Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Схемы выпрямителей

Добавлено 4 марта 2017 в 15:10

Сохранить или поделиться

Теперь мы подошли к наиболее популярному применению диода: выпрямлению. Упрощенно, выпрямление – это преобразование переменного напряжения в постоянное. Оно включает в себя устройство, которое позволяет протекать электронам только в одном направлении. Как мы уже видели, это именно то, что и делает полупроводниковый диод. Простейшим выпрямителем является однополупериодный выпрямитель. Он пропускает через себя на нагрузку только половину синусоиды сигнала переменного напряжения.

Схема однополупериодного выпрямителя

Однополупериодный выпрямитель не удовлетворяет требований большинства источников питания. Содержание гармоник в выходном сигнале выпрямителя слишком велико, и, следовательно, их трудно отфильтровать. Кроме того питающий источник переменного напряжения подает питание на нагрузку во время только одной половины каждого полного периода, а это означает, что половина его возможностей не используется.

Тем не менее, однополупериодный выпрямитель является очень простым способом уменьшения мощности, подводимой к активной нагрузке. Переключатели некоторых двухпозиционных ламповых диммеров подают напрямую полное переменное напряжение на лампу накаливания для «полной» яркости или через однополупериодный выпрямитель для уменьшения яркости (рисунок ниже).

Использование однополупериодного выпрямителя: двухпозиционный ламповый диммер

В положении переключателя “Тускло” лампа накаливания получает примерно половину мощности, которую она бы получала при работе с полным периодом переменного напряжения. Поскольку питание после однополупериодного выпрямителя пульсирует гораздо быстрее, чем нить накала успевает нагреться и охладиться, лампа не мигает. Вместо этого, нить накала просто работает на меньшей, чем обычно, температуре, обеспечивая менее яркий свет. Эта идея быстроты «пульсирования» питания по сравнению с медленно реагирующей нагрузкой широко используется в мире промышленной электроники для управления электроэнергией, подаваемой на нагрузку.

Так как управляющее устройство (в данном случае, диод) в любой момент времени либо полностью проводит, либо полностью не проводит ток, то оно рассеивает мало тепловой энергии, контролируя при этом мощность нагрузки, что делает этот метод управления питанием очень энергоэффективным. Эта схема, возможно, является самым грубым способом подачи пульсирующего питания на нагрузку, но она достаточна в качестве применения, доказывающего правильность идеи.

Если нам нужно выпрямить питание переменным напряжением, чтобы получить полное использование обоих полупериодов синусоидального сигнала, то необходимо использовать другие схемы выпрямителей. Такие схемы называются двухполупериодными выпрямителями. Один из типов двухполупериодных выпрямителей, называемый выпрямителем

со средней точкой, использует трансформатор со средней точкой во вторичной обмотке и два диода, как показано на рисунке ниже.

Двухполупериодный выпрямитель, схема со средней точкой

Понять работу данной схемы довольно легко, рассмотрев ее в разные половины периода синусоидального сигнала. Рассмотрим первую половину периода, когда полярность напряжения источника положительна (+) наверху и отрицательна внизу. В это время ток проводит только верхний диод, нижний диод блокирует протекание тока, а нагрузка “видит” первую половину синусоиды, положительную наверху и отрицательную внизу. Во время первой половины периода ток протекает только через верхнюю половину вторичной обмотки трансформатора (рисунок ниже).

Двухполупериодный выпрямитель со средней точкой: Верхняя половина вторичной обмотки проводит ток во время положительной полуволны на входе, доставляя положительную полуволну на нагрузку (стрелками показано направление движения потока электронов)

В течение следующего полупериода полярность переменного напряжения меняется на противоположную. Теперь другой диод и другая половина вторичной обмотки трансформатора проводят ток, а часть схемы, проводившая ток во время предыдущего полупериода, находится в ожидании. Нагрузка по-прежнему “видит” половину синусоиды, той же полярности, что и раньше: положнительная сверху и отрицательная снизу (рисунок ниже).

Двухполупериодный выпрямитель со средней точкой: Во время отрицательной полуволны на входе ток проводит нижняя половина вторичной обмотки, доставляя положительную полуволну на нагрузку (стрелками показано направление движения потока электронов)

Одним из недостатков этой схемы двухполупериодного выпрямителя является необходимость трансформатора со средней точкой во вторичной обмотке. Особенно сильно этот недостаток проявляется, если для схемы имеют значение высокая выходная мощность; размер и стоимость подходящего трансформатора становятся одними из определяющих факторов. Следовательно, схема выпрямителя со средней точкой используется только в приложениях с низким энергопотреблением.

Полярность на нагрузке двухполупериодного выпрямителя со средней точкой может быть изменена путем изменения направления диодов. Кроме того, перевернутые диоды могут подключены параллельно с существующим выпрямителем с положительным выходом. В результате получится двуполярный двухполупериодный выпрямитель со средней точкой, показанный на рисунке ниже. Обратите внимание, что соединение диодов между собой аналогично схеме моста.

Двуполярный двухполупериодный выпрямитель со средней точкой

Существует еще одна популярная схема двухполупериодного выпрямителя, она построена на базе схемы четырехдиодного моста. По очевыдным причинам эта схема называется

двухполупериодным мостовым выпрямителем.

Двухполупериодный мостовой выпрямитель

Направления потоков электронов в двухполупериодном мостовом выпрямителе показано на рисунках ниже для положительной и отрицательной полуволн синусоиды переменного напряжения источника. Обратите внимание, что независимо от полярности на входе, ток через нагрузку протекает в одном и том же направлении. То есть, отрицательная полуволна на источнике соответствует положительной полуволне на нагрузке. Ток протекает через два диода, соединенных последовательно для обеих полярностей. Таким образом, из-за падения напряжения на двух диодах теряется (0.7 x 2 = 1.4В для кремниевых диодов). Это является недостатком по сравнению с двухполупериодным выпрямителем со средней точкой. Этот недостаток является проблемой только для очень низковольтных источников питания.

Двухполупериодный мостовой выпрямитель. Поток электронов для положительных полупериодовДвухполупериодный мостовой выпрямитель. Поток электронов для отрицательных полупериодов

Запоминание правильного соединения диодов схемы мостового выпрямителя иногда может вызвать проблемы у новичка. Альтернативное представление этой схемы может облегчить запоминание и понимание. Это точно такая же схема, за исключением того, что все диоды нарисованы в горизонтальном положении и указывают в одном направлении (рисунок ниже).

Альтернативное представление схемы двухполупериодного мостового выпрямителя

Одним из преимуществ такого представления схемы мостового выпрямителя является то, что она легко расширяется до многофазной версии (рисунок ниже).

Схема трехфазного мостового выпрямителя

Линия каждой из фаз подключается между парой диодов: один ведет к положительному (+) выводу нагрузки, а второй – к отрицательному.

Многофазные системы с количеством фаз, более трех, так же могут быть легко использованы в схеме мостового выпрямителя. Возьмем, например, схему шестифазного мостового выпрямителя (рисунок ниже).

Схема шестифазного мостового выпрямителя

При выпрямлении многофазного переменного напряжения сдвинутые по фазе импульсы накладываются друг на друга создавая выходное постоянное напряжение, которое более “гладкое” (имеет меньше переменных составляющих), чем при выпрямлении однофазного переменного напряжения. Это преимущество является решающим в схемах выпрямителей высокой мощности, где физический размер фильтрующих компонентов будет чрезмерно большим, но при этом необходимо получить постоянное напряжение с низким уровнем шумов. Диаграмма на рисунке ниже показывает двухполупериодное выпрямление трехфазного напряжения.

Трехфазное переменное напряжение и выходное напряжение трехфазного двухполупериодного выпрямителя

В любом случае выпрямления (однофазном или многофазном) количество переменного напряжения, смешанного с выходным постоянным напряжением выпрямителя, называется напряжением

пульсаций. В большинстве случаев напряжение пульсаций нежелательно, так как целью выпрямления является “чистое” постоянное напряжение. Если уровни мощности не слишком велики, для уменьшения пульсаций в выходном напряжении могут быть использованы схемы фильтрации.

Иногда метод выпрямления классифицируется путем подсчета количества “импульсов” постоянного напряжения на выходе каждые 360° синусоиды входного напряжения. Однофазная однополупериодная схема выпрямителя тогда будет называться 1-импульсным выпрямителем, поскольку он дает один импульс во время полного периода (360°) сигнала переменного напряжения. Однофазный двухполупериодный выпрямитель (независимо от схемы, со средней точкой или мостовой) будет называться

2-импульсным выпрямителем, поскольку он выдает 2 импульса постоянного напряжения за один период переменного напряжения. Трехфазный двухполупериодный выпрямитель будет называться 6-импульсным.

Современное соглашение в электротехнике описывает работу схемы выпрямителя с помощью трехпозиционной записи фаз, путей и количества импульсов. Схема однофазного однополупериодного выпрямителя в данном зашифрованном обозначении будет следующей 1Ph2W1P (1 фаза, 1 путь, 1 импульс), а это означает, что питающее переменное напряжение однофазно, ток каждой фазы источника переменного напряжения протекает только в одном направлении (пути), и, что в постоянном напряжении создается один импульс каждые 360° входной синусоиды. Однофазный двухполупериодный выпрямитель со средней точкой в этой системе записи будет обозначаться, как 1Ph2W2P: 1 фаза, 1 путь или направление протекания тока в каждой половине обмотки, и 2 импульса в выходном напряжении за период. Однофазный двухполупериодный мостовой выпрямитель будет обозначаться, как 1Ph3W2P: так же, как и схема со средней точкой, за исключением того, что ток может протекать двумя путями через линии переменного напряжения, вместо только одного пути. Трехфазный мостовой выпрямитель, показанный ранее, будет называться выпрямителем 3Ph3W6P.

Вожможно ли получить количество импульсов больше, чем удвоенное количество фаз в схеме выпрямителя? Ответ на этот вопрос, да: особенно в многофазных цепях. При помощи творческого использования трансформаторов наборы двухполупериодных выпрямителей могут быть соединены параллельно таким образом, что на выходе для трехфазного переменного напряжения может быть получено более шести импульсов постоянного напряжения. Когда схемы соединения обмоток трансформатора не одинаковы, из первичной во вторичную цепь трехфазного трансформатора вводится 30° фазовый сдвиг. Другими словами, трансформатор подключенный по схеме либо Y-Δ, либо Δ-Y будет давать сдвиг фазы на 30°; в то время, как подкючение трансформатора по схеме Y-Y или Δ-Δ такого эффекта не даст. Это явление может быть использовано при наличии одного трансформатора, подключенного по схеме Y-Y к одному мостовому выпрямителю, и другого трансформатора, подключенного по схеме Y-Δ к другому мостовому выпрямителю, а затем параллельном соединению выходов постоянного напряжения обоих выпрямителей (рисунок ниже). Поскольку формы напряжений пульсаций на выходах двух выпрямителей смещены по фазе на 30° относительно друг друга, в результате сложения они дадут меньшие пульсации, чем каждый выпрямитель по отдельности: 12 импульсов каждые 360° вместо шести:

Схема многофазного выпрямителя: 3 фазы, 2 пути, 12 импульсов (3Ph3W12P)

Подведем итоги

  • Выпрямление – это преобразование переменного напряжения в постоянное.
  • Однополупериодный выпрямитель – это схема, которая позволяет только одной половине синусоиды переменного напряжения достичь нагрузки, давая на ней в результате неизменяющуюся полярность. Полученное постоянное напряжение, приложенное к нагрузке, значительно “пульсирует”.
  • Двухполупериодный выпрямитель – это схема, которая преобразует обе половины периода синусоиды переменного напряжения в непрерывную последовательность импульсов одной полярности. Полученное постоянное напряжение, приложенное к нагрузке, “пульсирует” не так сильно.
  • Многофазное переменное напряжении при выпрямлении дает более “гладкую” форму постоянного напряжения (меньшее напряжение пульсаций) по сравнению с выпрямленным однофазным напряжением.

Оригинал статьи:

Теги

ВыпрямительДиодИсточник питанияОбучениеЭлектроника

Сохранить или поделиться

Типы выпрямителей переменного тока.

Какие бывают выпрямители?

Ещё в начале ХХ века имел место очень принципиальный спор между корифеями электротехники. Какой ток выгоднее передавать потребителю на большие расстояния: постоянный или переменный? Научный спор выиграли сторонники передачи переменного тока по проводам высоковольтных линий от подстанции к потребителю. Эта система принята во всём мире и успешно эксплуатируется до сих пор.

Но большинство электронной техники и не только бытовой, но и промышленной питается постоянными напряжениями и это привело к созданию целой отрасли электрики – преобразование (выпрямление) переменного тока. После того как электронная лампа была забыта, главным элементом любого выпрямителя стал полупроводниковый диод.

Схемотехника выпрямителей весьма обширна, но самым простым является однополупериодный выпрямитель.

Однополупериодный выпрямитель.

Напряжение с вторичной обмотки силового трансформатора подаётся на один единственный диод. Вот схема.

Поэтому выпрямитель и назван однополупериодным. Выпрямляется только один полупериод и на выходе получается импульсное напряжение. Форма его показана на рисунке.

Схема проста и не требует большого количества элементов. Это и сказывается на качестве выпрямленного напряжения. При низких частотах переменного напряжения (например, как в электросети – 50 Гц) выпрямленное напряжение получается сильно пульсирующим. А это очень плохо.

Для того чтобы снизить величину пульсации выпрямленного напряжения приходится брать величину конденсатора С1 очень большую, порядка 2000 – 5000 микрофарад, что увеличивает размер блока питания, так как электролиты на 2000 – 5000 мкф имеют довольно большие размеры. Поэтому на низких частотах эта схема практически не используется. Зато однополупериодные выпрямители прекрасно зарекомендовали себя в импульсных блоках питания работающих на частотах 10 – 15 кГц (килогерц). На таких частотах величина ёмкости фильтра может быть очень небольшой, а простота схемы уже не столь сильно влияет на качество выпрямленного напряжения.

Примером использования однополупериодного выпрямителя может служить простой зарядник от сотового телефона. Так как зарядник сам по себе маломощный, то в нём применяется однополупериодная схема, причём как во входном сетевом выпрямителе 220V (50Гц), так и в выходном, где требуется выпрямить переменное напряжение высокой частоты со вторичной обмотки импульсного трансформатора.

К несомненным достоинствам такого выпрямителя следует отнести минимум деталей, низкую стоимость и простые схемные решения. В обычных (не импульсных) блоках питания многие десятилетия успешно работают двухполупериодные выпрямители.

Двухполупериодные выпрямители.

Они бывают двух схемных решений: выпрямитель со средней точкой и мостовая схема, известная, как схема Гретца. Выпрямитель со средней точкой требует более сложного в исполнении силового трансформатора, хотя диодов там используется в два раза меньше чем в мостовой схеме. К недостаткам двухполупериодного выпрямителя со средней точкой можно отнести то, что для получения одинакового напряжения, число витков во вторичной обмотке трансформатора должно быть в два раза больше, чем при использовании мостовой схемы. А это уже не совсем экономично с точки зрения расходования медного провода.

Далее на рисунке показана типовая схема двухполупериодного выпрямителя со средней точкой.

Величина пульсаций выпрямленного напряжения меньше чем у однополупериодного выпрямителя и величину конденсатора фильтра так же можно использовать гораздо меньшую. Наглядно увидеть, как работает двухполупериодная схема можно по рисунку.

Как видим, на выходе выпрямителя уже в два раза меньше “провалов” напряжения – тех самых пульсаций.

Активно применяется схема выпрямителя со средней точкой в выходных выпрямителях импульсных блоков питания для ПК. Так как во вторичной обмотке высокочастотного трансформатора требуется меньшее число витков медного провода, то гораздо эффективнее применять именно эту схему. Диоды же применяются сдвоенные, т.е. такие, у которых общий корпус и три вывода (два диода внутри). Один из выводов – общий (как правило катод). По виду сдвоенный диод очень похож на транзистор.

Наибольшую популярность приобрела в бытовой и промышленной аппаратуре мостовая схема. Взгляните.

Можно без преувеличения сказать, что это самая распространённая схема. На практике вы с ней ещё не раз встретитесь. Она содержит четыре полупроводниковых диода, а на выходе, как правило, ставится RC-фильтр или только электролитический конденсатор для сглаживания пульсаций напряжения.

О данной схеме уже рассказывалось на странице про диодный мост. Стоит отметить, что и у мостовой схемы есть недостатки. Как известно, у любого полупроводникового диода есть так называемое прямое падение напряжения (Forward voltage dropVF). Для обычных выпрямительных диодов оно может быть 1 – 1,2 V (зависит от типа диода). Так вот, при использовании мостовой схемы на диодах теряется напряжение, равное 2 x VF, т.е. около 2 вольт. Это происходит потому, что в выпрямлении одной полуволны переменного тока участвуют 2 диода (затем другие 2). Получается, что на диодном мосте теряется часть напряжения, которое мы снимаем со вторичной обмотки трансформатора, а это явные потери. Поэтому в некоторых случаях в составе диодного моста применяются диоды Шоттки, у которых прямое падение напряжения невелико (около 0,5 вольта). Правда, стоит учесть, что диод Шоттки не рассчитан на большое обратное напряжение и очень чувствителен к его превышению.

Большой интерес вызывает выпрямитель с удвоением напряжения.

Выпрямитель с удвоением напряжения.

Принцип удвоителя напряжения Латура-Делона-Гренашера основан на поочерёдном заряде-разряде конденсаторов С1 и С2 разными по полярности полуволнами входного напряжения. В результате между катодом одного диода и анодом второго диода возникает напряжение в два раза превышающее входное. Схема в студию:)

Стоит отметить, что данная схема применяется в блоках питания нечасто. Но её можно смело использовать, если необходимо вдвое увеличить напряжение, которое снимается со вторичной обмотки трансформатора. Это будет более логичным и правильным решением, чем перематывать вторичную обмотку трансформатора с целью увеличить выходное напряжение вторичной обмотки в 2 раза (ведь при этом придётся наматывать вторичную обмотку с вдвое большим числом витков). Так что, если не удалось найти подходящий трансформатор – смело применяем данную схему.

Развитием схемы стало создание умножителя на полупроводниковых диодах.

Умножитель напряжения.

Каждый диод и конденсатор образуют «звено» и эти звенья можно соединять последовательно до получения напряжения в несколько десятков киловольт. Конечно, для этого входное напряжение тоже должно быть достаточно большим.

На рисунке изображён четырёхзвенный умножитель и на выходе мы получаем напряжение в четыре раза превышающее входное (U). Эти выпрямители получили большое распространение там, где нужно получить высокое напряжение при достаточно малом токе. Например, по такой схеме были выполнены источники высокого напряжения в старых телевизорах и осциллографах для питания анода электронно-лучевой трубки.

Сейчас такие источники питания используются в научных лабораториях, в детекторах элементарных частиц, в медицинской аппаратуре (люстра Чижевского) и в оружии самообороны (электрошокер). При повторении подобных конструкций и подборе деталей, следует учитывать рабочее напряжение, как диодов, так и конденсаторов исходя из напряжения, которое вы хотите получить. Весь умножитель, как правило, заливается специальным компаундом или эпоксидной смолой во избежание высоковольтных пробоев между элементами схемы.

Для нормальной работы некоторых устройств как, например, люстры Чижевского необходимы достаточно высокие напряжения. Как считают специалисты, излучатель отрицательных аэроионов, эффективен только при напряжении не менее 60 киловольт.

Трёхфазные выпрямители.

Устройства, которые используются для получения постоянного тока из переменного трёхфазного тока, называются трёхфазными выпрямителями. Трёхфазные выпрямители в бытовой технике, конечно, не используются. Единственный прибор, который может использоваться в быту это сварочный аппарат. В качестве трёхфазных выпрямителей используются наработки двух известных электротехников Миткевича и Ларионова. Самая простая схема Миткевича называется «три четверти моста параллельно», что означает три силовых диода включенных параллельно через вторичные обмотки трёхфазного трансформатора. Схема.

Коэффициент пульсаций на нагрузке очень мал, что позволяет использовать конденсаторы фильтра небольшой ёмкости и малых габаритов.

Более сложной является схема Ларионова, которая называется «три полумоста параллельно», что это такое хорошо видно из рисунка.

В схеме используется уже шесть диодов и немного другая схема включения. Вообще схем трёхфазных выпрямителей достаточно много и наиболее совершенной, хотя редко употребляемой является схема «шесть мостов параллельно», а это уже 24 диода! Зато эта схема может выдавать высокое напряжение при большой мощности.

Трёхфазные мощные выпрямители используются в электровозах, городском электротранспорте (трамвай, троллейбус, метро), в промышленных установках для электролиза. Так же промышленные системы очистки газовых смесей, буровое и сварочное оборудование используют трёхфазные выпрямители.

Теперь вы знаете, какие бывают выпрямители переменного тока и сможете легко обнаружить их на принципиальной схеме или печатной плате любого прибора. А для тех, кто хочет знать больше, рекомендуем ознакомиться с книгой “Полупроводниковые выпрямители”.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

ВЫПРЯМИТЕЛИ

   В этой статье мы разберем какие бывают выпрямители, для какой цели служат, в чем заключаются особенности того или иного выпрямителя. Если мы решаем собрать какое-либо устройство или просто необходимо запитать готовое, то мы можем использовать питание от гальванических элементов (батареек), либо воспользоваться для этих целей аккумуляторами. Но как быть, если радиоустройство не планируется носить с собой и оно потребляет значительный ток? В таких случаях запитывают устройство от сети 220 вольт.

Фото трансформаторный блок питания

   Напрямую запитать от 220 вольт, разумеется, мы не можем, напряжение слишком высокое и ток переменный, а для питания электронных устройств почти всегда необходим постоянный ток и более низкое напряжение. Необходим так называемый сетевой адаптер.

Фотография трансформатора

   Понизить напряжение мы можем с помощью трансформатора, о нем мы поговорим в одной из следующих статей, пока нам достаточно знать, что с помощью трансформатора мы можем понизить или повысить напряжение при переменном токе. Далее нам необходимо сделать из переменного тока постоянный, для этих целей и служит выпрямитель. Существуют три основных типа выпрямителей.

Однополупериодный выпрямитель


Схема однополупериодный выпрямитель

   Этот выпрямитель работает только в течение положительного полупериода синусоиды. Это можно видеть на следующем графике:

Выпрямленный ток после однополупериодного выпрямителя

   На выходе после диода мы получаем пульсирующее напряжение, нам нужно сделать из него постоянное, то есть из пульсирующего тока получить постоянный. Для этих целей служит электролитический конденсатор большой емкости, подключенный параллельно выходу питания в соответствии с полярностью. На фотографии ниже можно увидеть внешний вид подобного конденсатора:

Электролитический конденсатор большой емкости

    Такой конденсатор благодаря большой емкости разряжается в течении отрицательного полупериода синусоиды. Обычно для фильтрации напряжения в выпрямителях применяют электролитические конденсаторы от 2200 микрофарад. В усилителях и других устройствах, где важно чтобы напряжение не проседало при увеличении мощности нагрузки, ставят конденсаторы на большую емкость, чем 2200 микрофарад. Для устройств питающих бытовую аппаратуру обычно конденсаторов такой емкости бывает достаточно. На следующем графике (выделено красным), мы можем видеть, как конденсатор поддерживает напряжение стабильным во время прохождения отрицательной полуволны.

Выпрямленный ток в однополупериодном выпрямителе после конденсатора

Двухполупериодный выпрямитель со средней точкой


Схема двухполупериодный выпрямитель со средней точкой

   Для этой схемы необходим трансформатор, с двумя вторичными обмотками. Напряжение на диодах в два раза выше, чем при включении схемы с однополупериодным выпрямителем или при включении мостовой схемы. В этой схеме попеременно работают оба полупериода. В течении положительного полупериода работает одна часть схемы обозначенная В1, во время отрицательного полупериода работает вторая часть схемы обозначенная В2. Эта схема является менее экономичной, чем мостовая схема, в частности у неё более низкий коэффициент использования трансформатора. В этой схеме после диодов получается также пульсирующее напряжение, но частота пульсаций в два раза выше. Что мы и можем видеть на следующем графике:

График двухполупериодного выпрямителя

Двухполупериодный выпрямитель, мостовая схема


Схема двухполупериодный выпрямитель мостовая схема

   И наконец, рассмотрим схему мостового выпрямителя, самую распространенную схему, по которой сделана большая часть всех выпущенных трансформаторных блоков питания. Сейчас объясню принцип работы диодного моста:

Диодный мост рисунок

   Ток у нас на выходе с трансформатора переменный, а переменный ток, как известно, в течение периода дважды меняет свое направление. Говоря другими словам, конечно же упрощенно, при переменном токе с частотой 50 герц, ток у нас 100 раз в секунду меняет свое направление. То есть сначала он течет от вывода диодного моста под цифрой один, ко второму, потом в течение другой полуволны он течет от вывода под номером два к первому. 

Объяснение работы диодного моста

   Рассмотрим, что происходит с диодным мостом при подаче напряжения, мы видим, на рисунке обозначен красным путь тока, напрямую пройти к выводу диодного моста соединенного с переменным током не позволит диод, который получается у нас включенный в обратном включении, а в обратном включении, как мы помним, диоды не пропускают ток. Току остается только один путь (выделено на рисунке синим), через нагрузку и через диод уйти в провод соединенный с выводом переменного тока. Когда у нас ток меняет свое направление, то вступает в действие вторая часть диодного моста, которая действует аналогично той, что описал выше. В итоге у нас получается на выходе такой же график напряжения, как и у двухполупериодного выпрямителя со средней точкой:

График мостого выпрямителя

   При сборке выпрямителя нужно учитывать полярность на выходе диодного моста, если мы подключим электролитический конденсатор неправильно, то рискуем испортить конденсатор и можно считать, что повезло, если этим все ограничится. Поэтому при сборке диодного моста важно помнить одно правило, плюс на выходе с моста всегда будет в точке соединения 2 катодов диодов, а минус в точке соединения анодов. Встречается и такое обозначение на схемах диодного моста:

Еще одно изображение диодного моста

   Диодный мост можно собрать как из отдельных диодов, так и взять специальную сборку из 4 диодов, уже соединенных по мостовой схеме, и имеющий 4 вывода. В таком случае остается только подать переменный ток, идущий обычно с вторичной обмотки трансформатора на два вывода моста, а с оставшихся двух выводов снимать плюс и минус. Обычно на самой детали бывает обозначено, где какой вывод у моста. Так выглядит импортный диодный мост:

Фото импортного диодного моста

   На фото далее изображен отечественный диодный мост КЦ405.

Фото диодный мост кц405

Трехфазные выпрямители

   Существуют и трехфазные трансформаторы. Обычным однофазным диодным мостом с такого трансформатора не получится на выходе постоянный ток. Конечно, если нагрузка небольшая можно подключиться к одной фазе и к нулевому проводу трансформатора, но экономичным такое решение не назовешь.

Фото трехфазного трансформатора

   Для трехфазного тока существуют специальные схемы выпрямителей, две таких схемы приведены на рисунках ниже. Первая, известная как схема Миткевича, имеет низкий коэффициент габаритной мощности трансформатора. Эта схема применяется при небольших мощностях нагрузки.

Схема Миткевича

   Вторая схема, известная как Схема Ларионова, нашла широкое применение в электротехнике, так как имеет лучшие технико-экономические показатели по сравнению со схемой Миткевича.

Схема Ларионова

   Схема Ларионова может использоваться как “звезда-Ларионов” и “треугольник-Ларионов”. Вид подключения зависит от схемы подключения трансформатора, либо генератора, с выходом которого соединен этот выпрямитель. Автор статьи – AKV.

   Форум

   Форум по обсуждению материала ВЫПРЯМИТЕЛИ

Выпрямители. Виды и устройство. Структура и особенности

Выпрямители это электротехнические устройства, которые служат для получения из переменного напряжения, постоянного. Главными компонентами выпрямителей являются вентили и трансформатор. Они создают условия протекания тока в нагрузочной цепи в одну сторону, то есть, выпрямляют его. Из переменного напряжения образуется постоянное с наличием пульсаций.

Устройство и структура выпрямителя

Чтобы сгладить полученные импульсы выпрямленного напряжения, после выхода выпрямителя подключают выравнивающий фильтр, состоящий из емкостей, дросселей и сопротивлений. Для выравнивания и регулировки полученного тока и напряжения к выходу сглаживающего фильтра подключают схему стабилизатора. Такие устройства часто подключают и на входе устройства на переменный ток.

Режимы функционирования и свойства отдельных компонентов выпрямителя, стабилизатора, регулятора и фильтра согласовывают с определенными условиями эксплуатации нагрузки потребителя. Поэтому главной задачей при проектировании устройств выпрямления является расчет соотношений, дающих возможность определить по режиму эксплуатации потребителя электрические свойства и параметры компонентов стабилизатора и других частей. Далее необходимо рассчитать эти элементы и выбрать по каталогу в торговой сети.

Рис. 1

Выпрямители в общем виде можно изобразить структурной схемой (Рис. 2), в которую входит:

1 — Силовой трансформатор.
2 — Диодный мост, состоящий из диодов.
3 — Устройство фильтрования.
4 — Нагрузочная цепь со стабилизатором.

Рис. 2

Силовой трансформатор

Это устройство предназначено для согласования напряжений на входе и выходе выпрямительного устройства (Рис. 1 — а). Другими словами, трансформатор осуществляет разделение сети нагрузки и сети питания. Существуют всевозможные варианты схем соединения обмоток этого трансформатора, выбор которых зависит от типа схемы выпрямления устройством. На величину выходного напряжения трансформатора U2 влияет величина напряжения на выходе выпрямительного моста Uн.

Трансформатор способен выполнить гальваническую развязку частоты f1 с сетью питания U1, I1, и нагрузочную цепь с Uн, Iнодновременно. В настоящее время появилась возможность проектировать и производить инверторы высокого напряжения, функционирующие на повышенной частоте и выпрямляющие напряжение. Для этого применяются схемы бестрансформаторного выпрямления, в которых блок вентилей подключается сразу к первичной сети питания.

Диодный мост

Этот блок выполняет основную функцию в устройстве выпрямителя, преобразуя переменный ток в постоянный (Рис. 1 — б). В блоке применяются чаще всего элементы в виде диодов.

На выходе блока вентилей снимается постоянное напряжение, имеющее повышенный уровень импульсов, который зависит от числа фаз сети питания и схемой выпрямителя.

Устройство фильтрования

Фильтрующая часть выпрямителя обеспечивает необходимый уровень пульсаций напряжения на выходе выпрямителя в соответствии с предъявляемыми требованиями нагрузки (Рис. 1 — в). В схеме фильтрующего устройства применяются сглаживающий дроссель или сопротивление, подключенные последовательно, и конденсаторы, подключенные параллельно выходу питания.

Однако чаще всего фильтры выполняют по схемам несколько сложнее. В маломощных выпрямителях нет необходимости в применении дросселя и резистора. В схемах выпрямителей для трехфазной сети величина импульсов меньше, тем самым становятся легче условия функционирования фильтра.

Стабилизатор напряжения

Устройство стабилизации напряжения предназначено для снижения внешнего влияния на выходное напряжение. Воздействиями могут быть: изменение частоты тока, температуры, перепады напряжения и другие факторы. В конструкции стабилизатора используются полупроводниковые элементы в виде стабилитронов, тиристоров, симисторов и других полупроводников, устройство и работа которых будет рассмотрена отдельно.

Классификация

Выпрямители, выполненные на основе полупроводниковых элементов, классифицируются по различным признакам.

По мощности на выходе:
  • Повышенной мощности – свыше 100 киловатт.
  • Средней мощности – менее 100 кВт.
  • Малой мощности – до 0,6 киловатт.
По фазности сети питания:
  • 1-фазные.
  • 3-фазные.
По количеству импульсов одного полюса выпрямленного напряжения U
2 за один период:
  • Однотактные (имеют один полупериод).
  • Двухтактные (два полупериода).
По типу управления вентилями выпрямители делятся на:
  • Управляемые. В схеме применяются транзисторы, тиристоры.
  • Неуправляемые. Используются диоды.
Выпрямители разделяют для следующих видов нагрузки:
  • Активно-емкостная.
  • Активно-индуктивная.
  • Активная.
Расчет выпрямителя

Характер нагрузки, формы потребления тока влияют на способы расчета выпрямителя, и значительно отличаются. Расчет выпрямителя выполняется путем подбора схемы выпрямителя, вида вентилей, определения нагрузки на трансформатор, фильтр и диоды, энергетических и электрических параметров.

Ряд факторов влияет на выбор схемы прибора. Эти факторы необходимо учитывать согласно предъявляемому требованию к выпрямителю.

К таким факторам можно отнести:
  • Мощность и напряжение.
  • Пульсация и частота напряжения на выходе.
  • Значение обратного напряжения на диодах и их количество.
  • Коэффициент мощности и другие параметры.
  • КПД.

Коэффициент применения трансформатора по мощности оказывает большое влияние на расчет выпрямителя. Этот параметр вычисляется формулой:

Где Id, Ud, — средние величина выпрямленного тока и напряжения, I1, U1  — рабочая первичная величина тока и напряжения, I2, U2  – рабочая величина вторичного тока и напряжения.

При повышении коэффициента использования трансформатора размеры прибора в общем уменьшаются, а КПД увеличивается.

Схемы выпрямления
Однофазные выпрямители

Схемы приборов для подключения к питанию однофазной сети используются чаще всего для бытовых электрических устройств. В них применяются однофазные трансформаторы, функционирующие с фазой и нолем. Обе обмотки трансформатора таких приборов являются однофазными.

Однофазная однотактная схема

Однополупериодная схема чаще всего используют для выравнивания токов малой мощности (несколько миллиампер), когда нет необходимости идеального выравнивания напряжения на выходе выпрямителя. Такая схема характерна значительными пульсациями выходного напряжения и малым коэффициентом использования трансформатора.

На диаграмме видна работа однотактного выпрямителя на активную нагрузку.

Нагрузочный ток id под воздействием ЭДС вторичной обмотки (е2) может пройти только за те полупериоды, на которых анод диода обладает положительным потенциалом по отношению к катоду. По диоду в первый полупериод протекает ток ivd, а во второй полупериод ток становится нулевым (при отрицательном потенциале анода).

Напряжение на выходе выпрямителя ud всегда ниже ЭДС обмотки е2, из-за того, что определенная часть напряжения теряется. Наибольшее обратное сопротивление вентиля Uобрmax достигает амплитудной величины ЭДС вторичной обмотки.

Диаграммы токов обеих обмоток трансформатора аналогичны, если не считать ток намагничивания и удалить из него величину Id, так как она не трансформируется в первичную обмотку. Из-за этой величины в сердечнике трансформатора образуется вспомогательный магнитный поток, который насыщает сердечник.

Такой эффект называется вынужденным подмагничиванием. Это можно выделить, как основной недостаток схемы. После насыщения ток намагничивания трансформатора повышается по сравнению с нормальным режимом. Повышение этого тока создает условия для увеличения сечения проводника первичной обмотки. Вследствие этого возрастают размеры трансформатора.

Похожие темы:

Выпрямитель на двух диодах без средней точки

Какие бывают выпрямители?

Ещё в начале ХХ века имел место очень принципиальный спор между корифеями электротехники. Какой ток выгоднее передавать потребителю на большие расстояния: постоянный или переменный? Научный спор выиграли сторонники передачи переменного тока по проводам высоковольтных линий от подстанции к потребителю. Эта система принята во всём мире и успешно эксплуатируется до сих пор.

Но большинство электронной техники и не только бытовой, но и промышленной питается постоянными напряжениями и это привело к созданию целой отрасли электрики – преобразование (выпрямление) переменного тока. После того как электронная лампа была забыта, главным элементом любого выпрямителя стал полупроводниковый диод.

Схемотехника выпрямителей весьма обширна, но самым простым является однополупериодный выпрямитель.

Однополупериодный выпрямитель.

Напряжение с вторичной обмотки силового трансформатора подаётся на один единственный диод. Вот схема.

Поэтому выпрямитель и назван однополупериодным. Выпрямляется только один полупериод и на выходе получается импульсное напряжение. Форма его показана на рисунке.

Схема проста и не требует большого количества элементов. Это и сказывается на качестве выпрямленного напряжения. При низких частотах переменного напряжения (например, как в электросети — 50 Гц) выпрямленное напряжение получается сильно пульсирующим. А это очень плохо.

Для того чтобы снизить величину пульсации выпрямленного напряжения приходится брать величину конденсатора С1 очень большую, порядка 2000 – 5000 микрофарад, что увеличивает размер блока питания, так как электролиты на 2000 — 5000 мкф имеют довольно большие размеры. Поэтому на низких частотах эта схема практически не используется. Зато однополупериодные выпрямители прекрасно зарекомендовали себя в импульсных блоках питания работающих на частотах 10 – 15 кГц (килогерц). На таких частотах величина ёмкости фильтра может быть очень небольшой, а простота схемы уже не столь сильно влияет на качество выпрямленного напряжения.

Примером использования однополупериодного выпрямителя может служить простой зарядник от сотового телефона. Так как зарядник сам по себе маломощный, то в нём применяется однополупериодная схема, причём как во входном сетевом выпрямителе 220V (50Гц), так и в выходном, где требуется выпрямить переменное напряжение высокой частоты со вторичной обмотки импульсного трансформатора.

К несомненным достоинствам такого выпрямителя следует отнести минимум деталей, низкую стоимость и простые схемные решения. В обычных (не импульсных) блоках питания многие десятилетия успешно работают двухполупериодные выпрямители.

Двухполупериодные выпрямители.

Они бывают двух схемных решений: выпрямитель со средней точкой и мостовая схема, известная, как схема Гретца. Выпрямитель со средней точкой требует более сложного в исполнении силового трансформатора, хотя диодов там используется в два раза меньше чем в мостовой схеме. К недостаткам двухполупериодного выпрямителя со средней точкой можно отнести то, что для получения одинакового напряжения, число витков во вторичной обмотке трансформатора должно быть в два раза больше, чем при использовании мостовой схемы. А это уже не совсем экономично с точки зрения расходования медного провода.

Далее на рисунке показана типовая схема двухполупериодного выпрямителя со средней точкой.

Величина пульсаций выпрямленного напряжения меньше чем у однополупериодного выпрямителя и величину конденсатора фильтра так же можно использовать гораздо меньшую. Наглядно увидеть, как работает двухполупериодная схема можно по рисунку.

Как видим, на выходе выпрямителя уже в два раза меньше “провалов” напряжения — тех самых пульсаций.

Активно применяется схема выпрямителя со средней точкой в выходных выпрямителях импульсных блоков питания для ПК. Так как во вторичной обмотке высокочастотного трансформатора требуется меньшее число витков медного провода, то гораздо эффективнее применять именно эту схему. Диоды же применяются сдвоенные, т.е. такие, у которых общий корпус и три вывода (два диода внутри). Один из выводов — общий (как правило катод). По виду сдвоенный диод очень похож на транзистор.

Наибольшую популярность приобрела в бытовой и промышленной аппаратуре мостовая схема. Взгляните.

Можно без преувеличения сказать, что это самая распространённая схема. На практике вы с ней ещё не раз встретитесь. Она содержит четыре полупроводниковых диода, а на выходе, как правило, ставится RC-фильтр или только электролитический конденсатор для сглаживания пульсаций напряжения.

О данной схеме уже рассказывалось на странице про диодный мост. Стоит отметить, что и у мостовой схемы есть недостатки. Как известно, у любого полупроводникового диода есть так называемое прямое падение напряжения (Forward voltage dropVF). Для обычных выпрямительных диодов оно может быть 1 — 1,2 V (зависит от типа диода). Так вот, при использовании мостовой схемы на диодах теряется напряжение, равное 2 x VF, т.е. около 2 вольт. Это происходит потому, что в выпрямлении одной полуволны переменного тока участвуют 2 диода (затем другие 2). Получается, что на диодном мосте теряется часть напряжения, которое мы снимаем со вторичной обмотки трансформатора, а это явные потери. Поэтому в некоторых случаях в составе диодного моста применяются диоды Шоттки, у которых прямое падение напряжения невелико (около 0,5 вольта). Правда, стоит учесть, что диод Шоттки не рассчитан на большое обратное напряжение и очень чувствителен к его превышению.

Большой интерес вызывает выпрямитель с удвоением напряжения.

Выпрямитель с удвоением напряжения.

Принцип удвоителя напряжения Латура-Делона-Гренашера основан на поочерёдном заряде-разряде конденсаторов С1 и С2 разными по полярности полуволнами входного напряжения. В результате между катодом одного диода и анодом второго диода возникает напряжение в два раза превышающее входное. Схема в студию:)

Стоит отметить, что данная схема применяется в блоках питания нечасто. Но её можно смело использовать, если необходимо вдвое увеличить напряжение, которое снимается со вторичной обмотки трансформатора. Это будет более логичным и правильным решением, чем перематывать вторичную обмотку трансформатора с целью увеличить выходное напряжение вторичной обмотки в 2 раза (ведь при этом придётся наматывать вторичную обмотку с вдвое большим числом витков). Так что, если не удалось найти подходящий трансформатор — смело применяем данную схему.

Развитием схемы стало создание умножителя на полупроводниковых диодах.

Умножитель напряжения.

Каждый диод и конденсатор образуют «звено» и эти звенья можно соединять последовательно до получения напряжения в несколько десятков киловольт. Конечно, для этого входное напряжение тоже должно быть достаточно большим.

На рисунке изображён четырёхзвенный умножитель и на выходе мы получаем напряжение в четыре раза превышающее входное (U). Эти выпрямители получили большое распространение там, где нужно получить высокое напряжение при достаточно малом токе. Например, по такой схеме были выполнены источники высокого напряжения в старых телевизорах и осциллографах для питания анода электронно-лучевой трубки.

Сейчас такие источники питания используются в научных лабораториях, в детекторах элементарных частиц, в медицинской аппаратуре (люстра Чижевского) и в оружии самообороны (электрошокер). При повторении подобных конструкций и подборе деталей, следует учитывать рабочее напряжение, как диодов, так и конденсаторов исходя из напряжения, которое вы хотите получить. Весь умножитель, как правило, заливается специальным компаундом или эпоксидной смолой во избежание высоковольтных пробоев между элементами схемы.

Для нормальной работы некоторых устройств как, например, люстры Чижевского необходимы достаточно высокие напряжения. Как считают специалисты, излучатель отрицательных аэроионов, эффективен только при напряжении не менее 60 киловольт.

Трёхфазные выпрямители.

Устройства, которые используются для получения постоянного тока из переменного трёхфазного тока, называются трёхфазными выпрямителями. Трёхфазные выпрямители в бытовой технике, конечно, не используются. Единственный прибор, который может использоваться в быту это сварочный аппарат. В качестве трёхфазных выпрямителей используются наработки двух известных электротехников Миткевича и Ларионова. Самая простая схема Миткевича называется «три четверти моста параллельно», что означает три силовых диода включенных параллельно через вторичные обмотки трёхфазного трансформатора. Схема.

Коэффициент пульсаций на нагрузке очень мал, что позволяет использовать конденсаторы фильтра небольшой ёмкости и малых габаритов.

Более сложной является схема Ларионова, которая называется «три полумоста параллельно», что это такое хорошо видно из рисунка.

В схеме используется уже шесть диодов и немного другая схема включения. Вообще схем трёхфазных выпрямителей достаточно много и наиболее совершенной, хотя редко употребляемой является схема «шесть мостов параллельно», а это уже 24 диода! Зато эта схема может выдавать высокое напряжение при большой мощности.

Трёхфазные мощные выпрямители используются в электровозах, городском электротранспорте (трамвай, троллейбус, метро), в промышленных установках для электролиза. Так же промышленные системы очистки газовых смесей, буровое и сварочное оборудование используют трёхфазные выпрямители.

Теперь вы знаете, какие бывают выпрямители переменного тока и сможете легко обнаружить их на принципиальной схеме или печатной плате любого прибора. А для тех, кто хочет знать больше, рекомендуем ознакомиться с книгой “Полупроводниковые выпрямители”.

Выпрямители. Как и почему.

Автор:
Опубликовано 01.01.1970

Итак, дорогие мои, мы собрали нашу схемку и пришло время ее проверить, испытать и нарадоваться сему щастью. На очереди у нас — подключение схемы к источнику питания. Приступим. На батарейках, аккумуляторах и прочих прибамбасах питания мы останавливаться не будем, перейдем сразу к сетевым источникам питания. Здесь рассмотрим существующие схемы выпрямления, как они работают и что умеют. Для опытов нам потребуется однофазное (дома из розетки) напряжение и соответствующие детальки. Трехфазные выпрямители используются в промышленности, мы их рассматривать также не будем. Вот электриками вырастете — тогда пжалста.

Источник питания состоит из нескольких самых важных деталей: Сетевой трансформатор — на схеме обозначается похожим как на рисунке,

Выпрямитель — его обозначение может быть различным. Выпрямитель состоит из одного, двух или четырех диодов, смотря какой выпрямитель. Сейчас будем разбираться.

а) — простой диод.
б) — диодный мост. Состоит из четырех диодов, включенных как на рисунке.
в) — тот же диодный мост, только для краткости нарисован попроще. Назначения контактов такие же, как у моста под буквой б).

Конденсатор фильтра. Эта штука неизменна и во времени, и в пространстве, обозначается так:

Обозначений у конденсатора много, столько же, сколько в мире систем обозначений. Но в общем они все похожи. Не запутаемся. И для понятности нарисуем нагрузку, обозначим ее как Rl — сопротивление нагрузки. Это и есть наша схема. Также будем обрисовывать контакты источника питания, к которым эту нагрузку мы будем подключать.

Далее — пара-тройка постулатов.
— Выходное напряжение определяется как Uпост = U*1.41. То есть если на обмотке мы имеем 10вольт переменного напряжения, то на конденсаторе и на нагрузке мы получим 14,1В. Примерно так.
— Под нагрузкой напряжение немного проседает, а насколько — зависит от конструкции трансформатора, его мощности и емкости конденсатора.
— Выпрямительные диоды должны быть на ток в 1,5-2 раза больше необходимого. Для запаса. Если диод предназначен для установки на радиатор (с гайкой или отверстие под болт), то на токе более 2-3А его нужно ставить на радиатор.

Так же напомню, что же такое двуполярное напряжение. Если кто-то подзабыл. Берем две батарейки и соединяем их последовательно. Среднюю точку, то есть точку соединения батареек, назовем общей точкой. В народе она известна так же как масса, земля, корпус, общий провод. Буржуи ее называют GND (ground — земля), часто ее обозначают как 0V (ноль вольт). К этому проводу подключаются вольтметры и осциллографы, относительно нее на схемы подаются входные сигналы и снимаются выходные. Потому и название ее — общий провод. Так вот, если подключим тестер черным проводом в эту точку и будем мерить напряжение на батарейках, то на одной батарейке тестер покажет плюс1,5вольта, а на другой — минус1,5вольта. Вот это напряжение +/-1,5В и называется двуполярным. Обе полярности, то есть и плюс, и минус, обязательно должны быть равными. То есть +/-12, +/-36В, +/-50 и т.д. Признак двуполярного напряжения — если от схемы к блоку питания идут три провода (плюс, общий, минус). Но не всегда так — если мы видим, что схема питается напряжением +12 и -5, то такое питание называется двухуровневым, но проводов к блоку питания будет все равно три. Ну и если на схему идут целых четыре напряжения, например +/-15 и +/-36, то это питание назовем просто — двуполярным двухуровневым.

Ну а теперь к делу.

1. Мостовая схема выпрямления.
Самая распространенная схема. Позволяет получить однополярное напряжение с одной обмотки трансформатора. Схема обладает минимальными пульсациями напряжения и несложная в конструкции.

2. Однополупериодная схема.
Так же, как и мостовая, готовит нам однополярное напряжение с одной обмотки трансформатора. Разница лишь в том, что у этой схемы удвоенные пульсации по сравнению с мостовой, но один диод вместо четырех сильно упрощает схему. Используется при небольших токах нагрузки, и только с трансформатором, много большим мощности нагрузки, т.к. такой выпрямитель вызывает одностороннее перемагничивание трансформатора.

3. Двухполупериодная со средней точкой.
Два диода и две обмотки (или одна обмотка со средней точкой) будут питать нас малопульсирующим напряжением, плюс ко всему мы получим меньшие потери в сравнении с мостовой схемой, потому что у нас 2 диода вместо четырех.

4. Мостовая схема двуполярного выпрямителя.
Для многих — наболевшая тема. У нас есть две обмотки (или одна со средней точкой), мы с них снимаем два одинаковых напряжения. Они будут равны, пульсации будут малыми, так как схема мостовая, напряжения на каждом конденсаторе считается как напряжение на каждой обмотке помножить на корень из двух — всё, как обычно. Провод от средней точки обмоток выравнивает напряжения на конденсаторах, если нагрузки по плюсу и по минусу будут разными.

5. Схема с удвоением напряжения.
Это две однополупериодные схемы, но с диодами, включенными по разному. Применяется, если нам надо получить удвоенное напряжение. Напряжение на каждом конденсаторе будет определяться по нашей формуле, а суммарное напряжение на них будет удвоенным. Как и у однополупериодной схемы, у этой так же большие пульсации. В ней можно усмотреть двуполярный выход — если среднюю точку конденсаторов назвать землей, то получается как в случае с батарейками, присмотритесь. Но много мощности с такой схемы не снять.

6. Получение разнополярного напряжения из двух выпрямителей.
Совсем не обязательно, чтобы это были одинаковые блоки питания — они могут быть как разными по напряжению, так и разными по мощности. Например, если наша схема по +12вольтам потребляет 1А, а по -5вольтам — 0,5А, то нам и нужны два блока питания — +12В 1А и -5В 0,5А. Так же можно соединить два одинаковых выпрямителя, чтобы получить двуполярное напряжение, например, для питания усилителя.

7. Параллельное соединение одинаковых выпрямителей.
Оно нам дает то же самое напряжение, только с удвоенным током. Если мы соединим два выпрямителя, то у нас будет двойное увеличение тока, три — тройное и т.д.

Ну а если вам, дорогие мои, всё понятно, то задам, пожалуй, домашнее задание. Формула для расчета емкости конденсатора фильтра для двухполупериодного выпрямителя:

Для однополупериодного выпрямителя формула несколько отличается:

Двойка в знаменателе — число “тактов” выпрямления. Для трехфазного выпрямителя в знаменателе будет стоять тройка.

Во всех формулах переменные обзываются так:
Cф — емкость конденсатора фильтра, мкФ
Ро — выходная мощность, Вт
U — выходное выпрямленное напряжение, В
f — частота переменного напряжения, Гц
dU — размах пульсаций, В

Для справки — допустимые пульсации:
Микрофонные усилители — 0,001. 0,01%
Цифровая техника — пульсации 0,1. 1%
Усилители мощности — пульсации нагруженного блока питания 1. 10% в зависимости от качества усилителя.

Эти две формулы справедливы для выпрямителей напряжения частотой до 30кГц. На бОльших частотах электролитические конденсаторы теряют свою эффективность, и выпрямитель рассчитывается немного не так. Но это уже другая тема.

В этой статье мы разберем какие бывают выпрямители, для какой цели служат, в чем заключаются особенности того или иного выпрямителя. Если мы решаем собрать какое-либо устройство или просто необходимо запитать готовое, то мы можем использовать питание от гальванических элементов (батареек), либо воспользоваться для этих целей аккумуляторами. Но как быть, если радиоустройство не планируется носить с собой и оно потребляет значительный ток? В таких случаях запитывают устройство от сети 220 вольт.

Фото трансформаторный блок питания

Напрямую запитать от 220 вольт, разумеется, мы не можем, напряжение слишком высокое и ток переменный, а для питания электронных устройств почти всегда необходим постоянный ток и более низкое напряжение. Необходим так называемый сетевой адаптер.

Понизить напряжение мы можем с помощью трансформатора, о нем мы поговорим в одной из следующих статей, пока нам достаточно знать, что с помощью трансформатора мы можем понизить или повысить напряжение при переменном токе. Далее нам необходимо сделать из переменного тока постоянный, для этих целей и служит выпрямитель. Существуют три основных типа выпрямителей.

Однополупериодный выпрямитель


Схема однополупериодный выпрямитель

Этот выпрямитель работает только в течение положительного полупериода синусоиды. Это можно видеть на следующем графике:

Выпрямленный ток после однополупериодного выпрямителя

На выходе после диода мы получаем пульсирующее напряжение, нам нужно сделать из него постоянное, то есть из пульсирующего тока получить постоянный. Для этих целей служит электролитический конденсатор большой емкости, подключенный параллельно выходу питания в соответствии с полярностью. На фотографии ниже можно увидеть внешний вид подобного конденсатора:

Электролитический конденсатор большой емкости

Такой конденсатор благодаря большой емкости разряжается в течении отрицательного полупериода синусоиды. Обычно для фильтрации напряжения в выпрямителях применяют электролитические конденсаторы от 2200 микрофарад. В усилителях и других устройствах, где важно чтобы напряжение не проседало при увеличении мощности нагрузки, ставят конденсаторы на большую емкость, чем 2200 микрофарад. Для устройств питающих бытовую аппаратуру обычно конденсаторов такой емкости бывает достаточно. На следующем графике (выделено красным), мы можем видеть, как конденсатор поддерживает напряжение стабильным во время прохождения отрицательной полуволны.

Выпрямленный ток в однополупериодном выпрямителе после конденсатора

Двухполупериодный выпрямитель со средней точкой


Схема двухполупериодный выпрямитель со средней точкой

Для этой схемы необходим трансформатор, с двумя вторичными обмотками. Напряжение на диодах в два раза выше, чем при включении схемы с однополупериодным выпрямителем или при включении мостовой схемы. В этой схеме попеременно работают оба полупериода. В течении положительного полупериода работает одна часть схемы обозначенная В1, во время отрицательного полупериода работает вторая часть схемы обозначенная В2. Эта схема является менее экономичной, чем мостовая схема, в частности у неё более низкий коэффициент использования трансформатора. В этой схеме после диодов получается также пульсирующее напряжение, но частота пульсаций в два раза выше. Что мы и можем видеть на следующем графике:

График двухполупериодного выпрямителя

Двухполупериодный выпрямитель, мостовая схема


Схема двухполупериодный выпрямитель мостовая схема

И наконец, рассмотрим схему мостового выпрямителя, самую распространенную схему, по которой сделана большая часть всех выпущенных трансформаторных блоков питания. Сейчас объясню принцип работы диодного моста:

Диодный мост рисунок

Ток у нас на выходе с трансформатора переменный, а переменный ток, как известно, в течение периода дважды меняет свое направление. Говоря другими словам, конечно же упрощенно, при переменном токе с частотой 50 герц, ток у нас 100 раз в секунду меняет свое направление. То есть сначала он течет от вывода диодного моста под цифрой один, ко второму, потом в течение другой полуволны он течет от вывода под номером два к первому.

Объяснение работы диодного моста

Рассмотрим, что происходит с диодным мостом при подаче напряжения, мы видим, на рисунке обозначен красным путь тока, напрямую пройти к выводу диодного моста соединенного с переменным током не позволит диод, который получается у нас включенный в обратном включении, а в обратном включении, как мы помним, диоды не пропускают ток. Току остается только один путь (выделено на рисунке синим), через нагрузку и через диод уйти в провод соединенный с выводом переменного тока. Когда у нас ток меняет свое направление, то вступает в действие вторая часть диодного моста, которая действует аналогично той, что описал выше. В итоге у нас получается на выходе такой же график напряжения, как и у двухполупериодного выпрямителя со средней точкой:

График мостого выпрямителя

При сборке выпрямителя нужно учитывать полярность на выходе диодного моста, если мы подключим электролитический конденсатор неправильно, то рискуем испортить конденсатор и можно считать, что повезло, если этим все ограничится. Поэтому при сборке диодного моста важно помнить одно правило, плюс на выходе с моста всегда будет в точке соединения 2 катодов диодов, а минус в точке соединения анодов. Встречается и такое обозначение на схемах диодного моста:

Еще одно изображение диодного моста

Диодный мост можно собрать как из отдельных диодов, так и взять специальную сборку из 4 диодов, уже соединенных по мостовой схеме, и имеющий 4 вывода. В таком случае остается только подать переменный ток, идущий обычно с вторичной обмотки трансформатора на два вывода моста, а с оставшихся двух выводов снимать плюс и минус. Обычно на самой детали бывает обозначено, где какой вывод у моста. Так выглядит импортный диодный мост:

Фото импортного диодного моста

На фото далее изображен отечественный диодный мост КЦ405.

Фото диодный мост кц405

Трехфазные выпрямители

Существуют и трехфазные трансформаторы. Обычным однофазным диодным мостом с такого трансформатора не получится на выходе постоянный ток. Конечно, если нагрузка небольшая можно подключиться к одной фазе и к нулевому проводу трансформатора, но экономичным такое решение не назовешь.

Фото трехфазного трансформатора

Для трехфазного тока существуют специальные схемы выпрямителей, две таких схемы приведены на рисунках ниже. Первая, известная как схема Миткевича, имеет низкий коэффициент габаритной мощности трансформатора. Эта схема применяется при небольших мощностях нагрузки.

Вторая схема, известная как Схема Ларионова, нашла широкое применение в электротехнике, так как имеет лучшие технико-экономические показатели по сравнению со схемой Миткевича.

Схема Ларионова может использоваться как “звезда-Ларионов” и “треугольник-Ларионов”. Вид подключения зависит от схемы подключения трансформатора, либо генератора, с выходом которого соединен этот выпрямитель. Автор статьи — AKV.

Элементарный выпрямитель на одном диоде

   Благодаря свойству диода однонаправленной проводимости, всего одной детали достаточно, чтобы собрать схему выпрямителя. Такая схема предельно проста, а характеристики её не ахти какие, но тем не менее, она вполне работоспособна и пригодна для некоторого применения, например, для подзарядки батареи свинцово-кислотных аккумуляторов и т.п.

   Речь пойдёт об однополупериодном однофазном выпрямителе на одном диоде. Сразу представим его схему – рисунок 1.

 

Рисунок 1. Однофазный однополупериодный выпрямитель.

Состав схемы.

   Ключевым элементом схемы является диод VD1. Схема проста до безобразия: диод просто включен последовательно с цепью нагрузки, роль которой выполняет лампа HL1. Трансформатор T1 здесь не имеет принципиального значения, он играет роль источника переменного напряжения.

Принцип работы.

   Через трансформатор T1 производится преобразование переменного напряжения питающей сети до необходимой величины, а так же осуществляется гальваническая развязка, что обычно необходимо для электробезопасности. Гальваническая развязка позволяет в большей степени исключить поражение электрическим током пользователя (оператора) устройства.

   К одному из выводов вторичной обмотки трансформатора подключается диод VD1. Свободные выводы диода и трансформатора можно использовать в качестве выходных контактов. Таким образом к ним подключена нагрузка в виде лампы HL1.

   При переменном напряжении вторичной обмотки, в положительный полупериод, рисунок 1 а), когда к диоду и нагрузке приложено напряжение U2, диод открывается и через него и лампу HL1 течёт ток нагрузки iн. На лампу действует напряжение одной полярности. В отрицательный полупериод, рисунок 1 б), к диоду и лампе приложено напряжение –U2, которое для диода является обратным, запирающим. Диод в этот полупериод запирается, через него может течь ток, не превышающий ток утечки диода iу. При этом нагрузка переживает безтоковую паузу, т.е. происходит отсечка отрицательного полупериода.

   И так, благодаря рассмотренной схеме, при питании от сети переменного тока, на нагрузке всегда возникает напряжение только одной полярности. В этом и заключается суть выпрямления.

Достоинства схемы.

   К достоинству данной схемы можно отнести только её безобразную простоту. В остальном она не всегда пригодна для широкого применения из-за своих значительных недостатков.

Недостатки схемы.

– Значительные пульсации на выходе устройства. При подключении лампы накаливания, даже учитывая значительную инерционность её нагрева, её свечение заметно мерцает.

– Низкая эффективность. Вследствие отсечки отрицательного полупериода, КПД этой схемы не может быть больше 50%.

– При значительных нагрузках с использованием в схеме трансформатора Т1, трансформатор подвергается несимметричному размагничиванию, может появиться неприятный звук.

Применение схемы.

   Несмотря на все свои недостатки, эта схема нашла своё применение в качестве десульфатирующего зарядного устройства для свинцово-кислотных аккумуляторных батарей.  

Принцип работы выпрямителя

Маломощные выпрямители

Одними из самых  распространенных преобразователей тока являются выпрямители переменного тока в пульсирующий ток. Они имеют очень широкое применение. Условно их можно разделить на маломощные выпрямители (до нескольких сотен ватт)  и выпрямители большой мощности (киловатты и больше).

Принцип работы выпрямителя

Структурная схема выпрямителя:

Главною его частью является выпрямляющее устройство В, образованное из диодов, объединенных особым образом. Именно здесь и происходит преобразование переменного тока в пульсирующий постоянный. Переменное напряжение подается на выпрямляющее устройство через трансформатор Тр. В некоторых случаях трансформатора может и не быть (если напряжение силовой сети отвечает той, которая необходима для работы выпрямителя).

Трансформатор(если он есть) в большинстве также имеет особенности в соединении его обмоток. Пульсирующий ток , как правило не является постоянным по величине в каждое мгновение времени, и когда необходимо иметь более сглаженное его значение, чем полученный после выпрямляющего устройства, применяют фильтры Ф. В случае необходимости выпрямитель дополняют стабилизатором напряжения  или тока Ст, который поддерживает их на постоянном уровне, если параметры силовой сети изменяется по разным причинам. Структурную схему завершает нагрузка Н, которая значительно влияет на работу всего устройства и поэтому считается составляющей частью всего преобразователя.

Собственно выпрямителем является та его часть, которая обведена на рисунке пунктиром и состоит из трансформатора и выпрямительного устройства.

Нулевая схема выпрямления

Рассмотреть принцип действия самого простого выпрямителя однофазного тока целесообразно на нулевой схеме. 

Нулевая схема выглядит так:

Трансформатор Тр  имеет на вторичной стороне две обмотки, соединенные последовательно таким образом, что относительно средней точки а  напряжения  на свободных концах обмоток в и с одинаковые по величине, но противоположные по фазе. Выпрямительное устройство образовано двумя диодами D1 и D2, которые соединены вместе своими катодами, тогда как каждый анод соединен с соответствующей обмоткой. Нагрузка Zн присоединена между катодами диодов и точкой трансформатора.

Как возникает пульсирующее напряжение на нагрузке? Сначала будем считать нагрузку чисто активным сопротивлением, Zн=Rн.  Когда напряжение в обмотках будет изменяться по синусоидальному закону, то в тот полупериод, когда к аноду диода приложен положительный потенциал, будет проходить прямой ток.

Поскольку напряжение на диоде составляет доли вольта, пренебрежем им. Тогда вся положительная полуволна переменного напряжения будет приложена просто к нагрузке Rн.  Когда напряжение приложенное минусом к аноду, тока не будет (малым обратным током диода также пренебрежем). Таким образом, до нагрузки будем доходить лишь положительная полуволна переменного напряжения в течении половины периода. Вторая половина периода будет свободна от тока.

Вторичные обмотки соединены противофазно, нагрузка общая для обеих обмоток, таким образом, в то время, когда в одной из них (например в верхней) ток будет проходить, другая будет от него свободна и наоборот.

Поэтому в нагрузке каждый полупериод будет заполнен полуволной переменного напряжения:

И выпрямленное напряжение Ud будет иметь вид одинаковых полуволн, которые повторяются с периодом, вдвое меньшим, чем период переменного напряжения в сети питания (2π радиан). Для обобщения, что будет удобно, далее будем считать, что период изменения выпрямленного напряжения меньше 2π в m раз и равняется 2π/m (в нашем случае m-2). Если нагрузка активное сопротивление Rн, то и ток в нем id , будет повторять кривую напряжения.

Рассмотренная схема будет иметь тот недостаток, что во вторичных обмотках по сравнению с первичной имеют место значительные пульсации тока, потому что эти обмотки работают по очереди. Поскольку они намотаны на один сердечник, магнитный поток в последнем будет переменным, поэтому и в первичной обмотке ток будет переменным, имея как положительную, так и отрицательную полуволны.

Как известно из курса электротехники, действующие и средние значения тока или напряжения одинаковые только для постоянного тока. Чем больше пульсации, тем больше будет действующее значение относительно среднего. Поэтому мощности обеих сторон трансформатора не будут одинаковыми. Однако трансформатор один, и объем железа для его сердечника следует выбирать, исходя из какого-то одного значения мощности.

Поэтому условно ввели понятие типовой мощности трансформатора, которая равняется среднему мощностей обеих сторон:

Выпрямительный мост или схема Гретца

Указанный недостаток можно исправить, используя выпрямляющее устройство в виде так называемого моста (схема Гретца):

В этом случае первые полупериоды будут работать, например, диоды D2  и D4, а вторые полупериода — D1 и D3. На нагрузке каждый раз будет полная полуволна вторичного напряжения:

 Мостовая схема имеет менее сложный, более легкий и дешевый трансформатор. 

Эта схема появилась исторически раньше нулевой, однако распространения не получила, потому что имела четыре диода вместо двух. А при работе каждые полупериода ток проходит через два последовательно соединенных диода, на которые падает двойное напряжение.

Оказалось, что более сложный трансформатор нулевой схемы, но с одним диодом в кругу выпрямления тока экономично выгоднее, чем мостовая схема с удвоенным числом диодов и двойным расходом энергии на них. И только появление относительно дешевых полупроводниковых диодов с очень маленьким падением прямого напряжения позволило повернуться к мостовым схемам, которая сейчас практически вытеснила нулевую.

Основные соотношения для выпрямителя

Выведем некоторые важные формулы, которые описывают процессы, существующие в этой схеме. Будем считать, что заданными величинами являются средние значения напряжения на нагрузку Ud и среднее значение тока в нем Id.

Среднее значение выпрямленного напряжения

Запомним это выражение на дальнейшее. В нашем случае m=2 и 

 . Поскольку Ud считаем заданным, то

Амплитудное значение вторичного напряжения

Из предыдущего выражения имеем:

Коэффициент трансформации трансформатора

Этот коэффициент определяет отношения питающей сети к напряжению на обмотке вторичной стороны:

Действующее значение тока вторичной обмотки

Ток вторичной обмотки в то же время есть током в нагрузке. Поскольку нагрузка чисто активная и ток в ней повторяет по форме пульсирующее напряжение, то между его средним значением и его действующим значением существует такая же зависимость, что и для напряжений, то есть

Действующее значение тока первичной обмотки

Ток в первичной обмотке повторяет с учетом n ток вторичной обмотки :

Мощность трансформатора

Мощности первичной и вторичной сторон трансформатора в этой схеме одинаковые, поэтому:

Пульсация выпрямленного напряжения

Пульсирующее напряжение состоит из среднего значения Ud   и бесконечного количества гармоничных составляющих, амплитуды которых можно определить по формулам Фурье. Если начало координат выбрать так как на рисунке, то в гармоничном составе будут присутствовать только косинусные гармоники (т.к. кривая симметрична относительна оси координат). Амплитуда k-ой гармоники определяется по формуле:

Где: l – полупериод π/m;  

Наибольшую амплитуду будет иметь первая гармоника U(1)m, поэтому определим только ее, предположив, что k=1:

Заменив  

 получим:

Отношение первой гармоники к среднему значению называют коэффициентом пульсаций:

Запомним эту формулу на будущее, а сейчас отметим, что в нашем случае при m – 2, q – 2/3. Это большие пульсации – амплитуда первой гармоники составляет 67% от среднего значения выпрямленного напряжения.

 Средний ток диодов

Как мы уже видели диоды работают по очереди – каждый из них проводит в среднем половину общего тока , который есть в нагрузке. Поэтому каждый из диодов должен быть рассчитан на ток  Iв = Id/2

Наибольшее обратное напряжение на диоде

В то время когда диод B1 проводит его можно считать замкнутым, и тогда к диоду B2 будет приложено в обратном направлении напряжение вторичной обмотки. Поэтому каждый из диодов должен быть рассчитан на ее амплитудное значение:

Что такое однофазный выпрямитель, принцип работы, типы и схемы

Выпрямитель преобразует колеблющийся синусоидальный источник переменного напряжения в источник постоянного напряжения постоянного тока с помощью диодов, тиристоров, транзисторов или преобразователей. Этот процесс выпрямления может принимать различные формы с полуволновыми, двухполупериодными, неконтролируемыми и полностью управляемыми выпрямителями, преобразующими однофазный или трехфазный источник питания в постоянный уровень постоянного тока. 

Описание

Выпрямители являются одним из основных строительных блоков преобразования мощности переменного тока с полуволновым или двухволновым выпрямлением, обычно выполняемым полупроводниковыми диодами. Диоды позволяют переменным токам течь через них в прямом направлении, в то же время блокируя протекание тока в обратном направлении, создавая постоянный уровень напряжения постоянного тока, что делает их идеальными для выпрямления.

Однако постоянный ток, который выпрямляется диодами, не такой чистый, как ток, получаемый, скажем, от источника батареи, но имеет изменения напряжения в виде пульсаций, наложенных на него в результате переменного питания.

Но для однофазного выпрямления нам нужна синусоидальная форма переменного тока с фиксированным напряжением и частотой, как показано на рисунке.

Сигналы переменного тока обычно имеют два числа, связанных с ними. Первое число выражает степень вращения осциллограммы вдоль оси x, на которую генератор вращался от 0 до 360 o .

 Это значение известно как период (T), который определяется как интервал, взятый для завершения одного полного цикла сигнала. Периоды измеряются в градусах, времени или радианах. Соотношение между периодами синусоидальных волн и частотой определяется как: T = 1 / ƒ .

Второе число указывает амплитуду значения, тока или напряжения, вдоль оси y. Это число дает мгновенное значение от нуля до некоторого пикового или максимального значения (A MAX , V MAX или I MAX  ), указывающее наибольшую амплитуду синусоидальных волн, прежде чем снова вернуться к нулю. Для синусоидальной формы волны есть два максимальных или пиковых значения, одно для положительных и одно для отрицательных полупериодов.

Но помимо этих двух ценностей есть еще две, которые представляют интерес для нас в целях исправления. Один — это Среднее значение сигналов, а другой — его среднеквадратичное значение. Среднее значение формы сигнала получается путем добавления мгновенных значений напряжения (или тока) в течение одного полупериода и обнаруживаются как: 0,6365 * V P . Обратите внимание, что среднее значение за один полный цикл симметричной синусоидальной волны равно нулю.

Среднеквадратическое значение или эффективное значение синусоиды (синусоида — это другое название синусоидальной волны) обеспечивает такое же количество энергии для сопротивления, что и источник постоянного тока того же значения. Среднеквадратическое значение (RMS) синусоидального напряжения (или тока) определяется следующим образом: 0,7071 * V P.

Принцип работы

Все однофазные выпрямители используют полупроводниковые устройства в качестве основного устройства преобразования переменного тока в постоянный. Однофазные неконтролируемые полуволновые выпрямители являются наиболее простой и, возможно, наиболее широко используемой схемой выпрямления для малых уровней мощности, поскольку на их выход сильно влияет реактивное сопротивление подключенной нагрузки.

Для неконтролируемых выпрямительных цепей полупроводниковые диоды являются наиболее часто используемым устройством и расположены таким образом, чтобы создавать либо полуволновую, либо двухполупериодную схему выпрямителя. Преимущество использования диодов в качестве устройства выпрямления состоит в том, что по своей конструкции они являются однонаправленными устройствами, имеющими встроенный однонаправленный pn-переход.

Этот pn-переход преобразует двунаправленный переменный источник питания в однонаправленный ток, устраняя половину источника питания. В зависимости от подключения диода, он может, например, пропустить положительную половину сигнала переменного тока при прямом смещении, исключая при этом отрицательный полупериод, когда диод становится обратным смещением.

Обратное также верно, устраняя положительную половину или форму волны и передавая отрицательную половину. В любом случае, выход из одного диодного выпрямителя состоит только из одной половины формы сигнала 360 o, как показано на рисунке.

Полуволновое выпрямление

Приведенная выше конфигурация однофазного полуволнового выпрямителя пропускает положительную половину формы сигнала переменного тока, причем отрицательная половина исключается. Меняя направление диода, мы можем пропустить отрицательные половины и устранить положительные половины формы сигнала переменного тока. Поэтому на выходе будет серия положительных или отрицательных импульсов.

Таким образом, на подключенную нагрузку не подается напряжение или ток, R L в течение половины каждого цикла. Другими словами, напряжение на сопротивлении нагрузки R L состоит только из половины сигналов, либо положительных, либо отрицательных, поскольку оно работает только в течение половины входного цикла, отсюда и название полуволнового выпрямителя.

Надеемся, что мы видим, что диод позволяет току течь в одном направлении, создавая только выход, который состоит из полупериодов. Эта пульсирующая форма выходного сигнала не только изменяется ВКЛ и ВЫКЛ каждый цикл, но присутствует только в 50% случаев, и при чисто резистивной нагрузке это содержание пульсации высокого напряжения и тока является максимальным.

Этот пульсирующий постоянный ток означает, что эквивалентное значение постоянного тока падает на нагрузочном резисторе, поэтому R L составляет только половину среднего значения синусоидальных сигналов. Поскольку максимальное значение синусоидальной формы сигнала равно 1 (sin (90 o )), среднее значение постоянного тока, полученное для половины синусоиды, определяется как: 0,637 x максимальное значение амплитуды.

Таким образом, во время положительного полупериода A AVE составляет 0,637 * A MAX . Однако, поскольку отрицательные полупериоды удалены из-за выпрямления диодом, среднее значение в течение этого периода будет нулевым.

Среднее значение синусоиды

Таким образом, для полуволнового выпрямителя в 50% случаев среднее значение составляет 0,637 * A MAX, а в 50% случаев — ноль. Если максимальная амплитуда равна 1, среднее значение или эквивалент значения постоянного тока, видимый по сопротивлению нагрузки, R L будет:

Таким образом, соответствующие выражения для среднего значения напряжения или тока для полуволнового выпрямителя задаются как:

AVE  = 0,318 * V MAX

I AVE  = 0,318 * I MAX

Обратите внимание, что максимальное значение A MAX — это значение входного сигнала, но мы также могли бы использовать его среднеквадратичное значение или среднеквадратичное значение, чтобы найти эквивалентное выходное значение постоянного тока однофазного полуволнового выпрямителя. Чтобы определить среднее напряжение для полуволнового выпрямителя, мы умножаем среднеквадратичное значение на 0,9 (форм-фактор) и делим произведение на 2, то есть умножаем его на 0,45, получая:

AVE  = 0,45 * V RMS

I AVE  = 0,45 * I RMS

Затем мы можем видеть, что схема полуволнового выпрямителя преобразует либо положительные, либо отрицательные половины формы сигнала переменного тока в импульсный выход постоянного тока, который имеет значение 0,318 * A MAX или 0,45 * A RMS, как показано.

Полноволновое выпрямление

Двухполупериодный выпрямитель использует обе половины входной синусоидальной формы волны для обеспечения однонаправленного выход, т.к. он состоит из двух полуволновых выпрямителей, соединенных вместе для питания нагрузки.

Однофазный двухполупериодный выпрямитель делает это с помощью четырех диодов, расположенных в виде моста, пропускающих положительную половину формы волны, как и раньше, но инвертирующих отрицательную половину синусоидальной волны для создания пульсирующего выхода постоянного тока. 

Несмотря на то, что напряжение и ток на выходе выпрямителя пульсируют, оно не меняет направление, используя полные 100% формы входного сигнала и, таким образом, обеспечивает двухполупериодное выпрямление.

Однофазный двухполупериодный мостовой выпрямитель

Эта мостовая конфигурация диодов обеспечивает двухполупериодное выпрямление, потому что в любое время два из четырех диодов смещены в прямом направлении, а два других — в обратном. Таким образом, в проводящем тракте два диода вместо одного для полуволнового выпрямителя. Следовательно, будет разница в амплитуде напряжения между V IN и V OUT из-за двух прямых падений напряжения на последовательно соединенных диодах. Здесь, как и прежде, для простоты математики мы примем идеальные диоды.

Так как же работает однофазный двухполупериодный выпрямитель? Во время положительного полупериода V IN диоды D 1 и D 4 смещены в прямом направлении, а диоды D 2 и D 3 — в обратном. Затем для положительного полупериода входного сигнала ток течет по пути: D 1 — A — R L — B — D 4 и возвращается к источнику питания.

Во время отрицательного полупериода V IN диоды D 3 и D 2 смещены в прямом направлении, а диоды D 4 и D 1 — в обратном. Затем для отрицательного полупериода входного сигнала ток течет по пути: D 3 — A — R L — B — D 2 и возвращается к источнику питания.

В обоих случаях положительные и отрицательные полупериоды входного сигнала создают положительные выходные пики независимо от полярности входного сигнала и, как таковой, ток нагрузки I всегда течет в том же направлении через нагрузку, R L между точками или узлами A и B. Таким образом, отрицательный полупериод источника становится положительным полупериодом при нагрузке.

Таким образом, в зависимости от того множества проводящих диодов, узел А всегда более положительный, чем узел B. Поэтому ток и напряжение нагрузки являются однонаправленными или постоянными, что дает нам следующую форму выходного сигнала.

Форма волны на выходе выпрямителя

Хотя этот пульсирующий выходной сигнал использует 100% входного сигнала, его среднее напряжение постоянного тока не совпадает с этим значением.

Однако двухполупериодные выпрямители имеют два положительных полупериода на входной сигнал, что дает нам другое среднее значение.

Среднее значение двухполупериодного выпрямителя

Для двухполупериодного выпрямителя для каждого положительного пика имеется среднее значение 0,637 * A MAX, и, поскольку на входной сигнал имеется два пика, это означает, что есть две серии средних значений, суммируемых вместе. Таким образом, выходное напряжение постоянного тока двухполупериодного выпрямителя в два раза выше, чем у предыдущего полуволнового выпрямителя. Если максимальная амплитуда равна 1, среднее значение или эквивалент значения постоянного тока, видимый по сопротивлению нагрузки, R L будет:

Таким образом, соответствующие выражения для среднего значения напряжения или тока для двухполупериодного выпрямителя задаются как:

AVE  = 0,637 * V MAX

I AVE  = 0,637 * I MAX

Чтобы определить среднее напряжение для двухполупериодного выпрямителя, мы умножаем среднеквадратичное значение на 0,9:

AVE  = 0,9 * V RMS

I AVE  = 0,9 * I RMS

Двухполупериодная схема выпрямителя преобразует ОБЕ положительную или отрицательную половинки сигнала переменного тока в импульсный выход постоянного тока, который имеет значение 0,637 * A MAX или 0,9 * A RMS.

Полноволновой полууправляемый мостовой выпрямитель

Двухполупериодное выпрямление имеет много преимуществ по сравнению с более простым полуволновым выпрямителем, например, выходное напряжение более согласовано, имеет более высокое среднее выходное напряжение, входная частота удваивается в процессе выпрямления и требует меньшего значения емкости сглаживающего конденсатора, если таковой требуется. Но мы можем улучшить конструкцию мостового выпрямителя, используя тиристоры вместо диодов в его конструкции.

Заменив диоды внутри однофазного мостового выпрямителя тиристорами, мы можем создать фазо-управляемый выпрямитель переменного тока в постоянный для преобразования постоянного напряжения питания переменного тока в контролируемое выходное напряжение постоянного тока. Фазоуправляемые выпрямители, полууправляемые или полностью управляемые, имеют множество применений в источниках питания переменного тока и в управлении двигателями.

Однофазный мостовой выпрямитель — это то, что называется «неуправляемым выпрямителем» в том смысле, что приложенное входное напряжение передается непосредственно на выходные клеммы, обеспечивая фиксированное среднее значение эквивалентного значения постоянного тока. Чтобы преобразовать неуправляемый мостовой выпрямитель в однофазную полууправляемую выпрямительную цепь, нам просто нужно заменить два диода тиристорами (SCR), как показано на рисунке.

В конфигурации с полууправляемым выпрямителем среднее напряжение нагрузки постоянного тока контролируется с использованием двух тиристоров и двух диодов. Как мы узнали из нашего урока о тиристорах, тиристор будет проводить (состояние «ВКЛ») только тогда, когда его анод (A) более положительный, чем его катод (K) и импульс запуска подается на его затвор (G). В противном случае он остается неактивным.

Таким образом, задерживая импульс запуска, подаваемый на клемму затвора тиристоров, на контролируемый период времени или угол ( α ) после того, как напряжение питания переменного тока прошло пересечение нулевого напряжения между анодным и катодным напряжением, мы можем контролировать, когда тиристор начинает проводить ток и, следовательно, контролировать среднее выходное напряжение.

Во время положительного полупериода входного сигнала ток течет по пути: SCR 1 и D 2 и обратно к источнику питания. Во время отрицательного полупериода V INпроводимость проходит через SCR 2 и D 1 и возвращается к источнику питания.

Понятно, что один тиристор из верхней группы ( SCR 1 или SCR 2 ) и соответствующий ему диод из нижней группы ( D 2 или D 1 ) должны проводить вместе, чтобы протекать ток любой нагрузки.

Таким образом, среднее выходное напряжение V AVE зависит от угла включения α для двух тиристоров, включенных в полууправляемый выпрямитель, поскольку два диода неуправляются и пропускают ток всякий раз, когда смещено вперед. Таким образом, для любого угла срабатывания затвора α среднее выходное напряжение определяется как:

Обратите внимание, что максимальное среднее выходное напряжение возникает, когда α = 1, но все еще равно 0,637 * V MAX, как для однофазного неуправляемого мостового выпрямителя.

Мы можем использовать эту идею для контроля среднего выходного напряжения моста на один шаг вперед, заменив все четыре диода тиристорами, что дает нам полностью управляемую схему мостового выпрямителя .

Полностью управляемый мостовой выпрямитель

Однофазные мостовые выпрямители с полным управлением известны чаще как преобразователи переменного тока в постоянный. Полностью управляемые мостовые преобразователи широко используются в управлении скоростью машин постоянного тока и легко достигаются путем замены всех четырех диодов мостового выпрямителя тиристорами, как показано на рисунке.

В конфигурации с полностью управляемым выпрямителем среднее напряжение нагрузки постоянного тока контролируется с использованием двух тиристоров на полупериод. Тиристоры SCR 1 и SCR 4 запускаются вместе как пара во время положительного полупериода, в то время как тиристоры SCR 3 и SCR 4 также запускаются вместе как пара во время отрицательного полупериода. Это 180 oпосле SCR 1 и SCR 4 .

Затем в режиме работы с непрерывной проводимостью четыре тиристора постоянно переключаются в виде чередующихся пар для поддержания среднего или эквивалентного выходного напряжения постоянного тока. Как и в случае полууправляемого выпрямителя, выходное напряжение можно полностью контролировать, изменяя угол задержки включения тиристоров ( α ).

Таким образом, выражение для среднего напряжения постоянного тока однофазного полностью управляемого выпрямителя в режиме непрерывной проводимости дается как:

со средним выходным напряжением, изменяющимся от V MAX / π до -V MAX / π путем изменения угла зажигания, α от π до 0 соответственно. Поэтому, когда α <90 o,среднее напряжение постоянного тока является положительным, а когда α> 90 oсреднее напряжение постоянного тока является отрицательным. То есть мощность течет от нагрузки постоянного тока к источнику переменного тока.

Резюме однофазного выпрямления

Однофазные выпрямители могут принимать различные формы для преобразования переменного напряжения в постоянное напряжение из неконтролируемых однофазных выпрямителей на полуволнах в полностью управляемые двухполупериодные мостовые выпрямители с использованием четырех тиристоров.

Преимуществами полуволнового выпрямителя являются его простота и низкая стоимость, так как для него требуется только один диод. Однако это не очень эффективно, так как используется только половина входного сигнала, дающего низкое среднее выходное напряжение.

Двухполупериодный выпрямитель более эффективен, чем полуволновой выпрямитель, поскольку он использует оба полупериода входной синусоидальной волны, создавая более высокое среднее или эквивалентное выходное напряжение постоянного тока. Недостатком двухполупериодной мостовой схемы является то, что она требует четырех диодов.

Фазоуправляемое выпрямление использует комбинации диодов и тиристоров (SCR) для преобразования входного напряжения переменного тока в контролируемое выходное напряжение постоянного тока. Полностью контролируемые выпрямители используют четыре тиристора в своей конфигурации, тогда как наполовину управляемые выпрямители используют комбинацию как тиристоров, так и диодов.

Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 2 чел.
Средний рейтинг: 5 из 5.

Диодный выпрямитель с индуктивной нагрузкой

Принцип работы

Однофазный диодный выпрямитель преобразует напряжение переменного тока на входе в напряжение постоянного тока на выходе. Поток мощности в цепи является однонаправленным, то есть только от входа переменного тока к выходу постоянного тока. Это полный мостовой выпрямитель, поскольку в нем две пары диодов. Работа схемы зависит от состояния источника напряжения (L s , R s и L d для простоты не учитываются):

  • Положительный полупериод: Диоды D 1 и D 2 проводят, а диоды D 3 и D 4 блокируются.Положительное напряжение сети индуцирует положительное напряжение на сопротивлении нагрузки.
  • Отрицательный полупериод: Теперь диоды D 3 и D 4 проводят, а диоды D 1 и D 2 блокируются. Поскольку через диоды D 3 и D 4 протекает положительный ток, напряжение на резисторе снова становится положительным.

Комбинация четырех диодов обеспечивает двухполупериодное выпрямление входного переменного напряжения со средним постоянным напряжением:


Влияние индукторов

Во время положительного полупериода сетевого напряжения пара диодов D 1 / D 2 проводит.Когда напряжение постоянного тока пересекает ноль, обе пары диодов D 1 / D 2 и D 3 / D 4 проводят ток, поскольку индукторы L s и L d пытаются поддерживать ток. Время, в течение которого обе пары диодов проводят в проводе, называется интервалом коммутации тока . Все четыре диода имеют нулевое прямое напряжение, поэтому во время коммутации тока между двумя парами диодов постоянное напряжение остается нулевым.

Последовательная комбинация L d и R d действует как фильтр нижних частот первого порядка, который уменьшает пульсации напряжения на выходе.

Эксперименты

  • Измените индуктивность источника со 100 мкГн на 500 мкГн и наблюдайте за увеличением интервала коммутации тока.
  • Измените индуктивность нагрузки с 20 мГн на 100 мГн и наблюдайте за уменьшением пульсаций выходного напряжения.

Что такое выпрямитель? Типы выпрямителей, работа и применение

Различные типы выпрямителей – работа и применение

В электронике схема выпрямителя является наиболее часто используемой схемой, потому что почти каждое электронное устройство работает от постоянного тока (постоянного тока) , но доступность из источников постоянного тока ограничены, например, электрические розетки в наших домах обеспечивают переменного тока (переменного тока) .Выпрямитель – идеальный кандидат для этой работы в промышленности и дома для преобразования переменного тока в постоянный ток . Даже в наших зарядных устройствах для сотовых телефонов используются выпрямители для преобразования AC из наших домашних розеток в DC . Различные типы выпрямителей используются для определенных приложений.

В основном у нас есть два типа напряжения, которые широко используются в наши дни. Они бывают переменного и постоянного напряжения. Эти типы напряжения могут быть преобразованы из одного типа в другой с помощью специальных схем, разработанных для этого конкретного преобразования.Эти преобразования происходят повсюду.

Наши основные источники питания, которые мы получаем от электрических сетей, имеют переменный характер, и бытовые приборы, которые мы используем в наших домах, обычно требуют небольшого постоянного напряжения. Этот процесс преобразования переменного тока в постоянный получил название выпрямления. Преобразованию переменного тока в постоянный предшествует дальнейший процесс, который может включать в себя фильтрацию, преобразование постоянного тока в постоянный и так далее. Одна из самых распространенных частей электронного блока питания – мостовой выпрямитель.

Для многих электронных схем требуется выпрямленный источник питания постоянного тока для питания различных основных электронных компонентов от доступной сети переменного тока.Простой мостовой выпрямитель используется во множестве электронных силовых устройств переменного тока.

Другой способ взглянуть на схему выпрямителя состоит в том, что можно сказать, что она преобразует токи, а не напряжения. Это имеет более интуитивный смысл, потому что мы более привыкли использовать ток для определения природы компонента. Вкратце, выпрямитель принимает ток, который имеет как отрицательную, так и положительную составляющие, и выпрямляет его так, чтобы осталась только положительная составляющая тока.

Мостовые выпрямители широко используются в источниках питания, которые обеспечивают необходимое постоянное напряжение для электронного компонента или устройств.Наиболее эффективными коммутационными аппаратами, характеристики которых известны полностью, являются диоды. Теоретически вместо диодов можно использовать любой твердотельный переключатель, которым можно управлять или которым нельзя управлять.

Обычно выпрямители типа классифицируются в зависимости от их мощности. В этой статье мы обсудим многие типы выпрямителей, такие как:

  • Однофазные выпрямители
  • Трехфазные выпрямители
  • Управляемые выпрямители
  • Неуправляемые выпрямители
  • Полуволновые выпрямители
  • Полноволновые выпрямители
  • Мостовые выпрямители
  • Center -Tapped Rectifiers

Что такое выпрямитель?

Выпрямитель – это электрическое устройство, состоящее из одного или более чем одного диода, которое преобразует переменный ток ( AC ) в постоянный ток ( DC ).Он используется для выпрямления, где процесс ниже показывает, как он преобразует переменный ток в постоянный.

Что такое выпрямление?

Выпрямление – это процесс преобразования переменного тока (который периодически меняет направление) в постоянный ток (поток в одном направлении).

Типы выпрямителей

В основном есть два типа выпрямителей:

  1. Неуправляемый выпрямитель
  2. Управляемый выпрямитель

Мостовые выпрямители бывают многих типов, и оснований для классификации может быть много, чтобы назвать несколько, тип питания, конфигурации мостовой схемы, возможности управления и т. д.Мостовые выпрямители можно в целом разделить на одно- и трехфазные выпрямители в зависимости от типа входа, на котором они работают. Оба этих типа включают следующие дополнительные классификации, которые можно разделить как на однофазные, так и на трехфазные выпрямители.

Дальнейшая классификация основана на коммутационных устройствах, которые использует выпрямитель, и их типы: неуправляемые, полууправляемые и полностью управляемые выпрямители. Некоторые типы выпрямителей обсуждаются ниже.

В зависимости от типа выпрямительной схемы выпрямители подразделяются на две категории.

  • Полупериодный выпрямитель
  • Двухполупериодный выпрямитель

Полупериодный выпрямитель преобразует только половину волны переменного тока в сигнал постоянного тока, тогда как двухполупериодный выпрямитель преобразует полный сигнал переменного тока в постоянный.

Мостовой выпрямитель – это наиболее часто используемый выпрямитель в электронике, и в этом отчете будет рассказано о его работе и изготовлении. Схема простого мостового выпрямителя – самый популярный метод двухполупериодного выпрямления.

Мы подробно обсудим как управляемые, так и неуправляемые (полуволновые и полнополупериодные мостовые) выпрямители со схемами и принципами работы, как показано ниже.

Неуправляемый выпрямитель:

Тип выпрямителя, выходное напряжение которого не может контролироваться , называется неуправляемым выпрямителем .

Выпрямитель работает с переключателями. Переключатели могут быть различных типов, в широком смысле, управляемые переключатели и неуправляемые переключатели. Диод – это однонаправленное устройство, которое позволяет току течь только в одном направлении. Работа диода не контролируется, поскольку он будет работать до тех пор, пока он смещен в прямом направлении.

При конфигурации диодов в любом конкретном выпрямителе выпрямитель не полностью находится под контролем оператора, поэтому выпрямители такого типа называются неуправляемыми выпрямителями. Это не позволяет изменять мощность в зависимости от требований к нагрузке. Таким образом, этот тип выпрямителя обычно используется в постоянных или фиксированных источниках питания.

Неуправляемый выпрямитель использует только диоды, и они дают фиксированное выходное напряжение, зависящее только от входа AC .

Типы неуправляемых выпрямителей:

Неконтролируемые выпрямители далее делятся на два типа:

  1. Полуволновый выпрямитель
  2. Полноволновый выпрямитель
Полуволновый выпрямитель:

Тип выпрямителя, который преобразует только полупериод переменного тока (AC) в постоянный (DC) известен как полуволновой выпрямитель.

  • Выпрямитель положительной полуволны:

Выпрямитель полуволны, который преобразует только положительный полупериод и блокирует отрицательный полупериод.

  • Выпрямитель отрицательной полуволны:

Выпрямитель отрицательной полуволны преобразует только отрицательный полупериод переменного тока в постоянный.

Во всех типах выпрямителей однополупериодный выпрямитель – это самый простой из них , поскольку он состоит только из одного диода .

Диод пропускает ток только в одном направлении, известном как вперед смещение . Нагрузочный резистор RL включен последовательно с диодом.

Положительный полупериод:

Во время положительного полупериода вывод диода , анод станет положительным, а катод станет отрицательным, известным как , прямое смещение . И это позволит протекать положительному циклу.

Отрицательный полуцикл:

Во время отрицательного полупериода анод станет отрицательным, а катод станет положительным, что известно как обратное смещение .Таким образом, диод заблокирует отрицательный цикл.

Таким образом, когда источник переменного тока подключен к однополупериодному выпрямителю, через него будет протекать только полупериод , как показано на рисунке ниже.

Выход этого выпрямителя снимается через резистор нагрузки RL . Если мы посмотрим на график «вход-выход» , он показывает пульсирующий положительный полупериод входа .

На выходе полуволнового выпрямителя слишком много пульсаций , и использовать этот выход в качестве источника постоянного тока не очень практично.Чтобы сгладил этот пульсирующий выходной сигнал, через резистор вводится конденсатор . Конденсатор будет заряжаться во время положительного цикла и разряжаться во время отрицательного цикла, чтобы выдать плавный выходной сигнал.

Выпрямители такого типа тратят впустую мощность входного полупериода переменного тока.

Полнопериодный выпрямитель:

Двухполупериодный выпрямитель преобразует как положительные, так и отрицательные полупериодов переменного (переменного тока) в постоянный (постоянный ток).Он обеспечивает двойное выходное напряжение по сравнению с полуволновым выпрямителем

Двухполупериодный выпрямитель состоит из более чем одного диода.

Существует два типа двухполупериодных выпрямителей.

  1. Мостовой выпрямитель
  2. Выпрямитель с центральным отводом
Мостовой выпрямитель

Мостовой выпрямитель использует четыре диода для преобразования обоих полупериодов входного переменного тока в постоянный выходной.

В этом типе выпрямителя диоды подключаются в особой форме, как указано ниже.

Положительный полупериод:

Во время положительного полупериода входа диод D1 и D2 становится прямым смещением, а D3 и D4 становится обратным смещением. Диод D1 и D2 образуют замкнутый контур, который обеспечивает положительное выходное напряжение на нагрузочном резисторе RL .

Отрицательный полупериод:

Во время отрицательного полупериода диод D3 и D4 становится прямым смещением, а D1 и D2 становится обратным смещением.Но полярность нагрузочного резистора RL остается прежней и обеспечивает положительный выходной сигнал на нагрузке.

Выход двухполупериодного выпрямителя имеет низкие пульсации по сравнению с полуволновым выпрямителем, но, тем не менее, он не является плавным и устойчивым.

Чтобы выходное напряжение было плавным и устойчивым, на выходе помещается конденсатор , как показано на рисунке ниже.

Заряд и разряд конденсатора, обеспечивающий плавные переходы между полупериодами.

Работа схемы мостового выпрямителя

Из принципиальной схемы видно, что диоды подключены определенным образом. Это уникальное расположение и дало название конвертеру. В мостовом выпрямителе напряжение на входе может быть от любого источника. Это может быть трансформатор, который используется для повышения или понижения напряжения, или сеть нашего домашнего источника питания. В этой статье мы используем трансформатор с ответвлениями 6-0-6 для обеспечения переменного напряжения.

В первой фазе работы выпрямителя, во время положительного полупериода, диоды D3-D2 смещены в прямом направлении и проводят ток. Диоды D1-D4 имеют обратное смещение и не проводят в этом полупериоде, действуя как разомкнутые переключатели. Таким образом, мы получаем на выходе положительный полупериод. И наоборот, в отрицательном полупериоде диоды D1-D4 смещаются в прямом направлении и начинают проводить, тогда как диоды D3-D2 имеют обратное смещение и не проводят в этом полупериоде.

Опять получаем на выходе положительный полупериод.В конце процесса выпрямления отрицательная часть переменного тока преобразуется в положительный цикл. Выходной сигнал выпрямителя – это два полуположительных импульса с той же частотой и величиной, что и входной.

В отличие от работы полуволнового выпрямителя, полный мостовой выпрямитель имеет другую ветвь, которая позволяет ему проводить отрицательную половину формы волны напряжения, которую полумостовой выпрямитель не имел возможности сделать. Таким образом, среднее напряжение на выходе полного мостового выпрямителя вдвое больше, чем у полумостового выпрямителя.

Хотя мы используем четыре отдельных силовых диода для изготовления двухполупериодного мостового выпрямителя, готовые компоненты мостового выпрямителя доступны «в готовом виде» в диапазоне различных значений напряжения и тока, которые могут использоваться непосредственно для обеспечения работоспособности. схема.

Форма волны выходного напряжения после выпрямления не соответствует правильному постоянному току, поэтому мы можем попытаться преобразовать ее в форму волны постоянного тока, используя конденсатор для фильтрации. Сглаживающие или накопительные конденсаторы, которые подключены параллельно нагрузке на выходе схемы двухполупериодного мостового выпрямителя, увеличивают средний выходной уровень постоянного тока до требуемого среднего напряжения постоянного тока на выходе, поскольку конденсатор действует не только как фильтрующий компонент, но и также периодически заряжается и разряжается, эффективно увеличивая выходное напряжение.

Конденсатор заряжается до тех пор, пока форма сигнала не достигнет своего пика, и равномерно разряжается в цепи нагрузки, когда форма сигнала начинает снижаться. Поэтому, когда выходной сигнал становится низким, конденсатор поддерживает правильное напряжение в цепи нагрузки, тем самым создавая постоянный ток.

Преимущества мостового выпрямителя:

  1. Низкие пульсации в выходном сигнале постоянного тока
  2. Высокий КПД выпрямителя
  3. Низкие потери мощности

Недостатки мостового выпрямителя:

  1. Мостовой выпрямитель сложнее, чем мостовой выпрямитель. однополупериодный выпрямитель
  2. Больше потерь мощности по сравнению с двухполупериодным выпрямителем с центральным ответвлением.
Выпрямитель с центральным отводом

Этот тип двухполупериодного выпрямителя использует трансформатор с центральным отводом и два диода.

Трансформатор с центральным ответвлением – это трансформатор с двойным напряжением, который имеет два входа ( I1 и I2 ) и три выходных клеммы ( T1, T2, T3 ). Клемма T2 подключена к центру выходной катушки, которая действует как опорное заземление (опорное напряжение o вольт ).Клемма T1 выдает положительное напряжение , а клемма T3 создает отрицательное напряжение по сравнению с T2 .

Конструкция выпрямителя с центральным отводом приведена ниже:

Положительный полупериод:

Во время входного положительного полупериода T1 будет вырабатывать положительное, а T2 – отрицательное напряжение. Диод D1 станет прямым смещением, а диод D2 станет обратным смещением.Это создает закрытый путь от T1 к T2 через нагрузочный резистор RL , как показано ниже.

Отрицательный полупериод:

Теперь во время входного отрицательного полупериода T1 сгенерирует отрицательный цикл, а T2 сгенерирует положительный цикл. Это переведет диод D1 в обратное смещение, а диод D2 в прямое смещение. Но полярность на нагрузочном резисторе RL все еще та же, поскольку ток проходит от T3 к T1 , как показано на рисунке ниже.

Выход DC выпрямителя с центральным отводом также имеет пульсации, и он не является плавным и устойчивым DC . Конденсатор на выходе устранит пульсации и обеспечит устойчивый выход DC .

Управляемый выпрямитель:

Тип выпрямителя, выходное напряжение которого может быть изменено или изменено , называется управляемый выпрямитель .

Потребность в управляемом выпрямителе становится очевидной, если мы рассмотрим недостатки неуправляемого мостового выпрямителя.Чтобы превратить неуправляемый выпрямитель в управляемый, мы используем твердотельные устройства с управляемым током, такие как SCR, MOSFET и IGBT. У нас есть полный контроль, когда тиристоры включаются или выключаются в зависимости от импульсов затвора, которые мы применяем к ним. Они обычно более предпочтительны, чем их неконтролируемые аналоги.

Он состоит из одного или нескольких SCR ( кремниевый управляемый выпрямитель ).

SCR , также известный как тиристор , представляет собой трехконтактный диод.Эти клеммы – это анод , катод и управляющий вход, известный как Gate .

Точно так же, как простой диод, SCR проводит при прямом смещении и блокирует ток при обратном смещении, но он запускает прямую проводимость только при наличии импульса на входе затвора. Таким образом, выходным напряжением можно управлять с помощью входа затвора.

Типы управляемого выпрямителя

Есть два типа управляемого выпрямителя.

Полупериодный управляемый выпрямитель

Полуволновой управляемый выпрямитель состоит из одного SCR (кремниевого выпрямителя).

Полупериодный управляемый выпрямитель имеет ту же конструкцию, что и полуволновой неуправляемый выпрямитель, за исключением того, что мы заменили диод на SCR , как показано на рисунке ниже.

SCR не проводит обратное смещение, поэтому он блокирует отрицательный полупериод.

Во время положительного полупериода SCR будет проводить ток при одном условии, когда на вход затвора подается импульс.Вход затвора, конечно, представляет собой периодический импульсный сигнал, который предназначен для активации SCR в каждом положительном полупериоде.

Таким образом, мы можем контролировать выходное напряжение этого выпрямителя.

Выходной сигнал SCR также является пульсирующим напряжением / током DC . Эти импульсы удаляются с помощью конденсатора , параллельного нагрузочному резистору RL .

Полнопериодный управляемый выпрямитель

Тип выпрямителя, который преобразует как положительный, так и отрицательный полупериод переменного тока в постоянный, а также регулирует выходную амплитуду известен как двухполупериодный управляемый выпрямитель.

Управляемый двухполупериодный выпрямитель, как и неуправляемый выпрямитель, бывает двух типов.

Управляемый мостовой выпрямитель

В этом выпрямителе диодный мост заменен мостом SCR ( Thyristor ) с такой же конфигурацией, как показано на рисунке ниже.

Положительный полупериод:

Во время положительного цикла SCR (тиристор) T1 и T2 будет проводить при подаче импульса затвора. T3 и T4 будут иметь обратное смещение, поэтому они будут блокировать ток. Выходное напряжение будет установлено на нагрузочном резисторе RL , как показано ниже.

Отрицательный полупериод:

Во время отрицательного полупериода тиристоры T3 и T4 будут иметь прямое смещение с учетом входного импульса затвора, а T1 и T2 станут обратным смещением. Выходное напряжение появится на нагрузочном резисторе RL .

В конце вывода конденсатор используется для удаления пульсаций и делает вывод стабильным и плавным.

Управляемый Выпрямитель с центральным отводом:

Как и неуправляемый выпрямитель с центральным отводом, в этой конструкции используются два SCR вместо двух диодов.

Оба этих переключения SCR будут синхронизированы по-разному в зависимости от входной частоты AC .

Его работа такая же, как у неуправляемого выпрямителя, и его схематическая конструкция приведена ниже.

Однофазные и трехфазные выпрямители

Эта классификация основана на типе входа, на котором работает выпрямитель. Именование довольно простое. Когда вход однофазный, выпрямитель называется однофазным выпрямителем, а когда вход трехфазный, он называется трехфазным выпрямителем.

Однофазный мостовой выпрямитель состоит из четырех диодов, тогда как трехфазный выпрямитель использует шесть диодов, расположенных определенным образом, чтобы получить желаемый выход.Это могут быть управляемые или неуправляемые выпрямители, в зависимости от компонентов переключения, используемых в каждом выпрямителе, таких как диоды, тиристоры и т. Д.

Сравнение выпрямителей

В следующей таблице показано соответствие между различными типами выпрямителей, такими как однополупериодный выпрямитель, двухполупериодный выпрямитель и выпрямитель с центральным ответвлением.

Применение выпрямителей

Практически все электронные схемы работают от постоянного напряжения.Основная цель использования выпрямителя – выпрямление, то есть преобразование переменного напряжения в постоянное. То есть выпрямители используются почти во всех выпрямительных и электронных устройствах.

Ниже приведен список общих областей применения и использования различных выпрямителей.

  • Выпрямление, т.е. преобразование постоянного напряжения в переменное.
  • Выпрямители используются в электросварке для обеспечения поляризованного напряжения.
  • Применяется также в тяговых двигателях, подвижном составе и трехфазных тяговых двигателях, используемых для движения поездов.
  • Полуволновые выпрямители используются в средствах от комаров и паяльниках.
  • Полуволновой выпрямитель также используется в AM Radio в качестве детектора и детектора пикового сигнала.
  • Выпрямители также используются в умножителях модуляции, демодуляции и напряжения.

Связанные сообщения:

Выпрямительный диод: функция и схема

Выпрямительный диод – это полупроводниковое устройство, используемое для преобразования переменного тока в постоянный. Он имеет очевидную однонаправленную проводимость и может быть изготовлен из таких материалов, как полупроводниковый германий или кремний.Эта статья дает вам краткое введение в выпрямительные диоды.

Каталог

I Выбор выпрямительного диода

Выпрямительные диоды обычно представляют собой плоские кремниевые диоды , которые используются в различных схемах выпрямителя мощности.

При выборе выпрямительного диода следует учитывать такие параметры, как его максимальный ток выпрямителя, максимальный обратный рабочий ток, частота среза и время обратного восстановления.

Выпрямительный диод, используемый в схеме последовательного стабилизированного питания, не имеет высоких требований к времени обратного восстановления частоты среза. Пока максимальный ток выпрямления и максимальный обратный рабочий ток соответствуют требованиям схемы, выбирается выпрямительный диод. Например, серия 1N, серия 2CZ, серия RLR и т. Д.

Рис. 1. Выпрямительный диод 2CZ

В схеме выпрямителя и импульсного выпрямителя импульсного стабилизированного источника питания выпрямительный диод должен иметь более высокая рабочая частота и более короткое время обратного восстановления (например, серия RU, серия EU, серия V, серия 1SR и т. д.). Или мы можем выбрать диод с быстрым восстановлением или выпрямительный диод Шоттки.

II Параметры выпрямительного диода

1. Максимальный a средний r ectified c текущий IF : максимальный прямой средний ток, допустимый для длительной работы.

Ток определяется площадью перехода и условиями теплоотвода PN перехода. Средний ток через диод не может быть больше этого значения и должен соответствовать условиям рассеивания тепла.Например, ПЧ выпрямленного диода серии 1N4000 составляет 1 А.

2. Максимальное рабочее r everse v oltage VR : максимально допустимое обратное напряжение, приложенное к диоду. Если это значение будет превышено, обратный ток (IR) резко возрастет, и однонаправленная проводимость диода будет нарушена, что приведет к обратному пробою.

Обычно половину напряжения обратного пробоя (VB) принимают за (VR). Например:

4792

1N4004

4

800V92 907

Максимальный обратный ток IR : обратный ток, протекающий через диод при самом высоком обратном рабочем напряжении. Этот параметр отражает однонаправленную проводимость диода. Следовательно, чем меньше значение тока, тем лучше качество диода.

4. Напряжение пробоя VB : значение выпрямителя напряжения в точке резкого изгиба обратной вольт-амперной характеристики диода. Когда обратная характеристика является мягкой, она относится к значению напряжения при заданном обратном токе утечки.

5. Максимальная рабочая частота fm : максимальная рабочая частота диода при нормальных условиях. Это в основном определяется емкостью перехода и диффузионной емкостью PN перехода. Если рабочая частота превышает fm, однонаправленная проводимость диода не будет хорошо отражена.

Например, fm диода серии 1N4000 составляет 3 кГц. Кроме того, диоды с быстрым восстановлением используются для выпрямления высокочастотных переменных токов, например, в импульсных источниках питания.

6. Время обратного восстановления trr : относится к времени обратного восстановления при указанной нагрузке, прямом токе и максимальном обратном переходном напряжении.

7. Емкость нулевого смещения ance CO : сумма диффузионной емкости и емкости перехода, когда напряжение на диоде равно нулю.

Из-за ограничений производственного процесса даже у однотипных диодов их параметры имеют большой разброс. Параметры, приведенные в руководстве, часто находятся в пределах допустимого диапазона.При изменении условий испытаний изменятся и соответствующие параметры.

Например, IR выпрямительного диода серии 1N5200 с кремниевым пластиковым уплотнением при 25 ° C составляет менее 10 мкА, а при 100 ° C становится менее 500 мкА.

III Причина повреждения

1. Неадекватная молниезащита и защита от перенапряжения . Даже при наличии молниезащиты и устройств защиты от перенапряжения при ненадежной работе выпрямительный диод выходит из строя из-за ударов молнии или перенапряжения.

2. Плохие условия эксплуатации. В генераторной установке непрямого действия, поскольку расчет передаточного числа неверен или соотношение диаметров двух ременных шкивов не соответствует требованиям передаточного отношения, генератор работает на высокой скорости в течение длительного времени. Также выпрямитель долгое время работает при более высоком напряжении, ускоряя старение и вызывая пробой.

3. Плохое оперативное управление . Операторы безответственны и не понимают изменений внешней нагрузки (особенно между полуночью и 6 часами утра следующего дня).Или на улице сбой нагрузки, и оператор вовремя не принял меры. Это вызовет перенапряжение, а выпрямительный диод выйдет из строя и повредится.

4. Неправильная установка или изготовление . Поскольку генераторная установка долгое время работала в условиях сильной вибрации, выпрямительный диод также находится под воздействием этих помех. Кроме того, генераторная установка работает неравномерно, поэтому рабочее напряжение выпрямительного диода также колеблется.Это значительно ускоряет старение и повреждение выпрямительного диода.

5. Неправильные характеристики диодов и модели . Если параметры замененного выпрямительного диода не соответствуют требованиям, либо выполнена неправильная проводка, выпрямительный диод выйдет из строя и выйдет из строя.

6. Слишком мал запас прочности выпрямительного диода . Запас безопасности выпрямительного диода по перенапряжению и перегрузке по току слишком мал, поэтому он не может выдерживать пиковые атаки в цепи возбуждения.

IV Что делает выпрямитель?

Выпрямительный диод имеет явную однонаправленную проводимость. Он может быть изготовлен из таких материалов, как полупроводник , германий или кремний. Функция выпрямительного диода заключается в использовании однонаправленной проводимости PN-перехода для преобразования переменного тока в пульсирующий постоянный ток. Итак, каковы основные функции выпрямительного диода? Ниже приводится подробное введение:

1. Прямая характеристика

Самая заметная особенность выпрямительного диода – это его прямая характеристика.Когда прямое напряжение подается на выпрямительный диод, начальная часть прямого напряжения очень мала, и она не может эффективно преодолеть блокирующий эффект электрического поля в PN-переходе.

Когда прямой ток почти равен нулю, прямое напряжение не может проводить диод, что называется напряжением мертвой зоны .

Когда прямое напряжение больше, чем напряжение мертвой зоны, электрическое поле эффективно преодолевается, выпрямительный диод включается, и ток быстро растет по мере увеличения напряжения.В нормальном диапазоне токов напряжение на выводах выпрямительного диода практически не меняется при его включении.

Рисунок 2. Прямые и обратные характеристики выпрямителя

2. Обратная характеристика

Когда обратное напряжение, приложенное к диоду выпрямителя, не превышает определенного диапазона, обратный ток формируется дрейфом миноритарных перевозчиков. Поскольку обратный ток очень мал, выпрямительный диод выключен.

На ток обратного насыщения выпрямительного диода влияет температура. Как правило, обратный ток кремниевых выпрямительных диодов намного меньше, чем обратный ток германиевых выпрямительных диодов. Ток обратного насыщения маломощных кремниевых выпрямительных диодов составляет порядка нА, а маломощных германиевых выпрямительных диодов – порядка мкА.

Когда температура выпрямительного диода увеличивается, полупроводник возбуждается, и количество неосновных носителей увеличивается.

3. Обратный пробой

Обратный пробой выпрямительного диода делится на два типа: Зенера и лавинный пробой .

При высокой концентрации легирования из-за малой ширины барьерной области обратное напряжение разрушает структуру ковалентной связи, поэтому электроны отрываются от ковалентной связи и генерируются электронные дырки. Это называется пробоем Зенера.

Другой вид поломки – лавинный.По мере увеличения обратного напряжения выпрямительного диода внешнее электрическое поле будет увеличивать скорость дрейфа электронов, поэтому валентные электроны будут сталкиваться друг с другом из ковалентной связи, создавая новые электронно-дырочные пары.

Рис. 3. Пробой стабилитрона и лавинный пробой

В Что такое схема выпрямителя?

Схема выпрямителя предназначена для преобразования переменного тока в постоянный.Как правило, он состоит из трансформатора, схемы главного выпрямителя и схемы фильтра. Если вы хотите получить постоянное значение напряжения, вам нужно добавить схему регулятора напряжения. Здесь мы поговорим только об основной схеме выпрямителя.

1. Схема однополупериодного выпрямителя

Структура этой схемы однополупериодного выпрямителя очень проста. Основным компонентом является диод, как показано на схеме ниже.

Рисунок 4.Принципиальная схема однополупериодного выпрямителя

Вход 220 В – это синусоидальный переменный ток. Он проходит через трансформатор и уменьшается после трансформатора, но в конечном итоге это все еще синусоидальный сигнал переменного тока.

Типичная особенность диодов однонаправленная проводимость . Если напряжение на аноде диода больше напряжения на катоде диода, диод будет включен. В противном случае диод погаснет.

На следующем рисунке показан этот процесс.На рисунке а показан выход переменного тока трансформатора. Когда выходное напряжение находится в положительном полупериоде, напряжение в точке a выше, чем напряжение в точке b, и диод будет включен. А напряжение на нагрузке RL примерно равно выходному напряжению трансформатора.

Когда выходное напряжение находится в отрицательном полупериоде, напряжение в точке b выше, чем напряжение в точке a, тогда диод будет отключен. Соответствующий ток не может течь к нагрузке, поэтому половина цикла отсутствует на рисунке b.

Рисунок 5. Схема однополупериодного выпрямителя Форма волны до и после фильтрации

2. Схема двухполупериодного выпрямителя

Поскольку полупериод теряется при полуволновом выпрямлении, эффективность ограничена. Двухполупериодный мостовой выпрямитель может решить эту проблему.

По сравнению с однополупериодным выпрямлением, при двухполупериодном выпрямлении используется еще один диод. Однако трансформатор здесь имеет центральную ось , которая использует однонаправленную проводимость диода.

Рисунок 6. Принципиальная схема двухполупериодного выпрямителя

Давайте проанализируем этот принцип. Если переменный ток находится в положительном полупериоде, напряжение в точке a выше, чем напряжение в точке b, тогда диод D1 будет включен, а диод D2 будет отключен. Таким образом, ток будет течь только из точки a через диод D1 и резистор RL и, наконец, к центральной оси трансформатора.

Если переменный ток находится в отрицательном полупериоде, напряжение в точке b выше, чем напряжение в точке a, диод D2 будет включен, а диод D1 будет отключен.Таким образом, ток будет течь только из точки b и через диод D2 и резистор RL, наконец, к центральной оси трансформатора.

Повторение этих циклов приводит к фильтрации. На следующем рисунке показан сигнал до и после фильтрации.

Рис. 7. Форма сигнала двухполупериодной схемы выпрямителя до и после фильтрации

3. Схема мостового выпрямителя

Схема мостового выпрямителя сложнее двух предыдущих.Принципиальная схема выглядит следующим образом. Схема простого мостового выпрямителя состоит из трансформатора и главного выпрямительного моста и нагрузки .

Рисунок 8 . Мост Схема выпрямителя -1

Если выходной сигнал переменного тока находится в положительном полупериоде, в нормальных условиях ток течет в точку A, обращенную к диоду 2 и диоду 1.

Рисунок 9.Принципиальная схема мостового выпрямителя-2

Однако из-за высокого напряжения в точке А диод 1 находится в выключенном состоянии, а диод 2 во включенном состоянии. Таким образом, ток будет проходить через диод 2, затем течь из точки B и затем достигать точки D через нагрузку.

Рисунок 10 . Мост Схема схемы выпрямителя 3

На первый взгляд, диод 1 и диод 4 могут быть включены, но ток течет из точки А в мост выпрямителя, а затем через нагрузку.Напряжение будет уменьшаться после того, как ток пройдет через нагрузку, поэтому напряжение в точке D намного ниже, чем напряжение в точке A, и диод 4 включен, а диод 1 выключен. Наконец, ток течет в нижний конец трансформатора.

Рисунок 11. Схема схемы мостового выпрямителя-4

Когда напряжение на нижнем конце выше, чем напряжение на верхнем конце, ток достигает точки C.

Рисунок 1 2 .Принципиальная схема мостового выпрямителя – 5

Кроме того, поскольку напряжение в точке C высокое, диод 4 находится в выключенном состоянии, а диод 3 во включенном состоянии. Ток будет течь через диод 3 из точки B, а затем достигнет точки D через нагрузку.

Рисунок 13. Схема схемы мостового выпрямителя-6

Подобно положительному полупериоду, на первый взгляд, диод 1 и диод 4 могут быть включены. Но поскольку ток течет из точки C в выпрямительный мост, а затем через нагрузку, напряжение в точке D намного ниже, чем в точке C, поэтому диод 1 включен, а диод 4 выключен.Наконец, ток течет в верхнюю часть трансформатора.

Рисунок 14. Схема схемы мостового выпрямителя-7

Преимущества мостового выпрямления

По сравнению с двухполупериодным выпрямлением мостовое выпрямление имеет много преимуществ.

Для двухполупериодного выпрямления требуется трансформатор с центральной осью, а для мостового выпрямления этого требования нет.

Когда диод выключен, напряжение на двух концах диода мостового выпрямителя меньше половины напряжения двухполупериодного выпрямления.Так что требования к характеристикам мостового выпрямительного диода не так высоки.

VI Замена выпрямительного диода и Проверка

1. Замена

После повреждения выпрямительного диода его можно заменить на выпрямительный диод той же или другой модели с такими же параметрами.

Обычно выпрямительные диоды с высоким выдерживаемым напряжением и (обратное напряжение) могут заменить выпрямительные диоды с низким выдерживаемым напряжением .А выпрямительные диоды с низким выдерживаемым напряжением не могут заменить диоды с высоким выдерживаемым напряжением.

Диод с большим током выпрямления может заменить диод с низким значением тока выпрямления, в то время как диод с низким значением тока выпрямления не может заменить диод с высоким значением тока выпрямления.

2. Как проверить мостовой выпрямитель

(1) Снимите с выпрямителя все выпрямительные диоды.

(2) Используйте диапазон мультиметра 100 × R или 1000 × R Ом для измерения двух проводов выпрямительного диода.Затем поменяйте местами голову и хвост и снова попробуйте.

(3) Если значение сопротивления, измеренное дважды, имеет большую разницу, это означает, что диод исправен (за исключением диодов с мягким пробоем).

Если дважды измеренное значение сопротивления мало и почти одинаково, это означает, что диод вышел из строя и его нельзя использовать.

Если значение сопротивления, измеренное дважды, бесконечно, это означает, что диод был отключен внутри и не может использоваться.

Рекомендуемые статьи:

Как работает фотодиод?

Что такое лавинные диоды?

Что такое лазерные диоды?

Диоды | Клуб электроники

Диоды | Клуб электроники

Сигнал | Выпрямитель | Мостовой выпрямитель | Стабилитрон

Смотрите также: светодиоды | Блоки питания

Диоды позволяют электричеству течь только в одном направлении. Стрелка символа схемы показывает направление, в котором может течь ток.Диоды – электрическая версия вентиль и первые диоды на самом деле назывались вентилями.

Типы диодов

Обычные диоды можно разделить на два типа:

Дополнительно есть:

Подключение и пайка

Диоды должны быть подключены правильно, на схеме может быть указано a или + для анода и k или для катода (да, это действительно k, а не c, для катода!). Катод отмечен линией, нарисованной на корпусе.Диоды обозначены своим кодом мелким шрифтом, вам может потребоваться ручная линза, чтобы прочитать его.

Сигнальные диоды могут быть повреждены нагреванием при пайке, но риск невелик, если только вы используете германиевый диод (коды начинаются OA …), и в этом случае вы должны использовать радиатор (например, зажим «крокодил»), прикрепленный к проводу между соединением и корпусом диода.

Выпрямительные диоды достаточно прочные, и при их пайке не требуется специальных мер предосторожности.


Испытательные диоды

Вы можете использовать мультиметр или простой тестер. проект (батарея, резистор и светодиод), чтобы проверить, что диод проводит только в одном направлении.

Можно использовать лампу для проверки выпрямительного диода, но НЕ используйте лампу для проверки сигнальный диод, потому что большой ток, пропускаемый лампой, разрушит диод.


Падение прямого напряжения

Электричество потребляет немного энергии, проталкиваясь через диод, как человек. толкая дверь пружиной.Это означает, что есть небольшое прямое падение напряжения через проводящий диод. Для большинства диодов, сделанных из кремния, оно составляет около 0,7 В.

Прямое падение напряжения на диоде почти постоянно, независимо от тока, протекающего через диода, поэтому они имеют очень крутую характеристику (вольт-амперный график).

обратное напряжение

При подаче обратного напряжения проводит не идеальный диод, а настоящие диоды. утечка очень небольшого тока (обычно несколько мкА).Это можно игнорировать в большинстве схем. потому что он будет намного меньше, чем ток, текущий в прямом направлении. Однако все диоды имеют максимальное обратное напряжение (обычно 50 В или более), и если при превышении этого значения диод выйдет из строя и будет пропускать большой ток в обратном направлении, это называется поломка .



Диоды сигнальные (малоточные)

Сигнальные диоды обычно используются для обработки информации (электрических сигналов) в цепях, поэтому они требуются только для пропускания небольших токов до 100 мА.

Сигнальные диоды общего назначения, такие как 1N4148, изготовлены из кремния и имеют прямое падение напряжения 0,7 В.

Rapid Electronics: 1N4148

Германиевые диоды , такие как OA90, имеют меньшее прямое падение напряжения 0,2 В, что делает Их можно использовать в радиосхемах в качестве детекторов, выделяющих звуковой сигнал из слабого радиосигнала. Сейчас они используются редко, и их может быть трудно найти.

Для общего использования, где величина прямого падения напряжения менее важна, кремниевые диоды лучше, потому что они менее легко повреждаются под воздействием тепла при пайке, имеют меньшее сопротивление при проводке и имеют очень низкие токи утечки при приложении обратного напряжения.

Защитные диоды для реле

Сигнальные диоды также используются для защиты транзисторов и микросхем от кратковременного высокого напряжения, возникающего при обмотке реле. выключен. На схеме показано, как защитный диод подключен к катушке реле «в обратном направлении».

Зачем нужен защитный диод?

Ток, протекающий через катушку, создает магнитное поле, которое внезапно схлопывается. при отключении тока. Внезапный коллапс магнитного поля вызывает кратковременное высокое напряжение на катушке, которое может повредить транзисторы и микросхемы.Защитный диод позволяет индуцированному напряжению пропускать кратковременный ток через катушку. (и диод), поэтому магнитное поле исчезает быстро, а не мгновенно. Это предотвращает индуцированное напряжение становится достаточно высоким, чтобы вызвать повреждение транзисторов и микросхем.


Выпрямительные диоды (большой ток)

Выпрямительные диоды используются в источниках питания для преобразования переменного тока (AC). к постоянному току (DC) этот процесс называется выпрямлением. Они также используются в других схемах, где через диод должен проходить большой ток.

Все выпрямительные диоды изготовлены из кремния и поэтому имеют прямое падение напряжения 0,7 В. В таблице указаны максимальный ток и максимальное обратное напряжение для некоторых популярных выпрямительных диодов. 1N4001 подходит для большинства цепей низкого напряжения с током менее 1 А.

Rapid Electronics: 1N4001

Параметр

1N4001

1N4002

1N4003

1N4004

007 9117 007 007 007

07

007 007

VR

50V

100V

200V

400V

600V

800V92

Диод Максимум
Ток
Максимум
Обратный
Напряжение
1N4001 1A 50V
1N4002 1A97 9387 9387 9387

9387 9387 9387

9387 9381A97 1A
1N5401 3A 100V
1N5408 3A 1000V

Книги по комплектующим:



Мостовые выпрямители

Есть несколько способов подключения диодов, чтобы выпрямитель преобразовывал переменный ток в постоянный.Мостовой выпрямитель – один из них, и он доступен в специальных пакетах, содержащих четыре необходимых диода. Мостовые выпрямители рассчитаны на максимальный ток и максимальное обратное напряжение. У них есть четыре вывода или клеммы: два выхода постоянного тока помечены + и -, два входа переменного тока помечены .

На схеме показана работа мостового выпрямителя при преобразовании переменного тока в постоянный. Обратите внимание, как проводят чередующиеся пары диодов.

Rapid Electronics: мостовые выпрямители

Мостовые выпрямители различных типов

Обратите внимание, что у некоторых есть отверстие в центре для крепления к радиатору

Фотографии © Rapid Electronics


Стабилитроны

Стабилитроны

используются для поддержания постоянного напряжения.Они рассчитаны на «поломку» в надежных и неразрушающим способом, чтобы их можно было использовать в обратном направлении для поддержания фиксированного напряжения на их выводах.

Стабилитроны

можно отличить от обычных диодов по их коду и напряжению пробоя. которые напечатаны на них. Коды стабилитронов начинаются BZX … или BZY … Их напряжение пробоя обычно печатается с буквой V вместо десятичной точки, поэтому 4V7 означает, например, 4,7 В.

a = анод, k = катод

Rapid Electronics: стабилитроны

На схеме показано, как подключен стабилитрон с последовательно включенным резистором для ограничения тока.

Стабилитроны

имеют номинальное напряжение пробоя и максимальную мощность . Минимальное доступное напряжение пробоя составляет 2,4 В. Широко доступны номинальные мощности 400 мВт и 1,3 Вт.

Для получения дополнительной информации см. Страницу источников питания.


Политика конфиденциальности и файлы cookie

Этот сайт не собирает личную информацию. Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно не будет передано никому.На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден. Рекламодателям не передается никакая личная информация. Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации. Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов. (включая этот), как объяснил Google.Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста, посетите AboutCookies.org.

electronicsclub.info © Джон Хьюс 2021 г.

Принципиальная схема

, типы, работа и применение

Схема выпрямителя используется для преобразования переменного (переменного тока) в постоянный (постоянный ток). Выпрямители в основном делятся на три типа: полуволновые, двухполупериодные и мостовые выпрямители. Основная функция всех этих выпрямителей такая же, как преобразование тока, но они неэффективно преобразовывают ток из переменного в постоянный.Двухполупериодный выпрямитель с центральным ответвлением и мостовой выпрямитель эффективно преобразуют. Схема мостового выпрямителя – обычная часть электронных источников питания. Многие электронные схемы требуют выпрямленного источника питания постоянного тока для питания различных основных электронных компонентов от доступной сети переменного тока. Мы можем найти этот выпрямитель в большом количестве электронных устройств питания переменного тока, таких как бытовая техника, контроллеры двигателей, процесс модуляции, сварочные аппараты и т. Д. В этой статье обсуждается обзор мостового выпрямителя и его работы.


Что такое мостовой выпрямитель?

Мостовой выпрямитель – это преобразователь переменного тока в постоянный ток, который выпрямляет входной переменный ток сети в выход постоянного тока. Мостовые выпрямители широко используются в источниках питания, которые обеспечивают необходимое постоянное напряжение для электронных компонентов или устройств. Они могут быть сконструированы с четырьмя или более диодами или любыми другими управляемыми твердотельными переключателями.

Мостовой выпрямитель

В зависимости от требований тока нагрузки выбирается соответствующий мостовой выпрямитель.Номинальные характеристики и характеристики компонентов, напряжение пробоя, диапазоны температур, номинальный переходный ток, номинальный прямой ток, требования к установке и другие соображения принимаются во внимание при выборе источника питания выпрямителя для соответствующей области применения электронной схемы.


Конструкция

Конструкция мостового выпрямителя показана ниже. Эта схема может быть сконструирована с четырьмя диодами, а именно D1, D2, D3 и D4, а также с нагрузочным резистором (RL). Подключение этих диодов может быть выполнено по схеме с обратной связью для эффективного преобразования переменного (переменного тока) в постоянный (постоянный ток).Основное преимущество такой конструкции – отсутствие эксклюзивного трансформатора с центральным отводом. Таким образом, размер, как и стоимость, уменьшится.

Как только входной сигнал подается на две клеммы, такие как A и B, сигнал постоянного тока может быть получен через RL. Здесь нагрузочный резистор подключен между двумя клеммами, такими как C и D. Расположение двух диодов может быть выполнено таким образом, что электричество будет проводиться двумя диодами в течение каждого полупериода. Пары диодов, такие как D1 и D3, будут проводить электрический ток в течение положительного полупериода.Точно так же диоды D2 и D4 будут проводить электрический ток в течение отрицательного полупериода.

Схема мостового выпрямителя

Основным преимуществом мостового выпрямителя является то, что он выдает почти вдвое большее выходное напряжение, чем в случае двухполупериодного выпрямителя, использующего трансформатор с центральным отводом. Но этой схеме не нужен трансформатор с центральным отводом, поэтому она напоминает недорогой выпрямитель.

Схема мостового выпрямителя состоит из различных каскадов устройств, таких как трансформатор, диодный мост, фильтрация и регуляторы.Как правило, комбинация всех этих блоков называется регулируемым источником постоянного тока, питающим различные электронные устройства.

Первый каскад схемы – это трансформатор понижающего типа, который изменяет амплитуду входного напряжения. В большинстве электронных проектов используется трансформатор 230/12 В для понижения напряжения сети переменного тока с 230 В до 12 В переменного тока. Схема мостового выпрямителя

Следующим этапом является диодно-мостовой выпрямитель, в котором используются четыре или более диодов в зависимости от типа мостового выпрямителя.При выборе конкретного диода или любого другого переключающего устройства для соответствующего выпрямителя необходимо учитывать некоторые особенности устройства, такие как пиковое обратное напряжение (PIV), прямой ток If, номинальное напряжение и т. Д. Оно отвечает за создание однонаправленного или постоянного тока на нагрузке путем проведения набор диодов для каждого полупериода входного сигнала.

Так как выход после диодных мостовых выпрямителей имеет пульсирующий характер, и для его создания как чистого постоянного тока необходима фильтрация. Фильтрация обычно выполняется с одним или несколькими конденсаторами, подключенными к нагрузке, как вы можете видеть на рисунке ниже, где выполняется сглаживание волны.Этот номинал конденсатора также зависит от выходного напряжения.

Последней ступенью этого стабилизированного источника постоянного тока является регулятор напряжения, который поддерживает выходное напряжение на постоянном уровне. Предположим, микроконтроллер работает при 5 В постоянного тока, но выход после мостового выпрямителя составляет около 16 В, поэтому для снижения этого напряжения и поддержания постоянного уровня – независимо от изменений напряжения на входе – необходим регулятор напряжения.

Работа мостового выпрямителя

Как мы обсуждали выше, однофазный мостовой выпрямитель состоит из четырех диодов, и эта конфигурация подключается через нагрузку.Чтобы понять принцип работы мостового выпрямителя, мы должны рассмотреть приведенную ниже схему в демонстрационных целях.

Во время положительного полупериода входных диодов переменного тока D1 и D2 смещены в прямом направлении, а D3 и D4 – в обратном. Когда напряжение, превышающее пороговое значение диодов D1 и D2, начинает проводиться – через него начинает течь ток нагрузки, как показано на пути красной линии на диаграмме ниже.

Работа схемы

Во время отрицательного полупериода входного сигнала переменного тока диоды D3 и D4 смещены в прямом направлении, а D1 и D2 смещены в обратном направлении.Ток нагрузки начинает течь через диоды D3 и D4, когда эти диоды начинают проводить, как показано на рисунке.

Мы можем заметить, что в обоих случаях направление тока нагрузки одинаково, то есть вверх-вниз, как показано на рисунке – так однонаправлено, что означает постоянный ток. Таким образом, с помощью мостового выпрямителя входной переменный ток преобразуется в постоянный. Выход на нагрузке с этим мостовым выпрямителем имеет пульсирующий характер, но для получения чистого постоянного тока требуется дополнительный фильтр, такой как конденсатор.Такая же операция применима для разных мостовых выпрямителей, но в случае управляемых выпрямителей срабатывание тиристоров необходимо для подачи тока на нагрузку.

Типы мостовых выпрямителей

Двухфазные выпрямители подразделяются на несколько типов в зависимости от следующих факторов: типа источника питания, возможностей управления, конфигураций промежуточных цепей и т. Д. Мостовые выпрямители в основном подразделяются на однофазные и трехфазные. Оба эти типа далее подразделяются на неуправляемые, полууправляемые и полностью управляемые выпрямители.Некоторые из этих типов выпрямителей описаны ниже.

Однофазные и трехфазные выпрямители

Тип питания, то есть однофазное или трехфазное питание, определяет эти выпрямители. Однофазный мостовой выпрямитель состоит из четырех диодов для преобразования переменного тока в постоянный, тогда как трехфазный выпрямитель использует шесть диодов, как показано на рисунке. Это могут быть неуправляемые или управляемые выпрямители, в зависимости от компонентов схемы, таких как диоды, тиристоры и т. Д.Однофазные и трехфазные выпрямители

Неуправляемые мостовые выпрямители

В этом мостовом выпрямителе используются диоды для выпрямления входа, как показано на рисунке. Поскольку диод – это однонаправленное устройство, которое позволяет току течь только в одном направлении. Такая конфигурация диодов в выпрямителе не позволяет мощности изменяться в зависимости от требований к нагрузке. Таким образом, этот тип выпрямителя используется в постоянных или фиксированных источниках питания.

Неуправляемые мостовые выпрямители

Управляемые мостовые выпрямители

В выпрямителях этого типа, преобразователях переменного / постоянного тока или выпрямителях вместо неуправляемых диодов используются управляемые твердотельные устройства, такие как тиристоры, полевые МОП-транзисторы, IGBT и т. Д.используются для изменения выходной мощности при разных напряжениях. Посредством срабатывания этих устройств в различные моменты времени выходная мощность на нагрузке изменяется соответствующим образом.

Управляемый мостовой выпрямитель

Мостовой выпрямитель IC

Мостовой выпрямитель, такой как конфигурация выводов IC RB-156, обсуждается ниже.

Контакт-1 (фаза / линия): Это входной контакт переменного тока, где можно подключить фазный провод от источника переменного тока к этому фазовому контакту.

Контакт-2 (нейтраль): Это контакт входа переменного тока, где можно подключить нейтральный провод от источника переменного тока к этому нейтральному контакту.

Контакт 3 (положительный): Это выходной контакт постоянного тока, на котором положительное напряжение постоянного тока выпрямителя получается с этого положительного контакта.

Контакт 4 (отрицательный / заземляющий): Это выходной контакт постоянного тока. где напряжение заземления выпрямителя получается с этого отрицательного вывода.

Технические характеристики

Подкатегории этого мостового выпрямителя RB-15 варьируются от RB15 до RB158. Из этих выпрямителей наиболее часто используется RB156.Технические характеристики мостового выпрямителя РБ-156 включают следующее.

  • Выходной постоянный ток составляет 1,5 А
  • Максимальное пиковое обратное напряжение составляет 800 В
  • Выходное напряжение: (√2 × VRMS) – 2 В
  • Максимальное входное напряжение составляет 560 В
  • Падение напряжения для каждого моста составляет 1V @ 1A
  • Импульсный ток составляет 50A

RB-156 – наиболее часто используемый компактный, недорогой однофазный мостовой выпрямитель. Эта ИС имеет самое высокое напряжение переменного тока i / p, например 560 В, поэтому ее можно использовать для однофазной сети питания во всех странах.Максимальный постоянный ток этого выпрямителя – 1,5 А. Эта микросхема – лучший выбор в проектах для преобразования переменного тока в постоянный и обеспечивает до 1,5 А.

Характеристики мостового выпрямителя

Характеристики мостового выпрямителя включают следующие:

  • Коэффициент пульсаций
  • Пиковое обратное напряжение (PIV)
  • КПД
Коэффициент пульсаций

Измерение плавности выходного сигнала постоянного тока с использованием коэффициента: называется фактором пульсации.Здесь плавный сигнал постоянного тока можно рассматривать как сигнал постоянного тока o / p, включающий небольшое количество пульсаций, тогда как сигнал постоянного тока с высокой пульсацией можно рассматривать как сигнал постоянного тока с высокой частотой, включающий высокие пульсации. Математически его можно определить как долю пульсационного напряжения и чистого постоянного напряжения.

Для мостового выпрямителя коэффициент пульсаций может быть задан как

Γ = √ (Vrms2 / VDC) −1

Значение коэффициента пульсаций мостового выпрямителя составляет 0,48

PIV (Peak Inverse Voltage)

Пиковое обратное напряжение или PIV может быть определено как максимальное значение напряжения, которое исходит от диода, когда он подключен в состоянии обратного смещения в течение отрицательного полупериода.Мостовая схема включает четыре диода типа D1, D2, D3 и D4.

В положительном полупериоде два диода, такие как D1 и D3, находятся в проводящем положении, тогда как оба диода D2 и D4 находятся в непроводящем положении. Аналогичным образом, в отрицательном полупериоде диоды, подобные D2 и D4, находятся в проводящем положении, тогда как диоды, подобные D1 и D3, находятся в непроводящем положении.

КПД

КПД выпрямителя в основном определяет, насколько правильно выпрямитель преобразует переменный ток (переменный ток) в постоянный (постоянный ток).КПД выпрямителя можно определить как; это соотношение мощности постоянного тока и мощности переменного тока. Максимальный КПД мостового выпрямителя составляет 81,2%.

η = DC o / p Power / AC i / p Power

Форма волны мостового выпрямителя

Из принципиальной схемы мостового выпрямителя мы можем сделать вывод, что ток через нагрузочный резистор одинаков на всем положительном и отрицательном полюсах. отрицательные полупериоды. Полярность сигнала постоянного тока o / p может быть либо полностью положительной, либо отрицательной.В данном случае это абсолютно положительно. Когда направление диода меняется на противоположное, может быть достигнуто полное отрицательное напряжение постоянного тока.

Таким образом, этот выпрямитель позволяет протекать току в течение как положительных, так и отрицательных циклов переменного тока i / p. Формы выходных сигналов мостового выпрямителя показаны ниже.

Почему он называется мостовым выпрямителем?

По сравнению с другими выпрямителями, это наиболее эффективный тип выпрямительной схемы. Это тип двухполупериодного выпрямителя, как следует из названия, в этом выпрямителе используются четыре диода, которые соединены в виде моста.Поэтому такой выпрямитель называется мостовым выпрямителем.

Почему мы используем 4 диода в мостовом выпрямителе?

В мостовом выпрямителе четыре диода используются для создания схемы, которая обеспечивает двухполупериодное выпрямление без использования трансформатора с центральным отводом. Этот выпрямитель в основном используется для обеспечения двухполупериодного выпрямления в большинстве приложений.

Расположение четырех диодов может быть выполнено в замкнутом контуре для эффективного преобразования переменного тока в постоянный. Основным преимуществом такой схемы является отсутствие трансформатора с центральным отводом, поэтому размер и стоимость будут уменьшены.

Преимущества

К преимуществам мостового выпрямителя можно отнести следующее.

  • Эффективность выпрямления двухполупериодного выпрямителя вдвое выше, чем у однополупериодного выпрямителя.
  • Более высокое выходное напряжение, более высокая выходная мощность и более высокий коэффициент использования трансформатора в случае двухполупериодного выпрямителя.
  • Пульсации напряжения низкие и более высокие частоты, в случае двухполупериодного выпрямителя требуется простая схема фильтрации
  • Во вторичной обмотке трансформатора не требуется центральный отвод, поэтому в случае мостового выпрямителя требуется более простой трансформатор .Если повышение или понижение напряжения не требуется, можно даже отказаться от трансформатора.
  • Для заданной выходной мощности в случае мостового выпрямителя можно использовать силовой трансформатор меньшего размера, поскольку ток как в первичной, так и во вторичной обмотке трансформатора питания протекает в течение всего цикла переменного тока.
  • Эффективность выпрямления вдвое выше по сравнению с однополупериодным выпрямителем
  • Использует простые схемы фильтрации для высокой частоты и низкого напряжения пульсаций
  • TUF выше по сравнению с выпрямителем с центральным отводом
  • Трансформатор с центральным отводом не требуется

Недостатки

К недостаткам мостового выпрямителя можно отнести следующие.

  • Требуется четыре диода.
  • Использование двух дополнительных диодов вызывает дополнительное падение напряжения, тем самым уменьшая выходное напряжение.
  • Для этого выпрямителя требуется четыре диода, поэтому стоимость выпрямителя будет высокой.
  • Схема не подходит, если необходимо выпрямить небольшое напряжение, потому что соединение двух диодов может быть выполнено последовательно и обеспечивает двойное падение напряжения из-за их внутреннего сопротивления.
  • Эти схемы очень сложные.
  • По сравнению с выпрямителем с центральным отводом, мостовой выпрямитель имеет большие потери мощности.

Приложение – преобразование переменного тока в постоянный с помощью мостового выпрямителя

Регулируемый источник постоянного тока часто требуется для многих электронных приложений. Один из самых надежных и удобных способов – преобразовать имеющийся источник питания переменного тока в источник постоянного тока. Это преобразование сигнала переменного тока в сигнал постоянного тока выполняется с помощью выпрямителя, который представляет собой систему диодов. Это может быть однополупериодный выпрямитель, который выпрямляет только половину сигнала переменного тока, или двухполупериодный выпрямитель, выпрямляющий оба цикла сигнала переменного тока.Двухполупериодный выпрямитель может быть выпрямителем с центральным отводом, состоящим из двух диодов, или мостовым выпрямителем, состоящим из 4 диодов.

Здесь демонстрируется мостовой выпрямитель. Устройство состоит из 4 диодов, расположенных таким образом, что аноды двух соседних диодов соединены для обеспечения положительного питания на выходе, а катоды двух других соседних диодов соединены для подачи отрицательного питания на выход. Анод и катод двух других соседних диодов подключены к плюсу источника переменного тока, тогда как анод и катод двух других соседних диодов подключены к минусу источника переменного тока.Таким образом, 4 диода расположены в виде моста, так что в каждом полупериоде два чередующихся диода проводят ток, создавая постоянное напряжение с отталкиванием.

Данная схема состоит из мостового выпрямителя, нерегулируемый выход постоянного тока которого подается на электролитический конденсатор через токоограничивающий резистор. Напряжение на конденсаторе контролируется с помощью вольтметра и продолжает увеличиваться по мере заряда конденсатора, пока не будет достигнут предел напряжения. Когда нагрузка подключается к конденсатору, конденсатор разряжается, чтобы обеспечить необходимый входной ток для нагрузки.В этом случае в качестве нагрузки подключается лампа.

A Регулируемый источник питания постоянного тока

Регулируемый источник питания постоянного тока состоит из следующих компонентов:

  • Понижающий трансформатор для преобразования переменного тока высокого напряжения в переменный ток низкого напряжения.
  • Мостовой выпрямитель для преобразования переменного тока в пульсирующий постоянный ток.
  • Схема фильтра, состоящая из конденсатора для удаления пульсаций переменного тока.
  • Регулятор IC 7805 для получения регулируемого постоянного напряжения 5 В.

Понижающий трансформатор преобразует сетевое питание переменного тока 230 В в 12 В переменного тока.Это 12 В переменного тока подается на схему мостового выпрямителя, так что чередующиеся диоды проводят каждый полупериод, создавая пульсирующее напряжение постоянного тока, состоящее из пульсаций переменного тока. Конденсатор, подключенный к выходу, позволяет сигналу переменного тока проходить через него и блокирует сигнал постоянного тока, тем самым действуя как фильтр верхних частот. Таким образом, выходной сигнал через конденсатор представляет собой нерегулируемый фильтрованный сигнал постоянного тока. Этот выход может использоваться для управления электрическими компонентами, такими как реле, двигатели и т. Д. Регулятор IC 7805 подключен к выходу фильтра.Он дает постоянный регулируемый выход 5 В, который можно использовать для ввода многих электронных схем и устройств, таких как транзисторы, микроконтроллеры и т. Д. Здесь 5 В используется для смещения светодиода через резистор.

Это все о теории мостового выпрямителя, его типах, схемах и принципах работы. Мы надеемся, что этот полезный материал по этой теме будет полезен при создании студентами электронных или электрических проектов, а также при наблюдении за различными электронными устройствами или приборами.Благодарим вас за внимание и сосредоточенность на этой статье. И поэтому, пожалуйста, напишите нам для выбора требуемых характеристик компонентов в этом мостовом выпрямителе для вашего приложения и для любых других технических рекомендаций.

Теперь мы надеемся, что вы получили представление о концепции мостового выпрямителя и его применениях, если какие-либо дополнительные вопросы по этой теме или концепции электрических и электронных проектов оставьте комментарии в разделе ниже.

Фото:

Как работает выпрямительный диод? – Определение строительства и исправления

Выпрямительный диод – полупроводниковый диод предназначен для выпрямления переменного тока (преимущественно с низкой частотой питания – 50 Гц при большой мощности, излучаемой при нагрузке).Чтобы «исправить» значение этого компонента, его основная задача – преобразование переменного тока (AC) в постоянный (DC) посредством применения выпрямительных мостов. Вариант выпрямительного диода с барьером Шоттки особенно ценится в цифровой электронике. Выпрямительный диод способен проводить ток от нескольких миллиампер до нескольких килоампер и напряжение до нескольких киловольт.

Рис. 1. Обозначение выпрямительного диода

Выпрямительный диод – Технические параметры

Наиболее распространенные выпрямительные диоды изготавливаются из кремния (полупроводникового кристалла).Они способны проводить высокие значения электрического тока, и это можно классифицировать как их основную особенность. Есть также менее популярные, но все еще используемые полупроводниковые диоды из германия или арсенида галлия. Германиевые диоды имеют гораздо меньшее допустимое обратное напряжение и меньшую допустимую температуру перехода (T j = 75 ° C для германиевых диодов и T j = 150 ° C для кремниевого диода). Единственное преимущество германиевого диода перед кремниевым диодом – более низкое значение порогового напряжения при работе в прямом смещении (V F (I0) = 0.3 ÷ 0,5 В для германия и 0,7 ÷ 1,4 В для кремниевых диодов).

Мы выделяем две группы технических параметров выпрямительного диода (они относятся и к другим полупроводниковым диодам):

  • допустимые предельные параметры,
  • характеристических параметров.

Выпрямительный диод характеризуется следующими предельными параметрами:

  • В F – прямое напряжение с определенным прямым током I F (обычно с максимальным средним выпрямленным током, также известным как номинальный ток I FN ),
  • I R – обратный ток при В RWM пиковое обратное напряжение.
  • I FN – номинальный ток в прямом смещении (также известный как максимальный средний ток диода),
  • I FRM – пиковый, повторяемый ток диодной проводимости (например, для импульсов длительностью менее 3,5 мс и частотой 50 Гц),
  • I FSM – пиковый неповторяемый ток проводимости (например, для одиночного импульса длительностью менее 10 мс),
  • В RWM – пиковое, обратное напряжение (или среднее, обратное напряжение при работе диода в волновом выпрямителе с нагрузкой),
  • В RRM – пиковое, повторяющееся обратное напряжение,
  • В RSM – пиковое, неповторяющееся обратное напряжение,
  • P TOT – общее значение мощности, рассеиваемой на этом электронном компоненте,
  • T Дж – максимальная температура перехода диода
  • R th – термическое сопротивление в рабочих условиях,
  • Максимальный мгновенный ток диода (определяет сопротивление при перегрузках)

Выпрямительный диод – Задания для студентов

Если вы студент или просто хотите научиться решать задачи с выпрямительным диодом, посетите этот раздел нашего веб-сайта, где вы можете найти широкий спектр электронных задач.


Сильноточный выпрямительный диод

Примером высокоэффективного диода является двойной сильноточный выпрямительный диод с током 2x 30A.

STM предлагает двойной выпрямительный диод высокого напряжения под названием STPS60SM200C. Диод лучше всего подходит для базовых станций, сварочных аппаратов, источников питания переменного / постоянного тока и промышленных приложений.

Рис. 2. Сильноточный выпрямительный диод STPS60SM200CW

Значение напряжения пробоя V RRM составляет 200 В, напряжение проводимости 640 мВ, а его текущая память составляет 2×30 А.Дополнительная защита – от электростатического разряда до 2 кВ, называемого ESD.

Диапазон рабочих температур составляет от -40 ° C до 175 ° C. Такие значения температуры позволяют использовать диоды в любых условиях на базовых станциях.

Выпрямительный диод – ВАХ

Вольт-амперные характеристики выпрямительного диода показаны ниже (рис. 3.).

Рис. 3. Вольт-амперные характеристики выпрямительного диода

.

Как проверить выпрямительный диод?

Самые простые мультиметры могут использоваться для определения полярности выпрямительного диода (где – анод, а где – катод).Есть как минимум три способа сделать это, но я покажу два самых простых:

a) С помощью омметра (диапазон 2 кОм):

Рис. 4. Прямое смещение: Омметр покажет приблизительное значение прямого напряжения диода (около 0,7 В).

Рис. 5. Обратное смещение: омметр показывает «1», что означает очень высокое сопротивление (электрический клапан выключен).

Функция «проверка диодов» даст тот же результат, что и при использовании вышеупомянутого метода.

b) Использование функции измерения VDC:

Рис.6. Прямое смещение: мультиметр должен показывать падение напряжения около 0,7 В для кремниевых диодов

.

Рис. 7. Обратное смещение: мультиметр покажет приблизительное значение полного напряжения источника питания (Примечание: здесь диод вставлен противоположным образом по сравнению с приведенным выше примером. На самом деле, я бы изменил полярность источника питания, потому что вы не можете размонтировать «руками» один раз припаянный компонент, если вы его не демонтируете. Конечно, мы не хотим делать это с исправным рабочим компонентом. Я просто хотел показать вам пример, что вы также должны заплатить внимание к правильному размещению компонентов на вашей печатной или макетной плате)

Мостовые выпрямители

Мостовые выпрямители делятся на разные типы по:

  • Структура и количество фаз питающего напряжения: однофазный мостовой выпрямитель, многофазный мостовой выпрямитель (трехфазный мостовой выпрямитель, двухфазный мостовой выпрямитель).
  • Ряд полуволнового выпрямления напряжения: одинарный мост (однополупериодный выпрямитель), двойной мост (двухполупериодный диодный выпрямитель). Мы можем создать комбинированную схему, например, однофазный двухполупериодный мостовой выпрямитель или трехфазный двухполупериодный выпрямитель. Вы можете комбинировать количество фаз с полнополупериодными или однополупериодными выпрямителями.
  • Тип нагрузки: резистивная, емкостная, индуктивная.

Свойства мостовых выпрямителей:

  • В – напряжение питания,
  • В OS , I OS – постоянное выходное напряжение компонента,
  • I OSmax – максимальный выходной ток,
  • N ip – энергоэффективность,
  • Коэффициент пульсации цепи,
  • В Rmax – Максимальное обратное напряжение.

Полуволновой мостовой выпрямитель

Полуволновой мостовой выпрямитель

– это простейшая схема, которая может преобразовывать переменный ток (оба знака, + и -) в ток одного знака (+). После дальнейшей фильтрации полученный выходной ток может быть изменен на постоянный ток.

На выходе этой схемы мы получим синусоидальную волну только с положительной половиной ее периода, поэтому ее на самом деле называют полуволновым выпрямителем. Не будет «отрицательной части» синусоидальной волны, потому что выпрямительный диод проводит только тогда, когда он смещен в прямом направлении (положительное напряжение).Ток протекает через резистивную нагрузку только в одном направлении и пульсирует.

Пример простой схемы однополупериодного мостового выпрямительного диода показан ниже:

Рис. 8. Схема однополупериодного выпрямительного диода

Характеристики полуволнового мостового выпрямителя:

Рис. 9. Временные характеристики полуволнового мостового выпрямителя

Полноволновой мостовой выпрямитель

Схема полноволнового мостового выпрямителя показана ниже. Его часто называют мостом Гретца.

Рис. 10. Схема двухполупериодного мостового выпрямителя (мост Гретца)

Принцип работы полноволнового мостового выпрямителя следующий. На рисунке ниже (красный) показан путь тока, два красных диода смещены в прямом направлении (проводят ток), а два других – в обратном направлении (не проводят ток). Ток идет от источника питания через первый красный диод. Потом с первого красного диода через нагрузку. После прохождения нагрузки он потечет через второй красный диод, а затем вернется к источнику питания.

Рис. 11. Схема полнополупериодного мостового выпрямителя (переменный ток, прямое смещение)

При изменении полярности напряжения питания ситуация, описанная выше, будет противоположной (синяя цепь ниже). Два синих диода смещены в прямом направлении (проводят ток), а два других – в обратном направлении (не проводят ток). Ток идет от источника питания через первый синий диод. Потом с первого синего диода через нагрузку. После прохождения нагрузки он потечет через второй синий диод, а затем вернется к источнику питания.

Рис. 12. Схема полнополупериодного мостового выпрямителя (переменный ток, обратное смещение)

Характеристики полноволнового мостового выпрямителя приведены ниже:

Рис. 13. Временные характеристики полуволнового мостового выпрямителя

Трехфазный мостовой выпрямитель

Использование трехфазного диодного мостового выпрямителя (двухполупериодного мостового выпрямителя) возможно в любой из трехфазных цепей напряжения. В этом случае пульсации выходного напряжения минимальны.Источники питания максимально используют мощность схемы. Трехфазные мостовые выпрямители часто имеют возможность управлять выходным током.

Ниже вы можете увидеть схему трехфазного выпрямителя, которая показывает, как его можно построить.

Рис. 14. Схема и характеристика трехфазного мостового выпрямителя

Расчет трехфазного мостового выпрямителя

Ниже приведен пример расчета трехфазного мостового выпрямителя с уравнениями и значениями для данной схемы.Результаты представлены в таблице ниже.

P d – Выходная мощность

В d – Среднее значение выпрямленного напряжения

I d = P d / V d – Среднее значение выпрямленного тока

R = V d / I d – Сопротивление системы

Рис. 15. Трехфазный линейный мостовой выпрямитель

Формулы

Результаты трехфазного мостового выпрямителя Банкноты
V d / V f 2,34 В ф – фазное напряжение трансформатора
V d / V 12 1,35 В 12 – межфазное напряжение трансформатора
I / I d 0,82 I – действующее значение на вторичной стороне трансформатора
V RRM / V d 1,05 В RRM – Пиковое обратное напряжение, повторяющееся
I F (AV) / I d 0,333 I F (AV) – средний ток проводимости
I FRMS / I d 0,58 I FRMS – действующее значение тока проводимости
P u = P d R * I d 2 Выходная мощность
S 2 / P d Мощность обработки вторичной обмотки трансформатора
S 1 / P d Вычислительная мощность первичной обмотки трансформатора
S т / P d 1,05 Типовой трансформатор мощности

Полноволновой мостовой выпрямитель в виде интегральной схемы

Двухполупериодный мостовой выпрямитель обычно представляет собой однокристальную интегральную схему.Он построен из четырех выпрямительных диодов в мостовой системе Гретца. Может использоваться для монтажа THT и SMD. Использование этого решения является наиболее популярным, экономичным и позволяет сэкономить место на печатной плате.

Рис. 16. Мостовой выпрямитель как элемент интегральной схемы

На рисунке выше показаны разъемы в каждой интегральной схеме мостового выпрямителя. Знак (+) соответствует выходу + VDC, знак (-) соответствует выходу – VDC, символы (~) соответствуют подключению VAC.Для правильного подключения напряжения необходимо подключить вход VAC к выходу + VDC по горизонтали, а выход VAC к выходу – VDC по горизонтали.

Shahram Marivani – ПОЛНОВОЛНОВЫЕ ВЫПРЯМИТЕЛИ И ИСТОЧНИКИ ПИТАНИЯ

ПОЛНОВОЛНОВЫЕ ВЫПРЯМИТЕЛИ И ИСТОЧНИКИ ПИТАНИЯ

Цель:

Целью этого эксперимента является изучение рабочих характеристик и характеристик двухполупериодных выпрямителей и источников питания постоянного тока, использующих стабилитрон в качестве устройства стабилизации напряжения.Будут изучены и измерены характеристики двухполупериодного выпрямителя, а также стабилитрона.

Введение:

Одно из важных применений диодов с P-N переходом – преобразование переменного тока (AC) в постоянный ток (DC). Можно использовать полуволновые выпрямители, но они крайне неэффективны при преобразовании мощности переменного тока в мощность постоянного тока. Кроме того, они имеют высокое содержание гармоник, которые трудно отфильтровать и сгладить пульсации выпрямленного переменного тока.С другой стороны, двухполупериодный выпрямитель повышает эффективность преобразования мощности переменного тока в мощность постоянного тока. Это также уменьшит содержание гармоник в выпрямленной форме волны и снизит требования к сглаживающему фильтру, необходимому для уменьшения пульсаций в выпрямленной форме волны. Типичная форма сигнала двухполупериодного выпрямителя показана на рисунке 1.


Рисунок 1 – Формы выходных сигналов двухполупериодного выпрямителя; темная линия – это отфильтрованный вывод, а более тонкая линия – нефильтрованный вывод.Стабилитроны

– это специальные диоды, предназначенные для поддержания фиксированного напряжения на нагрузке. Они предназначены для “пробоя” надежным и неразрушающим образом, когда они смещены в обратном направлении напряжением, превышающим напряжение пробоя. Типичная характеристика постоянного тока стабилитрона показана на рисунке 2. Перегиб в области обратного смещения на рисунке 2 – это «напряжение пробоя» стабилитрона. Однако это напряжение также известно как напряжение Зенера.


Рисунок 2 – Вольт-амперная характеристика кремниевого стабилитрона. Стабилитроны

имеют номинальное напряжение пробоя и максимальную мощность.Минимальное доступное напряжение стабилитрона составляет 2,7 В, тогда как номинальная мощность составляет 400 мВт и 1,3 Вт. Схема подключения стабилитрона в качестве базовой цепи стабилизации напряжения показана на рисунке 3.


Рисунок 3 – Подключение стабилитрона в качестве регулятора напряжения

Полный и стабилизированный источник питания может быть получен с помощью выпрямительных диодов для изменения мощности переменного тока на мощность постоянного тока. Выпрямленное напряжение фильтруется, чтобы уменьшить пульсации выпрямленного сигнала. Затем используется стабилитрон для регулирования напряжения до желаемого конечного значения.Простая блок-схема источника питания показана на рисунке 4.

На блок-схеме Рисунка 4 каждый отдельный блок описан более подробно ниже:

  • Трансформатор: понижает напряжение сети переменного тока высокого напряжения до переменного тока низкого напряжения.
  • Диодный выпрямитель: преобразует переменный ток в постоянный, но на выходе постоянного тока присутствует большая составляющая пульсаций.
  • Фильтр: сглаживает постоянный ток от сильных колебаний и снижает составляющую пульсации.
  • Регулятор напряжения: устраняет пульсации, устанавливая на выходе постоянного тока фиксированное напряжение.
  • Нагрузка: это часть цепи, на которую подается питание постоянного тока для выполнения полезной работы.

Рисунок 4 – Простая блок-схема стабилизированного источника постоянного тока.

Лабораторные работы:

  1. Измерение постоянной характеристики стабилитрона:
    1. Установите напряжение постоянного тока источника питания на 0 В.
    2. Подключите схему стабилитрона, как показано на рисунке 5.
    3. Изменяйте напряжение питания постоянного тока небольшими шагами.Используйте цифровой вольтметр, измерьте V в , V R и V D , как показано на рисунке 5. Сведите данные измерений в таблицу.
    4. Для каждого шага вычислите постоянный ток через диод, который равен (V R /2000).
    5. Поменяйте полярность источника питания постоянного тока на рис. 5. Повторите шаги измерения с 1.a до 1.d.

    Рисунок 5 – Схема подключения для измерения характеристики постоянного тока стабилитрона
  2. Характеристика мостового выпрямителя:
    1. Подключите двухполупериодную схему выпрямителя, как показано на рисунке 6, на котором R L = 1 кОм.Не подключайте конденсатор к нагрузке.
    2. Monitor V o (см. Рисунок 6) на осциллографе. ЗАПРЕЩАЕТСЯ контролировать V s и V или на осциллографе одновременно. Измерьте пиковое входное и пиковое выходное напряжения. Захватите отображаемую форму волны. С помощью цифрового вольтметра измерьте напряжение постоянного тока на R L .
    3. Подключите 47 мкФ к R L . Наблюдайте за V или на осциллографе и фиксируйте осциллограмму. Повторите измерение с конденсатором 10 мкФ.Сравните две формы выпрямленного сигнала, полученные с разными конденсаторами.
    4. Измените нагрузочный резистор на 10 кОм и 100 кОм и контролируйте выпрямленное напряжение на выходе. Прокомментируйте влияние сопротивления нагрузки на пульсации на выходе.

  3. Рисунок 6 – Нефильтрованный двухполупериодный выпрямитель с мостовым соединением диодов
  4. Характеристика двухполупериодного выпрямителя с центральным отводом:
    1. Выполните необходимые измерения на трансформаторе с центральным ответвлением, чтобы определить, какой вывод является центральным ответвлением.
    2. Подключите двухполупериодную схему выпрямителя, как показано на рисунке 7, на котором R L = 1 кОм. Не подключайте конденсатор к нагрузке.
    3. Контролируйте на осциллографе одновременно V s и V или (см. Рисунок 7). Измерьте пиковое входное и пиковое выходное напряжения. Захватите отображаемые формы сигналов. С помощью цифрового вольтметра измерьте напряжение постоянного тока на R L .
    4. Подключите 47 мкФ к R L . Наблюдайте за V s и V или на осциллографе и фиксируйте обе формы сигнала.

  5. Рисунок 7 – Нефильтрованная двухполупериодная схема выпрямителя, использованная в эксперименте.
  6. Регулируемый источник питания постоянного тока:
    1. Рассмотрим схему источника питания постоянного тока, показанную на рисунке 8. Используя ранее измеренные выпрямленные напряжения постоянного тока и стабилитрон, вычислите минимальное значение R с , необходимое для защиты стабилитрона в условиях, когда нагрузка представляет собой разомкнутую цепь (это это наихудшее состояние). Стабилитрон рассчитан на 400 мВт, а минимальный ток стабилитрона составляет 5 мА.Обсудите результат с инструктором лаборатории, прежде чем использовать его в эксперименте.

    2. Рисунок 8 – Регулируемый источник питания постоянного тока
    3. Подключите схему, показанную на рисунке 8, и используйте значение R s , вычисленное в 4.a. Следите за напряжением на нагрузке с помощью осциллографа. Измерьте напряжение на R L и напряжение на R s . Рассчитайте ток, проходящий через стабилитрон.
    4. Отсоедините R от L и измерьте напряжение и ток на стабилитроне.

Результаты и обсуждения:

В дополнение к вопросам, указанным в лабораторной процедуре, выполните следующие действия и ответьте на них:

  • Постройте график ВАХ стабилитрона.
  • Какое значение прямого сопротивления стабилитрона?
  • Что такое напряжение стабилитрона?
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *