Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Схемы подключения двигателя стиральной машины


Стиральные машины, со временем, выходят из строя или морально устаревают. Как правило,
основой любой стиралки есть ее электродвигатель, который может найти свое применение и
после разборки стиралки на запчасти.

Мощность таких двигателей, как правило не меньше 200 Вт, а порой и куда больше, скорость
оборотов вала может доходить и до 11 000 оборотов в минуту что вполне может подойти для использование такого двигателя в хозяйственных или мелких промышленных нуждах.

Вот лишь несколько идей удачного применения электродвигателя от стиралки:

  • Точильный (“наждачный”) станок для заточки ножей и мелкого домашнего и садового инструмента.Двигатель устанавливают на прочном основание, а на вал закрепляют точильный камень или наждачный круг.
  • Вибростол для производства декоративной плитки, тротуарной плитки или других бетонных изделий где необходимо уплотнение раствора и удаление от туда воздушных пузырей. А возможно вы занимаетесь производством силиконовых форм, для этого также нужен вибростол.
  • Вибратор для усадки бетона. Самодельные конструкции которых полно в интернете, вполне могут быть реализованы с применением небольшого двигателя от стиральной машинки.
  • Бетономешалка. Вполне подойдет такой двигатель и для небольшой бетономешалки. После небольшой переделки, можно использовать и штатный бак от стиральной машинки.
  • Ручной строительный миксер. С помощью такого миксера можно замешивать штукатурные смеси, плиточный клей, бетон.
  • Газонокосилка. Отличный вариант по мощности и габаритам для газонокосилки на колесах. Подойдет любая готовая платформа на 4-х колесах с закрепленным в центре двигателем с прямым приводом на “ножы” которые будут находится снизу. Высоту газона можно регулировать посадкой, например, поднимая или опуская колеса на шарнирах по отношению к основной платформе.
  • Мельница для измельчения травы и сена или зерна. Особенно актуально для фермеров и людей занимающихся разведением домашней птицы и другой живности. Также можно делать заготовки корма на зиму.

Вариантов применения электромотора может быть очень много, суть процесса заключается в возможности вращать на высоких оборотах разные механизмы и приспособления. Но какой бы механизм сконструировать вы б не собирались, все равно вам нужно будит правильно
подключить двигатель от стиральной машинки.

Виды двигателей


В стиральных машинках разных поколений и стран производства, могут быть и разные типы
электродвигателей. Как правило это один из трех вариантов:

Асинхронный.
В основном это все трехфазные двигатели, могут быть и двухфазными но это большая редкость.
Такие двигатели просты в своей конструкции и обслуживанию, в основном все сводится к смазке подшипников. Недостатком есть большой вес и габариты при небольшом КПД.
Такие двигатели стоят в старинных, маломощных и недорогих моделях стиральных машин.


Коллекторный.
Двигатели которые пришли на смену большим и тяжелым асинхронным устройствам.
Такой двигатель может работать как от переменного так и от постоянного тока, на практике  он будет вращаться даже от автомобильного аккумулятора на 12 вольт.
Двигатель может вращаться в нужную нам сторону, для этого нужно всего лишь сменить полярность подключения щеток к обмоткам статора.
Высокая скорость вращения, плавное изменение оборотов изменением прилагаемого напряжения, небольшие размеры и большой пусковой момент – вот лишь небольшая часть преимуществ такого типа двигателей.
К недостаткам можно отнести износ коллекторного барабана и щеток и повышенный нагрев при не столь продолжительной работе. Также необходима более частая профилактика, например чистка коллектора и замена щеток.

Инверторный (бесколлекторный)
Инновационный тип двигателей с прямым приводом и небольшими габаритами при довольно не малой мощности и высоком КПД.

В конструкции двигателя все так же присутствует статор и ротор, однако количество соединительных элементов сведено к минимуму. Отсутствие элементов подверженных быстрому износу, а так же низкий уровень шума.
Такие двигателя стоят в последних моделях стиральных машин и их производство требует сравнительно больше затрат и усилий что конечно же влияет на цену.

Схемы подключения

Тип двигателя с пусковой обмоткой (старые/дешевые стиралки)


Для начала нужен тестер или мультиметр. Нужно найти две соответствующие друг другу пары выводов.
Щупами тестера, в режиме прозвонки или сопротивления, нужно отыскать два провода которые между собой прозваниваются, остальные два провода автоматически будут парой второй обмотки.

Дальше следует выяснить, где у нас пусковая, а где – рабочая обмотки. Нужно замерить их сопротивление: более высокое сопротивление укажет на пусковую обмотку (ПО), которая создает начальный крутящий момент. Более низкое сопротивление укажет нам на обмотку возбуждения (ОВ) или другими словами – рабочую обмотку, создающую магнитное поле вращения.

Вместо контактора “SB” может стоять неполярный конденсатор малой емкости (около 2-4 мкФ)
Как это обустроено в самой стиралке для удобства.

 Если же двигатель будет запускаться без нагрузки, то есть, не будит на его валу шкива с нагрузкой в момент запуска, то такой двигатель может запускаться и сам, без конденсатора и кратковременной “запитки” пусковой обмотки.

Если двигатель сильно перегревается или греется даже без нагрузки непродолжительное время, то причин может быть несколько. Возможно изношены подшипники или уменьшился зазор между статором и ротором в следствие чего они задевают друг друга. Но чаще всего причиной может быть высокая емкость конденсатора, проверить несложно – дайте поработать двигателю с отключенным пусковым конденсатором и сразу все станет ясно. При необходимости емкость конденсатора лучше уменьшить до минимума при котором он справляется с запуском электродвигателя.

В кнопке контакт “SB” строго должен быть не фиксируемым, можно попросту воспользоваться кнопкой от дверного звонка, в противном случае пусковая обмотка может сгореть.

В момент запуска кнопку “SB” зажимают до момента раскрутки вала на полную (1-2 сек.), дальше кнопка отпускается и напряжение на пусковую обмотку не подается. Если необходим реверс – нужно сменить контакты обмотки.

Иногда в такого двигателя может быть не четыре, а три провода на выходе, в таком случае  две обмотки уже соединены в средней точке между собой, как показано в схеме.
В любом случае разбирая старую стиралку, можно присмотреться как там был подключен в ней ее двигатель.

Когда возникает необходимость реализовать реверс или сменить направления вращения двигателя с пусковой обмоткой, можно подключить по следующей схеме:

Интересный момент. Если в двигателе не использовать (не задействовать) пусковую обмотку, то направление вращения может быть всевозможным (в любую из сторон) и зависить, например, от того в какую сторону провернуть вал в тот момент когда подключается напряжение.

Коллекторный тип двигателя (современные, стиралки автомат с вертикальной загрузкой)


Как правило это коллекторные двигатели без пусковой обмотки, которые не нуждаются и в пусковом конденсаторе, такие двигатели работают и от постоянного тока и от переменного.

Такой двигатель может иметь около 5 – 8 выводов на клемном устройстве, но для работы двигателя вне стиральной машинки, они нам не понадобятся. В первую очередь нужно исключить ненужные контакты тахометра. Сопротивления обмоток тахометра составляет примерно 60 – 70 Ом.

Также могут быть выведены и выводы термозащиты, которые встречаются редко, но они нам так же не понадобятся, это как правило нормально замкнутый или разомкнутый контакт с “нулевым” сопротивлением.

Дальше подключаем напряжение к одному из выводов обмотки. Второй ее вывод соединяют с

первой щеткой. Вторая щетка подключается к оставшемуся 220-вольтовому проводу. Двигатель должен заработать и вращаться в одну сторону.


Чтобы изменить направление движения двигателя, подключение щеток следует поменять местами: теперь первая будет включена в сеть, а вторая соединена с выходом обмотки.

Такой двигатель можно проверить автомобильным аккумулятором на 12 вольт, не боясь при этом “спалить” его из за того что неправильно подключили, спокойно можно и
“поэкспериментировать” и с реверсом и посмотреть как двигатель работает на малых оборотах от низкого напряжения.

Подключая к напряжению 220 вольт, имейте в виду что двигатель резко запустится с рывком,
поэтому лучше его закрепить неподвижно чтоб он не повредил и не замкнул провода.

О том как подключить трехфазные асинхронные двигатели к обычной бытовой сети 220 вольт, довольно подробно можно узнать в статье – “Подключение трехфазного двигателя”

Регулятор оборотов


Если возникает необходимость регулирования количества оборотов, можно воспользоваться
бытовым регулятором освещения (диммером).Но для этой цели нужно подбирать такой диммер который по мощности будет с запасом больше мощности двигателя, или же потребуется доработка, можно из той же стиральной машинки извлечь симистор с радиатором и впаять его на место маломощной детали в конструкции регулятора освещения. Но здесь уже нужно иметь навыки работы с электроникой.

Если же вам удастся найти специальны диммер для подобных электродвигателей то это будет
самым простым решением. Как правило их можно подыскать в точках продажа систем вентиляции и используются они для регулировки оборотов двигателей приточных и вытяжных систем вентиляции.

Схема соединения электродвигателя стиральной машины. Как подключить электродвигатель от стиральной машины.

Как подключать двигатель стиральной машины?

Если у вас остался двигатель от старой стиральной машинки, то его не стоит выбрасывать. Этот электрический прибор еще послужит вам не один год. Главное, найти ему применение. К примеру, из него можно сделать неплохую точильную установку для заточки ножей, ножниц и топоров. Однако очень важным в этом деле является вопрос, как подключать двигатель стиральной машины к сети переменного тока напряжением 220 вольт?

Необходимо сразу же отметить, что этот движок имеет несколько чисто конструкционных особенностей, которые дают возможность обойтись без дополнительных электрических схем и деталей. К примеру, нет необходимости в установке пусковой обмотки и пускового конденсатора.

Здесь важно правильно подсоединить провода, которые отличаются друг от друга цветом:

  • Два белых провода. Они установлены лишь для того, чтобы измерять обороты движка. Их использовать для подключения не надо.
  • Красный провод. Он соединяется с первой обмоткой статора.
  • Коричневый идет на вторую обмотку.
  • Зеленый провод и серый подключаются к щеткам электродвигателя.

Схема подключения двигателя стиральной машины

Итак, будут задействованы четыре провода. Что и к чему подключать?

Подключение нового двигателя

Вот так производится подключение двигателя стиральной машины нового образца. Но есть еще и очень старые электродвигатели. Их схема подключения отличается от вышеописанной:

Подключение двигателя старого образца

Вот два способа, как можно подключить двигатель от стиральной машины.


Небольшое предисловие.

В моей мастерской работает несколько самодельных станков, построенных на базе асинхронных двигателей от старых советских стиральных машин.

Я использую двигатели как с “конденсаторным” пуском, так и двигатели с пусковой обмоткой и пусковым реле (кнопкой)

Особых трудностей с подключением и запуском у меня не возникало.
При подключении я иногда пользовался омметром (чтобы найти пусковую и рабочую обмотки).

Но чаще использовал свой опыт и метод “научного тыка” %)))

Возможно таким заявлением на навлеку на себя гнев “знающих”, которые “все и всегда делают по науке” :))).

Но у меня и такой метод давал положительный результат, двигатели – работали, обмотки не перегорали:).

Конечно, если есть “как и чем” – то нужно делать “как правильно” – это я о наличии тестера и замере сопротивления обмоток.

Но в реальности не всегда так получается, а “кто не рискует… ” – ну вы поняли:).

Почему я об этом говорю?
Буквально вчера я получил вопрос от своего зрителя, опущу некоторые моменты переписки, оставив только суть:


У меня из двигателя выходит 3 провода, можете что нибудь подсказать?

—-

Я пытался запускать как вы сказали через пусковое реле,(Кратковременно коснулся провода) но через некоторое время работы он начинает дымить и греться. МУльтиметра у меня нет, поэтому не могу проверить сопротивление обмоток(

Безусловно, тот метод о котором я сейчас расскажу – немного рискованный, особенно для человека, который не имеет дела с подобной работой постоянно.

Поэтому нужно быть предельно внимательным, и при первой же возможности проверить результаты “научного тыка” при помощи тестера.

Теперь к делу!

Сначала вкратце расскажу о типах двигателей, которые использовались в советских стиральных машинках.

Эти двигатели условно можно было разделить на 2 класса по мощности и скорости вращения.

В основной массе активаторных стиральных машин типа “тазик с моторчиком”, для привода активатора использовался двигатель 180 Вт, 1350 – 1420 об/мин .

Как правило такой тип двигателя имел 4 раздельных вывода (пусковая и рабочая обмотки) и подключался через пуско-защитное реле или (в совсем старых версиях) через 3-х контактную пусковую кнопку Фото 1.

Фото 1 Пусковая кнопка.

Раздельные выводы пусковой и рабочей обмотки позволяли получить возможность реверса (для разных режимов стирки и предотвращения скручивания белья).

Для этого в машинах поздних моделей был добавлен простой командаппарат, коммутирующий подключение двигателя.

Встречаются двигатели мощностью 180 Вт, у которых пусковая и рабочая обмотка соединялись в средине корпуса , и на верх выходило только три вывода (фото 2)

Фото 2 Три вывода обмотки.

Второй тип двигателей использовался в приводе центрифуги , поэтому он имел большие обороты, но меньшую мощность – 100-120 вт, 2700 – 2850 об/мин.

Двигатели центрифуг обычно имели постоянно включенный, рабочий конденсатор.

Поскольку центрифугу не было необходимости реверсировать, то соединение обмоток как правило делалось в средине двигателя. На верх выходило только 3 провода.

Часто у таких двигателей обмотки одинаковы , поэтому замер сопротивления показывает примерно одинаковые результаты, например между 1 – 2 и 2 – 3 выводом омметр покажет 10 Ом, а между 1 – 3 – 20 Ом.

В этом случае вывод 2 – будет средней точкой в которой сходятся выводы первой и второй обмоток.

Двигатель подключается следующим образом:
выводы 1 и 2 – в сеть, вывод 3 через конденсатор на вывод 1.

По внешнему виду двигатели Активаторов и Центрифуг – очень похожи, так как часто для унификации использовались одинаковые корпуса и магнитопроводы. Двигатели отличались только типом обмоток и количеством полюсов.

Существует и третий вариант запуска, когда конденсатор подключается только на момент пуска , но они довольно редки, мне такие двигатели на стиральных машинах не попадались.

Особняком стоят схемы подключения 3-х фазных двигателей через фазосдвигающий конденсатор, но тут я их рассматривать не буду.

Итак, вернемся к методу, который использовал я, но прежде еще одно небольшое отступление.

Двигатели с пусковой обмоткой обычно имеют разные параметры пусковой и рабочей обмотки.

Это можно определить как замером сопротивления обмоток, так и визуально пусковая обмотка имеет провод меньшего сечения и ее сопротивление – выше ,

Если оставить пусковую обмотку включенной на несколько минут , она может перегореть ,
так как при нормальной работе она подключается только на несколько секунд.


Например сопротивление пусковой обмотки может быть 25 – 30 Ом, а сопротивление рабочей – 12 – 15 Ом.

Во время работы пусковая обмотка – должна быть отключена иначе двигатель будет гудеть, греться и быстро “пустит дым”.

Если обмотки определены правильно, то при работе без нагрузки в течении 10 – 15 минут двигатель может быть слегка теплым.

Но если перепутать пусковую и рабочую обмотки – двигатель также запустится , и при отключении рабочей обмотки – будет продолжать работать.

Но в этом случае он также будет гудеть, греться и не выдавать положенную мощность.

А теперь переходим к практике.

Сначала нужно проверить состояние подшипников и отсутствие перекоса крышек двигателя. Для этого достаточно просто покрутить вал двигателя.
От легкого толчка он должен вращаться свободно, без заеданий, делая несколько оборотов.
Если все нормально – переходим к следующей стадии.

Нам потребуется низковольтный пробник (батарейка с лампочкой), провода, электро вилка и автомат (желательно 2х полюсный) на 4 – 6 Ампер. В идеале – еще и Омметр с пределом 1 мОм.
Прочный шнурок длинной пол-метра – для “стартера”, малярный скотч и маркер для маркировки проводов двигателя.

Для начала нужно проверить двигатель на замыкание на корпус поочередно проверив выводы двигателя (подключив омметр или лампочку) между выводами и корпусом.

Омметр должен показывать сопротивление в пределах мОм, лампочка не должна гореть.

Далее закрепляем двигатель на столе, собираем цепь питания: вилка – автомат – провода к двигателю.
Маркируем выводы двигателя, приклеив на них флажки из скотча.

Подключаем провода к выводам 1 и 2, наматываем шнурок на вал двигателя, включаем питание и дергаем стартер.
Двигатель – запустился:) Слушаем как он работает секунд 10 – 15 и выключаем вилку из розетки.

Теперь нужно проверить нагрев корпуса и крышек. При “убитых” подшипниках будут греться крышки (и слышен повышенный шум при работе), а при проблемах с подключением – более горячим будет корпус (магнитопровод).

Если все в порядке – переходим дальше, и проводим те же эксперименты с парами выводов 2 – 3 и 3 – 1.

В процессе экспериментов двигатель, скорей всего будет работать на 2х из возможных 3х комбинациях подключения – то есть на рабочей и на пусковой обмотке.

Таким образом находим обмотку, на которой двигатель работает с наименьшим шумом (гулом) и выдает мощность (для этого пытаемся остановить вал двигателя, прижимая к нему деревяшку. Она и будет рабочей.

Теперь можно попытаться запустить двигатель при помощи пусковой обмотки.
Подключив питание к рабочей обмотке, нужно коснуться третьим проводом поочередно коснуться одного и другого вывода двигателя.

Если пусковая обмотка исправна – двигатель должен запуститься. А если нет – то “выбьет автомат” %))).

Конечно этот способ не совершенен, есть риск сжечь двигатель:(и применять его можно только в исключительных случаях. Но меня он выручал много раз.

Лучшим вариантом конечно будет определить тип (марку) двигателя и параметры его обмоток и найти в интернете схему подключения.

Ну вот такая “высшая математика” 😉 А за сим – разрешите откланяться.

Пишите комменты. Задавайте вопросы, и подписывайтесь на обновление блога:).

Стиральные машины, как и любой другой вид техники со временем устаревают и выходят из строя. Мы, конечно же, можем куда-нибудь деть старую стиральную машину , или же разобрать на запчасти. Если вы пошли по последнему пути, то у вас мог остаться двигатель от стиральной машины, который может сослужить вам добрую службу.

Мотор от старой стиральной машины можно приспособить в гараже и соорудить из него электрический наждак. Для этого нужно на вал двигателя будет прикрепить наждачный камень, который будет вращаться. А вы сможете точить об него разные предметы, начиная с ножей, заканчивая топорами и лопатами. Согласитесь, вещь довольно нужная в хозяйстве. Также из двигателя можно соорудить другие устройства, которые требуют вращения, например, промышленный миксер или еще что.

Напишите в комментариях, что вы решили сделать из старого двигателя для стиральной машины, думаем многим будет это очень интересно и полезно прочитать.

Если вы придумали, что сделать со старым мотором, то первый вопрос, который вас может тревожить, это как подключить электродвигатель от стиральной машины в сеть 220 в. И как раз на этот вопрос мы вам и поможем найти ответ в этой инструкции.

Перед тем как приступить непосредственно к подключению мотора, нужно сначала ознакомиться с электрической схемой, на которой будет все понятно.

Подключение двигателя от стиральной машины к сети 220 Вольт не должно занять у вас много времени. Для начала посмотрите на провода, которые идут от двигателя, сначала может показаться, что их достаточно много, но на самом деле, если посмотреть на вышеприведенную схему, то далеко не все нам нужны. Конкретно нас интересуют провода только ротора и статора.

Разбираемся с проводами

Если посмотреть на колодку с проводами спереди, то обычно первые два левых провода – это провода таходатчика , через них регулируются обороты двигателя стиральной машины. Они нам не нужны. На изображении они белые и перечеркнуты оранжевым крестом.

Дальше идет провода статора красный и коричневый. Мы их пометили красными стрелочками чтобы было более понятно. Следующие за ними идут два провода на щетки ротора – серый и зеленый, которые помечены синими стрелками. Все провода, на которые указаны стрелки нам понадобятся для подключения.

Для подключения мотора от стиральной машины к сети 220 В нам не потребуется пускового конденсатора, а также сам двигатель не нуждается в пусковой обмотке.

В разных моделях стиральных машин провода будут отличаться по цветам, но принцип подключения остается тот же. Вам просто нужно найти необходимые провода прозвонив их мультиметром.

Для этого переключите мультиметр на измерение сопротивления. Одним щупом касайтесь первого провода, а вторым ищите его пару.

У работающего тахогенератора в спокойном состоянии обычно сопротивление составляет 70 Ом. Эти провода вы найдете сразу и уберете их в сторону.

Остальные провода просто прозванивайте и находите им пары.

Подключаем двигатель от стиральной машины автомат

После того как мы нашли нужные нам провода осталось их соединить. Для этого делаем следующее.

Согласно схеме нужно соединить один конец обмотки статора со щеткой ротора. Для этого удобнее всего сделать перемычку и заизолировать ее.


На изображении перемычка выделена зеленым цветом.

После этого у нас остаются два провода: один конец обмотки ротора и провод, идущий на щетку. Они-то нам и нужны. Эти два конца и соединяем с сетью 220 в.

Как только вы подадите напряжение на эти провода, мотор сразу же начнет вращение. Двигатели стиральных машин довольно мощные, поэтому будьте внимательны, чтобы не возникло травм. Лучше всего мотор предварительно закрепить на ровной поверхности.

Если вы хотите сменить вращение двигателя в другую сторону, то нужно просто перекинуть перемычку на другие контакты, поменять провода щеток ротора местами. Посмотрите на схеме, как это выглядит.


Если вы все сделали правильно, то мотор начнет вращаться. Если же этого не случилось, то проверьте двигатель на работоспособность и уже после этого делайте выводы.
Подключить мотор современной стиральной машинки достаточно просто, что не скажешь о старых машинках. Здесь схема немного другая.

Подключение мотора старой стиральной машины

Подключение двигателя старой стиралки немного сложнее и потребует от вас найти нужные обмотки самим с помощью мультиметра. Для того, чтобы найти провода, прозвоните обмотки двигателя и найдите пару.


Для этого переключите мультиметр на измерение сопротивления, одним концом коснитесь первого провода, а вторым по очереди найдите его пару. Запишите или запомните сопротивление обмотки – нам это понадобится.

Дальше аналогично отыщите вторую пару проводов и зафиксируйте сопротивление. У нас получилось две обмотки с разным сопротивлением. Теперь нужно определить какая из них рабочая, а какая пусковая. Тут все просто, у рабочей обмотки сопротивление должно быть меньше чем у пусковой.

Для запуска двигателя подобного плана вам понадобится кнопка или пусковое реле. Кнопка нужна с не фиксируемым контактом и подойдет, допустим, кнопка от дверного звонка.

Теперь подключаем двигатель и кнопку по схеме: Но обмотку возбуждения (ОВ) напрямую подается 220 В. На пусковую же обмотку (ПО) нужно подать это же напряжение, только для запуска двигателя на короткий срок, и отключить ее – для этого и нужна кнопка (SB).

ОВ соединяем напрямую с сетью 220В, а ПО соединим с сетью 220 В через кнопку SB.

  • ПО – пусковая обмотка. Предназначается только для запуска двигателя и задействована в самом начале, пока двигатель не начнет вращаться.
  • ОВ – обмотка возбуждения. Это рабочая обмотка, которая постоянно находится в работе, она и вращает двигатель все время.
  • SB – кнопка с помощью которой подается напряжение на пусковую обмотку и после запуска мотора отключает ее.

После того, как вы произвели все подключение, достаточно запустить двигатель от стиральной машины. Для этого нажмите на кнопку SB и, как только двигатель начнет вращаться, отпустите ее.

Для того чтобы сделать реверс (вращения двигателя в противоположную сторону), вам нужно поменять местами контакты обмотки ПО. Тем самым мотор начнет вращение в другую сторону.

Все, теперь мотор от старой стиралки может сослужить вам в качестве нового устройства.

Перед запуском двигателя обязательно закрепите его на ровной поверхности, т. к. обороты вращения его достаточно большие.

1. Применение коллекторных двигателей в стиральных машинах

Коллекторные двигатели получили широкое применение не только в электроинструменте (дрели, шуруповёрты, болгарки и т.д), мелких бытовых приборах (миксеры, блендеры, соковыжималки и т.п), но и в стиральных машинах в качестве двигателя привода барабана. Коллекторными двигателями оснащено большинство (примерно 85%) всех бытовых стиральных машин. Эти двигатели применялись уже во многих стиральных машинах ещё с середины 90-х годов и со временем полностью вытеснили однофазные конденсаторные асинхронные двигатели .

Коллекторные моторы более компактные, мощные и простые в управлении. Этим и объясняется их столь массовое применение. В стиральных машинах применяются коллекторные двигатели таких марок производителей как: INDESCO, WELLING, C.E.S.E.T., SELNI, SOLE, FHP, ACC . Внешне они немного отличаются друг от друга, могут иметь разную мощность, тип крепления, но принцип работы их совершенно одинаковый.

2. Устройство коллекторного двигателя для стиральной машины


1. Статор
2. Коллектор ротора
3. Щётка (применяются всегда две щётки,
вторую на рисунке не видно)
4. Магнитный ротор тахогенератора
5. Катушка (обмотка) тахогенератора
6. Стопорная крышка тахогенератора
7. Клеммная колодка двигателя
8. Шкив
9. Алюминиевый корпус

Рис.2

Коллекторный двигатель – это однофазный двигатель с последовательным возбуждением обмоток, предназначенный для работы от сети переменного или постоянного тока. Поэтому его называют ещё универсальный коллекторный двигатель (УКД).

Большинство коллекторных двигателей применяемых в стиральных машинах имеют конструкцию и внешний вид представленный на (рис.2)
Данный двигатель имеет ряд таких основных частей как: статор (с обмоткой возбуждения), ротор, щетка (скользящий контакт, всегда применяются две щётки), тахогенератор (магнитный ротор которого крепится к торцевой части вала ротора, а катушка тахогенератора фиксируется стопорной крышкой или кольцом). Все составные части скрепляются в единую конструкцию двумя алюминиевыми крышками, которые образуют корпус двигателя. На клеммную колодку выводятся контакты обмоток статора, щёток, тахогенератора необходимые для подключения к электрической схеме. На вал ротора запрессован шкив, через который посредством ременной передачи приводится в движение барабан стиральной машины.

Чтобы в дальнейшем лучше понять как работает коллекторный двигатель, давайте рассмотрим устройство каждого из его основных узлов.

2.1 Ротор (якорь)


Рис.3
Ротор (якорь) – вращающаяся (подвижная) часть двигателя (Рис.3) . На стальной вал устанавливается сердечник, который для уменьшения вихревых токов изготавливают из наборных пластин электротехнической стали. В пазы сердечника укладываются одинаковые ветви обмотки, выводы которых прикреплены к контактным медным пластинам (ламелям), образующие коллектор ротора. На коллекторе ротора в среднем может быть 36 ламелей располагающихся на изоляторе и разделённые между собой зазором.
Для обеспечения скольжения ротора, на его вал запрессовываются подшипники, опорами которых служат крышки корпуса двигателя. Так же, на вал ротора запрессован шкив с проточенными канавками для ремня, а на противоположной торцевой стороне вала есть отверстие с резьбой в которое прикручивается магнитный ротор тахогенератора.

2.2 Статор

Статор – неподвижная часть двигателя (Рис.4) . Для уменьшения вихревых токов, сердечник статора выполнен из наборных пластин электротехнической стали образующих каркас, на котором уложены две равные секции обмотки соединённые последовательно. У статора почти всегда есть только два вывода обеих секций обмотки. Но в некоторых двигателях применяется так называемое секционирование обмотки статора и дополнительно имеется третий вывод между секциями. Обычно это делается из-за того, что при работе двигателя на постоянном токе, индуктивное сопротивление обмоток оказывает меньшее сопротивление постоянному току и ток в обмотках выше, поэтому задействуются обе секции обмотки, а при работе на переменном токе включается лишь одна секция, так как переменному току индуктивное сопротивление обмотки оказывает большее сопротивление и ток в обмотке меньше. В универсальных коллекторных двигателях стиральных машин применяется тот же принцип, только секционирование обмотки статора необходимо для увеличения количества оборотов вращения ротора двигателя. При достижении определённой скорости вращения ротора, электрическая схема двигателя коммутируется таким образом, чтобы включалась одна секция обмотки статора. В результате индуктивное сопротивление снижается и двигатель набирает ещё большие обороты. Это необходимо на стадии режима отжима (центрифугирования) в стиральной машине. Средний вывод секций обмотки статора применяется не во всех коллекторных двигателях.
Рис.4 Статор коллекторного двигателя (вид с торца)

Для защиты двигателя от перегрева и токовых перегрузок, последовательно через обмотку статора включают тепловую защиту с самовосстанавливающимися биметаллическими контактами (на рисунке тепловая защита не показана). Иногда контакты тепловой защиты выводят на клеммную колодку двигателя.


2.3 Щётка

Рис.5

Щётка – это скользящий контакт, является звеном электрической цепи обеспечивающим электрическое соединение цепи ротора с цепью статора. Щётка крепится на корпусе двигателя и под определённым углом примыкает к ламелям коллектора. Применяется всегда как минимум пара щёток, которая образует так называемый щёточно-коллекторный узел.
Рабочая часть щётки – графитовый брусок с низким удельным электрическим сопротивлением и низким коэффициентом трения. Графитовый брусок имеет гибкий медный или стальной жгутик с припаянной контактной клеммой. Для прижима бруска к коллектору применяется пружинка. Вся конструкция заключена в изолятор и крепится к корпусу двигателя. В процессе работы двигателя, щётки из-за трения о коллектор стачиваются, поэтому они считаются расходным материалом.

(от др.-греч. τάχος – быстрота, скорость и генератор) – измерительный генератор постоянного или переменного тока, предназначенный для преобразования мгновенного значения частоты (угловой скорости) вращения вала в пропорциональный электрический сигнал. Тахогенератор предназначен для контроля скорости вращения ротора коллекторного двигателя. Ротор тахогенератора крепится напрямую к ротору двигателя и при вращении в обмотке катушки тахогенератора по закону взаимоиндукции наводится пропорциональная электродвижущая сила (ЭДС). Значение переменного напряжения, считывается с выводов катушки и обрабатывается электронной схемой, а последняя в конечном итоге задаёт и контролирует необходимую, постоянную скорость вращения ротора двигателя.
Такой же принцип работы и конструкцию имеют тахогенераторы применяемые в однофазных и трёхфазных асинхронных двигателях стиральных машин.

Рис.6

В коллекторных двигателях некоторых моделей стиральных машин марки Bosch (Бош) и Siemens (Сименс) вместо тахогенератора применяется датчик Холла . Это очень компактный и недорогой полупроводниковый прибор, который устанавливается на неподвижной части двигателя и взаимодействует с магнитным полем кругового магнита установленным на валу ротора непосредственно рядом с коллектором. У датчика Холла три вывода, сигналы с которого так же считываются и обрабатываются электронной схемой (подробно принцип работы датчика Холла в данной статье мы рассматривать не будем).


Как и в любом электродвигателе, принцип работы коллекторного двигателя основан на взаимодействии магнитных полей статора и ротора, через которые проходит электрический ток. Коллекторный двигатель стиральной машины имеет последовательную схему подключения обмоток. В этом легко убедится рассмотрев его развёрнутую схему подключения к электрической сети (Рис.7) .

У коллекторных двигателей стиральных машин, на контактной колодке может быть от 6 до 10 задействованных контактов. На рисунке представлены все максимальные 10 контактов и всевозможные варианты подключения узлов двигателя.

Зная устройство, принцип работы и стандартную схему подключения коллекторного двигателя, без труда можно запустить любой двигатель напрямую от электросети без применения электронной схемы управления и для этого не надо запоминать особенности расположения выводов обмоток на клеммной колодке каждой марки двигателя. Для этого, достаточно всего лишь определить выводы обмоток статора и щёток и подключить их согласно схеме на приведённом ниже рисунке.

Порядок расположения контактов клеммной колодки коллекторного двигателя стиральной машины выбран произвольно.



Рис.7

На схеме, оранжевыми стрелочками условно показано направление тока по проводникам и обмоткам двигателя. От фазы (L) ток идёт через одну из щёток на коллектор, проходит по виткам обмотки ротора и выходит через другую щётку и через перемычку ток последовательно проходит по обмоткам обеих секций статора доходя до нейтрали (N).

Такой тип двигателя независимо от полярности подаваемого напряжения вращается в одну сторону, так как за счёт последовательного соединения обмоток статора и ротора смена полюсов их магнитных полей происходит одновременно и результирующий момент остаётся направленным в одну сторону.

Для того, чтобы двигатель начал вращаться в другую сторону, необходимо лишь изменить последовательность коммутации обмоток.
Пунктирной линией обозначены элементы и выводы, которые задействованы не во всех двигателях. Например датчик Холла, выводы термозащиты и вывод половины обмотки статора. При запуске коллекторного двигателя напрямую, подключаются только обмотки статора и ротора (через щётки).

Внимание! Представленная схема подключения коллекторного двигателя напрямую, не имеет средств электрической защиты от короткого замыкания и устройств ограничивающих ток. При таком подключении от бытовой сети, двигатель развивает полную мощность, поэтому не следует допускать длительного прямого включения.

4. Управление коллекторным двигателем в стиральной машине

Принцип действия электронных схем, в которых используется симистор, основан на двухполупериодном фазовом управлении. На графике (рис.9) показано как изменяется величина питающего мотор напряжения в зависимости от поступающих на управляющий электрод симистора импульсов с микроконтроллера.


Рис.9 Изменение величины питающего напряжения в зависимости от фазы поступающих импульсов управления

Таким образом можно отметить,что частота вращения ротора двигателя напрямую зависит от напряжения прикладываемого к обмоткам двигателя.

Ниже, на (Рис.10) представлены фрагменты условной электрической схемы подключения коллекторного двигателя с тахогенератором к электронному блоку управления (EC) .
Общий принцип схемы управления коллекторного двигателя таков. Управляющий сигнал с электронной схемы поступает на затвор симистора (TY) ,тем самым открывая его и по обмоткам двигателя начинает протекать ток,что приводит к вращению ротора (M) двигателя. Вместе с тем, тахогенератор (P) передаёт мгновенное значение частоты вращения вала ротора в пропорциональный электрический сигнал. По сигналам с тахогенератора создаётся обратная связь с сигналами управляющих импульсов поступаемых на затвор симистора. Таким образом обеспечивается равномерная работа и частота вращения ротора двигателя при любых режимах нагрузки, вследствие чего барабан в стиральных машинах вращается равномерно. Для осуществления реверсивного вращения двигателя применяются специальные реле R1 и R2 ,коммутирующие обмотки двигателя.
Рис.10 Изменение направления вращения двигателя

В некоторых стиральных машинах, коллекторный двигатель работает на постоянном токе. Для этого, в схеме управления, после симистора, устанавливают выпрямитель переменного тока построенный на диодах (“диодный мост”). Работа коллекторного двигателя на постоянном токе увеличивает его КПД и максимальный крутящий момент.

5. Достоинства и недостатки универсальных коллекторных двигателей

К достоинствам можно отнести: компактные размеры, большой пусковой момент, быстроходность и отсутствие привязки к частоте сети, возможность плавного регулирования оборотов (момента) в очень широком диапазоне — от ноля до номинального значения — изменением питающего напряжения, возможность применения работы как на постоянном,так и на переменном токе.
Недостатки – наличие коллекторно-щёточного узла и в связи с этим: относительно малая надёжность (срок службы), искрение возникающее между щётками и коллектором из-за коммутации, высокий уровень шума, большое число деталей коллектора.

6. Неисправности коллекторных двигателей

Самая уязвимая часть двигателя – коллекторно-щёточный узел. Даже в исправном двигателе, между щётками и коллектором происходит искрение, которое довольно сильно нагревает его ламели. При износе щёток до предела и вследствие их плохого прижима к коллектору, искрение порой достигает кульминационного момента представляющего электрическую дугу. В этом случае ламели коллектора сильно перегреваются и иногда отслаиваются от изолятора, образуя неровность,после чего,даже заменив изношенные щётки, двигатель будет работать с сильным искрением,что приведёт его к выходу из строя.

Иногда происходит межвитковое замыкание обмотки ротора или статора (значительно реже), что так же проявляется в сильном искрении коллекторно-щёточного узла (из-за повышенного тока) или ослаблении магнитного поля двигателя, при котором ротор двигателя не развивает полноценный крутящий момент.
Как мы и говорили выше, щётки в коллекторных двигателях при трении о коллектор со временем стачиваются. Поэтому большая часть всех работ по ремонту двигателей сводится к замене щёток.


Небольшое предисловие.

В моей мастерской работает несколько самодельных станков, построенных на базе асинхронных двигателей от старых советских стиральных машин.

Я использую двигатели как с “конденсаторным” пуском, так и двигатели с пусковой обмоткой и пусковым реле (кнопкой)

Особых трудностей с подключением и запуском у меня не возникало.
При подключении я иногда пользовался омметром (чтобы найти пусковую и рабочую обмотки).

Но чаще использовал свой опыт и метод “научного тыка” %)))

Возможно таким заявлением на навлеку на себя гнев “знающих”, которые “все и всегда делают по науке” :))).

Но у меня и такой метод давал положительный результат, двигатели – работали, обмотки не перегорали:).

Конечно, если есть “как и чем” – то нужно делать “как правильно” – это я о наличии тестера и замере сопротивления обмоток.

Но в реальности не всегда так получается, а “кто не рискует… ” – ну вы поняли:).

Почему я об этом говорю?
Буквально вчера я получил вопрос от своего зрителя, опущу некоторые моменты переписки, оставив только суть:


У меня из двигателя выходит 3 провода, можете что нибудь подсказать?

—-

Я пытался запускать как вы сказали через пусковое реле,(Кратковременно коснулся провода) но через некоторое время работы он начинает дымить и греться. МУльтиметра у меня нет, поэтому не могу проверить сопротивление обмоток(

Безусловно, тот метод о котором я сейчас расскажу – немного рискованный, особенно для человека, который не имеет дела с подобной работой постоянно.

Поэтому нужно быть предельно внимательным, и при первой же возможности проверить результаты “научного тыка” при помощи тестера.

Теперь к делу!

Сначала вкратце расскажу о типах двигателей, которые использовались в советских стиральных машинках.

Эти двигатели условно можно было разделить на 2 класса по мощности и скорости вращения.

В основной массе активаторных стиральных машин типа “тазик с моторчиком”, для привода активатора использовался двигатель 180 Вт, 1350 – 1420 об/мин .

Как правило такой тип двигателя имел 4 раздельных вывода (пусковая и рабочая обмотки) и подключался через пуско-защитное реле или (в совсем старых версиях) через 3-х контактную пусковую кнопку Фото 1.

Фото 1 Пусковая кнопка.

Раздельные выводы пусковой и рабочей обмотки позволяли получить возможность реверса (для разных режимов стирки и предотвращения скручивания белья).

Для этого в машинах поздних моделей был добавлен простой командаппарат, коммутирующий подключение двигателя.

Встречаются двигатели мощностью 180 Вт, у которых пусковая и рабочая обмотка соединялись в средине корпуса , и на верх выходило только три вывода (фото 2)

Фото 2 Три вывода обмотки.

Второй тип двигателей использовался в приводе центрифуги , поэтому он имел большие обороты, но меньшую мощность – 100-120 вт, 2700 – 2850 об/мин.

Двигатели центрифуг обычно имели постоянно включенный, рабочий конденсатор.

Поскольку центрифугу не было необходимости реверсировать, то соединение обмоток как правило делалось в средине двигателя. На верх выходило только 3 провода.

Часто у таких двигателей обмотки одинаковы , поэтому замер сопротивления показывает примерно одинаковые результаты, например между 1 – 2 и 2 – 3 выводом омметр покажет 10 Ом, а между 1 – 3 – 20 Ом.

В этом случае вывод 2 – будет средней точкой в которой сходятся выводы первой и второй обмоток.

Двигатель подключается следующим образом:
выводы 1 и 2 – в сеть, вывод 3 через конденсатор на вывод 1.

По внешнему виду двигатели Активаторов и Центрифуг – очень похожи, так как часто для унификации использовались одинаковые корпуса и магнитопроводы. Двигатели отличались только типом обмоток и количеством полюсов.

Существует и третий вариант запуска, когда конденсатор подключается только на момент пуска , но они довольно редки, мне такие двигатели на стиральных машинах не попадались.

Особняком стоят схемы подключения 3-х фазных двигателей через фазосдвигающий конденсатор, но тут я их рассматривать не буду.

Итак, вернемся к методу, который использовал я, но прежде еще одно небольшое отступление.

Двигатели с пусковой обмоткой обычно имеют разные параметры пусковой и рабочей обмотки.

Это можно определить как замером сопротивления обмоток, так и визуально пусковая обмотка имеет провод меньшего сечения и ее сопротивление – выше ,

Если оставить пусковую обмотку включенной на несколько минут , она может перегореть ,
так как при нормальной работе она подключается только на несколько секунд.


Например сопротивление пусковой обмотки может быть 25 – 30 Ом, а сопротивление рабочей – 12 – 15 Ом.

Во время работы пусковая обмотка – должна быть отключена иначе двигатель будет гудеть, греться и быстро “пустит дым”.

Если обмотки определены правильно, то при работе без нагрузки в течении 10 – 15 минут двигатель может быть слегка теплым.

Но если перепутать пусковую и рабочую обмотки – двигатель также запустится , и при отключении рабочей обмотки – будет продолжать работать.

Но в этом случае он также будет гудеть, греться и не выдавать положенную мощность.

А теперь переходим к практике.

Сначала нужно проверить состояние подшипников и отсутствие перекоса крышек двигателя. Для этого достаточно просто покрутить вал двигателя.
От легкого толчка он должен вращаться свободно, без заеданий, делая несколько оборотов.
Если все нормально – переходим к следующей стадии.

Нам потребуется низковольтный пробник (батарейка с лампочкой), провода, электро вилка и автомат (желательно 2х полюсный) на 4 – 6 Ампер. В идеале – еще и Омметр с пределом 1 мОм.
Прочный шнурок длинной пол-метра – для “стартера”, малярный скотч и маркер для маркировки проводов двигателя.

Для начала нужно проверить двигатель на замыкание на корпус поочередно проверив выводы двигателя (подключив омметр или лампочку) между выводами и корпусом.

Омметр должен показывать сопротивление в пределах мОм, лампочка не должна гореть.

Далее закрепляем двигатель на столе, собираем цепь питания: вилка – автомат – провода к двигателю.
Маркируем выводы двигателя, приклеив на них флажки из скотча.

Подключаем провода к выводам 1 и 2, наматываем шнурок на вал двигателя, включаем питание и дергаем стартер.
Двигатель – запустился:) Слушаем как он работает секунд 10 – 15 и выключаем вилку из розетки.

Теперь нужно проверить нагрев корпуса и крышек. При “убитых” подшипниках будут греться крышки (и слышен повышенный шум при работе), а при проблемах с подключением – более горячим будет корпус (магнитопровод).

Если все в порядке – переходим дальше, и проводим те же эксперименты с парами выводов 2 – 3 и 3 – 1.

В процессе экспериментов двигатель, скорей всего будет работать на 2х из возможных 3х комбинациях подключения – то есть на рабочей и на пусковой обмотке.

Таким образом находим обмотку, на которой двигатель работает с наименьшим шумом (гулом) и выдает мощность (для этого пытаемся остановить вал двигателя, прижимая к нему деревяшку. Она и будет рабочей.

Теперь можно попытаться запустить двигатель при помощи пусковой обмотки.
Подключив питание к рабочей обмотке, нужно коснуться третьим проводом поочередно коснуться одного и другого вывода двигателя.

Если пусковая обмотка исправна – двигатель должен запуститься. А если нет – то “выбьет автомат” %))).

Конечно этот способ не совершенен, есть риск сжечь двигатель:(и применять его можно только в исключительных случаях. Но меня он выручал много раз.

Лучшим вариантом конечно будет определить тип (марку) двигателя и параметры его обмоток и найти в интернете схему подключения.

Ну вот такая “высшая математика” 😉 А за сим – разрешите откланяться.

Пишите комменты. Задавайте вопросы, и подписывайтесь на обновление блога:).

Подключение электродвигателя от стиральной машины + схема (мотора)

Если у вас сохранился двигатель от стиральной машины, то вы можете придумать, как его использовать. Например, вы можете сделать из него точильную машинку. Если зафиксировать на нем специальную насадку в виде круглого точильного камня, то вы сможете затачивать ножи, ножницы, топор и другие инструменты.

Так же вы можете применить электродвигатель от стиральной машинки и в строительстве. Например, при создании фундамента для будущего дома, вы можете сделать из него «вибратор», который пригодиться при усадке бетонного раствора. Так же его можно применить и в других целях. Двигатель может вращать различные насадки и приводить в движение какие-либо механизмы.

Используя свою фантазию и навыки в подобных делах, вы можете придумать самые разнообразные способы применения электродвигателя. И конечно, при воплощении любого варианта использования данного мотора, вам понадобиться его подключить.

Как подключить электродвигатель современной стиральной машины?

Если вам понадобилось подключить электродвигатель современной стиральной машинки к сети переменного напряжения двести двадцать вольт, то следует учитывать особенности данной детали. Их особенности заключаются в следующем:

  • Они не нуждаются в пусковой обмотке.
  • Для запуска не понадобиться пусковой конденсатор.

Для запуска нам понадобится нужным образом соединить провода на двигателе. Два белых провода, которые расположены слева, мы использовать не будем. Они необходимы для измерения оборотов электродвигателя. Следующий по очередности – красный провод. Он идет на обмотку статора. За ним находиться коричневый провод. Он так же направлен на одну из обмоток статора. Серый и зеленый провода подключены к щеткам двигателя.

Для того, чтобы представить вам схему подключения более наглядно, мы подготовили следующую схему:

К одному из выводов обмотки мы подключим один провод 220 вольт. На следующую подключим одну из щеток. На оставшуюся щетку двигателя стиральной машины подсоединим второй провод 220 вольт. Так, как это показано на схеме ниже:

После этого, вы можете включить двигатель в сеть 220 и проверить его работоспособность. Если вы все сделали правильно, то увидите, как вращается движущаяся часть мотора и услышите шум его работы. Если все прошло нормально, значит двигатель готов к использованию. Кстати, при таком подключении он движется в одну сторону. А что необходимо сделать, чтобы изменить направления вращения? Смотрите схему:

Как вы видите из схематического отображения на рисунке выше, для того, чтобы сменить направление вращения нам понадобилось поменять местами подключения щеток электродвигателя. После переподключения двигателя вновь проверьте его работоспособность, подсоединив его к сети 220 вольт.

Кстати, для того, чтобы облегчить вам работу, мы решили добавить видео инструкцию. В которой описан весь процесс подключения двигателя от стиральной машинки к электричеству.

Способ подключения мотора от современной машинки в этой статье основан именно на том материале, который представлен в данном видео. Поэтому поблагодарим автора этого ролика и посмотрим его очень внимательно:

Как подключить мотор старой машинки?

Правильно подключить электродвигатель машинки не так уж и просто. Но если вы знаете, как это делается, то проблем это не доставит.

Вначале нам необходимо отыскать две пары вывода. Для того, чтобы понять, где они, мы можем воспользоваться мультиметром (тестером). Выберем один из выводов обмотки и подсоединим к нему щуп тестера.  Оставшимся щупом мультиметра мы проверим другие выводы, чтобы найти парный.

Таким образом мы отыщем первую пару. Те два вывода, что остались, образуют еще одну пару. Теперь нам нужно понять, где пусковая и рабочая обмотка. Для этого нужно замерить сопротивление. У пусковой сопротивляемость будет больше.

Схема

И так, мы уже нашли рабочую и пусковую обмотку. Теперь мы можем подключить двигатель используя схематичный рисунок, который вы видите рядом. На схеме показано:

  • ПО – пусковая обмотка. Она нужна для того, чтобы создать начальный крутящий момент в какую-либо сторону.
  • ОВ – обмотка возбуждения. Она же называется рабочей обмоткой. Она нужна для создания магнитного поля вращения.
  • SB – включатель (кнопка) для недолговременного включения ПО к электросети в двести двадцать вольт.

Если возникнет необходимость поменять сторону, в которую будет направлено вращение мотора, вам понадобиться сменить выводы ПО местами. При такой перемене направление вращения измениться на противоположное.

Когда будете проводить пробное подключение и запуск движка, не забудьте позаботиться о своей безопасности и сохранности окружающих. Обязательно зафиксируйте электродвигатель. Это предотвратит его сильные вибрации и лишние движения.

Надеемся, что данная запись помогла вам справиться с самостоятельным подключением мотора стиральной машинки. Продолжайте читать наш сайт и удачного дня!

   

Двигатель от стиральной машины – схема подключения электродвигателя

Ни для кого не секрет, что именно двигатель от стиральной машины является главным составляющим оборудования. Он способствует функционированию барабана, за счет чего вещи в нем вращаются и тем самым выстирываются. Случается, что агрегат уже непригоден для использования, но электродвигатель в нем «как новенький». В данном случае у домашнего мастера возникает вопрос: можно ли подключить его к другой технике? Все возможно, но для начала необходимо понять, какой именно двигатель был установлен в вашу машинку, и еще изучить схему подключения.

Содержание

  1. Разновидности приборов
  2. Рекомендации специалистов
  3. Как разобраться с подключением агрегата?
  4. Регулятор оборотов
  5. Какие могут быть неисправности?

Разновидности приборов

В первых модификациях машинок, устройство, которое преобразовывало электрическую энергию в механическую, было оснащено ременным приводом, присоединенным к баку. На сегодняшний день в большей части моделей применяется именно эта технология, но более обновленные агрегаты значительно эволюционировали. Благодаря интенсивному развитию технологических процессов, в продаже появилось оборудование, функционирующее от одного из трех видов моторов:

  • коллекторный;
  • асинхронный;
  • инверторный.

Каждый вариант обладает рядом индивидуальных особенностей, связанных с конструкцией, запуском и подключением двигателя от стиральной машины. Прежде чем купить домашнюю «помощницу», следует учитывать данные параметры.

Коллекторный

Схема подключения коллекторного двигателя

Более 70% бытовой техники имеет коллекторный двигатель. Пик популярности изделия был в 1990 году, но в 2000-х их практически полностью подменили асинхронные устройства. Изделие функционирует от стабильного постоянного или переменного электротока. В комплектацию входит статор, ротор, коробка, тахогенератор, 2 щетки.

Плюсы:

  • компактные размеры;
  • увеличенный интервал запуска;
  • не чувствителен к перепадам электричества;
  • быстроходность;
  • возможность регуляции мощности вращений.

Минусы:

Маленький эксплуатационный срок и потребность регулярной замены щеток. Также следует выделить повышенный уровень шумности.

Асинхронный

Схема подключения асинхронной разновидности для проверки обмотки

Выпускается в двух вариантах: двухфазные и трехфазные электродвигатели для стиральной машины. Комплектация изделия включает неподвижный статор и ротор, который воспроизводит обороты барабаном. Мощность вращения варьируется в пределах 2800 об./мин.

Плюсы:

  • простые конструктивные особенности;
  • не требует регулярного обслуживания;
  • воспроизводит низкий уровень звуков;
  • доступная цена.

Минусы:

Большие габариты, пониженный коэффициент полезного действия. Могут возникнуть существенные сложности в управлении электронными схемами.

Инверторный

Схема подключения мотора инверторного типа

Изделие разработано по инновационным технологиям концерном LG. Но сегодня данное оборудование применяют и другие фирмы, такие как Haier, Самсунг и т.д. В моторе от стиральной машины автомат, как и у предыдущего варианта, присутствует только ротор и статор. Несмотря на этот фактор, работает он по другому принципу. Приводной элемент, монтируется напрямую к барабану. Таким образом, исключается использование уязвимых крепежных деталей.

Плюсы:

  • простая конструкция;
  • сравнительно маленькие габариты;
  • пониженная степень вибрации;
  • высокий процент КПД;
  • отсутствие потребности регулярной замены каких-либо деталей;
  • низкий уровень шума.

Минусы:

Основным недостатком является сложная электронная схема подключения двигателя от стиральной машины, за счет чего производители увеличивают на оборудование цену.

Рекомендации специалистов

Прежде, чем запустить электродвигатель от стиральной машины, следует помнить два важных нюанса:

  1. Оборудование не будет запускаться при использовании конденсатора.
  2. Для подключения не требуется применять пусковую обмотку.

В первую очередь следует определиться, какой цвет провода за что отвечает:

  • 2 белых – измерительный генератор, они не потребуются;
  • 1 красного цвета и 1 коричневого – уходят на подключение к обмотке ротора и статора;
  • темно-зеленый и серый – используется для монтажа к графитовым щекам.

Необходимо быть готовым к тому, что в различных модификациях мотора от стиральной машины могут присутствовать провода, различающиеся по оттенку. Но это совершенно не меняет принцип присоединения.

В разных вариациях цвета проводов могут отличаться

Чтобы обнаружить пары, следует каждый элемент прозвонить. Провода, отвечающие за подключение к измерительному генератору, обладают сопротивлением 60-70 Ом, их следует убрать в сторону,  предварительно объединив изолентой. Продолжайте прозвон для обнаружения остальных пар.

Как разобраться с подключением агрегата?

Предварительно, перед началом работ, следует визуально ознакомиться со схемой электронного присоединения. Система устройства достаточно простая и будет понятна для любого домашнего специалиста.

Подключается электродвигатель от стиральной машинки элементарным образом:

  1. Для начала необходимо определить провода, которые исходят от статора и ротора.
  2. По схематическим параметрам объединяется обмотка статора с щеткой ротора.
  3. Сделайте перемычку, которая обозначается малиновым цветом и заизолируйте ее изолентой.
  4. Остальные 2 провода, которые выступают от обмотки ротора и оставшейся щетки присоединяются к электросети.

Во избежание травм перед началом натвердо зафиксируйте его на прочной поверхности. Дело в том, что при подведении техники к элетрической сети 220 В, она сразу начнет воспроизводить обороты. Таким образом вы создадите безопасную обстановку для тестового подключения.

Если требуется изменить направление оборотов, нужно просто переместить перемычку к другим контактам. Для автоматизации режима включения и выключения достаточно установить на соответствующие провода клавиши.

ВИДЕО: Как подключить двигатель от стиральной машины к 220

Регулятор оборотов

У моторов от стиральных машин большая скорость оборотов, что требует установку специального регулятора, который позволит агрегатам переключаться на разные режим работы. Для данной задачи отлично подойдет обычное реле для  настройки мощности светового потока, но здесь потребуются некоторые доработки.

  1. Достаньте из старой стиралки симистор с радиатором, который отвечает за работу автоматизированного включения.
  2. Впаяйте данную деталь в микросхему устройства, предварительно убрав маломощный прибор.

Какие могут быть неисправности?

Исходя из данной информации, любой мастер запросто справиться с задачей подключения оборудования. Но при запуске двигателя от стиральной машинки может произойти небольшой казус – устройство не будет реагировать на включение.  Попробуем разобраться, в чем причина.

При запуске в течение одной минуты проконтролируйте температурный режим мотора. За маленький промежуток времени тепло не распространится на все составляющие агрегата, поэтому есть возможность определить, где именно происходит быстрое повышение температуры – подшипник, ротор или другие запчасти.

Главным причинами неполадок считаются:

  • разрушение или засор подшипникового узла;
  • резкое увеличение резервуара конденсатора (актуально исключительно для асинхронного вида мотора машинки автомат).

Если обнаружится одна из проблем, потребуется купить запасные части и установить их в электродвигатель.

ВИДЕО: Регулятор оборотов с поддержанием мощности (подключение, настройка, тест)

Запуск эл двигателя от стиральной машины. Схемы подключения двигателя стиральной машины. Подключение двигателя старого образца

Электрический двигатель нередко называют чуть ли не сердцем, которое устанавливается в бытовой технике. И это не зря, ведь именно благодаря электродвигателю происходит вращение барабана, установленного в стиральной машины. Очень многие сомневаются, можно ли подсоединить движок от стиралки к другому устройству собственноручно?

Электродвигатель от сломанной стиралки

Что можно сделать с движком стиралки

Исполнить это вполне реально, даже если вы практически не разбираетесь в таких вопросах. Например, у вас вышла из строя стиральная машина марки «Индезит», при этом двигатель (мощность его составляет 430 Вт, а развивающаяся скорость достигает 11500 оборотов в минуту) ещё в рабочем состоянии, и его моторесурс ещё в норма. В таком случае он может пригодиться в хозяйстве.

Вот несколько идей, который помогут вам применить или подключить по новой двигатель установленный в стиральной машины, которая вышла из строя:

  1. Элементарным вариантом станет создание точильного станка. В каждом доме периодически стачиваются и тупятся ножи и ножницы, которые необходимо заточить. Для этого необходимо тщательно закрепить электромотор на устойчивой поверхности, прикрепит к валу специальный камень для заточки или шлифовальный круг и включить его в сеть.
  2. Неплохой вариант – это изготовление тротуарной плитки. Также можно сделать шлакоблоки, а если есть частный сектор, то отличная идея – это вибростол.
  3. Для жителей деревень, которые занимаются выращиванием птиц, можно сконструировать из двигателя от стиральной машины крупорушку и мельницу для травы.

Особенности мотора – залог успешной работы

Сегодня существует более, чем достаточно различных вариантов того, как можно дать новую жизнь старому мотору из стиральной машинки, если он еще запускается. И все эти идеи основаны на особенности мотора производить вращение разнообразных насадок или обеспечивать движение дополнительных механизмов. Вы можете придумать ещё более оригинальный вариант использования снятого двигателя, но чтобы воплотить свою идею в жизнь, нужно понимать, каким именно образом происходит подключение двигателя от стиральной машины.

При подключении двигателя, который остался от вашей старой стиральной машины к иному устройству нужно иметь в виду несколько важных нюансов этого процесса:

  • двигатели не подключаются с помощью конденсатора;
    не требуется пусковая обмотка.

На раздаточной коробке находятся провода различных цветов, разобраться с которыми просто необходимо:

  • 2 белых провода – при подключении они не пригодятся, так как отвечают за то, чтобы нормально работал тахогенератор;
  • красный и коричневый предназначаются для того, чтобы можно было произвести обмотку статора, а также ротора;
  • зелёный и серый – для подключения к специальным щеткам изготовленным из графита (чаще всего подобное можно сказать о щётках двигателя стиральной машины «Индезит», в том случае когда нужна их замена).

Правильное подключение проводов – залог успешной работы мотора

Имейте в виду, что разные модели двигателей могут иметь провода различных цветов, однако принцип их подключения во всех случаях одинаков. Чтобы обнаружить пары, необходимо произвести прозвон проводов по очереди (те: что предназначены для тахогенератора, должны иметь сопротивление от 60 до 70 Ом). Эти провода лучше склеить изолентой в стороне от других, чтобы не путаться. Оставшиеся провода тоже нужно прозвонить, чтобы выявить пары.

Как вы можете узнать в нашей статье.

Схема подключения

Чтобы продолжить работу, нужно тщательно изучить все нюансы электрической схемы подключения. В основном сделана она очень подробно и понятно даже для самого далекого от мира электротехнических средств домашнего мастера.

Подключение движка от стиралки

Подключение или же замена двигателя стиральной машины на самом деле происходит довольно просто. В первую очередь необходимо подготовить провода, которые будут использоваться для ротора, а также для статора. Сделайте специальную перемычку, которую стоит ограничить с помощью изоленты. Те два провода, которые остались подключаются непосредственно к сети.

Помните! При подключении мотора, который остался от старой стиральной машины к 220 устройство сразу же начинает активно вращаться. Поэтому, прежде чем начать работу, позаботьтесь о том, чтобы мотор крепко стоял на той или иной поверхности.

Схема подключения старого двигателя к сети 220

Если необходимо поменять направление оборотов, достаточно будет того, что вы перекинете перемычку на те контакты, которые остались. Чтобы включать и выключать устройство, необходимо подсоединить к схеме специальные кнопки. Для того, чтобы это осуществить, нужно воспользоваться соответствующими схемами, которые запросто можно найти на специальных сайтах.

Теперь мы знаем, как именно можно подключить двигатель так, чтобы его еще можно было достаточно долго использовать. А как же можно усовершенствовать полученное устройство?

Регулирование оборотов

Для исправной работы нужен регулятор оборотов

Двигатель стиральной машинки характеризуется довольно высокой скоростью вращения, поэтому желательно сделать специальный регулятор, чтобы мотор молот работать в разных скоростных режимах без перегрева. Для этой цели можно использовать обычное реле интенсивности света, но немного доработанное.

Нужно извлечь из «стиралки» симистор вместе с радиатором – так называемый полупроводниковый прибор (в управлении электронами он функционирует в качестве управляемого выключателя).
Затем необходимо впаять этот прибор в микросхему реле, заменив детали с малой мощностью. Если вы не знаете все нюансы данной процедуры, лучше попросить помощи специалиста (электронщика или компьютерщика).

Бывают случаи, когда двигатель выполняет новую работу без помощи регулятора оборотов.

Виды движков

Разновидности движков от стиралок

Асинхронный. Вынуть его можно только вместе с конденсатором, который бывают совершенно различными для каждой модели стиральной машинки. Не рекомендуется нарушать соединение такого двигателя с батареей, если её корпус герметичен и образован из различного металла или пластика.

Внимание! Асинхронный двигатель вынимать из стиральной машины разрешается только, когда конденсатор совершенно разряжен, поскольку так можно избежать удара током.

Асинхронный мотор

Низковольтный двигатель коллекторного типа. Характеризуется наличием на статоре регулярных магнитов, которые поочередно подключаются к току постоянного напряжения. На корпусе такого двигателя есть наклейка, на которой помещена цифра максимально допустимого напряжения.
Электронный двигатель. Такой вид устройства необходимо отсоединять только вместе с электронным блоком питания (ЭБУ), на его корпусе размещают наклейку с величиной максимально допустимого напряжения подключения. Обратите свое внимание на полярность, ведь двигатели с таким принципом работы не имеют нужного реверса.

Частые поломки: с чем можно столкнуться

Как подключить электрический двигатель от старой стиральной машинки, теперь известно. Но бывают ситуации, когда мотор не запускается. Каковы же причины и пути решения такой неприятности?

Попробуйте проверить в каком состоянии находится нагрев мотора после его трехминутной работы. За такое короткое время все детали не могут нагреться одинаково, поэтому у вас есть возможность выявить место неисправности, которое будет слишком нагрето. Это может быть узел подшипника, статор и прочее.

Разные неисправности движков

Главными причинами, по которым та или иная деталь слишком нагрелась, могут быть следующие:

  • засорившийся или вышедший из строя подшипник;
  • чрезмерно расширенная емкость конденсатора.

Правильное подключение движка

Для правильного подключения двигателя, который остался от старой стиралки, достаточно минимальное количество знаний и немножко усилий. Также для данной цели используется обмотка с применением мультимера. Для обнаружения нужных проводов, требуется провести прозвон обмотки. Это позволит подобрать нужные пары для подсоединения. Делается все очень просто. Мультимер подключается к одному проводу, а вторым концом прибора стоит по очереди касаться к другим проводам, чтобы найти нужную пару. Также стоит зафиксировать заранее, какая присутствует величина сопротивления обмотки. В дальнейшем эта информация пригодится. После окончания процедуры прозвона, у вас должно получиться 2 обмотки, которые бы имели разные показатели сопротивления.

Данные обмотки делятся на два совершенно разных типы. Одна обладает показатель рабочего сопротивления. Второй вид обмотки относится к числу пусковых деталей. Известно, что величина сопротивления рабочей обмотки должна быть меньше пусковой. Для того, чтобы мотор от стиралки работал полноценно нужно использовать или кнопку, или специальное пусковое реле. В качестве кнопки можно взять даже ту, которая устанавливается для дверного звонка. Главное, чтобы она не имела фиксируемого контакта.

Новая жизнь старого мотора – использование в других целях

Процесс подключения движка, который остался от старой стиралки невероятно простой и легкий. Достаточно найти ему правильное и полезное применение. Тогда он сможет послужить вам еще некоторое время. Можно поэкспериментировать и сделать действительно полезное оборудование, которое упростит вашу жизнь в других сферах. Немного фантазии и умений достаточно, чтобы все получилось.

1. Применение коллекторных двигателей в стиральных машинах

Коллекторные двигатели получили широкое применение не только в электроинструменте (дрели, шуруповёрты, болгарки и т.д), мелких бытовых приборах (миксеры, блендеры, соковыжималки и т.п), но и в стиральных машинах в качестве двигателя привода барабана. Коллекторными двигателями оснащено большинство (примерно 85%) всех бытовых стиральных машин. Эти двигатели применялись уже во многих стиральных машинах ещё с середины 90-х годов и со временем полностью вытеснили однофазные конденсаторные асинхронные двигатели .

Коллекторные моторы более компактные, мощные и простые в управлении. Этим и объясняется их столь массовое применение. В стиральных машинах применяются коллекторные двигатели таких марок производителей как: INDESCO, WELLING, C.E.S.E.T., SELNI, SOLE, FHP, ACC . Внешне они немного отличаются друг от друга, могут иметь разную мощность, тип крепления, но принцип работы их совершенно одинаковый.

2. Устройство коллекторного двигателя для стиральной машины


1. Статор
2. Коллектор ротора
3. Щётка (применяются всегда две щётки,
вторую на рисунке не видно)
4. Магнитный ротор тахогенератора
5. Катушка (обмотка) тахогенератора
6. Стопорная крышка тахогенератора
7. Клеммная колодка двигателя
8. Шкив
9. Алюминиевый корпус

Рис.2

Коллекторный двигатель – это однофазный двигатель с последовательным возбуждением обмоток, предназначенный для работы от сети переменного или постоянного тока. Поэтому его называют ещё универсальный коллекторный двигатель (УКД).

Большинство коллекторных двигателей применяемых в стиральных машинах имеют конструкцию и внешний вид представленный на (рис.2)
Данный двигатель имеет ряд таких основных частей как: статор (с обмоткой возбуждения), ротор, щетка (скользящий контакт, всегда применяются две щётки), тахогенератор (магнитный ротор которого крепится к торцевой части вала ротора, а катушка тахогенератора фиксируется стопорной крышкой или кольцом). Все составные части скрепляются в единую конструкцию двумя алюминиевыми крышками, которые образуют корпус двигателя. На клеммную колодку выводятся контакты обмоток статора, щёток, тахогенератора необходимые для подключения к электрической схеме. На вал ротора запрессован шкив, через который посредством ременной передачи приводится в движение барабан стиральной машины.

Чтобы в дальнейшем лучше понять как работает коллекторный двигатель, давайте рассмотрим устройство каждого из его основных узлов.

2.1 Ротор (якорь)


Рис.3
Ротор (якорь) – вращающаяся (подвижная) часть двигателя (Рис.3) . На стальной вал устанавливается сердечник, который для уменьшения вихревых токов изготавливают из наборных пластин электротехнической стали. В пазы сердечника укладываются одинаковые ветви обмотки, выводы которых прикреплены к контактным медным пластинам (ламелям), образующие коллектор ротора. На коллекторе ротора в среднем может быть 36 ламелей располагающихся на изоляторе и разделённые между собой зазором.
Для обеспечения скольжения ротора, на его вал запрессовываются подшипники, опорами которых служат крышки корпуса двигателя. Так же, на вал ротора запрессован шкив с проточенными канавками для ремня, а на противоположной торцевой стороне вала есть отверстие с резьбой в которое прикручивается магнитный ротор тахогенератора.

2.2 Статор

Статор – неподвижная часть двигателя (Рис.4) . Для уменьшения вихревых токов, сердечник статора выполнен из наборных пластин электротехнической стали образующих каркас, на котором уложены две равные секции обмотки соединённые последовательно. У статора почти всегда есть только два вывода обеих секций обмотки. Но в некоторых двигателях применяется так называемое секционирование обмотки статора и дополнительно имеется третий вывод между секциями. Обычно это делается из-за того, что при работе двигателя на постоянном токе, индуктивное сопротивление обмоток оказывает меньшее сопротивление постоянному току и ток в обмотках выше, поэтому задействуются обе секции обмотки, а при работе на переменном токе включается лишь одна секция, так как переменному току индуктивное сопротивление обмотки оказывает большее сопротивление и ток в обмотке меньше. В универсальных коллекторных двигателях стиральных машин применяется тот же принцип, только секционирование обмотки статора необходимо для увеличения количества оборотов вращения ротора двигателя. При достижении определённой скорости вращения ротора, электрическая схема двигателя коммутируется таким образом, чтобы включалась одна секция обмотки статора. В результате индуктивное сопротивление снижается и двигатель набирает ещё большие обороты. Это необходимо на стадии режима отжима (центрифугирования) в стиральной машине. Средний вывод секций обмотки статора применяется не во всех коллекторных двигателях.
Рис.4 Статор коллекторного двигателя (вид с торца)

Для защиты двигателя от перегрева и токовых перегрузок, последовательно через обмотку статора включают тепловую защиту с самовосстанавливающимися биметаллическими контактами (на рисунке тепловая защита не показана). Иногда контакты тепловой защиты выводят на клеммную колодку двигателя.


2.3 Щётка

Рис.5

Щётка – это скользящий контакт, является звеном электрической цепи обеспечивающим электрическое соединение цепи ротора с цепью статора. Щётка крепится на корпусе двигателя и под определённым углом примыкает к ламелям коллектора. Применяется всегда как минимум пара щёток, которая образует так называемый щёточно-коллекторный узел.
Рабочая часть щётки – графитовый брусок с низким удельным электрическим сопротивлением и низким коэффициентом трения. Графитовый брусок имеет гибкий медный или стальной жгутик с припаянной контактной клеммой. Для прижима бруска к коллектору применяется пружинка. Вся конструкция заключена в изолятор и крепится к корпусу двигателя. В процессе работы двигателя, щётки из-за трения о коллектор стачиваются, поэтому они считаются расходным материалом.

(от др.-греч. τάχος – быстрота, скорость и генератор) – измерительный генератор постоянного или переменного тока, предназначенный для преобразования мгновенного значения частоты (угловой скорости) вращения вала в пропорциональный электрический сигнал. Тахогенератор предназначен для контроля скорости вращения ротора коллекторного двигателя. Ротор тахогенератора крепится напрямую к ротору двигателя и при вращении в обмотке катушки тахогенератора по закону взаимоиндукции наводится пропорциональная электродвижущая сила (ЭДС). Значение переменного напряжения, считывается с выводов катушки и обрабатывается электронной схемой, а последняя в конечном итоге задаёт и контролирует необходимую, постоянную скорость вращения ротора двигателя.
Такой же принцип работы и конструкцию имеют тахогенераторы применяемые в однофазных и трёхфазных асинхронных двигателях стиральных машин.

Рис.6

В коллекторных двигателях некоторых моделей стиральных машин марки Bosch (Бош) и Siemens (Сименс) вместо тахогенератора применяется датчик Холла . Это очень компактный и недорогой полупроводниковый прибор, который устанавливается на неподвижной части двигателя и взаимодействует с магнитным полем кругового магнита установленным на валу ротора непосредственно рядом с коллектором. У датчика Холла три вывода, сигналы с которого так же считываются и обрабатываются электронной схемой (подробно принцип работы датчика Холла в данной статье мы рассматривать не будем).


Как и в любом электродвигателе, принцип работы коллекторного двигателя основан на взаимодействии магнитных полей статора и ротора, через которые проходит электрический ток. Коллекторный двигатель стиральной машины имеет последовательную схему подключения обмоток. В этом легко убедится рассмотрев его развёрнутую схему подключения к электрической сети (Рис.7) .

У коллекторных двигателей стиральных машин, на контактной колодке может быть от 6 до 10 задействованных контактов. На рисунке представлены все максимальные 10 контактов и всевозможные варианты подключения узлов двигателя.

Зная устройство, принцип работы и стандартную схему подключения коллекторного двигателя, без труда можно запустить любой двигатель напрямую от электросети без применения электронной схемы управления и для этого не надо запоминать особенности расположения выводов обмоток на клеммной колодке каждой марки двигателя. Для этого, достаточно всего лишь определить выводы обмоток статора и щёток и подключить их согласно схеме на приведённом ниже рисунке.

Порядок расположения контактов клеммной колодки коллекторного двигателя стиральной машины выбран произвольно.

Рис.7

На схеме, оранжевыми стрелочками условно показано направление тока по проводникам и обмоткам двигателя. От фазы (L) ток идёт через одну из щёток на коллектор, проходит по виткам обмотки ротора и выходит через другую щётку и через перемычку ток последовательно проходит по обмоткам обеих секций статора доходя до нейтрали (N).

Такой тип двигателя независимо от полярности подаваемого напряжения вращается в одну сторону, так как за счёт последовательного соединения обмоток статора и ротора смена полюсов их магнитных полей происходит одновременно и результирующий момент остаётся направленным в одну сторону.

Для того, чтобы двигатель начал вращаться в другую сторону, необходимо лишь изменить последовательность коммутации обмоток.
Пунктирной линией обозначены элементы и выводы, которые задействованы не во всех двигателях. Например датчик Холла, выводы термозащиты и вывод половины обмотки статора. При запуске коллекторного двигателя напрямую, подключаются только обмотки статора и ротора (через щётки).

Внимание! Представленная схема подключения коллекторного двигателя напрямую, не имеет средств электрической защиты от короткого замыкания и устройств ограничивающих ток. При таком подключении от бытовой сети, двигатель развивает полную мощность, поэтому не следует допускать длительного прямого включения.

4. Управление коллекторным двигателем в стиральной машине

Принцип действия электронных схем, в которых используется симистор, основан на двухполупериодном фазовом управлении. На графике (рис.9) показано как изменяется величина питающего мотор напряжения в зависимости от поступающих на управляющий электрод симистора импульсов с микроконтроллера.


Рис.9 Изменение величины питающего напряжения в зависимости от фазы поступающих импульсов управления

Таким образом можно отметить,что частота вращения ротора двигателя напрямую зависит от напряжения прикладываемого к обмоткам двигателя.

Ниже, на (Рис.10) представлены фрагменты условной электрической схемы подключения коллекторного двигателя с тахогенератором к электронному блоку управления (EC) .
Общий принцип схемы управления коллекторного двигателя таков. Управляющий сигнал с электронной схемы поступает на затвор симистора (TY) ,тем самым открывая его и по обмоткам двигателя начинает протекать ток,что приводит к вращению ротора (M) двигателя. Вместе с тем, тахогенератор (P) передаёт мгновенное значение частоты вращения вала ротора в пропорциональный электрический сигнал. По сигналам с тахогенератора создаётся обратная связь с сигналами управляющих импульсов поступаемых на затвор симистора. Таким образом обеспечивается равномерная работа и частота вращения ротора двигателя при любых режимах нагрузки, вследствие чего барабан в стиральных машинах вращается равномерно. Для осуществления реверсивного вращения двигателя применяются специальные реле R1 и R2 ,коммутирующие обмотки двигателя.
Рис.10 Изменение направления вращения двигателя

В некоторых стиральных машинах, коллекторный двигатель работает на постоянном токе. Для этого, в схеме управления, после симистора, устанавливают выпрямитель переменного тока построенный на диодах (“диодный мост”). Работа коллекторного двигателя на постоянном токе увеличивает его КПД и максимальный крутящий момент.

5. Достоинства и недостатки универсальных коллекторных двигателей

К достоинствам можно отнести: компактные размеры, большой пусковой момент, быстроходность и отсутствие привязки к частоте сети, возможность плавного регулирования оборотов (момента) в очень широком диапазоне — от ноля до номинального значения — изменением питающего напряжения, возможность применения работы как на постоянном,так и на переменном токе.
Недостатки – наличие коллекторно-щёточного узла и в связи с этим: относительно малая надёжность (срок службы), искрение возникающее между щётками и коллектором из-за коммутации, высокий уровень шума, большое число деталей коллектора.

6. Неисправности коллекторных двигателей

Самая уязвимая часть двигателя – коллекторно-щёточный узел. Даже в исправном двигателе, между щётками и коллектором происходит искрение, которое довольно сильно нагревает его ламели. При износе щёток до предела и вследствие их плохого прижима к коллектору, искрение порой достигает кульминационного момента представляющего электрическую дугу. В этом случае ламели коллектора сильно перегреваются и иногда отслаиваются от изолятора, образуя неровность,после чего,даже заменив изношенные щётки, двигатель будет работать с сильным искрением,что приведёт его к выходу из строя.

Иногда происходит межвитковое замыкание обмотки ротора или статора (значительно реже), что так же проявляется в сильном искрении коллекторно-щёточного узла (из-за повышенного тока) или ослаблении магнитного поля двигателя, при котором ротор двигателя не развивает полноценный крутящий момент.
Как мы и говорили выше, щётки в коллекторных двигателях при трении о коллектор со временем стачиваются. Поэтому большая часть всех работ по ремонту двигателей сводится к замене щёток.

Если стиральная машина сломалась, то не стоит ее выкидывать – возможно подключение рабочего двигателя от старой стиральной машины.

Эта часть техники сможет послужить еще какое-то время.

Применений двигателю можно найти очень много.

Стиральные машины работают на двигателях, которые имеют различную конструкцию: коллекторного, асинхронного, электронного вида.

Перед тем как что-либо сделать из старого двигателя, его нужно снять. Для различных видов нужно выполнить свой набор действий.

Для всех видов двигателей, в первую очередь, нужно отключить технику от напряжения 220 В, канализационной сети и водопровода.

В отключенном состоянии машинка должна постоять не менее 10 часов. Конденсатор за это время успеет разрядиться. Только после этого двигатель можно доставать. Схема действий подробно описана ниже.

Асинхронный двигатель — провода, которые соединяют часть асинхронного мотора и конденсатор, отрезать не следует. Батарею нужно вытащить с двигателем.

У батареи вид может отличаться в зависимости от модели стиральной машинки. Это может быть коробка из металла, пластмассы, чаще всего герметизированная.

В ней находится конденсатор — один или несколько, которые между собой соединены параллельно.

Стоит внимательно рассмотреть, как соединены эл. мотор и батарея.

Схема подключения может отличаться. Обмотка может быть подключена в сеть 220 напрямую, а другая – через конденсатор. Существующая схема должна быть неизменной.

Ее нужно подключить к напряжению 220 В и начнется вращение асинхронного мотора.

Стоит быть осторожным – к элементам двигателя можно будет прикасаться только после того, как конденсатор разрядится.

Коллекторные — такие двигатели низковольтные. На их статоре установлены постоянные магниты и их подключают к постоянному напряжению.

На двигателе обычно бывает наклейка, на которой указано рекомендованное напряжение. Только такое напряжение нужно подключать к такому эл. мотору.

Электронный — мотор необходимо доставать из стиральной машинки вместе с блоком управления. На самом корпусе блока обычно указывают напряжение, к которому мотор нужно подключать.

Стоит быть внимательным при подаче напряжения – важно соблюдать полярность, так как реверс в таком виде моторов не возможен.

Случается, что двигатель сразу не запустится. В этом случае нужно найти дополнительные выводы. На них подается нуль или логическая единица. После этого начнется вращение двигателя.

Механический – с мотором может быть редуктор, который приводит в движение устройство реверса. На нем можно найти два вывода.

Ток, который определяется по наклейке на моторе, подключается к источнику. После этого двигатель начнет свое вращение. Частота вращения такого эл. мотора невысокая – всего 4-5 оборотов в минуту.

Чтобы подключить двигатель к переменному току, необходимо выполнить ряд действий:

  • В наличии должен быть специальный прибор, которым определяют провода обмотки – тестер;
  • Чтобы определить пару проводов, щуп тестера подключается к любому проводу, и поочередно проверяются остальные. Если при подключении тестер обозначил соединение, то именно эти два провода и есть пара. Соответственно вторые два провода также составляют пару;
  • Две обмотки необходимо измерить на уровень сопротивления. Где показатель больше, та обмотка и является пусковой;
  • От различных обмоток провода нужно соединить попарно, после чего подключить к напряжению 220 В;
    рекомендуется установить выключатель на провод пусковой обмотки.

Бывают случаи, когда нужно сменить направление вращения мотора. В этом случае выводы пусковой обмотки рекомендуется поменять местами.

При подключении мотора к напряжению 220 В через конденсатор или напрямую, следует быть очень внимательными. Перед выполнением работ по подключению двигатель нужно зафиксировать.

В таком положении он не будет сильно вибрировать. Безопасность себя и окружающих также крайне важна.

Вторая жизнь двигателя старой стиральной машинки

Рабочий двигатель старой стиральной машинки коллекторного типа можно использовать, сконструировав разнообразные полезные приборы. Некоторые из них рассмотрим в этой статье.

Точильный станок

Точильный станок – прибор полезный в любом хозяйстве.

Его может сделать любой мужчина, если в распоряжении есть рабочий двигатель от стиральной машины автомат «Индезит», «Аристон» или любой другой.

При креплении точильного камня к двигателю может возникнуть проблема – отверстие на камне может отличаться от диаметра вала эл. мотора.

В этом случае понадобится дополнительная деталь, которая вытачивается специально. Такой переходник сможет сделать любой токарь. Для этого ему нужно знать диаметр вала.

В наличии должен быть не только переходник. Должны присутствовать специальный болт, гайка, шайба.

Резьбу на гайке необходимо нарезать в зависимости от того, в какую сторону будет вращаться двигатель.

Для вращения по часовой стрелке резьбу необходимо нарезать левостороннюю, против часовой стрелки – правостороннюю.

Если сделать все наоборот, то камень будет слетать, так как работа будет идти на раскручивание.

Если есть гайка с резьбой, но она не подходит по своему направлению, можно изменить направление вращения. Для этого необходимо поменять местами провода обмотки.

После подключения рабочей обмотки к сети 220, пусковую пару необходимо подключить к рабочей катушке.

Второй конец нужно кратковременно приложить к выводу обмотки. Движение коллекторного эл. мотора начнется в одну из сторон.

После смены мест выводов пусковой обмотки направление двигателя сменится на противоположное.

Вращение двигателя можно поменять, не используя конденсатор. В этом случае после того, как рабочая обмотка будет подключена к 220 В, камень резко прокрутить в необходимую сторону.

Двигатель запустится и станок будет работать.

Не стоит использовать эл. моторы, имеющие высокую мощность. Для точильного станка вполне достаточно двигателя, который выдерживает напряжение 150-200В.

Наждачный камень должен вращаться с частотой не более 3000 оборотов в минуту. Если частота вращения будет выше, есть риск того, что точильный камень разорвется.

Если использовать такой станок дома, то специалисты рекомендуют использовать мотор с частотой 1000 оборотов в минуту.

Самодельный точильный станок необходимо обеспечить дополнительными элементами, которые защитят работающего за ним человека от пыли, частиц камня.

В качестве кожуха может выступать кусок металла, имеющий толщину около 2 мм.

Вибростол

Применив мотор от стиральной машинки автомат «Аристон», «Ардо» или другой модели, можно сконструировать вибростол.

Он пригодится, если в планах есть устройство для создания плитки. Ею можно выложить двор в своем доме, садовые дорожки.

Вибростол – конструкция несложная. Он состоит из ровной плиты, которая скреплена подвижными соединениями с основанием. Движение коллекторного мотора приводит в движение плиту.

В результате из бетона в формах выходит воздух, качество плитки улучшается.

Положение коллекторного мотора должна определять схема. Если установить эл. мотор не в то место, то стол не сможет работать правильно, качественной плитки не получится.

Бетономешалка

Двигатель от старой машинки можно использовать для создания бетономешалки. Такое изделие не подойдет для промышленных объемов, но вот для нужд собственного двора вполне приемлемо.

Чтобы стиральную машину превратить в бетономешалку, понадобится не только двигатель, но и бак.

В емкость бака активаторного типа нужно вставить две лопасти по своему внешнему виду похожими на букву «П», предварительно убрав из него стандартный «родной» активатор.

Лопасти соорудить просто. Достаточно взять стальную полосу, толщина которой около 5 мм, отрезать от нее необходимое количество, согнуть и две лопасти расположить так, чтобы они составляли прямой угол.

Когда лопасти готовы, их необходимо присоединить к баку через отверстие, где ранее был активатор.

Отверстие в баке, через которое сливалась вода, необходимо закрыть. Если все получилось сделать правильно, можно приступать к подключению двигателя.

В зависимости от того, какой объем бетона планируется замешивать, выбирается мощность двигателя. Если нужно будет замесить небольшое количество, то можно установить мотор однофазный.

Если объемы будут больше, то стоит установить эл. мотор от стиральной машинки более мощный.

Не стоит забывать и о ременной передаче, которая была в машинке. Ее рекомендуется заменить на редуктор. Он понизит обороты двигателя, в то же время обороты будут низкими.

Стиральные машины, как и любой другой вид техники со временем устаревают и выходят из строя. Мы, конечно же, можем куда-нибудь деть старую стиральную машину , или же разобрать на запчасти. Если вы пошли по последнему пути, то у вас мог остаться двигатель от стиральной машины, который может сослужить вам добрую службу.

Мотор от старой стиральной машины можно приспособить в гараже и соорудить из него электрический наждак. Для этого нужно на вал двигателя будет прикрепить наждачный камень, который будет вращаться. А вы сможете точить об него разные предметы, начиная с ножей, заканчивая топорами и лопатами. Согласитесь, вещь довольно нужная в хозяйстве. Также из двигателя можно соорудить другие устройства, которые требуют вращения, например, промышленный миксер или еще что.

Напишите в комментариях, что вы решили сделать из старого двигателя для стиральной машины, думаем многим будет это очень интересно и полезно прочитать.

Если вы придумали, что сделать со старым мотором, то первый вопрос, который вас может тревожить, это как подключить электродвигатель от стиральной машины в сеть 220 в. И как раз на этот вопрос мы вам и поможем найти ответ в этой инструкции.

Перед тем как приступить непосредственно к подключению мотора, нужно сначала ознакомиться с электрической схемой, на которой будет все понятно.

Подключение двигателя от стиральной машины к сети 220 Вольт не должно занять у вас много времени. Для начала посмотрите на провода, которые идут от двигателя, сначала может показаться, что их достаточно много, но на самом деле, если посмотреть на вышеприведенную схему, то далеко не все нам нужны. Конкретно нас интересуют провода только ротора и статора.

Разбираемся с проводами

Если посмотреть на колодку с проводами спереди, то обычно первые два левых провода — это провода таходатчика , через них регулируются обороты двигателя стиральной машины. Они нам не нужны. На изображении они белые и перечеркнуты оранжевым крестом.

Дальше идет провода статора красный и коричневый. Мы их пометили красными стрелочками чтобы было более понятно. Следующие за ними идут два провода на щетки ротора – серый и зеленый, которые помечены синими стрелками. Все провода, на которые указаны стрелки нам понадобятся для подключения.

Для подключения мотора от стиральной машины к сети 220 В нам не потребуется пускового конденсатора, а также сам двигатель не нуждается в пусковой обмотке.

В разных моделях стиральных машин провода будут отличаться по цветам, но принцип подключения остается тот же. Вам просто нужно найти необходимые провода прозвонив их мультиметром.

Для этого переключите мультиметр на измерение сопротивления. Одним щупом касайтесь первого провода, а вторым ищите его пару.

У работающего тахогенератора в спокойном состоянии обычно сопротивление составляет 70 Ом. Эти провода вы найдете сразу и уберете их в сторону.

Остальные провода просто прозванивайте и находите им пары.

Подключаем двигатель от стиральной машины автомат

После того как мы нашли нужные нам провода осталось их соединить. Для этого делаем следующее.

Согласно схеме нужно соединить один конец обмотки статора со щеткой ротора. Для этого удобнее всего сделать перемычку и заизолировать ее.


На изображении перемычка выделена зеленым цветом.

После этого у нас остаются два провода: один конец обмотки ротора и провод, идущий на щетку. Они-то нам и нужны. Эти два конца и соединяем с сетью 220 в.

Как только вы подадите напряжение на эти провода, мотор сразу же начнет вращение. Двигатели стиральных машин довольно мощные, поэтому будьте внимательны, чтобы не возникло травм. Лучше всего мотор предварительно закрепить на ровной поверхности.

Если вы хотите сменить вращение двигателя в другую сторону, то нужно просто перекинуть перемычку на другие контакты, поменять провода щеток ротора местами. Посмотрите на схеме, как это выглядит.


Если вы все сделали правильно, то мотор начнет вращаться. Если же этого не случилось, то проверьте двигатель на работоспособность и уже после этого делайте выводы.
Подключить мотор современной стиральной машинки достаточно просто, что не скажешь о старых машинках. Здесь схема немного другая.

Подключение мотора старой стиральной машины

Подключение двигателя старой стиралки немного сложнее и потребует от вас найти нужные обмотки самим с помощью мультиметра. Для того, чтобы найти провода, прозвоните обмотки двигателя и найдите пару.


Для этого переключите мультиметр на измерение сопротивления, одним концом коснитесь первого провода, а вторым по очереди найдите его пару. Запишите или запомните сопротивление обмотки — нам это понадобится.

Дальше аналогично отыщите вторую пару проводов и зафиксируйте сопротивление. У нас получилось две обмотки с разным сопротивлением. Теперь нужно определить какая из них рабочая, а какая пусковая. Тут все просто, у рабочей обмотки сопротивление должно быть меньше чем у пусковой.

Для запуска двигателя подобного плана вам понадобится кнопка или пусковое реле. Кнопка нужна с не фиксируемым контактом и подойдет, допустим, кнопка от дверного звонка.

Теперь подключаем двигатель и кнопку по схеме: Но обмотку возбуждения (ОВ) напрямую подается 220 В. На пусковую же обмотку (ПО) нужно подать это же напряжение, только для запуска двигателя на короткий срок, и отключить ее — для этого и нужна кнопка (SB).

ОВ соединяем напрямую с сетью 220В, а ПО соединим с сетью 220 В через кнопку SB.

  • ПО – пусковая обмотка. Предназначается только для запуска двигателя и задействована в самом начале, пока двигатель не начнет вращаться.
  • ОВ – обмотка возбуждения. Это рабочая обмотка, которая постоянно находится в работе, она и вращает двигатель все время.
  • SB – кнопка с помощью которой подается напряжение на пусковую обмотку и после запуска мотора отключает ее.

После того, как вы произвели все подключение, достаточно запустить двигатель от стиральной машины. Для этого нажмите на кнопку SB и, как только двигатель начнет вращаться, отпустите ее.

Для того чтобы сделать реверс (вращения двигателя в противоположную сторону), вам нужно поменять местами контакты обмотки ПО. Тем самым мотор начнет вращение в другую сторону.

Все, теперь мотор от старой стиралки может сослужить вам в качестве нового устройства.

Перед запуском двигателя обязательно закрепите его на ровной поверхности, т. к. обороты вращения его достаточно большие.

Двигатель – сердце стиральной машины. Это устройство вращает барабан во время стирки. В первых моделях машин к барабану крепили ремни, которые выступали в роли приводов и обеспечивали движение емкости, наполненной бельем. С тех пор разработчики заметно усовершенствовали этот агрегат, отвечающий за превращение электроэнергии в механическую работу.


В настоящее время при производстве стирального оборудования используется три вида двигателей.

Виды

Асинхронный

Моторы этого типа состоят из двух частей – неподвижного элемента (статора), который выполняет функцию несущей конструкции и служит в качестве магнитопровода, и вращающегося ротора, который приводит в движение барабан. Вращается двигатель в результате взаимодействия переменного магнитного поля статора и ротора. Асинхронным этот тип устройства назвали потому, что он не способен достичь синхронной скорости вращающегося магнитного поля, а следует за ним, как бы догоняя.


Асинхронные двигатели встречаются в двух вариантах: они могут быть двух- и трехфазными. Двухфазные образцы сегодня редкость, поскольку на пороге третьего тысячелетия их производство практически прекратилось.

Уязвимое место такого двигателя – ослабление вращающего момента. Внешне это проявляется нарушением траектории движения барабана – он покачивается, не совершая полного оборота.


Несомненными плюсами устройств асинхронного типа выступают незамысловатость конструкции и простота обслуживания, которая заключается в своевременной смазке мотора и замене вышедших из строя подшипников. Работает асинхронный двигатель негромко, а стоит довольно дешево.

К недостаткам устройства относят большой размер и низкий КПД.

Обычно этими двигателями снабжены простые и недорогие модели, которые не отличаются большой мощностью.

Коллекторный

Коллекторные двигатели пришли на смену двухфазным асинхронным устройствам. Три четверти бытовых приборов оборудованы моторами этого типа. Их особенностью является способность работать и от переменного, и от постоянного тока.


Чтобы понять принцип работы такого двигателя, кратко опишем его устройство. Коллектор представляет собой медный барабан, разделенный на ровные ряды (секции) изолирующими «перегородками». Места контактов этих секций с внешними электроцепями (для обозначения таких участков в электрике используется термин «выводы») расположены диаметрально, на противоположных сторонах окружности. С выводами соприкасаются обе щетки – скользящие контакты, обеспечивающие взаимодействие ротора с мотором, по одной с каждой стороны. Как только какая-либо секция запитывается, в катушке появляется магнитное поле.

При прямом включении статора и ротора магнитное поле начинает вращать вал электродвигателя по часовой стрелке. Это происходит по причине взаимодействия зарядов: одинаковые заряды отталкиваются, разные – притягиваются (для большей наглядности вспомните «поведение» обычных магнитов). Щетки постепенно перемещаются из одной секции в другую – и движение продолжается. Этот процесс не прервется, пока в сети есть напряжение.

Чтобы направить вал против часовой стрелки, необходимо сменить распределение зарядов на роторе. Для этого щетки включают в противоположную сторону – навстречу статору. Обычно для этого задействуют миниатюрные электромагнитные пускатели (силовые реле).


Среди достоинств коллектороного двигателя – высокая скорость вращения, плавное изменение частоты оборотов, которое зависит от изменения напряжения, независимость от частоты колебаний электросети, большой пусковой момент и компактность устройства. В числе его недостатков отмечается относительно короткий срок службы из-за быстрого износа щеток и коллектора. Трение вызывает значительное повышение температуры, в результате чего происходит уничтожение слоя, изолирующего контакты коллектора. По той же причине в обмотке может случиться межвитковое замыкание, способное вызвать ослабление магнитного поля. Внешним проявлением подобной неполадки станет полная остановка барабана.

Инверторный (бесколлекторный)

Инверторный двигатель – это мотор с прямым приводом. Этому изобретению чуть больше 10 лет. Разработанное известным корейским концерном, оно быстро завоевало популярность благодаря длительному сроку службы, надежности, износостойкости и своим весьма скромным габаритам.

Компонентами этого типа двигателя также выступают ротор и статор, однако принципиальное отличие заключается в том, что мотор прикреплен к барабану напрямую, без использования соединительных элементов, которые выходят из строя в первую очередь.


Среди несомненных достоинств инверторных двигателей – простота, отсутствие деталей, подверженных быстрому износу, удобное размещение в корпусе машины, низкий уровень шума и колебаний, компактность.

Недостатком такого мотора является трудоемкость – его производство требует больших затрат и усилий, что заметно отражается на цене инверторных машин.


Схема подключения мотора к сети

Современная стиральная машина

При подключении двигателя современного устройства для стирки к сети с напряжением 220В необходимо учесть его основные особенности:

  • он работает без пусковой обмотки;
  • для запуска мотору не нужен пусковой конденсатор.

Чтобы запустить двигатель, следует определенным образом подсоединить к сети идущие от него провод. Ниже представлены схемы подключения коллекторного и бесколлекторного электромоторов.



Прежде всего, определите «фронт работ», исключив контакты, которые идут от тахогенератора и не участвуют в подключении. Распознаются они посредством тестера, работающего в режиме омметра. Зафиксировав инструмент на одном из контактов, другим щупом отыщите парный ему вывод. Величина сопротивления проводов тахогенератора составляет порядка 70 Ом. Чтобы найти пары оставшимся контактам, прозвоните их аналогичным образом.

Теперь переходим к наиболее ответственному этапу работы. Подключите провод 220В к одному из выходов обмотки. Второй ее выход требуется соединить с первой щеткой. Вторая щетка подключается к оставшемуся 220-вольтовому проводу. Включите мотор в сеть, чтобы проверить его работу*. Если вы не допустили ошибок, ротор начнет вращаться. Имейте в виду, что при подобном подключении он будет двигаться только в одну сторону. Если пробный пуск прошел без накладок, устройство готово к работе.

Чтобы изменить направление движения двигателя на противоположное, подключение щеток следует поменять местами: теперь первая будет включена в сеть, а вторая соединена с выходом обмотки. Проверьте готовность мотора к работе описанным выше способом.


Наглядно процесс подключения вы можете увидеть в следующем видео.

Стиральная машина старой модели

С подключением двигателя в машинах старого образца дело обстоит сложнее.

Сначала определите две соответствующие друг другу пары выводов. Для этого используйте тестер (он же – мультиметр). Зафиксировав инструмент на одном из выводов обмотки, другим щупом отыщите вывод, парный ему. Оставшиеся контакты автоматически образуют вторую пару.

Как подключить двигатель от стиральной машины — инструкция, схемы

Со временем стиральная машина либо устаревает морально и физически, либо ломается. Некоторые ее выбрасывают, но часто с машинки снимают движки — двигатель от стиралки наверняка пригодится в хозяйстве. Но через определенное время, когда возникает потребность из двигателя от стиральной машины сделать что-либо полезное, приходится разбираться с тем, как его подключить к электросети. Далее в статье мы расскажем в деталях о том, как использовать электродвигатель от старой стиральной машины.

Типы движков

Подключения двигателя неразрывно связаны с его конструкцией. По этой причине, если что-либо затевается с б.у. движком, желательно в первую очередь по внешнему виду определить его устройство и только после этого подсоединить электродвигатель от стиральной машины к сети 220 В и сделать его запуск. Но в старых недорогих моделях стиральных машин применялось всего лишь два типа движков:

Старая стиральная машинка с баком для стирки (слева) и центрифугой для отжима (справа)

Асинхронный двигатель стиральной машины обычно ставился на бак для стирки белья. Центрифуга, которая белье отжимала, предусматривала применение коллекторного двигателя, поскольку этот электромотор вращается быстрее. Поэтому, если вы имеете дело со стиральной машинкой такой конструкции, можно заранее иметь представление о том, где и какого типа движок установлен, и какой мотор от стиральной машины снимать в случае надобности.

Но если движки были сняты давно, и необходимо подключение мотора от стиральной машины к сети 220 В, в первую очередь проверяем, есть ли у ротора коллектор. Если не это понятно из-за конструкции корпуса, надо разобрать двигатель от старой стиральной машины, сняв крышку со стороны, противоположной валу.

Коллекторный движок со снятой крышкой со стороны щеток

Коллекторный двигатель

Если движок таки коллекторный, рекомендуется привести в порядок коллектор и прилегающие к нему поверхности, почистив их до подключения мотора от графитовой пыли. Также перед тем как запустить двигатель от стиральной машины, имеет смысл решить, надо ли сделать подсоединения, меняющие направление вращения вала. Если это потребуется, делается возможным переключение щеток. Для коллекторного двигателя от старой стиральной машины характерно то, что щетки, а соответственно и ротор соединены последовательно со статором.

Это характерно как для двигателя от стиральной машины-автомата, так и для большинства коллекторных движков сетевого включения. Коллекторные двигатели всех бытовых электроприборов устроены одинаково. Для изменения направления вращения вала необходимо переключателем поменять местами клеммы щеток (т.е 1 и 2, как показывает схема подключения электродвигателя ниже).

Схема соединений в коллекторном движке

Скорость вращения и мощность двигателя стиральной машины с коллектором зависят от напряжения. Поэтому их легко можно регулировать диммером. Для этого клеммы 1 и 4 или 2 и 4, если клемма 2 в случае переключения займет место клеммы 1, подключают к диммеру и его регулятором подбирают необходимую скорость вращения вала. При непосредственном присоединении к сети обороты вала будут максимально большими. Коллекторный двигатель от стиральной машины-автомата управляется специальной схемой, во многом схожей с диммером.

Основное отличие в том, что в ней применен запуск циклов вращения от различных датчиков. В коллекторных движках более дорогих моделей стиральных машин может быть пара дополнительных проводов от тахогенератора. Поэтому перед тем как подключить двигатель от стиральной машины, их надо правильно определить. Хотя это не сложно сделать по меньшему сечению этих проводов.

  • В некоторых устройствах применялся электромагнитный тормоз. Он может добавлять еще два провода. Эту конструктивную особенность также надо учитывать, выполняя подключение двигателя от стиральной машины.

Использовать эти провода при подключении коллекторного движка к электросети не придется. Поэтому, если не предвидится каких-либо самоделок со схемой управления движком, эти провода можно просто отрезать, чтобы они не вносили путаницы. Длительное подключение электродвигателя стиральной машины к сети 220 В вызывает его значительный нагрев. Для нормальной работы, как изоляции, так и подшипников необходимо ограничивать их нагревание путем принудительного охлаждения. Поэтому рекомендуется надеть на вал движка крыльчатку и только после этого включить в работу.

Некоторые модели коллекторного двигателя от стиральной машины могут содержать еще одну пару проводов. Такой нюанс характерен для устройств с одним мотором, как правило, барабанного типа. Эти движки вращают барабан медленнее в процессе стирки и ускоренно при отжиме. Для этого они снабжаются двумя дополнительными выводами, которыми регулируется скорость вращения вала. Эти характеристики обычно отображает шильдик двигателя, пример которого показан далее на изображении. WASHING — это параметры режима стирки, а SPIN — режим отжима.

Двухрежимный коллекторный движок

По данным шильдика можно определить, на какое напряжение надо подключить мотор дополнительной обмоткой. Поскольку токи указаны одинаковые, а мощности при этом отличаются в 10 раз, очевидно, что на выводы движка, соответствующие режиму стирки, подается более низкое напряжение. Его примерная величина может быть получена путем деления указанной мощности (30 ватт) на указанную силу тока и поправочный коэффициент k. Его величину можно определить исходя из того, что другое значение мощности (300 ватт) получается, когда делается запуск движка при напряжении 220 В.

3*220*k = 300

k = 0,46

Величина k для режима WASHING может быть другой, но для начальной оценки величины напряжения такой вариант расчета вполне подходит.

Получаем

3*U*k = 30,

U = 22 В.

Реальную величину напряжения покажет экспериментальное подключение двигателя стиральной машины через трансформатор или ЛАТР. Если такой двойной режим будет нужен в какой-либо поделке, на основании показанных расчетов можно будет подобрать дополнительный низковольтный источник питания (обычно это трансформатор).

Асинхронный двигатель

Асинхронные движки менее оборотистые и развивают скорость меньше 1500 об/мин при питании напряжением 220 В. Их конструкция содержит две обмотки:

  • пусковую,
  • рабочую.

Поэтому перед тем как подключить электродвигатель от стиральной машины, в первую очередь надо правильно определить эти обмотки. Обычно из асинхронного двигателя выходят четыре провода. Но бывает и три. Каждая пара в двигателе с четырьмя проводами соответствует определенной обмотке. При этом известно то, что сопротивление пусковой обмотки больше. Поэтому для того, чтобы найти, где какая обмотка, надо тестером замерить сопротивление каждой из них. В принципе для работы асинхронного двигателя от сети 220 В достаточно подключения к ней только рабочей обмотки.

Но проблема в этом случае будет с разгоном движка. Потребуется приложением внешней силы раскрутить вал до скорости, начиная с которой движок самостоятельно выйдет на рабочие обороты. Такой способ запуска, особенно если имеется нагрузка на вале или тем более редукторе, неприемлем. По этой причине используется пусковая обмотка. Чтобы понять, что с ней делать, надо ознакомиться со схемами подключения подобных движков. Они наглядно показывают то, что в любой схеме один вывод рабочей обмотки соединяется с одним выводом пусковой обмотки.

Схемы, которые можно использовать для подключения асинхронного двигателя стиральной машины

Поэтому та модель движка, у которой три провода, уже имеет внутри корпуса соединение этих обмоток, и остается лишь завершить одну из схем. Как разобраться, где какая обмотка, наглядно изображено на схеме справа вверху. Какую схему выбрать — решает пользователь. В принципе можно применить только кнопку, на которую нажимать при пуске движка. Тогда при пуске момент на вале двигателя получится наибольшим из всех вариантов схем. Но в этом случае получается максимальная нагрузка на контакты кнопки из-за наибольшего по величине тока в пусковой обмотке.

К тому же есть риск эту обмотку сжечь, если она будет подключена напрямую к сети слишком долго (причем неизвестно, сколько времени можно ее питать напряжением 220 В, подключив напрямую к сети). То же самое получится, если номинал у резистора будет слишком мал, а у емкости — слишком велик. Поэтому для увеличения пускового момента конденсатор большой емкости делают отключаемым после разгона вала движка. Наиболее сбалансированный вариант — это «Емкостный сдвиг фаз с рабочим конденсатором». Эта схема рекомендуется к применению без каких-либо оговорок. Особенно если движок стартует с ненагруженным валом и емкость конденсатора невелика, порядка 1–2 мкФ.

Направление вращения вала асинхронного движка от стиральной машинки зависит от очередности соединения выводов пусковой и рабочей обмоток. Если из двигателя выходит три провода, его реверс сделать не удастся без разрыва соединения выводов обмоток, скрытого в его корпусе. Для реверса выводы пусковой обмотки надо поменять местами. 

Реверс асинхронного движка от стиральной машины: U1U2 – выводы пусковой обмотки, Z1Z2 – выводы рабочей обмотки Похожие статьи:

Коллекторный двигатель

1. Применение коллекторных двигателей в стиральных машинах

Коллекторные двигатели получили широкое применение не только в электроинструменте (дрели, шуруповёрты, болгарки и т.д), мелких бытовых приборах (миксеры, блендеры, соковыжималки и т.п), но и в стиральных машинах в качестве двигателя привода барабана. Коллекторными двигателями оснащено большинство (примерно 85%) всех бытовых стиральных машин. Эти двигатели применялись уже во многих стиральных машинах ещё с середины 90-х годов и со временем полностью вытеснили однофазные конденсаторные асинхронные двигатели.

Коллекторные моторы более компактные, мощные и простые в управлении. Этим и объясняется их столь массовое применение. В стиральных машинах применяются коллекторные двигатели таких марок производителей как: INDESCO, WELLING, C.E.S.E.T., SELNI, SOLE, FHP, ACC. Внешне они немного отличаются друг от друга, могут иметь разную мощность, тип крепления, но принцип работы их совершенно одинаковый.

2. Устройство коллекторного двигателя для стиральной машины

1. Статор
2. Коллектор ротора
3. Щётка (применяются всегда две щётки,
вторую на рисунке не видно)
4. Магнитный ротор тахогенератора
5. Катушка (обмотка) тахогенератора
6. Стопорная крышка тахогенератора
7. Клеммная колодка двигателя
8. Шкив
9. Алюминиевый корпус

Рис.2 Конструкция коллекторного двигателя стиральной машины

Коллекторный двигатель – это однофазный двигатель с последовательным возбуждением обмоток, предназначенный для работы от сети переменного или постоянного тока. Поэтому его называют ещё универсальный коллекторный двигатель (УКД).

Большинство коллекторных двигателей применяемых в стиральных машинах имеют конструкцию и внешний вид представленный на (рис.2)
Данный двигатель имеет ряд таких основных частей как: статор (с обмоткой возбуждения), ротор, щетка (скользящий контакт, всегда применяются две щётки), тахогенератор (магнитный ротор которого крепится к торцевой части вала ротора, а катушка тахогенератора фиксируется стопорной крышкой или кольцом). Все составные части скрепляются в единую конструкцию двумя алюминиевыми крышками, которые образуют корпус двигателя . На клеммную колодку выводятся контакты обмоток статора, щёток, тахогенератора необходимые для подключения к электрической схеме. На вал ротора запрессован шкив, через который посредством ременной передачи приводится в движение барабан стиральной машины.

Чтобы в дальнейшем лучше понять как работает коллекторный двигатель, давайте рассмотрим устройство каждого из его основных узлов.

3. Ротор (якорь)

Ротор (якорь) – вращающаяся (подвижная) часть двигателя. На стальной вал устанавливается сердечник, который для уменьшения вихревых токов изготавливают из наборных пластин электротехнической стали. В пазы сердечника укладываются одинаковые ветви обмотки, выводы которых прикреплены к контактным медным пластинам (ламелям), образующие коллектор ротора. На коллекторе ротора в среднем может быть 36 ламелей располагающихся на изоляторе и разделённые между собой зазором.
Для обеспечения скольжения ротора, на его вал запрессовываются подшипники, опорами которых служат крышки корпуса двигателя. Так же, на вал ротора запрессован шкив с проточенными канавками для ремня, а на противоположной торцевой стороне вала есть отверстие с резьбой в которое прикручивается магнитный ротор

4. Статор

Статор – неподвижная часть двигателя. Для уменьшения вихревых токов, сердечник статора выполнен из наборных пластин электротехнической стали образующих каркас, на котором уложены две равные секции обмотки соединённые последовательно. У статора почти всегда есть только два вывода обеих секций обмотки. Но в некоторых двигателях применяется так называемое секционирование обмотки статора и дополнительно имеется третий вывод между секциями. Обычно это делается из-за того, что при работе двигателя на постоянном токе, индуктивное сопротивление обмоток оказывает меньшее сопротивление постоянному току и ток в обмотках выше, поэтому задействуются обе секции обмотки, а при работе на переменном токе включается лишь одна секция, так как переменному току индуктивное сопротивление обмотки оказывает большее сопротивление и ток в обмотке меньше. В универсальных коллекторных двигателях стиральных машин применяется тот же принцип, только секционирование обмотки статора необходимо для увеличения количества оборотов вращения ротора двигателя. При достижении определённой скорости вращения ротора, электрическая схема двигателя коммутируется таким образом, чтобы включалась одна секция обмотки статора. В результате индуктивное сопротивление снижается и двигатель набирает ещё большие обороты. Это необходимо на стадии режима отжима (центрифугирования) в стиральной машине. Средний вывод секций обмотки статора применяется не во всех коллекторных двигателях.
Для защиты двигателя от перегрева и токовых перегрузок, последовательно через обмотку статора включают тепловую защиту с самовосстанавливающимися биметаллическими контактами (на рисунке тепловая защита не показана). Иногда контакты тепловой защиты выводят на клеммную колодку двигателя.

5. Щётка

Щётка – это скользящий контакт, является звеном электрической цепи обеспечивающим электрическое соединение цепи ротора с цепью статора. Щётка крепится на корпусе двигателя и под определённым углом примыкает к ламелям коллектора. Применяется всегда как минимум пара щёток, которая образует так называемый щёточно-коллекторный узел.
Рабочая часть щётки – графитовый брусок с низким удельным электрическим сопротивлением и низким коэффициентом трения. Графитовый брусок имеет гибкий медный или стальной жгутик с припаянной контактной клеммой. Для прижима бруска к коллектору применяется пружинка. Вся конструкция заключена в изолятор и крепится к корпусу двигателя. В процессе работы двигателя, щётки из-за трения о коллектор стачиваются, поэтому они считаются расходным материалом.

6.Тахогенератор

Тахогенератор (от др.-греч. τάχος – быстрота, скорость и генератор) – измерительный генератор постоянного или переменного тока, предназначенный для преобразования мгновенного значения частоты (угловой скорости) вращения вала в пропорциональный электрический сигнал. Тахогенератор предназначен для контроля скорости вращения ротора коллекторного двигателя. Ротор тахогенератора крепится напрямую к ротору двигателя и при вращении в обмотке катушки тахогенератора по закону взаимоиндукции наводится пропорциональная электродвижущая сила (ЭДС). Значение переменного напряжения, считывается с выводов катушки и обрабатывается электронной схемой, а последняя в конечном итоге задаёт и контролирует необходимую, постоянную скорость вращения ротора двигателя.
Такой же принцип работы и конструкцию имеют тахогенераторы применяемые в однофазных и трёхфазных асинхронных двигателях стиральных машин.

В коллекторных двигателях некоторых моделей стиральных машин марки Bosch (Бош) и Siemens (Сименс) вместо тахогенератора применяется датчик Холла. Это очень компактный и недорогой полупроводниковый прибор, который устанавливается на неподвижной части двигателя и взаимодействует с магнитным полем кругового магнита установленным на валу ротора непосредственно рядом с коллектором. У датчика Холла три вывода, сигналы с которого так же считываются и обрабатываются электронной схемой (подробно принцип работы датчика Холла в данной статье мы рассматривать не будем).

7. Схема подключения коллекторного двигателя

Как и в любом электродвигателе, принцип работы коллекторного двигателя основан на взаимодействии магнитных полей статора и ротора, через которые проходит электрический ток. Коллекторный двигатель стиральной машины имеет последовательную схему подключения обмоток. В этом легко убедится рассмотрев его развёрнутую схему подключения к электрической сети (Рис.7).

У коллекторных двигателей стиральных машин, на контактной колодке может быть от 6 до 10 задействованных контактов. На рисунке представлены все максимальные 10 контактов и всевозможные варианты подключения узлов двигателя.

Зная устройство, принцип работы и стандартную схему подключения коллекторного двигателя, без труда можно запустить любой двигатель напрямую от электросети без применения электронной схемы управления и для этого не надо запоминать особенности расположения выводов обмоток на клеммной колодке каждой марки двигателя. Для этого, достаточно всего лишь определить выводы обмоток статора и щёток и подключить их согласно схеме на приведённом ниже рисунке.

Порядок расположения контактов клеммной колодки коллекторного двигателя стиральной машины выбран произвольно.

На схеме, оранжевыми стрелочками условно показано направление тока по проводникам и обмоткам двигателя. От фазы (L) ток идёт через одну из щёток на коллектор, проходит по виткам обмотки ротора и выходит через другую щётку и через перемычку ток последовательно проходит по обмоткам обеих секций статора доходя до нейтрали (N).

Такой тип двигателя независимо от полярности подаваемого напряжения вращается в одну сторону, так как за счёт последовательного соединения обмоток статора и ротора смена полюсов их магнитных полей происходит одновременно и результирующий момент остаётся направленным в одну сторону.

Для того, чтобы двигатель начал вращаться в другую сторону, необходимо лишь изменить последовательность коммутации обмоток.
Пунктирной линией обозначены элементы и выводы, которые задействованы не во всех двигателях. Например датчик Холла, выводы термозащиты и вывод половины обмотки статора. При запуске коллекторного двигателя напрямую, подключаются только обмотки статора и ротора (через щётки).

Внимание! Представленная схема подключения коллекторного двигателя напрямую, не имеет средств электрической защиты от короткого замыкания и устройств ограничивающих ток. При таком подключении от бытовой сети, двигатель развивает полную мощность, поэтому не следует допускать длительного прямого включения.

8. Управление коллекторным двигателем в стиральной машине

Для управления коллекторным двигателем, в стиральной машине применяется электронная схема ,силовым регулирующим элементом является симистор (Рис.8), который подает (пропускает) необходимое напряжение на двигатель. Симистор можно представит как быстродействующий выключатель (ключ),с силовыми электродами А1 и А2,а на управляющий затвор G поступают управляющие импульсы открывая его в нужный момент. В электрической схеме, симистор последовательно подключён с коллекторным двигателем.

Принцип действия электронных схем, в которых используется симистор, основан на двухполупериодном фазовом управлении. На графике (рис.9) показано как изменяется величина питающего мотор напряжения в зависимости от поступающих на управляющий электрод симистора импульсов с микроконтроллера.
Таким образом можно отметить,что частота вращения ротора двигателя напрямую зависит от напряжения прикладываемого к обмоткам двигателя.

Ниже представлены фрагменты условной электрической схемы подключения коллекторного двигателя с тахогенератором к электронному блоку управления (EC).
Общий принцип схемы управления коллекторного двигателя таков. Управляющий сигнал с электронной схемы поступает на затвор симистора (TY),тем самым открывая его и по обмоткам двигателя начинает протекать ток,что приводит к вращению ротора (M) двигателя. Вместе с тем, тахогенератор (P) передаёт мгновенное значение частоты вращения вала ротора в пропорциональный электрический сигнал. По сигналам с тахогенератора создаётся обратная связь с сигналами управляющих импульсов поступаемых на затвор симистора. Таким образом обеспечивается равномерная работа и частота вращения ротора двигателя при любых режимах нагрузки, вследствие чего барабан в стиральных машинах вращается равномерно. Для осуществления реверсивного вращения двигателя применяются специальные реле R1 и R2 , коммутирующие обмотки двигателя.

Изменение направления вращения двигателя

Т-тахогенератор
М-ротор (коллекторно-щёточный узел)
S-статор
P-тепловая защита
TY-симистор
R1 и R2– коммутирующие реле

В некоторых стиральных машинах, коллекторный двигатель работает на постоянном токе. Для этого, в схеме управления, после симистора, устанавливают выпрямитель переменного тока построенный на диодах (“диодный мост”). Работа коллекторного двигателя на постоянном токе увеличивает его КПД и максимальный крутящий момент.

9. Достоинства и недостатки универсальных коллекторных двигателей

К достоинствам можно отнести: компактные размеры, большой пусковой момент, быстроходность и отсутствие привязки к частоте сети, возможность плавного регулирования оборотов (момента) в очень широком диапазоне— от ноля до номинального значения— изменением питающего напряжения, возможность применения работы как на постоянном,так и на переменном токе.
Недостатки – наличие коллекторно-щёточного узла и в связи с этим: относительно малая надёжность (срок службы), искрение возникающее между щётками и коллектором из-за коммутации, высокий уровень шума, большое число деталей коллектора.

10. Неисправности коллекторных двигателей

Самая уязвимая часть двигателя – коллекторно-щёточный узел. Даже в исправном двигателе, между щётками и коллектором происходит искрение, которое довольно сильно нагревает его ламели. При износе щёток до предела и вследствие их плохого прижима к коллектору, искрение порой достигает кульминационного момента представляющего электрическую дугу. В этом случае ламели коллектора сильно перегреваются и иногда отслаиваются от изолятора, образуя неровность,после чего,даже заменив изношенные щётки, двигатель будет работать с сильным искрением,что приведёт его к выходу из строя.

Иногда происходит межвитковое замыкание обмотки ротора или статора (значительно реже), что так же проявляется в сильном искрении коллекторно-щёточного узла (из-за повышенного тока) или ослаблении магнитного поля двигателя, при котором ротор двигателя не развивает полноценный крутящий момент.
Как мы и говорили выше, щётки в коллекторных двигателях при трении о коллектор со временем стачиваются. Поэтому большая часть всех работ по ремонту двигателей сводится к замене щёток.

Стоит отметить,что надёжность коллекторного двигателя во многом зависит от того, насколько качественно и грамотно производители подходят к технологическому процессу его изготовления и сборки.

Статья подготовлена интернет-магазином A-qualux.ru

← В раздел “Статьи”

Схема таймера мешалки двигателя стиральной машины

В статье подробно описана конструкция схемы для управления мешалкой двигателя стиральной машины через заданную временную последовательность, которая также включает в себя альтернативное реверсирование вращения двигателя. Схема была запрошена г-ном Э. Рама Мурти.

Технические характеристики

У меня есть старая стиральная машина, которая до сих пор хорошо работает. В последнее время его печатная плата исчезла, и я не могу получить ее на месте.

Механическая / электрическая работа в хорошем состоянии.Таймер электромеханический, исправен. Что мне нужно, так это схема или ваше изделие со спецификациями, указанными ниже.

Он может работать от 220 В переменного тока, или я могу обеспечить питание 5 В постоянного тока через локальный адаптер питания. Блок должен иметь для управления двигателем 2 отдельных реле для вращения двигателя вперед и назад.

Время срабатывания реле составляет 2 секунды остановки и 5 секунд вперед, 2 секунды остановки и 3 секунды назад. Это для работы процесса перемешивания одежды.

Мотор 0,5 л.с. Я могу поместить его в водонепроницаемую коробку. Пожалуйста, сообщите мне, сколько я должен отправить вам банковским переводом, включая ваши расходы на упаковку и пересылку.

Заранее благодарю.

E.Rama Murthy., Visakhapatnam., AP

Общие сведения об электропроводке двигателя стиральной машины

Прежде чем мы узнаем, как сделать индивидуальную стиральную машину с таймером, важно изучить базовую схему 3 электродвигатель стиральной машины.

Как показано на схеме ниже, двигатель стиральной машины обычно имеет пару одинаковых наборов обмоток. В отличие от двигателя вентилятора, две обмотки идентичны по толщине провода и количеству витков.

Это потому, что двигатель стиральной машины должен вращаться в обоих направлениях. Это означает, что он должен двигаться поочередно против часовой стрелки и по часовой стрелке.

Следовательно, проводка реализована таким образом, что каждая обмотка работает поочередно как основная обмотка, а также как пусковая обмотка конденсатора, в зависимости от того, какая обмотка выбрана реле таймера.

Как реализовано обратное прямое вращение

На изображении выше, если предположить, что обмотка № 1 выбрана реле таймера, обмотка № 1 действует как обмотка основного двигателя, а обмотка № 2 работает как пуск вспомогательного конденсатора. обмотка, для запуска вращения двигателя в заданном направлении.

Затем, когда реле таймера подключается к обмотке №2, эта обмотка становится основной обмоткой, а обмотка №1 используется как конденсаторная пусковая обмотка для вращения двигателя в противоположном направлении.Таким образом, двигатель стиральной машины может вращаться в обратном / прямом направлении, несмотря на то, что он является двигателем переменного тока.

Проектирование схемы

Функционирование предлагаемой схемы контроллера мешалки двигателя стиральной машины может быть понято следующим образом:

Когда питание включается в схему, контакт 15 микросхемы сбрасывается C1, обеспечивая высокий уровень вначале. вывод №3, который является первой распиновкой в ​​порядке последовательности для IC 4017.

Вышеупомянутый высокий логический уровень на выводе №3 мгновенно проходит через C2, вызывая высокий логический уровень на входе N1, который, в свою очередь, вызывает высокий логический уровень на входе выход N2.

В вышеуказанной ситуации T2 и RL / 1 остаются выключенными.

Теперь, по прошествии заданного времени в 2 секунды, которое можно установить путем соответствующего выбора значений C2 / R2 / R3, C2 становится полностью заряженным, обеспечивая логический ноль на входе N1, который мгновенно изменяет состояния на выходах N1 / N2. вызывает логический ноль на выходе N2, который, в свою очередь, включает T1.

T1 передает короткий положительный импульс через вывод № 3 с высоким уровнем эмиттера / коллектора на вывод № 14 IC1.

Вышеупомянутые импульсы синхронизируют IC1, так что высокий логический вывод №3 теперь переходит к следующей распиновке в порядке, вывод №2.

Вышеупомянутый высокий уровень на выводе # 2 идентично передается на входе N3, обеспечивая мгновенный низкий уровень на его выходе. Этот низкий уровень запускает T2 и RL / 1, активируя двигатель в определенном направлении в зависимости от подключения контактов RL / 2.

N4 сохраняет вышеуказанное логическое состояние до тех пор, пока не пройдут 3 секунды, что определяется значениями C3 / R7, после чего N4 возвращается в свое состояние, переключая T3, что вызывает короткий импульс на вывод № 14 IC1.

Вышеупомянутый импульс снова синхронизирует IC1, так что теперь логика переходит с вывода №2 на вывод №4 в порядке последовательности.

Высокий уровень на выводе №4 снова повторяет первую последовательность, которая была реализована, когда логика была на выводе №3.

Вышеуказанные условия деактивируют RL / 1 и двигатель еще на 2 секунды.

По прошествии вышеуказанных 2 секунд T1 включается, обеспечивая импульс на контакт № 14, что приводит к смещению последовательности на контакт № 7.

Высокий уровень на выводе № 7 снова включает T2 / RL1, а также RL / 2. Однако на этот раз двигатель меняет направление вращения из-за активации RL / 2.

Значения C4 / R11 гарантируют, что вышеуказанное условие остается включенным в течение примерно 5 секунд. Через 5 секунд T5 выполняет синхронизацию контакта №14, который сдвигает последовательность к следующему порядку вывода выводов, который находится на контакте №10. Поскольку контакт № 10 соединен с контактом № 15, ситуация мгновенно возвращается к контакту № 3 и сбрасывается обратно … и цикл повторяется.

Принципиальная схема
Список деталей для указанной выше схемы таймера контроллера стиральной машины
  • R1, R4, R5, R6, R8, R9, R10 = 10K
  • R2, R3, R7, R11, C2, C3, C4 = ОПРЕДЕЛЕНИЕ ИСПЫТАНИЯ И ОШИБКИ
  • R12 = 100K
  • C5 = 33 мкФ / 25 В
  • T1, T3, T5 = BC557
  • T2, T4 = 2N2907
  • D1 —- D10 = 1N4007
  • N1– –N6 = IC 4049
  • IC1 = 4017
  • RL / 1, RL / 2 = 6 В / 100 мА РЕЛЕ SPDT
Как подключить электрические соединения двигателя стиральной машины.

Как показано на приведенной выше диаграмме, у двигателя будет три провода, один из которых будет входом сети, а два других – для переворота или для изменения направления вращения двигателя.

Если вам нужна помощь, проконсультируйтесь с квалифицированным специалистом по ремонту стиральных машин для подтверждения точных вводов проводов перед их подключением к цепи.

Контроллер опрокидывания от стиральной машины. Как отрегулировать обороты двигателя от стиральной машины TDA1085C Схема управления двигателем от стиральной машины


Сосед у подъезда поставил подъезд для дальнейшего вывоза на помойку, стиральную машину-автомат, как ему сказал мастер по ремонту, Кирдык приехал мотор.Ни один Саморелкин, ни при жизни, не пройдет мимо брошенного агрегата, не взяв его по частям или хотя бы не заглянув внутрь на содержание. Мы с таким же больным решили уберечь соседку от тяжелого физического труда, вывозом агрегата на помойку и отвезли его на запчасти в деревню.

На фото: один из самых полезных элементов внутренностей стиральной машины.

Все разобрали под полезные подсказки и пора было проверить состояние мотора.

Пункт 1. Поверка двигателя.

Для проверки мотора и модернизации диммера освещения нам понадобятся инструменты.
* Прибор (тестер)
* Платы электрики
* Диммер
* Паяльник

Внутри оказался такой коллективный универсальный мотор MCA 52 \ 64 -148 \ KT11 390W. 13000 об / мин.


На картинке мы видим семиконтактный большой разъем, слева все одноцветные синие провода (чтобы обывателю было сложнее разобраться) и один желто- зеленый (заземление), провода расположены непосредственно в двигателе, если смотреть сверху, то два красных (на датчике движения), синий на щетке 1, фиолетовый на другую щетку 2, черный (средняя точка обмотки двигателя) , оранжевый (две обмотки статора).


Убираю все выходящие на синие провода для трансверсов.


Отсоедините разъем и вызовите тестера, какой из синих проводов к какому проводу мотора подходит не забыть, нужно записать, зарисовать.


Для легкого запуска мотора нам понадобятся всего два провода оранжевого, синего и фиолетового цветов, остальные можно купить отдельно или изолировать на будущее самодельные.

По такой схеме нужно подключить мотор.


Можно проверить работу мотора, все работает (как в большинстве случаев так и бывает), только подшипники желательно заменить.

Так диагностируют мастера-ремонтники, цена такого нового мотора 6000 руб. + Монтажные работы.

Точка 2. Реверс.

Этот тип мотора можно реверсировать, что и делает стиральная машина во время стирки, для этого нужно поменять насадку щетки с одной обмотки на другую, достаточно сделать это после полной остановки и обесточивания мотора.

Схема. Реверс с тумблером.

Самостоятельное переключение.

Пункт 3. Регулировка оборотов диммера света.

Вы также можете регулировать обороты, уменьшая ток для увеличения тока, например, используя остаток провода требуемой мощности или используя симистор SIM-регулятора.

Как самый простой и доступный, это диммер для освещения (фото ниже), только обязательно сначала подключитесь к которому рассчитан регулятор максимального тока, нам нужно десятикратное перекрытие номинальной мощности двигателя, потому что пусковой ток нашего мотор прыгает от 8-10а и выше даже без нагрузки.

Самый дешевый диммер.


Если Диммер был как 3а, то его можно модифицировать, найдя необходимый симистор прямо на плате управления самой стиральной машины, где все параметры как раз рассчитаны на этот мотор.


Для этого проследим путь от места подключения клеммы мотора к плате и по самым широким дорожкам, одна из которых обязательно подходит для одной из нужных нам ножек (в моем случае это симистор BTB16 с тремя ножками).


Отключаем крепление радиатора и вытаскиваем деталь, стараясь не накладывать.


Полученный симистор вместе с радиатором, который мы подпираем при замене старой детали в регуляторе, теперь можно безопасно подключать к нагрузке 10 А, а в момент запуска даже к 16а.


Подключаем регулятор (диммер) в разрыв одного провода питания мотора, включаем сеть и крутим ручку регулятора, мотор должен запуститься вращения, а скорость соответствует положению ручки регулятора.

Если при включении сети мотор в любом из положений регулятора работает или постоянно работает без изменения оборотов, то деталь (SIMISTOR) оказалась пробитой (сгоревшей) при условии, что сам регулятор был изначально хорошо.

Теперь надо сделать для Диммера новое здание, старое ему стало мало. Но это уже другая история.

Регулировка ротора двигателя стиральной машины может потребоваться при любом самодельном самоперемещении, который решит нюанс разрешительного помощника.

Простое подключение моторной стиральной машины к питанию не дает большого толка, потому что дает максимальную динамику сразу, а ведь многие самоделки требуют увеличения или уменьшения оборотов, а желательно без потери мощности. В этой публикации мы расскажем о том, как подключить двигатель от омывателя, и как сделать для него регулятор оборотов.

Первое подключение

Перед настройкой двигателя стиральной машины двигатель необходимо правильно подключить.Коллективные двигатели от стиральных машин Машинка имеет несколько выходов и многие начинающие самовосстановления их путают, не могут понять, как подключить. Расскажем обо всем по порядку, а заодно и проверим работу электродвигателя, потому что есть вероятность, что он полностью неисправен.


К сведению! Мосты с двумя выходами легко называют омемами. Но те же детали с тремя доходностями ни в какую сторону не назовутся.

  • Далее берем один провод, идущий от коллектора, и соединяем с одним из проводов катушки.
  • Второй коллекторный провод и второй провод катушки подключаются к сети 220 В.
  • Если нам нужно изменить направление вращения якоря, то мы просто меняем подключаемые провода, а именно первый коллекторный провод и первый провод катушки включают сеть, а вторые провода соединяют друг друга.
  • Обращаем внимание на сокращения проводов катушки, воздуховода и коллектора, чтобы не перепутать и произвести тестовый запуск двигателя.

Если пробный пуск прошел успешно, а именно двигатель плавно набирал обороты без заеданий и рывков, щетки не искрились, можно начинать подключение двигателя стиральной машины через регулятор оборотов. Существует множество схем подключения двигателя через регулятор, а также схем регулятора, рассмотрим два варианта.

Подключение через регулятор напряжения

Самым простым вариантом регулировки электродвигателя стиральной машины является использование любого регулятора напряжения (диммер, накладки от дрели и др.).Смысл регулировки в том, что на двигатель подается максимальное напряжение, и он вращается с максимальной скоростью. Поворачивая тумблер диммера, мы снижаем напряжение, и двигатель соответственно начинает снижать обороты. Схема подключения Next:

  • катушки с одним проводом соединяются с одной инвалидной коляской;
  • – второй провод катушки подключен к сети;
  • второй провод якоря соединяется с диммером, а второй вывод диммера подключается к сети;
  • производим тестовый запуск двигателя.

Проверить, как двигатель работает на минимальной мощности. Вы можете убедиться, что даже на минимальной скорости оборота без нагрузки впечатляют, но стоит только отметить деревянную глыбу к вращающейся оси, и двигатель сразу же заглохнет. Каков вывод? И вывод, что такой способ регулировки вращения электродвигателя стиральной машины приводит к катастрофической потере мощности при понижении напряжения, что недопустимо, если вы собираетесь делать какие-то самодельные из двигателя.

Важно! При запуске двигателя стиральной машины соблюдайте технику безопасности. Обязательно закрепите двигатель перед запуском, нельзя прикасаться к вращающимся предметам, к которым нужно прикоснуться.

Изначально мы ставили задачу научиться регулировать обороты двигателя стиральной машины без потерь или с минимальными потерями мощности, но возможно ли это? Вполне возможно, просто схема подключения несколько усложняется.

Через микросхему

Пора вспомнить о перемычке и ее выходах, которые мы нашли на двигателе, но раньше времени их отбросили в сторону.Именно лента поможет нам подключить мойку двигателя и отрегулировать его обороты без потери мощности. Сам мотор может управлять двигателем, он только посредник. Реальное управление должно осуществляться микросхемой, которая соединена с двигателем, обмоткой и якорем и питается от сети 220 В.-Б. Схему вы можете увидеть на рисунке ниже.

Что происходит с движком, когда мы подключаем его к сети через этот чип? А происходит следующее: мы можем запустить двигатель своими руками на максимальную скорость, а можем, повернув специальный поворотный тумблер на уменьшение.Даем резкую нагрузку двигателю, подставляя под вращающийся шкив деревянную бледнее. На долю секунды обороты падают, но потом снова восстанавливаются, несмотря на нагрузку.

Дело в том, что дивертер определяет снижение оборотов из-за произошедшей нагрузки и сразу дает сигнал об этом на плату управления. Микросхема, получив сигнал, автоматически добавляет мощность, выравнивая обороты двигателя. Мечта Селфкина, как говорится, сбылась. Если у вас есть такая схема подключения от двигателя стиральной машины, это еще и ксилография и много других полезных вещей.

Подводя итог нашему повествованию, отвечу еще на один резонный вопрос, который может задать читателю: где взять эту плату? Вы можете собрать на основании схемы и списка запчастей, которые мы прилагаем к этой статье, а можете заказать в готовом виде у специалистов. Благо в сети предложений по этому аккаунту достаточно. Для поиска нужна схема TDA 1085.

Стиральные машины, как и любая бытовая техника, имеют свойство ломаться.Хорошо, если произошедшую поломку можно исправить небольшими финансовыми затратами. Но увы, бывают случаи, когда отремонтировать стиральную машину непонятно, ведь проще и дешевле купить новый агрегат. Но что делать со старым? Особенно, если его двигатель в отличном состоянии и продолжает исправно работать.

Нужны ненужные вещи

Многие просто отвозят машину на свалку и забывают о ней. Но для мастичного и умелого хозяина это не решение вопроса.Вы будете удивлены, узнав, где и какие детали стиральной машины можно разместить в доме. А в нашей статье мы поговорим о самой ценной детали этого агрегата – о двигателе хорошо питающейся стиральной машины.

Наиболее подходящим вариантом использования электродвигателя является его подключение к другому устройству. Например, электрическая машина (или любая другая). Но для этого в первую очередь нужно подключить мотор к бытовой сети 220 В и отрегулировать величину его оборотов.

Подключение к 220 вольт

Для подключения электродвигателя к домашней электросети вам понадобится мультиметр.

С его помощью он перебирает выходные провода, идущие от электродвигателя. Цель этой операции: обнаружить среди проводов (от 2 до 4 штук) два с наибольшим сопротивлением (около 12 Ом). Соответственно, если проводов всего 2, то задача упрощается до минимума. На данный момент у нас на руке два провода питания от катушки двигателя стиральной машины.

Третья пара проводов, которая вам нужна, относится к ремешку. В основном они крепятся на корпусе двигателя. В противном случае его (мотор) разберут частично.

Один из коллекторных проводов соединяется с катушкой. А остальная пара (коллектор – катушка) подключена удобным способом к сети 220 вольт. Проводим пробный запуск.

Если вы не знаете, какие детали вы себе представляете: катушка возбуждения, коллектор, воздуховод и так далее, лучше отложить чтение этой статьи до ознакомления с устройством и принципом работы коллекторной мойки двигателя. машина.

Регулировка оборотов двигателя от стиральной машины

Скорость вращения двигателя играет важную роль в его дальнейшем применении. Существует большое количество схем и печатных плат, на основе которых подключаются электродвигатели стиральных машин. И еще большее количество регуляторов оборотов от стиральных машин самодельного производителя, которые порой намного эффективнее и лучше заводских аналогов. Рассмотрим две схемы регулировки оборотов двигателя от стиральной машины.

Регулятор напряжения

Самым простым и доступным регулятором скорости электродвигателя стиральной машины является любое устройство, предназначенное для таких действий. Это может быть:

  • Димер;
  • Направляющая для электродрелей;
  • Поворотное колесо и др., Взятые из любого бытового прибора или купленные в магазине.

Смысл операции контроля оборотов прост и заключается в уменьшении или увеличении поступающего на двигатель напряжения от сети 220 вольт.То есть, поворачивая колесико регулировки, мы регулируем напряжение, а значит, и скорость вращения. Схема этого подключения следующая:

  • Провод от катушки (1) соединить с кабелем, идущим от якоря.
  • Провод 2 витка Отправляем в сеть.

  • Оставшийся трос (2) закрепляем ближе к димеру.
  • Второй выход димера – в сеть.
  • Производим пробный пуск электродвигателя и работу регулятора.

Если не запутались, двигатель послушно изменит количество оборотов. Но возникнет одна большая проблема. Когда вы коснетесь вращающейся оси двигателя, он остановится. То есть при малейшем стороннем воздействии пропадание мощности происходит вне зависимости от подаваемого напряжения. Фактически, у нас на руках рабочий движок без каких-либо полезных функций.

Подключение через плату (чип)

Наша схема регулировки оборотов изначально не была элементарной.И именно для этого мы использовали в нем тахогенератор. Пришло время сделать это. Ведь с помощью насадки мы сможем регулировать обороты двигателя стиральной машины без потери ее мощности, то есть превратив электромотор в настоящее функциональное устройство.

В нашем случае партия является посредником между двигателем и микросхемой, а именно: Данная схема создана на базе заводской карты с маркировкой TDA 1085. Приобрести любую работу в радиотехнических магазинах не составит труда.

Вполне уместно будет вопрос – что изменится в работе двигателя после его подключения через микросхему? Много вещей.

Если при обычном подключении, описанном нами выше, запустить двигатель на работу придется вручную. Вот теперь это возможно простым поворотом тумблера. При попытке воздействовать на вращающийся шкив двигатель не останавливается полностью, а буквально на доли секунды сбрасывает обороты, после чего возвращается на заданную мощность, но уже с учетом повышенной нагрузки.

То есть встроенная нами микросхема, получив сигнал от иглы об уменьшении числа оборотов из-за возросшей нагрузки, моментально на него реагирует и увеличивает мощность, а значит, и количество оборотов электродвигателя.

65 руб.

Описание:

Регулирует рабочую частоту вращения двигателя (двигатель со щетками) без потери мощности, независимо от нагрузки. Этот модуль позволяет контролировать обороты от 0 до 20 000 об / мин. (или по возможности производителя), сохраняя момент силы на валу двигателя.На плате предусмотрен силовой предохранитель и все необходимые клеммы для подключения к сети 220В, мотору и водопроводу. Регулятор широко применялся для двигателей от стиральной машины.

Подробнее:

Модуль небольшой платы со всеми необходимыми элементами для обвязки и построен на микросхеме. TDA1085C. . Обязательным условием подключения является наличие наконечника (тахогенератора), позволяющего обеспечить обратную связь от микросхемы. При нагрузке двигателя частота оборотов начинает падать, что захватывает самосвал, который дает команду микросхемы на повышение напряжения и наоборот, при ослаблении нагрузки – напряжение двигателя падает.Таким образом, такая конструкция позволяет поддерживать постоянную мощность коллекторного двигателя при изменении скорости вращения ротора.

Модуль хорошо подходит к электродвигателю от стиральной машины . В сочетании с двумя приспособлениями это легко сделать своими руками: токарный станок по дереву, фрезерный станок, медовод, газонокосилка, горшечный круг, дереворежущий, наждак, сверлильный станок, мыльный пузырь и другое. устройства, где необходимо вращение механизмов.

Есть вариант по конденсаторному типу мощности:


Стоимость этой платы 55.00 руб. .

Подключение

Для подключения коллекторного двигателя к плате управления необходимо разводка в распиновке проводов. Стандартный коллекторный двигатель имеет 3 группы контактов: контакт, щетки и обмотка статора. Изредка также может быть представлена ​​с 4-мя группами тепловой защиты (провода обычно белые).

Tax : Расположен в задней части двигателя с выходными проводами (сечение меньше, чем у других). Провода могут быть прозваны мультиметром и могут иметь небольшое сопротивление.

Щетки : Провода имеют прозвище между собой и коллектором двигателя.

Обмотка : Провода имеют 2 или 3 вывода (со средней точкой). Провода прозвучали друг с другом.

При подключении коллекторного двигателя к сети 220 вольт:

Один конец провода щетки и обмотки подключаем к приправе (или ставим перемычку в контактную колодку), другой конец проводов подключаем к сети 220В. Направление вращения двигателя будет зависеть от того, какой из проводов обмотки будет подключен к сети 220В.Если нужно изменить направление движения двигателя – переставьте перемычку на другую пару проводов «обмотка-щетка».

При подключении коллекторного двигателя к плате регулятора цепи:



Провода для подключения двигателя к сети 220В, подключенной к терминалу « М» . К терминалу “ TAHO” подключаем челку. К клемме «Л н» подключаем сетевое питание 220 вольт.Полярность значения не имеет.

Включенный переключатель (клемма SA ). Если переключатель не нужен – ставим перемычку.

Настройка

На плате предусмотрено 3 типа настроек:

Установка плавности оборотов;

Тюнинг наклона;

Установка диапазона регулировки оборотов.

Для надежности в работе и корректности configure рекомендуется настраивать в следующей последовательности:

1) Н. Набор для уборки полов R1 который отвечает за плавность набора коллекторного двигателя.

2) Настройка танга Выполняется подстроечным резистором R3, Который позволяет убрать рывки и рывки в двигателе при регулировке скорости вращения.

3) Установка диапазона регулировки оборотов Осуществляется подстроечным резистором R2 . Настройка позволяет ограничить или увеличить минимальное количество оборотов коллекторного двигателя даже при минимально скрученном потенциометре.

Подключение реверс.

Для подключения переключателя заднего хода необходимо снять перемычку в двигателе (обмотка и щетки). Провода в переключателе разделены тремя парами проводов, одна из которых имеет указанные концы. Пара с перечисленными концами подключается к клемме М. Остальные пары подключаются к обмотке и щеткам. Какая пара будет подключена к обмотке или щеткам, значения не имеет. Полярность подключения не имеет значения.

Пара проводов для подключения к двигателю зеленого или черного цвета.

Реверсивный переключатель не входит в стандартную комплектацию платы и приобретается отдельно.

Схема подключения Реверс к плате:

Плата настроена и проверена перед продажей!

Технические характеристики

В комплекте

Плата регулятора мощности на TDA1085 – 1шт.

Потенциометр с ручкой – 1шт.

Переключатель – 1шт.

Упаковка с инструкцией – 1шт.

Дополнительное оборудование

Комплект проводов с зажимами – 5 шт. +4 руб.

Реверсивный переключатель с проводами на клеммах – 1 компл. +8 рублей

Установка платы в корпус со всеми переключателями и проводами (подключаются только к двигателю) +35 руб.

Преимущества:

1. Силовая схема трансформатора обеспечивает безопасную и надежную работу.
2. Перед продажей все платы настроены и проверены в работе.
3. Компактные размеры платы позволят установить ее в любом случае.
4. Качественный монтаж радиоэлементов.
5. Завод-производитель с помощью маски защитит от пыли и коррозии.

Скачать описание схемы контроллера на микросхеме TDA1085CG.

Fucks1, Страница 2


Теги: коллекторный регулятор оборотов двигателя 220В – 12В, схема на микросхеме TDA1085 своими руками Купить Минск, регулировка оборотов двигателя электродрелью со стиральной машинкой, коллекторный мотор вязальные ручки, сверлильный или фрезерный станок своими руками, регулировка оборотов Двигатель для стиральной машины

Красивый для самоделки моторчик от стиральной машины имеет и слишком высокие обороты, и малый ресурс при максимальных оборотах.Поэтому я использую простой самодельный контроллер Revolt (без потери мощности). Схема была протестирована и показала отличный результат. Обороты регулируются примерно от 600 до MAX.

Потенциометр электрически изолирован от сети, что повышает безопасность регулятора.

Симистор необходимо поставить на радиатор.

Оптопара

(2 шт) практически любая, но у EL814 внутри 2 встречных светодиода, и просит по такой схеме.

Транзистор высоковольтный может быть поставлен, например, IRF740 (от БП компьютера), но ставить такой мощный транзистор в слаботочную цепочку жалко.Рабочие транзисторы 1N60, 13003, CT940.

Вместо моста КС407 вполне подойдет мост от 1N4007, либо любой на> 300В, а ток> 100мА.

Переключатель в формате.lay5. Скрипт нарисован “Вид со стороны m2 (пайка)”, поэтому При отображении принтера он должен быть зеркальным. Цвет м2 = черный, фон = белый, остальные цвета не печатают . Схема платы (для обрезки) сделана на стороне M2, и она будет указателем границ платы после травления.Вы должны удалить его перед уплотнением деталей. В последовательность добавлен чертеж деталей со стороны установки для переноса на пломбу. Тогда она приобретает красивый и законченный вид.

Регулировка от 600 оборотов подходит для большинства самодельных устройств, но для особых случаев предлагается схема с немецким транзистором. Минимальные обороты удалось снизить до 200.

Минимальные обороты получили 200 об / мин (170-210, электронный тахометр на малых оборотах плохо измеряет), транзистор Т3 поставил GT309, это прямая проводимость, а их много.Если поставить MP39, 40, 41, P13, 14, 15, то обороты все равно должны снизиться, но не вижу в этом необходимости. Главное, что такие транзисторы как грязь, в отличие от MP37 (см. Форум).

Плавный пуск работает отлично, правда на валу мотора пустой, но от нагрузки на валу при пуске подобрать R5 при необходимости.

R5 = 0-3K3 в зависимости от нагрузки ;; R6 = 18 Ом – 51 Ом – в зависимости от симистора у меня сейчас нет этого резистора ;;; R4 = 3К – 10К – Защита Т3 ;; RR1 = 2K-10K – регулятор скорости связан с сетью, требуется защита от сетевого напряжения оператора !!!.Есть потенциометры с пластиковой осью, желательно использовать !!! Это большой недостаток данной схемы, и если нет большой необходимости в малых оборотах, советую использовать V17 (от 600 об / мин).

С2 = плавный пуск, = время задержки мощности двигателя ;; R5 = заряд С2, = наклон кривой заряда, = время разгона мотора ;; R7 – время разряда С2 для следующего цикла плавного пуска (при 51к это примерно 2-3 секунды)

Список радиоэлементов
Обозначение Тип Номинал номер Примечание Оценка Мой блокнот
Т1. Симистор

BT139-600

1 В записной книжке
Т2. Distyor. 1 В записной книжке
ВД. Диодный мост

KC407A.

1 В записной книжке
VD4. Выпрямительный диод

1N4148.

1 В записной книжке
C2. Конденсатор 220 мкФ x 4 дюйма 1 В записной книжке
C1. Конденсатор 100 НФ X 160 В 1 В записной книжке
R1 Резистор

3,3 ком 0,5 Вт

1 В записной книжке
R2 Резистор

330 Ом 0.5 Вт

1 В записной книжке
R3 Резистор

470 ком 0,125 Вт

1 В записной книжке
R4. Резистор

200 Ом 0,125 Вт

1 В записной книжке
R5 Резистор

200 Ом 0.125 Вт

1 В записной книжке
V1. Optopara

PC817.

2 В записной книжке
Т3. Транзистор биполярный

GT309

1 В записной книжке
C2A. Конденсатор 47 мкФ x 4 дюйма 1

% PDF-1.4 % 1952 0 объект > эндобдж xref 1952 79 0000000016 00000 н. 0000003678 00000 н. 0000003892 00000 н. 0000003929 00000 н. 0000005885 00000 н. 0000008671 00000 н. 0000008784 00000 н. 0000008899 00000 н. 0000011749 00000 п. 0000014681 00000 п. 0000017674 00000 п. 0000020587 00000 п. 0000023127 00000 п. 0000023854 00000 п. 0000024301 00000 п. 0000024779 00000 п. 0000025393 00000 п. 0000025972 00000 п. 0000026610 00000 п. 0000027072 00000 п. 0000032401 00000 п. 0000033030 00000 п. 0000033738 00000 п. 0000034183 00000 п. 0000037048 00000 п. 0000040107 00000 п. 0000043547 00000 п. 0000048627 00000 н. 0000048741 00000 п. 0000048854 00000 п. 0000048977 00000 п. 0000049128 00000 п. 0000049242 00000 п. 0000049341 00000 п. 0000049492 00000 п. 0000049600 00000 п. 0000049699 00000 н. 0000049850 00000 п. 0000049959 00000 н. 0000050067 00000 п. 0000050191 00000 п. 0000050347 00000 п. 0000050451 00000 п. 0000050551 00000 п. 0000050675 00000 п. 0000050826 00000 п. 0000050939 00000 п. 0000051049 00000 п. 0000051173 00000 п. 0000051324 00000 п. 0000051436 00000 п. 0000051549 00000 п. 0000051673 00000 п. 0000051824 00000 п. 0000051935 00000 п. 0000052049 00000 п. 0000052158 00000 п. 0000052308 00000 п. 0000052463 00000 п. 0000052573 00000 п. 0000052683 00000 п. 0000052807 00000 п. 0000052958 00000 п. 0000053071 00000 п. 0000053195 00000 п. 0000053351 00000 п. 0000053451 00000 п. 0000053570 00000 п. 0000053721 00000 п. 0000053831 00000 п. 0000053936 00000 п. 0000054060 00000 п. 0000054216 00000 п. 0000054326 00000 п. 0000054440 00000 п. 0000054564 00000 п. 0000054715 00000 п. 0000003465 00000 н. 0000001913 00000 н. трейлер ] / Назад 2427711 / XRefStm 3465 >> startxref 0 %% EOF 2030 0 объект > поток h ެ ViTSGB1VV 紧 B \ P q KBB * `Ԃ ֍ * ֥ U {I ^ y3w ~} / ‘

Техническое обслуживание и ремонт солнечной водонагревательной системы

Солнечные энергетические системы требуют периодических проверок и текущего обслуживания для поддержания их эффективной работы.Кроме того, время от времени компоненты могут нуждаться в ремонте или замене. Вы также должны принять меры для предотвращения образования накипи, коррозии и замерзания.

Возможно, вы сможете выполнять некоторые задачи по проверке и техническому обслуживанию самостоятельно, но для других может потребоваться квалифицированный специалист. Прежде чем приступить к работе, запросите смету в письменной форме. Для некоторых систем замена, отключение или демонтаж солнечной системы может оказаться более рентабельной, чем ее ремонт.

Список периодических проверок

Вот некоторые рекомендуемые проверки компонентов солнечной системы.Также прочтите руководство по эксплуатации, чтобы узнать о предлагаемом графике технического обслуживания.

  • Затенение коллекторов
    Ежегодно визуально проверяйте затенение коллекторов в течение дня (в середине утра, в полдень и в полдень). Затенение может сильно повлиять на работу солнечных коллекторов. Рост растений со временем или новое строительство в вашем доме или собственности вашего соседа может привести к появлению затемнения, которого не было при установке коллекторов.
  • Загрязнение коллектора
    Запыленные или загрязненные коллекторы будут работать плохо.В сухом пыльном климате может потребоваться периодическая чистка.
  • Остекление коллектора и уплотнения
    Найдите трещины в стекле коллектора и проверьте состояние уплотнений. Пластиковое остекление, если оно сильно пожелтело, может нуждаться в замене.
  • Соединения водопровода, воздуховодов и электропроводки
    Поищите утечки жидкости в трубных соединениях. Проверить соединения и уплотнения воздуховодов. Воздуховоды следует заделать мастичным составом.Все соединения проводки должны быть плотными.
  • Изоляция трубопроводов, каналов и проводки
    Обратите внимание на повреждения или ухудшение изоляции, покрывающей трубы, каналы и проводку.
  • Проходы в кровле
    Гидроизоляция и герметик вокруг проемов в крыше должны быть в хорошем состоянии.
  • Опорные конструкции
    Проверьте все гайки и болты, крепящие коллекторы к любым опорным конструкциям, на герметичность.
  • Клапан сброса давления (на жидкостных солнечных коллекторах)
    Убедитесь, что клапан не заклинивает в открытом или закрытом положении.
  • Заслонки (в солнечных системах воздушного отопления)
    Если возможно, убедитесь, что заслонки открываются и закрываются должным образом.
  • Насосы или нагнетатели
    Убедитесь, что распределительные насосы или нагнетатели (вентиляторы) работают. Послушайте, не загорятся ли они, когда солнце светит на коллекторов после полудня. Если вы не слышите работу насоса или нагнетателя, значит, неисправен контроллер или насос или нагнетатель.
  • Жидкости-теплоносители
    Антифризы в жидкостных (гидронных) солнечных коллекторах необходимо периодически заменять.Лучше всего доверить эту задачу квалифицированному специалисту. Если в коллекторах циркулирует вода с высоким содержанием минералов (т. Е. Жесткая вода), может потребоваться удаление отложений минералов в трубопроводах, добавляя в воду раствор для удаления накипи или слабокислый раствор каждые несколько лет.
  • Системы хранения
    Проверьте резервуары для хранения и т. Д. На предмет трещин, утечек, ржавчины или других признаков коррозии.
Предотвращение образования накипи и коррозии

Два основных фактора, влияющих на производительность правильно размещенных и установленных систем солнечного нагрева воды, включают образование накипи (в жидкостных или гидравлических системах) и коррозию (в гидравлических и воздушных системах).

Накипь

Бытовая вода с высоким содержанием минералов (или «жесткая вода») может вызвать накопление или образование отложений минералов (кальция) в водяных солнечных системах отопления. Наращивание масштаба снижает производительность системы по нескольким причинам. Если в вашей системе в качестве теплоносителя используется вода, в коллекторе, распределительном трубопроводе и теплообменнике может образоваться накипь. В системах, в которых используются другие типы теплоносителей (например, гликоль, антифриз), на поверхности теплообменника, который передает тепло от солнечного коллектора в бытовую воду, может образоваться накипь.Накипь также может вызвать отказы клапана и насоса в контуре питьевой воды.

Вы можете избежать образования накипи, используя смягчители воды или циркулируя слабокислый раствор (например, уксус) через коллектор или контур горячего водоснабжения каждые 3–5 лет или по мере необходимости в зависимости от состояния воды. Возможно, вам потребуется тщательно очистить поверхности теплообменника наждачной бумагой среднего размера. Внешний теплообменник типа «круговой» является альтернативой теплообменнику, расположенному внутри резервуара для хранения.

Коррозия

Большинство хорошо спроектированных солнечных систем подвержены минимальной коррозии.Когда это происходит, обычно это гальваническая коррозия , электролитический процесс, вызванный контактом двух разнородных металлов друг с другом. Один металл имеет более сильный положительный электрический заряд и оттягивает электроны от другого, вызывая коррозию одного из металлов. Жидкий теплоноситель в некоторых солнечных энергетических системах иногда служит мостом, по которому происходит обмен электронами.

Кислород, попадающий в водяную солнечную систему с разомкнутым контуром, вызывает ржавчину на любом железном или стальном элементе.Такие системы должны иметь компоненты из меди, бронзы, латуни, нержавеющей стали, пластика, резины в водопроводном контуре, а также резервуары для хранения, покрытые пластиком или стеклом.

Защита от замерзания

Солнечные водонагревательные системы, в которых в качестве теплоносителя используются жидкости, нуждаются в защите от замерзания в климатических условиях, где температура опускается ниже 42ºF (6ºC).

Не полагайтесь на изоляцию коллектора и трубопровода (петли коллектора), чтобы предотвратить их замерзание. Основное назначение утеплителя – снизить теплопотери и повысить производительность.Для защиты коллектора и трубопроводов от повреждений из-за отрицательных температур у вас есть два основных варианта:

  • Используйте раствор антифриза в качестве теплоносителя.
  • Слейте воду из коллектора (ов) и трубопровода (петли коллектора) вручную или автоматически, если есть вероятность, что температура может упасть ниже точки замерзания жидкости.
Использование раствора антифриза

Солнечные водонагревательные системы, в которых в качестве теплоносителя используется раствор антифриза (пропиленгликоль или этиленгликоль), имеют эффективную защиту от замерзания, пока поддерживается надлежащая концентрация антифриза.Антифризы со временем разлагаются, и обычно их следует менять каждые 3–5 лет. Поскольку эти системы находятся под давлением, рядовому домовладельцу нецелесообразно проверять состояние раствора антифриза. Если у вас есть этот тип системы, регулярно проверяйте ее у специалиста по солнечному отоплению.

Осушение коллектора и трубопроводов

Солнечные водонагревательные системы, в которых в качестве теплоносителя используется только вода, наиболее уязвимы для повреждения от замерзания. В системах «слива» или «слива» обычно используется контроллер для автоматического слива коллекторного контура.Датчики на коллекторе и накопительном баке сообщают контроллеру, когда выключить циркуляционный насос, опорожнить коллекторный контур и когда снова запустить насос.

Неправильное размещение или использование некачественных датчиков может привести к тому, что они не смогут определить условия замерзания. Контроллер может не опорожнить систему, что может привести к дорогостоящему повреждению из-за замораживания. Убедитесь, что датчик (и) установлен в соответствии с рекомендациями производителя, и проверяйте контроллер не реже одного раза в год, чтобы убедиться, что он работает правильно.

Чтобы гарантировать, что коллекторный контур полностью опорожняется, также должны быть средства, предотвращающие образование вакуума внутри коллекторного контура при стекании жидкости. Обычно вентиляционное отверстие устанавливается в самой высокой точке коллекторного контура. Рекомендуется изолировать вентиляционные отверстия, чтобы они не замерзли. Также убедитесь, что ничто не блокирует поток воздуха в систему, когда активен цикл слива.

Коллекторы и трубопроводы должны иметь правильный уклон, чтобы вода могла полностью стекать.Все коллекторы и трубопроводы должны иметь минимальный уклон 0,25 дюйма на фут (2,1 см на метр).

В системах хранения со встроенным коллектором или в «периодических» системах коллектор также является резервуаром для хранения. Размещение большого количества изоляции вокруг неглазурованных частей коллектора и закрытие остекления в ночное время или в пасмурные дни поможет защитить коллектор от низких температур. Однако вода в коллекторе может замерзнуть в течение продолжительных периодов очень холодной погоды. Подающая и обратная трубы коллектора также подвержены замерзанию, особенно если они проходят через неотапливаемое пространство или снаружи.Это может произойти даже тогда, когда трубы хорошо изолированы. Лучше всего слить всю систему до того, как возникнут отрицательные температуры, чтобы избежать возможных повреждений от замерзания.

Каталитический нейтрализатор – обзор

2.5.2 Современные низкосортные схемы

Наличие в больших количествах автомобильных каталитических нейтрализаторов (автокатов) привело к развитию технологий плавки на основе сбора железа и меди (Mishra and Reddy , 1987; Hoffmann, 1988). Энгельхард разработал пирометаллургические и гидрометаллургические технологии для концентрирования и очистки различных материалов, содержащих низкие содержания драгоценных металлов, включая золото (Benson et al., 2000). Это отход от типичных плавильных печей с автокатастрофой, где золото не рассматривается как сырье для печи.

Плавильный завод представляет собой угольную дугу под флюсом мощностью 2,5 МВА с трехэлектродным кольцом (AC) и работает как печь сопротивления шлака. Плотность мощности этой специализированной печи относительно высока и составляет 320 кВт / м. 2 для подачи высокоглиноземистого сырья. Печь футерована огнеупором и охлаждается тремя водоохлаждаемыми медными пластинами для разработки футеровки замораживания.Операция полунепрерывная; выпуск шлака производится каждые 3 часа через водоохлаждаемую шлакобезьянку, а выпуск сплава производится один раз в день через выпускное отверстие в глиноземном блоке. Брызговик используется для открытия и закрытия летки из сплава, а летка для шлака открывается и закрывается вручную.

Поток отходящего газа проходит через термоокислитель для окисления CO до CO 2 , смешивается с охлаждающим воздухом и фильтруется с использованием статического мешка для первичной очистки. Затем отходящий газ очищается щелочью и проходит через электрофильтр перед окончательным выбросом в атмосферу.

Для плавки доступно довольно большое количество разнообразных материалов, включая остатки нефтепереработки, образующиеся во внутренних контурах гидрометаллургической переработки; автокатализаторы (также обозначаемые как autocats ) от внутреннего производства и из сторонних источников, а также отработанные катализаторы от химической промышленности. Остатки нефтепереработки представляют собой нерастворимые материалы, обычно остатки выщелачивания, содержащие значительное содержание МПГ, включая золото и серебро вместе со значительными количествами натрия и хлорида.

При производстве Autocat образуется значительный объем отходов с небольшим, но значительным содержанием МПГ. Эти керамические подложки представляют собой алюмосиликаты с высокой температурой плавления, а именно кордиерит [Mg 2 Al 4 Si 5 O 18 ] и муллит [Al 6 Si 2 O 13 ], с различными количества глинозема. Автокошки после продажи значительно различаются по содержанию МПГ, с загрязнителями, которые включают железо, никель, хром, свинец, фосфор, цинк и редкоземельные металлы, такие как CeO 2 .

Отработанные катализаторы представляют собой тугоплавкие материалы с широким спектром составов, от оксида алюминия, алюмосиликатов, цеолитов и силикатов до карбидов кремния. Содержание металлов колеблется от 0,1% до 5% МПГ, а составы варьируются от отдельных МПГ (Pt на Al 2 O 3 ) до отдельных МПГ плюс основной металл (Pt / Fe на Al 2 O 3 ). к смешанным МПГ (Au / Pd на Al 2 O 3 ). Эти материалы обычно имеют относительно небольшое содержание МПГ и большую площадь поверхности и плохо реагируют на выщелачивание из-за значительной потери МПГ, происходящей при повторной абсорбции.

Более традиционные очистители также добавляются в цикл плавки и включают в себя очистители для ювелиров, которые обычно содержат менее 0,1% золота, а также полировальные помады, которые представляют собой смеси тугоплавких абразивных материалов, таких как оксиды железа, корунд [Al 6 Si 2 O 13 ] и оксид алюминия [Al 2 O 3 ]. Плавка таких сложных смесей требует хорошего химического анализа для расчета добавок извести и других флюсов для образования жидких шлаков в диапазоне 1500–1600 ° C.Для этого при компаундировании плавильных смесей делается ссылка на тройные фазовые диаграммы для CaO – Al 2 O 3 –SiO 2 и CaO – FeO – SiO 2 .

Механизм сбора, по сути, использует карботермическую реакцию между гематитом и углеродом с образованием мелкодисперсных частиц железа, которые действуют как коллектор. Считается, что условия плавки являются окислительными, когда большая часть железа выводится в шлак в виде FeO, но некоторая часть оксида железа восстанавливается до металла, образуя плотную мелкодисперсную металлическую фазу.Мелкодисперсный коллектор железа проходит через расплавленный шлак, сталкиваясь с золотом и МПГ, и при достижении критического размера частиц гравитационные силы заставляют частицы оседать на поду.

Основные карботермические реакции резюмируются следующим образом:

(47,1) Fe2O3 + C → 2FeO + CO (г)

(47,2) FeO + C → Fe + CO (г)

Оксид железа не единственный источник коллекционного металла. При температуре 1600 ° C большинство оксидов металлов восстанавливается до металла, что приводит к дополнительному выпадению металла, что снижает содержание МПГ в сплаве.Это особенно верно в присутствии SiO 2 , где восстановление до кремния термодинамически благоприятно при температурах выше 1600 ° C. Восстановление приводит к образованию в сплаве ферросилиция, что нежелательно с гидрометаллургической точки зрения. Образовавшийся сплав имеет плотность 7–8 г / см 3 и значительно плотнее шлака, который обычно составляет 2–4 г / см 3 . Содержание МПГ в получаемом сплаве обычно находится в диапазоне 10–15%.

Коэффициенты распределения D x интересующих металлов между фазой сплава и шлака приведены в таблице 47.3.

Таблица 47.3. Коэффициенты распределения для МПГ при типичных условиях плавки

Элемент D x
Au 130

Rh 230

D x (% (м / м) металла X) сплав / (% (м / м) металла X) шлак .

На рис. 47.3 показана типичная технологическая схема для концентрации МПГ из глинозема и алюмосиликатного сырья в плавильных и гидрометаллургических установках.

Рисунок 47.3. Типовая технологическая схема каталитических нейтрализаторов плавки и выщелачивания.

Для BMW E83 X3 2004-2011 Двигатель воздуходувки 8EW009159201 Behr Hella Service Легковые и грузовые двигатели воздуходувки Запчасти для легковых и грузовых автомобилей Автозапчасти и аксессуары

Двигатель вентилятора в сборе 8EW009159201 Обслуживание Behr Hella для BMW E83 X3 2004-2011 гг., Сборка 8EW009159201 Обслуживание Behr Hella для BMW E83 X3 2004-2011 Двигатель вентилятора, Тип детали Двигатель вентилятора HVAC, Убедитесь, что товар подходит вашему автомобилю, подлинная деталь является деталь в оригинальной коробке автопроизводителя с их логотипом на коробке, Вес 3,8 фунта, Номер детали для обмена 009159201, 3453729, 64116

5, 46, Ежедневные низкие цены, Быстрая доставка по всему миру, Сравнение цен в Интернете., Для BMW E83 X3 2004-2011 Двигатель вентилятора в сборе 8EW009159201 Behr Hella Service.







: Артикул: : 009159201 , Вес: : 3,8 фунта : Номер детали производителя: : 009159201 , Д x Ш x В: : 7,87 x 10,83 x 8,07 Тип детали: : Двигатель нагнетателя HVAC , UPC Не применяется : EAN: : Не применяется ,。, 64116

5, 46 .. Состояние: Новое : Подзаголовок: : Быстрая доставка из нескольких мест в США , Номер детали: : 009159201 : Торговая марка: : Behr Hella Service , Обменная деталь Номер: : 009159201, для BMW E83 X3 2004-2011 Двигатель вентилятора в сборе 8EW009159201 Behr Hella Service.Тип детали Двигатель нагнетателя HVAC. Убедитесь, что товар подходит вашему автомобилю. Подлинная деталь – это деталь в оригинальной коробке автопроизводителя с его логотипом на коробке. Вес 3,8 фунта. Развязка Номер детали: 009159201. 46, 3453729, 3453729, 64116

5.

Salta al contenuto div { дисплей: нет! важно; } .side-header-style-wrapper .side-header-background-image, .сторона-заголовок-стилизация-обертка. side-header-background-color, .side-header-styling-wrapper .side-header-border { отображение: блок! важно; } ]]>

Загрузка …

для BMW E83 X3 2004-2011 вентиляторный двигатель в сборе 8EW009159201 Behr Hella Service




GENUINE LAND ROVER FOG LAMP LIGHT BEZEL FRONT BUMPER LR2 11-12 RH NEW LR022187, Набор розеток VDE 18 шт. Квадратный привод 1/4 ” 31037. Подходит для Kawasaki Ninja ZX636R ZX6RR 2005-2006, короткие рычаги тормозной муфты с ЧПУ Для 2004-2008 гг. Nissan Maxima в сборе стойки и винтовой пружины Monroe 41926SC. для BMW E83 X3 2004-2011 Двигатель вентилятора в сборе 8EW009159201 Behr Hella Service , НОВЫЙ балласт фар для Ferrari California 2009-2014 HID XENON CONTROL MODULE. 61-63 Comet Рулевое колесо с 3 спицами, черный 61-70 Ford Truck 60-63 Falcon. 3M 1080 GP258 GLOSS PLUM EXPLOSION Виниловая пленка для автомобильной пленки в рулоне. Пара 388W 38800LM COB LED h21 H9 H8 Комплект фар ближнего света Автомобильные лампы 6000K Белый. для BMW E83 X3 2004-2011 вентиляторный двигатель в сборе 8EW009159201 Behr Hella Service .HIPER 10 “BLK BEADRING STD STANDARD RING BLACK, быстрая бесплатная доставка 2.2 Shark Skwal 2 Black Gloss Matt Full Face LED LED, ДЛЯ SELECT 2003-2010 MERCURY Адаптер жгута проводов радио с разъемами # 5520.Holley Performance 703-49 Renew Carburetor Rebuild Kit, для BMW E83 X3 2004-2011 вентиляторный двигатель в сборе 8EW009159201 Behr Hella Service , неокрашенный светодиодный задний стоп-сигнал для Harley Touring King Tour Pak багажник 2009-2013.


для BMW E83 X3 2004-2011 вентиляторный двигатель в сборе 8EW009159201 Behr Hella Service

для BMW E83 X3 2004-2011 вентиляторный двигатель в сборе 8EW009159201 Behr Hella Service

для BMW E83 X3 2004-2011 в сборе двигателя вентилятора 8EW009159201 Behr Hella Service, Behr Hella Service для BMW E83 X3 2004-2011 в сборе двигателя вентилятора 8EW009159201, для BMW E83 X3 2004-2011 в сборе двигателя вентилятора 8EW009159201 Behr Hella Service.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *