Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

12 схем автоматического реле (температура, звук, свет, влажность)

Релейные схемы используются в системах авторегулирования: для поддержания заданной температуры, освещенности, влажности и т.д. Подобные схемы, как правило, похожи и в качестве обязательных узлов содержат датчик, пороговую схему и исполнительное или индикаторное устройство (см. список литературы).

Релейные схемы реагируют на превышение контролируемого параметра над заданным (установленным) уровнем и включают исполнительное устройство (реле, электродвигатель, тот или иной прибор).

Также возможно оповещение звуковым или световым сигналом о факте выхода контролируемого параметра за пределы допустимого уровня.

Термореле на транзисторах

Термореле (рис. 1) выполнено на основе триггера Шмитта. В качестве датчика температуры используется терморезистор (резистор, сопротивление которого зависит от температуры).

Потенциометр R1 устанавливает начальное смещение на терморезисторе R2 и потенциометре R3.

Его регулировкой добиваются срабатывания исполнительного устройства (реле К1) при изменении сопротивления терморезистора.

Рис. 1. Схема простого термореле на транзисторах.

В качестве нагрузки в этой и других схемах этой главы может быть использовано не только реле, но и слаботочная лампа накаливания.

Можно включить светодиод с последовательным токоограничивающим резистором величиной 330…620 Ом, генератор звуковых колебаний, электронную сирену и т.д.

При использовании реле контакты последнего могут включать любую электрически изолированную от цепи датчика нагрузку: нагревательный элемент либо, напротив, вентилятор.

Для защиты выходного транзистора от импульсов напряжения, возникающих при коммутации обмотки реле (индуктивной нагрузки), необходимо включать параллельно обмотке реле полупроводниковый диод.

Так, на рис. 1 анод диода должен быть соединен с нижним по схеме выводом обмотки реле, катод — с шиной питания. Вместо диода с тем же результатом может быть подключен стабилитрон или конденсатор.

Термореле на тиристоре

Термореле [МК 6/82-3] (рис. 2) имеет выходной каскад с самоблокировкой на тиристоре.

Рис. 2. принципиальная схема термореле на транзисторе и тиристоре.

Это приводит к тому, что после срабатывания схемы выключить сигнализацию можно только после кратковременного отключения питания устройства.

Простой термоиндикатор

Термореле (рис. 3), или, говоря точнее, термоиндикатор, выполнен по мостовой схеме [ВРЛ 83-24]. Когда мост сбалансирован, ни один из светодиодов не светится. Стоит температуре повыситься, включится один из светодиодов.

Рис. 3. Принципиальная схема простого термо-индикатора на одном транзисторе и светодиодах.

Если температура, напротив, понизится, загорится другой светодиод. Чтобы различать, в какую сторону изменяется температура, для индикации ее повышения можно использовать светодиод красного свечения, а для индикации понижения — светодиод желтого (или зеленого) свечения. Для балансировки схемы вместо резистора R2 лучше включить потенциометр.

Фотореле на транзисторах

Фотореле (рис. 4) отличается от термореле (рис. 16.1) тем, что вместо терморезистора использован фоточувствительный прибор (фотодиод или фотосопротивление).

Рис. 4. Принципиальная схема простого фото-реле на транзисторах.

Фотореле с двухкаскадным усилителем

Схема фотореле, показанная на рис. 5, содержит двухкаскадный усилитель постоянного тока, выполненный на транзисторах разного типа проводимости.

Рис. 5. Принципиальная схема фотореле с двухкаскадным усилителем.

При изменении электрического сопротивления фотодиода и, соответственно, смещения на базе транзистора VT1, увеличится коллекторный ток выходного транзистора усилителя VT2, и напряжение на резисторе R2 возрастет.

Как только это напряжение превысит напряжение пробоя порогового элемента — полупроводникового стабилитрона VD2, включится оконечный каскад на транзисторе VT3, управляющий работой исполнительного механизма (реле).

Использование в схеме порогового элемента (полупроводникового стабилитрона) повышает четкость срабатывания фотореле.

Фотореле со звуковой сигнализацией

Фотореле (рис. 6) является таковым не в полной мере, поскольку реагирует на изменение освещенности плавным изменением частоты генерируемых колебаний [B.C. Иванов].

Рис. 6. Принципиальная схема фотореле со звуковой сигнализацией.

В то же время это устройство может работать совместно с измеряющими частоту приборами, частотно-избирательными реле, сигнализировать высотой звукового сигнала об изменении освещенности, что может быть весьма актуально для слабовидящих.

Схема реле влажности, реле уровня жидкости

Реле влажности или реле уровня жидкости (рис. 7) так же, как и некоторые из вышеприведенных схем выполнено на основе триггера Шмитта [МК 2/86-22].

Рис. 7. Принципиальная схема реле влажности,  реле уровня жидкости.

Порог срабатывания устройства устанавливают регулировкой потенциометра R3. Контакты датчика влажности выполнены в виде медного (Си) и железного (Fe) стержней, погруженных в землю.

При изменении содержания влаги в земле электропроводность среды и сопротивление между электродами меняются. С увеличением смещения на базе транзистора VT1 он открывается.

Коллекторный и эмиттерный токи транзистора возрастают, что приводит к росту напряжения на потенциометре R3 и, соответственно, к переключению триггера.

Реле срабатывает. Устройство может быть настроено на уменьшение электропроводности земли ниже заданной нормы. Тогда, при срабатывании исполнительного устройства, включается система автоматического полива земли (растений).

Реле времени

Реле времени (рис. 8) описано в книге П. Величкова и В. Христова (Болгария). Кратковременное нажатие на кнопку SA1 разряжает времязадающий конденсатор С1 и устройство начинает «отсчет времени».

Рис. 8. Принципиальная схема реле времени на транзисторах.

В процессе заряда конденсатора напряжение на его обкладках плавно увеличивается. В итоге, через некоторое время реле сработает, и включится исполнительное устройство.

Скорость заряда конденсатора, а, следовательно, и время выдержки (время экспозиции) можно изменять потенциометром R1. Реле обеспечивает максимальное время экспозиции до 10 сек при указанных на схеме параметрах элементов. Это время может быть увеличено за счет увеличения емкости конденсатора С1, либо сопротивления потенциометра R1.

Стоит отметить, что для столь простых схем «аналоговых» таймеров стабильность временного интервала невелика. Кроме того, нельзя до бесконечности наращивать емкость времязадаю-щего конденсатора, поскольку заметно возрастает его ток утечки.

Такой конденсатор неприемлем в схемах «аналоговых» таймеров. Существенно увеличить время экспозиции за счет сопротивления потенциометра R1 также нельзя, поскольку входное сопротивление последующих каскадов, если только они не выполнены на полевых транзисторах, невелико.

Аналоговые таймеры (реле времени) широко используют при фотопечати, для задания времени выполнения каких-либо процедур. Эти устройства используются, например, для получения воды, ионизированной серебром.

Реле что реагирует на уровень напряжения

Реле напряжения (рис. 9, 10) используются для контроля заряда или разряда элементов питания, аккумуляторов, контроля напряжения питания, поддержания напряжения на заданном уровне. Схемы, описанные в книге П. Величкова и В. Христова, предназначены для контроля разряда (рис. 9) или перезаряда (рис. 10) аккумулятора.

Рис. 9. Принципиальная схема реле для контроля разряда аккумулятора.

Рис. 10. Принципиальная схема реле для контроля перезаряда аккумулятора.

При необходимости напряжение срабатывания этих устройств может быть изменено. Порог срабатывания задается типом стабилитрона. Для изменения в небольших пределах порога срабатывания подобных реле последовательно со стабилитроном можно включать 1 — 3 германиевых Щ9) или кремниевых (КД503, КД102) диодов в прямом направлении.

Катоды диодов должны «смотреть» в сторону базы входного транзистора. Германиевый диод смещает порог срабатывания примерно на 0,3 В, а кремниевый — на 0,5 В.

Для цепочки из двух, трех диодов эти значения удваиваются (утраиваются). Промежуточные значения напряжений можно получить при последовательном включении германиевого и кремниевого диодов (0,8 В).

Акустическое реле

Акустическое реле (рис. 11, 12) используют для контроля уровня шума, а также в составе систем охранной сигнализации [Б.С. Иванов, М 2/96-13]. Помимо прочего, такие схемы часто используют в системах связи — в устройствах голосового управления каналом связи.

Рис. 11. Принципиальная схема акустического реле.

 

Рис. 12. Принципиальная схема акустического реле на транзисторах.

Так, при разговоре автоматически и без вмешательства оператора происходит переключение радиостанции или линии связи с приема на передачу. Устройство содержит датчик звукового сигнала — микрофон, в качестве которого можно использовать обычный микротелефонный капсюль, усилитель низкой частоты, детектирующее и исполняющее (релейное) устройство.

Коэффициент усиления УНЧ определяет чувствительность акустического реле. На микрофон может быть установлен звукоулавливающий рупор для повышения направленных свойств акустического реле. Резонансный фильтр, включенный после УНЧ, позволяет акустическому реле реагировать только на звук определенной частоты и игнорировать остальные звуки.


Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003.

принцип работы, схемы устройств, как настроить и проверить, основные неисправности

Необходимость настройки температурного режима возникает при использовании различных систем теплового или холодильного оборудования. Вариантов много, и все они требуют наличия управляющего устройства, без которого работа систем возможна либо в режиме максимальной мощности, либо на полном минимуме возможностей. Контроль и настройка производятся с помощью терморегулятора — устройства, способного воздействовать на систему через датчик температуры и включать или отключать её по необходимости.

При использовании готовых комплектов оборудования блоки управления входят в комплект поставки, но для самодельных систем приходится собирать терморегулятор своими руками. Задача не самая простая, но вполне решаемая. Рассмотрим её внимательнее.

Принцип работы терморегулятора

Терморегулятор — это устройство, способное реагировать на изменения температурного режима. По типу действия различают терморегуляторы триггерного типа, отключающие или включающие нагрев при достижении заданного предела, или устройства плавного действия с возможностью тонкой и точной настройки, способные контролировать изменения температуры в диапазоне долей градуса.

Существуют две разновидности терморегуляторов:

  1. Механический. Представляет собой устройство, использующее принцип расширения газов при изменении температуры, или биметаллические пластины, изменяющие свою форму от нагревания или охлаждения.
  2. Электронный. Состоит из основного блока и датчика температуры, подающего сигналы об увеличении или понижении заданной температуры в системе. Используется в системах, требующих высокой чувствительности и тонкой регулировки.

Механические устройства не позволяют обеспечить высокой точности настройки. Они являются одновременно и датчиком температуры, и исполнительным органом, объединёнными в единый узел. Биметаллическая пластина, используемая в нагревательных устройствах, представляет собой термопару из двух металлов с разным коэффициентом теплового расширения.

Главное предназначение терморегулятора — автоматическое поддержание необходимой температуры

Нагреваясь, один из них становится больше другого, отчего пластина изгибается. Контакты, установленные на ней, размыкаются и прекращают нагрев. При охлаждении пластина возвращается в изначальную форму, контакты вновь замыкаются и нагрев возобновляется.

Камера с газовой смесью — чувствительный элемент термостата холодильника или отопительного терморегулятора. При изменениях температуры меняется объём газа, что вызывает перемещение поверхности мембраны, соединённой с рычагом контактной группы.

В терморегуляторе для отопления используется камера с газовой смесью, работающая по закону Гей-Люссака — при изменении температуры меняется объём газа

Механические термостаты надёжны и обеспечивают устойчивую работу, но настройка режима работы происходит с большой погрешностью, практически «на глазок». При необходимости тонкой настройки, обеспечивающей регулировку в пределах нескольких градусов (или ещё тоньше), используются электронные схемы. Датчиком температуры для них служит терморезистор, способный различить мельчайшие изменения режима нагрева в системе. Для электронных схем ситуация обратная — чувствительность датчика слишком высока и её искусственно загрубляют, доводя до пределов разумного. Принцип действия состоит в изменении сопротивления датчика, вызванном колебаниями температуры контролируемой среды. Схема реагирует на смену параметров сигнала и повышает/понижает нагрев в системе до получения другого сигнала. Возможности электронных блоков контроля намного выше и позволяют получить настройку температуры любой точности. Чувствительность таких термостатов даже избыточна, поскольку нагрев и охлаждение — процессы, обладающие высокой инерционностью, которые замедляют время реакции на смену команд.

Область применения самодельного устройства

Изготовление механического терморегулятора в домашних условиях достаточно сложно и нерационально, поскольку результат будет работать в слишком широком диапазоне и не сможет обеспечить требуемой точности настройки. Чаще всего собирают самодельные электронные терморегуляторы, которые позволяют поддерживать оптимальный режим температуры тёплого пола, инкубатора, обеспечивать желаемую температуру воды в бассейне, нагрев парилки в сауне и т.д. Вариантов применения самодельного терморегулятора может быть столько, сколько систем, подлежащих настройке и регулировке температурного режима, имеется в доме. Для грубой настройки с помощью механических устройств проще приобрести готовые элементы, они недороги и вполне доступны.

Преимущества и недостатки

Самодельный терморегулятор обладает определёнными достоинствами и недостатками. Плюсами устройства являются:

  • Высокая ремонтопригодность. Терморегулятор, сделанный самостоятельно, легко отремонтировать, поскольку его конструкция и принцип работы известны до мелочей.
  • Расходы на создание регулятора намного ниже, чем при покупке готового блока.
  • Существует возможность изменения рабочих параметров для получения более подходящего результата.

К недостаткам следует отнести:

  • Сборка такого устройства доступна только людям, имеющим достаточную подготовку и определённые навыки работы с электронными схемами и паяльником.
  • Качество работы устройства в большой степени зависит от состояния использованных деталей.
  • Собранная схема требует настройки и юстировки на контрольном стенде или с помощью эталонного образца. Получить сразу готовый вариант устройства невозможно.

Основной проблемой является необходимость подготовки или, как минимум, участие специалиста в процессе создания прибора.

Как сделать простой терморегулятор

Изготовление терморегулятора происходит поэтапно:

  • Выбор типа и схемы устройства.
  • Приобретение необходимых материалов, инструментов и деталей.
  • Сборка прибора, настройка, запуск в эксплуатацию.

Стадии изготовления прибора имеют свои особенности, поэтому их следует рассмотреть подробнее.

Необходимые материалы

В число необходимых для сборки материалов входят:

  • Фольгированный гетинакс или монтажная плата;
  • Паяльник с припоем и канифолью, в идеале — паяльная станция;
  • Пинцет;
  • Пассатижи;
  • Лупа;
  • Кусачки;
  • Изолента;
  • Медный соединительный провод;
  • Необходимые детали, согласно электрической схемы.

В процессе работы могут понадобиться и другие инструменты или материалы, поэтому данный список не следует считать исчерпывающим и окончательным.

Схемы устройств

Выбор схемы обусловлен возможностями и уровнем подготовки мастера. Чем сложнее схема, тем больше нюансов возникнет при сборке и настройке устройства. В то же время самые простые схемы позволяют получить лишь наиболее примитивные приборы, работающие с высокой погрешностью.

Рассмотрим одну из несложных схем.

В данной схеме в качестве компаратора используется стабилитрон

На рисунке слева изображена схема регулятора, а справа — блок реле, включающий нагрузку. Датчик температуры — это резистор R4, а R1 — переменный резистор, используемый для настройки режима нагрева. Управляющим элементом является стабилитрон TL431, который открыт до тех пор, пока на его управляющем электроде имеется нагрузка выше 2,5 В. Нагрев терморезистора вызывает снижение сопротивления, отчего напряжение на управляющем электроде падает, стабилитрон закрывается, отсекая нагрузку.

Другая схема несколько сложнее. В ней использован компаратор — элемент, производящий сравнение показаний термодатчика и эталонного источника напряжения.

Подобная схема с компаратором применима для регулировки температуры тёплого пола

Любое изменение напряжения, вызванное увеличением или уменьшением сопротивления терморезистора, создаёт разницу между эталоном и рабочей линией схемы, вследствие чего на выходе устройства генерируется сигнал, вызывающий включение или отключение нагрева. Подобные схемы, в частности, используются для регулировки режима работы тёплого пола.

Пошаговая инструкция

Порядок сборки каждого устройства имеет свои особенности, но некоторые общие шаги выделить можно. Рассмотрим ход сборки:

  1. Готовим корпус прибора. Это важно, поскольку оставлять плату незащищённой нельзя.
  2. Готовим плату. Если используется фольгированный гетинакс, придётся травить дорожки при помощи электролитических методов, предварительно нарисовав их нерастворимой в электролите краской. Монтажная плата с готовыми контактами значительно упрощает и ускоряет процесс сборки.
  3. Проверяем с помощью мультиметра работоспособность деталей, при необходимости заменяем их на исправные образцы.
  4. По схеме собираем и соединяем все необходимые детали. Необходимо следить за точностью соединения, правильной полярностью и направлением установки диодов или микросхем. Любая ошибка может привести к выходу из строя важных деталей, которые придётся приобретать снова.
  5. После окончания сборки рекомендуется ещё раз внимательно осмотреть плату, проверить точность соединений, качество пайки и прочие важные моменты.
  6. Плата помещается в корпус, производится пробный запуск и настройка работы устройства.

Как настроить

Для настройки прибора необходимо либо иметь эталонное устройство, либо знать номинал напряжений, соответствующих той или иной температуре контролируемой среды. Для отдельных устройств существуют собственные формулы, показывающие зависимость напряжения на компараторе от температуры. Например, для датчика LM335 такая формула имеет вид:

V = (273 + T) • 0,01,

где Т — требуемая температура по Цельсию.

В других схемах настройка производится путём подбора номиналов регулировочных резисторов при создании определённой, известной температуры. В каждом конкретном случае могут быть использованы собственные методики, оптимальным образом подходящие к имеющимся условиям или используемому оборудованию. Требования к точности прибора также отличаются друг от друга, поэтому единой технологии настройки не существует в принципе.

Основные неисправности

Наиболее распространённой неисправностью самодельных терморегуляторов является нестабильность показаний терморезистора, вызванная низким качеством деталей. Кроме того, нередко встречаются сложности с настройкой режимов, вызванные несоответствием номиналов или изменением состава деталей, необходимых для правильной работы устройства. Большинство возможных проблем напрямую зависят от уровня подготовки мастера, производящего сборку и настройку прибора, так как навыки и опыт в этом деле значат очень много. Тем не менее, специалисты утверждают, что изготовление терморегулятора своими руками — полезная практическая задача, дающая неплохой опыт в создании электронных устройств.

Если уверенности в своих силах нет, лучше использовать готовое устройство, которых достаточно в продаже. Необходимо учитывать, что отказ регулятора в самый неподходящий момент может стать причиной серьёзных неприятностей, для устранения которых потребуются усилия, время и деньги. Поэтому, принимая решение о самостоятельной сборке, следует подойти к вопросу максимально ответственно и тщательно взвесить свои возможности.

Оцените статью: Поделитесь с друзьями!

12 схем автоматического реле (температура, звук, свет, влажность)

Релейные схемы используются в системах авторегулирования: для поддержания заданной температуры, освещенности, влажности и т.д. Подобные схемы, как правило, похожи и в качестве обязательных узлов содержат датчик, пороговую схему и исполнительное или индикаторное устройство (см. список литературы).

Релейные схемы реагируют на превышение контролируемого параметра над заданным (установленным) уровнем и включают исполнительное устройство (реле, электродвигатель, тот или иной прибор).

Также возможно оповещение звуковым или световым сигналом о факте выхода контролируемого параметра за пределы допустимого уровня.

Термореле на транзисторах

Термореле (рис. 1) выполнено на основе триггера Шмитта. В качестве датчика температуры используется терморезистор (резистор, сопротивление которого зависит от температуры).

Потенциометр R1 устанавливает начальное смещение на терморезисторе R2 и потенциометре R3. Его регулировкой добиваются срабатывания исполнительного устройства (реле К1) при изменении сопротивления терморезистора.

Рис. 1. Схема простого термореле на транзисторах.

В качестве нагрузки в этой и других схемах этой главы может быть использовано не только реле, но и слаботочная лампа накаливания.

Можно включить светодиод с последовательным токоограничивающим резистором величиной 330…620 Ом, генератор звуковых колебаний, электронную сирену и т.д.

При использовании реле контакты последнего могут включать любую электрически изолированную от цепи датчика нагрузку: нагревательный элемент либо, напротив, вентилятор.

Для защиты выходного транзистора от импульсов напряжения, возникающих при коммутации обмотки реле (индуктивной нагрузки), необходимо включать параллельно обмотке реле полупроводниковый диод.

Так, на рис. 1 анод диода должен быть соединен с нижним по схеме выводом обмотки реле, катод — с шиной питания. Вместо диода с тем же результатом может быть подключен стабилитрон или конденсатор.

Термореле на тиристоре

Термореле [МК 6/82-3] (рис. 2) имеет выходной каскад с самоблокировкой на тиристоре.

Рис. 2. принципиальная схема термореле на транзисторе и тиристоре.

Это приводит к тому, что после срабатывания схемы выключить сигнализацию можно только после кратковременного отключения питания устройства.

Простой термоиндикатор

Термореле (рис. 3), или, говоря точнее, термоиндикатор, выполнен по мостовой схеме [ВРЛ 83-24]. Когда мост сбалансирован, ни один из светодиодов не светится. Стоит температуре повыситься, включится один из светодиодов.

Рис. 3. Принципиальная схема простого термо-индикатора на одном транзисторе и светодиодах.

Если температура, напротив, понизится, загорится другой светодиод. Чтобы различать, в какую сторону изменяется температура, для индикации ее повышения можно использовать светодиод красного свечения, а для индикации понижения — светодиод желтого (или зеленого) свечения. Для балансировки схемы вместо резистора R2 лучше включить потенциометр.

Фотореле на транзисторах

Фотореле (рис. 4) отличается от термореле (рис. 16.1) тем, что вместо терморезистора использован фоточувствительный прибор (фотодиод или фотосопротивление).

Рис. 4. Принципиальная схема простого фото-реле на транзисторах.

Фотореле с двухкаскадным усилителем

Схема фотореле, показанная на рис. 5, содержит двухкаскадный усилитель постоянного тока, выполненный на транзисторах разного типа проводимости.

Рис. 5. Принципиальная схема фотореле с двухкаскадным усилителем.

При изменении электрического сопротивления фотодиода и, соответственно, смещения на базе транзистора VT1, увеличится коллекторный ток выходного транзистора усилителя VT2, и напряжение на резисторе R2 возрастет.

Как только это напряжение превысит напряжение пробоя порогового элемента — полупроводникового стабилитрона VD2, включится оконечный каскад на транзисторе VT3, управляющий работой исполнительного механизма (реле).

Использование в схеме порогового элемента (полупроводникового стабилитрона) повышает четкость срабатывания фотореле.

Фотореле со звуковой сигнализацией

Фотореле (рис. 6) является таковым не в полной мере, поскольку реагирует на изменение освещенности плавным изменением частоты генерируемых колебаний [B.C. Иванов].

Рис. 6. Принципиальная схема фотореле со звуковой сигнализацией.

В то же время это устройство может работать совместно с измеряющими частоту приборами, частотно-избирательными реле, сигнализировать высотой звукового сигнала об изменении освещенности, что может быть весьма актуально для слабовидящих.

Схема реле влажности, реле уровня жидкости

Реле влажности или реле уровня жидкости (рис. 7) так же, как и некоторые из вышеприведенных схем выполнено на основе триггера Шмитта [МК 2/86-22].

Рис. 7. Принципиальная схема реле влажности,  реле уровня жидкости.

Порог срабатывания устройства устанавливают регулировкой потенциометра R3. Контакты датчика влажности выполнены в виде медного (Си) и железного (Fe) стержней, погруженных в землю.

При изменении содержания влаги в земле электропроводность среды и сопротивление между электродами меняются. С увеличением смещения на базе транзистора VT1 он открывается.

Коллекторный и эмиттерный токи транзистора возрастают, что приводит к росту напряжения на потенциометре R3 и, соответственно, к переключению триггера.

Реле срабатывает. Устройство может быть настроено на уменьшение электропроводности земли ниже заданной нормы. Тогда, при срабатывании исполнительного устройства, включается система автоматического полива земли (растений).

Реле времени

Реле времени (рис. 8) описано в книге П. Величкова и В. Христова (Болгария). Кратковременное нажатие на кнопку SA1 разряжает времязадающий конденсатор С1 и устройство начинает «отсчет времени».

Рис. 8. Принципиальная схема реле времени на транзисторах.

В процессе заряда конденсатора напряжение на его обкладках плавно увеличивается. В итоге, через некоторое время реле сработает, и включится исполнительное устройство.

Скорость заряда конденсатора, а, следовательно, и время выдержки (время экспозиции) можно изменять потенциометром R1. Реле обеспечивает максимальное время экспозиции до 10 сек при указанных на схеме параметрах элементов. Это время может быть увеличено за счет увеличения емкости конденсатора С1, либо сопротивления потенциометра R1.

Стоит отметить, что для столь простых схем «аналоговых» таймеров стабильность временного интервала невелика. Кроме того, нельзя до бесконечности наращивать емкость времязадаю-щего конденсатора, поскольку заметно возрастает его ток утечки.

Такой конденсатор неприемлем в схемах «аналоговых» таймеров. Существенно увеличить время экспозиции за счет сопротивления потенциометра R1 также нельзя, поскольку входное сопротивление последующих каскадов, если только они не выполнены на полевых транзисторах, невелико.

Аналоговые таймеры (реле времени) широко используют при фотопечати, для задания времени выполнения каких-либо процедур. Эти устройства используются, например, для получения воды, ионизированной серебром.

Реле что реагирует на уровень напряжения

Реле напряжения (рис. 9, 10) используются для контроля заряда или разряда элементов питания, аккумуляторов, контроля напряжения питания, поддержания напряжения на заданном уровне. Схемы, описанные в книге П. Величкова и В. Христова, предназначены для контроля разряда (рис. 9) или перезаряда (рис. 10) аккумулятора.

Рис. 9. Принципиальная схема реле для контроля разряда аккумулятора.

Рис. 10. Принципиальная схема реле для контроля перезаряда аккумулятора.

При необходимости напряжение срабатывания этих устройств может быть изменено. Порог срабатывания задается типом стабилитрона. Для изменения в небольших пределах порога срабатывания подобных реле последовательно со стабилитроном можно включать 1 — 3 германиевых Щ9) или кремниевых (КД503, КД102) диодов в прямом направлении.

Катоды диодов должны «смотреть» в сторону базы входного транзистора. Германиевый диод смещает порог срабатывания примерно на 0,3 В, а кремниевый — на 0,5 В.

Для цепочки из двух, трех диодов эти значения удваиваются (утраиваются). Промежуточные значения напряжений можно получить при последовательном включении германиевого и кремниевого диодов (0,8 В).

Акустическое реле

Акустическое реле (рис. 11, 12) используют для контроля уровня шума, а также в составе систем охранной сигнализации [Б.С. Иванов, М 2/96-13]. Помимо прочего, такие схемы часто используют в системах связи — в устройствах голосового управления каналом связи.

Рис. 11. Принципиальная схема акустического реле.

 

Рис. 12. Принципиальная схема акустического реле на транзисторах.

Так, при разговоре автоматически и без вмешательства оператора происходит переключение радиостанции или линии связи с приема на передачу. Устройство содержит датчик звукового сигнала — микрофон, в качестве которого можно использовать обычный микротелефонный капсюль, усилитель низкой частоты, детектирующее и исполняющее (релейное) устройство.

Коэффициент усиления УНЧ определяет чувствительность акустического реле. На микрофон может быть установлен звукоулавливающий рупор для повышения направленных свойств акустического реле. Резонансный фильтр, включенный после УНЧ, позволяет акустическому реле реагировать только на звук определенной частоты и игнорировать остальные звуки.


Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003.

Термореле (модульное реле температуры): установка

Что такое модульное реле температуры?

Термореле (модульное реле температуры) – это электромеханическое устройство, которое с помощью контактных систем при изменении контролируемых параметров сверх допустимых параметров изменяет свое положение. Таким образом, успешно регламентируется заданная температура.

модульное реле температуры (термореле).

Принцип работы термореле

Модульное температурное реле предназначено для контроля температуры не агрессивной среды. Температурное реле осуществляет контроль и поддержание заданного температурного режима, может управлять оборудованием для нагрева или охлаждения температуры в шкафах, помещениях, управления в системах отопления и охлаждения в системах.

реле температуры на динрейке

Модульное устройство в основном устанавливается на DIN-рейку с присоединением проводов питания и коммутируемых электрических цепей оборудования для обеспечения заданных параметров.

На лицевой панели, как правило, находится цифровой индикатор температуры, либо жидко-кристалический дисплей в зависимости от модели, кнопка программирования, светодиодный индикатор, указывающий рабочее состояния устройства.

Температурное реле включает прибор охлаждения (вентилятор) или обогреватель.

Где устанавливают термореле (модульное реле температуры)?

реле температуры (термореле)

Практически каждый из домовладельцев выращивает на своём участке какие-либо сельскохозяйственные культуры. Зачастую неблагоприятные погодные условия (слишком жаркое или слишком холодное лето, неожиданные заморозки в начале осени) приводят к гибели многих посадок. Сталкиваются с подобными проблемами и любители зимних садов. Можно потратить много средств, сил и времени, чтобы организовать помещение, высадить красивые растения, а они, неожиданно для вас, окажутся слишком капризными и привередливыми, и погибнут, как только придут первые же незначительные колебания температуры.

колебания температуры

Однако, остановив свой выбор на современном модульном электрооборудовании, можно легко решить и эти проблемы.
На рынке сегодня доступны специальные приборы, задача которых заключается в поддержании постоянной температуры. Речь идет о модульных реле температуры.

Модульное реле температуры монтируется непосредственно в электрический щиток в доме на динрейку. В подвале или теплице устанавливается небольшой датчик, определяющий, когда температура воздуха выходит за установленные хозяином границы, датчик, подающий на реле температуры сигнал, корректирует режим температуры.

Термореле RT-12-32

терморегулятор

Реле защиты от перегрузки

от US Tsubaki

U.S. Tsubaki предлагает следующие устройства для защиты от скачков электрического тока или крутящего момента:

  • Электронные шоковые реле: Эти реле защищают от скачков электрического тока как при нагрузках, так и при перегрузках. Их использование предотвратит простои из-за непредвиденных поломок и дорогостоящего ремонта. Они помогают снизить общие затраты на техническое обслуживание.
  • Механические противоударные устройства: Эти механические реле защищают от скачков механического крутящего момента. Скачки крутящего момента могут возникать в пыльной, влажной и высокотемпературной среде. Эти устройства отключаются, когда крутящий момент превышает пороговое значение, и снова включаются, когда скачок крутящего момента исчезает.

U.S. Tsubaki Power Transmission, LLC – ведущий производитель и поставщик оборудования для управления движением и передачи энергии, а также дочерняя компания Tsubakimoto Chain Company со штаб-квартирой в Японии.Обладая более чем 100-летним производственным опытом, Tsubaki гордится превосходным качеством, надежностью и обслуживанием клиентов и стремится быть производителем, который обеспечивает наилучшую общую ценность для клиентов.

Свяжитесь с нами по всем вопросам, касающимся реле защиты от перегрузки.

Реле перегрузки – базовое управление двигателем

Пускатели и контакторы двигателей

Нажмите кнопку воспроизведения на следующем аудиоплеере, чтобы слушать, как вы читаете этот раздел.

Реле перегрузки состоит из двух основных частей:

  1. Нагревательный элемент, который соединен в серии с линией питания к двигателю. Весь ток, потребляемый двигателем, должен проходить через нагревательный элемент.
  2. Набор из нормально замкнутых контактов , которые подключены последовательно либо к линиям питания двигателя (ручные пускатели), либо к катушке магнитного контактора (магнитные пускатели). Наиболее часто встречающиеся типы реле – это биметаллическая полоса и сборка плавильного припоя.

Биметаллическая полоса состоит из двух разнородных металлов с разными коэффициентами нагрева. При нагревании они расширяются с разной скоростью, что заставляет их изгибаться или деформироваться при заданной температуре. Это действие изгиба может открывать или закрывать набор из контактов .

При использовании в устройстве защиты от перегрузки биметаллическая полоса механически связана с набором нормально замкнутых электрических контактов. Когда происходит перегрузка, изгибающее действие размыкает набор нормально замкнутых контактов, прерывая ток в цепи.

Биметаллический контакт в нормально замкнутом положении

Здесь нормально замкнутые контакты позволяют току проходить через них, в то время как источник тепла начинает деформировать металл.

Биметаллическая полоса в разомкнутом положении

Из-за источника тепла металл, окрашенный в серый цвет (деталь внизу), расширился быстрее, чем металл, заштрихованный синим цветом (деталь вверху), и таким образом открыл набор нормально замкнутых контактов, таким образом прерывая ток к двигателю.

Закрытые контакты ванны для припоя

Ванна для плавления состоит из нагревательного элемента, узла припоя, храпового колеса и набора нормально закрытых контактов.

Пружина удерживается под напряжением храповым колесом. Если колесо вращается, то пружина толкает вверх и размыкает набор нормально замкнутых контактов. Колесо удерживается припоем внутри узла припоя. Различные уровни олова и цинка в припое изменяют температуру плавления, что позволяет использовать его при различных номинальных токах и настройках температуры окружающей среды.

Если ток перегрузки ощущается нагревательными элементами в течение слишком долгого времени, сплав становится жидким, позволяя пружине размыкать нормально замкнутые контакты.Это приводит к размыканию линейных контактов и прекращению подачи тока к двигателю.

Открытые контакты ванны для припоя

И биметаллическая полоса, и плавильная ванна для припоя срабатывают за счет тепловой энергии. Таким образом, перед сбросом контактов требуется период охлаждения. Как только реле остынет, биметаллическая полоса вернется в свое нормальное положение, или расплавленный припой затвердеет, и храповое колесо можно будет сбросить, чтобы снова замкнуть линейные контакты.

Некоторые современные системы управления двигателями включают приложения для мониторинга трансформаторов тока в реальном времени, которые используют встроенные компьютерные схемы управления для защиты от перегрузок двигателя.Эти системы могут быть связаны с сетевыми ПЛК и другим оборудованием безопасности.

Обзор тепловых реле перегрузки

Тепловые реле перегрузки – это защитные электрические устройства, используемые для защиты двигателей или другого электрооборудования и электрических цепей от перегрузки. Тепловое реле перегрузки в основном используется для защиты асинхронных двигателей от перегрузки. После того, как ток перегрузки проходит через термоэлемент, биметаллический лист нагревается и изгибается, чтобы толкать механизм действия и приводить в действие контакт…

Каталог

I Что такое тепловое реле перегрузки?

Тепловые реле перегрузки – это защитные электрические устройства, используемые для защиты двигателей или другого электрического оборудования и электрических цепей.

Тепловое реле перегрузки в основном используется для защиты асинхронных двигателей от перегрузки. Его принцип работы :

после того, как ток перегрузки проходит через термоэлемент, биметаллический лист нагревается и изгибается, чтобы толкнуть механизм действия для приведения в действие контакта, тем самым отключая схему управления двигателем, чтобы выключить двигатель с помощью питания. выключен, играя роль защиты от перегрузки.Поскольку теплопередача занимает много времени во время нагрева и изгиба биметаллического листа, тепловое реле перегрузки не может использоваться для защиты от короткого замыкания, а может использоваться только для защиты от перегрузки.

Тепловое реле перегрузки широко используется в качестве компонента защиты двигателя от перегрузки из-за своего небольшого размера, простой конструкции и низкой стоимости.

II Состав тепловых реле перегрузки

Тепловое реле перегрузки состоит из биметаллического листа , нагревательного элемента, механизма действия и контактной системы .Биметаллический лист изготавливается путем сварки двух слоев металлических листов с большой разницей в коэффициенте расширения. При использовании нагревательный элемент подключается последовательно к источнику питания двигателя, а контакт подключается последовательно в цепи управления катушкой контактора.

Когда двигатель перегружен, ток большой, что приводит к нагреву и изгибу биметаллического листа. И через механизм действия, подвижный контакт и статический контакт разъединяются, так что катушка контактора обесточивается, и двигатель отключается от источника питания.

Рис. 1. Структура теплового реле перегрузки

(1) Биметаллический лист : Биметаллический лист является наиболее важной частью теплового реле перегрузки. Он объединяет два металлических листа с разными коэффициентами линейного расширения путем механической прокатки.

При комнатной температуре (то есть до нагрева) все обычно бывает плоским, как показано на Рисунке 2 (а). При повышении температуры металлический лист 1 (называемый активным слоем ) с большим коэффициентом линейного расширения пытается сделать большее расширение, в то время как металлический лист 2 с малым коэффициентом линейного расширения (так называемый ведомый слой ) ) можно сделать только меньшее расширение.Поскольку два слоя материалов плотно прикреплены и не могут быть растянуты свободно, биметаллический лист переходит из плоского состояния в изогнутое, как показано на рисунке 2 (b). Таким образом, активный слой может расширяться немного больше, а управляемый слой – меньше. Это причина того, что биметаллический лист после нагрева может вызывать деформацию изгиба.

Рис. 2. Принцип работы биметаллической полосы

(2) Нагревательный элемент : Нагревательный элемент обычно изготавливается из медно-никелевого сплава, хромоникелевого сплава или хромо-алюминиевого сплава и т. Д., и его форма представляет собой нить, лист или ленту и т. д. Его функция заключается в использовании теплового эффекта, возникающего при прохождении электрического тока через резистивный нагревательный элемент, для приведения чувствительного элемента в движение.

(3) Управляющие контакты , коэффициенты действия управляющие контакты и системы действия или механизмы действия. В большинстве из них используется носовая пружина, пружина сжатия или механизм прыжка Лафи. Система действия часто оснащена устройством температурной компенсации, чтобы гарантировать, что рабочие характеристики теплового реле перегрузки остаются в основном неизменными в определенном диапазоне температур.

(4) Механизм сброса: Есть ручной сброс и автоматический сброс, которые можно свободно регулировать в соответствии с требованиями использования.

III Классификация тепловых реле перегрузки

По количеству фаз существует трех типов тепловых реле перегрузки: однофазных тепловых реле перегрузки, двухфазных тепловых реле перегрузки и трех -фазные тепловые реле перегрузки. Каждый тип имеет разные характеристики и модели в зависимости от номинального тока нагревательного элемента.Трехфазные тепловые реле перегрузки часто используются в трехфазных двигателях переменного тока для защиты от перегрузки.

По своему назначению трехфазные тепловые реле перегрузки бывают двух типов: типы без фазовой защиты и типы с фазной защитой.

IV Характеристики тепловых реле перегрузки

1. Характеристики защиты

Поскольку время срабатывания контакта теплового реле перегрузки связано со степенью перегрузки защищаемого двигателя, до анализа принципа работы реле тепловой перегрузки, мы должны сначала выяснить взаимосвязь между током перегрузки двигателя и временем включения двигателя, когда не превышается допустимый рост температуры.Эта зависимость называется перегрузочной характеристикой двигателя.

Когда во время работы двигателя возникает ток перегрузки, это неизбежно вызывает нагрев обмотки. В соответствии с соотношением теплового баланса нетрудно сделать вывод, что время проводимости двигателя обратно пропорционально квадрату его тока перегрузки при допустимом повышении температуры:

Рисунок 3. Взаимосвязь между временем проводимости и ток перегрузки

Чтобы адаптироваться к характеристикам перегрузки двигателя и играть роль защиты от перегрузки, тепловое реле перегрузки должно иметь обратнозависимые характеристики .По этой причине в тепловом реле перегрузки должен быть установлен резистивный нагревательный элемент. Таким образом, тепловой эффект, создаваемый током перегрузки через резистивный нагревательный элемент, используется для приведения в действие чувствительного элемента, тем самым приводя в действие контактное действие для завершения защиты.

Взаимосвязь между током перегрузки , проходящим через тепловое реле перегрузки, и временем срабатывания контакта теплового реле перегрузки называется характеристикой защиты теплового реле перегрузки, как показано на кривой , кривая 2 на рисунке. 3.Учитывая влияние различных ошибок, характеристика перегрузки двигателя и характеристика защиты реле представляют собой не одну кривую, а полосу. Очевидно, что чем больше погрешность, тем ремешок шире; чем меньше погрешность, тем уже ремешок.

Из кривой 1 на рисунке видно, что при перегрузке двигателя безопасно работать с кривой 1. Следовательно, характеристики защиты теплового реле перегрузки должны быть смежными с характеристиками перегрузки двигателя.Таким образом, если произойдет перегрузка, тепловое реле перегрузки сработает до того, как двигатель достигнет своего допустимого предела перегрузки, чтобы отключить питание двигателя, чтобы предотвратить повреждение.

2. Прочие основные характеристики

(1) Управляющий контакт

Нормально разомкнутые и нормально замкнутые контакты теплового реле перегрузки должны обеспечивать срабатывание цепи катушки контактора переменного тока более 1000 раз. при указанном рабочем токе.

(2) Характеристики ампер-секунды

Это также называется токово-временной характеристикой, которая представляет собой соотношение между временем срабатывания и протекающим током теплового реле перегрузки и обычно является характеристикой с обратнозависимой выдержкой времени. . Чтобы надежно реализовать защиту двигателя от перегрузки, ампер-секундная характеристика теплового реле перегрузки должна быть ниже допустимой характеристики перегрузки двигателя.

(3) Регулировка тока

Диапазон регулировки тока тепловых реле перегрузки обычно составляет от 66% до 100%, а максимальный – от 50% до 100%.

(4) Температурная компенсация

Чтобы уменьшить ошибку действия, вызванную изменением температуры окружающей среды, необходимо принять меры температурной компенсации.

(5) Время возврата

Время автоматического сброса реле тепловой перегрузки не должно превышать 5 минут, а время ручного сброса должно быть не более 2 минут.

(6) Термическая стабильность

Термическая стабильность – это способность выдерживать ток перегрузки . Требования к термостойкости термоэлемента следующие: при максимальном токе настройки 10-кратный максимальный ток настройки применяется к номинальному току 100 А и ниже, и в 8 раз максимальный ток настройки применяется к току настройки выше 100 А. После этого реле тепловой перегрузки должно надежно сработать 5 раз.

В Причины срабатывания реле тепловой перегрузки

Срабатывание реле тепловой перегрузки в основном вызвано перегрузкой или неправильным выбором .Реле тепловой перегрузки используется для защиты электроприборов от перегрузки. Дизайн должен соответствовать электроприборам. Если реле тепловой перегрузки слишком мало или электрическое оборудование имеет сопротивление, часто срабатывает перегрузка. После срабатывания реле тепловой перегрузки контактор потеряет питание и отключится.

Другие причины:

(1) Установленное значение теплового реле перегрузки слишком мало;

(2) Слишком большой ток нагрузки двигателя, возможно короткое замыкание между витками или передаточная часть двигателя не гибкая;

(3) Низкое качество теплового реле перегрузки или плохой контакт контактов.

(4) Плохое качество контактора или плохой контакт контактов.

VI Как сбросить реле тепловой перегрузки после срабатывания

Существует два способа сброса реле тепловой перегрузки: ручной сброс и автоматический сброс.

1. Ручной сброс

После срабатывания защиты от перегрузки теплового реле перегрузки необходимо вручную нажать кнопку сброса, чтобы нормально замкнутый контакт снова замкнулся.Ручной сброс следует выполнить через 2-3 минуты после отключения, поскольку нагревательный лист для внутренней гибки нуждается в охлаждении.

2. Автоматический сброс

После срабатывания защиты от тепловой перегрузки нормально замкнутый контакт автоматически замыкается, и время автоматического сброса обычно составляет не более 5 минут.

Метод сброса можно выбрать с помощью винта настройки сброса.

Вставьте прямую отвертку в регулировочное отверстие на нижней стороне теплового реле перегрузки и затяните регулировочный винт сброса по часовой стрелке (до конца), что является методом автоматического сброса.Если вы ослабите винт регулировки сброса против часовой стрелки, так что винт откручивается на определенное расстояние, это становится ручным сбросом.

Новое тепловое реле перегрузки обычно имеет кнопку регулировки на верхней крышке. Когда кнопка регулировки повернута на H , это ручной сброс, а когда кнопка регулировки повернута на A , это автоматический сброс.

Рис. 4. Ручной сброс и автоматический сброс

Когда реле тепловой перегрузки используется для защиты двигателя от перегрузки, чтобы гарантировать, что нормально замкнутый контакт реле тепловой перегрузки может быть сброшен и замкнут после неисправность обрабатывается, тепловое реле перегрузки обычно устанавливается в режим ручного сброса.

VII Меры предосторожности при использовании

(1) Тепловое реле перегрузки может использоваться только для защиты двигателя от перегрузки и обрыва фазы, но не для защиты от короткого замыкания.

(2) Выбор точки установки.

● Разница температур между местом установки реле тепловой перегрузки и защищаемого оборудования не должна быть слишком большой;

● В месте установки не должно быть источника вибрации;

● если тепловое реле перегрузки установлено с другими электрическими приборами, чтобы на его рабочие характеристики не влияли другие нагревательные приборы, его следует устанавливать ниже.

(3) Направление установки теплового реле перегрузки должно быть таким же, как указано в руководстве по продукту, а отклонение не должно превышать 5 °.

(4) Соединительный провод, используемый для теплового реле перегрузки, должен соответствовать техническим характеристикам. Если сечение соединительного провода слишком мало, осевая теплопередача будет медленной, и реле тепловой перегрузки выйдет из строя. Если соединительный провод слишком толстый, аксиальная теплопроводность происходит быстро, а реле тепловой перегрузки срабатывает медленно или отказывается двигаться.

Материал проволоки, как правило, медь , если используется проволока с алюминиевым сердечником, концы следует покрыть лужением.

(5) Крепежные винты теплового реле перегрузки должны быть затянуты, в противном случае контактное сопротивление и температура нагревательного элемента увеличатся, что приведет к неисправности теплового реле перегрузки.

(6) Реле тепловой перегрузки с автоматическим сбросом должно быть установлено в автоматическое положение, и оно автоматически сбрасывается через 3-5 минут после срабатывания защиты.Для реле тепловой перегрузки с ручным сбросом кнопка сброса должна быть нажата после срабатывания защиты.

VIII Причины бездействия или неисправности

Причины бездействия или неисправности теплового реле перегрузки следующие:

1.

Причины бездействия

Причина бездействия выход из строя теплового реле перегрузки может быть:

(1) значение уставки тока слишком велико;

(2) термоэлемент сгорел или запломбирован;

(3) механизм затвора заклинивает или пряжка отваливается.

(4) При ремонте ток уставки может быть отрегулирован соответствующим образом в соответствии с допустимой нагрузкой, а термоэлемент или механизм действия могут быть отремонтированы.

2.

Причины неисправности

Причины могут быть следующими:

(1) текущее установленное значение слишком мало;

(2) тепловое реле перегрузки не согласовано с нагрузкой;

(3) время запуска двигателя слишком велико или слишком много раз непрерывного запуска;

(4) линия или нагрузка протекает или закорочено;

(5) реле тепловой перегрузки подвержено сильным ударам или вибрации.

Во время технического обслуживания мы должны выяснить причины и разумно отрегулировать ток уставки или заменить реле тепловой перегрузки, соответствующее нагрузке.

Если двигатель или цепь неисправны, двигатель и цепь питания должны быть отремонтированы; если в рабочей среде слишком много вибраций, следует использовать тепловое реле перегрузки с антивибрационным устройством.

IX Как выбрать реле тепловой перегрузки

1. В принципе, ампер-секундная характеристика теплового реле перегрузки должна быть как можно ближе или даже совпадать с характеристикой перегрузки двигателя, или по перегрузочной характеристике мотора.И при этом на тепловое реле перегрузки не должно воздействовать (бездействие) в момент кратковременной перегрузки и пуска двигателя.

2. Когда тепловые реле перегрузки используются для защиты двигателей при длительной работе или прерывистой длительной работе , они обычно выбираются в соответствии с номинальным током двигателя. Например, значение уставки реле тепловой перегрузки может быть равно 0,95-1,05 номинального тока двигателя, или среднее значение уставки тока реле тепловой перегрузки может быть равно номинальному току двигателя, а затем настроить.

3. Когда тепловое реле перегрузки используется для защиты двигателя с помощью повторяющегося кратковременного режима , тепловое реле перегрузки имеет только определенный диапазон адаптируемости. Если за короткое время выполняется много операций, следует использовать тепловое реле перегрузки с трансформатором тока быстрого насыщения.

4. Для специального рабочего двигателя с положительным и обратным вращением и частым включением и выключением тепловое реле перегрузки не должно использоваться в качестве устройства защиты от перегрузки, но должно быть защищено термореле или термистором, встроенным в обмотка двигателя.

Работа, типы, схема подключения и применение

У всего оборудования есть предел рабочего диапазона, кран, предназначенный для подъема 10 тонн, не может поднимать 20 тонн, и если мы попытаемся это сделать, это будет не только небезопасно, но и повредит сам кран. Эта аналогия в точности применима к электрическому оборудованию. Каждое электрическое оборудование рассчитано на определенную нагрузку (ток), и любая перегрузка постигнет судьбу крана. Тенденция к увеличению производительности неосознанно увеличивает нагрузку, превышающую ее возможности, а производительность системы кормления делает ее небезопасной.Более того, поскольку электрические параметры всегда динамичны и гибки, становится крайне необходимо использовать реле перегрузки с электрооборудованием, где это возможно. Здесь мы ограничимся реле перегрузки электрического оборудования, такого как двигатели, трансформаторы и т. Д.

Что такое реле перегрузки?

Определение: Реле – это устройство, которое должно работать при определенных условиях, и если оно работает в условиях перегрузки, в электрической терминологии оно известно как реле перегрузки.Реле перегрузки – это устройство, используемое для отключения / индикации состояния перегрузки (перегрузки по току) в электрическом оборудовании и, таким образом, для его защиты. Мы также можем назвать это реле защиты от перегрузки.

Реле перегрузки

Реле перегрузки работает / работает

В тепловом реле перегрузки обычно используется полоса, сделанная из двух разнородных металлов (металлов с разным коэффициентом расширения), которые нагреваются через небольшую нагревательную катушку током, идущим к двигателю или любому другому устройству.Нагреватель рассчитан на работу только с допустимым током. Если ток превышает выделяемое тепло, биметаллическая полоса изгибается из-за разницы в расширении. Из-за этого изгиба срабатывает рычаг включения / отключения и генерирует команду отключения на двигатель, тем самым защищая его. Расстояние между рычагом отключения и биметаллической полосой можно регулировать, что позволяет изменять настройки срабатывания.

В трехфазном двигателе эти реле также имеют встроенную функцию, которая приводит в действие рычаг даже при большой разнице между фазными токами, защищающей двигатель также от однофазного включения.

Типы реле перегрузки

У нас может быть много типов реле перегрузки, но наиболее широко используемыми являются:

  • Реле тепловой перегрузки.
  • Магнитные реле перегрузки.
  • Электронные реле перегрузки

Возьмемся за каждого по отдельности.

Термореле перегрузки

Поскольку эти реле являются наиболее распространенными, мы обсудим их подробнее.

Тепловой Тип

Прохождение тока в любом проводнике вызывает выделение тепла, и количество выделяемого таким образом тепла зависит от проводимости используемого материала.Мы также знаем, что тепло заставляет каждый материал расширяться в зависимости от их коэффициента расширения. Комбинация этих двух явлений используется в тепловых реле перегрузки.

Магнитное реле перегрузки

Этот тип реле используется в тяжелых условиях перегрузки, которая может возникнуть из-за внутренней неисправности или короткого замыкания, и в таких условиях срабатывание должно быть почти мгновенным, чтобы избежать серьезных повреждений. Принцип действия – магнитное действие тока, которое пропорционально величине тока.

Магнитный тип

Из вышеприведенной схемы видно, что через магнитный элемент проходит большой ток, он сильно намагничивается и тянет сердечник к катушке. Сердечник прикреплен к рычагу отключения, который, в свою очередь, прерывает подачу питания на главный подрядчик / автоматический выключатель, тем самым отключая питание устройства.

Кроме того, у нас могут быть реле типа Dashpot, в которых плунжер перемещается в приборной панели, заполненной маслом, или мы могли бы иметь реле типа OL с плавким элементом, которое прилегает к плавкому элементу и использует нагревательный эффект тока.Эти типы реле сейчас устарели.

Электронные реле перегрузки

Электронные реле сейчас в порядке вещей и постепенно заменяют все остальные реле. Эти реле представляют собой микропроцессорные или цифровые реле, основанные на цифровой технологии. Такие реле имеют множество дополнительных функций, таких как ограничение количества горячих пусков двигателя и т. Д. Основной принцип состоит в том, чтобы отобрать ток, потребляемый устройством, сравнить его с настройками, а затем сформировать сигнал отключения.Реле перегрузки обозначаются различными символами и не имеют общего обозначения. Однако наиболее часто используются простые, тепловые и магнитные.

Настройка реле перегрузки

Настройка реле перегрузки

– непростая задача, так как существует множество мнений по этому поводу, некоторые говорят, что это следует делать при 70% тока полной нагрузки двигателя, а некоторые говорят, что это следует делать при почти полном токе нагрузки двигателя. мотор. Тем не менее, многие факторы влияют на правильный выбор диапазона и настройку реле перегрузки.Мы будем рассматривать реле перегрузки только в прямой онлайн-конфигурации.

  • Давайте сначала посмотрим, от каких факторов зависит ток, потребляемый двигателем после установки.
  • Механическая нагрузка на двигатель.
  • Качество питания, то есть изменение напряжения, изменение частоты и их совокупный эффект.
  • Эксплуатационный коэффициент мотора.
  • В некоторой степени условия окружающей среды и их содержание.

Механическая нагрузка оказывает прямое и значительное влияние на потребляемый ток.Поскольку качество питания оставляет желать лучшего, у нас есть большие колебания напряжения и частоты, которые также влияют на ток, потребляемый двигателем, но это колебание может составлять, скажем, от 10 до 15 процентов. Сервисный коэффициент позволяет нам увеличить нагрузку на двигатель на 15%. Условия окружающей среды и содержание (коэффициент обслуживания) имеют некоторые номинальные эффекты.

Учитывая все вышеперечисленные факторы, необходимо выбрать и настроить реле перегрузки. Эти факторы различны для каждого приложения, и поэтому, на мой взгляд, не может быть никакого правила большого пальца для настройки реле.Реле перегрузки должно быть установлено примерно на 10–15 процентов выше фактической нагрузки, потребляемой двигателем. Цель состоит в том, чтобы полностью защитить двигатель и в то же время избежать неприятных внешних воздействий. Диапазон реле должен быть таким, чтобы он позволял установить максимальное значение на 10–20 процентов выше тока полной нагрузки двигателя.

В качестве примера, если нам нужно выбрать диапазон реле перегрузки для двигателя с током полной нагрузки, скажем, 10 ампер, он должен быть от 7 до 12 ампер или как можно ближе к нему.

Схема подключения

На схеме подключения реле перегрузки ниже показана схема подключения питания и управления реле перегрузки в DOL-конфигурации для трехфазного двигателя мощностью 2 кВт.

Схема подключения

Схема подключения не требует пояснений, на ней показано реле перегрузки, которое размещено в пускателе DOL и подключено к клеммам двигателя. Схема управляет устройством отключения.

Применение реле перегрузки

Реле перегрузки – это защитное устройство, которое следует использовать с каждым электрическим устройством, но его использование становится очень необходимым с машинами и приборами, которые часто подвергаются условиям перегрузки.Некоторые из них приведены ниже.

  • Двигатели
  • Трансформаторы
  • Генераторы
  • Обогреватели
  • Бытовая техника и др.

Часто задаваемые вопросы

1) Что вызывает срабатывание при перегрузке?

Перегрузка (перегрузка по току) вызывает срабатывание реле перегрузки.

2) Какие два основных типа реле?

Два основных типа реле – это тепловые реле перегрузки и магнитные реле перегрузки.

3) Как проверить реле перегрузки двигателя?

Реле перегрузки можно проверить, подав в него заданный ток, а затем отметив время, необходимое для отключения. Сравнивая его с требуемыми характеристиками.

4) Сколько существует типов реле?

В основном есть три типа реле. Реле тепловой перегрузки, магнитные реле перегрузки и электронные реле перегрузки.

5) Что такое электронное реле перегрузки?

Электронные реле перегрузки – это реле, в которых используются электронные устройства, такие как микропроцессоры и другие полупроводники.

Таким образом, реле перегрузки имеет первостепенное значение для бесперебойной и надежной работы любой электрической машины на устройстве. Доскональное знание этого сделает наши системы технического обслуживания не только надежными, но и безопасными. В этой области происходит множество достижений, которые делают реле перегрузки все более сложными и заслуживающими доверия.

Что это такое, как это работает и многое другое

Главная »О нас» Новости »Магнитные пускатели двигателей: основы

Опубликовано: автором springercontrols

Магнитный пускатель двигателя – это устройство с электромагнитным управлением, которое запускает и останавливает подключенную нагрузку двигателя.Магнитные пускатели состоят из электрического контактора и устройства защиты от перегрузки, обеспечивающей защиту в случае внезапной потери мощности.

Контактор и реле

Контактор похож на реле, но предназначен для переключения большего количества электроэнергии и работы с нагрузками с более высоким напряжением. В отличие от реле, контактор не имеет общего полюса под напряжением, который переключается между нормально разомкнутым и нормально замкнутым полюсами. Контактор состоит из держателя контактов с электрическими контактами для подключения входящего сетевого силового контакта к контакту нагрузки, электромагнита (обычно называемого «катушкой»), который обеспечивает силу для замыкания контактов, позволяющую протекать току, и корпус, который представляет собой изолирующий материал, удерживающий детали вместе и обеспечивающий некоторую степень защиты от прикосновения человека к клеммам.Контакторы обычно изготавливаются с нормально разомкнутыми контактами, что означает, что мощность не будет поступать на нагрузку до тех пор, пока не будет активирована катушка, которая замыкает контактор. Активация катушки обычно выполняется оператором управления, либо вручную, то есть человеком, нажимающим кнопку / щелчком переключателя, либо автоматически с помощью датчика или таймера, который переключается при достижении определенного состояния. Контакторы могут быть снабжены вспомогательными контактами (нормально разомкнутыми или нормально замкнутыми) для выполнения дополнительных операций, когда контактор замкнут.

Когда контактор замкнут, это позволяет току проходить на «катушку» (электромагнит). Это может быть то же самое напряжение, что и мощность, проходящая через контакты, или часто более низкое «управляющее» напряжение используется только для подачи питания на катушку. Когда катушка находится под напряжением, это создает магнитную связь между контактами и держателем контактов, позволяя им оставаться вместе, и ток течет к двигателю или другой нагрузке до тех пор, пока система не будет отключена путем отключения питания катушки. В обесточенном состоянии пружина заставляет контакты разъединяться и прекращать прохождение энергии через контакты, тем самым отключая двигатель или нагрузку.

Тепловое реле перегрузки: что это такое и как оно работает

Тепловое реле перегрузки предназначено для защиты двигателя или другой нагрузки от повреждения в случае короткого замыкания или перегрузки и перегрева. Простейшее реле перегрузки срабатывает из-за тепла, вызванного протеканием высокого тока через перегрузку и по биметаллической полосе. Биметаллическая полоса – это лента из двух разных металлов, прикрепленных друг к другу, причем каждый металл имеет свой коэффициент теплового расширения.Когда эта биметаллическая полоса нагревается, один металл будет расширяться быстрее, чем другой, и приведет к изгибу сборки. Когда он станет достаточно горячим, кривизны будет достаточно, чтобы контакты в перегрузке разъединились. Поскольку перегрузка имеет контакт, подключенный к цепи управления контактора, это эффективно размыкает цепь и обесточивает систему. Как только биметаллическая полоса остынет, она выпрямится и позволит цепи снова замкнуться.

Режимы работы реле перегрузки

Реле перегрузки можно настроить на 4 различных режима работы.

  • Только ручной сброс – оператор должен нажать кнопку для перезапуска системы. Этот параметр обычно используется по соображениям безопасности, чтобы система не перезапустилась сама по себе.
  • Только автоматический сброс – когда биметаллическая полоса охлаждается, система автоматически перезагружается. Это полезно, когда система находится в удаленном месте, что затрудняет ручной перезапуск, а автоматический перезапуск вряд ли создаст опасное состояние.
  • Ручной сброс / останов – Аналогичен только ручному сбросу, но позволяет использовать кнопку для ручной остановки системы. Это полезно для простых систем, где отдельный выключатель не требуется.
  • Автоматический отдых / остановка – Аналогичен только автоматическому сбросу, но позволяет использовать кнопку для остановки системы вручную. Это полезно для простых систем, где отдельный переключатель включения / выключения не требуется.

Реле перегрузки обычно компенсируются по температуре окружающей среды, и уставка срабатывания часто регулируется в относительно узком диапазоне.Более старые реле перегрузки доступны с фиксированными точками срабатывания по температуре с использованием биметаллических полос. Их обычно называют «нагревателями», и они специфичны для каждой точки срабатывания (тока). Новые реле перегрузки доступны с электронным управлением и используются для различных функций двигателя.


Остались вопросы по магнитным пускателям двигателей?

Если у вас все еще есть вопросы о магнитных пускателях двигателей и их применении, специалисты Springer Controls всегда готовы помочь. Свяжитесь с нами сегодня, и мы будем рады вам помочь!

в рубрике: Новости .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *