Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Блок питания UM-U120S, 12 вольт 10 ампер. Обзоры, тесты и испытания блоков питания. Обзоры электроники. Обзоры, тесты и испытания блоков питания

$17.27 ($11.99)

Перейти в магазин

Как-то давненько у меня не было обзоров блоков питания, тех самых “кормильцев”, питающих различные устройства, которым сетевого напряжения много, а аккумуляторного мало.
И вот с подачи одного из моих постоянных читателей заказал я несколько вариантов для тестов и сегодня пойдет речь о первом из них.

Забегая вперед. скажу, блок питания по своему смог меня удивить, но не своей работой, а некоторыми “особенностями” схемотехники.
Впрочем начну как всегда с упаковки.

Получил блок питания в обычной белой коробочке, из всех обозначений только артикул.

Существует три модификации данных блоков питания:
5 вольт 15 ампер
12 вольт 10 ампер
24 вольта 5 ампер.

У меня на столе вариант на 12 вольт и думаю вы заметили, что если 12 и 24 вольта версии имеют мощность 120Вт, то 5 вольт заметно слабее, всего 75Вт, обусловлено это тем, что низковольтные блоки питания обычно имеют ниже КПД.

Конструктивно выполнен в виде П-образного алюминиевого шасси, выполняющего роль радиатора, защитный кожух не предусмотрен.

Размеры дублировать не буду, они есть на чертеже.

На входе и выхода по одному трехконтактному клеммнику, соответственно фаза/ноль/земля и 12В/общий/12В.
Клеммники немного отличаются конструктивно, входной имеет защитное ребро, чтобы провод не просунуть слишком глубоко.
При этом выходной клеммник может быть другим, на 4 контакта.

Назначение клемм на чертеже

Для доступа к плате надо выкрутить четыре винта удерживающие плату и два, прижимающих силовые элементы. Под платой имеется защитная прокладка.

Плата обильно залита герметиком, но уже даже так видно, что на входе имеется полноценный сетевой фильтр, а на выходе дроссель для снижения пульсаций. Собственно отчасти по этому для обзора был выбран данный БП, по крайней мере внешне он похож на правильный.

Высоковольтный транзистор и выходные диоды имеют дополнительную изоляцию, местами есть даже термопаста. .

1. Кроме предохранителя и помехоподавляющего фильтра по входу имеется варистор на 470 вольт.
2. Входных конденсаторов два по 82мкФ, при этом имеется дополнительный дроссель, который вместе с конденсаторами образует CLC фильтр. Здесь же виднеется термистор.
3. ШИМ контроллер относительно известный, OB2269, мне он попадался в других блоках питания. Межобмоточный конденсатор правильный, Y-типа.
4. Высоковольтный транзистор 12N65, в полностью изолированном корпусе.
5. На выходе пара диодных сборок MBR20U100. Интересно что у транзистора и диодов даже надели изоляцию на выводы.
6. Также на выходе имеется три конденсатора 3300мкФ 16 вольт и дроссель. Вообще редко встречается настолько большая выходная емкость в относительно маломощном БП, но вот то что конденсаторы всего на 16 вольт, плохо.

Думаю что производитель решил увеличением емкости компенсировать не очень высокое качество конденсаторов.

Монтаж довольно аккуратный, конечно не Минвел, но тем не менее, плата относительно чистая, пайка аккуратная.

Дабы не вникать в остальные элементы БП решил просто набросать его схему.

Но в процессе блок смог меня реально удивить ну очень оригинальными решениями, для наглядности выделил их цветом:
1. Термистор стоит не перед конденсаторами, а после
2. Фильтрующий дроссель стоит не по шине питания, а по минусу.
3. Непонятный стабилитрон с резистором по цепи питания ШИМ контроллера.
4. Не менее непонятный стабилитрон параллельно светодиоду оптрона.

Если честно, я не могу подобрать ни одного объяснения такой схемотехники кроме как того, что разработчик просто спешил и наделал ошибок. Ну или как вариант, БП переделывался и часть “лишних” компонентов не убрали, а термистор просто поставили так ошибочно.

Собираем, подключаем.
На выходе около 12 вольт, потребление без нагрузки около 1.1-1.2Вт.
Диапазон регулировки 11-14.3 вольта, хотя на самом деле можно выкрутить еще меньше, около 9 вольт, но при напряжении ниже 11 вольт и отсутствии нагрузки БП работает нестабильно переходя в циклическое включение/выключение.

Точность удержания напряжения в зависимости от нагрузки средняя, хотя так как подключение было через клеммник, то возможно немного влияли потери на нем.
Ниже напряжение без нагрузки и при токах 3.5, 7 и 10.5А.

Имеется защита от перегрузки и короткого замыкания, срабатывает при токе около 12.3-12.5А, после снятия перегрузки напряжение восстанавливается автоматически.

КПД на мой взгляд мог бы быть и повыше, в основном рабочем диапазоне составляет около 84-85%.
Ниже на графике по горизонтали ток нагрузки в диапазоне 1-12А, кратность 1А.

Пульсации проверялись без нагрузки и при токах 3.3, 6.6 и 10А, щуп подключался с использованием фильтра из конденсаторов 1+0.1мкФ.
Основная часть пульсаций не очень большая, но присутствуют неприятные выбросы с размахом до 200-220мВ р-р при максимальном токе. Не скажу что это совсем много, но с учетом дросселя по выходу ожидалось меньше.

А вот с НЧ пульсациями все нормально, сказывается большая входная и выходная емкость. Тестовые режимы те же что и выше.

Как и всегда проверил тепловой режим блока питания и как всегда этапами по 20 минут с постепенным увеличением нагрузки.
Проверялось при токах 2.5, 5.0, 7.5 и 10А

Увы, при токе 10А длительно протестировать не смог, так как БП примерно через 5 минут ушел в защиту по перегреву. Естественно речь о 5 минутах работы после прогрева током 7.5А.

Тепловая картина после этапа 5А, 7.5А и повторного включения при токе 10А. Так как отключение было не совсем ожидаемым, то для последнего фото я опять включил БП, дождался отключения и сделал термофото.
Самым греющимся компонентом является термистор, при этом в данном БП он никакой полезной функции не выполняет.
Соответственно самым критичным к нагреву компонентом является трансформатор, который здесь прогревался до температуры около 100 градусов, что хоть и много, но в пределах терпимого, при большем нагреве защита просто отключит БП, так что и здесь все корректно.

В процессе термопрогрева была проверена точность стабилизации напряжения и здесь у меня не возникло претензий, слева напряжение на холодном блоке, справа после отключения по перегреву.


Защита от перегрева не триггерная и напряжение на выходе восстанавливается, но не через 1-2 секунды как после перегрузки, а примерно через 30 секунд.

Выводы.
Изначально, когда заказывал, блок питания меня заинтересовал тем, что по крайней мере внешне был сделан правильно. Да, присутствует экономия на компонентах, вместо фирменных применены какие-то неизвестные, но в общем и целом выглядело неплохо.
Тесты в принципе показали также неплохие результаты, но чтобы получить длительную заявленную мощность в 120Вт придется обеспечить ему хотя бы слабый поток воздуха для охлаждения, да и 7.5А получаются почти на максимуме, так что и здесь охлаждение будет не лишним.
Размах пульсаций относительно небольшой, мне попадались блоки как с меньшим, так и с большим, при этом как среди фирменных, так и среди безымянных.
Приятно что производитель реализовал защиту от перегрева, соответственно вывести из строя такой БП будет существенно сложнее.

При этом блок питания имеет некоторые странности, особенно в плане установки термистора, который должен стоять перед конденсаторами, а не после, в исходном включении он просто греет воздух.

Если коротко, то в общих чертах вроде и неплохо, но как-то ожидалось получше, хотя с учетом текущего ценника получается вполне себе конкурент “народным” блокам питания.
Думаю теперь переделать данный БП в ИБП под LiFePO4 аккумуляторы, по типу того как я делал здесь, тем более он хорошо для этого подходит и здесь как раз будет полезно наличие термозащиты в плане повышения безопасности работы.

Магазин предоставил купон BG0784b9 с которым цена должна опуститься до $11.99, действует до 15 августа.

На этом у меня всё, надеюсь что было полезно.

$17.27 ($11.99)

Перейти в магазин

Источник питания 12 вольт своими руками

Блок питания постоянного напряжения 12 вольт состоит из трех основных частей:

  • Понижающий трансформатор с обычного входного переменного напряжения 220 В. На его выходе будет такое же синусоидальное напряжение, только пониженное до примерно 16 вольт по холостому ходу – без нагрузки.
  • Выпрямитель в виде диодного моста. Он «срезает» нижние полусинусоиды и кладет их вверх, то есть получается напряжение, меняющееся от 0 до тех же 16 вольт, но в положительной области.
  • Электролитический конденсатор большой емкости, который сглаживает полусинусоиды напряжения, делая их приближающимися к прямой линии на уровне в 16 вольт. Это сглаживание тем лучше, чем больше емкость конденсатора.

Самое простое, что нужно для получения постоянного напряжения, способного питать приборы, рассчитанные на 12 вольт – лампочки, светодиодные ленты и другое низковольтное оборудование.

Понижающий трансформатор можно взять из старого блока питания компьютера или просто купить в магазине, чтобы не заморачиваться с обмотками и перемотками. Однако чтобы выйти в конечном счете на искомые 12 вольт напряжения при работающей нагрузке, нужно взять трансформатор, понижающий вольт до 16.

Для моста можно взять четыре выпрямительных диода 1N4001, рассчитанных на нужный нам диапазон напряжений или аналогичные.

Конденсатор должен быть емкостью не менее 480 мкФ. Для хорошего качества выходного напряжения можно и больше, 1 000 мкФ или выше, но для питания осветительных приборов это совсем не обязательно. Диапазон рабочих напряжений конденсатора нужен, скажем, вольт до 25.

Компоновка прибора

Если мы хотим сделать приличный прибор, который не стыдно будет потом приделать в качестве постоянного блока питания, допустим, для цепочки светодиодов, нужно начать с трансформатора, платы для монтажа электронных компонентов и коробки, где все это будет закреплено и подключено. При выборе коробки важно учесть, что электрические схемы при работе разогреваются. Поэтому коробку хорошо найти подходящую по размерам и с отверстиями для вентиляции. Можно купить в магазине или взять корпус от блока питания компьютера. Последний вариант может оказаться громоздким, но в нем как упрощение можно оставить уже имеющийся трансформатор, даже вместе с вентилятором охлаждения.

На трансформаторе нас интересует низковольтная обмотка. Если она дает понижение напряжения с 220 В до 16 В – это идеальный случай. Если нет, придется ее перемотать. После перемотки и проверки напряжения на выходе трансформатора его можно закрепить на монтажной плате. И сразу продумать, как монтажная плата будет крепиться внутри коробки. У нее для этого имеются посадочные отверстия.


Дальнейшие действия по монтажу будут проходить на этой монтажной плате, значит, она должна быть достаточной по площади, длине и допускать возможную установку радиаторов на диоды, транзисторы или микросхему, которые должны еще поместиться в выбранную коробку.

Диодный мост собираем на монтажной плате, должен получиться такой ромбик из четырех диодов. Причем левая и правая пары состоят одинаково из диодов, подключенных последовательно, а обе пары параллельны друг другу. Один конец каждого диода маркирован полоской – это обозначен плюс. Сначала паяем диоды в парах друг к другу. Последовательно – это значит плюс первого соединен с минусом второго. Свободные концы пары тоже получатся – плюс и минус. Параллельно соединить пары – значит спаять оба плюса пар и оба минуса. Вот теперь имеем выходные контакты моста – плюс и минус. Или их можно назвать полюсами – верхним и нижним.


Остальные два полюса – левый и правый – используются как входные контакты, на них подается переменное напряжение с вторичной обмотки понижающего трансформатора. А на выходы моста диоды подадут пульсирующее знакопостоянное напряжение.

Если теперь подключить параллельно с выходом моста конденсатор, соблюдая полярность – к плюсу моста – плюс конденсатора, он напряжение начнет сглаживать, причем настолько хорошо, насколько велика у него емкость. 1 000 мкФ будет достаточно, и даже ставят 470 мкФ.

Внимание! Электролитический конденсатор – прибор небезопасный. При неверном подключении, при подаче на него напряжения вне рабочего диапазона или при большом перегреве он может взорваться. При этом разлетается по округе все его внутреннее содержимое – лохмотья корпуса, металлической фольги и брызги электролита. Что весьма опасно.

Ну вот и получился у нас самый простой (если не сказать, примитивный) блок питания для приборов напряжением 12 V DC, то есть постоянного тока.

Проблемы простого блока питания с нагрузкой

Сопротивление, нарисованное на схеме – это эквивалент нагрузки. Нагрузка должна быть такова, чтобы ток, ее питающий, при подаваемом напряжении в 12 В не превысил 1 А. Можно рассчитать мощность нагрузки и сопротивление по формулам.

Откуда сопротивление R = 12 Ом, а мощность P = 12 ватт. Это значит, что если мощность будет больше 12 ватт, а сопротивление меньше 12 Ом, то наша схема начнет работать с перегрузкой, будет сильно греться и быстро сгорит. Решить проблему можно несколькими способами:

  1. Стабилизировать выходное напряжение так, чтобы при изменяющемся сопротивлении нагрузки ток не превышал максимально допустимого значения или при внезапных скачках тока в сети нагрузки – например, в момент включения некоторых приборов – пиковые значения тока срезались до номинала. Такие явления бывают, когда блок питания запитывает радиоэлектронные устройства – радиоприемники, и пр.
  2. Использовать специальные схемы защиты, которые бы отключали блок питания при превышении тока на нагрузке.
  3. Использовать более мощные блоки питания или блоки питания с большим запасом мощности.

На рисунке ниже представлено развитие предыдущей простой схемы включением на выходе микросхемы 12-вольтового стабилизатора LM7812.


Это уже лучше, но максимальный ток в нагрузке такого блока стабилизированного питания по-прежнему не должен превышать 1 А.

Блок питания повышенной мощности

Более мощным блок питания можно сделать, добавив в схему несколько мощных каскадов на транзисторах Дарлингтона типа TIP2955. Один каскад даст прибавку нагрузочного тока в 5 А, шесть составных транзисторов, подключенных параллельно, обеспечат нагрузочный ток в 30 А.

Схема, обладающая такой выходной мощностью, требует соответствующего охлаждения. Транзисторы должны быть обеспечены радиаторами. Возможно, понадобится и дополнительный вентилятор охлаждения. Кроме того, можно защититься еще плавкими предохранителями (на схеме не показано).

На рисунке показано подключение одного составного транзистора Дарлингтона, дающего возможность увеличения выходного тока до 5 ампер. Можно увеличивать и дальше, подключая новые каскады параллельно с указанным.

Внимание! Одним из главных бедствий в электрических цепях является внезапное короткое замыкание в нагрузке. При этом, как правило, возникает ток гигантской силы, который сжигает все на своем пути. В этом случае сложно придумать такой мощный блок питания, который способен это выдержать. Тогда применяют схемы защиты, начиная от плавких предохранителей и кончая сложными схемами с автоматическим отключением на интегральных микросхемах.

Многие электротехнические устройства питаются от постоянного напряжения величиной 12 вольт. Если такая техника не особо нуждается в высокой стабильности напряжения, то вполне подойдет самый простой блок питания, состоящий из понижающего трансформатора, диодного моста и фильтрующего конденсатора электролита. Тут вопрос остается только за мощностью такого источника питания, ну и следовательно от нее зависит, какие именно функциональные части будет стоять в блоке питания на 12 вольт. В этой статье давайте разберемся более подробно с этой темой.

Итак, схема простого блока питания на 12 вольт начинается с понижающего трансформатора, задача которого сетевое переменное напряжение 220 вольт понизить до более низкого. Логично предположить, что это пониженное напряжение должно в нашем случае быть 12 вольт. Но нет. На выходе вторичной обмотки трансформатора, для получения в итоге постоянных 12 вольт должно быть около 10 вольт. Почему так? Просто существует в электротехнике такой вот эффект – переменное напряжение после диодного моста имеет выпрямленный ток, но он скачкообразной формы. Когда мы к выходу моста подсоединяем фильтрующий конденсатор электролит эти скачки постоянного напряжения сглаживаются, а само напряжение увеличивается примерно на 18%. Вот и получается, что переменные 10 вольт после выпрямительного моста и фильтрующего конденсатора электролита превратятся в постоянные 12 вольт.

Нам нужно определится, в первую очередь, с мощностью нашего блока питания на 12 вольт. Какую именно максимальную силу тока мы хотим, чтобы он имел. К примеру, нужно иметь максимальную силу тока в 5 ампер. В этом случае, чтобы спаять хороший блок питания на 12 вольт с этим током нам понадобится понижающий трансформатор мощностью около 80 ватт. Напомню, чтобы найти электрическую мощность нужно силу тока перемножить на напряжение. Следовательно мы наши 12 вольт умножаем на 5 ампер и получаем 60 ватт. Плюс к этому мы добавляем небольшой запас (пусть будет 20 ватт). Вот и видим, что нужен трансформатор на 80 ватт (это если идти по оптимальному пути, хотя если вы поставите большей мощности транс, то это только повлияет на общие размеры источника питания).

Для получения тока на вторичной обмотке около 5 ампер, диаметр этой самой обмотки должен быть не менее 1,6 мм (медь). Для определения зависимости диаметра провода вторичной обмотки и силы тока, который она должна обеспечивать нужно смотреть в справочные таблицы (их легко найти в интернете воспользовавшись поиском).

Теперь нужно подобрать подходящий выпрямительный диодный мост, который нам позволит сделать из переменного напряжения постоянное, хотя и скачкообразной формы. Опять же, нужно в начале определится с силой тока, которую диодный мост может выдержать без негативных воздействий на него. Мы определились, что нам нужен максимальный ток 5 ампер. Как и в случае с трансформатором добавим к этому некий запас. В итоге, находим диодный мост (диоды под него) на силу тока в 8-10 ампер. Мост должен быть рассчитан на напряжение не менее 12 вольт (хотя диоды с маленьким обратным напряжением это редкость, обычно они рассчитаны на достаточно большие обратные напряжения). Либо ставим готовый целостный диодный мост, или паяем его сами из четырех диодов с нужными параметрами.

Ну, и последним важным функциональным элементом нашего самодельного блока питания на 12 вольт, что будем паять своими руками, является конденсатор электролит. Он выполняет фильтрующую роль, сглаживая скачки постоянного напряжения, делая постоянное напряжение более ровным (хотя и не идеальным). Для нашего блока питания вполне подойдет конденсатор электролит, рассчитанный на напряжение 16-25 вольт и емкостью около 5 000 – 10 000 микрофарад. Вот и все, осталось только эти все компоненты спаять в единую схему и собрать в подходящем корпусе.

Тема: как сделать простой, регулируемый плавно, блок питания своими руками.

Человек, у которого электрика и электроника является хобби, увлечение, делами, что позволяют получать удовольствие или иметь дополнительный заработок, просто обязан иметь у себя в наличии блок питания с плавной регулировкой напряжения! Ведь работая с различной электрической и электронной техникой постоянно приходится сталкиваться с её питанием, а оно, как известно, не всегда одинаково. Постоянно искать источники питания с подходящим напряжением, тоже не выход. Именно в данном случае наиболее рациональным и правильным решением будет создание простого (или сложного, если есть в этом особая необходимость) блока питания, имеющего плавное регулирование напряжения питания. Простая, но надёжная схема представлена на рисунке, давайте её разберём.

Схема простого, регулируемого плавно, блока питания представляет собой две основные части, это сам блок питания и небольшая транзисторная схема параметрического регулятора напряжения. Первая часть содержит понижающий трансформатор, выпрямитель (диодный мост) и конденсатор (сглаживающий фильтр). По большей части именно от выбора этих частей зависит мощность всего блока питания. Что бы не делать слишком большим блок питания ограничимся электрической мощностью в 30 Вт. Хотя для увеличения этой мощности достаточно будет поменять трансформатор, мост и выходной транзистор, имеющие соответствующие величины токов и напряжений.

Итак, находим трансформатор, который рассчитан на входное напряжение 220 вольт и выходное 12-15 вольт, вторичная обмотка должна иметь сечение, обеспечивающее номинальную силу тока в 2-3 ампера. Далее, спаиваем диодный мостик, элементы которого должны быть рассчитаны на ток не меньше 5 ампер (лучше брать с небольшим запасом). И к выходу моста припаяем фильтрующий конденсатор с ёмкостью от 1000 микрофарад и более. Схема плавно регулируемого параметрического стабилизатора после её сборки (спайки) должна сразу начать нормально работать, хотя если есть желание донастройки и точной регулировки внутренних параметров, можете сами по изменять имеющиеся электронные компоненты, поставив туда наиболее подходящие на Ваш взгляд.

Теперь расскажу о самой работе данной схемы плавно регулируемого блока питания. Трансформатор – его задача заключается в преобразовании электрической энергии, то есть он сетевое напряжение 220 вольт понижает до нужных 12 вольт. Заметим, что как был у нас переменный ток, так и остался, хотя и понизилась амплитуда. Диодный мостик занимается тем, что переводит все колебания в один полупериод, а именно значение тока после мостика уже меняется только от нуля и до 12 вольт, не меняя своего полюса. Но волнообразный ток подходит не для всех случаев питания электрооборудования, для многих устройств нужен именно постоянный ток, допускающий минимальные колебания. Для этого и нужен конденсатор, который сглаживает скачки напряжения.

Схема регулятора является параметрической, то есть в схеме создаётся некое опорное напряжение, уже от которого путём деления напряжения и усиления силы тока создаются необходимые выходные величины электрических параметров. С выхода мостика, на котором уже сглажены скачки (фильтрующим конденсатором), напряжение подаётся на цепь параметрического стабилизатора, состоящего из резистора R1 и стабилитрона VD2. Тут напряжение делиться, причём на стабилитроне образуется некоторое постоянная его величина с малыми отклонениями. Если напряжение будет меняться, по причине внешних обстоятельств, то эти изменения только будут заметны на R1.

Параллельно стабилитрону, на котором образовалось опорное напряжение постоянной величины, включён переменный резистор R2, что, собственно, и осуществляет плавное изменение выходного напряжения на нашем регулируемом блоке питания. Когда мы его крутим, то получаем определённую величину постоянного напряжения, что далее делится между база-эмиттерными переходами транзисторов, включённых по схеме эмиттерных повторителей. А, как известно, включение по этой схеме заставляет транзисторы работать в режиме усиления только тока, при том, что напряжение остаётся как бы неизменным. То есть, напряжение снятое с переменного резистора передаётся на выход через транзисторы, которые понижают его только на величину своего насыщения (примерно от 0.4 до 0.7 вольт).

Проще говоря – выставили мы на переменном резисторе значение 5 вольт, оно передалось через транзисторы на выход (минус примерно 1. 2 вольта, что осели на транзисторных переходах база-эмиттер), а в силу усиления тока, мы получили повышение мощности, срезанной от основной, которая имеется на выходе диодного мостика. Транзисторы тут являются некими электрическими краниками, которыми мы управляем при помощи изменения напряжения на база-эмиттерных переходах. Чем больше мы подадим на них напряжения с переменного резистора, тем сильнее откроются транзисторы (понизится их внутреннее сопротивление) и больше электрической мощности передастся на выход регулируемого блока питания.

Всем нам известно, что блоки питания сегодня являются неотъемлемой частью большого количества электрических приборов и осветительных систем. Без них наша жизнь нереальна, тем более экономия электроэнергии способствует эксплуатации этих приборов. В основном блоки питания имеют выходное напряжение от 12 до 36 вольт. В этой статье хотелось бы разобраться с одним вопросом, можно ли сделать блок питания на 12В своими руками? В принципе, никаких проблем, ведь этот прибор на самом деле имеет несложную конструкцию.

Из чего можно собрать блок питания

Итак, какие детали и приборы необходимо, чтобы собрать самодельный блок питания? В основе конструкции всего лишь три составляющие:

  • Трансформатор.
  • Конденсатор.
  • Диоды, из которых своими руками придется собрать диодный мост.

В качестве трансформатора придется использовать обычный понижающий прибор, который будет уменьшать вольтаж с 220 В до 12 В. Такие приборы сегодня продаются в магазинах, можно использовать старый агрегат, можно переделать, к примеру, трансформатор с понижением до 36 вольт на прибор с понижением до 12 вольт. В общем, варианты есть, используйте любой.

Что касается конденсатора, то оптимальный вариант для самодельного блока – это конденсатор емкостью 470 мкФ с напряжением 25В. Почему именно с таким вольтажом? Все дело в том, что на выходе из напряжение будет выше запланированного, то есть, больше 12 вольт. И это нормально, потому что при нагрузке напряжение упадет до 12В.

Собираем диодный мостик

А вот теперь очень важный момент, который касается вопроса, как сделать блок питания 12В своими руками. Во-первых, начнем с того, что диод — это двуполярный элемент, как, в принципе, и конденсатор. То есть, у него два выхода: один минус, другой плюс. Так вот плюс на диоде обозначен полоской, а, значит, без полоски это минус. Последовательность соединения диодов:

  • Сначала соединяются между собой два элемента по схеме плюс-минус.
  • Точно также соединяются между собой и два других диода.
  • После чего две парные конструкции необходимо соединить между собой по схеме плюс с плюсом и минус с минусом. Здесь главное не ошибиться.

В конце у вас должна получиться замкнутая конструкция, которая носит название диодный мостик. У нее четыре соединительных точек: две «плюс-минус», одна «плюс-плюс» и еще одна «минус-минус». Соединять элементы можно на любом плате необходимого устройства. Основное здесь требование – это качественный контакт между диодами.


Во-вторых, диодный мост – это, по сути, обычный выпрямитель, который выпрямляет переменный ток, исходящий с вторичной обмотки трансформатора.

Полная сборка прибора

Все готово, можно переходить к сборке конечного продукта нашей идеи. Сначала надо подключить выводы трансформатора к диодному мосту. Их подключают к точкам соединения «плюс-минус», остальные точки остаются свободными.

Теперь необходимо подключить конденсатор. Обратите внимание, что на нем также есть отметки, которые определяют, полярность прибора. Только на нем все наоборот, чем на диодах. То есть, на конденсаторе обычно помечается минусовой контакт, который подсоединяется к точке диодного моста «минус-минус», а противоположный полюс (положительный) присоединяется к точке «минус-минус».

Остается только подключить два питающих провода. Для этого лучше всего выбрать цветные провода, хотя это необязательно. Можно использовать одноцветные, но при условии, что их придется каким-нибудь образом обозначить, к примеру, на одном из них сделать узелок или обмотать конец провода изолентой.


Итак, делается подключение питающих проводов. Один из них подключим к точке «плюс-плюс» на диодном мосте, другой к точке «минус-минус». Все, понижающий блок питания на 12 вольт готов, можно его тестировать. В холостом режиме он обычно показывает напряжение в пределах 16 вольт. Но как только на него подадут нагрузку, напряжение снизится до 12 вольт. Если есть необходимость выставить точное напряжение, то придется к самодельному прибору подключить стабилизатор. Как видите, сделать блок питания своими руками не очень сложно.

Конечно, это простейшая схема, блоки питания могут быть с различными параметрами, где основных два:

  • Выходное напряжение.
  • Как дополнение, может быть использована функция, которая разграничивает модели блока питания на регулируемый (импульсный) и нерегулируемый (стабилизированный). Первые обозначены возможностью изменять выходное напряжение в пределах от 3 до 12 вольт. То есть, чем сложнее конструкции, тем больше возможностей у агрегатов в целом.


    И последнее. Самодельные блоки питания – это не совсем безопасные аппараты. Так что при их тестировании рекомендуется отойти на некоторое расстояние и только после этого проводить включение в сеть 220 вольт. Если вы что-то неточно рассчитали, к примеру, неправильно подобрали конденсатор, то есть большая вероятность, что этот элемент просто взорвется. В него залит электролит, который при взрыве разбрызгается на приличное расстояние. К тому же не стоит производить замены или пайку при включенном блоке питания. На трансформаторе собирается большое напряжение, так что не стоит играть с огнем. Все переделки надо проводить только на выключенном приборе.

    Похожие записи:

    Для того, чтобы в стационарных условиях запустить автомагнитолу, трансивер или другое аналогичное устройство, нужен блок питания на 12 В. Проще всего собрать такой источник питания на основе линейного регулятора с микросхемой 7912 . Обчно в таких случаях используют микросхему 7812 – с положительной регулировкой и общим минусом, но с целью посадить напрямую на металлический корпус мощный регулирующий транзистор – схема немного видоизменилась. Увеличить ток микросхемы регулятора стало возможно используя высокую мощность PNP-транзистора.

    Как раз имелся нужный сетевой трансформатор на 220 В, который год назад вытащил из старого нерабочего муз.центра. Трансформатор выглядел достаточно большой. Вторичное напряжение на 19 В (без нагрузки). Под нагрузкой, оно снизилось примерно до 16 вольт.

    В выпрямителе использован 10,000 мкФ сглаживающий конденсатор. Однако, чем больше его ёмкость, тем лучше. Сборка этого несложного блока питания стоила менее 2$! И то только потому, что не было LM7912 в запасе.

    Светодиодная индикация работы БП

    Зеленый LED индикатор выступает в качестве показателя нормального выходного напряжения. Он тускнеет примерно свыше тока нагрузки 2A и почти гаснет при 2.5A, давая понять, что идёт перегруз по выходу. Жёлтый и красный светодиоды индицируют наличие переменного напряжения на выходе трансформатора, и, соответственно, постоянного на выходе выпрямителя. Их можно и не ставить. Разве что для красоты.

    Транзистор 2N3055 заменим на любой прямой структуры, с рабочим напряжением 50В и предельным током минимум 5 ампер. Эти же требования и к диодам моста IN5404. Готовый источник питания 220-12 вольт установливаем в подходящий по размерам корпус. Можно и пластиковый, но тогда транзистиору будет нужен радиатор. Если вам требуется регулируемый ИП –

    Схемы блока питания-Список простых схем блока питания для начинающих

    На протяжении многих лет мы публиковали на этом веб-сайте несколько схем регуляторов напряжения, которые служат многим целям. В этой статье я составляю краткий список…

    Читать далее

    10A Регулируемый регулятор напряжения MSK 5012. MSK5012 — высоконадежный регулируемый регулятор напряжения. Выход которого можно запрограммировать с помощью двух резисторов. Регулятор имеет очень низкий дропаут…

    Читать далее

    Регулируемый источник питания постоянного тока с использованием транзисторов. Здесь показан регулируемый источник питания постоянного тока с низким уровнем пульсаций, разработанный на основе транзисторов. Такие транзисторные стабилизаторы напряжения подходят для применения…

    Читать далее

    Схема импульсного источника питания 12 В/120 мА Бестрансформаторные импульсные источники питания стали очень популярными в наши дни. Схема, показанная ниже, имеет выход 12 В/120 мА, 85…

    . Читать далее

    Регулятор LDO / регулятор с малым падением напряжения Регулятор LDO означает регулятор с малым падением напряжения. Регулятор напряжения LDO — это просто линейный стабилизатор напряжения постоянного тока, который может работать с…

    Читать далее

    Импульсный регулятор . Импульсные регуляторы работают, потребляя небольшое количество энергии от входного источника и постепенно передавая ее на выход. Эта задача…

    Читать далее

    Трехфазный мостовой выпрямитель на 20L6P45. Схема трехфазного двухполупериодного выпрямителя представляет собой усовершенствованную схему силового выпрямителя, в основном используемую для промышленных приложений постоянного тока. Этот модуль в основном имеет…

    Читать далее

    Некоторые схемы, основанные на стабилизаторе напряжения LM317 Здесь показано несколько полезных схем, использующих стабилизатор напряжения IC LM317. LM317 — трехвыводная микросхема стабилизатора напряжения от…

    Читать далее

    Преобразователь 12 В в 24 В. Описание. Есть много случаев, когда нам требуется 24 В постоянного тока от источника 12 В. Я тоже однажды столкнулся с такой ситуацией, когда я…

    Читать далее

    Преобразователь постоянного тока в постоянный от 6 до 15 В с использованием LM2585 Описание. Здесь показан очень эффективный преобразователь постоянного тока 6 В в 15 В с использованием LM2585. LM2585 — это монолитный…

    Читать далее

    Описание. Здесь показана простая схема преобразователя постоянного тока 12 В в 120 В постоянного тока. Схема состоит из двух каскадов, сначала базового каскада инвертора, а затем выпрямителя…

    Читать далее

    Цепь повышающего преобразователя 5 В . Описание. Здесь показан простой повышающий преобразователь 5 В, использующий LTC3440. LTC3440 — это высокоэффективный преобразователь постоянного тока в постоянный, который…

    Читать далее

    Схема понижающего повышающего преобразователя с использованием LTC3440 Описание. Здесь показана очень эффективная схема понижающего повышающего преобразователя. Схема основана на микросхеме понижающего повышающего стабилизатора LTC3440…

    Читать далее

    Повышающий преобразователь напряжения постоянного тока Описание. Здесь показан простой повышающий преобразователь постоянного напряжения с использованием LM2700. LM2700 — это повышающий импульсный преобразователь, который…

    Читать далее

    Схема преобразователя напряжения — от 6 до 12 вольт Один из наших уважаемых читателей спросил нас о любом другом применении аудиоусилителя IC TDA2003. Ну может…

    Читать далее

    Источник питания постоянного тока 12 вольт от USB-порта Схема, приведенная ниже, фактически представляет собой преобразователь напряжения 5 вольт в 12 вольт. Он использует 5 вольт от USB…

    Читать далее

    Цепь преобразователя напряжения. Схема, приведенная ниже, представляет собой преобразователь напряжения 3 В в 5 В с использованием CMOS IC MAX660 и MAX667. Описание : В схеме, показанной ниже, 3V…

    Читать далее

    Удвоитель напряжения и инвертор Ниже приведена принципиальная схема удвоителя напряжения постоянного тока и инвертора напряжения. В схеме используется преобразователь напряжения IC MAX660. Описание . А…

    Читать далее

    Описание. Показанная здесь принципиальная схема представляет собой импульсный стабилизатор на 10 В на основе LM5007 от National Semiconductors. LM5007 — это встроенный понижающий импульсный стабилизатор…

    Читать далее

    Описание. Вот принципиальная схема регулируемого стабилизатора 30 В / 3 А с использованием микросхемы LM723 от National Semiconductors. LM723 — это интегральный последовательный стабилизатор, выходное напряжение которого…

    Читать далее

    Описание. Показанная здесь принципиальная схема представляет собой простую цепь задержки питания постоянного тока, основанную на SCR. Эта схема очень удобная и…

    Читать далее

    Описание. Вот принципиальная схема повышающего преобразователя 12 В на микросхеме LM269.8 от National Semiconductors. LM2698 — повышающий преобразователь общего назначения с напряжением 18 В,…

    . Читать далее

    Описание. Вот принципиальная схема импульсного понижающего стабилизатора на 5 В на микросхеме LM2678 от National Semiconductors. Регуляторы серии LM2678 представляют собой монолитные интегральные схемы…

    Читать далее

    С популяризацией ПК не менее популярными стали и трансформаторы постоянного напряжения (CVT). Вариатор — это просто магнитный трансформатор специальной конструкции, который…

    Читать далее

    Как собрать простую схему зарядного устройства для автомобильного аккумулятора на 12 В

    Характеристики

    • ·19 декабря 2022 г.
    • ·Md. Анисур Рахман

    В этом руководстве мы создадим «Цепь зарядного устройства 12-вольтовой батареи» .

    Для зарядки аккумуляторов подаем напряжение на клеммы и аккумулятор начинает заряжаться. Протокол зарядки определяется размером и типом заряжаемой батареи. Некоторые типы батарей имеют высокую устойчивость к перерасходу и, в зависимости от типа батареи, могут заряжаться путем подключения к источнику постоянного напряжения или постоянного тока. Когда дело доходит до безопасной зарядки, быстрой зарядки и/или максимального времени автономной работы, все становится сложнее. Здесь мы разрабатываем простую схему зарядного устройства для 12-вольтовых аккумуляторов с использованием нескольких общедоступных компонентов, и эта схема подходит для всех типов 12-вольтовых аккумуляторов.

    Эта простая схема зарядного устройства для 12-вольтовых аккумуляторов представляет собой схему общего зарядного устройства для аккумуляторов, и вы можете добавить в эту схему такие функции, как защита от обратной полярности, установив диод на выходе. (Анод диода для вывода положительного источника питания и катод диода в качестве положительного вывода на выходе) и защита от перегрузки по току на основе транзистора. Следующая схема зарядного устройства является грубым прототипом, обеспечивающим выходное напряжение 12 Вольт для аккумулятора. Эта схема создана для обеспечения зарядного тока до 3 ампер.

    Необходимый компонент:

    Нет Компонент Значения Кол-во
    1 Понижающий трансформатор 0–14 В перем. тока / 3 А) 1
    2 Модуль мостового выпрямителя BR1010 1
    3 Электролитический конденсатор 100 мкФ/25 В 1,1
    4 Резистор 1 кОм/1 Вт 1
    5 Светодиод   1
    6 Керамический конденсатор 0,01 мкФ
    Цепь зарядного устройства автомобильного аккумулятора 12 В

    Порядок работы:

    Как показано на схеме, у нас есть блок питания, состоящий из понижающего трансформатора переменного тока 0–14 В, который используется для преобразования переменного тока 230 В. питания в источник переменного тока 12 В, а для выпрямления переменного тока в постоянный мы использовали модуль мостового выпрямителя BR1010, который обеспечивает высокоэффективный источник постоянного тока с высоким номинальным током. Этот модуль мостового выпрямителя будет иметь четыре клеммы, две для входа питания переменного тока, обозначенные волной знака, и две для выхода постоянного тока, обозначенные положительным и отрицательным знаком. C1 и C1 — сглаживающие конденсаторы. В этой схеме конденсаторы С1 и С2 выполняют роль фильтра, а светодиод сигнализирует о наличии там источника постоянного напряжения на выходе.

    Среднеквадратичное значение выходного напряжения трансформатора составляет 12 В в простейшей схеме, описанной выше. То есть после выпрямления пиковое напряжение будет 12 x 1,41 = 16,92 В. Хотя это кажется выше, чем уровень 14 В полного заряда 12-вольтовой батареи, батарея не повреждается из-за низкого тока трансформатора. .

    Однако лучше вынуть батарею, как только показания амперметра будут близки к нулю.

    Автоматическое отключение: Вы можете легко сделать так, чтобы описанная выше конструкция автоматически отключалась при достижении полного уровня заряда, добавив каскад BJT с выходным сигналом, показанным ниже: Мы использовали каскад BJT с общим эмиттером, основание которого было зафиксировано на 15 V в этой конструкции, что означает, что напряжение эмиттера никогда не может превышать 14 В. Когда напряжение на клеммах батареи превышает 14 В, биполярный транзистор смещается в обратном направлении и переходит в режим автоматического отключения. Вы можете отрегулировать значение диода 15 В до тех пор, пока выходное напряжение батареи не станет около 14,3 В. Это превращает первую конструкцию в полностью автоматическую систему зарядного устройства на 12 В, которую легко построить, но при этом она остается полностью безопасной.

    Почему важен контроль тока?

    Настройка постоянного тока:

    Зарядка любого типа заряжаемых аккумуляторов может быть критической и требует определенного внимания. Когда входной ток, используемый для зарядки аккумулятора, значительно выше, добавление контроля тока становится критически важным.

    Все мы знаем, насколько умна микросхема LM317, поэтому неудивительно, что она используется во многих приложениях, требующих точного управления питанием. Представленная здесь схема зарядного устройства 12-вольтовой батареи с регулируемым током на микросхеме LM317 демонстрирует, как микросхема LM317 может быть сконфигурирована с помощью всего лишь пары резисторов и стандартного трансформаторного мостового источника питания для зарядки 12-вольтовой батареи с максимальной точностью.

    Как это работает?

    По сути, микросхема подключена в обычном режиме с включенными резисторами R1 и R2 для необходимой регулировки напряжения. Входная мощность ИС подается через стандартную сеть трансформатор/диодный мост; напряжение после фильтрации через С1 примерно 14 вольт. Отфильтрованные 14 В постоянного тока подаются на входной контакт микросхемы. Вывод ADJ микросхемы подключен к соединению резистора R1 и переменного резистора R2.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *