Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments
Невероятно эффектная цветомузыка на Arduino и светодиодах / Хабр
С наступающим! Приближается Новый год, а значит, пора срочно создавать настроение! Ну и как всегда в это время года рождаются десятки электронных схем различных цветомузыкальных установок.

Чего только самобытные мастера не придумают. От трехцветных моргалок до лазерных многолучевых установок с управлением по MIDI интерфейсу.

Как большой поклонник, так называемых адресных светодиодов, хочу показать вам очень простую и удивительную цветомузыку. Я вообще такой ни разу не видел. Пока не собрал за один вечер. Итак, визуализатор звука!

Содержание

Инструкция


Схема очень простая!

Вам понадобятся Arduino Nano, или Uno. Или какая там у вас есть? Два потенциометра, пять резисторов, пару конденсаторов и линейка (лента) из 180 светодиодов WS2812b. Всё! Светодиодов в линейке может быть 60, 120 или 180.

В визуализаторе с помощью алгоритма быстрого преобразования Фурье выделяются 8 частот (порог чувствительности на каждую частоту свой, снижается от 1 к 8), преобразуются в цвет и выводятся на линейку светодиодов по одному из восьми алгоритмов. Скетч писал Майкл Крампас, парни из Чип и Дипа добавили функционал, а библиотека для светодиодов и быстрого преобразования Фурье (FFT) написана в Адафрут для проекта Piccolo. Библиотека FFT для 128 точек, адаптированная для AVR микроконтроллеров написана на ассемблере.

Сам скетч и библиотеку FFT нужно скачать здесь и здесь.

Не теряйте время на разбор алгоритмов, просто соберите, залейте скетч и наслаждайтесь шоу.
Это всего лишь развлечение!

В момент первого включения нужно сделать пару настроек:

Яркость: удерживайте кнопку color при включении питания. На первых 8 светодиодах будет отображаться радуга светодиодов. С помощью ручки param измените яркость. По завершении нажмите кнопку color еще раз, и ваша конфигурация будет сохранена в памяти.

Длина светодиодной полосы:

удерживайте кнопку pattern при включении питания. Отобразится один, два или три красных светодиода. Используйте ручку param, чтобы выбрать длину светодиодной полосы в зависимости от количества красных светодиодов:

1=60 светодиодов
2=120 светодиодов
3=180 светодиодов

По завершении нажмите кнопку pattern еще раз, и ваша конфигурация будет сохранена в памяти.

Алгоритмы


Танцы плюс: пики звуковых сигналов испускаются из центра полосы и исчезают по мере приближения к концам. Скорость пика пропорциональна величине звукового сигнала этого пика.

Танцы минус: то же, что и Dance Party, но пики сигналов испускаются с одного конца.
Импульс: пики сигналов отображаются как яркие импульсы, которые поступают из центра полосы. Ширина импульса зависит от уровня сигнала.

Световая полоса: в пиках освещается вся полоса.

Цветные полоски: пики сигналов отображаются как цветные полосы, которые исчезают.

Цветные полоски 2: подобно цветные полоски, но каждая полоска сжимается и исчезает.

Вспышки: пики сигналов отображаются в виде светодиодной вспышки в случайном месте. Начальный цвет белый, а затем исчезает через другой цвет.

Светлячки: пики сигналов отображаются как одиночные светодиоды в случайном месте, и они перемещаются влево или вправо и исчезают. Их скорость зависит от величины сигнала.

Цветовые схемы


Случайная двухцветная схема: выбраны два случайных цвета и только они используются для отображения пиков сигнала. Со временем будут выбраны новые цвета. Используйте param, чтобы настроить скорость изменения цветовой схемы. Если ручка потенциометра «параметры» в верхнем положении, цвета будут меняться часто и каждый пик сигнала будет иметь новый цвет. Рекомендую установить ручку в средину.

Радуга: все пики сигналов отображаются как один и тот же цвет (с небольшим количеством случайных вариаций) и этот цвет меняется как радуга с течением времени. Скорость изменения цвета устанавливается потенциометром param.

Цветные частоты: в этом режиме каждый пик сигнала окрашивается в зависимости от частотной полосы где он находится. Самая низкая полоса красного цвета, и дальше вверх по спектру. Есть 8 полос частот: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый, белый. Этот цветовой режим наиболее интересен, когда частотная характеристика настроена на все полосы частот.

Диапазон частот: вы можете управлять тем диапазоном частот, на который откликается цветомузыка. Чтобы установить диапазон нажмите и удерживайте обе кнопки. Используйте ручку param, чтобы выбрать, сколько из восьми частотных диапазонов будет показываться. Если вы хотите выделить бас и ритм музыки, установите частотную характеристику только на самые низкие 2 или 3 полосы. Если вы хотите показать все частоты в музыке (например, вокал и более высокие инструменты), выберите все полосы частот.

Это видеоинструкция по настройке и она же демонстрация визуализатора в работе. Там в конце две музыкальные композиции с разными алгоритмами.

Ещё одна композиция

Парни! И дамы конечно. Я очень хочу, чтобы вы успели сделать эту простую конструкцию к новогоднему празднику. Не пожалеете! Гости будут в шоке!

С наступающим 2018 годом!

Добавлено 15.12.2017 Эпилог или разбор полётов
1. Как изменить подсветку в паузах?
2. Можно ли изменить динамику?
3. Как подключить ленту с количеством светодиодов отличным от 60/120/180?
Плюс опубликована обновленная схема. Не волнуйтесь, добавили всего один резистор.
Осталось две недели до Нового года. Успеете собрать?

Добавлено 09.06.2018
Сделал настройки подсветки:
скетч и схема.
Пользуемся так.
Фоновая подсветка:
В паузах включается фоновая подсветка т.е вся линейка будет светится выбранным вами цветом и с выбранной яркостью.
Цвет: установите ручку потенциометра PARAM2 в среднее положение и один раз нажмите кнопку Background. Светодиодная линейка зажжется. Вращайте потенциометр PARAM2, цвет линейки будет меняться от красного до фиолетового. Выберите цвет и ещё раз нажмите кнопку Background.
Яркость: установите потенциометр в минимальное положение (ручку до упора по часовой) и нажмите кнопку Background. Линейка погаснет. Медленно вращая ручку потенциометра PARAM2 выберите требуемую яркость подсветки и ещё раз нажмите кнопку Background. Значения яркости запишется в память микроконтроллера.

ЦВЕТОМУЗЫКА

   В этой статье мы поговорим о цветомузыке. Наверное, у каждого начинающего радиолюбителя, да и не только, в своё время возникало желание собрать цветомузыку. Что это такое, думаю, известно всем — говоря проще, это создание визуальных эффектов, изменяющихся в такт музыке.

Цветомузыка спектр

Цветомузыка спектр

   Та часть цветомузыки, которая излучает свет,  может быть выполнена на мощных лампах, например  в концертной установке, в случае если цветомузыка нужна для домашних дискотек, её можно сделать на обычных лампах накаливания 220 вольт, а если цветомузыка планируется, например, как моддинг компьютера, для повседневного использования, её можно выполнить на светодиодах.

Светодиодная лента для ЦМУ

Светодиодная лента для ЦМУ

   В последнее время, с появлением в продаже светодиодных лент, находят все большее применение цветомузыкальные приставки с использованием таких led-лент. В любом случае, для сборки Цвето Музыкальных Установок (ЦМУ сокращенно) требуется источник сигнала, в роли его может выступать микрофон с собранными несколькими каскадами усилителя.

Схема микрофона с усилителем

Схема микрофона с усилителем

   Также сигнал может браться с линейного выхода устройства, звуковой карты компьютера, с выхода mp3 плейера и т. д., в этом случае также потребуется усилитель, например два каскада на транзисторах, я для этой цели воспользовался транзисторами КТ3102. Схема предусилителя изображена на следующем рисунке:

Предусилитель - схема

Предусилитель — схема

   Далее приведена схема одноканальной цветомузыки с фильтром, работающей совместно с предусилителем (выше). В этой схеме светодиод мигает под басы (низкие частоты). Для согласования уровня сигнала в схеме цветомузыки предусмотрен переменный резистор R6.

Цветомузыка светодиод мигает под басы

Цветомузыка светодиод мигает под басы

   Существуют и более простые схемы цветомузыки, которые может собрать любой начинающий, на 1 транзисторе, к тому же не нуждающиеся в предусилителе, одна из таких схем изображена на картинке ниже:

Цветомузыка на 1 транзисторе

Цветомузыка на транзисторе

   Схема распайки выводов штекера Джек 3.5 приведена на следующем рисунке:

Штекер Джек 3.5

Штекер Джек 3.5

   Если по каким-то причинам нет возможности собрать предварительный усилитель на транзисторах, можно заменить его трансформатором, включённым как повышающий. Такой трансформатор должен выдавать напряжения на обмотках 220/5 Вольт. Обмотка трансформатора с меньшим количеством витков подключается в источнике звука, например, магнитоле, параллельно динамику, усилитель при этом должен выдавать мощность как минимум 3-5 ватт. Обмотка с большим количеством витков подключается ко входу цветомузыки.

Подключение трансформатора на звук

Подключение трансформатора на звук

   Разумеется, цветомузыка бывает не только одноканальной, она может быть 3, 5 и более многоканальной, когда каждый светодиод или лампа накаливания мигает при воспроизведении частот своего диапазона. При этом диапазон частот задается путем использования фильтров. В следующей схеме, трехканальной цветомузыки (которую сам недавно собирал) в качестве фильтров стоят конденсаторы:

Трехканальная цветомузыка

Трехканальная цветомузыка

   Если мы захотели использовать в последней схеме  не отдельные светодиоды, а светодиодную ленту, то в схеме следует убрать токоограничивающие резисторы R1, R2, R3. Если лента или светодиод используется RGB, то должна быть выполнена с общим анодом. Если планируется подключать светодиодные ленты большой длины, то для управления лентой следует применить мощные транзисторы, установленные на радиаторы.

Транзисторы на радиаторе

Транзисторы на радиаторе

   Так как светодиодные ленты рассчитаны на питание 12 Вольт, соответственно и питание в схеме нам следует поднять до 12 Вольт, причем питание должно быть стабилизированным.

Тиристоры в цветомузыке

   До сих пор в статье рассказывалось только про цветомузыкальные устройства на светодиодах. Если возникнет надобность собрать ЦМУ на лампах накаливания, тогда для управления яркостью ламп нужно будет применить тиристоры. Что такое вообще тиристор? Это трехэлектродный полупроводниковый прибор, который соответственно имеет Анод, Катод и Управляющий электрод.

КУ 202 Тиристор

КУ202 Тиристор

   На рисунке выше изображен советский тиристор КУ202. Тиристоры, в случае, если планируется использовать с мощной нагрузкой, также необходимо крепить на теплоотвод (радиатор). Как мы видим на рисунке, тиристор имеет резьбу с гайкой и крепится аналогично мощным диодам. Современные импортные просто снабжены фланцем с отверстием.

Схема цветомузыки на тиристорах

Схема цветомузыки на тиристорах

   Одна из подобных схем на тиристорах приведена выше. Это схема трехканальной цветомузыки с повышающим трансформатором на входе. В случае подбора аналогов тиристоров, следует смотреть на максимальное допустимое напряжение тиристоров, в нашем случае у КУ202Н — это 400 вольт.

Цветомузыка на тиристорах 2

Цветомузыка на тиристорах 2

   На рисунке приведена подобная схема цветомузыки приведенной выше, главное отличие в нижней схеме — отсутствует диодный мост. Также цветомузыку на светодиодах можно встроить в системный блок. Мной была собрана такая трехканальная цветомузыка с предусилителем в корпусе от сидирома. При этом сигнал брался со звуковой карты компьютера с помощью делителя сигнала, в выходы  которого подключались активная акустика и цветомузыка. Предусмотрена регулировка уровня сигнала, как общего, так и отдельно по каналам. Запитывались предусилитель и цветомузыка от разъема Молекс 12 Вольт (желтый и черный провода). Схемы предусилителя и трехканальной цветомузыки по которым собирались приведены выше. Существуют и другие схемы цветомузыки на светодиодах, например эта, также трехканальная:

Цветомузыка на 3 светодиодах - схема

Цветомузыка на 3 светодиодах — схема

   В этой схеме, в отличие от той, что собирал  я, используется в канале средних частот индуктивность. Для тех, кто захочет сперва собрать что-нибудь попроще, привожу следующую схему на 2 канала:

Цветомузыка 2 канала

Цветомузыка 2 канала LED

   Если собирать цветомузыку на лампах, то придется использовать использовать светофильтры, которые могут быть в свою очередь, как самодельными так и покупными. На рисунке ниже изображены светофильтры, которые есть в продаже:

Светофильтры для ЦМУ

Светофильтры для ЦМУ

   Некоторые любители цветомузыкальных эффектов собирают устройства на основе микроконтроллеров. Ниже приведена схема четырехканальной цветомузыки на МК AVR tiny 15:

Цветомузыка на tiny 15

Цветомузыка на tiny 15

   Микроконтроллер Тiny 15 в этой схеме можно заменить на tiny 13V, tiny 25V. И под конец обзора от себя хочу сказать, что цветомузыка на лампах проигрывает по зрелищности цветомузыке на LED, так как лампы более инерционные, чем светодиоды. А для самостоятельного повторения можно рекомендовать вот такую цветомузыкальную приставку.

Цветомузыка – своими руками.

Принцип работы цветомузыкального автомата.

Структурно, любая цветомузыкальная(светомузыкальная) установка состоит из трех элементов. Блока управления, блока усиления мощности и выходного оптического устройства.

В качестве выходного оптического устройства можно использовать гирлянды, можно оформить его в виде экрана(классический вариант) или применить электрические светильники направленного действия – прожектора, фары.
Т. е. подходят любые средства, позволяющие создавать определенный набор красочных световых эффектов.

Блок усиления мощности – это усилитель(усилители) на транзисторах с тиристорными регуляторами на выходе. От параметров элементов использованых в нем зависит напряжение и мощность источников света выходного оптического устройства.

Блок управления контролирует интенсивность света, и чередование цветов. В сложных специальных установках, предназначенных для оформления сцены во время различных видов шоу - цирковых, театральных и эстрадных представлений этот блок управляется вручную.
Соответствено, требуется участие как минимум – одного, а максимум – группы операторов-осветителей.

Если блок управления контролируется непосредственно музыкой, работает по какой – либо заданной программе, то цветомузыкальная установка считается – автоматической.
Именно такого рода “цветомузыки” обычно собирают своими руками начинающие конструкторы – радиолюбители, на протяжении 50-ти последних лет.

Самая простая (и популярная) схема “цветомузыки” на тиристорах КУ202Н.


Это самая простая и пожалуй, самая популярная схема цветомузыкальной приставки, на тиристорах.
Тридцать лет назад я впервые увидел вблизи полноценную, работающую “светомузыку”. Ее собрал мой однокласник, с помощью старшего брата. Это была именно эта схема. Несомненным ее достоинством является простота, при достаточно явном разделение режимов работы всех трех каналов. Лампы не мигают одновременно, красный канал низких частот устойчиво моргает в ритм с ударными, средний – зеленый откликается в диапазоне человеческого голоса, высокочастотный синий реагирует на все остальное тонкое – звенящее и пищащее.

Недостаток один - необходим предварительный усилитель мощности на 1-2 ватта. Моему товарищу приходилось почти “на полную” врубать свою “Электронику” для того, что бы добиться достаточно устойчивой работы устройства. В качестве входного трансформатора был использован понижающий тр-р от радиоточки. Вместо него можно использовать любой малогабаритный понижающий сетевой транс. Например, с 220 до 12 вольт. Только подключать его нужно наоборот – низковольтной обмоткой на вход усилителя. Резисторы любые, мощностью от 0,5 ватт. Конденсаторы тоже любые, вместо тиристоров КУ202Н можно взять КУ202М.

Схема “цветомузыки” на тиристорах КУ202Н, с активными частотными фильтрами и усилителем тока.

Схема предназначена для работы от линейного звукового выхода(яркость ламп не зависит от уровня громкости).
Рассмотрим подробнее, как она работает.
Звуковой сигнал подается с линейного выхода на первичную обмотку разделительного трансформатора. С вторичной обмотки трансформатора сигнал поступает на активные фильтры, через резисторы R1, R2, R3 регулирующие его уровень.
Раздельная регулировка необходима для настройки качественной работы устройства, путем выравнивания уровня яркости, каждого из трех каналов.

С помощью фильтров происходит разделение сигналов по частоте – на три канала. По первому каналу идет самая низкочастотная составляющая сигнала - фильтр обрезает все частоты выше 800 гц. Настройка фильтра производится с помощью подстроечного резистора R9. Номиналы конденсаторов С2 и С4 в схеме указаны – 1 мкФ, но как показала практика – их емкость следует увеличить, минимум, до 5 мкф.

Фильтр второго канала настроен на среднюю частоту - примерно от 500, до 2000 гц. Настройка фильтра производится с помощью подстроечного резистора R15. Номиналы конденсаторов С5 и С7 в схеме указаны – 0,015 мкФ, но их емкость следует увеличить, до 0,33 – 0,47 мкф.

По третьему, высокочастотному каналу проходит все что выше 1500(до 5000) гц. Настройка фильтра производится с помощью подстроечного резистора R22. Номиналы конденсаторов С8 и С10 в схеме указаны – 1000пФ, но их емкость следует увеличить, до 0,01 мкФ.

Далее, сигналы каждого канала в отдельности детектируются(используются германиевые транзисторы серии д9), усиливаются и подаются на оконечный каскад.
Оконечный каскад выполняется на мощных транзисторах, либо на тиристорах. В данном случае, это тиристоры КУ202Н.

Далее, идет оптическое устройство, конструкция и внешний которого зависит от фантазии конструктора, а начинка(лампы, светодиоды) – от рабочего напряжения и максимальной мощности выходного каскада.
В нашем случае – это лампы накаливания 220в, 60вт(если установить тиристоры на радиаторы – до 10 шт на канал).

Порядок сборки схемы.

О деталях приставки.
Транзисторы КТ315 можно заменить другими кремниевыми n-p-n транзисторами со статическим коэффициентом усиления не менее 50. Постоянные резисторы – МЛТ-0,5, переменные и подстроечные – СП-1, СПО-0,5. Конденсаторы – любого типа.
Трансформатор Т1 с коэффициентом 1:1, поэтому можно использовать любой с подходящим количеством витков. При самостоятельном изготовлении можно использовать магнитопровод Ш10х10, а обмотки намотать проводом ПЭВ-1 0,1-0,15 по 150-300 витков каждая.

Диодный мост для питания тиристоров(220в) выбирают исходя из предпологаемой мощности нагрузки, минимум – 2А. Если количество ламп на каждый канал увеличить – соответственно возрастет потребляемый ток.
Для питания транзисторов(12в) можно использовать любой стабилизированный блок питания расчитанный на рабочий ток минимум – 250 мА(а лучше – больше).

Сначала, каждый канал цветомузыки собирается в отдельности на макетной плате.
Причем, сборку начинают с выходного каскада. Собрав выходной каскад проверяют его работоспособность, подав на его вход сигнал достаточного уровня.
Если этот каскад отрабатывает нормально, – собирают активный фильтр. Далее – проверяют снова работоспособность того, что получилось.
В итоге, после испытания имеем – реально работающий канал.

Подобным образом необходимо собрать и отстроить все три канала. Подобное занудство гарантирует безусловную работоспособность устройства после “чистовой” сборки на монтажной плате, если работа проведена без ошибок и с применением “испытанных” деталей.

Возможный вариант печатного монтажа(для текстолита с односторонним фольгированием). Если использовать более габаритные конденсаторе в канале самых низких частот, расстояния между отверстиями и проводниками придется изменить. Применение текстолита с двухсторонним фольгированием может быть более технологичным вариантом – поможет избавиться от навесных проводов-перемычек.


Вместо тиристоров можно использовать и более”продвинутые” полупроводниковые приборы, например – оптосимисторы, не меняя при этом особенно схему. Это дает отличную гальваническую развязку между высоко и низковольтными цепями – такой элемент, как разделительный входной трансформатор становится необязательным. Вместо него, лучше поставить дополнительный предварительный усилительный каскад(на КТ315), что в свою очередь позволит снизить требования к транзисторам(по коэффициенту усиления). Необходимость в диодном мосте для выпрямления переменного напряжения, отпадает само собой.
Придется подобрать величину сопротивления резисторов ограничивающих ток входа оптосимисторов(R12, R18, R25). Например, для оптосимисторов ТСО132-10 при напряжении 12в, потребуются резисторы на 200 – 240 Ом.

Реально собранная светомузыка в процессе настройки
(19.10. 2015).

Светомузыка в процессе настройки

Она же – в корпусе, без крышки.(21. 10. 2015).

Светомузыка в корпусе

В сборе.

Светомузыка в сборе

В работе.(27. 12. 2015).

Светомузыка в работе

В темноте.(27. 12. 2015).

Светомузыка в темноте.

Схема “бегущие огни”.

Автомат “бегущие огни” – еще одно популярное устройство. Его основным предназначением изначально было создание цветовых эффектов, для оформления диско – вечеринок Так что, хотя и с небольшой натяжкой, “бегущие огни” тоже можно отнести к разряду “цветомузык”.
Схема на логических элементах И-НЕ и триггерах, дает возможность регулировать частоту переключений(скорость “бегущего огня”) вручную.

Светомузыка в темноте.

Схема выполнена на двух триггерах микросхемы D2(К155ТМ2) и дешифраторах управления на D1(К155ЛА3), а скорость переключения задаются частотой мультивибратора на микросхеме D3(К155ЛА3). Частота импульсов на выходе мультивибратора на D3 зависит от постоянной времени частотозадающей цепи R10-R11-С6. Скорость переключения ламп можно регулировать при помощи переменного резистора R10. Уменьшая его сопротивление можно увеличивать скорость переключения, увеличивая – снижать.

Питающий трансформатор Тр1 понижающий с напряжением на первичной обмотке 220в, вторичной 6-8 в, мощностью от 5 ватт. Напряжение 5 вольт для питания микросхем получается с помощью стабилизатора КРЕН5А, или его аналога. Транзисторы – КТ315Б, тиристоры – КУ202Н, конденсаторы и резисторы – любого типа.


На главную страницу

Использование каких – либо материалов этой страницы, допускается при наличии ссылки на сайт “Электрика это просто”.

Как сделать цветомузыку на светодиодах своими руками.

Здравствуйте, уважаемые читатели сайта sesaga.ru. Практически у каждого начинающего радиолюбителя, да и не только, возникало желание собрать цветомузыкальную приставку или бегущий огонь, чтобы разнообразить прослушивание музыки в вечернее время или в праздничные дни. В этой статье речь пойдет о простой цветомузыкальной приставке, собранной на светодиодах, которую под силу собрать даже начинающему радиолюбителю.

Цветомузыкальная приставка на диодах

1. Принцип действия цветомузыкальных приставок.

Работа цветомузыкальных приставок (ЦМП, ЦМУ или СДУ) основана на частотном разделении спектра звукового сигнала с последующей передачей его по отдельным каналам низких, средних и высоких частот, где каждый из каналов управляет своим источником света, яркость которого определяется колебаниями звукового сигнала. Конечным результатом работы приставки является получение цветовой гаммы, соответствующей воспроизводимому музыкальному произведению.

Для получения полной гаммы цветов и максимального количества цветовых оттенков в цветомузыкальных приставках используются, как минимум, три цвета:

Общая схема цветомузыкальной приставки

Разделение частотного спектра звукового сигнала происходит с помощью LC- и RC-фильтров, где каждый фильтр настроен на свою сравнительно узкую полосу частот и пропускает через себя только колебания этого участка звукового диапазона:

1. Фильтр низких частот (ФНЧ) пропускает колебания частотой до 300 Гц и цвет его источника света выбирают красным;
2. Фильтр средних частот (ФСЧ) пропускает 250 – 2500 Гц и цвет его источника света выбирают зеленым или желтым;
3. Фильтр высших частот (ФВЧ) пропускает от 2500 Гц и выше, и цвет его источника света выбирают синим.

Структурная схема цветомузыки

Каких-либо принципиальных правил для выбора полосы пропускания или цвета свечения ламп не существует, поэтому каждый радиолюбитель может применять цвета исходя из особенностей своего восприятия цвета, а также по своему усмотрению изменять число каналов и ширину полосы частот.

2. Принципиальная схема цветомузыкальной приставки.

На рисунке ниже предоставлена схема простой четырехканальной цветомузыкальной приставки, собранной на светодиодах. Приставка состоит из усилителя входного сигнала, четырех каналов и блока питания, обеспечивающего питание приставки от сети переменного тока.

Принципиальная схема цветомузыки на светодиодах

Сигнал звуковой частоты подается на контакты ПК, ЛК и Общий разъема Х1, и через резисторы R1 и R2 попадает на переменный резистор R3, являющийся регулятором уровня входного сигнала. От среднего вывода переменного резистора R3 звуковой сигнал через конденсатор С1 и резистор R4 поступает на вход предварительного усилителя, собранного на транзисторах VT1 и VT2. Применение усилителя позволило использовать приставку практически с любым источником звукового сигнала.

С выхода усилителя звуковой сигнал подается на верхние выводы подстроечных резисторов R7,R10, R14, R18, являющиеся нагрузкой усилителя и выполняющие функцию регулировки (подстройки) входного сигнала отдельно по каждому каналу, а также устанавливают нужную яркость светодиодов канала. От средних выводов подстроечных резисторов звуковой сигнал поступает на входы четырех каналов, каждый из которых работает в своей полосе звукового диапазона. Схематично все каналы выполнены одинаково и различаются лишь RC-фильтрами.

На канал высших частот сигнал подается от среднего вывода резистора R7.
Полосовой фильтр канала образован конденсатором С2 и пропускает только спектр верхних частот звукового сигнала. Низкие и средние частоты через фильтр не проходят, так как сопротивление конденсатора для этих частот велико.

Отдельный канал цветомузыкальной приставки

Проходя конденсатор, сигнал верхних частот детектируется диодом VD1 и подается на базу транзистора VT3. Появляющееся на базе транзистора отрицательное напряжение открывает его, и группа синих светодиодов HL1HL6, включенных в его коллекторную цепь, зажигаются. И чем больше амплитуда входного сигнала, тем сильнее открывается транзистор, тем ярче горят светодиоды. Для ограничения максимального тока через светодиоды последовательно с ними включены резисторы R8 и R9. При отсутствии этих резисторов светодиоды могут выйти из строя.

На канал средних частот сигнал подается от среднего вывода резистора R10.
Полосовой фильтр канала образован контуром С3R11С4, который для низких и высших частот оказывает значительное сопротивление, поэтому на базу транзистора VT4 поступают лишь колебания средних частот. В коллекторную цепь транзистора включены светодиоды HL7HL12 зеленого цвета.

На канал низких частот сигнал подается со среднего вывода резистора R18.
Фильтр канала образован контуром С6R19С7, который ослабляет сигналы средних и высших частот и поэтому на базу транзистора VT6 поступают лишь колебания низких частот. Нагрузкой канала являются светодиоды HL19HL24 красного цвета.

Для разнообразия цветовой гаммы в цветомузыкальную приставку добавлен канал желтого цвета. Фильтр канала образован контуром R15C5 и работает в частотном диапазоне ближе к низким частотам. Входной сигнал на фильтр поступает с резистора R14.

Питается цветомузыкальная приставка постоянным напряжением . Блок питания приставки состоит из трансформатора Т1, диодного моста, выполненного на диодах VD5VD8, микросхемного стабилизатора напряжения DA1 типа КРЕН5, резистора R22 и двух оксидных конденсаторов С8 и С9.

Переменное напряжение, выпрямленное диодным мостом, сглаживается оксидным конденсатором С8 и поступает на стабилизатор напряжения КРЕН5. С вывода 3 микросхемы стабилизированное напряжение 9В подается в схему приставки.

Для получения выходного напряжения 9В между минусовой шиной блока питания и выводом 2 микросхемы включен резистор R22. Изменением величины сопротивления этого резистора добиваются нужного выходного напряжения на выводе 3 микросхемы.

3. Детали.

В приставке могут быть использованы любые постоянные резисторы мощностью 0,25 – 0,125 Вт. На рисунке ниже показаны номиналы резисторов, у которых для обозначения величины сопротивления используют цветные полоски:

Цветовая маркировка резисторов

Переменный резистор R3 и подстроечные резисторы R7, R10, R14, R18 любого типа, лишь бы подходили под размер печатной платы. В авторском варианте конструкции использовался отечественный переменный резистор типа СП3-4ВМ, подстроечные резисторы импортного производства.

Подстроечные резисторы

Подробнее о резисторах можно почитать здесь и здесь.

Постоянные конденсаторы могут быть любого типа, и рассчитаны на рабочее напряжение не ниже 16 В. При возникновении трудности с приобретением конденсатора С7 емкостью 0,3 мкФ его можно составить из двух соединенных параллельно емкостью 0,22 мкФ и 0,1 мкФ.

Оксидные конденсаторы С1 и С6 должны иметь рабочее напряжение не ниже 10 В, конденсатор С9 не ниже 16 В, а конденсатор С8 не ниже 25 В.

Конденсаторы постоянной емкости

Оксидные конденсаторы С1, С6, С8 и С9 имеют полярность, поэтому при монтаже на макетную или печатную плату это необходимо учитывать: у конденсаторов Советского производства на корпусе обозначают положительный вывод, у современных отечественных и импортных конденсаторов обозначают отрицательный вывод.

Оксидные конденсаторы

Диоды VD1 – VD4 любые из серии Д9. На корпусе диода со стороны анода наносится цветная полоска, определяющая букву диода.

Диод серии Д9

В качестве выпрямителя, собранного на диодах VD5 – VD8, используется готовый миниатюрный диодный мост, рассчитанный на напряжение 50В и ток не менее 200 mA.

Диодный мост

Если вместо готового моста использовать выпрямительные диоды, придется немного подкорректировать печатную плату, или диодный мост вообще вынести за пределы основной платы приставки и собрать на отдельной небольшой плате.

Для самостоятельной сборки моста диоды берутся с теми же параметрами, что и заводской мост. Также подойдут любые выпрямительные диоды из серии КД105, КД106, КД208, КД209, КД221, Д229, КД204, КД205, 1N4001 – 1N4007. Если использовать диоды из серии КД209 или 1N4001 – 1N4007, то мост можно собрать прямо со стороны печатного монтажа непосредственно на контактных площадках платы.

Светодиоды обычные с желтым, красным, синим и зеленым цветом свечения. В каждом канале используется по 6 штук:

Светодиоды

Транзисторы VT1 и VT2 из серии КТ361 с любым буквенным индексом.

Цоколевка транзисторов КТ361

Транзисторы VT3, VT4, VT5, VT6 из серии КТ502 с любым буквенным индексом.

Цоколевка транзисторов КТ502

Стабилизатор напряжения типа КРЕН5А с любым буквенным индексом (импортный аналог 7805). Если использовать девятивольтовые КРЕН8А или КРЕН8Г (импортный аналог 7809), то резистор R22 не ставится. Вместо резистора на плате устанавливается перемычка, которая соединит средний вывод микросхемы с минусовой шиной, или при изготовлении платы этот резистор вообще не предусматривается.

Цоколевка КРЕН5А

Для соединения приставки с источником звукового сигнала применен разъем типа «джек» на три контакта. Кабель взят от компьютерной мыши.

Разъем типа

Трансформатор питания – готовый или самодельный мощностью не менее 5 Вт с напряжением на вторичной обмотке 12 – 15 В при токе нагрузки 200 mA.

В дополнение к статье посмотрите первую часть видеоролика, где показывается начальный этап сборки цветомузыкальной приставки

На этом первая часть заканчивается.
Если Вы соблазнились сделать цветомузыку на светодиодах, тогда подбирайте детали и обязательно проверьте исправность диодов и транзисторов, например, мультиметром. А во второй части произведем окончательную сборку и настройку цветомузыкальной приставки.
Удачи!

Литература:
1. И. Андрианов «Приставки к радиоприемным устройствам».
2. Радио 1990 №8, Б. Сергеев «Простые цветомузыкальные приставки».
3. Руководство по эксплуатации радиоконструктора «Старт».

ЦВЕТОМУЗЫКАЛЬНАЯ ПРИСТАВКА

   Данная цветомузыкальная приставка реализует эффект “бегущая точка” и “хаос” под музыкальное сопровождение. Приставка не подключается к источнику электрического сигнала проводами, а воспринимает сигнал с помощью микрофона. Её просто располагаете в помещении, где играет музыка, и она сама начинает работать в такт. Устройство состоит из микрофонного усилителя на транзисторе, микросхемы 176ИЕ12, которая содержит два делителя частоты и элементы задающего генератора, ключей на транзисторах VT2-VT5 и светодиодов с токоограничивающими резисторами. Схема немного напоминает известную светомузыку из журналов 80-х годов, где эта же микросхема управляла тиристорами, которые коммутировали лампы накаливания 220В.

Схема светодиодной цветомузыкальной приставки

Схема светодиодной цветомузыкальной приставки

Плата светодиодной цветомузыкальной приставки

Рисунок платы светодиодной цветомузыкальной приставки

   Сигнал музыки, усиленный транзистором VT1 поступает через конденсатор С2 на вход генератора счетчика DD1. Резисторы R4, R5 создают отрицательную обратную связь генератора и приводят его в активный режим работы за счет чего он реагирует на сигнал микрофонного усилителя. После чего на вход второго счетчика поступают импульсы, а на его выходах Т1-Т4 формируются импульсы различной частоты сдвинутые на четверть периода по отношению друг к другу. Эти импульсы открывают транзисторы VT2-VT5 и соответствующие светодиоды начинают светиться.

ЦВЕТОМУЗЫКАЛЬНАЯ ПРИСТАВКА своими руками

   Переменным резистором R4 можно регулировать чувствительность, тем самым добиваться эффекта ”бегущая точка” или “хаос”. Включив конденсатор между выводами 12 и 14 микросхемы DD1 будет реализован эффект “бегущая точка” без музыкального сопровождения, следовательно приставка из ЦМУ превратится в СДУ (емкость конденсатора подбирается, от нее зависит частота вспышек *2200пф).

ЦВЕТОМУЗЫКАЛЬНАЯ ПРИСТАВКА LED

   Транзистор микрофонного усилителя КТ3102 заменим на транзисторы серии КТ315. Испытания показали, что устройство работоспособно при напряжении питания от 7 до 9 В. Применены светодиоды синего и красного цветов свечения повышенной яркости. Но подойдут светодиоды и дpyгих цветов. Для указанного интервала питающего напряжения взамен одного светодиода можно установить два, соединённых последовательно. Источник питания цветомузыки – сетевой стабилизированный БП с выходным током 200 мА или батарея.

СВЕТОМУЗЫКАЛЬНАЯ ПРИСТАВКА на светодиодах

Видео работы ЦМП

 

   Печатная плата в lay разработана под корпус D110, светодиоды расположены на передней панели, а органы управления и макрофон на задней, питается приставка от кроны. При правильной сборке устройство начинает работать сразу. А если для вас достать такую микросхему проблема – посмотрите на более простую схему. Материал прислал tankist.

   Форум по LED ЦМУ

 

   Обсудить статью ЦВЕТОМУЗЫКАЛЬНАЯ ПРИСТАВКА


Как карта цветов радуги вводит в заблуждение

Цвета – это, пожалуй, визуальное свойство, которое люди чаще всего используют в визуализации, даже не подозревая об этом. Вариации карты цветов радуги очень популярны, и в то же время наиболее проблематичны и вводят в заблуждение.

Карта цветов радуги основана на цветах в спектре света, и иногда она выполняется правильно, иногда цвета в неправильном порядке. Быстро, назовите цвета в радуге по порядку! Видишь, это часть проблемы.Даже если бы они использовались последовательно, никто бы не знал правильную последовательность в любом случае. Вот изображение для пробежки по памяти, любезно предоставленное Википедией.

Rainbow

Теперь взгляните на эту карту из статьи о водных ресурсах, опубликованной в журнале Американской ассоциации водных ресурсов , которую я нашел в фантастическом блоге Cliff Mass о погоде. Он описывает количество эвапотранспирации (потери дождевой воды в результате испарения) округом для 48 смежных штатов США.

Evapotranspiration Map

Вы видите, как страна делится на середину? Восточная половина кажется темно-зеленой и синей, а западная – светло-зеленой, желтой и оранжевой. Конечно, между ними есть огромная разница.

Но давайте ближе посмотрим на легенду.

Evapotranspiration Legend

Как оказалось, значения меняются плавно, а цвета – нет. Здесь есть две проблемы: резкие изменения яркости (воспринимаемая яркость цвета), а также переключение между различными оттенками.

Яркость

Сочетание плавно изменяющейся и резко изменяющейся яркости создает впечатление, что на карте были четко определенные области. Версия легенды, которая показывает только яркость, без оттенка, делает это немного более очевидным.

Evapotranspiration Legend Gray

Цвет для 0,3–0,39 темнее, чем у соседних цветов, яркость для 0,5–0,59, 0,6–0,69 и 0,7–0,79 практически одинакова, а затем происходит большой скачок до 0,8–0,89. Размер шага с точки зрения данных не отличается, это просто артефакт цветовой схемы.

оттенок

Более того, цвет меняется. Как я объяснял ранее, названия цветов влияют на наше восприятие цвета. Итак, давайте снова посмотрим на полноцветную версию легенды и перечислим оттенки.

Evapotranspiration Legend

  • Белый (0,0–0,09). Это действительно странный выбор для начала, поскольку фон карты также белый, и для специальных значений, таких как отсутствующие данные и т. Д., Следует использовать не такие цвета, как белый, черный и серый. Но это тема для другой публикации.
  • Розовый (0,1–0,19 и 0,2–0,29). Эти два сами по себе были бы в порядке.
  • Фиолетовый (0,3–0,39). Разного цвета, тоже намного темнее.
  • Синий (0,4–0,49 и 0,5–0,59). Снова другой цвет, и рампа идет в направлении, противоположном гвоздикам, причем более яркий цвет теперь представляет более высокое значение.
  • Зеленый (0,6–0,69 и 0,7–0,79). Опять разный цвет, и два практически одинаковы.
  • Зеленовато-желтый (0,8–0,89). Еще одно изменение оттенка, и на этот раз также резкий скачок яркости без видимой причины.
  • Желтый (0,9–0,99). Оттенок номер семь, и мы еще не закончили.
  • Оранжевый и коричневый (1,0 и выше). Я сделаю это легко, смешав финальный коричневый с апельсинами, хотя вы можете утверждать, что они разных цветов (коричневый на самом деле просто очень темный, ненасыщенный оранжевый, но у него все еще есть свое собственное название).

Таким образом, здесь есть восемь различных оттенков, внезапные скачки яркости, и яркость даже не меняется в последовательном направлении. Это прекрасный пример ужасной цветовой карты, невероятно распространенный в научной литературе.

Конечно, есть причины использовать более одного оттенка. Если есть диапазоны значений, которые являются значимыми и важными для обсуждения, чтобы иметь возможность различать. Или, если есть внутреннее различие, скажем, выше и ниже температуры замерзания.Но здесь нет никаких указаний на это.

Почему радуги?

Учитывая проблемы, почему карта цветов радуги и ее варианты так популярны? Я думаю, что ответ довольно прост: это привлекательно. Использование одного оттенка для отображения данных было бы достаточно эффективным, но гораздо менее интересным. Более того, если вы хотите считывать отдельные значения, плавное изменение на самом деле хуже, потому что вы больше не можете искать определенный оттенок. Однако стоимость состоит в том, что вы создаете много артефактов на карте.

Color Ramp

Необходимо разработать вариант для цветных карт, которые имеют более одного или двух оттенков, но не вызывают проблем, которые можно увидеть в этом примере. Один из подходов заключается в использовании цветовой карты, в которой яркость постоянна или монотонно увеличивается (то есть она никогда не меняет направление). Постоянная яркость приводит к очень тусклым цветам, но хорошо продуманная цветовая карта с возрастающей яркостью может выглядеть довольно привлекательно. ColorBrewer имеет несколько из них, по крайней мере, для двух цветов.

альтернатив

Все в визуализации знают ColorBrewer.Все. Здесь почти глупо снова ссылаться на него, потому что это так широко известно. И все же каждый год снова появляются газеты, в которых используются ужасно плохие цветные карты. ColorBrewer требует некоторой осторожности при использовании, но у него есть объяснения, которые помогут выбрать хорошую цветовую карту. Цвета ColorBrewer, как правило, доступны во многих пакетах визуализации (D3 и т. Д.), Хотя в основном это категориальные варианты.

Существует также Adobe Kuler, который позволяет создавать цветовые палитры, но требует определенных знаний для правильного использования.На этом веб-сайте также есть много привлекательных цветовых схем, но они не предназначены для визуализации данных.

Бумага, о которой многие слышали, но мало кто читал, – это карта цвета радуги Борланда и Тейлора (все еще), считающаяся вредной . Они используют синтетические данные, чтобы показать проблемы, и вдаваться в подробности, чем я сделал здесь, но я думаю, что эффект гораздо более впечатляющий, когда он показан на реальном примере, опубликованном в научном журнале.

При отображении непрерывного значения рампа с одним цветом всегда является безопасным выбором.Это может не выглядеть захватывающим, но, по крайней мере, это делает данные справедливыми. Все, кроме одного оттенка, должно быть сделано намеренно, а не просто чтобы оживить скучно выглядящий образ.

Выводы

Несмотря на свою важность для восприятия и визуализации, цвет продолжает оставаться удивительно мало понятной темой. Люди часто кажутся довольными цветами по умолчанию или произвольным выбором, который просто выглядит хорошо. Но без особой осторожности при выборе цвета вы можете нанести большой ущерб своей визуализации.

,

Что такое порядок цветов радуги? Понимание ROYGBIV

Вы, скорее всего, видели радугу после небольшого дождя в солнечный день. Но какие цвета радуги в порядке? А что вызывает формирование радуги? Мы объясним все, что вам нужно знать о порядке цветов радуги, включая то, что означает ROYGBIV, почему существуют радуги, и изменится ли когда-либо порядок радуги.

Какие цвета радуги в порядке?

Официально порядок цветов радуги выглядит следующим образом:
  • Красный
  • Оранжевый
  • Желтый
  • Зеленый
  • синий
  • Индиго
  • Фиолетовый

Это означает, что на каждой радуге, которую вы видите, будет иметь эти семь цветов в следующем порядке: (от вершины дуги радуги до низа дуги).

Самый простой способ запомнить порядок цветов радуги – использовать мнемоническое устройство ROYGBIV, в котором каждая буква обозначает первую букву названия цвета (другими словами, R обозначает красный, O обозначает оранжевый, Y обозначает для желтого и т. д.). Большинство людей произносят ROYGBIV в трех слогах, делая его звучащим и больше похожим на имя кого-то: Roy G. Biv.

Иногда вы можете увидеть ROYGBIV, записанный в обратном порядке как VIBGYOR.

Готов поспорить, вы можете легко представить большинство, если не все, из этих семи цветов радуги.Но многие люди запутываются в цвете индиго и в том, как он отличается от голубого и фиолетового. Как правило, индиго описывается как примерно посередине между синим и фиолетовым.

Большинство людей сходятся во мнении, что индиго ближе к темно-синему или темно-синему, чем к фиолетовому или фиолетовому цвету, но даже об этом еще есть споры!

.

цветов радуги, цветовой спектр и физика света

Радуга – это прекрасное природное явление, которое продолжает вдохновлять людей во многих отношениях. цвета радуги воспринимаются как набор оттенки расположены в определенном порядке. Чтобы лучше запомнить этот заказ, просто запомните имя Roy G. Biv который состоит из первых букв каждого оттенка. семь цветов: красный, оранжевый, желтый, зеленый, синий, индиго и фиолетовый. Это приказ от снаружи арки радуги. В общем радуга цвета представляют разнообразие и принятие.


капель воды отражают свет

Мы видим радугу, когда дождь перед нами и Солнце находится на противоположной стороне позади нас. В этом созвездии немного солнечного света отразил обратно нам каплями дождя.Легкий удар капля дождя также получает изогнутых / преломленных у капли дождя поверхность и расщепляется по длине волны. Так что отражение свет, который мы воспринимаем, не является “одним лучом белого” света больше, но несколько лучей света с различных длина волны . В «реальности» цвета радуги состоят из всего спектра светлых цветов, но наш визуальный Система образует отличительные полосы. радуга частично прозрачна, потому что немного света не отражается, но вместо этого может пройти через капли дождя.


Цвет, Свет и Энергия

Радуга вдохновила ученых на дальнейшее исследование природа цвета и свет, потому что радуга позволила сделать вывод, что цвет как-то связан зажечь Если мы хотим лучше понять цвет, мы надо присмотреться к свету.И, если мы хотим лучше понять свет, мы должны заботиться об энергии.

Следующая схема иллюстрирует отношение между цвет, свет и энергия.

Можете ли вы найти две недостающие ссылки в отношениях между цветом, светом и энергией? Да, точнее вы бы Должен сказать, что есть связь между цветом, светом система обработки света, светоизлучающая система и энергия.
В этом разделе интерес представляет светоизлучающая система (источник света) нам, потому что это может повлиять на два свойства света, которые затем сделайте вход для системы обработки света.

Light Properties

Свет – это форма электромагнитного излучения и слово Излучение подразумевает, что свет распространяется волнами.

У световых волн есть перерывы, хотя.Вот почему мы говорим, что луч света состоит из волновых пакетов, называемых фотоны.

Теперь источник света, например, может влиять на число волновые пакеты (фотонов) за период времени и, два, длина волны света .

Давайте посмотрим на уравнение длины волны, чтобы увидеть, как источник света
использует энергию для воздействия на длину волны.


Это означает, что мы можем сформулировать отношения:
больше энергии используется для одного фотона, меньше длина волны света.Поскольку частота обратно пропорциональна длине волны, вы также можете сказать: больше энергии используется для одного фотона, выше частоты света.

Давайте посмотрим на уравнение количества фотонов, чтобы увидеть, как источник света
использует энергию для влияния на количество фотонов.


Это означает, что мы можем сформулировать соотношение:
В предположении, что источник света поддерживает постоянную длину волны :
Используется больше энергии , испускается еще фотонов (увеличение интенсивности).

Источник света может иметь возможность изменять длину волны и количество
фотонов одновременно. Может ли источник света также изменить свойства
света, если подвод энергии остается постоянным? Что будет с любой собственностью?

Перестановка приведенной выше формулы упрощает поиск ответов:


Это означает, что мы можем сформулировать соотношение:
В предположении, что источник света поддерживает постоянную общую энергию :
Излучается еще фотонов , на больше их длина волны .

Цветовой спектр: видимый диапазон длин волн

Диапазон длин волн, в котором излучение определяется как видимый свет
составляет приблизительно от 400 нм до 700 нм, где один нанометр (нм)
равен 0,000 001 миллиметров.

Излучение с меньшей длиной волны (больше энергии) называется ультрафиолетом. Излучение с большей длиной волны
(меньше энергии) называется инфракрасным.

Система обработки света использует длину волны для различения оттенков (красный,
оранжевый, желтый)…) Он преобразует длину волны в определенное значение оттенка.
Мы можем визуализировать это преобразование для видимого диапазона длин волн
, рисуя диаграмму цветового спектра.

В следующем разделе мы рассмотрим систему обработки света человеком.

Ссылка на эту страницу:

URL

HTML Link

Цитирование

Электронная почта

Скопируйте и вставьте следующий текст:

,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *