Схема усилителя класса D 4500Вт на драйвере IR2110
Схема усилителя класса D 4500Вт
Схема усилителя класса D — в этой статье хочу поделится с вами схемой усилителя D класса сверх высокой мощности, он способен отдать в нагрузку 4Ом 3000Вт а на нагрузку 2Ом 4500Вт. Такой усилитель можно использовать как на соревнованиях по автозвуку так и на разных эстрадных мероприятиях на открытом воздухе.
Схема усилителя:
Усилитель построен с использованием всем известного драйвера IR2110 выход которого усилен транзисторами BD139/BD140. На выходе используется 3 пары выходных транзисторов типа IRFP260 что дает возможность усилителю, работать на мало омные нагрузки.
Такой мощности усилитель обязательно нуждается в хорошей защите от перегрузок и коротких замыканий на выходе. В этой схеме защита построена с использованием таймера NE555 и быстрого компаратора LM311 что обеспечивает быстрое срабатывание защиты не приводя к выходу из строя выходных транзисторов и драйвера.
Печатная плата усилителя:
Настройка усилителя сводится к установки срабатывания защиты переменным резистором RV1. Напряжение питания усилителя двухполярное от 32В до 100В. В выходном каскаде усилителя можно использовать транзисторы типа: IRFP260, IRFP4227, IRFP4242 и другие подобные, транзисторы следует обязательно закрепить на радиатор.
Список деталей:
Резисторы
R1, R3, R4, R9, R13, R18, R19, R20= 1K
R2, R16, R39= 100K
R5, R6= 10R
R7, R8=6K8/2W
R10, R21, R26, R27=4K7
R11, R17=6K8
R12=100R
R14, R15=4R7
R22, R23, R24, R25, R31, R33=47R
R28, R29, R30=0,1R/2W
R36, R38=22R/2W
R40=1K5/5W
R41=10R/2W
RV1=10K
Конденсаторы
C1=10uF/16V
C2=10N
C3, C4=1N
C5=470uF/16V
C6=220uF/16V
C7, C9, C11, C12, C13, C15, C16, C18, C19=100N MKP
C10, C14, C17=100uF/16V
C20=10uF/50V
C21, C22, C23=220N/475V
C24, C25, C26=470uF/180V
C27, C31, C33=100N/275V
C28, C29, C30=470uF/180V
C32=470N/250V
Диоды
D1, D2, D5, D10, D11= 1N4148
D3, D4= ZD5V6
D6, D18, D19= MUR460
D7= LED (RED) OCP
D8= ZD5V6
D9= LED (BLUE)
D12,D13,D14,D15,D16,D17= 1N5819
Транзисторы
Q1= 2N5401
Q4, Q6= BD139
Q5, Q7= BD140
Q8, Q9, Q10, Q11, Q12, Q13= IRFP260
Микросхемы
U1= TL071
Q2= CD4049
Q3= IR2110
U2= NE555
U3= LM311
Фото собранного усилителя:
Скачать: Печатная плата, схема усилителя
Изготовление печатной платы усилителя:
Тест усилителя:
Источник: soundbass
usilitelstabo.ru
Усилитель класса D | Микросхема
Как ни странно, но усилители D класса были разработаны ещё в 1958 году. Хотя, если упоминание про нанотехнологии относить к 1959 году, то нисколько не странно (прим. AndReas). И вообще середина прошлого столетия была богата научными разработками, которыми мы лишь сейчас начинаем использовать, а нового, на мой взгляд, практически ничего не предлагается. В полной мере сказанное относится и к усилителям класса D, которые завоевали особую популярность именно в начале 21 века.
Преимущества усилителей D класса
Вообще каждому классу усилителей звуковой частоты присущи свои достоинства и недостатки (подробнее о классах усилителей), определяющие диапазоны их применения. Для D класса неоспоримыми плюсами являются низкая мощность рассеяния и тепловыделение, малые размеры (на фото размер готового устройства на 400 ватт сопоставим с размером батарейки) и стоимость, продолжительное время работы в автономных устройствах (при автономном питании линейный выходной каскад опустошит батарею гораздо быстрее, чем усилитель класса D).
Ключи выходного каскада такого усилителя коммутируют выход с отрицательной и положительной шиной питания, создавая тем самым серии положительных и отрицательных импульсов. Теоретический КПД усилителей класса D равен 100%. То есть, все питание подается на нагрузку. Но, конечно же, на практике MOSFET (МОП-транзисторы) не являются идеальными переключателями и обладают сопротивлением. Соответственно, на них тратится часть энергии. Но все же КПД усилителей звуковой частоты D класса выше 90%. По сравнению с коэффициентом полезного действия максимум 78% для УНЧ B класса, являющимся самым производительным из линейных, показатель >90% это весомый аргумент экономичности класса D.
Цифровой или все-таки импульсный?!
Часто подобные усилители называют цифровыми. Этот термин прочно за ними закрепился, однако название цифровой усилитель некорректно. Работа УНЧ класса D основана на широтно-импульсной модуляции (PWM). Следовательно правильнее их называть импульсными усилителями. Почему же их называют цифровыми? Все очень просто. Принцип работы усилителя схож с принципом работы цифровой логики. Как вы знаете, в цифровой технике и электронике применяется двоичная система счисления. А иначе можно сказать «есть» и «нет» или «истина» и «ложь» или «1» и «0» или 5 вольт и 0 вольт. Примерно также работает и усилитель класса D, что связано с применением в выходном каскаде МОП-транзисторов. В последние годы все более упоминаемым является класс T. В коммерческих целях он выделен в отдельную линейку усилителей. Но, по сути, он является дальнейшей реализацией класса D.
Кратко о принципе работы усилителя
Существует полумостовая топология включения и мостовая. Ниже на рисунках приведена их реализация на практике.
Как можно увидеть по полумостовой схеме включения, в каждый момент времени должен быть открыт только один транзистор. Если откроются оба, то произойдет короткое замыкание, сила тока резко увеличится, что приведет к выходу из строя выходные МОП-транзисторы. В момент открытия один из транзисторов усиливает положительную составляющую напряжения, другой – отрицательную относительно нулевого проводника. Но существует период времени, названный «мертвым», когда оба ключа закрыты. Так вот это время должно быть в пределах 5…100 нс. В конечном счете, оно влияет на все характеристики готового усилителя: и качественные, и мощностные.
Если вы хотите получить качественный звук, то «мертвое время» должно быть наименьшим. Но при этом увеличивается вероятность короткого замыкания (как говорилось выше). Поскольку МОП-транзисторы могут не успеть переключиться. Поэтому при выборе радиодеталей для усилителей класса D нужно выбирать высокоскоростные компоненты.
Ключевые рекомендации
При выборе мощных полевых транзисторов нужно отдавать предпочтение МОПам с низким сопротивлением канала и низким уровнем заряда затвора. Наиболее удачным решением для этого служат транзисторы серии IRFI4024x-117P в изолированных 5-выводных корпусах TO-220 FullPak компании International Rectifier.
Во многом идеальная форма тока нагрузки зависит от ШИМ-компаратора. Вот лишь некоторые ШИМ-контроллеры:
Одной из последних разработок компараторов такого класса стал ШИМ-контроллер IRS20955S. Применение IRS20955S исключает из схемы до 27 внешних компонентов. Встроенный генератор «мертвого времени» устанавливает точное значение данного параметра для обеспечения максимального уровня качественных параметров усилителя D класса, а именно, низкий коэффициент гармонических искажений и шум, а также высокая устойчивость к помехам. Задержка на переключение МОП-транзисторов может устанавливаться в 15, 25, 35, 45 нс. IRS20955S работает на частотах до 800 кГц и может применяться не только в полумостовых схемах с двухполярным питанием, но и в мостовых схемах с однополярным. Совместно с транзисторами серии IRFI4024x-117P можно вдвое уменьшить общий размер печатной платы для усилителя мощности до 500 ватт.
Практическая часть: схема усилителя класса D
В заключение теоретической части нашего обзора хотелось бы отметить, что все классы усилителей имеют достоинства и недостатки. Где-то оправдано применение одних и совершенно нерационально применение других. Некоторые радиолюбители при конструировании усилителей мощности звуковой частоты отдают предпочтение одному-двум классам и совершенно не приемлют остальные. Другие же, являясь универсалами, пробуют свои силы в большинстве классов усилителей, выбирая лучшие конструкции. Мы же советуем обратить внимание на D-класс. Их сборка не так и сложна, как может показаться.
Если вас, уважаемые радиолюбители, заинтересовала затронутая тема, можете высказываться, делиться идеями, и мы в дальнейшем ещё не раз вернемся к рассмотрению подобных самых популярных схем усилителей. Из ранее опубликованного можем посоветовать усилители D класса на 300, 900 и 1200 Вт от Алексея Королькова. А сейчас хотим представить простую полумостовую схему усилителя D класса с выходной мощностью 120 ватт.
КПД усилителя составляет 96% при нагрузке на динамик импедансом 4 Ом. В качестве ШИМ-контроллера применяется IRS20955S. На выходе стоят мощные МОП-транзисторы IRFI4212-117P, разработанные специально для D класса. Точнее, это сборка из двух MOSFET, соединенных по полумостовой схеме. КНИ при полной мощности составляет 1%; при 60 Вт – 0,05%. Диапазон воспроизводимых частот от 20 Гц до 35 кГц. Питается усилитель от двуполярного источника напряжением +/-40 вольт. Все номиналы радиодеталей указаны на схеме.
Обсуждайте в социальных сетях и микроблогах
Метки: УНЧ
Радиолюбителей интересуют электрические схемы:
УНЧ 900 Вт – Класс D
Ламповый усилитель
xn--80a3afg4cq.xn--p1ai
РадиоКот >Схемы >Аудио >Усилители > Мощный усилитель класса D.
Всем привет.
Сейчас у нас пойдет речь об усилителе мощности, работающем в классе D. Теорию по этому вопросу мы уже обсуждали, пора перейти к практике. Усилитель довольно мощный – 240 Вт (правда, при коэфф. гармоник 10%). Но, обо всем по порядку.
Итак, усилитель выполнен на микросхеме фирмы Philips – TDA8924. Микросхема сравнительно новая, поэтому, сравнительно недешевая. Ну недешевая – это, конечно, смотря с чем сравнивать. (во накаламбурил то)
Микросхема так же имеет защиту от КЗ на выходе, термическую защиту и защиту акустики от “бум-бац” при включении и выключении. В общем, спалить её довольно тяжело. Ну, разумеется, товарищ производитель основательно лукавит, когда выставляет такие значения выходной мощности. Все дело в том, что они даны с учетом коэффициента гармонических искажений – 10%, что есть полный бедлам. Но, тем не менее, усилитель стоит того, чтобы на него посмотрели поближе, более того – даже спаяли. А о реальных значениях мощности поговорим чуть ниже, после того, как посмотрим на схему. Схема предусматривает два варианта включения усилителя – как стерео, так и моно по мостовой схеме. Особенно удобно, на мой взгляд, использовать этот усилитель для сабвуфера – дури у него – мало никому не покажется. Кстати о дури. Согласитесь, 10% – многовато. Однако с уменьшением коэффициента гармоник падает и выходная мощность, но к счастью для нас не катастрофически. При вполне приемлемых 0,5%, усилитель отдает на нагрузку 4 Ома 70 ватт в стерео режиме и 200 ватт в моно режиме. Кстати, в стерео режиме его можно подключать и к 2-омной нагрузке, тогда он будет отдавать 95 ватт при тех же 0,5% искажений. Переход из стерео режима в моно осуществляется следующим образом: переподключаем акустику, замыкаем джамперы JP3 и JP4 и убираем компоненты R3, R4, C3, C4 и C6. Питание к усилителю подключается по следующее схеме:
Все это можно монтировать на одной плате, размеры получаются относительно небольшими, тем более что радиатор для микросхемы нужен чисто символический. О килограмме алюминия, висящем на фланце микросхемы, как это бывает с обычными усилителями можно забыть. Все индуктивности, которые используются в этой схеме можно купить в готовом виде. L1-L4 – это дроссели, рассчитанные на ток 4-5А. L1 и L2 усилителя – индуктивности 10мкГн, рассчитанные на ток 6-7А.
Ну вроде бы и все.
Эти статьи вам тоже могут пригодиться: |
www.radiokot.ru
Простой усилитель класса Д
Как известно, усилители мощности звуковой частоты делятся на разные классы. Усилители, работающие в классе «А» могут обеспечить приличное качество звучания музыки за счёт высокого тока покоя, однако у них крайне низкий КПД, они потребляют много тока и требуют хорошего охлаждения.Усилители класса «В», наоборот, очень экономичны, но они вносят в сигнал довольно много нелинейных усилителей. Самый распространённый класс – «АВ», как видно по его названию, представляет собой что-то среднее между «А» и «В». Он потребляет не так уж много и позволяет воспроизводить аудио-сигнал с достаточно неплохим качеством. Однако таким усилителям, особенно когда мощность уже исчисляется десятками ватт, всё равно необходим радиатор для охлаждения. Именно поэтому в последнее время большую популярность приобрели усилители класса «Д». Они имеют большой КПД (80-90%) и могут обходиться без радиатора даже при мощности в пару десятков ватт, обеспечивая при этом вполне приличное качество звука. Одна из таких схем представлена ниже.
Схема усилителя
Её основой является довольно распространённая в последнее время микросхема MP7720, она обеспечивает выходную мощность до 20 ватт. Напряжение питания лежит в широких пределах – от 7 до 24 вольт. Чем больше напряжение – тем большую мощность можно получить на выходе. D2 на схеме – стабилитрон на 6,2 вольта, например, 1N4735A. D1 – диод шоттки на напряжение минимум 30 вольт и ток 1 ампер. Подойдёт, например, 1N5819. L1 – дроссель индуктивностью 10 мкГн, подойдёт любой тип дросселя. С9 – разделительный конденсатор, он подключается последовательно с динамиком и срезает постоянную составляющую сигнала на выходе. Именно поэтому даже при неправильной сборке на выходе усилителя не будет постоянного напряжения и за динамик можно не беспокоится. Вывод 4 микросхемы отвечает за её состояние – включена она или выключена. Если напряжение на этом выводе близко к нулю, усилитель не заработает. Именно поэтому на схеме имеется стабилитрон D3 на напряжение 4,7 вольта, можно применить, например, 1N4732A. Все электролитические конденсаторы должны быть рассчитаны на напряжение, минимум в 1,5 раза превышающее напряжение питания. Больше никаких особенностей схема не имеет, достаточно её правильно собрать, и она сразу начнёт работать.
Сборка усилителя класса D
Как обычно, в первую очередь изготавливается печатная плата, её размеры составляют 45х30 мм. Данный усилитель предполагался как самый экономичный и миниатюрный, поэтому все элементы расположены достаточно плотно друг к другу для экономии места, а микросхема в SMD исполнении припаивается со стороны дорожек. Печатная плата выполняется методом ЛУТ, ниже представлено несколько фотографий процесса.
При лужении дорожек нужно быть очень осторожным, чтобы случайно не замкнуть их излишками припоя. После лужения первым делом припаиваем микросхему, а затем уже остальные детали с другой стороны платы. Для подключения всех проводов на плате предусмотрено место под клеммник. После завершения пайки стоит проверить соседние дорожки на замыкание, удалив перед этим остатки флюса с платы. Особое внимание стоит удалить площадке под микросхемой, под ней не должно оставаться жидкого флюса, который может навредить правильной работе усилителя.
Первое включение и испытания
Перед первым включением нужно поставить в разрыв питающего провода амперметр. Затем, подав питание, посмотреть на показания амперметра – без подачи на вход сигнала микросхема не должна потреблять больше 10 мА. Если ток покоя в норме, можно подключать динамик, подавать на вход сигнал, например, с плеера, компьютера или телефона и испытывать усилитель под нагрузкой. Даже при большой громкости микросхема не должна ощутимо нагреваться. На первый взгляд это кажется поразительным – такая маленькая микросхема спокойно обеспечивает мощность на выходе в десяток ватт, совершенно при этом не нагреваясь. Всё дело в том, что она превращает обычный аналоговый аудио-сигнал в последовательность импульсов, которые затем усиливаются. Транзисторы при этом работают не в линейном, а ключевом режиме, что позволяет обойтись без радиатора. Усилитель является монофоническим, значит для воспроизведения стерео сигнала придётся собрать второй такой же. Такую маленькую плату можно встроить куда угодно, она является просто незаменимой при построении различных портативных колонок, которые работают от аккумулятора. Удачной сборки.
Смотрите видео
sdelaysam-svoimirukami.ru
Самодельный аудио усилитель класса D
Вот принципиальная электрическая схема проекта усилителя мощности звука, работающего в импульсном классе D, которая в отличии от этой конструкции не содержит дорогих специализированных микросхем. Всё собирается на распространённых деталях. Схема представляет интерес не только как сам УМЗЧ, а как наглядная демонстрация всех узлов и процессов, происходящих в УНЧ этого типа: генератор, модулятор, буферный каскад, усилитель и так далее.
Схема УНЧ класса D
Принципиальная схема. Клик для увеличения.Максимальная мощность выхода не указана, так как всё зависит от напряжения питания и типа используемых транзисторов. При желании — раскачать выход до 100 Вт на 4-х Омах не проблема.
Список деталей
- 1х 3.5 мм аудиовыход
- 1х потенциометр 10K
- 1х компаратор LM393
- 1х Таймер TLC555
- 1х Инвертор 74HC04
- 1х IR2113 драйвер МОСФЕТ
- 2х IRLZ44N транзистор
- 1х 7805 регулятор напряжения
- 1х 7812 регулятор напряжения
- 3х 47 мкФ, 1х 22 мкФ, 7х
- 220 нФ конденсатор3х UF4007 диод
- 2х 10к, 2х 10, 1х 2к резистор
- 2х 33 мкГн дроссель
Печатную плату для простоты сборки можно не разрабатывать, а спаять детали на макетной — смотрите фото.
Видео
А это видео даст всю информацию, нужную для постройки своего аудио усилителя Д класса.
2shemi.ru
Усилители класса D компании Texas Instruments
3 июня 2009
Традиционные аудиоусилители классов А, В и АВ для мобильных устройств с автономным питанием уже давно перестали устраивать разработчиков из-за их низкого КПД и, как следствие, высокого расхода энергии батареи или аккумулятора. Усилители класса D имеют гораздо более высокий КПД, поэтому именно они наилучшим образом удовлетворяют предъявленным требованиям к современной портативной технике. Эти усилители применяются и в стационарной технике (телевизоры, персональные компьютеры, домашние или автомобильные стереосистемы и даже мощная усилительная техника для театров и концертных залов) благодаря уменьшению габаритов, веса и цены при сопоставимых параметрах качества с приборами предыдущих поколений классов А, В и АВ. Достижения полупроводниковой технологии последних лет позволили компании Texas Instruments разработать микросхемы для создания высококачественных усилителей звуковой частоты класса D с максимальной выходной мощностью от единиц до нескольких сотен Вт.
Рассеиваемая мощность усилителя, работающего в классе D, существенно меньше, чем у аналогичных приборов класса АВ, работающих в тех же режимах. Это проиллюстрировано на рис. 1 (в качестве примера взята микросхема Texas Instruments TPA2012D2, предназначенная для усилителей портативной техники).
Рис. 1. Мощности, рассеиваемые усилителями классов АВ и D при одинаковых режимах измерения
Из рисунка 1 хорошо видно, что при одинаковой выходной мощности усилитель класса D имеет потери мощности в несколько раз меньшие по сравнению с аналогичными усилителями класса АВ во всем диапазоне выходных мощностей. Наибольший выигрыш получается при средней выходной мощности. Именно в этом режиме чаще всего и используется аппаратура для воспроизведения звука. Отмеченные свойства дополняет рис. 2, иллюстрирующий зависимости КПД от выходной мощности этих же усилителей при режимах измерения, аналогичных рис. 1. При малой и средней мощностях КПД усилителя класса D в два-три раза выше, чем у усилителя класса АВ.
Рис. 2. Зависимости КПД от выходной мощности для усилителей класса D и класса АВ при одинаковых режимах измерения
Сравнение эффективности и рассеиваемой мощности для усилителей с очень низкой выходной мощностью может оказаться не в пользу усилителей класса D из-за относительно высокой мощности высокочастотного модулятора, преобразующего аналоговый сигнал в прямоугольные импульсы с широтно-импульсной модуляцией (ШИМ). По этой причине линейные усилители класса АВ при очень низких выходных мощностях иногда оказываются предпочтительнее класса D. Принцип работы простейшего усилителя класса D без обратной связи поясняет рисунок 3.
Рис. 3. Структурная схема усилителя класса D без обратной связи
Входной сигнал предварительного усилителя модулируется треугольными колебаниями для преобразования в широтно-модулированные импульсы, которые усиливаются выходным каскадом, работающим в ключевом режиме. Далее LC-фильтр низких частот интегрирует импульсы разной длительности и срезает высокочастотные составляющие спектра, оставляя только выделенный сигнал звуковой частоты. Осциллограммы процесса ШИМ для усилителя класса D, выполненного по мостовой схеме, приведены на рис. 4. Модуляция в усилителях класса D может осуществляться разными способами, но наиболее распространена именно ШИМ.
Рис. 4. Осциллограммы ШИМ в мостовом усилителе класса D
Звуковой сигнал сравнивается с сигналом пилообразной или треугольной формы фиксированной частоты. Первый усилитель на рисунке 3 необходим для предварительного усиления и смещения сигнала до нужного уровня. Второй усилитель и генератор треугольного напряжения образуют модулятор ШИМ. На рисунке 4 длительность широтно-модулированных импульсов пропорциональна уровню входного аналогового сигнала. Мостовой схеме необходимы импульсы ШИМ противоположной полярности для управления другим плечом моста. На рисунках 3 и 4 показаны упрощенные варианты схем. В реальных схемах усилителей класса D обязательно вводятся формирователи времени паузы между импульсами для исключения одновременного включения двух выходных транзисторов и устранения сквозных токов. Частота модуляции и среза низкочастотного фильтра обычно выбирается в несколько раз больше верхней граничной частоты пропускания усилителя. К выбору элементов LC-фильтра необходимо относиться очень внимательно. Этому вопросу уделяется особое внимание в документации производителя и руководствах по применению.
Texas Instruments выпускает микросхемы для создания усилителей класса D низкой, средней и высокой мощности. Параметры для усилителей класса D низкой мощности приведены на рис. 5 и в табл. 1.
Рис. 5. Микросхемы для усилителей класса D с низкой и средней выходной мощностью
Таблица 1. Микросхемы Texas Instruments для усилителей класса D c низкой и средней выходной мощностью (аналоговый вход)
Наименование | Описание | Стерео/ моно | Pвых, Вт | Rнагр. (min), Ом | Напряжение питания, B | Half Power THD+N* (%), F = 1 кГц | PSSR** дБ | Корпус(а) | |
---|---|---|---|---|---|---|---|---|---|
(min) | (max) | ||||||||
TPA2017D2 | SmartGain, AGC/DRC, GPIO интерфейс | Стерео | 2,8 | 4 | 2,5 | 5,5 | 0,2 | 80 | QFN-20 |
TPA2000D2 | усилитель средней мощности | Стерео | 2,5 | 3 | 4,5 | 5,5 | 0,05 | 77 | TSSOP-24 |
TPA2000D4 | усилитель для стереотелефонов | Стерео | 2,5 | 4 | 3,7 | 5,5 | 0,1 | 70 | TSSOP-32 |
TPA2012D2 | усилитель в корпусе WCSP 2 x 2 мм | Стерео | 2,1 | 4 | 2,5 | 5,5 | 0,2 | 75 | WCSP-16, QFN-20 |
TPA2016D2 | SmartGain, AGC/DRC, I2C интерфейс | Стерео | 1,7 | 8 | 2,5 | 5,5 | 0,2 | 80 | WCSP-16 |
TPA2001D2 | усилитель низкой мощности | Стерео | 1,25 | 8 | 4,5 | 5,5 | 0,08 | 77 | TSSOP-24 |
TPA2100P1 | для пьзокерамического излучателя | Моно | 19 Vpp | 1,5 мкФ (пьезо) | 2,5 | 5,5 | 0,2 | 90 | WCSP-16 |
TPA2035D1 | дифференциальный вход, 1,5 х 1,5 мм | Моно | 2,75 | 4 | 2,5 | 5,5 | 0,2 | 75 | WCSP-9 |
TPA2032/3/4D1 | дифференциальный вход, фикс. усиление | Моно | 2,75 | 4 | 2,5 | 5,5 | 0,2 | 75 | WCSP-9 |
TPA2013D1 | встроенный повышающий DC/DC-преобр. | Моно | 2,7 | 4 | 1,8 | 5,5 | 0,2 | 95 | WCSP-16, QFN-20 |
TPA2036D1 | защита от КЗ с автовосстановлением | Моно | 2,5 | 4 | 2,5 | 5,5 | 0,2 | 75 | WCSP-9 |
TPA2031D1 | аналог TPA2010D1, но с плавным стартом | Моно | 2,5 | 4 | 2,5 | 5,5 | 0,2 | 75 | WCSP-9 |
TPA2010D1 | дифференциальный вход;1,45 х 1,45 мм | Моно | 2,5 | 4 | 2,5 | 5,5 | 0,2 | 75 | WCSP-9 |
TPA2018D1 | SmartGain AGC/DRC, I2C интерфейс | Моно | 1,7 | 8 | 2,5 | 5,55 | 0,2 | 80 | WCSP |
TPA2014D1 | встроенный повышающий DC/DC-преобр. | Моно | 1,5 | 8 | 2,5 | 5,5 | 0,1 | 91 | WCSP-16, QFN-20 |
TPA2006D1 | дифференциальный вход | Моно | 1,45 | 8 | 2,5 | 5,5 | 0,2 | 75 | QFN-8 |
TPA2005D1 | дифференциальный вход | Моно | 1,4 | 8 | 2,5 | 5,5 | 0,2 | 75 | MSOP-8, QFN-8, BGA-15 |
*Half Power THD+N – (нелинейные искажения + шум) при половине мощности от макс. значения (измерено для частоты 1 кГц). **PSSR – Power Supply Rejection Ratio – коэффициент подавления помех по цепям питания |
В первую очередь эти микросхемы предназначены для встраивания в мобильные устройства. Подавляющее большинство таких усилителей расчитано на напряжение питания от 2,5 до 5,5 В, но микросхема одноканального усилителя TPA2013D1 имеет расширенный диапазон напряжений питания от 1,8 до 5,5 В благодаря встроенному повышающему DC/DC-преобразователю (Boosted DC/DC). Это позволило обеспечить постоянство выходной мощности при всем диапазоне рабочих напряжений питания по сравнению с обычными усилителями класса D, что наглядно проиллюстрировано на рис. 6.
Рис. 6. Зависимости выходной мощности для TPA2013D1 и для обычных усилителей класса D
При выходной мощности около 1,5 Вт в диапазоне напряжений питания от 2,3 до 4,8 В характеристика находится в пределах ±0,1 Вт. Большинство обычных усилителей этого класса имеют практически линейную зависимость максимальной выходной мощности от напряжения питания. Преимущество усилителей со встроенным повышающим DC/DC-преобразователем – возможность работы при гораздо более низком напряжении питания батареи (или при ее более глубоком разряде), что повышает степень использования автономного источника питания.
Структурная схема микросхем TPA2013D1 и TPA2014D1 со встроенным повышающим DC/DC-конвертером показана на рис. 7.
Рис. 7. Структурная схема TPA2013D1 и TPA2014D1 со встроенным повышающим DC/DC-преобразователем
В микросхемах предусмотрена защита от нежелательных переключений при коммутации повышающего DC/DC-преобразователя. Встроенный стабилизатор обеспечивает стабильность характеристик в широком диапазоне напряжений питания. При необходимости выход повышающего DC/DC-преобразователя можно использовать для питания маломощных дополнительных схем портативного устройства. Если внимательно посмотреть на параметр PSSR (коэффициент подавления помех по цепям питания) в табл. 1, то бросается в глаза, что именно усилители со встроенными повышающими DC/DC имеют существенно лучшие значения этого параметра (91…95 дБ) по сравнению с остальными усилителями этого класса.
Среди усилителей с низкой и средней выходной мощностью есть и специализированный для работы на пьезокерамический излучатель с допустимой емкостью до 1,5 мкФ. При этом размах выходного напряжения на емкостной нагрузке достигает 19 В (от пика до пика) при минимально допустимом напряжении питания всего 2,5 В. Необходимо обратить внимание, что параметр (THD + N), характеризующий суммарные гармонические искажения вместе с шумовыми составляющими, измеряется на частоте 1 кГц при половине мощности от допустимого максимального значения.
На рис. 8 приведен навигатор для выбора микросхем усилителей класса D высокой мощности (отсчет высокой мощности для этого класса усилителей Texas Instruments начинает с 3 Вт).
Рис. 8. Микросхемы для усилителей класса D высокой мощности
Основные параметры этих микросхем сведены в табл. 2. Некоторые из микросхем, приведенных на рис. 8 и в табл. 2, относятся только к анонсированной продукции, поэтому возможность поставки образцов необходимо проверять на сайте производителя.
Таблица 2. Микросхемы Texas Instruments для усилителей класса D c высокой выходной мощностью (аналоговый вход)
Наименование | Описание | Pвых Вт | Rнагр. (min), Ом | Напряжение питания, B | Half Power THD+N* (%), F = 1 кГц | PSSR**, дБ | Корпус(а) | |
---|---|---|---|---|---|---|---|---|
(min) | (max) | |||||||
TAS5630 | 300 Вт усилитель (стерео) с ОС | 300 | TBD*** | TBD | 50 | TBD | 80 | QFP-64 |
TAS5615 | 150 Вт усилитель (стерео) с ОС | 150 | TBD | TBD | 50 | TBD | 80 | QFP-64 |
TAS5412 | усилитель (стерео) с несимметричным входом | 100 | 2 | 6 | 24 | 0,04 | 75 | HTQFP-64 |
TAS5422 | усилитель (стерео) с симметричным входом | 100 | 2 | 6 | 24 | 0,04 | 75 | HTQFP-64 |
TAS5414A | усилитель (квадро) с несимметричным входом | 45 | 2 | 8 | 22 | 0,04 | 75 | SSOP-36, HTQFP-64 |
TAS5424A | усилитель (квадро) с симметричным входом | 45 | 2 | 8 | 22 | 0,04 | 75 | SSOP-44 |
TPA3106D1 | усилитель (моно) со входом синхронизации | 40 | 4 | 10 | 26 | 0,2 | 70 | HLQFP-32 |
TPA3123D2 | усилитель (стерео) с несимметричным входом | 25 | 4 | 10 | 30 | 0,08 | 60 | HTSSOP-24 |
TPA3100D2 | усилитель (стерео) 20 Вт | 20 | 4 | 10 | 26 | 0,1 | 80 | HTQFP-48, QFN-48 |
TPA3001D1 | усилитель (моно) 20 Вт | 20 | 4 | 8 | 18 | 0,06 | 73 | HTSSOP-24 |
TPA3110D2 | усилитель (стерео) с ограничением мощности | 15 | 4 | 8 | 26 | <0,1 | 70 | TSSOP-28 |
TPA3122D2 | усилитель (стерео) в корпусе DIP-20 | 15 | 4 | 10 | 30 | <0,15 | 60 | PDIP-20 |
TPA3107D2 | усилитель (стерео) 15 Вт | 15 | 6 | 10 | 26 | 0,08 | 70 | HTQFP-64 |
TPA3124D2 | усилитель (стерео) 15 Вт с функцией Mute**** | 15 | 4 | 10 | 26 | 0,04 | 60 | TSSOP-24 |
TPA3121D2 | усилитель (стерео) с несимметричным входом | 15 | 4 | 10 | 26 | 0,04 | 60 | TSSOP-24 |
TPA3004D2 | усилитель (стерео) c регулировкой громкости | 12 | 4 | 8,5 | 18 | 0,1 | 80 | HTQFP-48 |
TPA3125D2 | усилитель (стерео) в корпусе DIP-20 | 10 | 4 | 10 | 26 | 0,15 | 60 | PDIP-20 |
TPA3101D2 | усилитель (стерео) 10 Вт | 10 | 4 | 10 | 26 | 0,1 | 80 | HTQFP-48, QFN-48 |
TPA3111D1 | усилитель (моно) с ограничением мощности | 10 | 4 | 8 | 26 | <0,1 | 70 | TSSOP-28 |
TPA3002D2 | усилитель (стерео) c регулировкой громкости | 9 | 8 | 8,5 | 14 | 0,06 | 80 | HTQFP-48 |
TPA3007D2 | усилитель (стерео) 6.5 Вт | 6,5 | 8 | 8 | 18 | 0,2 | 73 | TSSOP-24 |
TPA3009D2 | усилитель (стерео) c регулировкой громкости | 6 | 8 | 8,5 | 14 | 0,045 | 80 | HTQFP-48 |
TPA3005D2 | усилитель (стерео) 6 Вт | 6 | 8 | 8 | 18 | 0,1 | 80 | HTQFP-48 |
TPA3003D2 | усилитель (стерео) c регулировкой громкости | 3 | 8 | 8,5 | 14 | 0,2 | 80 | TQFP-48 |
TPA2008D2 | усилитель (стерео) c регулировкой громкости | 3 | 3 | 4,5 | 5,5 | 0,05 | 70 | HTSSOP-24 |
*Half Power THD+N – (нелинейные искажения + шум) при половине мощности от макс. значения (измерено для частоты 1 кГц) **PSSR – Power Supply Rejection Ratio – коэффициент подавления помех по цепям питания ***TBD – To Be Documented – данные будут указаны производителем позднее ****Mute – приглушение звука |
На основе микросхем Texas Instruments можно спроектировать усилитель класса D с выходной мощностью до 300 Вт при максимальном напряжении питания до 50 В.
Большой интерес для разработчиков могут представлять новые двухканальные микросхемы для усилителей этого класса TPA3122D2 и TPA3125D2 в корпусе DIP20.
Рис. 9. Зависимости выходной мощности от напряжения питания для TPA3122D при включении каждого канала в режиме SE
Рис. 10. Зависимости выходной мощности от напряжения питания для TPA3122D при включении двух каналов по мостовой схеме
Этот корпус удобен для монтажа и макетирования по сравнению с миниатюрными корпусами BGA с шариковыми выводами. Схема включения этих стереоусилителей отличается простотой и приведена на рис. 11. Синим цветом выделены параметры, соответствующие TPA3125D2 (мощность до 10 Вт), красным цветом – TPA3122D2 (мощность до 15 Вт).
Рис. 11. Схема включения микросхем TPA3125D2 и TPA3122D2 для 10 и 15 Вт соответственно
Микросхемы имеют два входа регулировки усиления (четыре уровня), а также возможность отключения (Shutdown) и приглушения звука (Mute). На рис. 11 показан самый распространенный вариант включения двухканального усилителя в режиме SE (Single Ended Output – нагрузка подключается к каждому каналу – режим «стерео»). Для существенного увеличения выходной мощности рассматриваемых микросхем можно из двух каналов одной микросхемы создать одноканальный мостовой усилитель (схема BTL – Bridge Tied Load – подключение нагрузки к мостовой схеме). Принципиальные схемы включения микросхем TPA3125D и TPA3122D для мостового варианта усилителя класса D приведены в документации производителя для этих усилителей. На рис. 9 и 10 показаны зависимости выходной мощности от напряжения питания при одинаковых условиях измерения для схем в режиме «стерео» (SE) и для варианта мостового включения (схема BTL).
Измерение максимальной выходной мощности оценивается при конкретном значении суммы всех гармонических искажений и шумовых составляющих (THD + N). При переходе к мостовой схеме включения на одинаковых напряжениях питания, сопротивлении нагрузки и суммарных искажениях сигнала, выходная мощность возрастает в несколько раз. Поэтому в мощных усилителях обычно используют именно мостовую схему включения. Всего одна микросхема в корпусе DIP20 при таком подключении позволяет создать усилитель с максимальной выходной мощностью около 50 Вт при напряжении питания 30 В.
Шумы и нелинейные искажения
Основная информация о звуковом сигнале кодируется шириной импульсов на выходе модулятора. Необходимость введения задержки на величину паузы становится причиной нелинейных искажений, пропорциональных отклонению от точной длительности импульса модуляции. Сильное влияние на шумы оказывает коэффициент ослабления помех от источника питания PSSR. Из-за малого сопротивления шумы источника питания могут напрямую передаваться в громкоговоритель. ФНЧ срезает высокочастотные составляющие, но пропускает низкочастотные шумы. Для качественного звучания следует выбирать микросхемы с высоким значением коэффициента ослабления помех от источника питания. Эффективное решение перечисленных проблем – введение глубокой обратной связи, как это делается во многих линейных усилителях. Обратная связь с входа ФНЧ сильно повышает PSSR и ослабляет суммарные искажения и шумы, появляющиеся до LC-фильтра. Искажения в самом фильтре можно уменьшить включением громкоговорителя в цепь ОС. В грамотно спроектированных усилителях класса D с замкнутой ОС реально достижим суммарный коэффициент нелинейных искажений менее 0,01%.
Основные выводы
Все больше новых аудиоустройств создается на основе экономичных и эффективных усилителей класса D. Многолетний опыт и новые технологии компании Texas Instruments позволяют ей уверенно чувствовать себя на этом рынке с высокой конкуренцией. Усилители класса D позволяют, повышая эффективность, в несколько раз снизить габариты за счет исключения или значительного уменьшения размеров радиаторов в мощных схемах. Требуется менее мощный источник питания, что дополнительно снижает цену усилительного прибора. Для многих рассмотренных в статье микросхем Texas Instruments выпускает демонстрационные платы. Ознакомиться с решениями для построения аудиосистем можно на сайте производителя в разделе www.ti.com/audio, а по системам управления питанием – в разделе www.power.ti.com.
Получение технической информации, заказ образцов, поставка — e-mail: [email protected]
•••
Наши информационные каналы
www.compel.ru
Как работает усилитель класса D, или Не такой как все / Stereo.ru
История
В мире Hi-Fi класс D имеет самую тяжелую судьбу, и его развитие происходило не благодаря объективным преимуществам, а скорее вопреки сложившемуся мнению. Началось все с того, что классу D буквально сразу повесили обидный, по мнению некоторых аудиофилов, ярлык «цифровой усилитель». И хотя некоторые принципы его работы действительно напоминают работу цифровых схем, по своей сути это абсолютно аналоговое устройство.
Еще одно заблуждение сопровождающее класс D — возраст. Есть мнение, что класс D был разработан совсем недавно и является побочным продуктом современных цифровых технологий. На самом деле, класс D имеет богатую историю, и его первые реализации проектировались еще в эпоху радиоламп. Использовать схемотехнику такого типа для усиления звука (класс D в ламповом исполнении) предложил наш соотечественник Дмитрий Агеев, и произошло это в 1951 году. Примерно в это же время над практической реализацией подобного устройства работал английский ученый Алекс Ривз, а в 1955 году их коллега Роже Шарбонье из Франции, создавая аналогичную схему, впервые применил термин «класс D».
В самом начале, когда велись главным образом теоретические изыскания, судьба класса D казалась безоблачной. Его расчетные характеристики в буквальном смысле достигали предела совершенства. Однако, первая коммерческая реализация 1964 года выявила массу слабых мест, главное из которых — невозможность добиться по-настоящему достойного качества звучания на элементной базе того времени.
Производители не оставляли надежд, и в семидесятых годах попытки вывести усилители класса D на рынок предпринимали такие гиганты Hi-Fi-индустрии, как Infinity и Sony. Обе затеи провалились по той же самой причине, что и в первый раз. Подходящие по быстродействию и классу точности транзисторы стали производиться серийно лишь в восьмидесятых годах, после чего качественная реализация усилителей класса D и стала реальностью. В наше время усилители класса D можно встретить в совершенно различных устройствах: от смартфонов и бытовой аппаратуры до студийного оборудования и High End-систем.
Принцип работы
В основе принципа работы усилителей класса D и любых его модификаций, в том числе имеющих самостоятельные буквенные обозначения (классы T, J, Z, TD и другие), лежит принцип Широтно-Импульсной Модуляции или, сокращенно, ШИМ. Модуляция сигнала как метод существует довольно давно и используется как способ хранения и передачи информации. Суть ее заключается в том, чтобы модулировать полезным сигналом некую несущую частоту. Частота выбирается таким образом, чтобы ее было удобно передавать или записывать на носитель. Процесс воспроизведения подразумевает обратную последовательность: выделение полезного сигнала из модулированной несущей частоты. По такому принципу работает и цифровая техника, и радиосвязь, и теле-радиовещание. Тонкость состоит в том, что в случае с ШИМ преследуется совершенно иная цель. Модуляция позволяет привести сигнал в такой вид, чтобы его усиление было максимально простым и эффективным процессом.
В основе схемотехники класса D лежит генератор СВЧ-импульсов (исчисляемых сотнями МГц) несущей частоты и компаратор — устройство, модулирующие эти импульсы, соответственно форме входящего аналогового сигнала. Далее все просто. Модулированный сигнал имеет форму импульсов равной амплитуды, но разной продолжительности, которые усиливаются с помощью пары симметрично включенных быстродействующих транзисторов типа MOSFET. Далее в схеме используется простейший LC-фильтр, демодулирующий усиленный сигнал, а также отсекающий несущую частоту и сопутствующий высокочастотный шум.
Упоминание транзисторов, используемых для усиления порождает резонный вопрос: «а не проще было бы сразу усилить аналоговый сигнал без всяких модуляций?». И именно этот вопрос раскрывает суть усилителей класса D. В обычных усилителях классов A, B, G и прочих их производных транзистор работает с широкополосным сигналом, постоянно меняющимся и по амплитуде, и по частоте. Поведение даже самого лучшего транзистора на разных амплитудах и частотах не 100% одинаково, что неизбежно приводит к искажениям, которые мы знаем как окрашенность или «характер» усилителя. Модулированный сигнал в усилителях класса D меняется дискретно и на полную амплитуду. Таким образом, режим работы транзисторов существенно упрощается и становится куда более прогнозируемым. По сути, они выступают в роли ключа, находясь либо в закрытом, либо в открытом состоянии без промежуточных значений.
Все, что требуется в таком режиме от транзистора — максимально быстро реагировать на изменение уровня сигнала, а поведение его на промежуточных значениях амплитуды не имеет значения. Кроме того, данный режим работы транзистора крайне положительно сказывается на энергоэффективности усилителя, доводя его теоретический КПД до 100%.
Второй наиболее очевидный вопрос касается сходства модулированного аналогового и цифрового сигналов. Обычно это даже не вопрос, а утверждение: «Усилитель класса D — цифровой, а значит правильно подавать на его вход цифровой сигнал, а не аналоговый». Процесс модуляции аналогового сигнала на входе усилителя класса D, действительно, очень напоминает то, что происходит в АЦП при оцифровке звука, однако принцип модуляции принципиально отличается от того, что используется в формате PCM.
Именно по этой причине цифровые входы интегрированных усилителей, работающих в классе D, используют вполне традиционную схему ЦАПа, с аналогового выхода которой сигнал и поступает на вход платы усилителя мощности. Таким образом, аналоговый сигнал является основным и естественным входящим сигналом для усилителей класса D.
Впрочем, существуют и исключения, которые, если разобраться более детально, ничего не меняют в общей картине, а лишь дополняют типовую схемотехнику класса D. Небезызвестный Питер Лингдорф, еще будучи разработчиком в компании NAD, успешно реализовал схему прямого преобразования PCM-потока напрямую в формат ШИМ без традиционной процедуры цифроаналогового преобразования. Эта технология получила название Direct Digital, или говоря по-русски: прямое усиление цифрового сигнала.
Таким образом удалось сократить протяженность и понизить сложность звукового тракта, а единственное цифроаналоговое преобразование в подобной схеме производится непосредственно перед акустическими клеммами. Однако стоит заметить, что для работы такого усилителя с аналоговым сигналом он должен также иметь и классический входной каскад, использующийся в традиционных усилителях класса D.
На текущий момент технология прямого усиления «цифры» еще не стала массовым явлением, вероятно, потому что г-н Лингдорф грамотно оформил патентные права на технологию или просто предпочитает не раскрывать коллегам всех секретов. Но не так давно подобная схема была успешно реализована в портативной технике, что позволяет надеяться на более широкое распространение технологии в будущем. Не исключено, что спустя некоторое время класс D действительно станет цифровым усилителем.
Плюсы
Главный плюс усилителей класса D, ради которого и затевалась история с модуляцией сигнала — энергоэффективность. Причем и в теоретических выкладках, и в реальных цифрах это дает такой прирост КПД, с которым хоть как-то может сравниться разве что переход от класса А к классам В и АВ, а все достижения класса G и прочих на его фоне кажутся довольно слабой попыткой.
Работая в импульсном режиме, половину времени транзистор проводит в полностью закрытом состоянии, а значит имеет нулевой ток покоя и не потребляет энергии. При этом в момент включения транзистор работает на полную мощность, перенаправляя всю энергию, поступающую от блока питания, на выход усилителя.
В итоге, эти самые теоретические 100% КПД при практической реализации дают действительно превосходные значения порядка 90–95%. А поскольку лишь единицы процента энергии расходуются на нагрев транзисторов, радиаторы можно использовать исчезающе малого размера. Для получения на выходе 100–200 Вт на канал усилитель класса АВ должен иметь радиаторы, занимающие одну или обе боковых стенки корпуса, а усилитель класса D обойдется кусочком алюминия размером в один-два спичечных коробка.
Кстати, то же самое можно сказать о размере платы усилителя мощности: в классе D она получается в разы компактнее, даже если собирается не на микросхемах, а на дискретных элементах. Ну и в завершение всего, усилители класса D имеют меньшую себестоимость, нежели сопоставимые по мощности модели других классов. Впрочем, последнее касается скорее DIY-проектов — производители же предпочитают вкладывать сэкономленные деньги в повышение качества звучания и прочие усовершенствования, тем более что в классе D и вправду есть что улучшать.
Минусы
Обладая совершенно убийственными преимуществами, класс D не завоевал рынок Hi-Fi целиком и полностью лишь потому, что имеет свои слабые места, которые для многих ценителей качественного звука выглядят куда более значительными, нежели энергоэффективность. Наличие в схеме высокочастотного генератора само по себе является потенциальным источником электромагнитных помех, негативно влияющих на звучание самого усилителя и на работу соседствующих с ним компонентов звукового тракта.
Неподготовленный слушатель, возможно, не заметит данного эффекта или не придаст ему значения, но в индустрии Hi-Fi и High End, когда всякая мелочь имеет значение, такое соседство не приветствуется и вынуждает инженеров совершенствовать фильтрующие схемы и идти на прочие ухищрения, чтобы исключить влияние вредоносного СВЧ-генератора несущей частоты на воспроизводимый аудиосигнал.
Высокий КПД усилителей класса D стал причиной одной специфической особенности: высокой зависимости качества и характера звучания от блока питания. Если производитель решит использовать импульсный источник питания и не озаботится достаточным количеством фильтрующих схем, часть шумов обязательно проникнет в колонки и подпортит впечатление от звучания. Плохой блок питания, конечно, и классу АВ на пользу не пойдет, но именно в классе D эта проблема проявляется наиболее остро.
Особенности
Описание плюсов и минусов схемотехники класса D дают совершенно недвусмысленные намеки на то, чем в первую очередь должны заниматься разработчики, которые стремятся добиться от усилителей максимального качественного звука.
Проблему питания усилителей класса D разработчики решают двумя способами. Одни идут проверенным путем, используя классические линейные блоки питания с огромными тороидальными трансформаторами и прочими классическими решениями. Но есть и другой путь, которым идет меньшая часть разработчиков. При должном умении вполне можно создать малошумящий импульсный блок питания, пригодный для установки в усилителях высшего класса качества. И именно они способны дать фору самым мощным и солидным линейным блокам питания за счет лучшего КПД и быстродействия, а как следствие — лучшей динамики звучания и мгновенной реакции усилителя на большие перепады уровней сигнала.
Что же касается специфики работы самого усилителя класса D, его схемотехника обеспечивает существенно более высокий коэффициент демпфирования в сравнении с классом АВ и другими схемотехническими решениями. Это гарантирует не только стабильную работу со сложной нагрузкой, быстрый, четкий бас и большой динамический диапазон, но также обеспечивает меньший уровень искажений, отсутствие каши, вялой атаки или смазывания фронтов и самое главное — способность усилителя одинаково справляться с совершенно разноплановой музыкой.
Практика
Почетная обязанность отстаивать честь усилителей класса D в нашем исследовании выпала усилителю Marantz PM-KI RUBY. Этот аппарат имеет образцово-показательную компоновку, демонстрирующую, как нужно создавать современные усилители. Два модуля Hypex NCore 500, работающие в классе D, питаются от специального малошумящего импульсного блока питания. При этом в конструкции усилителя присутствует классический предварительный каскад, выстроенный на дискретных элементах, согласно фирменной технологии HDAM от Marantz, которая использовалась и в традиционных усилителях класса АВ.
Предварительный каскад питается от линейного блока питания, тороидальный трансформатор которого, судя по размерам, имеет многократный запас мощности, чтобы никоим образом не повлиять на динамику и чистоту звучания. Другими словами, в одном корпусе сочетаются два подхода: классический для предварительного усилителя и современный для усилителя мощности.
Все это обильно приправлено типичным для High End-моделей вниманием к мелочам вроде омедненного шасси, улучшенной виброразвязки, сокращения путей сигнала, симметричной топологии плат, строгого отбора деталей по параметрам и т.п.
В результате, мы имеем едва ли не самый совершенный с технической точки зрения аппарат с коэффициентом демпфирования 500, искажениями менее 0,005% и энергопотреблением 130 Вт при выходной мощности до 200 Вт на канал при 4 Ом нагрузки. Впрочем, всякую претензию на совершенство в мире звука надлежит проверить практикой.
Звук
Усилитель выдает очень свободное красивое звучание с превосходной детализацией, богатыми тембрами и длинными естественными послезвучиями живых инструментов. Сцена выстраивается максимально точно и масштабно, с достоверной передачей пропорций и местоположения виртуальных источников звука в пространстве. Все вполне соответствует представлениям о том, как должен играть хороший усилитель категории High End. Никакой синтетики, жесткости или «дискретности», которую в звучании класса D обнаруживают некоторые адепты старой школы, не наблюдается. Напротив, Marantz PM-KI RUBY успешно сочетает лучшие объективные характеристики с фирменной утонченной и легкой подачей музыкального материала.
Это типично «марантцовское» звучание проявляется, в первую очередь, в излишней интеллигентности при воспроизведении металла и тяжелого рока. В то же время классика любых составов, джаз и вокал звучат очень живо и натурально. Весьма похожий, возможно, даже чуть более красивый и приторный характер звучания проявляли усилители Marantz прошлых лет, работающие в классе АВ, что позволяет сделать вывод о нейтральном характере звучания усилителей мощности класса D.
Подключение к усилителю Marantz PM-KI RUBY акустики разной мощности, с разной чувствительностью и разным импедансом дало вполне ожидаемый результат: отсутствие какой либо выраженной реакции на изменение этих параметров. С любой стереопарой усилитель справлялся одинаково уверенно.
Даже на самой сложной нагрузке и на высокой громкости на удивление стабильно воспроизводились нижние ноты контрабаса — они звучали абсолютно четко, без гула, с натуральной передачей ощущения вибрирующей струны и откликающейся на эту вибрацию деки инструмента. Одним словом, все происходило ровно так, как и должно происходить с усилителем, имеющим заявленное сочетание мощности и коэффициента демпфирования.
Выводы
Все основные преимущества класса D вполне подтверждаются практикой. Но если с точки зрения энергопотребления и других измеряемых характеристик ситуация абсолютно очевидная и бесспорная, звучание по-прежнему остается вопросом дискуссионным. Класс D в чистом виде дает максимально качественный и, как следствие, — нейтральный, не окрашенный звук. Такое придется по вкусу далеко не всем и с наименьшей степенью вероятности порадует тех, чьи предпочтения формировались через прослушивание ламповой и прочей ретро-техники. С этой точки зрения разработчики Marantz продемонстрировали житейскую мудрость, придав своему усилителю фирменный характер звучания путем установки оригинальных модулей предварительного усиления. Одновременно с этим существуют другие производители, в том числе адепты максимально точного и нейтрального звучания, которые используют потенциал класса D, согласно своим представлениям о прекрасном.
В целом же, вывод такой: если производитель не экономил на ключевых элементах схемы, в результате мы получаем усилитель максимально близкий к совершенству. Остальное — дело вкуса.
Продолжение следует…
Другие материалы цикла:
Как работает усилитель класса «А», или Истинный High End и много тепла
Как работает усилитель класса «АВ», или Практичность правит миром
Как работает усилитель класса «G» и «H», или На ступень выше
Как работает усилитель класса XD и XA, или Немного экзотики
Статья подготовлена при поддержке компании «Аудиомания», тестирование усилителей проходило в залах прослушивания салона.
Полезные материалы в разделе «Мир Hi-Fi» на сайте «Аудиомании» и Youtube-канале компании:
• Слушаем музыку с компьютера правильно. Три основных способа
• Что за музыка была «зашита» в популярных ОС
• Что такое Roon? [видео]
stereo.ru