Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

ЛУЧШИЙ САМОДЕЛЬНЫЙ БЛОК ПИТАНИЯ

Доброго времени суток форумчане и гости сайта Радиосхемы! Желая собрать приличный, но не слишком дорогой и крутой блок питания, так чтоб в нём всё было и ничего это по деньгам не стоило, перебрал десятки вариантов. В итоге выбрал лучшую, на мой взгляд, схему с регулировкой тока и напряжения, которая состоит всего из пяти транзисторов не считая пары десятков резисторов и конденсаторов. Тем не менее работает она надёжно и имеет высокую повторяемость. Эта схема уже рассматривалась на сайте, но с помощью коллег удалось несколько улучшить её.

ЛУЧШИЙ САМОДЕЛЬНЫЙ БЛОК ПИТАНИЯ - схема

Я собрал эту схему в первоначальном виде и столкнулся с одним неприятным моментом. При регулировке тока не могу выставить 0.1 А – минимум 1.5 А при R6 0.22 Ом. Когда увеличил сопротивление R6 до 1.2 Ом – ток при коротком замыкании получился минимум 0.5 А. Но теперь R6 стал быстро и сильно нагреваться. Тогда задействовал небольшую доработку и получил регулировку тока намного более шире. Примерно от 16 мА до максимума. Также можно сделать от 120 мА если конец резистора R8 перекинуть в базу Т4. Суть в том, что до падения напряжения резистора добавляется падения перехода Б-Э и это дополнительное напряжение позволяет раньше открыть Т5, и как следствие – раньше ограничить ток.

ЛУЧШИЙ САМОДЕЛЬНЫЙ БЛОК ПИТАНИЯ - схема 2

Рекомендуем такой вариант схемы с мультисима. Добавлен резистор (R9 100 Ом) в базу Т5 (Q5) для ограничения тока при крайнем левом положении резистора R8 (470 Ом). Регулирует от 10 мА до максимума.

ЛУЧШИЙ САМОДЕЛЬНЫЙ БЛОК ПИТАНИЯ своими руками

На базе этого предложения провёл успешные испытания и в итоге получил простой лабораторный БП. Выкладываю фото моего лабораторного блока питания с тремя выходами, где:

  • 1-выход 0-22в
  • 2-выход 0-22в
  • 3-выход +/- 16в

Также помимо платы регулировки выходного напряжения устройство было дополнено платой фильтра питания с блоком предохранителей. Что получилось в итоге – смотрите далее:

ЛУЧШИЙ САМОДЕЛЬНЫЙ БЛОК ПИТАНИЯ своими руками

ЛУЧШИЙ САМОДЕЛЬНЫЙ БЛОК ПИТАНИЯ 2

ЛУЧШИЙ САМОДЕЛЬНЫЙ БЛОК ПИТАНИЯ 3

Отдельная благодарность за улучшение схемы – Rentern. Сборка, корпус, испытания – aledim.

   Форум по БП

   Обсудить статью ЛУЧШИЙ САМОДЕЛЬНЫЙ БЛОК ПИТАНИЯ


Мощный блок питания 0-30 В своими руками : Labuda.blog

Занимаясь проектированием и конструированием различных электронных схем, не обойтись без надежного блока питания с регулируемым напряжением. Сегодня предлагаются различные конструкции, как сложные, так и простые. В рамках статьи рассмотрим, как сделать блок питания от 0 до 30 В на 10 ампер своими руками по пошаговым инструкциям со схемами и фото-примерами процесса сборки.

Мощный блок питания 0-30 В своими руками

Варианты БП для самостоятельного монтажа

Блок питание выбирается исходя из того, какие схемы предполагается им запитывать. Если это устройства с низким потреблением тока, то и БП не обязательно делать мощный: вполне можно обойтись источником с током на 5 ампер. Рассмотрим несколько вариантов схем, а также как собирать самодельные блоки питания.

Простой БП 0-30 В

Одна из несложных схем источника питания с регулировкой выходного напряжения приводится на схеме.

Мощный блок питания 0-30 В своими руками

Устройство выполнено всего на трех транзисторах и отличается высокой точностью напряжения на выходе благодаря использованию компенсационной стабилизации, а также применением недорогих элементов.

Изделие собирается на печатной плате и после монтажа практически сразу начинает функционировать. Главное, подобрать стабилитрон, который должен соответствовать максимальному напряжению на выходе.

Мощный блок питания 0-30 В своими руками

Для корпуса подойдет любой пластиковый или металлический короб, который окажется под рукой, например, от компьютерного БП.

Мощный блок питания 0-30 В своими руками

В такой корпус без проблем поместится трансформатор на 100 Вт и печатная плата. Имеющийся вентилятор можно оставить, подключив в разрыв его питания сопротивление для снижения оборотов.

Мощный блок питания 0-30 В своими руками

Для измерения потребляемого нагрузкой тока, задействуем стрелочный амперметр, устанавливая его на переднюю панель из пластиковой коробки.

Мощный блок питания 0-30 В своими руками

Вольтметр можно использовать цифровой.

Мощный блок питания 0-30 В своими руками

Завершив монтаж, проверяем выходное напряжение, изменяя положение переменного резистора.

Мощный блок питания 0-30 В своими руками

Минимальное значение должно быть около нуля, максимальное – 30 В. Подсоединив нагрузку около 0,5 А, проверяем просадку напряжения на выходе – она должна быть минимальной.

Мощный блок питания 0-30 В своими руками

Мощный импульсный БП

Рассмотрим схему блока питания с регулировкой по току и напряжению. Такие устройства иногда еще называют лабораторными, поскольку они подходят не только для запитки электронных схем, но и для заряди АКБ.

Мощный блок питания 0-30 В своими руками

Этот БП обеспечивает регулировку напряжения в диапазоне 0-30 В и тока 0-10 А. Источник можно разделить на три части:

  1. Внутренняя схема питания, состоящая из источника напряжения на 12 В и ток минимум 300 мА. Назначение этого источника – запитка схемы БП.

    Мощный блок питания 0-30 В своими руками

  2. Блок управления. Выполнен на микросхеме TL494 с простым драйвером. Резистор R4 позволяет регулировать максимальный порог напряжения, R2 – ток.

    Мощный блок питания 0-30 В своими руками

  3. Силовая часть. Большую часть схемы можно задействовать из старого компьютерного блока питания. Для намотки трансформатора управления подойдет ферритовое кольцо R16*10*4,5, на котором наматывают провод МГТФ 0.07 мм² в количестве 30 витков одновременно в 3 провода. L1 мотают на кольце от того же БП, удалив старую обмотку и намотав медный провод диаметром 2 мм и длиной 2 м. Для L2 подойдет дроссель на ферритовом стержне.

    Мощный блок питания 0-30 В своими руками

Для размещения элементом схемы изготавливают печатную плату.

Мощный блок питания 0-30 В своими руками

Если сборка выполнена правильно, блок питания начинает работать сразу. Чтобы была возможность управлять вентилятором по температуре, можно собрать простую схему на lm317.

Мощный блок питания 0-30 В своими руками

На Ардуино

Радиолюбители с опытом иногда собирают блоки питания под управлением Ардуино. Таким образом удается создать контролируемый источник питания с такими режимами: может «отдыхать», функционировать в режиме экономии либо работать на ток в 10 А и разное выходное напряжение, если это требуется.

Мощный блок питания 0-30 В своими руками

«Умный» блок питания представлен на схеме.

Мощный блок питания 0-30 В своими руками

Для запитки микропроцессора ATmega задействуется импульсный стабилизатор. Благодаря наличию постоянного и стабилизированного напряжения 5 В блок питания можно оснастить разъемом USB, что позволит подзаряжать какие-либо устройства.

Печатную плату можно сделать по образцу.

Мощный блок питания 0-30 В своими руками

Внешний вид устройства и внутреннее расположение компонентов представлено на фото.

Мощный блок питания 0-30 В своими руками

Мощный блок питания 0-30 В своими руками

Блок питания от 0 до 30 В на 10 ампер можно собрать своими руками по любой из представленных схем, а как именно сделать такое устройство, пошагово рассмотрено в инструкциях с фото-примерами. Для сборки простого источника питания потребуются начальные значения в области радиоэлектроники, умение обращаться с паяльником и минимальный перечень радиокомпонентов.

Автор: Vladimir

Блок питания своими руками.

Собираем регулируемый блок питания

Те новички, которые только начинают изучение электроники спешат соорудить нечто сверхъестественное, вроде микрожучков для прослушки, лазерный резак из DVD-привода и так далее… и тому подобное… А что насчёт того, чтобы собрать блок питания с регулируемым выходным напряжением? Такой блок питания – это крайне необходимая вещь в мастерской каждого любителя электроники.

С чего же начать сборку блока питания?

Во-первых, необходимо определиться с требуемыми характеристиками, которым будет удовлетворять будущий блок питания. Основные параметры блока питания – это максимальный ток (

Imax), который он может отдать нагрузке (питаемому устройству) и выходное напряжение (Uout), которое будет на выходе блока питания. Также стоит определиться с тем, какой блок питания нам нужен: регулируемый или нерегулируемый.

Регулируемый блок питания – это блок питания, выходное напряжение которого можно менять, например, в пределах от 3 до 12 вольт. Если нам надо 5 вольт – повернули ручку регулятора – получили 5 вольт на выходе, надо 3 вольта – опять повернул – получил на выходе 3 вольта.

Нерегулируемый блок питания – это блок питания с фиксированным выходным напряжением – его менять нельзя. Так, например, многим известный и широко распространённый блок питания «Электроника» Д2-27 является нерегулируемым и имеет на выходе 12 вольт напряжения. Также нерегулируемыми блоками питания являются всевозможные зарядники для сотовых телефонов, адаптеры модемов и роутеров. Все они, как правило, рассчитаны на какое-то одно выходное напряжение: 5, 9, 10 или 12 вольт.

Понятно, что для начинающего радиолюбителя наибольший интерес представляет именно регулируемый блок питания. Им можно запитать огромное количество как самодельных, так и промышленных устройств, рассчитанных на разное напряжение питания.

Далее нужно определиться со схемой блока питания. Схема должна быть простая, легка для повторения начинающими радиолюбителями. Тут лучше остановиться на схеме с обычным силовым трансформатором. Почему? Потому что найти подходящий трансформатор достаточно легко как на радиорынках, так и в старой бытовой электронике. Делать импульсный блок питания сложнее. Для импульсного блока питания необходимо изготавливать достаточно много моточных деталей, таких как высокочастотный трансформатор, дроссели фильтров и пр. Также импульсные блоки питания содержат больше радиоэлектронных компонентов, чем обычные блоки питания с силовым трансформатором.

Итак, предлагаемая к повторению схема регулируемого блока питания приведена на картинке (нажмите для увеличения).

Схема блока питания

Параметры блока питания:

  • Выходное напряжение (Uout) – от 3,3…9 В;

  • Максимальный ток нагрузки (Imax) – 0,5 A;

  • Максимальная амплитуда пульсаций выходного напряжения – 30 мВ.;

  • Защита от перегрузки по току;

  • Защита от появления на выходе повышенного напряжения;

  • Высокий КПД.

Возможна доработка блока питания с целью увеличения выходного напряжения.

Принципиальная схема блока питания состоит из трёх частей: трансформатора, выпрямителя и стабилизатора.

Трансформатор. Трансформатор Т1 понижает переменное сетевое напряжение (220-250 вольт), которое поступает на первичную обмотку трансформатора (I), до напряжения 12-20 вольт, которое снимается со вторичной обмотки трансформатора (II). Также, по «совместительству», трансформатор служит гальванической развязкой между электросетью и питаемым устройством. Это очень важная функция. Если вдруг трансформатор выйдет из строя по какой-либо причине (скачок напряжения и пр.), то напряжение сети не сможет попасть на вторичную обмотку и, следовательно, на питаемое устройство. Как известно, первичная и вторичная обмотки трансформатора надёжно изолированы друг от друга. Это обстоятельство снижает риск поражения электрическим током.

Выпрямитель. Со вторичной обмотки силового трансформатора Т1 пониженное переменное напряжение 12-20 вольт поступает на выпрямитель. Это уже классика. Выпрямитель состоит из диодного моста VD1, который выпрямляет переменное напряжение с вторичной обмотки трансформатора (II). Для сглаживания пульсаций напряжения после выпрямительного моста стоит электролитический конденсатор C3 ёмкостью 2200 микрофарад.

Регулируемый импульсный стабилизатор.

Схема импульсного стабилизатора собрана на достаточно известной и доступной микросхеме DC/DC преобразователя – MC34063.

Чтобы было понятно. Микросхема MC34063 является специализированным ШИМ-контроллером, разработанным для импульсных DC/DC преобразователей. Эта микросхема является ядром регулируемого импульсного стабилизатора, который используется в данном блоке питания.

Микросхема MC34063 снабжена узлом защиты от перегрузки и короткого замыкания в цепи нагрузки. Выходной транзистор, встроенный в микросхему, способен отдать в нагрузку до 1,5 ампер тока. На базе специализированной микросхемы MC34063 можно собрать как повышающие (Step-Up), так и понижающие (Step-Down) DC/DC преобразователи. Так же возможно построение регулируемых импульсных стабилизаторов.

Особенности импульсных стабилизаторов.

К слову сказать, импульсные стабилизаторы обладают более высоким КПД по сравнению со стабилизаторами на микросхемах серии КР142ЕН (КРЕНки), LM78xx, LM317 и др. И хотя блоки питания на базе этих микросхем очень просты для сборки, но они менее экономичны и требуют установки охлаждающего радиатора.

Микросхема MC34063 не нуждается в охлаждающем радиаторе. Стоит заметить, что данную микросхему можно довольно часто встретить в устройствах, которые работают автономно или же используют резервное питание. Использование импульсного стабилизатора увеличивает КПД устройства, а, следовательно, уменьшает энергопотребление от аккумулятора или батареи питания. За счёт этого увеличивается автономное время работы устройства от резервного источника питания.

Думаю, теперь понятно, чем хорош импульсный стабилизатор.

Детали и электронные компоненты.

Теперь немного о деталях, которые потребуются для сборки блока питания.

Трансформатор. В качестве трансформатора подойдёт любой сетевой понижающий трансформатор мощностью 8-10 ватт. Его первичная обмотка (I) должна быть рассчитана на переменное напряжение 220-250 вольт, а вторичная (II) на 12-20 вольт.

Где найти такой трансформатор?

Найти подходящий трансформатор можно в старой, неисправной и морально устаревшей аппаратуре: кассетных магнитофонах, стационарных CD-проигрывателях, игровых приставках и пр. Например, подойдут трансформаторы от старых лампово-полупроводниковых телевизоров советского производства ТВК-110ЛМ, ТВК-110Л2 и ТВК-70. Можно приобрести трансформатор серии ТП114, например ТП114-163М. При подборе силового трансформатора не лишним будет иметь представление о том, как узнать мощность трансформатора.

Силовые трансформаторы
Силовые трансформаторы ТС-10-3М1 и ТП114-163М

Также подойдёт трансформатор ТС-10-3М1 с выходным напряжением около 15 вольт. В магазинах радиодеталей и на радиорынках можно найти подходящий трансформатор, главное, чтобы он соответствовал указанным параметрам.

Микросхема MC34063. Микросхема MC34063 выпускается в корпусах DIP-8 (PDIP-8) для обычного монтажа в отверстия и в корпусе SO-8 (SOIC-8) для поверхностного монтажа. Естественно, в корпусе SOIC-8 микросхема обладает меньшими размерами, а расстояние между выводами составляет около 1,27 мм. Поэтому изготовить печатную плату для микросхемы в корпусе SOIC-8 сложнее, особенно тем, кто только недавно начал осваивать технологию изготовления печатных плат. Следовательно, лучше взять микросхему MC34063 в DIP-корпусе, которая больше по размерам, а расстояние между выводами у такого корпуса – 2,5 мм. Сделать печатную плату под корпус DIP-8 будет легче.

Диодный мост. Диодный мост для блока питания можно изготовить из 4 отдельных диодов 1N4001-1N4007. Также вместо диодов 1N4001-1N4007 можно применить диоды 1N5819. При этом экономичность блока питания повыситься, поскольку диоды серии 1N58xx – это диоды Шоттки и у них меньшее падение напряжения на p-n переходе, чем у обычных диодов серии 1N400x.

Диодный мост на плате блока питанияТакже в блок питания можно установить диодную сборку выпрямительного моста. Сборка занимает на печатной плате меньше места. Для установки в схему подойдут сборки на ток 1 ампер и выше. Для надёжности можно воткнуть в плату сборку и на 2 ампера – хуже не будет.

Где найти сборку диодного моста? В бэушных платах от любой электроники, которая питается от сети 220 вольт. Даже в компактных люминесцентных лампах – КЛЛ – есть диодный мост. Можно выковырять оттуда. Правда что попадётся, 4 отдельных диода или сборка диодного моста можно только гадать – тут как повезёт.

Если быть более конкретным, то подойдут диодные мосты (сборки): DB101-107, RB151-157, D3SBA10, 2W10M, DB207, RS207 и другие аналогичные и более мощные. Можно с лёгкостью применить диодный мост из неисправного компьютерного блока питания. Они мощные и здоровые, рассчитаны на довольно большой ток – хватить за глаза. Не забудьте проверить его на исправность!

Конденсаторы C1, C2, C4, C5 служат для подавления импульсных помех, которые поступают из электросети. Кроме этого они блокируют импульсные помехи, которые могут поступить в электросеть от самого импульсного стабилизатора.

Элементы защиты. В схеме применено два предохранителя. Предохранитель FU2 представляет собой обычный плавкий предохранитель на ток срабатывания 0,16 А (160 мА). Он включен последовательно с первичной обмоткой (I) трансформатора T1. FU1 – самовосстанавливающийся предохранитель. Когда ток через него становиться больше 0,5 ампер, то его сопротивление резко увеличивается, а ток в цепи выпрямителя и стабилизатора резко падает.

Самовосстанавливающийся предохранитель FRX050-90F
Самовосстанавливающийся предохранитель FRX050-90F

Так реализована защита в случае неисправности преобразователя. Стабилитрон VD3 также служит защитным и работает в паре с самовосстанавливающимся предохранителем FU1. Основная его цель – защитить нагрузку (питаемое устройство) от повреждения высоким напряжением. Напряжение стабилизации стабилитрона составляет 11 вольт. В случае неисправности преобразователя и появления на выходе напряжения более 11 вольт, ток через стабилитрон резко возрастает. Возросший ток в цепи приводит к срабатыванию предохранителя FU1, который ограничивает ток. Поэтому защитный стабилитрон VD3 необходимо установить в схему обязательно. В случае если не удастся найти подходящий самовосстанавливающийся предохранитель, то его можно заменить обычным плавким на ток срабатывания 0,5 ампер.

Список деталей, которые потребуются для сборки блока питания.

Название

Обозначение

Номинал/Параметры

Марка или тип элемента

МикросхемаDA1 MC34063
Диодный мостVDS1 (VD1-VD4)1-2 ампер, 600 вольтD3SBA10, RS207, DB107 и аналоги

Электролитические конденсаторы

C8, C9, C12330 мкФ * 16 вольтК50-35 или аналоги
C32200 мкФ * 35 вольт
КонденсаторыC1, C2, C4, C5, C10, C11, C130,22 мкФКМ-5, К10-17 и аналогичные
C60,1 мкФ
C7470 пФ
РезисторыR10,2 Ом (1 Вт)МЛТ, МОН, С1-4, С2-23, С1-14 и аналогичные
R3560 Ом (0,125 Вт)
R43,6 кОм (0,125 Вт)
R58,2 кОм (0,125 Вт)
Резистор переменныйR21,5 кОмСП3-9, СП4-1, ППБ-1А и аналогичные
Диод ШотткиVD2 1N5819
СтабилитронVD311 вольт1N5348
ДроссельL1, L2300 мкГн 
ДроссельL3 самодельный
Предохранитель плавкийFU20,16 ампер 
Самовосстанавливающийся предохранительFU10,5 ампер (на напряжение >30-40 вольт)MF-R050; LP60-050; FRX050-60F; FRX050-90F
Светодиод индикаторныйHL1любой 3 вольтовый 

Дроссели. Дроссели L1 и L2 можно изготовить самостоятельно. Для этого потребуется два кольцевых магнитопровода из феррита 2000HM типоразмера К17,5 х 8,2 х 5 мм. Типоразмер расшифровывается так: 17,5 мм. – внешний диаметр кольца; 8,2 мм. – внутренний диаметр; а 5 мм. – высота кольцевого магнитопровода. Для намотки дросселя понадобиться провод ПЭВ-2 сечением 0,56 мм. На каждое кольцо необходимо намотать 40 витков такого провода. Витки провода следует распределять по ферритовому кольцу равномерно. Перед намоткой, ферритовые кольца нужно обмотать лакотканью. Если лакоткани нет под рукой, то обмотать кольцо можно скотчем в три слоя. Стоит помнить, что ферритовые кольца могут быть уже покрашены – покрыты слоем краски. В таком случае обматывать кольца лакотканью не надо.

Кроме самодельных дросселей можно применить и готовые. В этом случае процесс сборки блока питания ускориться. Например, в качестве дросселей L1, L2 можно применить вот такие индуктивности для поверхностного монтажа (SMD – дроссель).

SMD-дроссель
SMD-дроссель

Как видим, на верхней части их корпуса указано значение индуктивности – 331, что расшифровывается как 330 микрогенри (330 мкГн). Также в качестве L1, L2 подойдут готовые дроссели с радиальными выводами для обычного монтажа в отверстия. Выглядят они вот так.

Дроссель с радиальными выводами
Дроссель с радиальными выводами

Величина индуктивности на них маркируется либо цветовым кодом, либо числовым. Для блока питания подойдут индуктивности с маркировкой 331 (т.е. 330 мкГн). С учётом допуска ±20%, который разрешён для элементов бытовой электроаппаратуры, также подойдут дроссели с индуктивностью 264 – 396 мкГн. Любой дроссель или катушка индуктивности рассчитана на определённый постоянный ток. Как правило, его максимальное значение (IDC max) указывается в даташите на сам дроссель. Но на самом корпусе это значение не указывается. В таком случае можно ориентировочно определить значение максимально допустимого тока через дроссель по сечению провода, которым он намотан. Как уже говорилось, для самостоятельного изготовления дросселей L1, L2 необходим провод сечением 0,56 мм.

Дроссель L3 самодельный. Для его изготовления необходим магнитопровод из феррита 400HH или 600HH диаметром 10 мм. Найти такой можно в старинных радиоприёмниках. Там он используется в качестве магнитной антенны. От магнитопровода нужно отломать кусок длиной 11 мм. Сделать это достаточно легко, феррит легко ломается. Можно просто плотно зажать необходимый отрезок пассатижами и отломить излишки магнитопровода. Также можно зажать магнитопровод в тисках, а потом резко ударить по магнитопроводу. Если с первого раза аккуратно разломить магнитопровод не получиться, то можно повторить операцию.

Затем получившийся кусок магнитопровода нужно обмотать слоем бумажного скотча или лакоткани. Далее наматываем на магнитопровод 6 витков сложенного вдвое провода ПЭВ-2 сечением 0,56 мм. Для того чтобы провод не размотался, обматываем его сверху скотчем. Те выводы проводов, с которых начиналась намотка дросселя, в последующем впаиваем в схему в том месте, где показаны точки на изображении L3. Эти точки указывают на начало намотки катушек проводом.

Дополнения.

В зависимости от нужд можно внести в конструкцию те или иные изменения.

Например, вместо стабилитрона VD3 типа 1N5348 (напряжение стабилизации – 11 вольт) в схему можно установить защитный диод – супрессор 1,5KE10CA.

Защитный диод

Супрессор – это мощный защитный диод, по своим функциям схож со стабилитроном, однако, основная его роль в электронных схемах – защитная. Назначение супрессора – это подавление высоковольтных импульсных помех. Супрессор обладает высоким быстродействием и способен гасить мощные импульсы.

В отличие от стабилитрона 1N5348, супрессор 1.5KE10CA обладает высокой скоростью срабатывания, что, несомненно, скажется на быстродействии защиты.

В технической литературе и в среде общения радиолюбителей супрессор могут называть по-разному: защитный диод, ограничительный стабилитрон, TVS-диод, ограничитель напряжения, ограничительный диод. Супрессоры можно частенько встретить в импульсных блоках питания – там они служат защитой от перенапряжения питаемой схемы при неисправностях импульсного блока питания.

О назначении и параметрах защитных диодов можно узнать из статьи про супрессор.

Супрессор 1,5KE10CA имеет букву С в названии и является двунаправленным – полярность установки его в схему не имеет значения.

Если есть необходимость в блоке питания с фиксированным выходным напряжением, то переменный резистор R2 не устанавливают, а заменяют его проволочной перемычкой. Нужное выходное напряжение подбирают с помощью постоянного резистора R3. Его сопротивление рассчитывают по формуле:

Uвых = 1,25 * (1+R4/R3)

После преобразований получается формула, более удобная для расчётов:

R3 = (1,25 * R4)/(Uвых – 1,25)

Если использовать данную формулу, то для Uвых = 12 вольт потребуется резистор R3 с сопротивлением около 0,42 кОм (420 Ом). При расчётах, значение R4 берётся в килоомах (3,6 кОм). Результат для резистора R3 также получаем в килоомах.

Для более точной установки выходного напряжения Uвых вместо R2 можно установить подстроечный резистор и выставить по вольтметру требуемое напряжение более точно.

При этом следует учесть, что стабилитрон или супрессор стоит устанавливать с напряжением стабилизации на 1…2 вольта больше, чем расчётное напряжение на выходе (Uвых) блока питания. Так, для блока питания с максимальным выходным напряжением равным, например, 5 вольт следует установить супрессор 1,5KE6V8CA или аналогичный ему.

Изготовление печатной платы.

Печатную плату для блока питания можно сделать разными способами. О двух методах изготовления печатных плат в домашних условиях уже рассказывалось на страницах сайта.

В общем, выбрать есть из чего.

Налаживание и проверка блока питания.

Чтобы проверить работоспособность блока питания его для начала нужно, конечно же, включить. Если искр, дыма и хлопков нет (такое вполне реально), то скорее БП работает. Первое время держитесь от него на некотором расстоянии. Если ошиблись при монтаже электролитических конденсаторов или поставили их на меньшее рабочее напряжение, то они могут «хлопнуть» – взорваться. Это сопровождается разбрызгиванием электролита во все стороны через защитный клапан на корпусе. Поэтому не торопитесь. Подробнее об электролитических конденсаторах можно почитать здесь. Не ленитесь это прочитать – пригодиться не раз.

Внимание! Во время работы силовой трансформатор находиться под высоким напряжением! Пальцы к нему не совать! Не забывайте о правилах техники безопасности. Если надо что-то изменить в схеме, то сначала полностью отключаем блок питания от электросети, а потом делаем. По-другому никак – будьте внимательны!

P.S.

Под занавес всего этого повествования хочу показать готовый блок питания, который был сделан своими руками.

Самодельный блок питания

Да, у него ещё нет корпуса, вольтметра и прочих «плюшек», которые облегчают работу с таким прибором. Но, несмотря на это, он работает и уже успел спалить офигенный трёхцветный мигающий светодиод из-за своего бестолкового хозяина, который любит безбашенно крутить регулятор напряжения Самодельный блок питания. Желаю и вам, начинающие радиолюбители, собрать что-нибудь похожее!

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

Простой регулируемый блок питания своими руками

Простой регулируемый блок питания
Когда собираешь какую либо электронную самоделку, то для ее проверки нужен блок питания. На рынке большое разнообразие готовых решений. Красиво оформлены, имеют много функций. Так же много kit-наборов для самостоятельного изготовления. Я уже не говорю про китайцев с их торговыми площадками. Покупал я на Алиэкспресс платы модулей понижающего преобразователя, вот на нем и решил сделать. Напряжение регулируется, тока хватает. Блок в основе имеет модуль из Китая, так же радиодетали которые были у меня в мастерской(давно лежали и ждали своего часа). Регулирует блок от 1.5 вольта и до максимума(все зависит от применяемого выпрямителя до платы регулировки.

Описание компонентов


Есть у меня трансформатор 17.9 Вольт и током 1.7Ампера. Он установлен в корпусе, значит подбирать последний не нужно. Обмотка довольно толстая, думаю и 2 Ампера потянет. Вместо трансформатора можно применить импульсный блок питания ноутбука, но тогда нужен еще и корпус для остальных компонентов.
Простой регулируемый блок питания
Выпрямителем переменного тока, будет диодный мост, можно собрать и из четырех диодов. Сглаживать пульсации будет электролитический конденсатор, у меня 2200 микрофарад и рабочим напряжением 35 вольт. Применил б/у, был в наличии.
Простой регулируемый блок питания
Регулировать выходное напряжение буду китайским модулем. Их на рынке большое разнообразие. Он обеспечивает хорошую стабилизацию и довольно надежен.
Простой регулируемый блок питания
Для комфортной регулировки выходного напряжения буду применять регулировочный резистор на 4.7 кОм. На плате установлен 10 кОм, но у меня какой был, такой и поставлю. Резистор еще начала 90-х. При таком номинале, регулировка обеспечивается плавно. Так же подобрал ручку на него, тоже лохматых годов.
Простой регулируемый блок питания
Индикатором выходного напряжения служит вольтметр из Китая. У него три провода. Два провода питание вольтметра(красный и черный), а третий(синий) измеряющий. Можно соединить красный и синий вместе. Тогда вольтметр будет питаться от выходного напряжения блока, то есть загораться индикация от 4 вольт. Согласитесь не удобно, поэтому я его буду питать отдельно, об этом далее.
Простой регулируемый блок питания
Для питания вольтметра я применю отечественную микросхему стабилизатора напряжения на 12 вольт. Тем самым обеспечу работу индикатора-вольтметра от минимума. Питается вольтметр через красный плюс и черный минус. Измерение осуществляется через черный минус и синий плюс выход блока.
Простой регулируемый блок питания
Клеммы у меня отечественные. Имеют отверстия для штекеров типа «банан» и отверстия под зажим проводов. Похожие можно купить в Китае. Так же подобрал провода с наконечниками.
Простой регулируемый блок питания

Сборка блока питания


Все собирается по простой зарисованной схеме.
Простой регулируемый блок питания
Диодный мост нужно припаять к трансформатору. Я его выгнул для комфортной установки. На выход моста припаял конденсатор. Получилось не выйти за габариты по высоте.
Простой регулируемый блок питания
Кренку питания вольтметра прикрутил к трансформатору. В принципе она не греется, и так она стоит на своем месте и никому не мешает.
Простой регулируемый блок питания
На плате регулятора выпаял резистор и припаял два проводка под выносной резистор. Так же припаял провода под выходные клеммы.
Простой регулируемый блок питания
На корпусе разметив отверстия под все, что будет на передней панели. Вырезал отверстия под вольтметр и одну клемму. Резистор и вторую клемму устанавливаю на стык коробки. При сборке коробки все зафиксируется сжатием обеих половинок.
Простой регулируемый блок питания
Клемма и вольтметр установлены.
Простой регулируемый блок питания
Так получилось установить вторую клемму и регулировочный резистор. Под ключ резистора сделал вырез.
Простой регулируемый блок питания
Вырезаем окно под выключатель. Корпус собираем и закрываем. Осталось только распаять выключатель и регулируемый блок питания готов к применению.
Простой регулируемый блок питания

Испытание блока


Блок питания регулирует напряжение от 1.23 Вольта.
Простой регулируемый блок питания
Максимальное напряжение 19 Вольт.
Простой регулируемый блок питания
Отображает вольтметр довольно точно. 20-30 милливольт не считаю таким уж сильным отклонением.
Простой регулируемый блок питания
Подключил моторчик. Напряжение не проседает.
Данный блок питания прост и не отображает ток нагрузки. Может это и минус, но данный корпус не вместил бы еще амперметра и регулировки тока не предусмотрено. Так что с поставленной задачей я справился.
Простой регулируемый блок питания
Такой вот регулируемый блок питания получился. Данная конструкция простая и доступна для повторения каждому. Детали не являются редкими.
Всем удачи в изготовлении!

Смотрите видео


Простой лабораторный блок питания

Приветствую, Самоделкины!
Лабораторный блок питания один из основных приборов радиолюбительской лаборатории. Сегодня мы соберём и проверим интересную схему. Приведенный в данной статье вариант довольно популярен на просторах всемирной паутины под названием простой и доступный блок питания.


Данной схеме отведена отдельная ветка форума, разработана она человеком под никнеймом «olegrmz».

Схема была неоднократно доработана и в настоящее время существует в общей сложности порядка десятка различных вариаций и модификаций. В качестве примера сделаем самую первую версию от автора. Дальнейшая инструкция взята с YouTube канала «AKA KASYAN».
Пару слов о схеме. По сути это полноценный лабораторный источник питания со стабилизацией как по напряжению, так и по току. Диапазон регулировки выходного напряжения от 0В до 25В, тока практически от 0 до 1,5-2А.

При необходимости выходное напряжение данного блока питания можно сделать до 50В:

А ток хоть 10А. Для этого необходимо добавить силовые транзисторы.

Схема работает полностью в линейном режиме, обеспечивает очень плавную регулировку как по напряжению, так и по току. Пульсации выходного напряжения практически отсутствуют.

Сердцем схемы является сдвоенный операционный усилитель.

В левой части схемы находится стабилизатор напряжения.

Причем, как вы могли заметить стабилизатора напряжения тут целых два.

Возникает вопрос: зачем это нужно и почему нельзя ограничиться одним? Второй стабилизатор на 12В, причем достаточно неплохой, но проблема заключается в том, что на его вход можно подавать напряжение не более 30-35В, а вот первый спокойно переваривает более высокие напряжения, но его выходное напряжение стабильностью не блещет. В данном случае один стабилизатор как бы покрывает недостатки другого. Во время работы они почти не нагреваются, так как питают только операционный усилитель, ток потребление которого невелик.

Операционный усилитель питается от второго стабилизатора напряжения 12В, в оригинальной схеме применена микросхема lm324 в составе которой 4 операционника.


Но так как в схеме у нас задействовано всего два канала, было решено заменить операционный усилитель микросхемой lm358, она содержит в себе как раз 2 независимых операционника.

Интересна данная схема еще тем, что обратная связь по току управляет выходным напряжением.
При работе источника питания как стабилизатор напряжения, первый операционный усилитель работает как компаратор и обеспечивает стабильное выходное напряжение, которое является опорным для второго усилителя, на котором построена регулировка напряжения.
Система ограничения тока классическая.

На неинвертирующий вход первого операционного усилителя через делитель подано опорное напряжение.
Далее при подключении нагрузки падение напряжения, которое будет образовываться на датчике тока, сравнивается с опорным. Исходя из разницы состояния выхода операционного усилителя плавно изменяется.

Принудительным изменением опорного напряжения с помощью переменного резистора, мы фактически заставляем операционный усилитель менять свое выходное напряжение, что в итоге приведет к плавному открыванию или закрыванию силового транзистора и изменению выходного тока источника питания.


Силовой транзистор. В конкретном примере автор использовал 2SD1047.

Он достаточно высоковольтный, ток коллектора составляет 12А.

А рассеиваемая коллектором мощность составляет порядка 100Вт.

Силовой транзистор может быть заменен на любой другой аналогичный с током коллектора от 7А, так же желательно применение транзисторов в корпусе ТО-247 или ТО-3.

Схема работает в линейном режиме, поэтому транзистор необходимо установить на массивный радиатор, возможно понадобится дополнительный обдув. Радиатор, который использует автор, довольно мал, здесь необходим радиатор гораздо больше.

Сигнал с операционного усилителя инвертируется маломощным транзистором и подается на предвыходной ключ, который собственно управляет выходным транзистором.


В схеме имеется 2 переменных резистора. Они необходимы для плавной и точной регулировки выходного напряжения.

Полный оборот резистора точной регулировки позволяет производить регулировку напряжения в пределах примерно от 3В. На изображении ниже указан резистор, который задает предел выходного напряжения.

На печатной плате присутствуют 3 перемычки. Можно было бы обойтись и без них, но при разводке платы автор торопился, в общем могло быть и лучше, но тем не менее плата полностью рабочая. Ее вы можете скачать вместе с общим архивом проекта по этой ссылке.

На плате предусмотрен выпрямитель с электролитом по питанию.

Все силовые компоненты, которые в процессе работы будут нагреваться, расположены рядом. Это необходимо для удобства установки на общий радиатор. Притом необходимо изолировать все компоненты от корпуса радиатора специальными теплопроводящими прокладками и пластиковыми втулками.

Входной выпрямитель с током от 4-5А, но желательно поставить 10-амперный, электролит на 50-63В с емкостью от 2200 мкФ.

Приступим к испытаниям. Начнем с простого – плавность регулировки минимальное выходное напряжение. На вход подается 30В, максимальное выходное напряжение составляет порядка 23В, минимальное напряжение по нулям, регулировка очень плавная, можно выставить хоть 10мВ.

Ток потребления стабилизатора без нагрузки составляет порядка 10-20мА, но это напрямую будет зависеть от выходного напряжения, так как на выходе имеется нагрузочный резистор.



К ограничению тока претензий нет, все работает как надо. Под нагрузкой ток с достаточной плавностью регулируется. Верхний предел составляет порядка 1,5А, нижний – 60мА, но поиграв с соответствующим делителем (см. изображение ниже) можно сделать и меньше.

Теперь минусы данного блока питания. Проблема состоит вот в чем, если попробовать блок на короткое замыкание при минимальном токе, то ограничение тока не происходит и, если трансформатор мощный, то с силовым транзистором можно попрощаться.

Но стоит отметить, что в последующих версиях схема была доработана и эта проблема полностью решена.

А вот при максимальном токе все работает четко, с коротким замыканием блок справляется отлично.

Следующий тест – проверка работы обратной связи, другими словами – стабилизация при резких скачках и перепадах сетевого напряжения. Перепады напряжения будем имитировать другим лабораторным источником питания, который, собственно, и будет питать наш стабилизатор. Выходное напряжение стабилизатора выставлено 12В.


Как видим, тут всё четко, заданное напряжение держится стабильно. Далее проверим стабилизацию по току, выставляем выходной ток в 1А и повторяем тот же тест.

Здесь тоже все хорошо, блок также ведет себя адекватно, выходной ток не меняется.

На этом все. Благодарю за внимание. До новых встреч!

Видеоролик автора:


Источник (Source) Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

БЛОК ПИТАНИЯ НАЧИНАЮЩЕГО РАДИОЛЮБИТЕЛЯ

   Если вы делаете первые шаги в таком увлекательном хобби, как радиолюбительство, то без регулируемого БП не обойтись никак. При сборке и отладке какого-либо устройства, собираемого радиолюбителем, всегда возникает вопрос от чего его запитать. Здесь выбор небольшой, либо блок питания, либо элементы питания (батарейки). В свое время для этих целей мной был приобретен китайский адаптер с переключателем напряжения на выходе от 1,5 до 12 вольт, но и он оказался не совсем удобен в радиолюбительской практике. Стал искать схему устройства, в котором можно было бы плавно регулировать напряжение на выходе, и на одном из сайтов нашел следующую схему БП:


Регулируемый блок питания – электрическая схема

   Номиналы деталей в схеме:

 Т1 Трансформатор с напряжением на вторичной обмотке 12-14 вольт.
 VD1 КЦ405Б
 С1 2000 мкФх25 вольт
 R1 470 Ом
 R2 10 кОм
 R3 1 кОм
 D1 Д814Д
 VT1 КТ315
 VT2 КТ817

   В своем блоке питания взял некоторые другие детали, а конкретно – заменил транзистор кт817 на кт805, просто потому что он у меня уже был и к тому же шел сразу с радиатором. У него можно было удобно подпаяться к выводам с тем, чтобы подключить его впоследствии к плате навесным монтажем. Если есть потребность собрать такой блок питания на большую мощность, нужно взять трансформатор также на 12-14 вольт и соответственно диодный мост тоже на большую мощность. В этом случае потребуется увеличить и площадь радиатора. Я взял, как и было указано на схеме, КЦ405Б. Если требуется, чтобы напряжение регулировалось не от 11,5 вольт до нуля, а выше, нужно подобрать стабилитрон на нужное напряжение и транзисторы с более высоким рабочим напряжением. Трансформатор, разумеется, также должен выдавать на вторичной обмотке более высокое напряжение хотя бы на 3-5 вольт. Подбирать детали придется экспериментально. Мною была разведена печатная плата для этого блока питания:

печатная плата для этого блока питания

   В этом устройстве регулировка напряжения на выходе осуществляется вращением ручки переменного резистора. Сам реостат не стал впаивать в плату, а прикрепил к верхней крышке устройства и подключил к плате навесным монтажем. На плате подключаемые выводы переменного резистора обозначены как R2.1, R2.2, R2.3. Если напряжение регулируется при вращении ручки не слева (минимум) направо (максимум), нужно поменять местами крайние выводы переменного резистора. На плате + и – обозначены плюс и минус выхода. Для точности измерения тестером при установке нужного напряжения нужно добавить резистор на 1 кОм между плюсом и минусом выхода. На схеме он не указан, на моей печатной плате предусмотрен. Для тех, у кого остались запасы старых транзисторов, могу предложить такой вариант регулируемого блока питания:


Регулируемый блок питания на старых деталях – схема

   В моем блоке питания установлены предохранитель, клавишный выключатель, и индикация включения на неоновой лампе, подключено все это навесным монтажем. Для подачи питания к собираемому устройству удобно пользоваться зажимами “крокодил” с изоляцией. Они подключаются к блоку питания с помощью лабораторных зажимов, в которые также сверху можно воткнуть щупы от тестера. Это удобно когда нужно кратковременно подать питание в схему, а “крокодилами” подключиться некуда, например, при ремонте, коснувшись контактов на плате кончиками щупов. Фото готового устройства на рисунке ниже:

БЛОК ПИТАНИЯ НАЧИНАЮЩЕГО РАДИОЛЮБИТЕЛЯ

   Этот блок питания работает у меня уже несколько лет, проблем в работе выявлено не было. Печатная плата для программы sprint layout прикреплена в файле. Автор статьи: AKV.

   Форум по РБП

   Обсудить статью БЛОК ПИТАНИЯ НАЧИНАЮЩЕГО РАДИОЛЮБИТЕЛЯ


Регулируемый блок питания своими руками

Мастер, описание устройства которого в первой части, задавшись целью сделать блок питания с регулировкой, не стал усложнять себе дело и просто использовал платы, которые лежали без дела. Второй вариант предполагает использование еще более распространенного материала – к обычному блоку была добавлена регулировка, пожалуй, это очень многообещающее по простоте решение при том, что нужные характеристики не будут потеряны и реализовать задумку можно своими руками даже не самому опытному радиолюбителю. В бонус еще два варианта совсем простых схем со всеми подробными объяснениями для начинающих. Итак, на ваш выбор 4 способа.

Блок питания с регулировкой из старой платы компьютера

Stalevik

Расскажем, как сделать регулируемый блок питания из ненужной платы компьютера. Мастер взял плату компьютера и выпилил блок, питающий оперативку.
Так он выглядит.

Определимся, какие детали нужно взять, какие нет, чтобы отрезать то, что нужно, чтобы на плате были все компоненты блока питания. Обычно импульсный блок для подачи тока на компьютер состоит из микросхемы, шим контроллера, ключевых транзисторов, выходного дросселя и выходного конденсатора, входного конденсатора. На плате еще и зачем-то присутствует входной дроссель. Его тоже оставил. Ключевые транзисторы – может быть два, три. Есть посадочное место по 3 транзистор, но в схеме не используется.

Сама микросхема шим контроллера может выглядеть так. Вот она под лупой.

Может выглядеть как квадратик с маленькими выводами со всех сторон. Это типичный шим контроллер на плате ноутбука.


Так выглядит блок питания импульсный на видеокарте.

Точно также выглядит блок питания для процессора. Видим шим контроллер и несколько каналов питания процессора. 3 транзистора в данном случае. Дроссель и конденсатор. Это один канал.
Три транзистора, дроссель, конденсатор – второй канал. 3 канал. И еще два канала для других целей.
Вы знаете как выглядит шим-контроллер, смотрите под лупой его маркировку, ищите в интернете datasheet, скачиваете pdf файл и смотрите схему, чтобы ничего не напутать.
На схеме видим шим-контроллер, но по краям обозначены, пронумерованы выводы.

Обозначаются транзисторы. Это дроссель. Это конденсатор выходной и конденсатор входной. Входное напряжение в диапазоне от 1,5 до 19 вольт, но напряжение питание шим-контроллера должно быть от 5 вольт до 12 вольт. То есть может получиться, что потребуется отдельный источник питания для питания шим-контроллера. Вся обвязка, резисторы и конденсаторы, не пугайтесь. Это не нужно знать. Всё есть на плате, вы не собираете шим-контроллер, а используете готовый. Нужно знать только 2 резистора – они задают выходное напряжение.

Резисторный делитель. Вся его суть в том, чтобы сигнал с выхода уменьшить примерно до 1 вольта и подать на вход шим-контроллера фидбэк – обратная связь. Если вкратце, то изменяя номинал резисторов, можем регулировать выходное напряжение. В показанном случае вместо резистора фидбэк мастер поставил подстроечный резистор на 10 килоом. Этого оказалось достаточным, чтобы регулировать выходное напряжение от 1 вольта до примерно 12 вольт. К сожалению, не на всех шим-контроллерах это возможно. Например, на шим контроллерах процессоров и видеокарт, чтобы была возможность настраивать напряжение, возможность разгона, выходное напряжение сдается программно по несколькоканальной шине. Менять выходное напряжение такого шим контроллера можно разве только перемычками.

Итак, зная как выглядит шим-контроллер, элементы, которые нужны, уже можем выпиливать блок питания. Но делать это нужно аккуратно, так как вокруг шим-контроллера есть дорожки, которые могут понадобиться. Например, можно видеть – дорожка идёт от базы транзистора к шим контроллеру. Её сложно было сохранить, пришлось аккуратно выпиливать плату.

Используя тестер в режиме прозвонки и ориентируясь на схему, припаял провода. Также пользуясь тестером, нашел 6 вывод шим-контроллера и от него прозвонил резисторы обратной связи. Резистор находился рфб, его выпаял и вместо него от выхода припаял подстроечный резистор на 10 килоом, чтобы регулировать выходное напряжение, также путем про звонки выяснил, что питание шим-контроллера напрямую связано со входной линией питания. Это значит, что не получиться подавать на вход больше 12 вольт, чтобы не сжечь шим-контроллер.

Посмотрим, как блок питания выглядит в работе

Припаял штекер для входного напряжения, индикатор напряжения и выходные провода. Подключаем внешнее питание 12 вольт. Загорается индикатор. Уже был настроен на напряжение 9,2 вольта. Попробуем регулировать блок питания отверткой.


Пришло время заценить, на что способен блок питания. Взял деревянный брусок и самодельный проволочный резистор из нихромовой проволоки. Его сопротивление низкое и вместе с щупами тестера составляет 1,7 Ом. Включаем мультиметр в режим амперметра, подключаем его последовательно к резистору. Смотрите, что происходит – резистор накаляется до красна, напряжение на выходе практически не меняется, а ток составляет около 4 ампер.


Раньше мастер уже делал похожие блоки питания. Один вырезан своими руками из платы ноутбука.

Это так называемое дежурное напряжение. Два источника на 3,3 вольта и 5 вольт. Сделал ему на 3d принтере корпус. Также можете посмотреть статью, где делал похожий регулируемый блок питания, тоже вырезал из платы ноутбука (https://electro-repair.livejournal.com/3645.html). Это тоже шим контроллер питания оперативной памяти.

Как сделать регулирующий БП из обычного, от принтера

Пойдет речь о блоке питания принтера canon, струйный. Они много у кого остаются без дела. Это по сути отдельное устройство, в принтере держится на защелке.
Его характеристики: 24 вольта, 0,7 ампера.

Понадобился блок питания для самодельной дрели. Он как раз подходит по мощности. Но есть один нюанс – если его так подключить, на выходе получим всего лишь 7 вольт. Тройной выход, разъёмчик и получим всего лишь 7 вольт. Как получить 24 вольта?
Как получить 24 вольта, не разбирая блок?
Ну самый простой – замкнуть плюс со средним выходом и получим 24 вольта.
Попробуем сделать. Подключаем блок питания в сеть 220. Берем прибор и пытаемся измерить. Подсоединим и видим на выходе 7 вольт.
У него центральный разъем не задействован. Если возьмем и подсоединим к двум одновременно, напряжение видим 24 вольта. Это самый простой способ сделать так, чтобы данный блок питания не разбирая, выдавал 24 вольта.

Необходим самодельный регулятор, чтобы в некоторых пределах можно было регулировать напряжение. От 10 вольт до максимума. Это сделать легко. Что для этого нужно? Для начала вскрыть сам блок питания. Он обычно проклеен. Как вскрыть его, чтобы не повредить корпус. Не надо ничего колупать, поддевать. Берем деревяшку помассивнее либо есть киянка резиновая. Кладем на твердую поверхность и по шву лупим. Клей отходит. Потом по всем сторонам простучали хорошенько. Чудесным образом клей отходит и все раскрывается. Внутри видим блок питания.


Достанем плату. Такие бп легко переделать на нужное напряжение и можно сделать также регулируемый. С обратной стороны, если перевернем, есть регулируемый стабилитрон tl431. С другой стороны увидим средний контакт идет на базу транзистора q51.

Если подаем напряжение, то данный транзистор открывается и на резистивном делителе появляется 2,5 вольта, которые нужно для работы стабилитрона. И на выходе появляется 24 вольта. Это самый простой вариант. Как его завести можно еще – это выбросить транзистор q51 и поставить перемычку вместо резистора r 57 и всё. Когда будем включать, всегда на выходе непрерывно 24 вольта.

Как сделать регулировку?

Можно изменить напряжение, сделать с него 12 вольт. Но в частности мастеру, это не нужно. Нужно сделать регулируемый. Как сделать? Данный транзистор выбрасываем и вместо резистор 57 на 38 килоома поставим регулируемый. Есть старый советский на 3,3 килоома. Можно поставить от 4,7 до 10, что есть. От данного резистора зависить только минимальное напряжение, до которого он сможет опускать его. 3,3 -сильно низко и не нужно. Двигатели планируется поставить на 24 вольта. И как раз от 10 вольт до 24 – нормально. Кому нужно другое напряжение, можно большого сопротивления подстроечный резистор.
Приступим, будем выпаивать. Берём паяльник, фен. Выпаял транзистор и резистор.

Подпаял переменный резистор и попробуем включить. Подал 220 вольт, видим 7 вольт на нашем приборе и начинаем вращать переменный резистор. Напряжение поднялось до 24 вольт и плавно-плавно вращаем, оно падает – 17-15-14 то есть снижается до 7 вольт. В частности установлено на 3,3 ком. И наша переделка оказалась вполне успешной. То есть для целей от 7 до 24 вольт вполне приемлемая регулировка напряжения.


Такой вариант получился. Поставил переменный резистор. Ручку и получился регулируемый блок питания – вполне удобный.

Видео канала “Технарь”.

Такие блоки питания найти в Китае просто. Наткнулся на интересный магазин, который продает б/у блоки питания от разных принтеров, ноутбуков и нетбуков. Они разбирают и продают сами платы, полностью исправные на разные напряжения и токи. Самый большой плюс – это то, что они разбирают фирменную аппаратуру и все блоки питания качественные, с хорошими деталями, во всех есть фильтры.
Фотографии – разные блоки питания, стоят копейки, практически халява.

Простой блок с регулировкой

Простой вариант самодельного устройства для питания приборов с регулировкой. Схема популярная, она распространена в Интернете и показала свою эффективность. Но есть и ограничения, которые показаны на ролике вместе со всеми инструкциями по изготовлению регулированного блока питания.


Самодельный регулированный блок на одном транзисторе

Какой можно сделать самому самый простой регулированный блок питания? Это получится сделать на микросхеме lm317. Она уже сама с собой представляет почти блок питания. На ней можно изготовить как регулируемый по напряжению блок питания, так и потоку. В этом видео уроке показано устройство с регулировкой напряжения. Мастер нашёл несложную схему. Входное напряжение максимальное 40 вольт. Выходное от 1,2 до 37 вольта. Максимальный выходной ток 1,5 ампер.

Скачать схему с платой.

Без теплоотвода, без радиатора максимальная мощность может быть всего 1 ватт. А с радиатором 10 ватт. Список радиодеталей.

Приступаем к сборке

Подключим на выход устройства электронную нагрузку. Посмотрим, насколько хорошо держит ток. Выставляем на минимум. 7,7 вольта, 30 миллиампер.

Всё регулируется. Выставим 3 вольта и добавим ток. На блоке питания выставим ограничения только побольше. Переводим тумблер в верхнее положение. Сейчас 0,5 ампера. Микросхема начал разогреваться. Без теплоотвода делать нечего. Нашёл какую-то пластину, ненадолго, но хватит. Попробуем еще раз. Есть просадка. Но блок работает. Регулировка напряжения идёт. Можем вставить этой схеме зачёт.

Видео Radioblogful. Видеоблог паяльщика.

Регулируемый источник напряжения от 5 до 12 вольт

Продолжая наше руководство по преобразованию блока питания ATX в настольный источник питания, одним очень хорошим дополнением к этому является стабилизатор положительного напряжения LM317T.

LM317T – это регулируемый 3-контактный положительный стабилизатор напряжения, способный подавать различные выходы постоянного напряжения, отличные от источника постоянного напряжения +5 или +12 В, или в качестве переменного выходного напряжения от нескольких вольт до некоторого максимального значения, все с токи около 1,5 ампер.

С помощью небольшого количества дополнительных схем, добавленных к выходу блока питания, мы можем получить настольный источник питания, способный работать в диапазоне фиксированных или переменных напряжений, как положительных, так и отрицательных по своей природе. На самом деле это гораздо проще, чем вы думаете, поскольку трансформатор, выпрямление и сглаживание уже были выполнены БП заранее, и все, что нам нужно сделать, это подключить нашу дополнительную цепь к выходу желтого провода +12 Вольт. Но, во-первых, давайте рассмотрим фиксированное выходное напряжение.

Фиксированный источник питания 9В

В стандартном корпусе TO-220 имеется большое разнообразие трехполюсных регуляторов напряжения, при этом наиболее популярным фиксированным стабилизатором напряжения являются положительные регуляторы серии 78xx, которые варьируются от очень распространенного фиксированного стабилизатора напряжения 7805 +5 В до 7824, + 24V фиксированный регулятор напряжения. Существует также серия фиксированных отрицательных регуляторов напряжения серии 79хх, которые создают дополнительное отрицательное напряжение от -5 до -24 вольт, но в этом уроке мы будем использовать только положительные типы 78хх .

Фиксированный 3-контактный регулятор полезен в приложениях, где не требуется регулируемый выход, что делает выходной источник питания простым, но очень гибким, поскольку выходное напряжение зависит только от выбранного регулятора. Их называют 3-контактными регуляторами напряжения, потому что они имеют только три клеммы для подключения, и это соответственно Вход , Общий и Выход .

Входным напряжением для регулятора будет желтый провод + 12 В от блока питания (или отдельного источника питания трансформатора), который подключается между входной и общей клеммами. Стабилизированный +9 вольт берется через выход и общий, как показано.

Схема регулятора напряжения

Итак, предположим, что мы хотим получить выходное напряжение +9 В от нашего настольного блока питания, тогда все, что нам нужно сделать, это подключить регулятор напряжения + 9 В к желтому проводу + 12 В. Поскольку блок питания уже выполнил выпрямление и сглаживание до выхода + 12 В, требуются только дополнительные компоненты: конденсатор на входе и другой на выходе.

Эти дополнительные конденсаторы способствуют стабильности регулятора и могут находиться в диапазоне от 100 до 330 нФ. Дополнительный выходной конденсатор емкостью 100 мкФ помогает сгладить характерные пульсации, обеспечивая хороший переходный процесс. Этот конденсатор большой величины, размещенный на выходе цепи источника питания, обычно называют «сглаживающим конденсатором».

Эти регуляторы серии 78xx выдают максимальный выходной ток около 1,5 А при фиксированных стабилизированных напряжениях 5, 6, 8, 9, 12, 15, 18 и 24 В соответственно. Но что, если мы хотим, чтобы выходное напряжение составляло + 9 В, но имел только регулятор 7805, + 5 В ?. Выход + 5 В 7805 относится к клемме «земля, Gnd» или «0 В».

Если бы мы увеличили это напряжение на контакте 2 с 4 В до 4 В, выход также увеличился бы еще на 4 В при условии достаточного входного напряжения. Затем, поместив небольшой 4-вольтный (ближайшее предпочтительное значение 4,3 В) диод Зенера между контактом 2 регулятора и массой, мы можем заставить 7805 5 В стабилизатор генерировать выходное напряжение +9 В, как показано на рисунке.

Увеличение выходного напряжения

Итак, как это работает. Стабилитрон 4,3 В требует обратного тока смещения около 5 мА для поддержания выхода с регулятором, потребляющим около 0,5 мА. Этот полный ток 5,5 мА подается через резистор «R1» с выходного контакта 3.

Таким образом, значение резистора, необходимого для регулятора 7805, будет R = 5 В / 5,5 мА = 910 Ом . Диод обратной связи D1, подключенный через входные и выходные клеммы, предназначен для защиты и предотвращает обратное смещение регулятора, когда входное напряжение питания выключено, а выходное питание остается включенным или активным в течение короткого периода времени из-за большой индуктивности. нагрузка, такая как соленоид или двигатель.

Затем мы можем использовать 3-контактные регуляторы напряжения и подходящий стабилитрон для получения различных фиксированных выходных напряжений от нашего предыдущего источника питания в диапазоне от + 5В до + 12В. Но мы можем улучшить эту конструкцию, заменив стабилизатор постоянного напряжения на регулятор переменного напряжения, такой как LM317T .

Источник переменного напряжения

LM317T – это полностью регулируемый 3-контактный положительный стабилизатор напряжения, способный подавать на 1,5 А выходное напряжение в диапазоне от 1,25 В до чуть более 30 Вольт. Используя соотношение двух сопротивлений, одно из которых является фиксированным значением, а другое – переменным (или оба фиксированным), мы можем установить выходное напряжение на желаемом уровне с соответствующим входным напряжением в диапазоне от 3 до 40 вольт.

Регулятор переменного напряжения LM317T также имеет встроенные функции ограничения тока и термического отключения, что делает его устойчивым к коротким замыканиям и идеально подходит для любого низковольтного или домашнего настольного источника питания.

Выходное напряжение LM317T определяется соотношением двух резисторов обратной связи R1 и R2, которые образуют сеть делителей потенциала на выходной клемме, как показано ниже.

LM317T Регулятор переменного напряжения

Напряжение на резисторе R1 обратной связи является постоянным опорным напряжением 1,25 В, V ref, создаваемым между клеммой «выход» и «регулировка». Ток регулировочной клеммы является постоянным током 100 мкА. Так как опорное напряжение через резистор R1 является постоянным, постоянным током я буду течь через другой резистор R2 , в результате чего выходного напряжения:

Затем любой ток, протекающий через резистор R1, также протекает через резистор R2 (игнорируя очень маленький ток на регулировочной клемме), причем сумма падений напряжения на R1 и R2 равна выходному напряжению Vout . Очевидно, что входное напряжение Vin должно быть как минимум на 2,5 В больше, чем требуемое выходное напряжение для питания регулятора.

Кроме того, LM317T имеет очень хорошее регулирование нагрузки, при условии, что минимальный ток нагрузки превышает 10 мА. Таким образом , чтобы поддерживать постоянное опорное напряжение 1.25V, минимальное значение резистора обратной связи R1 должно быть 1.25V / 10mA = 120 Ом , и это значение может варьироваться от 120 Ом до 1000 Ом с типичными значениями R 1 является приблизительно 220Ω, чтобы 240Ω лет для хорошей стабильности.

Если мы знаем значение требуемого выходного напряжения, Vout и резистор обратной связи R1 , скажем, 240 Ом, то мы можем рассчитать значение резистора R2 из вышеприведенного уравнения. Например, наше исходное выходное напряжение 9 В даст резистивное значение для R2 :

R1. ((Vout / 1,25) -1) = 240. ((9 / 1,25) -1) = 1 488 Ом

или 1500 Ом (1 кОм) до ближайшего предпочтительного значения.

Конечно, на практике резисторы R1 и R2 обычно заменяют потенциометром, чтобы генерировать источник переменного напряжения, или несколькими переключенными предварительно установленными сопротивлениями, если требуется несколько фиксированных выходных напряжений.

Но для того, чтобы уменьшить математические вычисления, необходимые для расчета значения резистора R2, каждый раз, когда нам нужно определенное напряжение, мы можем использовать стандартные таблицы сопротивлений, как показано ниже, которые дают нам выходное напряжение регуляторов для различных соотношений резисторов R1 и R2 с использованием значений сопротивления E24 ,

Соотношение сопротивлений R1 к R2

Значение R2Значение резистора R1
150180220240270330370390470
1002,081,941,821,771,711,631,591,571,52
1202,252,081,931,881,811,701,661,631,57
1502,502,292,102,031,941,821,761,731,65
1802,752,502,272,192,081,931,861,831,73
2203,082,782,502,402,272,081,991,961,84
2403,252,922,612,502,362,162,062,021,89
2703,503,132,782,662,502,272,162,121,97
3304,003,543,132,972,782,502,362,312,13
3704,333,823,353,182,962,652,502,442,23
3904,503,963,473,283,062,732,572,502,29
4705,174,513,923,703,433,032,842,762,50
5605,925,144,434,173,843,373,143,042,74
6806,925,975,114,794,403,833,553,433,06
8208,086,945,915,525,054,364,023,883,43
10009,588,196,936,465,885,044,634,463,91
120011,259,588,077,506,815,805,305,104,44
150013,7511,679,779,068,196,936,326,065,24

Изменяя резистор R2 для потенциометра на 2 кОм, мы можем контролировать диапазон выходного напряжения нашего настольного источника питания от примерно 1,25 вольт до максимального выходного напряжения 10,75 (12-1,25) вольт. Тогда наша окончательная измененная схема переменного электропитания показана ниже.

Цепь питания переменного напряжения

Мы можем немного улучшить нашу базовую схему регулятора напряжения, подключив амперметр и вольтметр к выходным клеммам. Эти приборы будут визуально отображать ток и напряжение на выходе регулятора переменного напряжения. При желании в конструкцию также может быть включен быстродействующий предохранитель для обеспечения дополнительной защиты от короткого замыкания, как показано на рисунке.

Недостатки LM317T

Одним из основных недостатков использования LM317T в качестве части цепи питания переменного напряжения для регулирования напряжения является то, что до 2,5 вольт падает или теряется в виде тепла через регулятор. Так, например, если требуемое выходное напряжение должно быть +9 вольт, то входное напряжение должно быть целых 12 вольт или более, если выходное напряжение должно оставаться стабильным в условиях максимальной нагрузки. Это падение напряжения на регуляторе называется «выпадением». Также из-за этого падения напряжения требуется некоторая форма радиатора, чтобы поддерживать регулятор в холодном состоянии.

К счастью, доступны регуляторы переменного напряжения с низким падением напряжения, такие как регулятор низкого напряжения с низким падением напряжения National Semiconductor «LM2941T», который имеет низкое напряжение отключения всего 0,9 В при максимальной нагрузке. Это низкое падение напряжения обходится дорого, так как это устройство способно выдавать только 1,0 ампер с выходом переменного напряжения от 5 до 20 вольт. Однако мы можем использовать это устройство для получения выходного напряжения около 11,1 В, чуть ниже входного напряжения.

Таким образом, чтобы подвести итог, наш настольный источник питания, который мы сделали из старого блока питания ПК в предыдущем учебном пособии, может быть преобразован для обеспечения источника переменного напряжения с помощью LM317T для регулирования напряжения. Подключив вход этого устройства через желтый выходной провод + 12 В блока питания, мы можем иметь фиксированное напряжение + 5 В, + 12 В и переменное выходное напряжение в диапазоне от 2 до 10 вольт при максимальном выходном токе 1,5 А.

Схема источника питания макетной платы DIY на печатной плате

Блок питания – это очень часто используемый инструмент большинством инженеров на этапе разработки. Лично я часто использую его, когда экспериментирую с моими схемами на макетной плате или для включения простого модуля. Большинство цифровых схем или встроенных схем имеют стандартное рабочее напряжение 5 В или 3,3 В, поэтому я решил создать источник питания , который может подавать 5 В / 3,3 В на шины питания макета и плотно прилегает к макету. ,

Полный блок питания будет разработан на печатной плате с использованием EasyEDA. В схеме используется 7805 для подачи 5 В и LM317 для подачи 3,3 В с максимальным номинальным током 1,5 А, что достаточно для источника питания цифровых ИС и схем микроконтроллера. Итак, приступим …

Необходимые материалы

  • LM317 Регулятор переменного напряжения
  • 7805
  • Домкрат для цилиндров постоянного тока
  • Резистор 330 Ом и 560 Ом
  • 0.Конденсатор 1 и 1 мкФ
  • Светодиодный светильник
  • Мужской Bergstik
  • Печатная плата (от JLCPCB)

Принципиальная схема

Полная принципиальная схема для этого проекта источника питания макетной платы показана ниже. Схема была создана с помощью Easy EDA.

Circuit Diagram for DIY Breadboard Power Supply Circuit on PCB

Для упрощения понимания схема разделена на четыре части. Верхняя левая и нижняя левая часть – это регулятор 5 В и 3.Регулятор 3В соответственно. Верхняя правая и нижняя правая часть – это контакты разъема , с которых мы можем получить либо 5 В, либо 3,3 В, в зависимости от необходимости, путем изменения положения перемычки .

Для людей, которые плохо знакомы с этикетками, это просто виртуальный провод, который используется в принципиальных схемах для создания более аккуратных и простых для понимания. В приведенной выше схеме названия + 12V, + 5V и + 3.3V являются метками. Любые два места, где написана метка +12 В, фактически соединены проводом, то же самое применимо и к двум другим меткам + 5В и +3.3В тоже.

+ 5V Цепь регулятора

Positive 5V Regulator circuit using IC7805

Мы использовали стабилизатор положительного напряжения 7805 для получения регулируемого источника питания + 5В. На вход микросхемы подается адаптер 12 В, подключенный к цилиндрическому разъему постоянного тока. Для устранения пульсаций мы использовали конденсатор емкостью 1 мкФ на входе и конденсатор емкостью 0,1 мкФ на выходе. Регулируемое выходное напряжение +5 В можно получить для контакта 3. При правильном радиаторе мы можем получить около 1.5A образуют микросхему 7805 IC.

Цепь регулятора + 3,3 В

Positive 3.3V Regulator Circuit using LM317

Аналогично для получения + 3,3 В мы использовали регулятор напряжения LM317 . LM317 – это регулируемый стабилизатор напряжения, который принимает входное напряжение 12 В и обеспечивает фиксированное выходное напряжение 3,3 В. Выходное напряжение V out зависит от номиналов внешнего резистора R 1 и R 2 согласно следующему уравнению:

Output Voltage Equation for 3.3V regulator Circuit

Рекомендуемое значение для R1 – 240 Ом, но может быть и другое значение от 100 Ом до 1000 Ом.Мы можем использовать этот онлайн-калькулятор для вычисления значений R1 и R2, я установил, что значение R1 равно 330R, а значение выходного напряжения – 3,3 В. После нажатия на кнопку «Рассчитать» я получил следующий результат.

Voltage Divider Calculator

Поскольку у нас нет резистора на 541,19 Ом, мы использовали ближайшее возможное значение, которое составляет 560 Ом. Мы также добавили светодиод через еще один резистор 560 Ом, который будет работать как индикатор питания.

Размещение штифтов жатки

В двух вышеупомянутых блоках цепей мы отрегулировали + 5В и +3.3 В образуют источник 12 В. Теперь мы должны предоставить пользователю возможность выбирать между напряжением + 5 В или напряжением + 3,3 В в соответствии с требованиями пользователя. Для этого мы использовали штыри с перемычками. Пользователь может переключать перемычку для выбора значений напряжения + 5В и + 3,3В . Мы также разместили еще один контактный штырь в нижней части печатной платы, чтобы мы могли установить его прямо на макетной плате.

Дизайн печатной платы с использованием EasyEDA

Для разработки источника питания Breadboard мы выбрали онлайн-инструмент EDA под названием EasyEDA.Раньше я много раз использовал EasyEDA и нашел его очень удобным в использовании, поскольку он имеет хороший набор следов и имеет открытый исходный код. После проектирования печатной платы мы можем заказать образцы печатной платы в их недорогих услугах по изготовлению печатных плат. Они также предлагают услуги по подбору компонентов, когда у них есть большой запас электронных компонентов, и пользователи могут заказывать необходимые компоненты вместе с заказом печатной платы.

При разработке схем и печатных плат вы также можете сделать общедоступными свои схемы и конструкции печатных плат, чтобы другие пользователи могли их копировать или редактировать и извлекать выгоду из вашей работы. Мы также сделали общедоступными макеты всех схем и печатных плат для этой схемы, проверьте ссылку ниже:

https: // easyeda.com / circuitdigest / макетная-схема-источника питания

Вы можете просмотреть любой слой (верхний, нижний, верхний, нижний, шелковый и т. Д.) Печатной платы, выбрав слой в окне «Слои».

Вы также можете просмотреть печатную плату, как она будет выглядеть после изготовления, используя кнопку Photo View в EasyEDA:

After Fabrication Photoview of PCB in EasyEDA

Расчет и заказ образцов онлайн

После завершения проектирования этого блока питания Bread Board PCB, вы можете заказать печатную плату через JLCPCB.ком. Чтобы заказать печатную плату в JLCPCB, вам потребуется файл Gerber. Чтобы загрузить файлы Gerber вашей печатной платы, просто нажмите кнопку Generate Fabrication File на странице редактора EasyEDA, затем загрузите файл Gerber оттуда или вы можете щелкнуть Order в JLCPCB , как показано на рисунке ниже. Это перенаправит вас на JLCPCB.com, где вы можете выбрать количество плат, которые вы хотите заказать, сколько слоев меди вам нужно, толщину печатной платы, вес меди и даже цвет печатной платы, как показано на снимке ниже:

Calculating Cost for the PCB

После того, как вы выбрали все параметры, нажмите «Сохранить в корзину», после чего вы попадете на страницу, где вы можете загрузить свой файл Gerber, который мы загрузили с EasyEDA.Загрузите свой файл Gerber и нажмите «Сохранить в корзину». И, наконец, нажмите «Оформить заказ», чтобы завершить заказ, и через несколько дней вы получите свои печатные платы. Они производят печатную плату по очень низкой цене – 2 доллара. Их время сборки также очень мало, что составляет 48 часов с доставкой DHL 3-5 дней, в основном вы получите свои печатные платы в течение недели с момента заказа.

Ordering Breadboard Power Supply Circuit PCB

После заказа печатной платы вы можете проверить Production Progress вашей печатной платы с указанием даты и времени.Вы можете проверить это, перейдя на страницу учетной записи и щелкнув ссылку «Production Progress» под печатной платой, как показано на изображении ниже.

Product detail progress of EasyEDA PCB

Production Progress of EasyEDA PCB

После нескольких дней заказа печатных плат я получил образцы печатных плат в красивой упаковке, как показано на рисунках ниже.

Bubbled packing for PCBs from JLCPCB

И после того, как достал эти детали, я припаял все необходимые компоненты поверх печатной платы.

DIY Breadboard Power Supply Circuit on PCB Front and Back View

Circuit Hardware of DIY Breadboard Power Supply Circuit on PCB

Работа цепи питания макета

После сборки вашей печатной платы убедитесь, что нет холодной пайки, и удалите весь лишний флюс с вашей платы.Закрепите плату на макетной плате, и она должна плотно прилегать между обеими шинами питания макетной платы. Теперь используйте адаптер 12 В для питания вашей платы через разъем постоянного тока, и вы должны увидеть, как загорится индикатор питания (здесь белый цвет). Затем вы можете установить перемычку в положение 5 В или 3,3 В, используя информацию шелкографии. Убедитесь, что вы используете перемычки, иначе на выходной стороне не будет напряжения.

DIY Breadboard Power Supply Circuit in action

На изображении выше я установил перемычку для обеспечения + 5В и измерил то же самое с помощью мультиметра, который также показывает 4.97V, что достаточно близко. Точно так же можно проверить и 3,3 В. Полная работа и тестирование проекта также показаны на видео ниже .

Теперь вы можете использовать эту плату для питания всей вашей будущей электроники на макетной плате с напряжением 5 В или 3,3 В. Надеюсь, вы поняли проект и получили удовольствие от его создания, если у вас возникли проблемы с его запуском, вы можете опубликовать его в разделе комментариев или использовать наши форумы для получения дополнительных технических вопросов.

,

Как сделать Power Bank для вашего мобильного телефона

Характеристики цифровых продуктов стремительно растут, что приводит к частому использованию смартфонов в нескольких приложениях. Таким образом, время автономной работы сокращается. Будет интересно построить Power Bank для мобильного телефона в качестве запасного источника зарядки на случай чрезвычайных ситуаций, который также может быть портативным. В этой статье мы узнаем о , как сделать блок питания с очень простой схемой блока питания .

Важным фактором, который следует учитывать при работе с литиевыми батареями , являются схемы защиты и качество батарей. Но, когда дело доходит до 18650 ячеек, фактор риска меньше по сравнению с пакетными батареями. Хорошую защиту предлагают несколько готовых модулей, доступных на рынке.

Необходимые компоненты:

  1. 18650 Литиевый элемент
  2. TP4056 Модуль со схемой защиты аккумулятора
  3. Повышающий преобразователь 3В в 5В с регулированием тока 1А
  4. Ползунковый переключатель

components for mobile phone power bank circuit

Схема блока питания

:

Ниже приведена принципиальная схема для нашего блока питания .Как мы видим, довольно просто сделать внешний аккумулятор с литий-ионным аккумулятором, модулем TP4056 и повышающим преобразователем.

mobile phone power bank circuit diagram

18650 Литиевый элемент:

Термин «ячейка 18650» связан с размером ячейки, она имеет цилиндрическую форму с диаметром 18 мм и высотой 65 мм. Также эти ячейки доступны с различной емкостью в зависимости от области применения. Это перезаряжаемые элементы с выходом 3,7 В.

Для зарядки одиночного ионно-литиевого элемента требуется двухступенчатый,

  1. Постоянный ток (CC)
  2. Постоянное напряжение (CV)

Во время CC зарядное устройство должно подавать постоянный ток с повышением напряжения до предела напряжения.Затем необходимо приложить напряжение, равное максимальному пределу ячейки, в течение которого ток будет постепенно снижаться до нижнего порогового значения тока (т.е. 3% от постоянного тока). Все эти операции выполняются модулем TP4056 , который является высоконадежным и доступным по цене.

TP4056A Модуль:

Это недорогое решение для зарядки одного литиево-ионного аккумулятора любого типа. Мобильные аккумуляторы, элементы 18650 NMC, литиевые аккумуляторные батареи и т. Д. Разъем micro B и легко регулируемый регулятор выходного тока 1 А делают его надежным выбором для зарядки любых аккумуляторов малой емкости.Его можно подключить к любому мобильному зарядному устройству с настенной розеткой или к любому кабелю USB – Micro B. Он состоит из интегрированной архитектуры переключателя нагрузки PMOS, что снижает общее количество дополнительных компонентов.

TP4056A Module

Модуль также имеет две индикации, красный светодиодный индикатор (L1) для индикации текущего состояния зарядки. Синий светодиодный индикатор (L2) указывает на завершение зарядки. Этот модуль может работать при высокой температуре окружающей среды, поскольку тепловая обратная связь может регулировать ток заряда.Напряжение заряда составляет 4,2 В, а ток можно регулировать путем замены резистора в модуле. Но при покупке ток по умолчанию будет 1А.

Схема защиты включает,

1. DW01x – ИС защиты одноэлементной литий-ионной батареи с функцией управления двойным полевым МОП-транзистором. Ниже приведена схема тестирования приложений, представленная в таблице данных.

TP4056A Module

2. FS8205A – Двойной N-канальный полевой МОП-транзистор с общим стоком.Также низкое сопротивление стока к истоку. Затвор полевого МОП-транзистора управляется микросхемой DW01A.

Таким образом, DW01A обеспечивает контроль перезаряда, контроль над разрядом, контроль перегрузки по току, управляя полевым МОП-транзистором через цепь.

Повышающий преобразователь Micro USB 3 В в 5 В:

Литиевая батарея

обеспечивает здесь только 3,7 В, но нам нужно 5 В для зарядки мобильного телефона, поэтому мы использовали здесь модуль повышающего преобразователя 3 в 5 В . Этот модуль повышающего преобразователя имеет высокий КПД до 92% и встроенную защиту от перегрузки по току.Используемая внутри топология – неизолированный повышающий преобразователь, который работает с частотой переключения 1 МГц. Общая выходная мощность, которую может потреблять этот модуль, составляет 5 Вт. Выходное напряжение можно отрегулировать до 12 В, заменив резистор в модуле, но максимальный ток будет 400 мА. Но по умолчанию этот модуль доступен с номиналом 5В, 1А. При этом рейтинге пульсации на выходе составляют 20 мВ пик-пик. Модуль также имеет универсальную розетку USB типа A. В качестве интерфейса можно использовать любой кабель питания USB.Рабочая температура модуля от -40 ° C до + 85 ° C. Он также имеет светодиодную индикацию, указывающую на наличие питания от батарейного источника питания. Красный светодиодный индикатор указывает на наличие питания на клеммах.

5V Boost converter module

Ранее мы использовали тот же модуль в схеме зарядного устройства для мобильных телефонов на солнечных батареях.

Модули были соединены и прикреплены к пластиковой пластине с помощью горячего клея.

mobile phone power bank circuit with lithium cell cell phone power bank circuit

Зарядка Power Bank:

Красный светодиодный индикатор указывает на зарядку аккумулятора в цепи блока питания ,

red led charging signal for charging mobile phone power bank

Синий светодиодный индикатор указывает на то, что зарядка завершена,

blue led charging complete signal for mobile phone power bank

Зарядка мобильного телефона с помощью Power Bank:

1.Подключите кабель USB к micro B к выходу повышающего преобразователя.

charging mobile phone using power bank circuit

2. Включите ползунковый переключатель.

charging mobile phone using power bank circuit

3. Аккумулятор мобильного телефона начинает заряжаться от павербанка

Power Bank Mobile Phone Charger Circuit

Вот как вы можете легко сделать схему Power Bank для зарядки ваших смартфонов .

,

Как сделать простой электромагнитный пистолет с катушкой

Пистолет с катушкой , как думают многие (включая меня), не просто забавная игрушка с трубкой и несколькими катушками вокруг нее, которая может стрелять снарядами на определенное расстояние. Ученые из Sandia National Laboratories считают, что койлган может быть сконструирован для ускорения частиц с большей скоростью, которая достаточно высока, чтобы избежать земного притяжения. Да, вы не ослышались! Возможно, в будущем катушечная пушка может быть использована для запуска спутников. Возможно, есть люди, которые пробовали это, а также сейчас над этим работают.Помимо космических приложений, военные, похоже, также заинтересованы в другой форме Coil Gun, называемой Rail Gun или Railway Gun , которая может стрелять снарядами.

Все это заинтересовало меня в создании собственной версии Coil Gun . Кроме того, очень приятно играть и смотреть, как металлические снаряды вылетают из катушки одним нажатием кнопки. Прежде чем мы начнем, я хотел бы прояснить, что этот проект предназначен исключительно для образовательных целей, поэтому, если вы хотите создать это оружие, чтобы сбежать от этого хулигана в своей старшей школе, вам, вероятно, следует посетить психолога.В проекте также используются летающие металлические детали и высокое напряжение, поэтому будьте осторожны при работе с ними. При этом давайте начнем.

Необходимые материалы

  • Медный провод (эмалированный)
  • ИК-датчик (Тип измерения скорости)
  • МОП-транзистор
  • IRFZ44N
  • BC557 Транзистор PNP
  • Резистор 10 кОм и 1 кОм
  • 7805 Регулятор
  • 0,1 мкФ
  • Кнопка
  • Макет
  • Источник питания (ИИ)
  • Батарея 9 В

Как работает спиральный пистолет?

Основной принцип спиральной пушки заключается в том, что проводник с током индуцирует вокруг себя магнитное поле, что было заявлено Фарадеем.Для повышения напряженности этого магнитного поля проводник с током намотан в виде катушки. Теперь, , когда эта катушка запитана, она создает вокруг нее магнитное поле, достаточно сильное, чтобы притягивать в нее металлические (или другие ферромагнитные) части, также известные как снаряды.

Такое расположение будет притягивать снаряд в себя только с одного конца, а когда он достигнет другого конца, он снова будет притягиваться внутри катушки, и, таким образом, снаряд останется внутри самой катушки после нескольких колебаний.Это потому, что во время процесса снаряд намагничивается и действует как магнит, поэтому, пока присутствует магнитное поле, снаряд (магнит) будет стремиться оставаться только внутри катушки. Но катушечный пистолет должен запускать снаряд из него, поэтому мы должны использовать датчик, чтобы проверить, достиг ли снаряд другого конца катушки, и когда катушка должна быть отключена, таким образом снаряд будет двигаться с той же скоростью и вырваться из катушки.

Это может показаться простым, но сложность может быть увеличена, если использовать более одной катушки.Используя несколько катушек, можно увеличить скорость снаряда, пока он проходит через катушку. Еще одна сложная задача – обеспечить достаточный ток для катушки. Катушка может потреблять от 5 до 10 А при 24 В, в зависимости от количества витков и толщины катушки. Поэтому в качестве источника такого высокого тока большинство людей используют большой конденсатор, чтобы справиться с ним. Но в нашем руководстве для простоты мы построим одноступенчатый ружейный пистолет и включим в него блок RPS.

Принципиальная схема

Полная принципиальная схема одноступенчатого змеевика показана на изображении ниже.

Circuit Diagram for Electromagnetic Coil Gun

Как видите, схема довольно простая. Основным компонентом схемы является сама катушка; мы увидим, как мы его построим, в следующем заголовке. Катушка питается от источника питания 24 В от нашего RPS , питание контролируется (переключается) через MSFET N-Channel IRF544Z . Вывод затвора транзистора опускается через резистор 10 кОм (R1), а диод D1 – это , используемый для обхода обратного тока при разряде катушки.

МОП-транзистор является N-канальным и, следовательно, остается выключенным до тех пор, пока пороговое напряжение затвора в этом случае 5 В не будет подано на вывод затвора. Это делается с помощью кнопки через транзистор PNP (BC557) , когда кнопка нажата, 5 В подается на вывод затвора полевого МОП-транзистора, и катушка включается. Это привлечет снаряд и протолкнет его через другой конец. Как только снаряд достигнет другого конца, ИК-датчик обнаружит его и отправит сигнал 5 В на базовый вывод транзистора PNP через токоограничивающий резистор 1 кОм.Это откроет транзистор, и, следовательно, 5V на MOSFET будет отключен, а катушка также будет отключена. Следовательно, снаряд вылетит из катушки и будет выпущен наружу. Напряжение 5 В для питания ИК-датчика и запуска транзистора и полевого МОП-транзистора регулируется микросхемой стабилизатора напряжения 7805 от батареи 9 В.

Намотка катушки

Как было сказано ранее, самым важным элементом в этой схеме является катушка. Перед тем, как начать наматывать катушку, вы должны решить , каким будет размер вашего снаряда , в моем случае я использую биты отвертки в качестве снарядов.Но вы можете выбрать все, что имеет ферромагнитные свойства. После выбора снаряда мы должны выбрать структуру, похожую на дырочную трубу, которой как раз достаточно, чтобы скользить снаряд без особого трения. Я пробовал использовать и пустую ручку для заправки , и у меня она отлично сработала. Вы можете выбрать один в зависимости от размера вашего снаряда. Тогда длина цилиндрического основания может достигать 5 см. Наконец, также приобретите эмалированного медного провода средней толщины, у меня 0.Толщина 8 мм .

Собрав все необходимые материалы, включите свой любимый плейлист и начните наматывать катушку на цилиндрическое основание. Убедитесь, что обмотки не нахлестываются одна на другую и не откручиваются. После очистки первого слоя обмотки вы можете использовать изоляционную ленту (изоленту), чтобы закрепить ее на месте, а затем аналогичным образом начать наклеивать второй слой поверх него. Обратите внимание, что вы всегда должны наматывать катушку только в одном направлении, если вы начали слева направо после достижения конца для первого слоя, начните снова слева для наматывания второго слоя.Вы можете повторять этот шаг, пока не получите 5-7 слоев. Я сделал около 6 слоев, каждый из которых имел примерно 60 витков. Расположение моей катушки выглядит примерно так, как показано на рисунке ниже. Я использовал два 3D-печатных диска (белого цвета), чтобы закрепить катушку на месте, они не являются обязательными.

Winding the Coil for Coil Gun

Работать с катушками всегда сложно, и для правильной работы нужно правильно наматывать их, как в Tesla Coil Project, многие люди не могут получить правильный выход из-за неправильной намотки катушки.

Работа пистолета Mini Coil Gun

После сборки катушки вы можете приступить к подключению ее к остальной части схемы катушки . Имейте в виду, что катушка может потреблять до 5 А, и, следовательно, часть катушки не может быть построена на макете, потому что макеты обычно рассчитаны только на 500 мА. Таким образом, вы можете либо построить полную схему на перфорированной плате, припаяв компоненты, либо следовать грубому способу пайки линий высокой мощности непосредственно через макетную плату, как я сделал, как показано на рисунке ниже.

DIY Coil Gun in action

Как вы можете видеть, катушка получает питание от регулируемого источника питания (зажимы типа «крокодил») через МОП-транзистор, контакты которого напрямую припаяны к проводам. Для вывода затвора МОП-транзистора требуется только 5 В, и, следовательно, он помещается на макетную плату, где строится оставшаяся схема, включая регулятор напряжения, транзистор и переключатель. Макетная плата питается от 9-вольтовой батареи через зажимы батареи.

Чтобы проверить катушку проекта , просто поместите металлическую деталь внутрь катушки и нажмите кнопку на макетной плате.Это должно запустить снаряд за пределы катушки. Также убедитесь, что не нажимаете кнопку непрерывно, так как это снова активирует катушку после запуска снаряда и может навсегда повредить катушку. Полную работу проекта можно найти в видео .

Надеюсь, вы создали проект и он заработал. Если у вас есть какие-либо вопросы, вы можете оставить их в разделе комментариев ниже или разместить их на нашем форуме по другим техническим вопросам.

,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *