cxema.org – Простой однотактный инвертор на UC3845
Простой однотактный инвертор на UC3845
Микросхема UC3845 является высокоточным ШИМ контроллером, которая нашла широкое применение в импульсных блоках питания. Эта микросхема может работать в широком диапазоне питающих напряжений и достаточно устойчива, имеет встроенный драйвер для усиления сигнала и может работать с достаточно мощными транзисторами. Мы рассмотрим две простых схемы преобразователей напряжения с применением этой микросхемы. Единственный недостаток заключается в том, что микросхема является одноканальной и пригодна только для построения однотактных преобразователей напряжения.
Схема достаточно проста.
Генератор состоит из самой микросхемы и двух компонентов времязадающей цепи, их подбором настраивается нужная рабочая частота схемы.
Выбор силового транзистора не критичен, тут можно использовать буквально любые N-канальные силовые ключи с током 40Ампер и более. Отлично справляются ключи типа IRL3705, IRFZ44/46/48, IRF3205 и другие.
В качестве трансформатора можно применить готовый трансформатор от китайских электронных трансформаторов на 105 ватт. Обмотка на 12 Вольт подключают на место первички, сетевая обмотка будет уже вторичной.
Если под рукой нет готового трансформатора, то его можно намотать самому. Подойдет любой удобный Ш-образный или броневой сердечник.
Первичная обмотка мотается двумя жилами миллиметрового провода и состоит из 8- и витков. Поверх ставим несколько слоев изоляции из фторопластовой ленты или скотча и мотают повышающую обмотку. Обмотка мотается проводом 0,5мм и состоит из 80 витков – эти данные намотки рассчитаны для частот 40-50кГц.
Схема работает бесшумно, транзистор обязательно крепим на теплоотвад, поскольку на нем наблюдается сильное тепловыделение.
Думаю, нет нужды приводить печатную плату, поскольку количество комплектующих сведено к минимуму.
АКА КАСЬЯН
Ремонт блока питания D-Link (UC3843B)
Блок питания D-Link
Блок питания свитчей и роутеров D-Link является слабым местом, а при выходе из строя, блок питания довольно сложно подменить. Для справки, блок питания JTA0302D-E выдает 5В*2А (JTA0302E-E 5В*2,5А, а JTA0302F-E 5В*3А). Ремонтировать или нет, дело личное, если есть возможность выбора всегда покупайте новый, однако на практике не всегда удается быстро и оперативно найти новый блок питания. Поэтому вопрос с ремонтом остается актуальным.
Рис.1 Схема блока питания D-Link
Схема блока питания – это импульсный однотактный блок питания, в котором управлением служит ШИМ-контроллер UC3843B, подключенный по почти стандартной схеме.
Я против всяких любительских доработок схем. Схемы в своем большинстве, разработаны целой группой специалистов и подтвержденны расчетами, а вмешательство в отлаженный механизм, который, кстати сказать работает на грани своих возможностей не всегда есть правильный ход. Но в данном случае желательно сразу обратить на принципиальные вещи которые лично мне режут глаза. С6 (47мкФ*25В) желательная замена на 47мкФ*50В. Можно сослаться на документацию, напряжение включения UC3843 8,4В, и там постоянно вертится около 9Вольт, однако на практике минимальное рабочее напряжение для конденсатора в этой цепи 50В. Или на ZD1(BZX55C20) включенном параллельно конденсатору, рассчитанный на 20 В, то есть фактически на этом конденсаторе не может оказаться более 20В. Но привычка – вторая натура, в этой цепи привычнее видеть 47мкФ*50В Вторым тонким моментом следует отметить С9(1000мкФ*10В), тут налицо явная экономия, и опять тонкая грань предела возможностей конденсатора С9(1000мкФ*10В). Ставить конденсатор такого рабочего напряжения в первом плече |
Входной выпрямитель.
Рис.2 Входной выпрямитель блока питания D-Link
Выпрямитель выполнен по стандартной схеме. Предохранитель на 2А, терморезистор TR (08SP005), дроссель L1, диодный мост DB1…DB4 (1N4007) и конденсатор C1 (22мкФ*400В). В случае выхода этих элементов, с вероятностью 90% на вход блок питания подали повышенное напряжение. Судя по выпрямителю, а именно С1 (22мкФ*400В), блок питания может выдать честных 13-17 Вт, что при 5В эквивалентно 2-3А. На выходе выпрямителя должно быть около 300В.
Питание ШИМ UC3843B.
С цепью питания поработаем более внимательнее, именно в этой цепи кроется большинство неисправностей блока питания.
Обязательным условием работы ШИМ- контроллера серии UC384X— порог напряжения питания. Порог напряжения зависит от модели примененной микросхемы семейства. Например, для UC3843B минимальное пороговое напряжение (off)— 7,6В (UC3843B перестает работать), а максимальное пороговое (on)— 8,4В (UC3843B включается). Благодаря гистерезисной петле (0,8В) добиваются стабильность работе ШИМ-контроллера при небольших пульсациях на входе, исключая ложные срабатывания. |
Рис.3 Цепь запуска при включении, блок питания D-Link |
Рис.4 Цепь питания ШИМ контроллера после включения генерации, блок питания D-Link |
Первичный пуск осуществляется по цепи R4(300к) C6 (47 мкФ*25В). При включении через резистор R4(300к) напряжение подастся на вывод питания 7 микросхемы и конденсатор C6 (47 мкФ*25В), после чего он начнёт медленно заряжаться до некоторого напряжения (8,4В), далее произойдёт включение микросхемы, и она начнёт генерацию импульсов. Так как энергии запасённой в конденсаторе достаточно только для старта микросхемы, и если по какой-то причине напряжение упадёт ниже 7,6В вольт, микросхема отключится. Поэтому, с началом генерации импульсов, начинают поступать силовые импульсы тока от обмотки питания трансформатора, через выпрямительный диод D2 и R9(5,1), тем самым восполняя заряд конденсатора C6 (47 мкФ*25В).
При замыканиях в цепях вторичных обмоток, резко возрастают потери энергии в импульсном трансформаторе. В результате напряжения, получаемого с обмотки трансформатора, недостаточно для поддержания нормальной работы ШИМ-контроллера. Внутренний генератор отключается, на выходе ШИМ-контроллера появляется напряжение низкого уровня, переводящее ключевой транзистор в закрытое состояние, и микросхема оказывается вновь в режиме низкого потребления энергии. Через некоторое время через резистор R4(300к) зарядится конденсатор C6 (47 мкФ*25В) – напряжение питания возрастает до уровня, достаточного для запуска внутреннего генератора, и процесс повторится. Из трансформатора в этом случае слышны характерные щелчки (цыканье), период повторения которых определяется номиналами резистора R4(300к) и конденсатора C6 (47 мкФ*25В). |
При высыхании конденсатора C6 (47 мкФ*25В) происходят многократные попытки запуска ( при этом раздается харатерные щелчки (цыканье), период повторения которых определяется номиналами конденсатора C6 (47 мкФ*25В) и резистора R4(300к)) напряжение питания ШИМ-контроллера падает ниже 7,6В (то есть ШИМ выключается), потом зарядка C6 (47 мкФ*25В) через R4(300к) и так по циклу. В результате конденсаторы С9(1000мкФ*10В) и С11 (220мкФ*16В) циклически заряжаются-разряжаются большим током, что приводит к их нагреву, кипению электролита и высыханию. С C6 (47 мкФ*25В) происходит то же самое. Поскольку ёмкость С9(1000мкФ*10В) и С11 (220мкФ*16В) уменьшается, то схема обратной связи реагирует на пики несглаженного напряжения, в результате чего действующее напряжение на выходе блока УМЕНЬШАЕТСЯ. А вот несглаженные выбросы напряжения в цепи питания микросхемы как раз и гасятся на стабилитроне ZD1(BZX55C20), что и приводит к его нагреву, а потом и к пробою.
Рис.5 Структурная схема UC3843
Следует отметить, что в ШИМ UC384X по питанию (7 нога) есть встроенный стабилитрон на 34В, что отображено на структурной схеме.
Рис.6 Цепь обратной связи, блок питания D-Link.
Тут чистая классика без всяких изысков. На вход COMP подается напряжение обратной связи с оптрона PC817 (L0403), обеспечивающего развязку первичной цепи с выходом блока питания. При отсутствии напряжения обратной связи на выходе оптрона ШИМ контроллер не запустится, так срабатывет условие блокировки микросхемы ШИМ контроллера.
Обратная связь здесь выполнена на оптопаре. В момент завышения напряжения, на выходе, выше 5 вольт, происходит открытие транзистора оптопары, вызванного свечением светодиода, в этот момент падает напряжение на первом выводе микросхемы, это вызывает сокращение длительности импульсов и как следствие уменьшение мощности трансформации. Этот механизм обратной связи, не даст напряжению вырости выше 5 вольт и упасть ниже 5 вольт, то есть получается стабилизатор напряжения.
Генератор.
Частота переключения и соответственно длина рабочего цикла зависят от соотношения R11(3к)/C5(0,01мкФ). Данные элементы очень редко (практически никогда) выходят из строя.
Фото блока питания.
Фото с внешним видом блока питания бывают необходимы при ремонте.
Рис.7 Блок питания D-Link JTA0302D-E, вид со стороны деталей (конденсатор входного выпрямителя поднят для удообства) | Рис.8 Блок питания D-Link JTA0302D-E, вид со стороны печатной платы |
Ремонт
Рис.9 Схема блока питания маршрутизатора D-Link, JTA0302E-E. (5В*2,5А).
На схеме, в отличии от схемы в начале статьи, более наглядно выделены все цепи. Внимание в статье все номиналы и обозначения элементов даны для схемы в начале статьи, приведенная здесь схема имеет незначительные отличия, как по номиналам так и по обозначениям элементов.
Ремонт желательно начинать с ознакомления с datasheet ШИМ UC3843B (скачать).
Расположение плюса и минуса на штекере блока питания D-Link. Плюс расположен внутри минус с наружи штекера. В случае необходимости замены штекера, менять надо на аналогичный, “ноутбучного” типа. “Бытовой” штекер настоятельно не рекомендуется для замены. Ток выдаваемый блоком питания D-Link это ток 2-3А, а “бытовой” штекер расчитан на 1,5А максимум. Установка такого штекера ведет к перегреву разъема на устройстве и последующего его (разъема) выхода из строя.
Рис.10 Рекомендуемая замена штекера питания.
Слева штекер расчитанный на ток более 2-3А, справа на ток не более 1,5А. Наличие усиков-контактов на одном и гладкая поверхность внутри другого.
Как разобрать блок питания D-Link. Блок питания клееный поэтому открывать придется при помощи тисков.
Рис.11 Внешний вид блока питания D-Link
Рис.12 Зажимаем в тиски блок питания, область приложения отмечена красным.
Рис.13 Расположение швов на блоке питания D-Link.
Для начала зажимаем блок питания в тиски через картон или тряпку, см. рисунок и сдавливаем до небольшого хруста, картон или тряпка нужны для того что бы не поцарапать корпус блока питания. Далее широким плоским предметом, лично я затупленной стамеской, несильно начинаем простукивать видимую часть шва, ставим стамеску на шов и не сильно бьем по стамеске молотком, и так с обоих сторон. Клееный заводской шов лопнет при помощи таких действий, а вот клееный уже повторно в мастерской шов лопнет только в том случае если его склеивали с расчетом повторной разборки, если не открывается, придется резать.
Нет напряжения на выходе выпрямителя около 300В, то есть на конденсаторе С1(22мкФ*400в). Проверить на входе F1, TR, диодный мост на предмет пробоя. В случае если диоды DB1…DB4 (1N4007) грелись, вплоть до обугливаниятекстолита под ними, конденсатор С1 подлежит замене. Особое внимание обратить на дроссель L1, так как при внешних воздействиях (падениях) он имеет свойство обрываться.
Выходное напряжение меньше, проваливается, не стабильно; БП запускается не всегда, БП запускается, но с большой задержкой, БП не запускается под нагрузкой, но в холостую включается и при подключении нагрузки начинает стабильно работать. Поменять все электролиты (С1, С6, С9, С10, С11).
Не включается блок питания, на 7 ноге UC3843B нет напряжения достаточного для включения микросхемы, стабилитрон ZD1(20В) и конденсатор C6 (47мкФ*25В) заменены на заведомо исправные. Несколько нестандартная неисправность, однако имело место быть. Резистор R4 (300к 1вт) в цепи питания микросхемы для запуска ШИМ от 300В – при проверке показывал 300К однако под напряжением уходил в обрыв. При включении в сеть 220В на 7 ноге ШИМ напряжение не появлялось. При запуске от внешнего блока питания ШИМ работал нормально. После замены R4, блок питания запустился.
Не включается блок питания, сгорел стабилитрон ZD1(BZX55C20). Выход стабилитрона ZD1(BZX55C20) является следствием того, что конденсатор C6 (47мкФ*25В) неисправен. Особое внимание, а лучше заменить, к конденсаторам выходного выпрямителя С9(1000мкФ*10В), С11 (220мкФ*16В). Конденсаторы С9(1000мкФ*10В) лучше заменить на 1000мкФ*16В, а C6 (47мкФ*25В) на 47мкФ*50В. Стабилитрон ZD1(BZX55C20) расчитан на 20В, ставить на более низкое напряжение чем 11В и на напряжение более высокое 30В не рекомендуется. Но помним, более низкое рабочее напряжение этого стабилитрона черевато излишним его нагревом и последующим выходом из строя из-за перегрева. Рекомендуемые номиналы для аналога сгоревшему стабилитрону ZD1(BZX55C20) – это 18-22В. Из практики, при пробое ключевой транзистор и ШИМ-контроллер остаются живыми, при обрыве ключевой транзистор и ШИМ-контроллер выходят из строя.
Не включается блок питания, сгорел ключ (полевой транзистор). При замене ключа рекомендуется не надеятся на случай, а сразу менять ШИМ контроллер. Так же особое внимание следует уделить токоограничивающему резистору R5(150) и датчику тока R2(1,8), на предмет их возможного обрыва и изменения номинала. Увеличение номинала R2 даже на 10% может привести к нестабильности работы блока питания и ложному срабатыванию токовой защиты БП. Уменьшение номинала R2 приводит к увеличению тока через ключевой транзистор в случае перегрузки и как результат выход из строя ключевого транзистора и ШИМ-контроллера.
Блок питания глючит, точнее не блок питания, а устройство к которому подключен блок питания. При подключении на автомобильную лампу (12В) – блок питания уходит в защиту. Неисправны конденсаторы фильтра выходного выпрямителя. Требуется замена, при замене рекомендуется ставить конденсаторы на рабочее напряжение не ниже 16В и с низким ESR (LOW ESR), еще их называют компьютерными, по внешнему виду они отличаются от обычных наличием золотистой (серебристой) полоской. Особое внимание следует обратить внимание на С9. Увеличение емкости этого конденсатора снизит амплитуду выходных пульсаций, но затруднит старт блока и заставит увеличивать емкость на питании ШИМ – контроллера, конденсатор должен обладать достаточно малым эквивалентным последовательным сопротивлением (ESR) для безболезненного пропускания большого импульсного тока.
Из блока питания слышно характерное цыканье импульсного трансформатора. Вообще цыкание трансформатора происходит по причине недостаточного питания микросхемы ШИМ -контроллера. Тут возможно два варианта – вышли из строя вторичные цепи например пробой конденсаторов С9(1000мкФ*10В), С11 (220мкФ*16В), диода D6 или же вышли из строя элементы питания ШИМ контроллера первичной цепи – C6 (47мкФ*25В), D2. Третьей причиной (довольно редкий случай) цыкания может быть выход из строя цепи подавления выброса от индуктивности рассеяния (D (на схеме не обозначен), R1(39к), C2 (4700)). На диод в этой цепи хотелось бы обратить особое внимание, использование дешевых и распространенных диодов в этой цепи категорически не рекомендуется, здесь должен стоять ВЧ диод, с минимальным восстановления. При замене диод лучше всего снять с аналогичной цепи любого импульсного блока питания. Так же стоит обратить внимание на С1(22мкФ*400в).
Можно ли поменять UC3843B на UC3843A? На практике приходилось сталкиваться с заводскими блоками питания в которых установлена, и UC3843B, и UC3843A. Особой разницы в работе не замечено – меняйте.
Рекомендуемые материалы.
Практический ремонт блока питания D Link, замена пускового конденсатора. Посмотреть.
Практический ремонт блока питания D Link, нестандартный ремонт. Посмотреть.
Обратноходовой блок питания на UC3842
Приветствую, Самоделкины!Из этой статьи вы узнаете, как Роман, автор YouTube канала «Open Frime TV», своими руками собрал обратноходовой блок питания на микросхеме UC3842, а также вместе разберемся во всех тонкостях схемы.
Свой путь в освоении блоков питания автор начал с двухтактных схем, так как они более просты в понимании, а в однотактных всегда пугал зазор и прочая ерунда. Ну вот автор достиг момента понимания и теперь готов поделиться им с нами. Итак, давайте начинать.
А начнем мы с самого начала, т.е. непосредственно с принципа работы обратно ходового преобразователя. На первый взгляд тут нет ничего сложного, всего 1 транзистор, схема управления и трансформатор.
Но если присмотреться повнимательнее, то можно заметить, что направление обмоток у трансформатора разное и вообще это не трансформатор вовсе, а дроссель, в котором присутствует тот самый зазор, о котором было упомянуто выше, о нем поговорим позже.
Принцип работы данного блока питания состоит в следующем: когда открывается транзистор и пропускает напряжение на обмотку, дроссель накапливает энергию.
Во вторичной цепи ток не течет, так как диод включен в обратном направлении, этот момент называется прямым ходом. В следующий момент времени транзистор закрывается и ток через первичную обмотку уже не протекает, но за счет того, что дроссель накопил энергию, он начинает отдавать ее в нагрузку. Это происходит потому, что напряжение самоиндукции имеет другой знак полярности и диод оказывается включенным в прямом направлении.
Теперь настало время поговорить о том, зачем собственно тут необходим зазор. Дело в том, что у феррита очень большая индуктивность и если зазора не будет, то на обратном ходу он не передаст всю энергию в нагрузку, и когда произойдет следующее открытие транзистора, дроссель войдет в насыщение и станет просто куском металла, а транзистор в таком случае будет работать в режиме короткого замыкания.
Теперь давайте рассмотрим непосредственно схему нашего будущего устройства.
Как вы могли заметить – это достаточно популярная схема на микросхеме UC3842.
В данной схеме нет ничего нового – в ней все стандартно. Скорее всего такая схема не раз попадалась вам в интернете, так как эта схема самая устойчивая, так как мы идем в обход внутреннего усилителя ошибки (tl431) на выходе блока.
Также на схеме отсутствуют номиналы некоторых элементов, это связано с тем, что их необходимо рассчитать конкретно под ваши нужды и условия.
Но пугаться не стоит, в этом нет ничего сложного, весь расчет легкий и производится в полуавтоматическом режиме, поэтому справится даже новичок.
На рисунке ниже красным цветом выделены элементы (R2, R3 и C1), расчет которых осуществляется в программе Старичка, подробности дальше перед намоткой трансформатора.
Резистор R4 рассчитывается под определенную частоту, также специальной компьютерной программой. Она присутствует в пакете программ к данной схеме, скачать можно ЗДЕСЬ или в описании под оригинальным видеороликом автора, ссылка «ИСТОЧНИК» в конце статьи.
Для данной самоделки подойдут следующие микросхемы: UC3842, UC3843, UC3844 и UC3845. Отличие состоит в том, что у микросхем UC3844 и UC3845 частота генератора делится на 2, а у UC3842 и UC3843 нет, поэтому максимальное значение импульса у двух первых микросхем – 50%, а у двух следующих – 100%.
Также потребуется произвести расчет резистора, ограничивающего ток оптопары, таким образом, чтобы при номинальном напряжении на выходе через оптопару протекал ток равный 10мА.
Данный блок питания срывается в релейный режим работы если нагрузка на выходе отсутствует, поэтому необходимо установить нагрузочный резистор. При номинальном напряжении данный резистор должен рассеивать 1Вт.
И последнее у нас – это грубая настройка переменного резистора.
Данный переменный резистор вместе с постоянным создают делитель напряжения, и при номинальном напряжении в точки деления должно быть напряжение равное 2,5В.
Непосредственно перед установкой в плату переменный резистор необходимо выкрутить на примерно нужное сопротивление, делая это с помощью мультиметра.
Ну вот, собственно, и весь расчет. Теперь переходим к печатной плате.
Как видим, здесь автор постарался минимизировать все, как только можно, и в итоге остался доволен результатом, хоть и разводка получилась не идеальная.
В данном примере применен трансформатор ETD29, но если у вас в наличии имеется другой трансформатор, то просто измените размер трансформатора, а дальше скопируйте трассировку платы автора.
После того, как плата была нарисована, автор сделал сначала, так сказать, макет широко известным методом ЛУТ.
На этом макете он все протестировал, а потом уже заказал плату в китайской компании. И вот спустя месяц такие платки в итоге имеем:
Теперь приступаем непосредственно к запаиванию всех деталей и компонентов на свои места. Начнем, пожалуй, с рассыпухи.
Теперь у нас впереди намоточные работы. Сперва начнем с малого – входной дроссель. Для него подойдет ферритовое кольцо проницаемость 2000-2200. На этом кольце мотаем 2 по 10 витков проводом 0,5мм.
Далее выходной дроссель. Его индуктивность должна быть не очень большой, чтобы не создавать лишних резонансных колебаний. Мотать выходной дроссель можно как на кольце из порошкового железа, так и на ферритовом стержне. Автор решил мотать на вот таком колечке с проницаемостью 52.
Вся намотка состоит из 10 витков проводом 0,8 мм. Ну а теперь нам предстоит самая сложная часть сегодняшней самоделки – это намотка силового трансформатора-дросселя.
Тут в первую очередь необходимо определиться с напряжением и током, тут есть некоторые ограничения, такие как, максимальный ток не должен превышать 3А без охлаждения и 4А с охлаждением, так как для большего тока диодам Шоттки необходим радиатор большей площади.
Отсюда вытекает и ограничение выходной мощности, к примеру, при напряжении в 12В максимальная мощность не может превышать 48Вт, а при напряжении в 24В мощность уже может достигать 100Вт.
Для расчета трансформаторов автор рекомендует воспользоваться программой Старичка. Ниже представлен интерфейс данной программы.
В нужные поля водим все необходимые параметры и получаем на выходе данные для намотки, а также необходимый зазор сердечника.
Также помимо этого, программа посчитала нам сопротивление резистора R2 и минимальное значение ёмкости входного конденсатора C1.
Как видим, напряжение для самозапита автор выбрал 20В, так это самое подходящее значение.
Также автор замечает, что еще одним плюсом данной программы является то, что она может посчитать нам параметры снаббера, что, согласитесь, очень удобно.
Итак, приступаем к намотке трансформатора. Для того чтобы облегчить себе задачу и в процессе намотки не сбиться, все обмотки мотаем в одну сторону. Начало и конец изображены на печатной плате.
Первичную обмотку делим на 2 части, сначала половина первички, затем вторичка и еще слой первички. Таким образом уменьшается индуктивность рассеивания и увеличивается потокосцепление.
В последнюю очередь приступаем к намотке обмотки самозапита, так как она не столь важна. Пример намотки трансформатора сейчас перед вами:
И вот практически все готово, осталось только подобрать зазор или же купить трансформатор с готовым зазором, собственно так и сделал автор.
Если все же пришлось подбирать зазор, то под рукой должен быть хоть какой-нибудь прибор измеряющий индуктивность, например, мультиметр с функцией измерения индуктивности.
Если получившаяся индуктивность совпадает с расчетной (примерно), то наш трансформатор намотан правильно и можно устанавливать его на плату.
А в конце как всегда произведем парочку тестов.
Загорелся светодиод, блок питания запустился. Напряжение на выходе составляет чуть больше 12В, но с помощью подстроечного резистора можно выставить более точное значение.
С тестом нагрузки в виде лампы накаливания наш самодельный блок питания справляется на ура, а это значит, что у нас получилось отличное устройство.
На этом все. Благодарю за внимание. До новых встреч!
Видео:
Источник (Source) Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.
Понижающий преобразователь напряжения на UC3843
Здравствуйте, товарищи! В сети огромное количес тво схем всевозможных повышающих преобразователей. Есть, например, на NE555, на транзисторах, или на той же UC3843. А есть множество специализированных микросхем. Китайцы вон во всю делают их. Но я не нашел ни одной схемы понижающего преобразователя на доступны компонентах (чтобы не пришлось в китае заказывать). Плюс схема должна быть простой и надежной, ведь, как известно, чем меньше деталей, тем надежней схема (а самая надежная деталь – пермычка; вы часто видите горелые перемычки?). Вот я и решил как-то решить сложившуюся проблему, а решением поделиться с вами, уважаемые радиолюбители и радиопрофессионалы. Всё нижеизложенное является моим вариантом, не претендующим на идеал, так что прошу не кидаться палками. Поехали!
Итак для начала нужно нарисовать схему данного пепелаца. За основу взято типовое включение из даташита, и адаптировано под понижение напряжения. Вот, собственно, и она
Микросхема генерирует прямоуголные импульсы с частотой 117 кГц (частота задается резистором R1 и конденсатором C3). Импульсы поступают на затвор силового ключа в лице полевого транзистра IRF3205, открывая и закрывая его. Когда транзистор открыт, ток течет через него и дроссель L1 на нагрузку. В это время в дросселе запасается энергия. Когда транзистор закрывается, по правилу Ленца, в дросселе возникает ток, сонаправленный с током, создающим магнитный поток. Иными словами при закрытии транзистора, ток не исчезает сразу, а протекает через диоды Шоттки и дроссель, и идет на нагрузку. Поэтому диоды тоже нагреваются и должны иметь хорошее охлаждение. Это в кратце, а теперь, думаю стоит углубться в устройство самой микросхемы, чтобы было лучшее понимание процессов, происходящих в схеме и чтобы вы могли делать свои схемы на этом шим-контроллере.
Обратная связь осуществлена на подстроечном многооборотисто резисторе, с движка которого напряженние поступает на инвертирующий вход усилителя ошибки, на неинвертирующий вход которого приходит 2.5 вольта. Этим кстати и обусловлено минимальное выходное напряжение в 2,5В. Резистор R2 отвечает за ООС усилителя ошибки. Он нужен, чтобы ограничить коэффициент усиления. 3 вывод микросхемы отвечает за защиту по току. На него подается напряжение с токового шунта R9 через резистор R3. В случае если на резисторе большое падение напряжения, элемент со страшным названием PWM comparator останавливает импульсы. Конденсатор C2 дает небольшую задержку при срабатываниии защиты. Это нужно, чтобы в момент включении преобразователя при зарядке конденсатора C8 (а разряженный конденсатор заряжается большущим током) не срабатывала защита. Oscillator генерирует пилообразные импульсы, которые идут на триггер PWM latch и на элемент ИЛИ, управляющий транзисторами. Эти два элемента формируют прямоугольные импульсы, идущие на затвор силового транзистора. Цепочка из усилителей ошибки, в конечном итоге подключена к RS-триггеру на reset вход, что означает, что при наличии каких то проблем (сработали усилители ошибки, либо из-за превышения выходного напряжения, либо из-за болшого тока), открывается нижний транзистор и затвор силового полевика притягивается к земле, скважность импульсов уменьшается, как следствие уменьшается напряжение и ток на выходе. Элемент U.V.L.O смотрит на напряжение питания и не дает микросхеме стартануть, если оно слишком низкое. Транзисторы, управляющие затвором полевика, исходя из даташита могут тянуть ток до 1А, что очень неплохо, потому что можно не беспокоиться об их здоровье и не навешивать дополнителоьные эмиттерные повторители, как это бывает с теми же IR2153.
С теорией разобрались, переходим к практике. Сборку преобразователя надо начинать с разводки печатной платы. Скачиваете архив проекта, там она есть в формате lay6. Плату переносим на текстолит, сверлим отверстия, вытравливаем, лудим. Всё как обычно.
А пока плата готовится в растворе хлорного железа идём наматывать дроссель. Я это делал так. Я взял 5 жил 0.5мм, приблизительно померял длинну шины, которую нужно будет намотать, зачистил концы с одной стороны, спаял их вместе, далее взял шуруповёрт и с его помощью скрутил все провода в один жгут. Это, на мой взгляд, лучше, чем мотать одним толстым проводом, так как шина легче гнется (намотка ровнее и аккуратнее) и плюс скин эффект на таких частотах в тонкой проволоке проявляется гораздо меньше, чем в толстой. Мотал я на ферритовой гантельке, найденной в недрах кинескопного телевизора. Кстати в нём же можно найти много хорошей проволоки для намотки, осоенно в петле размагничивания. Наматывал я 13 витков. Но можно от 10 до 15, на работу схемы это не влияет. Вот что получилось.
Далее неплохо бы подумать об охлаждении нашего пепелаца. Так как пилить большой дорогущий радиатор мне было жалко, я нашел в сарае аллюминиевый уголок, отпилил его и он идеально полошел по высоте к преобразователю. А чтобы охлаждение было лучше, я насверлил в верхней части отверстий для циркуляции воздуха.
Силовые элементы обязательно нужно изолировать от радиатора слюдяной прокладкой, термопастой и пластмассовыми шайбами. Но шайб то нет! А выход есть! Берем болт, отрезаем маленький кусочек термоусадки и надеваем его на резьбу вплотную к шляпке. Затем берем термоусадку большего диаметра, такого, чтобы она вплотную надевалась на шляпку, надеваем и термоусаживаем. Ну и не забываем про термоклей, естественно. Получается примерно так.
Такие болты обеспечат надёжное соединение и хорошую изоляцию. По крайней мере ни разу не подводило.
В результате всех процедур получился вот такое вот устройство.
Номиналы всех компонентов, кроме частотозадающих, можно отклонять в пределах 25%. Силовой транзистор надо ставить с током истока от 20А и напряжением сток-исток от 50В. Диоды шоттки тоже на нпаряжение от 50В и током от 6А каждый, а то будут перегреваться. Электролиты берем на напряжение 35 – 50В, чтоб не бахнули. Токовый шунт в принципе можно ставить на мощность 1, 2 или 5 Вт. Я выбрал последний вариант, чтоб наверняка. Остальное как на схеме.
Перечень компонентов:
C1 = 10n
C2 = 10n
C3 = 1n
C4 = 100n
C5 = 470µ
C6 = 470µ
C7 = 100n
C8 = 1000µ
IC1 = UC3843
L1 = 100µH
R1 = 15k
R2 = 100k
R3 = 300
R4 = 4.7
R5 = 5.1
R6 = 1k
R7 = 5k
R8 = 1k
R9 = 0.1
T1 = IRF3205
VD1 = HBR16200
VD2 = HBR16200
Технические характеристики
U вх = 12-30В
U вых = 2.5 – 28В
I вых = 5А
КПД = 90%
f раб = 117кГц
t раб = 0 – 80*С
Преобразователь работает стабильно, ток отдает, грется вполне умеренно. Может составить конкуренцию китайским преобразователям, таким как xl4015 или xl4016. Главный его плюс в том, что сделан он из доступных компонентов и их намного меньше, чем в китайских вариантах. Это облегчает ремонт в случае чего, но скорее всего, если вы не будете замыкать что либо на плате, вам не удастся спалить его.
На этом всё. Если у вас остались какие-то вопросы, присылайте мне их на почту Этот адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript. или на форум vip-cxema.org.
Всем удачной сборки!
Печатные платы
Дмитрий4202
Таблица данныхUC3844B, UC3845B, UC2844B, UC2845B
http://onsemi.com
10
Блокировка пониженного напряжения
Два встроенных компенсатора блокировки пониженного напряжения гарантируют, что в состав встроенной интегральной схемы защиты от пониженного напряжения включены
Функциональные контроллеры блокировки включены 9000до включения выходного каскада. Клемма питания положительной мощности
(VCC) и опорный выход (Vref) являются
, каждый из которых контролируется отдельными компараторами.Каждый из них имеет встроенный гистерезис
для предотвращения нестабильного поведения выходного сигнала, так как их соответствующие пороги
пересекаются. Верхний и нижний пороги компаратора VCC
составляют 16 В / 10 В для UCX844B,
и 8,4 В / 7,6 В для UCX845B. Верхний и нижний пороги компаратора Vref
составляют 3,6 В / 3,4 В. Большой гистерезис
и низкий пусковой ток UCX844B делают
, что идеально подходит для автономных преобразователей, где
эффективный
начальная загрузка
запуска
методы
являются
требуется
(Рисунок 30).UCX845B предназначен для низковольтных преобразователей постоянного тока
и. Стабилизатор 36 В подключен как
шунтирующий регулятор от VCC к земле. Он предназначен для защиты
ИС от чрезмерного напряжения, которое может возникнуть при запуске системы
. Минимальное рабочее напряжение для
UCX844B составляет 11 В и 8,2 В для UCX845B.
ВыходЭти устройства содержат выходной каскад с одним тотемным полюсом, который
был специально разработан для прямого привода
МОП-транзисторов.Он способен выдерживать до
± 1,0 пикового тока возбуждения
и имеет типичное время нарастания и спада 50 нс при нагрузке 1,0 нФ.
Добавлена дополнительная внутренняя схема для поддержания выхода
в режиме понижения всякий раз, когда активна блокировка пониженного напряжения
. Эта характеристика устраняет необходимость во внешнем понижающем резисторе
.
Комплект для поверхностного монтажа SOIC-14 содержит отдельные
контакта для VC (выходной источник) и заземления.Правильная реализация
значительно снизит уровень
переключения переходного шума, налагаемого на схему управления.
Это становится особенно полезным при уменьшении уровня зажима Ipk (max)
. Отдельный вход питания VC обеспечивает конструктору
дополнительную гибкость в настройке напряжения привода
независимо от VCC. Зенеровский зажим обычно подключается
к этому входу при возбуждении мощных полевых МОП-транзисторов в системах
, где VCC больше 20 В.На рисунке 23 показаны правильные подключения питания
и заземления в чувствительном приложении
с питанием MOSFET.
эталон
Опорный диапазон 5,0 В урезан до
± 1,0%
допуск при TJ = 25 ° C на UC284XB и ± 2,0% на
UC384XB. Его основное назначение – подать зарядный ток
на тактовый конденсатор генератора. Эталон имеет
защиты от короткого замыкания и способен обеспечить
превышения 20 мА для питания дополнительной схемы
системы управления.
Особенности проектирования
Не пытайтесь сконструировать конвертер на платах прототипов
с проводной или вставной вставкой. Высокочастотные схемы схемы
необходимы для предотвращения джиттера ширины импульса
. Обычно это вызвано чрезмерным шумом
, наложенным на входы
датчика тока или обратной связи по напряжению. Помехоустойчивость может быть улучшена путем понижения импеданса цепи
дов этих точках. Схема печатной платы
должна содержать плоскость заземления с слаботочным сигналом и
сильноточные переключатели и выходные заземления, возвращающиеся по
отдельным путям обратно к конденсатору входного фильтра.Керамические байпасные конденсаторы
(0,1
мФ), подключенные напрямую к VCC, VC,
и Vref, могут потребоваться в зависимости от схемы подключения.
Это обеспечивает путь с низким импедансом для фильтрации шума высокой частоты
. Все сильноточные контуры должны быть как можно короче
с использованием тяжелых медных проводов, чтобы минимизировать излучение
EMI. Схема компенсации усилителя ошибки и
делителя выходного напряжения преобразователя должны быть расположены вблизи
от интегральной схемы и как можно дальше от выключателя питания и
других компонентов, создающих шум.
Смещение
+
Osc
R
R
R
2R
EA
5 (9)
1 (1)
2 (3)
40003 (
)8 (14)
RT
CT
Vref
Рисунок 18. Внешняя тактовая синхронизация
Рисунок 19. Внешняя клемма рабочего цикла и
Multi-Unit Synchronization
0,01
Диодный зажим требуется, если синхронизация амплитуда достаточно велика, чтобы нижняя сторона ТТ
ипереместилась ниже 300 мВ ниже уровня земли.
Внешний
синхронизации
Входной
47
+
R
R
R
2R
Уклон
Osc
Е.А.
5 (9)
1 (1)
2 (3)
4 (7)
8 (14)
до дополнительных
UCX84XBs
R
S
Q
.UC3845B – ШИМ в токовом режиме
Микросхемы управления семейства UC284xB предоставляют необходимые функции для реализации схем управления током в автономном режиме или постоянного тока с постоянной частотой с минимальным количеством внешних компонентов. Внутренне реализованные схемы включают в себя подстроечный генератор для точного управления DUTY CYCLE при блокировке напряжения с пусковым током менее 0,5 мА, прецизионный эталонный преобразователь для точности на входе усилителя с ошибкой, логику для обеспечения работы с защелкой, компаратор ШИМ, который также обеспечивает ток контроль предела и выходной каскад полюса тотема, предназначенный для подачи или поглощения высокого пикового тока.Выходной каскад, подходящий для управления N-канальными МОП-транзисторами, находится в низком состоянии в выключенном состоянии.
Различия между членами этого семейства – это пороги блокировки по минимальному напряжению и максимальные диапазоны рабочего цикла. UC2842B и UC2844B имеют пороги UVLO 16 В (вкл.) И 10 В (выкл.), Идеально подходящие для автономных приложений. Соответствующие пороги для UC2843B и UC2845B составляют 8,5 В и 7,9 В. UC2842B и UC2843B могут работать с рабочими циклами, приближающимися к 100%. UC2844B и UC2845B получают диапазон от нуля до <50% путем добавления внутреннего переключателя, который блокирует выходной сигнал при каждом втором тактовом цикле.
Ключевые особенности
- НИЗКИЙ ЗАПУСК И ЭКСПЛУАТАЦИОННЫЙ ТОК
- БЛОКИРОВКА С ОГРАНИЧЕНИЕМ С ГИСТЕРЕЗИСОМ
- ВНУТРЕННЯЯ ОТКРЫТИЯ С ССЫЛКОЙ ПОД УПОЛОВЛЕНИЕМ
0
- РЕГЛАМЕНТ РЕГЛАМЕНТ 9009 9000 РЕГЛАМЕНТ РЕКЛАММЕНТАРИЙ СКОРЕТ РЕГМЕНТАЦИЯ РЕГЛАМЕНТ 9009
- РЕГЛАМЕНТ РЕКЛАММЕНТАРИЙ
9009 РЕГЛАМЕНТ 9009 РЕКЛАММЕНТ ДЛЯ РЕКЛАМНЫХ ОБЪЕКТОВ 9003
- РЕГЛАМЕНТ ДЛЯ РЕКЛАМНЫХ ОБЪЕКТОВ
9009 РЕГ. ЧАСТОТА ГАРАНТИРУЕТСЯ ПРИ 250 КГц
- ЗАДВИЖКА ШИМ ДЛЯ ЦИКЛОВОГО ЦИКЛА
- ВЫСОКИЙ ТОКОВЫЙ ВЫХОД ТОП-ТОКА
- АВТОМАТИЧЕСКАЯ ПЕРЕДАЧА ПЕРЕДАЧИ ПЕРЕДАЧИ