Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Как выпаять микросхему из платы паяльником?

Всем привет! На связи с вами автор блога popayaem.ru Владимир Васильев. Речь сегодня пойдет о различных способах демонтажа микросхем. Именно с ними возникают трудности при распайке на детали различной техники.

«Зачем оно надо, ведь можно и так купить, ведь стоит копейки!»-воскликнет рядовой обыватель, не понимая, и не придавая значение тому, какое богатство сокрыто в старой электронной технике. Я как-то писал статью о том как разживался радиодетальками когда купить было негде либо не на что.

Обычно при выпаивании различно мелочевки проблем не возникает. Дело это не хитрое, нагрел со стороны монтажа, и вытащил по одному выводы из монтажных отверстий. Куда сложнее дело обстоит с микросхемами, здесь не один вывод, пока один вывод погрел другой уже остыл. Причем отгибать ножки по одной не дело, отвалятся только так.


[contents]


Для демонтажа микросхем есть несколько приемов:

 Демонтаж микросхемы паяльником

Это самый бомжовский и геморный прием, когда ничего кроме паяльника нет но нужно выпаять микросхему.

Для того чтобы прошло это дело более менее гладко очищаем паяльник от налипшего припоя. Можно его очистить об специальную целюлозную губку а можно просто о влажную тряпку. Затем, с помощью кисточки обмазываем все пайки жидким флюсом, я для этого использую спиртоканифоль. Теперь очищенное жало паяльника суем сначала в канифоль а затем  тычем в точки пайки выводов микросхемы. В результате медленно, по крупицам,  припой начинает переходить с монтажного пятака на жало паяльника. Мы как бы залуживаем жало паяльника но только припой берем с выводов желанной микросхемы.

Так нужно проделать большое количество итераций, не забывая каждый раз очищать жало паяльника,  пока микросхема не будет освобождена из монтажного плена. Здесь очень важно не увлечься и не перегреть микросхему. Также от перегрева могут отлететь монтажные пятаки и дорожки, но это важно в том плане если сама микросхема вам нафиг не нужна но нужна сама плата.

Демонтаж микросхемы с помощью бритвенного лезвия

Основная проблема выпайки микросхем состоит, как я уже говорил, в том , что пока греешь один вывод другой уже остыл а чтобы извлечь микросхему нужно чтобы все выводы оставались прогреты одновременно.

Это сделать паяльником сложно но можно. Можно конечно взять и варварски изогнуть жало какого-нибудь ЭПСН паяльника и эдаким Г-образным крючком прогревать пайки. А можно пойти проще. Только в этом случае нужно воспользоваться какой-либо металлической пластиной или скобой которая не облуживается.

В качестве такой пластины можно применить бритвенное лезвие. Лезвие нужно для того, чтобы тепло от паяльника концентрировалось не на одном выводе а передавалось сразу нескольким. Единственное, может потребоваться более мощный паяльник так как при низкой мощи тепла которого было достаточно для одного вывода может не хватить на целую прорву выводов.

поэтому прижимаем лезвие к целому рядку ножек микросхемы и начинаем прогревать все пайки одновременно, Прогреваем и одновременно покачиваем микросхему, можно под брюхо микросхемы подсунуть лезвие ножа стараясь приподнять микросхему с одного края. Таким образом освободив от монтажного плена один ряд ножек, тем же макаром,  освобождаем второй ряд.

Использование демонтажной оплетки

При демонтаже микросхем голым паяльником используется свойство паяльника притягивать припой. Залуженное и покрытое флюсом жало паяльника обладает хорошей смачиваемостью и вбирает припой очень даже не плохо. Но как повысить эффективность этого процесса?

Можно конечно выбрать паяльник с более широким жалом, тогда им можно будет изъять большее количество припоя. Но можно пойти другим путем, можно воспользоваться оплеткой от коаксиального кабеля. Подойдет антенный провод от телевизора.  Сдираем эту оплетку с кабеля и обильно покрываем ее флюсом.

Теперь если прижать такую косичку к пайкам микросхемы и немножко пройтись по ней паяльником можно убедиться чудесных демонтажных свойствах оплетки. Благодаря своей пористости и гигроскопичности она вбирает в себя припой куда лучше любого жала паяльника, освобождая тем самым микросхемные  выводы.

Сейчас в продаже имеются специальные демонтажные оплетки, так что  можно оставить телевизионный провод в покое.

Демонтаж микросхем с помощью  оловоотсоса

Как думаете, что получится если совместить клизму и паяльиик? Получится нечто, изображенное на рисунке. Это оловоотсос и этот конструктив описывался еще в старом журнале не то «Моделист-конструктор» не то «Журнал радио», уже не помню.Сейчас они могут выглядеть совершенно по разному, могут быть такими как на рисунке, могут представлять собой модифицированный шприц. Но суть их от этого не меняется, паяльник разогревает место спая а клизменная груша или шприц вытягивают весь припой. В принципе очень эффективный метод демонтажа.

Использование медицинских иголок

В общем суть в следующем. В аптеке покупаем иголку достаточно тонкую чтобы пролезла в монтажное отверстие и достаточно толстую чтобы можно было одеть на вывод впаянной микросхемы.

Надфилем спиливаем кончик иглы, чтобы получилась простая полая трубочка, будет еще лучше если отверстие немного развальцевать. Получилась хорошая демонтажная игла

А работать с ней очень просто.

Одеваем нашу трубочку на вывод микросхемы, паяльником разогреваем место спая. Теперь пока припой еще в жидком виде иголку просовываем в монтажное отверстие и начинаем неистово вращать иглу до момента застывания припоя. Одев иглу на вывод мы тем самым изолировали ножку  микросхемы от припоя. Игла имеет особое покрытие которое ухудшает смачиваемость припоем, поэтому припой к игле не липнет.

Сейчас кстати  в продаже имеются специальны демонтажные трубочки различных диаметров так что  мед. иглы можно уже не покупать.

Использование сплава розе

Для демонтажа микросхем можно использовать сплав розе или сплав вуда. Отличительная особенность состоит в том, что эти сплавы имеют низкую температуру плавления, менее 100 градусов.

Для демонтажа насыпаем несколько гранул в место пая. Теперь наша задача организовать лужицу сплава распределив ее по всем ножкам микросхемы. Благодаря этому низкотемпературный сплав смешался со сплавом припоя в результате общая температура плавления у нас понизилась.

Теплопроводность сплава достаточна и лужица сплава покрывает все ножки микросхемы и плавит все и вся. В результате чего микросхема просто извлекается из монтажных отверстий.

Вот, как-то так а на сегодня у меня все.

Думаю что статья окажется полезной особенно для новичков и сохранит несколько нервных клеток при демонтаже очередной микросхемы.

Чтож, друзья, не забывайте подписываться на обновления блога, а я желаю вам солнечного весеннего настроения,  удачи и успехов!

С н/п Владимир Васильев

Как выпаять микросхему? Инструменты и расходники для удаления припоя.

Приспособления для удаления припоя

Как правило, при выпаивании обычных радиоэлементов с небольшим количеством выводов не возникает проблем. Но при демонтаже многовыводных радиоэлектронных компонентов, таких как микросхемы, строчные трансформаторы, многовыводные переменные резисторы, трудности возникают даже у тех, кто умеет аккуратно и правильно паять.

Для демонтажа многовыводных деталей необходим инструмент, с помощью которого можно легко удалить припой с места паяного контакта. Чтобы эффективно убрать припой можно воспользоваться несколькими простыми приспособлениями.

Медная оплётка.

Первый и довольно распространённый способ – это использование медной оплётки. Медная оплётка представляет собой множество переплетённых между собой тонких медных жил. Как правило, продаётся в катушках по 1,5 метра длиной и шириной в несколько миллиметров (1,5...3,5мм).

Как пользоваться медной оплёткой?

Пользоваться медной оплёткой достаточно просто. Нужно приложить медную оплётку к месту, где необходимо удалить припой и, прижав её разогретым жалом паяльника, дождаться момента, когда припой расплавиться и впитается оплёткой под действием капиллярного эффекта. При этом будет хорошо видно, как жидкий припой впитывается медной оплёткой, а место вокруг вывода и сама печатная дорожка остаются чистыми от припоя. Использованный отрезок медной оплётки, заполненный застывшим припоем, откусывается кусачками.

Следует помнить, что оплётка оплётке рознь. Так, например, можно услышать критику качества медной оплётки, которую производят малоизвестные фирмы и похвалу продукции таких фирм, как

Weller или Goot Wick. И это действительно так.

Например, я разочаровался в оплётке таких марок, как Pro'sKit или REXANT. Жилы толстые и не скручены в косичку. Работать такой оплёткой можно, но использовать при ремонте важных и дорогих узлов я бы не рискнул.

На фото – катушка медной оплётки. Маркирована весьма лаконично – SOLDER WICK. Качество весьма неплохое, но есть пустяковые недочёты. Оплётка сильно спрессована и вытянута в длину – наверняка для того, чтобы сэкономить на меди. Что же можно сделать, чтобы комфортно использовать эту медную оплётку для своих целей?

Первым делом нужно “распушить” медную оплётку так, чтобы между медными жилами было как можно больше свободного пространства. Поскольку действие медной оплётки основывается на капиллярном эффекте, то необходимо обеспечить возможность расплавленному припою подниматься вверх по медным жилам и заполнять пространство между ними. Для этого, естественно, нужно обеспечить свободное пространство между медными жилами.

Также не помешает пропитать оплётку жидким флюсом. Подойдёт ЛТИ-120. Флюс ослабляет поверхностное натяжение и способствует равномерному покрытию жидким припоем медных жил. Конечно, можно использовать и твёрдую, кусковую канифоль, но добиться хорошего эффекта будет труднее.

С помощью медной оплётки можно без труда удалять припойные перемычки между выводами микросхем, которые могут образоваться при монтаже многовыводного чипа на печатную плату.

Как-то раз по телевизору видел репортаж с китайского завода электроники, где монтажник удалял излишки припоя между выводами микросхемы, смачно проводя медную оплётку под жалом паяльника вдоль выводов микросхемы на плате – смотрелось очень эффектно!

Раньше медную оплётку можно было купить либо на радиорынке, либо в радиомагазине. Сейчас медную оплётку легко купить в интернете, например, на всем известном Алиэкспресс. Выходит дешевле, чем в магазинах.

Я для себя взял оплётку Goot Wick, которая считается одной из лучших. Купил сразу 5 штук разной ширины (1.5мм; 2.0мм; 2.5мм; 3мм; 3.5мм) и длиной 1,5 метра каждая. На тот момент вышло чуть больше $1 за штуку.

Позиций просто огромное количество, можно даже катушку в 20 метров купить. Вот ссылка на Goot Wick, выбирайте.

Понятно, что единственный минус использования медной оплётки для удаления припоя это то, что она является расходным материалом и может кончиться в самый неподходящий момент. Этого недостатка лишён специальный инструмент под названием десольдер.

Десольдер (Оловоотсос).

Слово десольдер происходить от английского слова desoldering – распайка, удаление припоя.

Сам по себе десольдер или по-другому оловоотсос представляет собой цилиндрическую трубку, на одной стороне которой закреплён узкий носик, а на другой поршневой механизм с ручкой и кнопкой. Внутри этого приспособления помещается жёсткая пружина, которая толкает поршень.

На фото ниже показан механический десольдер в разборе. Как видим, этот нехитрый инструмент состоит из узкого носика, полого цилиндра, пружины и поршня с фиксатором.

Как пользоваться оловоотсосом?

Для того чтобы убрать припой с места паяного контакта расплавляем припой в месте контакта с помощью паяльника. Чтобы придать расплавленному припою лучшую текучесть используем канифоль или флюс. Канифоль и флюс способствует снижению поверхностного натяжения металла и увеличивает текучесть расплавленного припоя.

Далее фиксируем поршень десольдера, нажав рычаг до щелчка. При этом поршень зафиксируется, а пружина будет находиться в сжатом состоянии. Не прекращая нагрева места, откуда нужно убрать припой подносим вплотную узкий кончик оловоотсоса к месту пайки. Нажимаем кнопку фиксатора десольдера. При этом поршень резко переместиться за счёт сжатой пружины и создаст разряжение воздуха в цилиндре, за счёт которого и происходит втягивание расплавленного припоя внутрь цилиндра. Поверхность печатной дорожки и вывод остаётся чистой от припоя.

Пользоваться десольдером достаточно удобно, но есть и некоторые минусы.

При частом использовании десольдера проявляется его основное отрицательное качество – загрязнение поршневого механизма кусочками припоя смешанного с канифолью. При этом смесь крошек припоя и флюса налипают на стенки цилиндра и пружину. Это мешает свободному ходу поршня в цилиндре и, естественно, затрудняет работу.

Чтобы очистить десольдер необходимо его разобрать и произвести чистку. В качестве чистящего средства можно применить, например, спрей-очиститель Degreaser. Он хорошо растворяет канифоль, которая сцепляет кусочки припоя. Внутренние стенки полого цилиндра и носика после нанесения спрея-очистителя прочищаем щеточкой. Затем цилиндр необходимо протереть тканью, удалив остатки припоя и чистящего вещества. После этой процедуры десольдер вновь готов к работе. Проводить чистку можно и другими средствами, например, изопропиловым спиртом ("Очиститель универсальный"). Такой продаётся в магазинах радиотоваров.

Хороший десольдер можно купить всё на том же Али. Вот ссылка на выдачу с десольдерами. Её можно отфильтровать по количеству заказов, наличию новинок или рейтингу продавца. Выбирайте, что понравится.

Десольдер пригодится там, где необходимо выпаять с платы радиодетали с выводами большого сечения. Это могут быть трансформаторы, ТДКС'ы, строчные транзисторы в кинескопных ТВ, IGBT-транзисторы в сварочных инверторах, металлические экраны и радиаторы. В общем, там, где для монтажа применяется много припоя и использовать медную оплётку нерационально.

Во времена, когда инструментов подобного десольдеру не было в широкой продаже, радиомеханики использовали резиновую грушу .

Использование сплава Розе.

Кроме перечисленных приспособлений и материалов хочу посоветовать ещё один. Это – сплав Розе. Отличительным качеством этого сплава является его низкая температура плавления (около 95...1000С). Это делает его незаменимым помощником в деле выпайки миниатюрных компонентов. Кроме того, он может пригодиться и при их повторном монтаже. Например, в том случае, когда перегрев компонента нежелателен.

Кроме сплава Розе есть ещё один низкотемпературный сплав, температура плавления которого ещё ниже, чем у Розе. Это сплав Вуда (65-720С). Наверняка, вы захотите использовать его в своей практике. Но, хочу отметить, что сплав Вуда токсичен, так как содержит кадмий (около 10% сплава). Поэтому применять его в повседневной работе я настоятельно не рекомендую.

Технология выпайки с помощью сплава Розе проста как дважды два. Её суть заключается в том, чтобы растворить "родной" припой более низкотемпературным сплавом. За счёт диффузии сплав Розе растворяется в более высокотемпературном припое, с помощью которого компонент запаян на плату. Благодаря этому температура его плавления уменьшается. Сплав Розе как бы замещает "родной" припой. При этом электронную деталь, модуль или даже блок можно легко и безопасно выпаять паяльником либо феном термовоздушной паяльной станции.

Естественно, после того, как электронный компонент демонтирован с платы, остатки припоя с контактов и жала паяльника нужно убрать медной оплёткой. Если этого не сделать, то наличие остатков низкотемпературного сплава приведёт к деградации пайки, особенно в том случае, если электронная деталь или компонент в процессе своей работы сильно нагревается. Думаю это и так понятно, объяснять не надо.

Исключением такого правила можно считать, например, запайку микрофонного модуля на плату смартфона. Микрофонный модуль очень чувствителен к перегреву, поэтому в качестве основного припоя можно применить сплав Розе. В процессе работы микрофонный модуль не нагревается, а пайка получается достаточно качественной, чтобы аппарат проработал не один год.

К недостаткам сплава Розе можно причислить лишь то, что он довольно дорогой. Поэтому, многие поначалу избегают его использование в своей радиолюбительской практике. Кроме того, не пытайтесь искать его в Алиэкспресс или других китайских интернет-магазинах. Дело в том, что висмут – это довольно редкий металл и его экспорт из Китая в чистом виде запрещён. Тоже касается и сплава Вуда, содержащего кадмий, который ещё и токсичен. Его свободная пересылка ограничена.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

Как выпаять микросхему в SOP или SOIC корпусе паяльником

Выпайка SMD компонентов обычным паяльником возможна, я сейчас опишу демонтаж микросхемы в корпусе SOP8 при помощи обычного 30-ти ваттного паяльника. Более того, целью выпайки есть не просто убрать ненужный на плате компонент, а выпаять микросхему живой и невредимой.
В качестве донора - убитый грозой роутер Edimax br-6228nc, из него выпаяем Flash-память для дальнейшего использования.

Инструмент. Отдельного внимания заслуживает пинцет, которым мы будем пользоваться - он должен быть качественным. Я пользуюсь 150-ти миллиметровым анатомическим медицинским пинцетом, с поперечными насечками на рабочей части губок. Паяльник самый обычный 30-ти ваттный, температура жала - 340 градусов. Заточка жала плоская, острым жалом паять будет неудобно. Немаловажно так же наличие низкотемпературного припоя. Сплав Розе - это конечно будет уже слишком, но ПОС-40 с температурой плавления 240 градусов будет лучше, чем ПОС-10 с температурой 300 градусов.

Принцип.Технология выпайки заключается в одновременном прогреве ног с одной стороны микросхемы и легким поднятием прогретой стороны. Как я и говорил, флешка с роутера нам нужна рабочая, это немного усложняет демонтаж. Выпаять надо так, чтоб не перегреть микросхему и не погнуть ей ноги. Ситуацию немного упрощает то, что в данном случае я не буду обращать внимание на состояние донора, так как он уже труп.

Процесс. Для начала накладываем припой поочередно на обе стороны микросхемы. Припой не жалеем, но и перебарщивать не стоит. должно получится как-то вот так.

Наша задача прогреть одну сторону микросхемы, быстро перенести паяльник на вторую сторону и, прогревая, немножко приподнять пинцетом ту сторону, которую греем. Пока мы переносим паяльник и прогреваем вторую сторону - первая не должна успеть затвердеть. Так же стоит постоянно контролировать усилие, с которым тянем вверх пинцетом микросхему - надо тянуть так, чтоб не погнуть ей ножки. В итоге должно получится вот так.

Как видим, сторона справа немножко приподнята над платой. Пока припой не застыл, очень быстро переносим паяльник на вторую сторону, прогревая, тянем микросхему вверх, контролируя усилие и стараясь не погнуть и не поломать ей ноги.

За счет того, что припой с обратной стороны еще мягкий, микросхема должна легко подняться над платой.

Как видим, осталось только отпаять вторую сторону и микросхема выпаяна. Делается это одним легким касанием паяльника одновременно с оттяжкой микросхемы вверх.

Фото получилось некачественным за счет того, сто сделано в движении - припой расплавился и микросхему уже ничего не удерживало.

Как видим, таким образом можно легко выпаивать SMD микросхемы без паяльной станции одним лишь паяльником.
После того, как выпаяем, на ногах микросхемы может остаться припой. Как правило остается его немого.

Но может быть такое, что припоем будут спаяны все ноги, это тоже не проблема. При такой технологии выпайки это норма. Припой уберем легким касанием жала паяльника. Перед этим жало следует очистить от излишков припоя.

После очистки ног от остатков припоя микросхему нужно проверить на работоспособность. Я выпаял флеш-память mx25l3206e с роутера, который пострадал от удара грозы, тем не менее, микросхема полностью рабочая, данные читаются и пишутся.

Заключение. Мы узнали как выпаять микросхему без паяльной станции, обычным паяльником. Хоть выпаивали мы sop-8 - таким же методом можно выпаивать и микросхемы с большим количеством ног. Как видим, для того, чтоб выпаять, нам не понадобилась ни паяльная станция, ни термофен.

Полезные советы. Хочу подчеркнуть несколько нюансов. Когда выпаиваешь компонент, вокруг которого куча резисторов и конденсаторов в SMD исполнении - скорей всего зацепишь их паяльником. Я всегда стараюсь выпаивать нужные детали из того, что не жалко выбросить. Если дело обстоит наоборот и надо просто убрать сгоревшую микросхему - то демонтаж следует проводить немного по другому.
При отсутствии нормального пинцета можно воспользоваться отверткой, слегка подковыривая микросхему снизу. Недостаток такого способа в том, что отвертка не отводит от микросхемы лишнее тепло, как то делает пинцет.
Припой, как я и говорил, должен быть низкотемпературным. За счет этого мы уменьшаем время прогрева, что снижает риск сжечь микросхему перегревом при пайке.
И еще одно, для того чтоб выпаять smd-микросхему паяльником, жало паяльника должно прогревать одновременно все ноги на одной из сторон микросхемы.
Время прогрева не должно быть большим, в идеале это одна-две секунды на одну сторону микросхемы. Для этого жало паяльника должно быть плоским, чтоб греть всю нужную зону одновременно, и иметь достаточную температуру для быстрого плавления припоя.
Сама рабочая зона должна быть удобной и позволять быстро переложить паяльник из одной руки во вторую, а это значит, что кабель питания паяльника должен располагаться не справа, а спереди, дабы не мешался при пайке.

На этом, пожалуй, я закончу свой урок пайки микросхем. Как и для любого другого дела, тут важны не только знания, но и опыт. Чем больше вы будете паять, тем легче вам будет даваться пайка. Так что если с первого раза ничего не вышло, не отчаивайтесь и пробуйте еще.

Как выпаять микросхему из платы паяльником

Всем привет. Очень часто начинающие радиолюбители сталкиваются с проблемой демонтажа микросхем в DIP корпусе. Сегодня я расскажу о самом простом способе как выпаять микросхему из платы паяльником.Как известно большинство радиодеталей: конденсаторы, резисторы, диоды, транзисторы, имеют несколько ножек. Как правило, не возникает проблем с демонтажом этих радиоэлементов. Нагревая по очереди каждую ножку, радиолюбитель с легкостью может извлечь нужную радиодеталь из платы. Гораздо сложнее дела обстоят с выпаиванием элементов, в составе которых находятся большое количество ножек, таких как: дроссели, трансформаторы, различного рода фильтра и особенно микросхемы.

Такие много выводные элементы можно извлечь из платы несколькими способами, а именно тремя. Можно воспользоваться различного рода оловоотсосами, отдельными или совмещёнными с паяльником:

Этот способ наиболее эффективный, но не у каждого радиолюбителя в наличие может оказаться оловоотсос, особенно у начинающего.

Не стоит забывать ещё один очень хороший способ, а именно использование оплётки от экранированного кабеля. Суть его заключается в следующем. Место пайки разогреваем паяльником через оплетку. Олово разогревается и впитывается в эту оплётку, тем самым удаляется, освобождая ножку вывода радиодетали.

Существует и третий способ демонтажа много выводных радиодеталей. По эффективности он не уступает оловоотсосу. По показателю цена-качество даже выигрывает, так как стоит копейки. Речь сегодня пойдёт о медицинской игле. Итак, нам понадобится игла от шприца:

Внутренний диаметр иголки нужно подобрать такой, чтобы она могла плотно одеваться на вывод микросхемы. При помощи напильника нужно сточить острый край иглы сделать его плоским слегка заострённым. Чтобы было удобно пользоваться, можно удлинить противоположный край иглы, сделать, таким образом, рукоятку.

Как выпаять микросхему из платы

паяльником

Допустим нам нужно выпаять какую-либо микросхему из платы. Воспользуемся обычным паяльником и нашей доработанной иглой. В качестве донора выступит плата от старого магнитофона:

При помощи паяльника, подключенного через регулятор температуры, нужно нагреть вывод микросхемы и быстро одеть на этот вывод кончик иголки так чтобы она провалилась внутрь печатной палаты и тут же вытащить её. Затем такую же операцию следует проделать для следующего вывода микросхемы. Так как иголка сделана из нержавеющей стали, припаяться она не успевает:

Если набить руку, то скорость демонтажа довольно-таки внушительная, на пайку каждого вывода будет уходить не более двух секунд:

 

Этим методом мне удалось выпаять большое количество микросхем:

Этот способ хорош тем, что микросхема практически не перегревается, так как время контакта паяльника с выводом очень маленькое. Также отверстия получаются очень ровные, очищенные от олова, и место готово к установке новой микросхемы. Что очень важно при ремонте какой-либо радиоаппаратуры. При помощи этого метода можно выпаивать микросхемы различной величиной:

Также был разобран Советский видеомагнитофон Электроника ВМ-12:

Поэтому же принципу можно выпаивать не только различные микросхемы, но и другие многовыводные электронные компоненты, например трансформаторы ТВС. Нужно лишь запастись иголками, диаметр которых будет соответствовать, конкретному выводу. Приобрести их можно в ветаптеке:

Этим способом я пользуюсь давно, мне он очень нравится. Рекомендую всем начинающим радиолюбителям. Для наглядности я даже записал видео:

На этом буду завершать. Надеюсь, что кто-то почерпнул новые знания.

Выпаиваем микросхемы из плат: распайка деталей паяльником

Выпаивание микросхем с платы – задача нетривиальная, вне зависимости от типа контроллера. Отпаиваешь одну ножку, но пока занимаешься другой, она застывает. Можно отгибать ножки после отпаивания, но снова встает проблема отлома контактов. Возникает вопрос, как выпаять микросхему из платы паяльником? Ответ достаточно прост: использовать знания физики и подручные предметы. Существует ряд вариантов аккуратного снятия микрочипов с платы. Но сначала немного теории.

Микросхемы

Типы микросхем

В настоящее время существует ряд корпусов, но наиболее широко распространены всего два, да и по факту все остальные разновидности являются вариантами двух основных типов:

  • DIP – грубо говоря, этот вариант корпуса для внутреннего монтажа, ножки этого контроллера помещаются в отверстия на плате;
  • SMD – этот тип микрочипов предназначен для поверхностного монтажа, в этом случае на плате размещаются «пятачки», к которым и припаяны ножки микросхемы.

Каждый вариант обладает своими достоинствами и недостатками. Но в рамках статьи интересны их особенности в плане распайки. Как выпаять микросхему в том или ином корпусе, разберём чуть ниже.

Демонтаж DIP-корпуса

Как уже отмечалось, эта разновидность микросхем отличается монтажом в отверстия на монтажной плате. Это налагает определённые ограничения на процесс её демонтажа. Для того чтобы аккуратно извлечь её ножки из отверстий, нужно удалить из места соединения припой, практически полностью освободив ножки. Нужно отметить, что поочерёдный нагрев и демонтаж отдельного контакта тут не подойдёт, так как, остывая, оставшийся на месте припой будет снова фиксировать микрочип на месте. Поэтому распайка DIP корпуса оптимальна следующими методами:

  1. Использование подручных средств – для этой цели подойдут иглы от медицинских шприцов или специальные полые трубочки, продающиеся сейчас в магазинах электротехники. Но вариант использования медицинской иглы наиболее дешевый и доступный. Для этого нужно подобрать иглу диаметром чуть меньше, чем посадочные гнезда для ножки микрочипа. Затем срезать её заостренную часть надфилем либо просто откусить, после чего напильником сточить сплющенную часть. После этого установив получившуюся полую трубку с ровным срезом на посадочное гнездо, просто нагреть её паяльником, освободив этим ножку чипа;
  2. Второй вариант – это перетягивание припоя с места припайки на медные провода, смоченные флюсом, таким, например, как спиртовая канифоль. Нагреваемый паяльником провод с флюсом постепенно перетягивает на себя припой с места пайки. Этот вариант занимает больше времени, но также достаточно эффективен;
  3. Использование паяльника с отсосом припоя – в этом случае особых сложностей в демонтаже не предвидится. Главное – контролировать температуру нагрева в зоне контакта, чтобы не повредить плату и саму деталь.

Эти варианты позволят быстро и качественно выпаивать DIP-корпуса с платы.

Важно! Основным требованиям к использованию паяльника в этом случае будет постоянный контроль над давлением и температурой в зоне пайки. Перегрев и излишний нажим может вывести деталь из строя.

Вытягивание припоя

Важно! При использовании иглы медицинского шприца можно упростить задачу по её обрезке, для этого перед обрезкой достаточно прокалить докрасна место среза.

SMD контролёры

Поверхностное крепление корпуса более легко поддаётся демонтажу. В этом случае можно использовать широкое жало паяльника и медный провод с флюсом и отпаивать сразу несколько контактов одновременно. Но есть и более интересные методы распайки:

  1. Использование металлической полосы или половинки бритвенного лезвия для распределения тепла паяльника на один ряд ножек микросхемы. В этом случае на ряд контактов с одной стороны устанавливается стальная полоска и прогревается жалом до плавки припоя, после чего эта сторона чуть приподнимается над платой. Затем таким же образом плавится припой с другой стороны чипа;
  2. Использование длинного отрезка медной оплётки с нанесённым на неё флюсом. Отрезок укладывается на ножки микросхемы с одной стороны и прогревается паяльником; вытягивая на оплётку припоя, деталь приподнимаем пинцетом. Затем таким же образом убираем припой с другой стороны контроллера;
  3. Технически интересным вариантом является использование сплавов Розе или Вуда. Капли этого припоя наносятся на контакты и прогреваются, этим снижается температура плавления припоя. Далее припой постепенно прогревается, и микросхема демонтируется;
  4. Использование фена или паяльной лампы. Для использования этого инструмента на места пайки наносится флюс. После чего поверхность и деталь прогреваются, и пинцетом микросхема снимается с монтажных пятачков.

Нужно отметить, что каждый вариант демонтажа используется в конкретных условиях, главная задача в этом случае – подобрать наиболее оптимальный с точки зрения безопасности вариант и при его использовании не повредить саму деталь или дорожки платы.

Использование фена

Важно! При демонтаже микросхемы важно помнить, что любые детали или узлы на плате имеют свой температурный минимум, его превышение приведёт к выводу микросхемы из строя.

Использование подручных средств и паяльника при монтаже или демонтаже микроконтроллеров вполне оправдано, но требует как минимум наличия навыков работы с паяльником. При их отсутствии стоит предварительно потренироваться на ненужных деталях. Этот процесс позволит приобрести нужный опыт, как отпаять микрочип без повреждений, кроме того выбрать наиболее оптимальный вариант работы с конкретной платой и типом корпуса микросхемы.

Видео

Оцените статью:

Как выпаивать радиодетали из плат: 4 лучших метода

Вышедшие со строя электрические приборы вовсе не обязательно сразу отправлять в утиль, ведь отдельные электронные компоненты с них могут запросто пригодиться для ремонта или конструирования различных самоделок.

Единственная проблема, с которой сталкиваются начинающие электрики — как выпаять радиодетали. Несмотря на кажущуюся простоту, этот процесс требует особого внимания и применения специальных приспособлений, значительно упрощающих выпаивание радиодеталей.

Инструменты, которые нам понадобятся

Многие инструменты могут уже быть в наличии радиолюбителей, занимающихся изготовлением самоделок. В противном случае их придется приобрести или сделать самостоятельно из подручных материалов.

Поэтому прежде чем выпаять радиодеталь обзаведитесь такими приспособлениями:

  • Паяльник нужной мощности и конструкции для прогревания контактов радиодеталей. Можете взять готовый, а можно изготовить своими руками, процесс изготовления детально изложен в следующей статье: https://www.asutpp.ru/payalnik-svoimi-rukami.html
  • Пинцет или зажим – применяются для манипуляций с радиодеталями. Позволяет придерживать элементы с помощью пинцета, фиксировать их положение и осуществлять дополнительный отвод тепла, когда вы пытаетесь их выпаять.
  • Иглы трубчатой формы – продаются готовые, но если таковых нет под рукой, их можно заменить обычной медицинской иголкой от шприца, главное, чтобы внутренний диаметр надевался на ножку радиодетали. Кроме иголок можно использовать трубки или гильзы, с их помощью разогретые радиодетали отделяются от припоя.
Рис. 1. Набор иголок для пайки
  • Демонтажная оплетка – также выступает вспомогательным средством, если вам нужно выпаять те элементы, которые имеют большое количество ножек на печатной плате. Можно как приобрести готовую, так и изготовить ее своими руками.
Рис. 2: демонтажная оплетка
  • Оловоотсос – устройство для удаления припоя с места крепления, позволяет быстро выпаивать большое количество радиодеталей. Конструктивно включает в себя вакуумную колбу, обратную пружину и поршень, приводимый ею в движение. Помимо приобретения заводской модели, можно изготовить оловоотсос своими руками.
Рис. 3. Оловоотсос

Неискушенные электрики могут возразить, что такого количества инструментов для выпаивания радиодеталей будет слишком много. Ведь пайка выполняет при помощи обычного паяльника, но все вышеперечисленные приспособления помогут вам выпаять нужные элементы и быстро, и аккуратно. Это особенно актуально при больших объемах контактных ножек в плате. Теперь рассмотрим применение каждого из описанных выше инструментов на практике.

Методы демонтажа радиодеталей из плат

Демонтаж радиодеталей может производиться при помощи классического паяльника, когда вы прикладываете нагревательный элемент к выпаиваемой детали и поддеваете ее слесарным инструментом. Но эта методика не требует особых разъяснений, поэтому далее мы разберем более сложную работу и способы ее реализации в домашних условиях.

Феном

Паяльный фен представляет собой бесконтактный вариант паяльника, который не менее эффективно позволяет выпаять радиодетали. Преимущества такого метода вполне очевидны, к примеру, при демонтаже микросхемы вам нет необходимости выпаивать каждую ножку микросхемы. Достаточно нагреть потоком воздуха определенную область на печатной плате, и весь припой расплавится одновременно.  Затем радиодеталь поддевается отверткой или вытягивается пинцетом.

Недостатком выпаивания с помощью фена является нагрев непосредственно самих деталей, что впоследствии может привести к выходу их со строя. Поэтому если вы решили выпаять микросхемы, конденсаторы или транзисторы за счет общего нагрева места их фиксации, обязательно после этого проверьте их работоспособность.

Чтобы выпаять радиодетали феном необходимо выполнить следующий порядок действий:

  • Зафиксируйте плату в устойчивом положении, учтите, что с обратной стороны вам придется орудовать пинцетом или отверткой. Радиолюбители часто используют специальные подставки для фиксации печатной платы, поэтому если вы планируете часто заниматься пайкой, следует обзавестись таким приспособлением.
Рис. 4. Держатель для плат
  • Запустите паяльный фен и разогрейте контакты выпаиваемой радиодетали. Не задерживайте поток воздуха в одной точке, особенно, если вы собрались выпаивать smd радиодетали. Постоянное перемещение нагревательного воздействия позволит избежать перегрева и выхода со строя smd компонентов. Если нужно, прогревайте участок по нескольку раз, чтобы появились признаки оплавления припоя.
  • Когда олово станет пластичным, приподнимите smd микросхему и отделите ее от поверхности. Если вся деталь отделяется по частям, вытягивайте ее аккуратно, чтобы не переломить микросхему или не оторвать ножки.

С гильзой

Гильза представляет собой полую конструкцию из металла, в которую должна поместиться ножка радиодетали. Наиболее ярким представителем гильз являются насадки, крепящиеся к жалу паяльника или паяльные иголки.

Их использование актуально в тех случаях, когда вам нужно прогреть конкретный участок или воздействовать на определенную ножку. Они позволяют выпаять конденсаторы, прогревая вывод по всей окружности, из-за больших размеров, прогревать их напрямую довольно сложно. Технология пайки с помощью гильзы  приведена на рисунке ниже:

Рис. 5. Технология выпаивания гильзой

Преимуществом данного метода является равномерное прогревание только оловянного слоя, вся радиодеталь не подвергается прямому воздействию паяльника. Гильза при этом выступает в роли термического распределителя относительно вывода.

Если у вас нет под рукой заводских насадок или набора иголок, их можно заменить медицинской иглой или металлической трубкой подходящего диаметра. Главное, чтобы ее можно было надеть на ножки транзистора или электрического конденсатора, который вы собираетесь выпаять.

Если вы собираетесь постоянно выпаивать элементы, будет целесообразно приобрести набор иголок, тем более что их стоимость не так уж и велика.

Процесс демонтажа радиодетали со старых плат с помощью иглы заключается в следующем:

  • Наденьте иглу на ножку, размер отверстия подбирается таким образом, чтобы она легко надевалась, но не болталась, а свободно входила бы в отверстие на плате.
  • Включите паяльник и разогретым жалом начните плавить припой.
  • По мере размягчения начните проворачивать иглу, чтобы отделить вывод радиодетали от олова.
  • Все ножки отделяются достаточно легко и остаются целыми, благодаря чему радиоэлемент останется пригодным к дальнейшей эксплуатации.

Единственное, что может препятствовать повторному использованию детали – это наличие свинцово-оловянной смеси на ножках, которая собирается полостью гильзы. Но ее довольно легко удалить разогретым паяльником.

С оловоотсосом

Данный метод позволяет выпаять радиодетали, втягивая разжиженный припой в отдельную емкость. Оловоотсос может представлять собой как шприц, так и резиновую грушу с носиком из негорючего термоустойчивого материала. Он продается в заводской комплектации, но при отсутствии такового можно сделать его самостоятельно из резиновой вакуумной груши или медицинского шприца, которые присоединяются к металлической трубке.

Он продается в заводской комплектации, но при отсутствии такового можно сделать его самостоятельно из резиновой вакуумной груши или медицинского шприца, которые присоединяются к металлической трубке.

Чтобы выпаять радиодетали оловоотсосом разогрейте место соединения паяльником, пока олово не перейдет в разжиженное состояние. Затем взведите приспособление и втяните припой из-под контакта вакуумным отсосом.

Рисунок 6: соберите оловоотсосом

При большом объеме выпаиваемых радиодеталей, трубку оловоотсоса необходимо периодически чистить. Этот метод позволяет оставить чистую плату, что весьма актуально в тех ситуациях, когда вы хотите заменить вышедшею со строя радиодеталь.

С помощью демонтажной оплетки

Демонтажная оплетка представляет собой медную проволоку маленького диаметра, собранную в плоский шлейф и пропитанную канифолью. При отсутствии заводской оплетки ее можно сделать из брони коаксиального кабеля или медного многожильного провода.

Процесс выпаивания радиодеталей заключается в следующем:

  • Разогрейте паяльник до такой температуры, чтобы он легко расплавил нужный вам припой.
  • Приложите к выводам радиодетали оплетку и начните разогревать ее паяльником.
Рис. 7. Разогрейте демонтажную оплетку
  • Когда олово впитается в оплетку, удалите радиодеталь с помощью пинцета.

При больших объемах пайки демонтажная оплетка расходуется в довольно большом количестве.

Видео по теме

Как выпаять микросхему

..::Меню::..       

Главная

Статьи

F.A.Q.моддеру

Программы

..::Новости::..   

Новое

Ожидаем

..::Контакты::..  

О Нас

Ссылки

Гостевая

Как выпаять микросхему?

Ну зачем тебе паять микросхему? Многовековой опыт показывает, что device (устройство), из которого ничего не выпаивали, работает лучше. Если тебе нужно просто освободить место на плате, то лучше откуси ножки кусачками. Ты хочешь, чтобы микросхема еще и работала? Есть два способа:

1) Купи или сделай насадку на паяльник. Насадка должна одновременно нагревать все ножки микросхемы. Цепляй ее отверткой поочередно с разных концов и вынимай из платы. Занятие нервное и долгое, после того как сломаешь парочку чипов пополам, выпей валерианочки и начинай сначала.

2) Купи компрессор или отсос (не то, что ты подумал) для олова. Нагревай каждую ножку и отсасывай оттуда припой. Потом просто вынь микросхему. Паяльник с отсосом стоит дешево. Но рычаг отсоса часто норовит вылететь в глаз, зуб и пр. Так что оптимальный выбор — это компрессор. Если помозговать, то из обычного пылесоса выйдет крутой компрессор (осталось объяснить это другим членам твоей семьи). Олово можно вытряхивать из гнезда резким движением руки. Правда, на 50 ноге ты можешь разбить плату об пол. Паяльник на ножке микросхемы держать можно не более 2 секунд.

Вреден ли режим сна для винта?

Винт спит, трафик идет. Самые вредные моменты для винта — это его пуск и остановка. В это время очень сильно изнашивается механическая часть. Повышается вероятность случайного повреждения поверхности. Вообще считается, что винт, который крутится без остановки, живет намного дольше. Если только всякие вундеркинды не лезут с тряпкой и отверткой “протирать пыль с блинов и головок”.

Что делать, если в компе поселились тараканы или муравьи?

Ни в коем случае их не трогай, возможно, это специальные тараканы, которые улучшают работу процессора. Определить это так, поймай таракана и положи перед ним проц и горбушку хлеба. Если он выберет микросхему, то извинись и положи его на место. Если насекомое выберет горбушку, то твои дела плохи. Такие тараканы совершенно безграмотны, они часто устраивают короткие замыкания или застревают в дисководе. Срочно проводи капитальную чистку компьютера с применением ядохимикатов и бактериологического оружия.

Зачем нужно заземлять компьютер?

Вообще, по ГОСТу вся аппаратура заземляется во избежание поражения током. Но, как известно, током у нас трясет всю страну, особенно ту часть, которая постоянно под анестезией. Здоровье человека стоит дешевле аппаратуры, а заземление повышает вероятность выхода из строя электронных устройств. Компьютер очень хороший генератор радиошума. В этом просто убедиться, часто при включении компа прут радиопомехи, которые мешают работе телевизоров, радиоприемников, радиотелефонов. Поэтому рекомендуется работать только с закрытым кожухом и заземленным корпусом, чтобы экранировать шум. Некоторые защитные экраны для мониторов можно заземлить. Такие экраны сделаны в виде металлической сетки. Если ты хорошо заземлишь такой экран, то глаза будут меньше уставать. Это особенно касается древних мониторов.

12.10.2005 

Ожидается статья «Моддинг харда»

 

11.10.2005                      Вышла в свет статья  Моддинг БП

        

 

Как паять - простое руководство для начинающих и любителей

Научиться паять может каждый. И это важный навык, который нужно знать, создавая электронику.

Простая пайка. Все, что вам нужно, это паяльник и немного припоя. Когда мой папа учил меня в подростковом возрасте, я помню, как быстро это освоил.

Из этого руководства по пайке вы сначала научитесь паять два провода. Затем вы научитесь паять компоненты на печатной плате. Если вы уже знакомы с этим, подумайте о том, чтобы перейти к моему руководству по пайке SMD или пайке оплавлением.

Также ознакомьтесь с моей статьей о паяльных инструментах, необходимых для начала работы.

Подготовка рабочего места

Подготовьте рабочее место. Найдите свой паяльник и припой и начните нагревать утюг. Пара кусачков обычно тоже пригодится.

Поместите паяльник в держатель. Если у вас нет держателя, по крайней мере, убедитесь, что кончик ничего не касается, пока вы его нагреваете.

Если у вас есть паяльник с регулируемой температурой, ознакомьтесь с моим руководством по выбору правильной температуры пайки.

Очистите наконечник

Когда утюг горячий, первое, что вы должны сделать, это очистить наконечник, чтобы удалить с него старый припой. Вы можете использовать влажную губку, медную губку для мытья посуды или что-нибудь подобное.

Оловянный наконечник

Перед тем, как приступить к пайке, следует олово, жало паяльника. Это означает просто расплавить новый припой на наконечник. Это ускоряет передачу тепла наконечником и тем самым упрощает и ускоряет пайку.

Если на кончике остались большие капли олова, просто очистите его снова, как показано выше.

СОВЕТЫ: ​​Если вы залудите жало перед тем, как положить паяльник на день, говорят, что жало должно прослужить дольше.

Пайка двух проводов

Если вы хотите соединить два провода припоем, первое, что вам нужно сделать, это залудить два провода. Обратите внимание, что проволока нагревается, поэтому вам следует удерживать ее пинцетом или чем-то подобным.

Поместите кончик утюга на проволоку и дайте ему нагреться в течение нескольких секунд. Затем добавьте немного припоя, пока провод не пропитается припоем.

Если это толстая проволока, следует увеличить нагрев утюга (если возможно), чтобы проволока нагрелась быстрее. Повторите процесс лужения с другой проволокой.

Теперь соедините два луженых провода вместе и держите неподвижно, нагревая их паяльником, чтобы олово на обоих проводах расплавилось.

Как припаять печатную плату

Теперь давайте посмотрим, как припаять компоненты со сквозными отверстиями к печатной плате.

Начните с размещения компонента в его отверстиях. Поместите его так, чтобы его ножки выходили на ту же сторону, что и контактные площадки.

На стороне пайки платы немного согните ножки компонента. Так она не выпадет, если перевернуть доску вверх ногами.

Не стесняйтесь добавлять сразу несколько компонентов.

Теперь вы готовы приступить к пайке.

Поместите кончик утюга на площадку так, чтобы он нагрел ножку компонента и площадку печатной платы.

Нагрейте их примерно секунду перед тем, как нанести припой. Пока добавляете припой, держите утюг на стыке.

Когда у вас будет достаточно припоя, удалите припой. Затем вынуть жало паяльника из стыка.

Осмотрите ваше паяное соединение, чтобы убедиться, что он в порядке.Хорошее паяное соединение имеет форму конуса.

Если вы довольны своей пайкой, отрежьте вывод компонента над паяным соединением.

Но не сокращайте это слишком коротко! Это усложнит вам жизнь, если вам по какой-то причине придется демонтировать компонент позже.

Остерегайтесь холодных паяных соединений!

Всегда следите за тем, чтобы вы применяли достаточно тепла! И к колодке, и к штифту. В противном случае вы можете получить соединение холодной пайки .

Холодное паяное соединение на первый взгляд часто выглядит нормально. Но если вы присмотритесь повнимательнее, вы увидите крошечный зазор между припоем и штырем. Это означает, что штифт неправильно подключен к колодке.

Это может привести к серьезному разочарованию, когда ваша схема не работает, и вы пытаетесь выяснить, почему.

Как научиться паять

Хотите научиться паять? Самый быстрый способ научиться паять - это потренироваться на большом количестве схем.Например, купите себе набор для пайки, чтобы попрактиковаться.

Или вы можете сами найти интересные схемы и припаять их на картон.

Сообщите мне, какие вопросы у вас есть по поводу пайки, в разделе комментариев ниже!

Как паять: 8 шагов (с изображениями)

Пайка - это процесс использования присадочного материала (припоя) для соединения частей металла вместе. Пайка происходит при относительно низких температурах (около 400 градусов по Фаренгейту) по сравнению с пайкой и сваркой, которые фактически плавят и сплавляют сами материалы при более высоких температурах. При пайке присадочный материал становится жидким, покрывает детали, с которыми он контактирует, а затем ему дают остыть. Когда припой остывает, он затвердевает, и два материала соединяются. Пайка - это быстрый способ соединения многих типов материалов, от медных труб до витражей. Он создает электрически проводящую прочную связь между компонентами, которую можно повторно нагреть (распаять), если вам когда-либо понадобится разъединить два соединенных вместе элемента. Он отлично подходит для соединения электрических компонентов и проводов и используется практически во всем электронном.В этой инструкции я объясняю, как паять основы, которые вы видите в большинстве инструкций: электрические компоненты и провода.

Для получения дополнительной информации и некоторых технических характеристик пайки ознакомьтесь со статьей в Википедии.

Как и в случае со многими другими навыками, наличие правильных инструментов для работы влияет на качество выполняемой работы. Когда дело доходит до пайки, вы можете использовать множество необычных инструментов или всего несколько простых вещей, которые вы можете купить в хозяйственном магазине за пару долларов. В этом руководстве я собираюсь использовать несколько различных инструментов для пайки; Есть много способов пайки, и вы должны использовать то, что вам подходит.

Как минимум, вам понадобится припой и источник тепла, чтобы расплавить его - желательно что-нибудь маленькое, температура которого может достигать 600-800 градусов по Фаренгейту. Если у вас есть это, вы готовы установить связь. При этом существует широкий спектр паяльных инструментов и аксессуаров, которые могут быть действительно полезны, если вы собираетесь часто паять.Ладада составила хороший список оборудования и источников для покупки инструментов на своем сайте. Я собрал солидный запас паяльных инструментов, совершив набег на паяльную станцию ​​Squid Labs. Вот полный список того, что я использовал ...

1. Паяльник
Большинство людей предпочитают использовать паяльник для пайки. Это отличный источник тепла, который быстро нагревается и остывает и может поддерживать довольно постоянную температуру. Паяльники можно купить в разных местах.Я купил некоторые из них в Radioshack - зло, да, но удобно, некоторые из хозяйственного магазина, некоторые из гаражных распродаж и еще много в розничных магазинах в Интернете. Паяльники малой мощности (15-40 Вт) лучше всего подходят для пайки компонентов на печатных платах, в то время как более мощные (60-140 Вт) паяльники хорошо подходят для соединения более толстых материалов, таких как плетеный провод динамика. Если вы используете слишком мощный паяльник на печатной плате, вы можете повредить компоненты, которые пытаетесь соединить. Мне нравится иметь при себе утюг малой мощности для работы с деталями и утюг высокой мощности, который я могу использовать, когда не слишком беспокоюсь о воздействии высоких температур на материал, с которым я работаю.Паять толстые провода без мощного паяльника - настоящая боль.

Паяльник на большинстве изображений производства Weller, имеет регулируемую температуру. Это лучшее из обоих миров, так как вы можете установить тепло именно там, где хотите, но это значительно дороже, чем утюги с фиксированной температурой. Если вы собираетесь время от времени паять, это ни в коем случае не обязательно. Всем, кто интересуется модификацией паяльника, стоит попробовать паяльник DIY Hot Air от Charper.

2. Припой
Существует множество видов припоя. Они бывают разной толщины: от 0,02 дюйма до действительно толстого материала, который вы использовали бы только на медной трубе с бутановой горелкой. Вы используете тонкий припой для детальной работы, такой как установка резисторов на печатные платы, и более толстый припой для соединения более крупных материалов, таких как провода динамика. .Я использую припой около 0,025 дюйма для большинства работ. Большинство припоев состоит из комбинации олова и свинца - это примерно 60% олова и 40% свинца, в зависимости от того, какой припой вы используете.Недавние международные нормы здравоохранения Японии и ЕС (Калифорния и Нью-Йорк также приняли аналогичную политику) требуют, чтобы свинцовый припой был постепенно исключен из некоторых коммерческих продуктов и заменен бессвинцовой альтернативой. Срок изготовления был в прошлом июле, поэтому мы должны увидеть изменения сейчас. Даже если вы не живете в Калифорнии или Нью-Йорке, все равно стоит держаться подальше от свинцового припоя, поскольку известно, что свинец вызывает все виды неприятных последствий для здоровья, от врожденных дефектов до серьезных нарушений развития и неврологических нарушений.Кроме того, довольно легко найти вещи, не содержащие свинца.

Некоторые припои могут содержать небольшое количество серебра. Это немного повышает температуру плавления, но серебро помогает припою течь и делает соединение более прочным. Если вы беспокоитесь о том, что все, с чем вы работаете, не сгорело, старайтесь держаться подальше от припоя с серебром в нем, но он работает очень хорошо, если вы просто соединяете провода или что-то, что нелегко повредить. Последнее, что нужно знать о припое, - это то, что вы хотите использовать припой с канифольным сердечником.Канифоль действует как флюс при пайке и помогает соединению - это также тот вид, который наиболее легко доступен в хозяйственном магазине и у поставщиков электроники.

3. Жала паяльника
Паяльники поставляются с жалами, поэтому вам не нужно покупать специальное, но важно знать разницу между ними и убедиться, что вы используете правильный наконечник для типа пайки, который вы делаете. Некоторые утюги малой мощности поставляются с коническими заостренными наконечниками для детальной работы, в то время как большинство утюгов высокой мощности имеют более плоский наконечник в виде отвертки, который хорошо работает с проводами.Вы хотите, чтобы ваш наконечник был немного меньше, чем то, что вы паяете, чтобы у вас был хороший контроль над тем, что вы нагреваете, а что оставляете в покое.

4. Держатель паяльника и чистящая губка
Приятно иметь безопасное место, чтобы положить паяльник между пайкой. Подставка для пайки надежно удерживает утюг и дает вам место для чистки жала. Некоторые паяльники поставляются со своими держателями. Если у вас его нет, вы можете купить или изготовить его. У jaime9999 есть самодельная подставка для паяльника, которую можно купить почти бесплатно. Подставка не обязательна для обучения пайке, но она помогает.

5. Инструменты для работы с проводами
У меня есть запас инструментов, которые я собираю при работе с проводами или электрическими компонентами. Они состоят из кусачков, устройства для зачистки проводов, плоскогубцев и автоматического устройства для зачистки проводов (предоставлено паяльной станцией Squid Labs). Автоматический инструмент для зачистки проводов действительно удобен, если вы собираетесь зачищать много-много проводов. но совсем не обязательно.Я зачистил много-много проводов динамиков своими зубами (не лучшая идея, я знаю, что знаю.)

6. Зажимы для вашей работы
Эти маленькие руки часто называют «третьими руками» или «руками помощи». ребята очень помогают при пайке. Вы должны держать паяльник одной рукой, а паяльную проволоку - другой, так что действительно полезно иметь что-то еще, чтобы удерживать компоненты, которые вы пытаетесь соединить. Вы можете использовать зажимы из крокодиловой кожи, зажимы или даже скотч, чтобы удерживать предметы на месте, если вам это необходимо. Третья рука, как правило, является хорошим вложением, если вы собираетесь регулярно паять, и есть множество инструкций с идеями по их изменению, если вы все же возьмете один. Проверьте: сделайте 3 степени свободы «рукой», чтобы помочь с пайкой / склеиванием, и сделайте свои «руки помощи» в 100 раз более полезными для пайки / склеивания мелких деталей от leevonk для начала.

Если вы хотите составить собственный набор «рук помощи», для этого уже есть несколько хороших инструкций.Быстрый помощник по пайке для поверхностного монтажа от https://www.instructables.com/member/bikeNomad/bikeNomad, QuickMods - Soldering Arms от Aeshir и Build a Pair of Helping Hands от Джона Отто должны начать работу.

7. Вытяжной вентилятор
Большую часть пайки я выполняю на паяльной станции, оснащенной вытяжным вентилятором. Вдыхать пары припоя - не самая лучшая идея, а при пайке дым действительно образуется. Любой вид вентиляции / вентилятора, который вы можете установить, поможет. Удалите пары наружу или используйте внутренний вентилятор с фильтром, если вы не можете выпустить их на улицу. Вот вытяжка дыма припоя, установленная на окне (не только для автофургонов!), Опубликованная bikeNomad. Также ознакомьтесь с низкотехнологичным, но функциональным экстрактором паров припоя доктора Соломона, если вы хотите построить что-то, что можно было бы разместить прямо на своем столе. Если вы просто делаете быструю пайку, пары ни в коем случае не убьют вас. Я определенно выполнил свою долю пайки без вентиляционного отверстия, но любой, кто занимается повторяющейся пайкой, определенно должен взять его или изготовить.

8. Защитные очки
Я никогда раньше не пользовался очками при пайке, но, проводя исследование для этого поста, я заметил, что это упоминалось в другом месте, и согласен, что это хорошая идея. Маленькие расплавленные кусочки припоя имеют тенденцию вылетать из паяльного соединения, когда вы вводите припой, и, если бы он попал вам в глаз, это не было бы слишком хорошо.

9. Материалы, которые вы хотите соединить вместе
Я просто возился и в основном паял для целей этой инструкции, поэтому мои материалы не обязательно что-то делали.Вы можете паять провода, электрические компоненты, такие как резисторы и конденсаторы, схемы, макеты, электроды, небольшие кусочки металла и все, что вы можете придумать. Не знаю, можно ли его паять? Попробуйте - ничего не взорвите.

После того, как я соберу свои инструменты и материалы, мне нравится притвориться, что я пилот, и начать свой контрольный список перед полетом / пайкой.

Микроэлектронная пайка



(источник: Electronics World, ноябрь 1971 г.)

Автор: T / Sgt.ЭДВАРД Х. БРЕСЛИН / База ВВС США Лоури, штат Колорадо,

Появление ИС, модульных конструкций и миниатюрных деталей сделали новые методы пайки и инструменты виртуальной необходимостью.

- Автор указывает на одну из герметизированных микросхем, требующих точной пайки. НАСА установило новые стандарты высокой надежности и Lowry AFB разработали инструменты.


- Некоторые из самодельных паяльных инструментов, используемых в Lowry.Пластиковые блоки гнуть провода, заколка для волос служит радиатором, кусачки для ногтей отрезать провода, а плоский инструмент формирует схемы.

Все началось во время первых космических полетов, когда кусочки плавающей пайки космический мусор преследовал космонавтов. Исследователи НАСА решили проблему и затем ввел новые жесткие стандарты пайки в аэрокосмическую промышленность. В качестве жизненно заинтересованной стороны ВВС США через свои учебные Команда - немедленно отправили специалистов для ознакомления с новым высоконадежным пайки и микроэлектроники, и сегодня учит их продолжать курсы в трех крупных центрах технической подготовки.

Вы когда-нибудь работали над микросхемой IC 1/8 "X 1/8" X 1/64 "? Эта миниатюризация создает невероятные проблемы с точной пайкой. Поскольку многожильные и многоконтурные эпоксидные капсулы допускают минимальные допуски, прежние стандартные процедуры пайки стали неприемлемыми.

Пришлось разработать новое семейство припоев. Крошечные схемы, чрезвычайно чувствителен к нагреванию, нужен припой, плавящийся при низких температурах и быстро проходит через пластичное состояние.Цепи, которые могут выдерживать высокие температуры изменения, но не продолжительное нагревание, требуют эвтектического припоя, который мгновенно превращается из твердого в жидкое.

Новая технология также потребовала непрактично большого количества новых утюги и «мини-наконечники». Исходя из правил выбора нужного железо для правильной тепловой точки рабочего терминала, рассеивания и восстановления ставки - было разработано несколько утюгов, в которых тепло на рабочей поверхности (самый важный фактор в любой операции пайки), может быть управляется переменным трансформатором. При этом источник питания на 120 В и 25 Вт может быть сокращен до такой степени, что работа может быть выполнена с наименьшими затратами возможна жара.

Правильные флюсы, чистящие растворители и защитные покрытия равны важно для эффективности выполненной работы.

(Последние представляют собой пластиковые спреи, которые водонепроницаемы, связывают и гарантируют даже распределение тепла по детали.) Фантастический рост миниатюрных электронные технологии намного опередили производство инструментов для обслуживания их, поэтому некоторые временные приспособления были разработаны на местах.Например, в Lowry AFB, техники обнаружили, что стоматологические зонды хорошо работают в деликатных области и что металлический зажим для волос с плоскими рычагами идеально удерживает чип не мешая процессу пайки. Это также помогает в распределении тепло равномерно. Такая изобретательность намекает на начало новой эры для Специалист по микроминиатюризации пайки.

--- Перо указывает на одну из микросхем на компонентной плате используется для студенческой практики по высоконадежной пайке.


- Эта печатная плата релейной матрицы является примером обслуживаемых компонентов студентами курса пайки Lowry AFB.


Аппарат для пайки или распайки микросхем на печатной плате

ОБЛАСТЬ: физика.

Изобретение может быть использовано в паяльных и ремонтных центрах или инфракрасных паяльных станциях для пайки микросхем в корпусе BGA и других микросхем поверхностного монтажа.Корпус, внутри которого установлен инфракрасный обогреватель, устанавливается таким образом, чтобы его можно было расположить над рабочим столом с печатной платой на контролируемом расстоянии. Нижняя часть корпуса снабжена диафрагмой с отверстием, ограничивающим зону нагрева паяной микросхемы. Диафрагма имеет концентратор инфракрасного излучения, расположенный по периферии отверстия диафрагмы, и представляет собой отражающий элемент, расположенный вертикально и / или наклонно в направлении от инфракрасного нагревателя. Соотношение размеров отверстия диафрагмы, высоты и / или угла наклона отражающего элемента выбирается из условия получения заданных размеров зоны нагрева и удельной мощности инфракрасного излучения в зоне спаянной микросхемы. .

Технический результат: высокая однородность и удельная мощность температурного поля, создаваемого инфракрасными лучами на поверхности платы и микросхемы за счет отражения инфракрасных лучей.

ф-лы, 5 ил.

Изобретение относится к паяльному оборудованию и может быть использовано в паяльных и ремонтных центрах или инфракрасных паяльных станциях, в частности, для пайки микросхем BGA и других электронных компонентов.

Известно устройство для пайки или отвода инфракрасных лучей микросхемы Ersa IR 550, Ersa IR-650, Ersa HR-600, QUICK BGA2015, Jovy Systems RE-8500, в котором используется верхний инфракрасный обогреватель, расположенный над центром микросхемы.

Для ограничения зоны нагрева (воздействия) печатной платы в настоящее время используются две системы.

1. Регулируемый проем (подвижные заслонки), в котором ограничение зоны облучения (окна, через которое излучается инфракрасный обогреватель) осуществляется путем регулировки положения плоских металлических раздвижных дверей сарая.

2. Сменная диафрагма, которая находится под инфракрасным обогревателем, в комплекте паяльной станции имеется несколько отверстий с разными размерами окна, и при необходимости ™ эти диафрагмы заменяются.

Ближайшим аналогом предлагаемого устройства можно считать устройство для пайки или отвода микросхемы на печатной плате, состоящее из корпуса с установленным в нем инфракрасным обогревателем, расположенным в нижней части корпуса с диафрагмой, имеющей отверстие, установленной с возможностью размещения на приемлемом расстоянии над установленным на нем рабочим столом печатная плата с припаянным чипом раскрыто в патенте JP 2010-278248 A1, IPC WC 1/005, 09.12.2010.

К недостаткам описанных выше систем ограничения зоны нагрева, в том числе устройства, взятого за прототип, можно отнести следующее.

1. Распространение излучения на большую площадь печатной платы из-за диффузии радиационного нагревателя (полный угол излучения). При пайке вам нужно будет покрыть материалом чувствительные участки печатной платы, отражающие инфракрасные лучи.

2. Потери излучаемой мощности из-за перекрытия заслонки или проемной части поверхности нагревателя.

3. Необходимость подвести ТЭН к плате на небольшом расстоянии для уменьшения нагрева помещения, что приводит к ухудшению условий визуального контроля процесса пайки.

Задачей изобретения является повышение качества нагрева за счет изменения конструкции диафрагм, имеющих концентратор ИК-лучей.

Технический результат, достигаемый при использовании предлагаемого устройства для пайки, заключается в повышении однородности и плотности мощности генерируемых инфракрасных лучей температурного поля на поверхности платы и микросхемы за счет отражения инфракрасных лучей от стен. концентратора.

Кроме того, при уменьшении эффективного угла нагрева происходит увеличение концентрации инфракрасных лучей на меньшей площади доски. T, таким образом, при постоянной мощности выделяемая ИК-нагревателем мощность концентрируется на меньшей площади, тем самым увеличивая плотность мощности излучения на единицу площади печатной платы.

Указанный технический результат достигается за счет того, что устройство для пайки или отвода микросхемы на печатной плате, содержащее корпус с установленным в нем инфракрасным обогревателем, установленный с возможностью позиционирования рабочего стола на печатной плате. на регулируемом расстоянии, при этом в нижней части корпуса проем с отверстием, ограничивающим зону нагрева припаянной микросхемы, в соответствии с изобретением диафрагма включает концентратор инфракрасного излучения, расположенный по контуру отверстия диафрагмы и выполненный в виде отражающего элемента, вертикального и / или наклонного в направлении инфракрасного обогревателя, с соотношением сторон отверстий проема, высотой и / или хрупким наклоном отражающего элемента, выбранными из условия заданных размеров зоны нагрева и плотности мощности инфракрасного излучения в паяной области микросхемы.

Светоотражающий элемент устройства может быть выполнен в виде парных наклонных и вертикальных частей.

Светоотражающий элемент или его часть может иметь квадратную или изогнутую отражающую поверхность, например, параболической или гиперболической формы.

Кроме того, световозвращающий элемент или деталь может быть выполнен с возможностью изменения угла наклона и / или высоты.

Светоотражающий элемент может быть в виде стенок разной высоты и / или разных углов наклона.

Апертура и концентратор инфракрасного излучения могут быть выполнены в виде единого конструктивного элемента или как отдельные конструктивные элементы.

На рис. 1 представлена ​​конструкция корпуса с ИК-обогревателем и плоской диафрагмой со схемой распределения ИК-излучения по прототипу.

На рисунках 2-5 показана конструкция корпуса с инфракрасным обогревателем и концентратором со схемой распределения инфракрасного излучения по вариантам предлагаемого устройства.

На фиг. 2 концентратор ИК излучения от отражающей поверхности в виде вертикальных плоскостей

На рисунке 3 - концентратор ИК излучения от отражающей поверхности в виде наклонных плоскостей

На рисунке 4 концентратор ИК отражающие излучение поверхности в виде вертикальной и наклонной плоскостей

Рисунок 5 концентратор ИК-излучения с изогнутой отражающей поверхностью (аналог концентратора с отражающими поверхностями в виде вертикальной и наклонной плоскостей представлен на рисунке 4).

Ниже обозначены нации, используется в отчетных цифрах.

1. Футляр.

2. Инфракрасный обогреватель.

3. Жалюзи или плоский проем.

4. Микросхема.

5. Печатная плата.

6. Прямые лучи.

7. Лучи, отраженные от диафрагмы (радиационные потери).

8. Эффективный угол нагрева.

9. Полный угол излучения.

10. Концентратор ИК излучения.

11. Отраженные лучи.

Предлагаемое устройство объединяет в ограничении апертуры зоны нагрева (воздействия) ИК-лучи, перенаправленные отсеченные лучи в зоне пайки за счет их отражения от вертикальной стенки (фиг. 2), расположенной по контуру отверстия, или отражения от наклонная стенка диафрагмы (фиг.3), что приводит к увеличению интенсивности (удельной мощности) нагрева при постоянной мощности инфракрасного обогревателя.Упомянутые элементы диафрагмы образуют концентратор инфракрасных лучей.

Кроме того, варианты реализации диафрагмы со сложной ступицей, показанные на рисунках 4 и 5, из-за отражения инфракрасных лучей от наклонной области диафрагмы, позволяют дополнительно использовать инфракрасные лучи, что в вариантах реализации в соответствии с рисунком 2-3 не участвовал в нагреве, который был отнесен на счет потери излучения. Этот вариант дополнительно увеличивает эффективность отопительного контура.

Как показано на схемах на рис. 2-5, использование концентраторов ИК-лучей значительно, но уменьшается по мере того, как полный угол облучения, и эффективный угол нагрева, позволяющий практически отказаться от использования световозвращающих накладок на свободных участках печатной платы для термочувствительных.

За счет увеличения плотности мощности создаются условия для увеличения зазора между платой и нижней частью устройства, по крайней мере, от расстояния «b» до расстояния «A», в то время как за счет увеличения зазора условия улучшают визуальное восприятие. контроль процесса пайки, а за счет наличия визуально видимой стенки упрощает процесс размещения верхнего инфракрасного обогревателя над центром микросхемы.

Форма окна в апертуре может быть прямоугольной, но может быть круглой, овальной или любой другой формы в зависимости от конфигурации корпуса микросхемы.

В предлагаемом аппарате могут использоваться различные типы инфракрасных обогревателей, в том числе, в видимом и невидимом спектре инфракрасного излучения и даже лампочки накаливания.

Для наиболее эффективного использования паяльного оборудования диафрагма и стенки отражающего элемента выполнены из материала с максимальной отражательной способностью в диапазоне инфракрасных волн, излучаемых инфракрасным обогревателем.

Конкретные размеры отверстий диафрагмы, высота и / или угол наклона отражающего элемента выбираются расчетной или пилотной фазой инталним по условиям получения необходимых параметров нагрева в зависимости от конструкции и свойств паяных элементов.

1. Устройство для пайки и отвода микросхемы на печатную плату, представляющее собой корпус с установленным в нем инфракрасным обогревателем, который установлен с возможностью позиционирования рабочего стола к печатной плате на регулируемом расстоянии, при этом в нижней части отверстие корпуса с отверстием, ограничивающим зону нагрева паяного чипа, отличающееся тем, что указанное отверстие содержит концентратор инфракрасного излучения, расположенный по контуру отверстия диафрагмы и выполнен в виде отражающего элемента, расположенного вертикально или наклонно в направление инфракрасного обогревателя, или в виде парных наклонных и вертикальных участков, соотношение размеров отверстий диафрагмы, высоты и / или угла отражающего элемента, выбираемого из условия заданных размеров зоны нагрева и плотность мощности инфракрасного излучения в области пайки или отпаиваемой микросхемы.

2. Устройство по п.1, отличающееся тем, что отражающий элемент или его часть имеют плоскую отражающую поверхность.

3. Устройство по п.1, отличающееся тем, что отражающий элемент или его часть имеют криволинейную отражающую поверхность, например, параболической или гиперболической формы.

4. Устройство по п.1, отличающееся тем, что отражающий элемент или h выполнен с возможностью изменения угла наклона и / или высоты.

5. Устройство по п.1, отличающееся тем, что отражающий элемент выполнен со стенками разной высоты и / или разных углов наклона.

6. Устройство по п.1, отличающееся тем, что апертура и концентратор инфракрасного излучения выполнены в виде единого конструктивного элемента.

7. Устройство по п.1, отличающееся тем, что апертура и концентратор инфракрасного излучения выполнены в виде отдельных конструктивных элементов.

Различий между пайкой волной и пайкой оплавлением

Пайка - огромная часть процесса проектирования печатных плат. Единственный надежный способ заставить ваши схемы прилипать к плате и оставаться на ней - это припаять их. Без пайки не бывает печатных плат. Но не все типы пайки одинаковы, и может быть важно различать разные типы печатных плат.

Существует два основных типа пайки печатных плат: пайка волной и пайка оплавлением.В чем разница между ними и как узнать, какой тип пайки использовать в каких обстоятельствах?

Перейти к: Что такое пайка волной? | Что такое пайка оплавлением? | Волновая пайка против пайки оплавлением | Подробнее о пайке и печатных платах

Что такое пайка волной?

Волновая пайка - это процесс объемной пайки, который позволяет изготавливать множество печатных плат за очень короткое время. Он работает, пропуская каждую печатную плату над поддоном с расплавленным припоем.Помпа в поддоне создает «волну» припоя, которая омывает плату, припаивая компоненты к плате. Затем на печатную плату подается водяная струя или продувается воздух, чтобы безопасно охладить ее и зафиксировать детали на месте.

Правильная температура очень важна в процессе пайки волной припоя. Недостаточный контроль температуры может вызвать механическое напряжение на плате, что может привести к трещинам и потере проводимости. Недостаточный предварительный нагрев может привести к образованию полостей, которые могут снизить прочность и проводимость платы.Неправильная температура припоя может привести к невозможности получения припоя правильной толщины, что может сделать плату более восприимчивой к нагрузкам.

Получить цену и время выполнения

Что такое пайка оплавлением?

Процесс пайки оплавлением немного отличается от пайки волной, но это наиболее распространенный способ прикрепления компонентов поверхностного монтажа к печатной плате. Волновая пайка чаще используется для пайки сквозных компонентов.Хотя для этой цели можно использовать пайку оплавлением, это происходит редко, поскольку пайка волной припоя более рентабельна.

При пайке оплавлением мы делаем паяльную пасту из порошкового припоя и флюса, а затем используем эту пасту для прикрепления компонентов к контактным площадкам. Затем мы нагреваем всю сборку в печи оплавления или под инфракрасной лампой, чтобы расплавить припой и соединить соединение. При необходимости можно припаять отдельные стыки термовоздушным карандашом.

Волновая пайка vs.Пайка оплавлением

Итак, как узнать, какой тип пайки использовать и когда? Это может зависеть от множества факторов, таких как форма колодок, время, которое у вас есть, ориентация компонентов, тип печатной платы и многое другое. В некотором смысле пайка волной припоя более сложна. Такие проблемы, как температура платы и время нахождения платы в волнах припоя, требуют тщательного контроля. Неспособность создать правильную среду для пайки волной припоя с большей вероятностью приведет к дефектам платы.

Вам не нужно беспокоиться об окружающей среде, когда вы используете пайку оплавлением для изготовления печатных плат. Однако даже в этом случае пайка волной припоя оказывается быстрее и дешевле, чем пайка оплавлением. Во многих случаях это единственный практический способ пайки платы. Пайка оплавлением обычно используется в небольших производственных продуктах, для которых не требуется метод, обеспечивающий быстрое и дешевое массовое производство.

Имейте в виду, что в определенных ситуациях можно использовать как пайку оплавлением, так и пайку волной. Вы можете припаять детали оплавлением с одной стороны, а затем припаять их волной припоя с другой.Кроме того, вы всегда можете вручную припаять или припаять компоненты печатной платы вручную, но это редко будет хорошим подходом, если у вас есть доступ к одному из механических методов пайки. Ручная пайка была бы лишь альтернативой пайке оплавлением, но пайка оплавлением все еще намного лучше.

Подробнее о пайке и печатных платах

Тип пайки - лишь один из многих элементов, которые делают печатные платы идеальными для различных промышленных применений. Являясь лидером в поставке широкого спектра печатных плат, эксперты Millennium Circuits Limited хорошо разбираются в типах пайки и других элементах печатных плат, таких как типы материала подложки, разновидности плат и важные конструктивные особенности.

Чтобы обсудить любой аспект процесса изготовления печатных плат или узнать больше о качественных печатных платах в целом, свяжитесь с нами сегодня.

Пайка и демонтаж Припой и расходные материалы для пайки 240 дюймов 60/40 оловянно-свинцовый припой.022 Dia Микросхемы Электроника futuremigration.eu

Пайка и демонтаж Припой и расходные материалы для пайки 240 дюймов 60/40 оловянно-свинцовый припой Платы для микросхем диаметром 0,022 Электроника futuremigration.eu
  1. На главную
  2. Бизнес и промышленность
  3. ЧПУ, Металлообработка и производство
  4. Сварочное и паяльное оборудование
  5. Пайка и Удаление припоя
  6. Припой и расходные материалы для пайки
  7. Припой
  8. 240 дюймов 60/40 оловянно-свинцовый припой.022 Диаметр микросхем Электроника

240 дюймов 60/40 оловянный припой .022 Dia Micro - Электроника / Платы
Припой Бизнес и промышленное ЧПУ, Металлообработка и производство Сварочное и паяльное оборудование Пайка и демонтаж Припой и расходные материалы для пайки, Электронные платы 240 дюймов 60/40 оловянно-свинцовый припой. Микросхема диаметром 022, оловянно-свинцовый припой диаметром 240 дюймов 60/40. Платы для микросхем диаметром 0,022, без разбрызгивания и коррозии, оловянно-свинцовый припой 60/40, припой Ersin Core, широко используется в электротехнике и электронике, паяные части, такие как схемы плата, электронные устройства и прочее, проволока для припоя - сердечник Ersin, материал: оловянный свинец, хорошая паяемость, сопротивление изоляции, оловянно-свинцовый припой 60/40 дюймов.022 Dia Micro Circuit Board Electronics, дюймы 60/40 оловянно-свинцовый припой .022 Dia Micro Circuit Board Electronics 240.

240 дюймов 60/40 оловянно-свинцовый припой, за исключением случаев, когда изделие изготовлено вручную или не было упаковано производителем не в розничную упаковку. Страна / регион производства: : Соединенные Штаты: UPC: : Не применяется, MPN: : Не применяется : Модель: : Многожильный, такой как непечатная коробка или пластиковый пакет, неоткрытый, сопротивление изоляции, оловянно-свинцовый припой 60/40, широко используемый в электротехнике и электронике. Полную информацию см. В списке продавца, оловянно-свинцовый припой 240 дюймов 60/40.022 Dia Micro - Электроника / Платы, электронные устройства и прочее, Состояние: Новинка: Совершенно новый, Материал: оловянный свинец, 240 дюймов, 60/40, оловянный припой, диаметр 0,022 Платы для микроэлектроники

Хорошая способность к пайке. Упаковка должна быть такой же, как в розничном магазине. Припой - сердечник Ersin, неповрежденный предмет в оригинальной упаковке (где упаковка применимо), 240 дюймов оловянно-свинцовый припой 60/40.022 Dia Micro Circuit Board Electronics, unused, 022 Dia Micro - Electronics / Circuit Board, См. Все определения условий : Торговая марка: : ERSIN, Ersin Core Solder, без разбрызгивания и коррозии, припойные детали, такие как печатная плата, 240 дюймов 60/40 оловянно-свинцовый припой .022 Dia Micro Circuit Board Электроника



240 дюймов 60/40 оловянно-свинцовый припой.022 Dia Micro - Электроника / Платы

Не разбрызгивает и не вызывает коррозии, оловянно-свинцовый припой 60/40, припой Ersin Core, широко используется в электротехнике и электронике, припойные детали, такие как печатная плата, электронные устройства и другие, припойный провод - сердечник Ersin, материал: оловянный свинец, хорошая паяемость , сопротивление изоляции. 240 дюймов 60/40 оловянно-свинцовый припой. Платы с оловянным свинцом диаметром 0,022. Электроника. 240 дюймов. Олово-свинцовый припой диаметром 60/40. Платы с оловянным свинцом. Диаметр 0,022. Электроника. Электроника. 240 дюймов.Платы для микросхем диаметром 022 240 дюймов 60/40 оловянно-свинцовый припой. Платы для микросхем диаметром 0,022 мм Электроника

крупным планом снимок паяльника и микросхемы Фотография, картинки, изображения и сток-фотография без роялти. Изображение 41438575.

крупным планом паяльник и микросхема Фотография, картинки, изображения и сток-фотография без роялти. Изображение 41438575.

Крупным планом снимок паяльника и микросхемы

S M L XL Редактировать

Таблица размеров

Размер изображения Идеально подходит для
S Интернет и блоги, социальные сети и мобильные приложения.
M Брошюры и каталоги, журналы и открытки.
л Плакаты и баннеры для дома и улицы.
XL Фоны, рекламные щиты и цифровые экраны.

Используете это изображение на предмете перепродажи или шаблоне?

Распечатать Электронный Всесторонний

4681 x 2739 пикселей | 39.6 см x 23,2 см | 300 точек на дюйм | JPG

Масштабирование до любого размера • EPS

4681 x 2739 пикселей | 39,6 см x 23,2 см | 300 точек на дюйм | JPG

Скачать

Купить одно изображение

6 кредитов

Самая низкая цена
с планом подписки

  • Попробовать 1 месяц на 2209 pyб
  • Загрузите 10 фотографий или векторов.
  • Нет дневного лимита загрузок, неиспользованные загрузки переносятся на следующий месяц

221 ру

за изображение любой размер

Цена денег

Ключевые слова

Похожие изображения

Нужна помощь? Свяжитесь с вашим персональным менеджером по работе с клиентами

@ +7 499 938-68-54

Мы используем файлы cookie, чтобы вам было удобнее работать.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *