз превышающий номинальный ток при полной нагрузке. После того, как двигатель набирает рабочую скорость, ток падает. Двигатели предназначены для работы в условиях перегрузки только в течение короткого периода времени. Если двигатель поддерживает это состояние перегрузки, двигатель перегреется и может выйти из строя.

Хотя предохранители и автоматические выключатели могут защитить вашу систему от коротких замыканий, замыканий на землю или перегрузки, они не являются надлежащим устройством защиты двигателей. Как отмечалось выше, двигатели при запуске потребляют значительно больше ампер, чем их номинальный ток при полной нагрузке. Любой предохранитель, используемый с двигателем, должен быть рассчитан на работу с этим более высоким потреблением пускового тока, поэтому он не сможет защитить двигатель от условий перегрузки, помимо нормального запуска. Реле перегрузки рассчитаны на временные перегрузки в течение определенного периода во время запуска.Если перегрузка сохраняется, реле перегрузки срабатывает и разрывает цепь, чтобы защитить ваш двигатель. Реле перегрузки можно легко сбросить после устранения перегрузки.

Реле перегрузки

имеют класс срабатывания для различных применений. Наиболее распространенные классы отключения - это класс 10, класс 20 и класс 30. Число в классе отключения - это просто общее количество секунд, в течение которых двигатель может перегрузиться перед отключением цепи. Например, если у вас есть реле перегрузки с рейтингом 10, ваша система допускает состояние перегрузки в течение 10 секунд, прежде чем реле перегрузки сработает, чтобы защитить ваш двигатель.

Несколько различных типов реле перегрузки включают биметаллические реле перегрузки, реле перегрузки с компенсацией окружающей среды и электронные реле перегрузки.

  • Биметаллическая перегрузка использует биметаллическую полосу, которая действует как рычаг отключения. При перегрузке биметаллическая полоса нагревается и изгибается, замыкаясь и размыкая цепь.
  • Реле перегрузки с компенсацией внешней среды аналогичны биметаллическим реле перегрузки. Основное различие заключается в том, что реле с компенсацией температуры окружающей среды позволяют поддерживать температуру окружающей среды, например, температуру окружающей среды.Эти реле могут предотвратить ложное срабатывание за счет повышения температуры окружающей среды.
  • Электронные реле перегрузки не имеют нагревателей, которые можно найти в биметаллических реле и реле перегрузки с компенсацией окружающей среды. Электронные реле перегрузки также обеспечивают защиту от обрыва фазы, обнаруживая обрыв фазы и отключая двигатель от источника питания. Существует много типов электронных реле перегрузки, подходящих для множества применений.

Установка реле перегрузки в двигатели предотвратит работу двигателей в условиях перегрузки и может защитить ваши двигатели от теплового повреждения.Существует множество типов и настроек реле перегрузки. Если вам нужна инструкция по поиску подходящего реле перегрузки для вашего приложения, позвоните нам сегодня!

Расчеты двигателей

Часть 1: Двигатели и проводники ответвлений

Благодарим вас за посещение одной из наших самых популярных классических статей. Если вы хотите получить обновленную информацию по этой теме, ознакомьтесь с недавно опубликованной статьей
Motor Calculations - Part 1 .

Лучшим методом обеспечения максимальной токовой защиты для большинства цепей является использование автоматического выключателя, сочетающего защиту от перегрузки по току с защитой от короткого замыкания и замыкания на землю.Однако обычно это не лучший выбор для двигателей. За редкими исключениями, лучший метод обеспечения максимальной токовой защиты в этих случаях - отделить устройства защиты от перегрузки от устройств защиты от короткого замыкания и замыкания на землю ( Рис. 1 ).

Устройства защиты двигателя от перегрузки, такие как нагреватели, защищают двигатель, оборудование управления двигателем и проводники параллельной цепи от перегрузки двигателя и, как следствие, чрезмерного нагрева (430.31). Они не обеспечивают защиты от коротких замыканий или токов замыкания на землю.Это работа выключателей ответвлений и фидеров, которые не обеспечивают защиту двигателя от перегрузки. Такая компоновка отличает расчеты двигателя от расчетов, используемых для других типов нагрузок. Давайте посмотрим, как применять ст. 430, начиная с мотора.

Защита от перегрузки. Устройства защиты двигателя от перегрузки часто встроены в пускатель двигателя. Но вы можете использовать отдельное устройство защиты от перегрузки, такое как двухэлементный предохранитель, который обычно находится рядом с пускателем двигателя, а не с выключателем питания.

Рис. 1. Защита от перегрузки по току обычно достигается путем отделения защиты от перегрузки от устройства защиты от короткого замыкания и замыкания на землю.

Если вы используете предохранители, вы должны предоставить по одному на каждый незаземленный провод (430,36 и 430,55). Таким образом, для трехфазного двигателя требуется три предохранителя. Имейте в виду, что эти устройства находятся на стороне нагрузки в ответвленной цепи и не обеспечивают защиты от короткого замыкания или замыкания на землю.

Двигатели мощностью более 1 л.с. без встроенной тепловой защиты и двигатели мощностью 1 л.с. или менее, которые запускаются автоматически [430.32 (C)] должно иметь устройство защиты от перегрузки, размер которого соответствует номинальному току двигателя на паспортной табличке [430,6 (A)]. Размер устройств защиты от перегрузки не должен превышать требований 430.32. Двигатели с номинальным коэффициентом полезного действия (SF) на паспортной табличке (SF) 1,15 или более должны иметь устройство защиты от перегрузки, рассчитанное не более чем на 125% номинального тока двигателя, указанного на паспортной табличке.

Рис. 2. При работе с двигателями с коэффициентом эксплуатации 1,15 или выше размер устройства защиты от перегрузки не должен превышать 125% от номинала двигателя, указанного на паспортной табличке.

Давайте посмотрим на Рис. 2 и рассмотрим пример расчета.

Пример № 1 : Предположим, вы используете двухэлементный предохранитель для защиты от перегрузки. Предохранитель какого размера вам нужен для однофазного двигателя мощностью 5 л.с., 230 В с эксплуатационным коэффициентом 1,16, если номинальный ток двигателя, указанный на паспортной табличке, составляет 28 А?

(а) 25A
(в) 35A
(б) 30A
(г) 40A

Размер защиты от перегрузки должен соответствовать номинальному току двигателя, указанному на паспортной табличке [430,6 (A), 430.32 (А) (1) и 430,55].

Также необходимо учитывать еще один фактор: повышение температуры на паспортной табличке. Для двигателей с номинальной температурой, указанной на паспортной табличке, не более 40 ° C, размер устройства защиты от перегрузки не должен превышать 125% номинального тока двигателя, указанного на паспортной табличке. Таким образом, 28A × 1,25 = 35A [240,6 (A)]

Рис. 3. Определите размер устройства защиты двигателя от перегрузки с номинальной температурой, указанной на паспортной табличке, на 40 ° C или менее при не более 125% номинального тока двигателя, указанного на паспортной табличке.

Давайте посмотрим на рис.3 и проработайте другой пример задачи.

Пример № 2 : Опять же, предположим, что вы используете двухэлементный предохранитель для защиты от перегрузки. Предохранитель какого размера вам нужен для 3-фазного двигателя мощностью 50 л.с., 460 В с повышением температуры до 39 ° C и номинальным током, указанным на паспортной табличке двигателя, 60 А (FLA)?

(а) 40A
(в) 60A
(б) 50A
(г) 70A

Защита от перегрузки соответствует номинальному току двигателя, указанному на паспортной табличке, а не номинальному току полной нагрузки двигателя (FLC).Таким образом, 60А × 1,25 = 75А. Защита от перегрузки не должна превышать 75A, поэтому вам необходимо использовать двухэлементный предохранитель на 70A [240,6 (A) и 430,32 (A) (1)].

Двигатели, которые не имеют номинального эксплуатационного фактора 1,15 или выше или номинального значения превышения температуры 40 ° C и менее, должны иметь устройство защиты от перегрузки, рассчитанное не более чем на 115% номинального тока двигателя, указанного на паспортной табличке (430,37).

Рис. 4. См. Таблицу 310.16 при выборе проводника подходящего размера для обслуживания одиночного двигателя.

Расчет проводов ответвительной цепи. Проводники ответвленной цепи, обслуживающие один двигатель, должны иметь допустимую нагрузку не менее 125% от FLC двигателя, как указано в таблицах с 430.147 по 430.150 [430,6 (A)]. Вы должны выбрать размер проводника из Таблицы 310.16 в соответствии с номинальной температурой клемм (60 ° C или 75 ° C) оборудования [110,14 (C)]. Давайте подкрепим эту концепцию, проработав пример расчета. См. Рис. 4 .

Пример № 3 : Провод какого сечения THHN вам нужен для однофазного двигателя мощностью 2 л.с., 230 В?

(a) 14 AWG
(c) 10 AWG
(b) 12 AWG
(d) 8 AWG

Давайте рассмотрим решение:

Шаг 1: Размер проводника не менее 125% FLC двигателя

Шаг 2: Таблица 430.148 показан FLC мощностью 2 л.с., 230 В, однофазный, как 12A

.

Шаг 3: 12A × 1,25 = 15A

Шаг 4: Согласно таблице 310.16, вам необходимо использовать 14 AWG THHN номиналом 20 А при 60 ° C

Минимальный размер проводника, разрешенный NEC для проводки в зданиях, - 14 AWG [310,5]. Однако местные нормы и правила и многие промышленные предприятия требуют, чтобы провод сечением 12 AWG использовался как наименьший провод ответвленной цепи. Таким образом, в этом примере вам может потребоваться использовать 12 AWG вместо 14 AWG.

Инжир.5. Устройства защиты от короткого замыкания и замыкания на землю предназначены для быстрого нарастания тока, кратковременных событий. С другой стороны, устройства защиты от перегрузки предназначены для длительных ситуаций с низкой скоростью тока.

Защита параллельных цепей от коротких замыканий и замыканий на землю. Устройства защиты от короткого замыкания и замыкания на землю защищают двигатель, аппаратуру управления двигателем и проводники от коротких замыканий или замыканий на землю. Они не защищают от перегрузки (430.51) ( Рис.5 ).

Устройство защиты от короткого замыкания и замыкания на землю, необходимое для цепей двигателя, не относится к типу, необходимому для персонала (210,8), фидеров (215,9 и 240,13), служб (230,95) или временной проводки для розеток (527,6).

Согласно 430,52 (C), вы должны выбрать размер защиты от короткого замыкания и замыкания на землю для параллельной цепи двигателя, за исключением тех, которые обслуживают моментные двигатели, чтобы они не превышали процентные значения, указанные в Таблице 430.52.

Когда значение устройства защиты от короткого замыкания и замыкания на землю, которое вы найдете в таблице 430.52 не соответствует стандартному номиналу или настройке устройств защиты от сверхтоков, перечисленным в 240,6 (A), используйте устройство защиты следующего более высокого размера [430,52 (C) (1) Ex. 1].

Это заявление остановило вас? Вам это кажется неправильным? Это обычная реакция, но помните, что двигатели отличаются от других компонентов системы. Устройства защиты двигателя от перегрузки, такие как нагреватели и предохранители, защищают двигатель и другие элементы от перегрузки. Защита от короткого замыкания и замыкания на землю не обязана выполнять эту функцию.Таким образом, увеличение размера не повредит защите. Занижение размера предотвратит запуск двигателя.

Используйте следующий двухэтапный процесс, чтобы определить, какой процент из таблицы 430.52 вы должны использовать для определения размера устройства защиты от короткого замыкания и замыкания на землю в ответвленной цепи двигателя.

Шаг 1: Найдите тип двигателя в Таблице 430.52.

Шаг 2: Выберите процентное значение из Таблицы 430.52 в соответствии с типом устройства защиты, например, без выдержки времени (одноразовый), двухэлементный предохранитель или автоматический выключатель с обратнозависимой выдержкой времени.Не забудьте при необходимости использовать устройство защиты следующего более высокого размера.

Давайте посмотрим, справитесь ли вы с этой концепцией с помощью короткой викторины. Какое из следующих утверждений верно? Используйте Таблицу 430.52, чтобы найти числа.

  1. Защита от короткого замыкания в параллельной цепи (плавкий предохранитель без выдержки времени) для однофазного двигателя мощностью 3 л.с., 115 В, не должна превышать 110 А.

  2. Защита от короткого замыкания в параллельной цепи (двухэлементный предохранитель) для однофазного двигателя мощностью 5 л.с., 230 В, не должна превышать 50 А.

  3. Защита параллельной цепи от короткого замыкания (автоматический выключатель) для трехфазного синхронного двигателя мощностью 25 л.с., 460 В, не должна превышать 70 А.

Давайте рассмотрим каждый вопрос индивидуально. Мы будем ссылаться на 430.53 (C) (1) Ex. 1 и в таблице 430.52.

  1. Согласно таблице 430.148, 34A × 3,00 = 102A. Следующий размер - 110А. Так что это правда.

  2. Согласно таблице 430.148, 28A × 1,75 = 49A. Следующий размер - 50А. Так что это тоже правда.

  3. По таблице 430.150, 26A × 2,50 = 65A. Следующий размер - 70А. Это тоже правда.

Помните следующие важные принципы:

  • Размер проводов должен быть равен 125% FLC двигателя [430,22 (A)].

  • Вы должны рассчитать перегрузку не более чем от 115% до 125% номинального тока двигателя, указанного на паспортной табличке, в зависимости от условий [430.32 (A) (1)].

  • Размер устройства защиты от короткого замыкания и замыкания на землю должен составлять от 150% до 300% FLC двигателя [Таблица 430.52].

Если вы сложите все три вместе, вы увидите, что допустимая нагрузка проводника ответвленной цепи (125%) и устройство защиты от короткого замыкания на землю (от 150% до 300%) не связаны между собой.

Этот последний пример должен помочь вам понять, обращали ли вы внимание.

Рис. 6. Хотя этот пример может беспокоить некоторых людей, проводники THHN 14 AWG и двигатель защищены от перегрузки по току с помощью устройства защиты от перегрузки 16A и устройства защиты от короткого замыкания 40A.

Пример № 4 : Верно ли какое-либо из следующих утверждений для двигателя мощностью 1 л.с., 120 В, номинальный ток на паспортной табличке 14 А? См. Рис. 6 .

(a) Разветвительные проводники могут иметь диаметр 14 AWG THHN.

(b) Защита от перегрузки от 16,1 А.

(c) Для защиты от короткого замыкания и замыкания на землю разрешается использовать автоматический выключатель на 40 А.

(d) Все это правда.

Просматривая каждую из них, вы можете увидеть:

(а) Сечение проводников соответствует 430.22 (А): 16А × 1,25 = 20А; Для таблицы 310.16 требуется 14 AWG при 60 ° C.

(b) Согласно 430,32 (A) (1), защита от перегрузки имеет следующие размеры: 14A (заводская табличка) × 1,15 = 16,1A.

(c) Защита от короткого замыкания и замыкания на землю определяется на основе 430,52 (C) (1): 16A × 2,50 = 40A автоматического выключателя.

Следовательно, все три утверждения верны.

Устройство защиты от перегрузки 16A защищает проводники 14 AWG от перегрузки по току, а устройство защиты от короткого замыкания 40A защищает их от короткого замыкания.Этот пример иллюстрирует иногда сбивающий с толку факт, что при расчете двигателя вы фактически рассчитываете защиту от перегрузки по току и защиты от короткого замыкания отдельно.

Расчеты двигателей долгое время были источником путаницы и ошибок для многих. Понимание того, что отличает эти расчеты, должно помочь вам каждый раз правильно выполнять расчеты двигателя. В следующем месяце мы рассмотрим определение размеров питателей двигателя в Части 2.

ЗАЩИТА ОТ ПЕРЕГРУЗКИ ТОКА ДЛЯ УСТАНОВКИ МОТОРА: ЧАСТЬ ПЕРВАЯ

В этом месяце колонка посвящена максимальной токовой защите проводников в цепях двигателя и контроллера и защите двигателей от перегрузки, о которых спрашивали многие подписчики нашей онлайн-функции «Кодовый вопрос дня».ВОПРОС: Требуется ли, чтобы проводники параллельной цепи двигателя были рассчитаны на 125 процентов от тока полной нагрузки двигателя (FLC), чтобы выдерживать пусковой ток двигателя? ОТВЕТ: Нет. Пусковой или пусковой ток двигателя, который также называется «током заторможенного ротора», присутствует только в период разгона в момент запуска двигателя. Пусковой ток быстро уменьшается, когда двигатель начинает вращаться. Максимальная токовая защита в параллельной цепи двигателя, рассчитанная по Таблице 430-152, легко справляется с этими токами в пределах ограничений проводников параллельной цепи двигателя.Эти устройства защиты от перегрузки по току в параллельной цепи двигателя могут иметь размер, намного превышающий номинальную допустимую нагрузку проводов параллельной цепи двигателя. Они также способны защищать проводники параллельной цепи двигателя от токов короткого замыкания или замыкания на землю из-за величины токов, столь быстро возникающих при таких типах повреждений. Почему проводники параллельной цепи двигателя рассчитаны на 125% от тока полной нагрузки двигателя? См. Следующий вопрос. ВОПРОС: Почему размер проводников параллельной цепи двигателя составляет 125 процентов от FLC двигателя? ОТВЕТ: Проводники параллельной цепи двигателя защищены от токов короткого замыкания и замыкания на землю устройствами максимального тока параллельной цепи, но эти устройства не защищают проводники от условий перегрузки.В соответствии с Разделом 430-32 (a) (1) устройства защиты двигателя от перегрузки, которые обычно расположены в контроллере двигателя, могут иметь размер в соответствии с отмеченным «коэффициентом эксплуатации» двигателя. Эти значения обычно составляют 115% или 125% FLC двигателя. Есть исключения из этого, как показано в Разделе 430-32 (a) (2). Если двигатель может выдерживать до 125 процентов FLC двигателя, то мы защищаем проводники параллельной цепи, рассчитывая их также на 125 процентов от FLC двигателя. ВОПРОС: Что такое коэффициент полезного действия двигателя и что они означают «отмеченный коэффициент использования»? ОТВЕТ: Фактор обслуживания - это запас прочности.Когда производитель вводит в двигатель коэффициент полезного действия, это означает, что двигатель может развивать ток, превышающий его номинальный, без ущерба для самого себя. Например, двигатель мощностью 10 л.с. с эксплуатационным коэффициентом 1,15 может развить ток, эквивалентный 11,5 л.с., без повреждения изоляции обмотки двигателя. Национальный электротехнический кодекс (NEC) в Разделе 430-32 (a) (1) позволяет двигателю с коэффициентом обслуживания 1,15 использовать защиту от перегрузки 125%. Это позволяет двигателю работать с номинальной мощностью до 15 процентов выше его нормальной мощности, не вызывая срабатывания защиты от перегрузки.ВОПРОС: Меня беспокоит размер проводки двигателя и защита от перегрузки по току. Почему мы можем перегореть двигатель с помощью Таблицы 430-152? ОТВЕТ: В таблице 430-152 не указывается максимальная токовая защита двигателей. Эта таблица, как указано в заголовке, обеспечивает процентное соотношение FLC двигателей, чтобы установить «Максимальный номинал или настройку устройств защиты от короткого замыкания и замыкания на землю в ответвленной цепи двигателя». Эти устройства максимального тока (предохранители или автоматические выключатели) защищают проводники, питающие двигатель, от сверхтоков, вызванных коротким замыканием или замыканием на землю.Они не предназначены для защиты обмоток двигателя. Проводники параллельной цепи двигателя защищены от условий перегрузки с помощью защиты двигателя от перегрузки, указанной в Разделе 430-32. Ключ к пониманию защиты проводов и двигателя заключается в понимании значения замыкания на землю, короткого замыкания и перегрузки. См. Следующий вопрос. ВОПРОС: Меня смущают термины «защита от короткого замыкания и замыкания на землю в параллельной цепи двигателя» и «перегрузка». Вы можете это пояснить? ОТВЕТ: Проводники параллельной цепи двигателя защищены от двух возможных проблем: (1) короткого замыкания и замыкания на землю и (2) перегрузки.Сначала приведем несколько определений по порядку. Короткое замыкание: два или более проводника противоположной полярности, контактирующие друг с другом с относительно низким сопротивлением между ними, или контакт между ними за пределами нагрузки. Замыкание на землю: один или несколько незаземленных проводов контактируют с заземленным проводом или заземленной поверхностью. Перегрузка: эксплуатация оборудования или проводника со значением тока, превышающим его номинальную допустимую нагрузку, что может привести к повреждению или опасному перегреву.Неисправность, такая как короткое замыкание или замыкание на землю, не является перегрузкой. Это условия, от которых мы должны защищать проводники параллельной цепи двигателя. Защита проводов от короткого замыкания и замыкания на землю описана в Разделе 430-52. Первое правило: «Устройство защиты от короткого замыкания двигателя и замыкания на землю должно выдерживать пусковой ток двигателя». Раздел 430-52 отсылает нас к Таблице 430-152, которая, в зависимости от типа двигателя и типа используемого устройства максимального тока, допускает максимальный процент тока полной нагрузки, который может использоваться для определения размера устройства максимального тока.Это устройство защиты от сверхтоков может быть либо предохранителем, либо автоматическим выключателем. При коротких замыканиях и замыканиях на землю возникает ток большой величины, который быстро размыкает устройство максимального тока, размер которого соответствует таблице 430-152. Защита от перегрузки для проводов параллельной цепи двигателя обеспечивается устройствами защиты двигателя, которые также защищают обмотки двигателя от состояния перегрузки. Эти устройства защиты от перегрузки расположены в контроллере мотора или являются его неотъемлемой частью. Их размеры соответствуют разделам 430-32.Поскольку эти устройства защиты от перегрузки могут иметь размер до 125 процентов от тока полной нагрузки двигателя, раздел 430-22 требует, чтобы проводники параллельной цепи также были рассчитаны на 125 процентов от FLC двигателя. Шесть шагов к базовой установке двигателя Предположим, что трехфазный двигатель на 208 В мощностью 10 л.с. с кодовой буквой F и коэффициентом эксплуатации 1,15. Электродвигатель будет питаться от распределительной панели в 60 футах от места расположения электродвигателя. Двигатель будет запускаться вручную с помощью кнопки старт-стоп на крышке контроллера мотора, а кнопка дистанционного останова будет расположена в 50 футах от контроллера мотора.Контроллер мотора будет расположен рядом с двигателем и будет содержать устройства защиты двигателя от перегрузки. Шаг № 1: Определите FLC двигателя. Национальный электротехнический кодекс в разделе 430-6 требует, чтобы для определения FLC двигателей использовались таблицы с 147 по 430-150, а не номинальные характеристики на паспортной табличке. Таблица 430-150 охватывает трехфазные двигатели переменного тока, и, используя эту таблицу, мы находим, что двигатель мощностью 10 л.с. 208 В имеет FLC 30,8 ампер. Шаг № 2: Определите сечение проводов параллельной цепи двигателя.Раздел 430-22 требует, чтобы проводники параллельной цепи, питающие один двигатель, имели допустимую нагрузку не менее 125 процентов от номинала FLC. 30,8 ампер x 1,25 = 38,5 А Шаг № 3: Определите номинал предохранителя (сдвоенного элемента), который будет использоваться в качестве защиты от короткого замыкания в параллельной цепи двигателя и замыкания на землю. Раздел 430-52 ссылается на Таблицу 430-152, где указаны максимальные номинальные значения или настройки устройств защиты от короткого замыкания в параллельной цепи двигателя и замыкания на землю. 30,8 ампер х 1,75 = 53,9 А. Разделы 430-52 и Раздел 240-6, следующий более высокий стандартный размер (60A).Шаг № 4: Определите номинальные характеристики, необходимые для выключателя двигателя. Раздел 430-110 требует, чтобы средства отключения двигателя имели номинальный ток не менее 125 процентов от номинального значения FLC двигателя. 30,8 ампер x 1,15 = 35,42 А (требуется разъединитель на 60 А) Раздел 430-102 требует, чтобы отключающие средства находились в зоне видимости с места расположения контроллера. «Видимость» определяется как видимая на расстоянии не более 50 футов от другого. Шаг № 5: Определите требуемую защиту двигателя и параллельной цепи от перегрузки.Раздел 430-32 требует отдельного устройства защиты от перегрузки, которое реагирует на ток двигателя, или встроенного в двигатель термозащитного устройства, которое предотвратит перегрев двигателя из-за перегрузки или отказа при запуске. В нашей установке устройства защиты двигателя от перегрузки будут находиться в контроллере двигателя. Для двигателей с коэффициентом эксплуатации не менее 1,15 Раздел 430-32 (a) (1) допускает 125% FLC двигателя для устройства защиты двигателя от перегрузки. 30,8 ампер x 1,25 = 38,5 А Если выбранного реле перегрузки недостаточно для запуска двигателя или выдерживания нагрузки, разрешается использовать реле перегрузки следующего более высокого размера при условии, что ток срабатывания реле перегрузки не превышает процентное значение FLC двигателя, указанное в разделе 430-34.Для двигателя с коэффициентом эксплуатации не менее 1,15 можно использовать 140 процентов. 30,8 ампер x 1,40 = 43,12 А Шаг № 6: Определите требования к максимальной токовой защите цепи управления двигателем. Раздел 430-72 описывает эти требования. Цепь управления двигателем простирается за пределы контроллера двигателя до кнопки дистанционного останова. Раздел 430-72 (b) Исключение № 2 разрешает защиту цепи управления двигателем с помощью защитного устройства параллельной цепи, если оно не превышает значения, указанного в столбце C Таблицы 430-72 (b).Устройство защиты от перегрузки по току в параллельной цепи, используемое в этой установке, рассчитано на 60 ампер, и если для проводов цепи управления двигателем используются медные проводники № 12, то они должны считаться защищенными устройством максимальной токовой защиты параллельной цепи, и дополнительная защита от перегрузки по току не требуется. . Буквы кода, нанесенные на паспортные таблички двигателя, обозначают вход двигателя с заблокированным ротором и должны соответствовать таблице 430-7 (b). Большинство двигателей рассчитаны на длительный режим работы и могут бесконечно работать при номинальной нагрузке.Во время запуска двигатель потребляет большой ток. Этот «пусковой» ток может в 4-10 раз превышать ток полной нагрузки двигателя. Таблица 430-152 позволяет процентное увеличение FLC, чтобы двигатель мог быть успешно запущен при сохранении полной защиты от перегрузки по току. TROUT был подрядчиком в области электротехники в течение многих лет и в настоящее время связан с Maron Electric Co., Скоки, Иллинойс. Он является председателем Национальной комиссии по разработке электрических кодов № 12, членом комитета по кодам и стандартам NECA и член Западной секции Международной ассоциации электротехнических инспекторов.

Защита от перегрузки и сверхтока - базовое управление двигателем

Нажмите кнопку воспроизведения на следующем аудиоплеере, чтобы послушать, как вы читаете этот раздел.

Когда двигатель запускается впервые, прежде чем вал сможет набрать скорость и начать вращаться, характеристики обмотки статора соответствуют характеристикам короткого замыкания. Таким образом, двигатель начинает потреблять очень высокие значения , ток . Этот ток создает магнитное поле, которое заставляет вал двигателя вращаться, и это вращательное действие создает противо-ЭДС (CEMF), которая ограничивает ток до его нормального рабочего значения.

Первоначальное высокое значение тока называется бросок и может вызвать серьезные нарушения в сети и ложное отключение, если предохранители и автоматические выключатели не имеют соответствующего размера.

Термин « перегрузка » описывает умеренное и постепенное повышение значения тока в течение относительно длительного периода времени. Это вызвано чрезмерным током, потребляемым двигателем, который может в шесть раз превышать номинальный ток. Это вызвано слишком большой нагрузкой на двигатель.Системы защищены реле защиты от перегрузки . В то время как перегрузки допускаются на короткое время (обычно минуты), длительные перегрузки будут использовать тепловое воздействие, чтобы вызвать срабатывание защитного устройства.

Термин « перегрузка по току » (иногда называемый коротким замыканием или замыканием на землю) описывает резкое и быстрое повышение тока за короткий период времени (доли секунды). Цепи и оборудование защищены от перегрузок по току предохранителями или автоматическими выключателями.

В этих случаях значение тока намного превышает номинальный линейный ток и действительно может быть от шести до многих сотен раз выше нормального номинального значения тока.

Существует несколько причин ситуаций перегрузки по току. Например, когда происходит замыкание на болтах - замыкание между линией и землей или между линией и линией. Это приводит к потреблению очень большого значения тока из-за обратно пропорциональной зависимости между сопротивлением цепи и потребляемым током.

Еще одна менее интуитивная причина короткого замыкания - запуск асинхронного двигателя. При первом включении трехфазного асинхронного двигателя обмотки статора имеют цепь с очень низким сопротивлением. Это потребляет очень большой пусковой ток, который неотличим от стандартного короткого замыкания, за исключением того, что он быстро падает до номинального значения тока, потребляемого двигателем. Это происходит из-за противоэлектродвижущей силы (CEMF), создаваемой вращающимся валом двигателя. Когда двигатель вращается, CEMF ограничивает ток до безопасных значений.Когда двигатель не вращается, от источника потребляется очень большое значение тока. Этот ток иногда называют током заторможенного ротора , и пускатели двигателей и устройства максимального тока должны быть рассчитаны на безопасную работу с этим значением тока.

Последствия короткого замыкания

Два основных отрицательных выхода максимального тока:

  • Тепловая энергия : Высокие значения тока создают много тепла, которое может повредить оборудование и провода.Тепловая энергия может быть выражена как I 2 t (квадрат тока, умноженный на время) - чем дольше сохраняется неисправность, тем больше потенциальное тепловое повреждение.
  • Механические силы : Сильные токи короткого замыкания могут создавать мощные магнитные поля и оказывать огромное магнитное напряжение на шины и оборудование, иногда деформируя их по форме и создавая другие проблемы.

Большие значения тока короткого замыкания могут очень быстро вызвать повреждение, поэтому устройства защиты от перегрузки по току должны действовать очень быстро, чтобы устранить сбой.Существует две основные категории устройств защиты от сверхтоков: предохранители и автоматические выключатели.

Предохранители

Предохранители

Предохранитель - это простое устройство, которое защищает проводники и оборудование цепи от повреждения из-за превышения нормального значения неисправности. Он разработан как самое слабое звено в цепи.

Предохранитель

A представляет собой изолированную трубку, содержащую полосу проводящего металла (плавкую вставку), которая имеет более низкую температуру плавления, чем медь или алюминий. Плавкая вставка имеет узкие резистивные сегменты, которые концентрируют ток и вызывают повышение температуры в этих точках.

При коротком замыкании элементы предохранителя сгорают всего за доли секунды. Чем выше значения тока повреждения, тем быстрее сработает предохранитель.

В случае перегрузки плавким элементам может пройти несколько секунд или даже минут, прежде чем тепловые воздействия вызовут плавление плавкой вставки.

Предохранители бывают двух категорий: быстродействующие предохранители (тип P) и предохранители с выдержкой времени (тип D).

Предохранители, используемые в цепях двигателя, должны выдерживать интенсивный пусковой ток при запуске двигателя, поэтому мы используем предохранители с выдержкой времени, также известные как «двухэлементные предохранители».”

Общие рейтинги

Все устройства максимального тока должны работать в пределах своих номинальных значений. Три наиболее важных параметра - это напряжение, ток и отключающая способность.

Номинальное напряжение

Предохранители и автоматические выключатели должны быть рассчитаны как минимум на значение напряжения цепи, которую они предназначены для защиты.

Когда предохранитель или автоматический выключатель прерывает ток короткого замыкания, он должен безопасно гасить дугу и предотвращать ее повторное возникновение.Следовательно, номинальное напряжение предохранителя или автоматического выключателя должно быть равно или превышать напряжение системы.

Например, предохранитель, рассчитанный на 240 В RMS, будет приемлем для использования в цепи на 120 В. Однако при использовании в цепи 600 В. напряжение предохранителя превысит номинальное.

Режим продолжительной работы

Рейтинг продолжительной работы описывает максимальное номинальное значение среднеквадратичного значения тока, на которое рассчитано устройство максимального тока для непрерывной работы без отключения.Вообще говоря, номинал предохранителя или прерывателя ампер не должен превышать допустимую нагрузку цепи по току, но есть исключения, такие как определенные цепи двигателя.

Отключающая способность

Когда происходит короткое замыкание или замыкание на землю, сопротивление цепи падает до нуля Ом , вызывая протекание очень больших значений тока. Этот чрезвычайно быстрый рост тока короткого замыкания может вызвать повреждение проводов и оборудования из-за перегрева, и его необходимо как можно быстрее погасить.

Номинальная отключающая способность (IC) устройства максимального тока - это максимальный ток короткого замыкания, который устройство может отключить без ущерба для себя. Большинство автоматических выключателей и предохранителей имеют номинал IC 10 000 ампер.

Для систем, способных к большим токам замыкания, предохранители с высокой разрывной емкостью (HRC) могут отключать токи до 200 000 ампер за счет использования дугогасящего наполнителя, такого как кварцевый песок, чтобы помочь устранить замыкание.

【Защита двигателя】 # 6 Способы защиты двигателя от специалистов

Защита электродвигателей - Для защиты электродвигателей используются различные защитные устройства.Двигатели используются на разных уровнях в различных приложениях. Асинхронные двигатели широко используются на бытовом, промышленном и коммерческом уровне. В промышленных установках используются асинхронные двигатели различных категорий. Большие промышленные двигатели дороги, поэтому защита двигателя является важным параметром. Для защиты двигателей используются различные блоки защиты двигателя. Защита двигателя была разделена на различные категории в зависимости от режима работы двигателя. Ниже рассматриваются различные категории защиты двигателя.

Защита от перегрузки:

Защита от перегрузки - это тип защиты от механической перегрузки. Условия механической перегрузки могут возникать в двигателе по разным причинам, когда двигатель находится в рабочем состоянии. Ситуации перегрузки могут привести к повышению температуры двигателя, что может привести к его повреждению. Защита, используемая в условиях перегрузки, может отключать двигатель в условиях перегрузки от основного источника питания.Когда двигатель перегружен из-за каких-либо обстоятельств, обмотки электродвигателя подвергаются возгоранию, так как температура двигателя увеличивается в условиях перегрузки, и в результате обмотки двигателя могут быть повреждены. Точно так же, если выходы двигателя закрыты и нет смысла для выделения тепла, тогда температура двигателя увеличивается по мере того, как двигатель продолжает работать, что также может привести к повреждению обмоток двигателя. Блоки защиты от перегрузки срабатывают в случае перегрузки, питание двигателя прекращается, и двигатель защищается от дальнейшего повреждения.

Защита от перегрузки двигателя

Максимальная токовая защита:

Каждый раз, когда через двигатель проходит чрезмерный ток, срабатывает блок защиты двигателя. Автоматические выключатели и предохранители используются в качестве защитных устройств для различных двигателей. Защита от перегрузки по току может защитить персонал от поражения электрическим током, оборудование управления двигателем, проводники параллельных цепей двигателя и сам двигатель от высоких токов.

Защита от низкого напряжения:

Блок защиты или устройство используется для отключения двигателя от источника напряжения или источника питания в случае падения напряжения ниже номинального значения для двигателя.Двигатель снова работает, когда напряжение выравнивается до нормального значения. У разных устройств защиты есть свои точки сброса. Некоторые блоки защиты сбрасываются вручную. Он автоматически возвращается в нормальное состояние по разным алгоритмам. Некоторые блоки защиты возвращаются в нормальное состояние по прошествии некоторого заданного интервала времени. Некоторые блоки можно вернуть в нормальное состояние, когда напряжение стабилизируется до нормального значения.

Как правильно выбрать контактор для вашего двигателя

Защита от обрыва фазы:

Защита от обрыва фазы используется для защиты двигателя в случае обрыва фазы во время работы двигателя.Обычно он используется в трехфазных двигателях, и в случае отказа любой фазы двигатель отключается от источника питания. Двигатель без защиты от обрыва фазы продолжает работать, даже если обрыв фазы в цепи может повредить двигатель или повлиять на его работу. Если одна фаза вышла из строя, другая фаза начинает подавать больший ток в цепь, что может сжечь двигатель или цепь, к которой он подключен.

Защита от чередования фаз:

Это метод защиты, который используется для защиты двигателя от состояния чередования фаз.Реверс фазы в двигателе может происходить по множеству причин, которые могут вызвать проблемы безопасности и эксплуатации. Если два соединения из трех соединений двигателя обратны, то двигатель начинает вращаться в противоположном направлении. При обнаружении обратного вращения двигателя блок защиты от чередования фаз отключает двигатель от сети.

Защита от чередования фаз двигателя

Защита от замыканий на землю:

Защита от замыкания на землю используется для защиты двигателя от различных состояний короткого замыкания.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *