Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments
Warning: preg_replace_callback(): Compilation failed: regular expression is too large at offset 49063 in /var/www/www-root/data/www/i-flashdrive.ru/wp-content/plugins/realbig-media/textEditing.php on line 41 Warning: error_log(/var/www/www-root/data/www/i-flashdrive.ru/wp-content/plugins/realbig-media/wpPluginErrors.log): failed to open stream: Permission denied in /var/www/www-root/data/www/i-flashdrive.ru/wp-content/plugins/realbig-media/textEditing.php on line 405

Содержание

Направление тока в проводнике, как, откуда и куда течет электрический ток.

 

 

 

Тема: в какую сторону идёт ток в проводах, электрических цепях, схемах.

 

Электрический ток представляет собой упорядоченное движение заряженных частиц. В твердых телах это движение электронов (отрицательно заряженных частиц) в жидких и газообразных телах это движение ионов (положительно заряженных частиц). Более того ток бывает постоянным и переменным, и у них совсем разное движение электрических зарядов. Чтобы хорошо понять и усвоить тему движение тока в проводниках пожалуй сначала нужно более подробно разобраться с основами электрофизики. Именно с этого я и начну.

 

Итак, как вообще происходит движение электрического тока? Известно, что вещества состоят из атомов. Это элементарные частицы вещества. Строение атома напоминает нашу солнечную систему, где в центре расположено ядро атома. Оно состоит из плотно прижатых друг к другу протонов (положительных электрических частиц) и нейтронов (электрически нейтральных частиц). Вокруг этого ядра с огромной скоростью по своим орбитам вращаются электроны (более мелкие частицы, имеющие отрицательный заряд). У разных веществ количество электронов и орбит, по которым они вращаются, может быть различным. Атомы твердых веществ имеют так называемую кристаллическую решетку. Это структура вещества, по которой в определенной порядке располагаются атомы относительно друг друга.

 

 

А где же тут может возникнуть электрический ток? Оказывается, что у некоторых веществ (проводников тока) электроны, что наиболее удалены от своего ядра, могут отрываться от атома и переходить на соседний атом. Это движение электронов называется свободным. Просто электроны перемещаются внутри вещества от одного атома к другому. Но вот если к этому веществу (электрическому проводнику) подключить внешнее электромагнитное поле, тем самым создав электрическую цепь, то все свободные электроны начнут двигаться в одном направлении. Именно это и есть движение электрического тока внутри проводника.

 

 

 

 

Теперь давайте разберемся с тем, что собой представляет постоянный и переменный ток. Итак, постоянный ток всегда движется только в одном направлении. Как говорилось в самом начале — в твердых телах движутся электроны, а в жидких и газообразных движутся ионы. Электроны, это отрицательно  заряженные частицы. Следовательно, в твердых телах электрический ток течет от минуса к плюсу источника питания (перемещаются электроны по электрической цепи). В жидкостях и газах ток движется сразу в двух направлениях, а точнее, одновременно, электроны текут к плюсу, а ионы (отдельные атомы, что не связаны между собой кристаллической решеткой, они каждый сам по себе) текут к минусу источника питания.

 

 

Учеными же было принято официально считать, что движение происходит от плюса к минусу (наоборот, чем это происходит в действительности). Так что, с научной точки зрения правильно говорить, что электрический ток движется от плюса к минусу, а с  реальной точки зрения (электрофизическая природа) правильнее полагать, что ток течет от минуса к плюсу (в твердых телах). Наверное это сделано для какого-то удобства.

 

Теперь, что касается переменного электрического тока. Тут уже немного все сложнее. Если в случае постоянного тока движение заряженных частиц имеет только одно направление (физически электроны со знаком минус текут к плюсу), то при переменном токе направление движения периодически меняется на противоположное. Вы наверное слышали, что в обычной городской электросети переменное напряжение величиной 220 вольт и стандартной частотой 50 герц. Так вот эти 50 герц говорят о том, что электрический ток за одну секунду успевает 50 раз пройти полный цикл, имеющий синусоидальную форму. Фактически за одну секунду направление тока меняется аж 100 раз (за один цикл меняется два раза).

 

P.S. Направление тока в электрических схемах имеет важное значение. Во многих случаях если схема рассчитана на одно направление тока, а вы случайно его поменяете на противоположный или вместо постоянного тока подключите переменный, то скорее всего устройство просто выйдет из строя. Многие полупроводники, что работают в схемах, при обратном направлении тока могут пробиваться и сгорать. Так что при подключении электрического питания направление тока должно быть вами строго соблюдаться.

 

electrohobby.ru

от плюса к минусу или наоборот

Электрический ток – одно из основных благ цивилизации, без которого жизнь современного человечества была бы невозможна. Применяемый во всех областях современного мира (от простого электрочайника, встречающегося на кухни почти любой домохозяйки до мощной дуговой электроплавильной печи) он делает жизнь людей более удобной и простой. В то же самое время очень мало из тех, кто пользуется многочисленными электроприборами, задумывается над природой данного явления. В частности, не все понимают, что оно собой представляет, на протекании каких процессов основывается, какое направление течения заряженных частиц в проводниках и электрических цепях.

Движение зарядов в проводнике

Для того чтобы разобраться в том, как течет ток, необходимо понять его физическую сущность, основанную на атомарно-молекулярной теории строения материи, узнать, какие условия необходимы для его возникновения и существования, какие виды токов бывают, и какими характеристиками они обладают.

Физическая сущность течения тока в цепи

Наличие тока в цепи обусловлено направленным перемещением заряженных частиц. В твердых телах течение тока создается движением отрицательно заряженных электронов, в газах и жидкостях – положительными ионами. В таких широко распространенных веществах, как полупроводники, электрический ток возникает при движении частиц –  электронов и «дырок» (положительно заряженных частиц, представляющих собой атомы с недостающим количеством электронов на внешних уровнях).

Основными условиями возникновения и существования электрического тока являются:

  • Наличие носителей зарядов – перемещающиеся по проводнику, газу или электролиту частицы;
  • Создаваемое определенным источником питания электрическое поле – без данного силового поля движение свободных носителей зарядов будет хаотичным, не имеющим определенного направления;
  • Замкнутая цепь – направленное движение зарядов возможно только в замкнутых цепях. Так, например, состоящий из источника питания ключа (переключатель) и лампочки накаливания ток будет протекать только тогда, когда ключ, располагающийся в разрыве проводника между одним из полюсов питания и лампой, находится во включенном состоянии, позволяя носителям заряда перемещаться по замкнутой цепи от отрицательного полюса батареи к положительному.

Электрический ток и поток электронов

Разобравшись в том, что в большинстве случаев носителями электрических зарядов являются электроны, необходимо понять, почему они движутся. Для этого необходимо заглянуть в микромир частиц – атомов и понять их строение, физические процессы, происходящие с ними.

Атом состоит из ядра и вращающихся вокруг него множества электронов, количество которых зависит от суммарного заряда ядра. Электроны передвигаются по определенным траекториям – орбиталям (уровням). При этом те из них, которые располагаются ближе всего к ядру, удерживаются им очень сильно и не участвуют в химических реакциях и физических процессах. Те частицы, которые находятся на внешних уровнях, являются активными и определяющими способность того или иного атома к химическому взаимодействию и образованию свободных зарядов. Их называют валентными.

Ядро и электроны

Активность и способность атомов к отщеплению свободных электронов зависят от количества частиц на внешних уровнях. Так, у одних веществ многочисленные электроны удалены от ядра, поэтому срываются со своих орбиталей и начинают устремляться к другим атомам, в результате чего наблюдается перемещение свободных зарядов. При подаче электрических потенциалов (напряжения) движение электронов становится направленным, появляется электрический ток. Поэтому твердые тела (например, металлы) с большим количеством свободных электронов являются проводниками.

У диалектиков частицы, способные переносить электрический заряд, отсутствуют – у них мало электронов на внешних уровнях, поэтому они не могут срываться, переходя сначала в хаотичное, потом и в направленное движение.

Промежуточное положение между диэлектриками и проводниками занимают полупроводники, электропроводность которых зависит от внешних факторов (температуры, освещенности и т.д.).

Электрический ток в параллельной цепи

В электрических схемах предусмотрены параллельные и последовательные соединения элементов. При параллельном соединении, например, резисторов, напряжение одинаково для каждого из них, а сила тока, протекающего через каждый элемент, пропорциональна его сопротивлению. Чтобы определить величину тока через каждый компонент при параллельной комбинации их соединения, используют закон Ома.

Параллельная электрическая цепь

Вид цепи и напряжение

В зависимости от направления протекания тока и особенностей напряжения, различают два вида электрических цепей:

  • Цепи постоянного тока;
  • Цепи переменного тока.

Напряжение цепей постоянного тока является работой, совершаемой электрическим полем в ходе перемещения пробного плюсового заряда из точки A в точку Б. Напряжение в цепи постоянного тока определяется как разность потенциалов на его концах. В таких цепях принято считать, что ток идет от плюса к минусу (от плюсового полюса к минусовому).

На заметку. В реальности ток течет не от плюса к минусу, а, наоборот, от минуса к плюсу. Сформировавшееся ошибочное представление о направлении течения именно от плюса не стали изменять и оставили для удобства понимания физической сущности данного явления.

Для цепей переменного тока характерны такие виды и значения напряжения, как:

  • мгновенное;
  • амплитудное;
  • среднее значение;
  • среднеквадратическое;
  • средневыпрямленное.

Напряжение в таких цепях – это достаточно сложная функция времени. Грубо говоря, ток в них течет от фазного провода, проходит через нагрузку и частично уходит в нулевой (течет от фазы к нулю)

Виды токов: постоянные и переменные

В зависимости от изменения направления протекания заряженных частиц, различают следующие виды токов:

  • Постоянный – формируется движением заряженных частиц в одном направлении. Его основные характеристики (сила тока, напряжение) имеют постоянные значения и не изменяются во времени;
  • Переменный – направление перемещения зарядов при таком виде движения заряженных частиц периодически меняется. Количество изменений направления движения за единицу времени, равную одной секунде, называется частотой тока и измеряется в Герцах. Так, например, значение данной характеристики в обычной бытовой электрической цепи равно 50 Гц. Это означает, что в течение 1 секунды движущиеся по цепи электроны меняют свое направление 50 раз, вызывая тем самым такое же количество изменений напряжения в фазном проводе от 220 до 0 В.

Основные характеристики переменного тока

Двунаправленное перемещение зарядов

Наряду с упорядоченным движением носителей зарядов (электронов), в проводниках наблюдается также незначительный обратный процесс – условное перемещение положительных зарядов, потерявших отрицательные частицы атомов. Вместе с основным током данное явление получило название двунаправленное перемещение зарядов. Особенно оно ярко проявляется при протекании электричества через электролиты (явление электролиза).

Двунаправленное перемещение зарядов в аккумуляторной батарее

Значение перемещения электронов в электрической схеме

Понимание того, как идет в цепи ток, необходимо при составлении такого графического изображения расположения электронных деталей, как схема. Важно понимать, откуда течет ток, для того чтобы правильно располагать на схеме, затем соединять различные радиоэлектронные элементы. Если для таких радиодеталей, как конденсатор, резистор, полярность подключения не имеет значения, то полупроводниковый транзистор,

диод необходимо размещать на схеме и затем запитывать, учитывая направление движения тока, иначе они и собираемое с их использованием устройство, электронный блок не будут правильно функционировать.

Таким образом, знание физической сущности направления течения заряженных частиц в проводнике, электролите, полупроводнике позволит любому человеку не только расширить свой кругозор, но и применять его на практике при монтаже электропроводки, пайке различных электронных блоков и схем. Также подобная информация поможет разобраться в том, почему произошла поломка того или иного электроприбора, как ее устранить и предотвратить в будущем.

Видео

amperof.ru

Постоянный ток — Википедия

Постоя́нный ток — электрический ток, который с течением времени не изменяется по величине и направлению.

Постоянный ток является разновидностью однонаправленного тока. Однонаправленный ток (англ. direct current) — это электрический ток, не изменяющий своего направления[1]. Часто можно встретить сокращения DC от первых букв англ. слов, или символом (ГОСТ 2.721-74), или —

На рисунке к этой статье красным цветом изображён график постоянного тока. По горизонтальной оси отложен масштаб времени t{\displaystyle t}, а по вертикальной — масштаб тока I{\displaystyle I} или электрического напряжения U{\displaystyle U}. Как видно, график постоянного тока представляет собой прямую линию, параллельную горизонтальной оси (оси времени).

Величина постоянного тока I{\displaystyle I} и электрического напряжения U{\displaystyle U} для любого момента времени сохраняется неизменной.

При постоянном токе через каждое поперечное сечение проводника в единицу времени протекает одинаковое количество электричества (электрических зарядов).

Постоянный ток — это постоянное направленное движение заряженных частиц в электрическом поле.

В каждой точке проводника, по которому протекает постоянный ток, одни элементарные электрические заряды непрерывно сменяются другими, совершенно одинаковыми по сумме электрическими зарядами. Несмотря на непрерывное перемещение электрических зарядов вдоль проводника, общее пространственное их расположение внутри проводника как бы остаётся неизменным во времени, или стационарным.

Переносчиками электрических зарядов являются:

Постоянное движение электрических зарядов создаётся и поддерживается сторонними силами, которые могут иметь химическую (в гальванических элементах), электромагнитную (динамо-машина постоянного тока), механическую (электрофорная машина) или иную (например, радиоактивную в стронциевых источниках тока) природу. Во всех случаях источник тока является преобразователем энергии сторонних сил в электрическую.

Электрическое поле, сопутствующее постоянному току в проводнике и в соответствии с этим стационарное распределение в нём электрических зарядов, называется стационарным (неизменным во времени) электрическим полем.

Электрические заряды в стационарном электрическом поле нигде не накапливаются и нигде не исчезают, так как при всяком пространственном перераспределении зарядов неизбежно должно было бы измениться стационарное электрическое поле и соответственно ток перестал бы быть постоянным по времени.

Для стационарности поля и тока требуется, чтобы электрические заряды нигде не накапливались и нигде не терялись, а перемещались непрерывным и равномерным потоком вдоль проводников. Для этого необходимо, чтобы проводники совместно образовывали замкнутый на себя контур. В этом случае будет достигнуто непрерывное круговое равномерное движение электрических зарядов вдоль всего контура.

Постоянный электрический ток может существовать только в замкнутом на себя контуре, состоящем из совокупности проводников электричества, в котором действует стационарное электрическое поле.

Самыми первыми источниками постоянного тока являлись химические источники тока: гальванические элементы, затем были изобретены аккумуляторы. Полярность химических источников тока самопроизвольно измениться не может.

Для получения постоянного тока в промышленных масштабах используют электрические машины — генераторы постоянного тока, а также солнечные батареи.

В электронной аппаратуре, питающейся от сети переменного тока, для получения постоянного тока используют блоки питания. Как правило, переменный ток понижается трансформатором до нужного значения, затем выпрямляется. Далее для уменьшения пульсаций используется сглаживающий фильтр и, при необходимости, стабилизатор тока или стабилизатор напряжения или регулятор напряжения.

В современной радиоэлектронной аппаратуре получили распространение импульсные блоки питания. Сглаживание пульсаций выходного напряжения происходит благодаря наличию интегрирующего элемента, способного накапливать электрическую энергию и отдавать её в нагрузку. В результате на выходе можно получить практически постоянный ток.

Электрическую энергию могут накапливать электрические конденсаторы. В общем случае, при разряде конденсатора во внешней цепи протекает переменный ток. Если конденсатор разряжается через резистор, то появляется однонаправленный переменный ток (постепенно уменьшающийся). Однако, если конденсатор разряжается через катушку индуктивности, то в цепи появляется двунаправленный переменный ток, это устройство называется колебательный контур. Электролитические конденсаторы могут иметь очень большую электрическую ёмкость (сотни и тысячи микрофарад и более). При разряде таких конденсаторов через большое сопротивление ток уменьшается медленнее, и для короткого времени можно считать, что во внешней цепи протекает постоянный ток.

Ионисторы — гибрид конденсатора и химического источника тока, способны накапливать и отдавать довольно большое количество электрической энергии, например, чтобы электромобиль с ионисторами проехал некоторое расстояние.

Направление постоянного тока и обозначения на электроприборах и схемах[править | править код]

Условное обозначение однонаправленного тока на электроприборах

Условно принято считать (общепринято), что электрический ток в электрическом поле имеет направление от точек с бо́льшими потенциалами к точкам с меньшими потенциалами. Это значит, что направление постоянного электрического тока всегда совпадает с направлением движения положительных электрических зарядов, например положительных ионов в электролитах и газах. Там же, где электрический ток создаётся только движением потока отрицательно заряженных частиц, например, потока свободных электронов в металлах, за направление электрического тока принимают направление, противоположное движению электронов.

Точки с бо́льшими потенциалами (например, на зажимах батареек и аккумуляторов) носят название «положи́тельный по́люс» и обозначаются знаком +{\displaystyle +} («плюс»), а точки с меньшими потенциалами называются «отрица́тельный по́люс» и обозначаются знаком −{\displaystyle -}(«минус»).

Исторически сложилось, что электрическая изоляция положительного провода окрашена в красный цвет, а отрицательного провода — в синий или чёрный.

Условное обозначение на электроприборах: −{\displaystyle \mathbf {-} } или ={\displaystyle \mathbf {=} }. Однонаправленный ток (в том числе постоянный) обозначается латинскими буквами DC{\displaystyle DC}. Для однонаправленного тока может быть также использован символ Юникода ⎓ (U+2393).

В ряде случаев можно встретить другие символы, например на малогабаритных штекерах, предназначенных для подключения к электронному устройству сетевого блока питания (или на корпусе самого электронного устройства, возле разъёма для подключения штекера) ⊙{\displaystyle \odot } с указанием полярности.

Электроды каких-либо устройств или радиодеталей (диодов, тиристоров, вакуумных электронных приборов), подключаемые к положительному проводу, носят название «анод», а электроды, подключаемые к отрицательному проводу, называются «катод»[2].

Величина постоянного тока (сила тока)[править | править код]

Мерой интенсивности движения электрических зарядов в проводниках является величина тока или просто ток (I, i){\displaystyle (I,~i)}.

Величина тока — это количество электрических зарядов (электричества), протекающих через поперечное сечение проводника в единицу времени.

Общепринято, что вместо терминов «ток» и «величина тока» часто применяется термин «сила тока».

Термин «сила тока» является некорректным, так как сила тока не есть какая-то сила в буквальном смысле этого слова, а только интенсивность движения электрических зарядов в проводнике, количество электричества, проходящего за единицу времени через площадь поперечного сечения проводника. В проводах нет никаких сил. Мы с вами не будем нарушать эту традицию.

Если при равномерном движении электрических зарядов по проводнику за время t{\displaystyle t} протекло количество электричества Q{\displaystyle Q}, то ток в проводнике можно выразить формулой I=Qt{\displaystyle I={\frac {Q}{t}}}.

В проводнике ток равен одному амперу A{\displaystyle A}, если через площадь поперечного сечения его за одну секунду протекает один кулон электричества.

Ампер — единица измерения силы тока, названа в честь Андре-Мари Ампера.

Кулон — единица измерения электрического заряда (количества электричества), названа в честь Шарля Кулона. В тех случаях, когда приходится иметь дело с большими токами, количество электричества измеряется более крупной единицей, называемой ампер-часом, 1 ампер-час равен 3 600 кулонам.

Сила тока измеряется амперметром, он включается в цепь так, чтобы через него проходил весь измеряемый ток, то есть последовательно.

Плотность тока[править | править код]

В электротехнике часто бывает важно знать не только силу тока в проводнике, но и плотность тока, так как плотность тока является мерой допустимой нагрузки проводов.

Плотностью тока называют ток (j{\displaystyle (j} или δ){\displaystyle \delta )}, приходящийся на единицу площади проводника: j=IS{\displaystyle j={\frac {I}{S}}}, где

I{\displaystyle I} — сила тока, в Амперах;
S{\displaystyle S} — площадь поперечного сечения проводника, в квадратных метрах,
j{\displaystyle j} — плотность тока, выражается в амперах на квадратный метр: [Am2]{\displaystyle \left[{\frac {A}{m^{2}}}\right]}.

Так как провода с поперечным сечением, исчисляемым квадратными метрами, встречаются крайне редко, то плотность тока обычно выражается в амперах на квадратный миллиметр [Amm2]{\displaystyle \left[{\frac {A}{mm^{2}}}\right]}.

Электродвижущая сила и электрическое напряжение[править | править код]

Разность потенциалов между точками, между которыми протекает постоянный ток, могут охарактеризовать электродвижущая сила и электрическое напряжение.

Электродвижущая сила[править | править код]

Каждый первичный источник электрической энергии создаёт стороннее электрическое поле. В электрических машинах (генераторах постоянного тока) стороннее электрическое поле создаётся в металлических проводниках якоря, вращающегося в магнитном поле, а в гальванических элементах и аккумуляторах — в месте соприкосновения электродов с электролитом (растворами солей или кислот) при их химическом взаимодействии.

Стороннее электрическое поле, имеющееся в источнике электрической энергии постоянного тока, непрерывно взаимодействует на электрические заряды проводников, образующих вместе с ним замкнутую цепь, и создаёт в ней постоянный электрический ток.

Перемещая электрические заряды по замкнутой цепи, силы стороннего электрического поля преодолевают сопротивление противодействующих сил, например вещественных частиц проводников. Это приводит к тому, что силы стороннего электрического поля совершают работу за счёт энергии этого поля. По мере расхода энергии стороннее электрическое поле пополняет её за счёт механической или химической энергии.

В результате работы сил стороннего электрического поля энергия этого поля переходит в электрической цепи в какие-либо иные виды энергии, например в тепловую энергию в металлических проводниках, тепловую и химическую в электролитах, тепловую и световую энергию в электрических лампах и так далее.

Выражение «работа сил стороннего электрического поля» источника электрической энергии ради краткости обычно заменяют выражением «работа источника электрической энергии».

Если известна работа, совершаемая источником электрической энергии при перемещении единичного электрического заряда по всей замкнутой электрической цепи, то легко определить работу, совершаемую им при переносе некого электрического заряда Q{\displaystyle Q} по этой цепи, так как величина работы пропорциональна величине заряда.

Величина, численно равная работе, совершаемой источником электрической энергии при переносе единицы положительного заряда по всей замкнутой цепи, называется электродвижущей силой E{\displaystyle E}.

Следовательно, если источник электрической энергии при переносе заряда Q{\displaystyle Q} по всей замкнутой цепи совершил работу A{\displaystyle A}, то его электродвижущая сила E{\displaystyle E} равна E=AQ{\displaystyle E={\frac {A}{Q}}}.

В Международной системе единиц (СИ) за единицу измерения электродвижущей силы принимается один вольт ( v, V ){\displaystyle (~v,~V~)}. Единица названа в честь итальянского физика и физиолога Алессандро Вольта.

Электродвижущая сила источника электрической энергии равна одному вольту, если при перемещении одного кулона электричества по всей замкнутой цепи им была совершена работа, равная одному джоулю : 1 volt=1 joule1 coulomb{\displaystyle 1~volt={\frac {1~joule}{1~coulomb}}}.

Например, если электродвижущая сила какого-либо источника электрической энергии E=220 volt{\displaystyle E=220~volt}, то это надо понимать так, что источник электрической энергии, перемещая один кулон электричества по всей замкнутой цепи, совершит работу A=220 joule{\displaystyle A=220~joule}, так как E=AQ=220 joule1 coulomb{\displaystyle E={\frac {A}{Q}}={\frac {220~joule}{1~coulomb}}}.

Из формулы E=AQ{\displaystyle E={\frac {A}{Q}}} следует, что A=EQ{\displaystyle A=EQ}, то есть работа источника электрической энергии при переносе его электрического заряда по всей замкнутой цепи равна произведению величины электродвижущей силы E{\displaystyle E} его на величину переносимого электрического заряда Q{\displaystyle Q}.

Электрическое напряжение[править | править код]

Если источник электрической энергии переносит электрический заряд Q{\displaystyle Q} по всей замкнутой цепи, то он совершает некоторую работу A{\displaystyle A}. Часть этой работы A0{\displaystyle A_{0}} он совершает при переносе заряда Q{\displaystyle Q} по внутреннему участку цепи (участок внутри самого источника электрической энергии), а другую часть A1{\displaystyle A_{1}} — при переносе заряда Q{\displaystyle Q} по внешнему участку цепи (вне источника).

Следовательно, A=A0+A1{\displaystyle A=A_{0}+A_{1}}, то есть работа A{\displaystyle A}, совершаемая источником электрической энергии при переносе электрического заряда Q{\displaystyle Q} по всей замкнутой цепи, равна сумме работ, совершаемых им при переносе этого заряда по внутреннему и внешнему участкам этой цепи.

Если разделить левую и правую часть равенства A=A0+A1{\displaystyle A=A_{0}+A_{1}} на величину единичного заряда Q{\displaystyle Q}, получим работу, отнесённую к единичному заряду: AQ=A0Q+A1Q{\displaystyle {\frac {A}{Q}}={\frac {A_{0}}{Q}}+{\frac {A_{1}}{Q}}}.

Работа источника электрической энергии, совершаемая им при переносе единичного заряда по всей замкнутой цепи, численно равна его электродвижущей силе, то есть E=AQ{\displaystyle E={\frac {A}{Q}}}, где E{\displaystyle E} — электродвижущая сила источника электрической энергии.

Величина A0Q{\displaystyle {\frac {A_{0}}{Q}}}, численно равная работе, совершаемой источником электрической энергии при переносе единичного заряда по внутреннему участку цепи, называется падением напряжения (напряжением) на внутреннем участке цепи, то есть U0=A0Q{\displaystyle U_{0}={\frac {A_{0}}{Q}}}, где U0{\displaystyle U_{0}} — падение напряжения на внутреннем участке цепи.

Величина A1Q{\displaystyle {\frac {A_{1}}{Q}}}, численно равная работе, совершаемой источником электрической энергии при переносе единичного заряда Q{\displaystyle Q} по внешнему участку цепи, называется падением напряжения (напряжением) на внешнем участке цепи, то есть U1=A1Q{\displaystyle U_{1}={\frac {A_{1}}{Q}}}, где U1{\displaystyle U_{1}} — падение напряжения на внешнем участке цепи.

Следовательно, равенству AQ=A0Q+A1Q{\displaystyle {\frac {A}{Q}}={\frac {A_{0}}{Q}}+{\frac {A_{1}}{Q}}} можно придать такой вид: E=U0+U1{\displaystyle E=U_{0}+U_{1}}, то есть

Электродвижущая сила источника электрической энергии, создающего ток в электрической цепи, равняется сумме падений напряжения на внутреннем и внешнем участке цепи.

Из равенства E=U0+U1{\displaystyle E=U_{0}+U_{1}} следует, что U1=E−U0{\displaystyle U_{1}=E-U_{0}}, то есть падение напряжения на внешнем участке цепи меньше электродвижущей силы источника электрической энергии на величину падения напряжения на внутреннем участке цепи.

Следовательно, чем больше падение напряжения внутри источника электрической энергии, тем меньше при всех прочих равных условиях падение напряжения на зажимах источника электрической энергии.

Так как падение напряжения имеет одинаковую размерность с электродвижущей силой, то есть выражается в джоулях на кулон, или, иначе, в вольтах, то за единицу измерения падения напряжения (электрического напряжения) принят один вольт.

Электрическое напряжение на зажимах источника электрической энергии (падение напряжения на внешнем участке цепи) равно одному вольту, если источник электрической энергии совершает работу, равную одному джоулю, при переносе электрического заряда в один кулон по внешнему участку цепи.

Напряжение на участках цепи измеряется вольтметром, он всегда присоединяется к тем точкам цепи, между которыми он должен измерить падение напряжения, то есть параллельно.

  • Постоянный ток широко используется в технике: подавляющее большинство электронных схем в качестве питания используют постоянный ток.
  • Постоянный ток, вырабатываемый химическими источниками тока (гальваническими элементами, аккумуляторами), применяется для автономного электропитания многочисленных электрических и электронных устройств: электрофонарей, игрушек, аккумуляторного электроинструмента, средств связи, и т. п.
  • Постоянный ток применяется в электролизе: на установках промышленного электролиза из растворов или расплавов солей получают алюминий, магний, натрий, калий, никель, медь, хлор и другие вещества.
  • Постоянный ток применяется в гальванизации и гальванопластике — на электропроводящей поверхности какого-нибудь предмета электрохимическим путём осаждается защитное или декоративное металлическое покрытие, например, бронзовый корпус наручных часов покрывается тонким слоем золота.
  • Постоянный ток в ряде случаев используется при сварочных работах (электрическая дуговая или электрогазовая сварка), например, сварить деталь из нержавеющей стали специальным сварочным электродом можно только постоянным током.
  • В некоторых устройствах постоянный ток преобразуется в переменный ток преобразователями (инверторами), например, в компьютерных бесперебойных блоках питания при работе в автономном режиме.
  • В бортовых сетях автомобилей традиционно применяется постоянный ток, потому что при неработающем двигателе все основные потребители получают питание от автомобильного аккумулятора. На старых автомобилях (ГАЗ-51, ГАЗ-69, ГАЗ-М-20 «Победа» и многих других), другой мото- и сельскохозяйственной технике устанавливались автомобильные генераторы постоянного тока. Развитие полупроводниковой техники привело к тому, что с 1970-х годов их вытеснили трёхфазные генераторы переменного тока как более лёгкие, компактные и надёжные.
  • На некоторых типах судов используется электрическая передача (дизель-электроходы, ледоколы, подводные лодки).
  • Электрофорез — введение лекарственных веществ в организм с помощью постоянного тока или разделение смеси веществ в научных или промышленных целях, например электрофорез белков.

Постоянный ток на транспорте[править | править код]

ru.wikipedia.org

Как читать схемы. Напряжение и сила тока

Как читать схемы? В прошлой статье мы с вами рассмотрели, как выглядят обозначения основных радиоэлементов на схеме. В этой статье мы поговорим о таких понятиях, как электрический ток, напряжение и сила тока. Хотя я уже писал о них в самых первых статьях, но в этой статье попробуем все это сложить в одну кучу, чтобы вам было легче уловить суть дела.

Проводники электрического тока

Начнем с самого-самого начала. Как вы знаете, все схемы состоят из проводков или печатных дорожек, которые соединяют различные радиоэлементы в единое целое. Например, в статье “самый простой усилитель звука“, я с помощью проводков соединял различные радиоэлементы и у меня получилась схема, которая усиливает звуковые частоты

Для того, чтобы все было красиво, эстетично и занимало мало пространства, прямо на платах создают “проводки”, которые уже называются печатными дорожками.

В домашних условиях все это делается с помощью технологии ЛУТ (Лазерно-Утюжная-Технология). 

На другой стороне печатной платы уже располагаются радиоэлементы

Так как радиолюбители стараются делать свои устройства как можно меньше по габаритам, то и плотность монтажа возрастает. Поэтому в некоторых случаях радиоэлементы и печатные дорожки располагают по обе стороны платы.

Промышленные печатные платы уже делают многослойными. Они состоят из слоев,  как торт из коржей:

Прямо внутри них  есть дорожки, которые соединяются межслойно. Очень сильно экономится площадь на поверхностях печатной платы. Бум  SMD  технологий вызвал в свою очередь нужду в многослойных печатных платах.

Электрический ток

Думаю, вы  не раз слышали такое выражение: “по этому проводу течет ток”. Электронику проще объяснять как раз с точки зрения гидравлики. Раз ток течет, значит, в нашем случае, проводок – это шланг или труба для электрического тока. Получается, что так. А что такое электрический ток?

Электрический ток – это упорядоченное движение заряженных частиц, чаще всего электронов, в одном направлении. По аналогии с гидравликой, электроны – это молекулы воды. Электрический ток – поток воды. Думаю, этого пока будет достаточно. Одними словами сыт не будешь, поэтому давайте нарисуем рисунок, чтобы порадовать глаза:

В данный момент шланг валяется где-нибудь в огороде и в нем осталась вода. Шланг никуда не подключен, то есть молекулы воды в шланге находятся в неподвижном состоянии.

По аналогии с электроникой, медный проводок лежит на столе и никуда не подключен.

Но вот настал вечер. Надо полить помидоры и огурцы, иначе к зиме останетесь без закуски. Как только мы открываем кран, вода в шланге начинает движуху:

Теперь вопрос на засыпку: почему когда мы открыли краник, вода побежала по шлангу?  Создалось давление… молекулы что левее стали давить на молекулы что правее и движуха началась. Но кто толкал те молекулы, которые толкали молекулы? Это либо насос, либо вода в водобашне под воздействием гравитационной силы Земли.

В электронике электроны толкает так называемая ЭДС. В любой электрической схеме есть тот самый “насос”, который толкает электроны по проводкам и радиоэлементам. Он может находится в самой схеме, либо подключаться в схему извне. Как только электроны начинают движуху в проводке в одном направлении, то можно уже сказать, что в проводке стал течь электрический ток.

Напряжение

А теперь представьте такую ситуацию. У нас есть водонасос, но шланг мы закупорили пробкой.

Вода вроде бы готова бежать, но бежать то некуда! Там пробка закупоривает шланг. Но на саму пробку сейчас оказывается давление, которое создает насосная станция. От чего зависит давление на пробку? Думаю понятно, что от мощности насоса. Если мощность насоса будет приличная, то пробка вылетит со скоростью пули, либо давление порвет шланг, если пробка туго сидит в шланге.

Все то же самое можно сказать и про водобашню. Давление на дне башни зависит от того, сколько воды налито в башню. Если башня под завязку, то и давление на дне башни будет большое, и наоборот.

А теперь прикиньте какое давление на дне океана, особенно в Марианской впадине 😉

Что можно сказать про давление в этих двух случаях? Оно вроде как есть, но молекулы воды стоят на месте.

Так вот, по аналогии с электроникой, это давление называется напряжением. Например, вы, наверное, не раз слышали такое выражение, типа “блок питания может выдать напряжение от 0 и до 30 Вольт”. Или говоря детским языком, создать “электрическое давление” на своих клеммах (отметил на фото) от 0 и до 30 Вольт. Нулевой уровень, откуда идет отсчет электрического давления, обозначается минусом.

Электрическое давление  – это еще не значит, что есть электрический ток. Для того, чтобы появился электрический ток должна быть движуха электронов в одном направлении, а они в данный момент тупо стоят на месте.  А раз движухи нету, то и нет электрического тока. Но то, что уже есть давление – это предпосылка к зарождению электрического тока.

Вы прямо сейчас можете создать давление воздуха в своем организме. Для этого достаточно набрать воздуха в легкие и закрыть рот. Потом выпустить воздух и надуть щеки, не открывая рот. В это время у вас на щеки молекулы воздуха будут оказывать давление. Чем больше вы выдыхаете воздуха, тем напряженнее стают ваши щеки от давления. Движуха идет из области высокого давления в область низкого давления. В ваших легких вы создали большое давление, а давление снаружи оказалось меньше. Поэтому-то щёчки и надулись.

С точки зрения электроники, на одном щупе блока питания высокое давление, а на другом низкое. Поэтому, положительный  щуп блока питания да и вообще всех приборов стараются сделать красным, мол типа берегитесь, здесь высокое давление! А отрицательный щуп  – черным или синим. Тут типа давление минимальное (нулевое).

В электронике, чтобы указать, на каком выводе больше ” электрическое давление”, а на каком меньше проставляют два знака: плюс и минус, соответственно положительный и отрицательный. На плюсе избыточное “давление”, а на минусе – недостаточное.

Поэтому, если замкнуть эти два вывода между собой, электрический ток устремится от плюса к минусу, но  напрямую этого делать крайне не рекомендуется, так как это уже будет называться коротким замыканием.

Итак, одна составляющая для зарождения электрического тока у нас уже есть – это напряжение.

Вернемся снова к гидравлике.

Давление мы создали, но электрического тока до сих пор нету. Что надо сделать? Правильно, убрать пробку из шланга и дать водичке спокойно вытекать. Пошла движуха, значит, пошел электрический ток!

От какого слова образуется слово “ток”. Я думаю, от слова поТОК. Поток воды, поток энергии, поток света и тд, а поток электронов в проводке называется просто “электрическим током”. Значит, заставляя течь электроны, мы тем самым создаем электрический ток 😉

Теперь снова надуйте свои пухленькие щечки и пытайтесь создать внутри полости рта очень высокое давление. Что у нас произойдет? Ваши губки не выдержат и поток воздуха устремится изо рта в окружающее пространство. То есть вы создали в полости рта высокое давление, которое устремилось в область низкого давления, то есть наружу. Почти схожим образом вы создаете “ветер” из пукана, напрягая свой животик :-).

Ладно, давайте обобщим, все что мы тут пописали. ЭДС создает движуху электронов по проводку. Для того, чтобы движуха была, электроны должны куда-то направляться, желательно обратно к ЭДС источнику. В идеале, должно быть как-то так:

Как вы видите, труба у нас выходит из насосной станции и входит в насосную станцию. То есть контур трубы получается замкнутым. Пока работает насосная станция, у нас есть движуха воды. Как только насосная станция сдохнет, движуха воды прекратится. Также немаловажно чтобы труба не была тонкая в диаметре, иначе ее порвет, если насосная станция будет большой мощности.

По аналогии с электроникой получаем все то же самое. Во-первых, нужно чтобы контур был замкнутым, во вторых – чтобы был источник ЭДС, и в-третьих, чтобы провод выдерживал поток электронов.

Сила тока

Также нас интересует еще один немаловажный фактор – это какой объем воды у нас выльется из шланга за какое-то время.

Как думаете, с каким напором воды мы быстрее наполним ведерко?

С таким

или с таким?

или вот с таким?

Понятное дело, что с последним. Почему так? Да потому что, ну пусть скажем за секунду, у нас вылитой из трубы воды будет больше, чем из шланга. А объем вылитой воды из зеленого шланга за секунду будет больше, чем из желтого, так как напор воды в желтом шланге очень слабый. И теперь еще один вопросик на посошок. Какой поток струи будет обладать бОльшей силой? Ясно дело, что струя, которая выходит из трубы. Такой струей можно и гидрогенераторы крутить.

Давайте допустим, что у нас  есть большая труба, и к ней заварены две другие, но одна в два раза меньше диаметром, чем другая.

Из какой трубы объем воды будет выходить больше за секунду времени? Разумеется с той, которая толще в диаметре, потому что площадь поперечного сечения S2 большой трубы больше, чем площадь поперечного сечения S1 малой трубы. Следовательно, сила потока через большую трубу будет больше, чем через малую, так как объем воды, который протекает через поперечное сечение трубы S2, будет  в два раза больше, чем через тонкую трубу.

Так… теперь давайте все что мы тут пописали про водичку, применим в электронике. Проводки – это шланги или трубы, в зависимости от размера. Тонкий проводок – это тонкий в диаметре шланг, толстый проводок – это толстый в диаметре шланг, можно сказать – труба. Молекулы воды – это электроны. Следовательно, толстый проводок при одинаковом напряжении можно протащить больше электронов, чем тонкий.

И еще, в какой трубе сила потока электронов будет больше? Разумеется, через толстый проводок, так как количество электронов через поперечное сечение проводка за единицу времени будет проходить больше, чем в тонком проводке 😉 А количество электронов, которое проходит через поперечное сечение проводника за какой-то промежуток времени, называется силой тока. Я ведь говорил, что гидравлика и электроника очень взаимосвязаны ;-).

Не забываем, что электроны обладают зарядом, поэтому официальная терминология силы тока звучит так: сила тока  – это физическая величина, равная отношению количества заряда прошедшего через поверхность (читаем как через площадь поперечного сечения) за какое-то время. Измеряется как Кулон/секунда. Чтобы сэкономить время и по другим морально-эстетическим нормам, Кулон/секунду договорились называть Ампером, в честь французского ученого-физика.

Давайте еще раз глянем на шланг с водой и зададим себе вопросы. От чего зависит поток воды? Первое, что приходит в голову – это давление. Почему молекулы воды движутся в рисунке ниже слева-направо? Потому, что давление слева, больше чем справа. Чем больше давление, тем быстрее побежит водичка по шлангу – это элементарно.

Теперь такой вопрос: как можно увеличить количество электронов через площадь поперечного сечения? Первое, что приходит на ум – это увеличить давление. В этом случае скорость потока воды увеличится,  но ее много не увеличишь, так как шланг порвется как грелка в пасти Тузика. Второе – это поставить шланг большим диаметром. В этом случае у нас количество молекул воды через поперечное сечение будет проходить больше, чем в тонком шланге:

Все те же самые умозаключения можно применить и к обыкновенному проводку. Чем он больше в диаметре, тем больше он сможет протащить через себя силу тока. Чем меньше в диаметре, то желательно меньше его нагружать, иначе его “порвет”, то есть он тупо сгорит. Именно этот принцип заложен в плавких предохранителях. Внутри такого предохранителя тонкий проводок. Его толщина зависит  от того, на какую силу тока он рассчитан

Как только сила тока через проводок превысит силу тока, на которую рассчитан предохранитель, то плавкий проводок перегорает и размыкает цепь. Через перегоревший предохранитель ток уже течь не может, так как проводок в обрыве

Заключение

Электрический ток в основном характеризуется такими параметрами, как напряжение и сила тока. Провода служат именно теми самыми “трубами и шлангами” для того, чтобы передавать электрический ток на расстояния. Они выбираются в зависимости от того, какая сила тока будет течь через них.

Например, вот такие медные “проводочки” используются для передачи бешеной силы тока на заводах, крупных фабриках, электросетях и тд. Называют их медными шинами.

На последней картинке можно увидеть предохранитель, который соединяет шины. Его номинал 500 Ампер. Можно сказать, что через сечение такой медной шины за 1 секунду может пробежать очень большой заряд, а точнее 500 Кулон.

А что было бы, если мы туда поставили какой-нибудь медный тонкий проводок? Я думаю, произошло бы что-то типа этого

 

 

Резюме

Электрический ток – это движение в одном направлении свободных электронов.

Свободные электроны у нас имеются в проводках, которые в основном сделаны из меди и алюминия.

Электрический ток характеризуется двумя параметрами: напряжением и силой тока.

Чтобы в проводке возник электрический ток, надо чтобы в одном конце проводка было избыточное давление, а в другом  – недостаточное.

Ток течет от плюса к минусу (хотя электроны бегут от минуса к плюсу)

Сила тока через проводок – это количество заряда, которое проходит через площадь “кружочка” (сечение проводка поперек) за одну секунду. Выражается в Амперах (Кулон/ Вольт).

Проводки, через которые будет проходить большая сила тока, делают толще, иначе тонкие провода нагреются и расплавятся, причинив вред окружающим предметам.

www.ruselectronic.com

Каким образом течет электричество?

Электрический ток может приводит в действие машины только тогда, когда он циркулирует в цепи. Электрическая цепь — это канал, по которому течет электричество. Начинается цепь в источнике питания (например, в батарейке), к которому соединительным проводом подключен потребитель, например, лампа накаливания.

Цепь не оканчивается на потребителе, а возвращается по кольцу снова к источнику питания. Сила, поддерживающая течение электрического тока в цепи, называется электродвижущей силой, или напряжением. Так как потребители ослабляют ток в цепи, они называются сопротивлениями.

Понимание взаимосвязи между электрическим током, напряжением и сопротивлением может быть облегчено путем проведения аналогии между электрическим током и водой, текущей по каналу (рисунок вверху). Батарейка может быть представлена в виде водяного насоса, а электрический ток — в виде определенного объема воды. Аналогами двух электрических сопротивлений (двух ламп накаливания) являются два водослива в канале.

В такой модели каждый раз, когда вода (электрический ток) встречает водослив (сопротивление), она падает на более низкий уровень (меньшее напряжение). Объем воды остается неизменным, однако ее уровень (энергия) уменьшается. То же самое происходит с электрическим током. Когда электрический ток проходит через сопротивление, его энергия отводится в окружающую среду, а напряжение уменьшается.

Вычисление падения напряжения

Когда электрический ток проходит через сопротивление, например, через лампу накаливания, силовое воздействие на заряды (напряжение) уменьшается. Это уменьшение называется падением напряжения. Изменение напряжения может быть определено численно, путем умножения величины сопротивления на силу тока.

Электрический ток и поток электронов

Электроны (синие шарики) текут по направлению к положительному полюсу источника тока, т.е. навстречу электрическому току, который движется от положительного полюса к отрицательному (большая голубая стрелка). Сила тока зависит от того, сколько электронов пройдет через поперечное сечение проводника в единицу времени.

Электрический ток в параллельной цепи

В параллельной цепи электрический ток (синие стрелки), прежде чем вернуться к своему источнику (красная батарейка), разделяется на две отдельные ветви.

Вид цепи и напряжение

Последовательная цепь содержит два сопротивления (R), которые поочередно снижают напряжение (V). Падение напряжения определяется суммой сопротивлений.

В параллельной цепи электрический ток проходит по различным путям. Такое расположение сопротивлений (R) вызывает одновременное падение напряжения.

information-technology.ru

Электрический ток и электрическая цепь

Статическое электричество. Если желтый янтарь потереть шерстью или мехом, то янтарь приобретает свойство длительное время притягивать ,к себе волосы, листья, соломинки. Способность янтаря ,притягивать к себе другие вещества вызывается его зарядом. Под зарядом тел подразумевают электрический заряд. При определенных условиях заряд сохраняется на заряженных телах, поэтому его называют статическим электричеством.

Величины количества электричества заряженных тел и расстояния между ними оказывают влияние на их взаимодействие. Правила, которым подчиняются тела при взаимодействии, называют законом Кулона. Он формулируется так: сила, действующая между двумя заряженными телами, прямо пропорциональна количеству электричества на каждом из тел и обратно пропорциональна квадрату расстояния между зарядами.

Электрически заряженные тела, находясь на расстоянии друг от друга, испытывают действие определенной силы. Пространство, в котором действуют эти силы, называют электрическим силовым полем. Внутри электрического поля силы действуют в определенном направлении. Линии, по которым действуют электрические силы поля, называют силовыми. За их направление в любой точке поля принято направление, в котором будет двигаться в этом поле положительный заряд. Следовательно, электрическое поле изолированного отрицательного заряда направлено к заряду (рис. 1), а линии сил, действующих между положительным и отрицательным зарядами, направлены в сторону отрицательного заряда. Силовые линии одноименных зарядов отталкиваются друг от друга (рис. 2).

 

Рис. 1
Рис. 2

Электрический ток и направление движения электронов. При изучении законов электрического тока сначала было предположено, что электрический ток направлен от положительно к отрицательно заряженным телам. С помощью более поздних исследований было установлено, что электроны переходят от отрицательно заряженных к положительно заряженным или нейтральным телам.

Однако укоренилось первое положение, которое легло в основу всех электрических измерений и в электротехническую практику. Но, несмотря на это, в современных условиях действует правило, которое определяет электрический ток как поток электронов, направленный от минуса к плюсу.

Электрический потенциал. Действующие на тела силы стремятся привести их в такое положение, в котором потенциальная энергия тел будет наименьшей (например, пролитая вода стекает в самые низкие места, пар движется в трубе из точки с меньшей к точке с большей потенциальной энергией). Для сообщения потенциальной энергии воде ее можно поднять на некоторую высоту. Эти положения распространяются и на электрический ток.

Электрический потенциал можно создать, отняв или добавив к нейтральному телу электроны. В первом случае тело приобретает положительный заряд, т. е. потенциал тела возрастает (совершена работа по удалению электрона), во втором — отрицательный заряд и потенциал его будет отрицательным. Электричество перетекает от более высокого к более низкому потенциалу.

Разрядить тело от электрического заряда можно путем соединения его с землей, т. е. заземления тела. Электрические заряды тела вследствие их взаимного отталкивания стремятся равномерно распределиться на заряженном теле и земле. Однако вследствие того что земля несравнимо больше заряженного тела, все заряды с него уйдут в землю и тело станет нейтральным, т. е. электрически безопасным.

Электрическая цепь постоянного тока. Электрический ток, значение которого не изменяется во времени, называют постоянным. Источник электрического тока с присоединенными к нему линейными проводами и потребителем тока образуют замкнутую электрическую цепь, по которой протекает электрический ток. Простейшая электрическая цепь имеет источник и потребитель электрического тока и два соединяющих их линейных провода (рис. 3). В качестве источников постоянного электрического тока применяют аккумуляторы, генераторы — электрические машины, приводимые в движение механическими двигателями, гальванические элементы и ряд других устройств. Потребителями электрического тока могут быть электронагревательные приборы, сварочная дуга, осветительные лампочки и т.д.

Рис. 3

Конденсаторы. При одном и том же давлении в сосуде большего объема можно вместить большее количество газа. Некоторую аналогию можно пронести и с электрическим зарядом. Чем больше размеры проводника, тем больше его вместимость для электрических зарядов, т. е. больше его электрическая емкость.

Одиночные проводники обладают малой емкостью. Поэтому для образования запаса электрических зарядов применяют конденсаторы. Конденсатором называют устройство, которое при сравнительно малых размерах способно накапливать большие электрические заряды. В простейшем виде конденсатор состоит из двух металлических пластин, разделенных диэлектриком (воздухом, слюдой, парафинированной бумагой и т.п.). В зависимости от вида диэлектрика конденсатор называют воздушным, бумажным, слюдяным и т.п. Одна пластина конденсатора заряжается положительными зарядами, а другая — отрицательными. Сильное взаимное притяжение удерживает заряды, позволяя накопить в конденсаторе большое количество зарядов.

Емкость конденсатора зависит от площади его пластин. Конденсатор, у которого пластины имеют большую площадь, может вместить большее количество зарядов.

Основной единицей измерения электрической емкости служит фарада (ф). На практике применяют более мелкие единицы: микрофарада (1 мкф = 0,000 001 ф), пикофарада (1 пф = 0,000 001 мкф).

В технике конденсаторы используют в различных электрических и радиосхемах.

Электродвижущая сила источника тока. Напряжение. Если соединить трубкой два сосуда с различными уровнями воды, то вода будет переходить в сосуд с меньшим уровнем. Наливая воду в один из сосудов, можно добиться того, чтобы вода по трубке текла непрерывно. Аналогичная картина наблюдается в электрической цепи. На время прохождения электрического тока в цепи на полюсах источника тока необходимо поддерживать разность потенциалов.

Силу, которая поддерживает разность потенциалов, обеспечивая прохождение тока по электрической цепи, называют электродвижущей силой и условно обозначают э. д.с. Разность потенциалов, затрачиваемую на проведение тока через электрическую цепь, называют напряжением между концами электрической цели.

Напряжение создается источником тока. При разомкнутой цепи напряжение существует на полюсах или клеммах источника тока. Когда источник тока включен в цепь, напряжение появляется и на отдельных участках цепи, что и обусловливает ток в цепи. Нет напряжения, нет и тока в цепи.

Электрическое сопротивление. При возникновении в цепи электрического тока свободные электроны под влиянием электрических сил поля перемещаются вдоль проводника. Движению электронов препятствуют атомы и молекулы проводников, встречающихся на пути, т. е. электрическая цепь оказывает сопротивление прохождению электрического тока. Электрическим сопротивлением проводника называют свойство тела или среды превратить электрическую энергию в тепловую при прохождении по нему электрического тока.

Различные вещества имеют разное количество электронов и разное расположение атомов. Поэтому сопротивление проводника зависит от материала, из которого он изготовлен. Хорошими проводниками является серебро, медь, алюминий. Большим сопротивлением обладают никель, железо, уголь. Наряду с этим сопротивление зависит от длины и площади поперечного сечения проводника. Чем длиннее проводник при одном и том же поперечном сечении, тем большим обладает он сопротивлением, и наоборот: чем больше сечение проводника при одной и той же длине, тем меньше его сопротивление.

Нагрев увеличивает сопротивление большинства металлов и сплавов. Для чистых металлов это увеличение составляет около 4% на каждые 10° повышения температуры. Только некоторые специальные металлические сплавы (манганин, константан и др.) почти не меняют своего сопротивления с увеличением температуры.

Реостаты. Приборы, при помощи которых, меняя сопротивление, можно регулировать силу тока в цепи, называют реостатами. Реостаты бывают нескольких видов, например: реостат со скользящим контактом, рычажный реостат, ламповый и др.

Рис. 4

Реостат со скользящим контактом устроен следующим образом (рис. 4). Проволока из металла с высоким удельным сопротивлением намотана на цилиндр, сделанный из изолятора, к концам проволоки прикреплены клеммы для включения реостата в цепь. Сверху цилиндра на металлическом стержне прикреплен ползун, плотно касающийся витков проволоки. Реостат включают в цепь при помощи одной из клемм на проволоке реостата и клеммы на металлическом стержне ползуна. Передвигая ползун в ту или другую сторону, увеличивают или уменьшают длину включенной проволоки и тем самым изменяют сопротивление цепи.

Реостат рычажного типа, состоит из ряда проволочных спиралей, укрепленных на раме из изолятора. На одной стороне рамы концы спиралей соединены с рядом металлических контактов. Металлическая ручка, вращаясь вокруг оси, может плотно прижиматься к тому или другому контакту. В зависимости от положения ручки в цепь может включаться различное количество спиралей.

Измерение тока, напряжения и сопротивления. Опыты показывают, чем большее количество электричества протекает по проводнику в одно и то же время, тем сильнее действие тока. Поэтому электрический ток определяется количеством электричества, протекающего через поперечное сечение проводника в единицу времени. Количество электричества, протекающего через поперечное сечение проводника в 1 сек, называют силой электрического тока. За единицу силы тока принят 1 а, т. е. сила такого тока, при котором в 1 сек через поперечное сечение проводника проходит 1 кулон электричества. Ампер обозначается буквой а. Единица силы тока ампер названа так в честь французского ученого Ампера.

Английский физик Фарадей, изучая явление прохождения тока через жидкие проводники, установил, что весовое количество выделяющихся при этом веществ на электродах прямо пропорционально количеству прошедшего через раствор электричества. На основании этого была установлена единица количества электричества.

За единицу количества электричества принято такое количество электричества, при прохождении которого через раствор серебряной соли выделяется на электроде 1,118 мг серебра. Эта единица называется куланом.

Исходя из определения электрического тока можно определить его силу по формуле


где

I — сила тока в цепи;

Q — количество электричества, протекающего >в цени, в кулонах;

Т — время прохождения электричества в цепи в сек.

В технике имеется еще и такое понятие, как плотность тока.

Плотностью тока называют отношение величины тока к площади поперечного сечения проводника. Обычно площадь сечения проводников приводится в квадратных миллиметрах, поэтому плотность тока измеряют в а/мм2.

Рассмотрим электрическую цепь, состоящую из источника тока, проводников и электрической лампочки, соединенных последовательно. Сила тока на всех участках этой цепи одинакова, а значит и количество электричества, протекающего по проводам и волоску лампочки в одно и то же время, одинаковое. Однако количество энергии, выделяющейся на отдельных участках цепи, различно. В этом легко убедиться, если притронуться рукой к проводам, подводящим ток к ламлпочке,— они холодные, в то время как волосок лампочки раскален. Выделение различных количеств энергии на различных участках цепи вызывается тем, что на этих участках цепи существует различное напряжение.

Напряжение на данном участке цепи показывает, какое количество энергии будет выделиться на данном участке при прохождении по нему единицы количества электричества.

За единицу напряжения принимают такое напряжение, при котором на участке цепи выделяется 1 джоуль энергии (1 кг•м=9,8 джоуля), если по этому участку протекает 1 кулон электричества. Единицу напряжения называют вольтом и сокращенно обозначают буквой в. Единица напряжения «вольт» названа так в честь итальянского ученого Вольта.

Если на каком-либо участке цепи напряжение равно 1 в, это значит, что при прохождении каждого кулона электричества по этому участку выделяется 1 джоуль энергии.

При измерении высоких напряжений применяют единицу, называемую киловольтом и обозначаемую сокращенно кв. Киловольт в тысячу раз больше вольта: 1 кв=1000 в. Для измерения небольших напряжений применяют милливольт (мв) —единицу, в тысячу раз меньшую, чем вольт: 1 мв = 0,001 в.

Источник электрического тока, включенный в электрическую цель, расходует энергию на преодоление сопротивления цепи. Единицей сопротивления называют ом в честь немецкого ученого Ома, открывшего законы электрического тока; ом — электрическое сопротивление между двумя точками линейного проводника, в котором разность потенциалов в 1 в производит ток в 1 а. Электрическое сопротивление обозначается двумя буквами ом.

При измерении больших сопротивлений пользуются значительно большими единицами, чем ом: килоом (ком) и мегом (мгом). 1 ком =1000 ом, 1 мгом= 1 000 000 ом.

Свойства проводников в отношении их электрического сопротивления оценивают по удельному сопротивлению. Удельным сопротивлением называют сопротивление проводника длиной 1 м с поперечным сечением в 1 мм2. Удельное сопротивление измеряется тоже в омах.

Закон Ома. Если в электрическую цепь, состоящую из лампочки и амперметра, включить один большой гальванический элемент, можно заметить, что по цепи идет очень слабый ток и нить лампочки не накаливается. Как только гальванический элемент заменим свежей батарейкой от карманного фонаря, ток в цепи увеличивается и нить лампочки ярко накаливается. Измерив напряжение на концах цепи при включении элемента и батарейки, увидим, что при включении батарейки напряжение значительно больше.

Отсюда следует, что сила тока в проводнике увеличивается с увеличением напряжения на концах проводника. Включив в цепь вместо одной две лампочки последовательно, увеличиваем сопротивление цепи в два раза. Теперь мы видим, что сила тока в цепи уменьшилась. Изучая зависимость силы тока от сопротивления и напряжения, немецкий ученый Ом установил, что сила тока в проводнике прямо пропорциональна напряжению на концах проводника и обратно пропорциональна сопротивлению проводника. Эта зависимость между силой тока, напряжением и сопротивлением носит название закона Ома, который является одним из основных законов электрического тока.

Закон Ома выражается следующей формулой:

где I — ток в а;

V — напряжение в в;

R — сопротивление в ом.

Закон Ома распространяется не только на dc. цепь, но и на любой ее участок. Ток на любом участке электрической цепи равен напряжению на концах этого участка, деленному на его сопротивление.

Последовательное соединение в электрической цепи. В большинстве случаев электрическая цепь состоит из нескольких потребителей тока (рис. 5). Соединение потребителей тока, при котором конец одного проводника соединен с началом другого, конец другого — с началом третьего и т.д., называют последовательным.

Рис. 5

Так как сопротивление прямо пропорционально длине проводника, сопротивление цепи равно сумме сопротивлений отдельных проводников, поскольку включение нескольких проводников увеличивает длину пути тока. Ток на отдельных участках цепи будет одинаковым. Поэтому падение напряжения на каждом участке будет пропорционально сопротивлению данного участка.

Параллельным соединением в электрической цепи называют такое соединение, когда начала всех проводников соединены в одной, а их концы — в другой точке (рис. 6). При параллельном соединении для прохождения электрического тока имеется несколько путей (рис. 6). Ток между параллельно соединенными потребителями распределяется обратно пропорционально сопротивлениям потребителей. Если отдельные потребители обладают одинаковым сопротивлением, ток у них будет одинаковый. Чем меньше сопротивление отдельного потребителя, тем больший ток пройдет через него.

Рис.6

Сумма токов отдельных участков в параллельной цепи равна полному току в точке разветвления цепи.

Если в последавательно соединенной цепи присоединение новых потребителей электрического тока увеличивает сопротивление цепи, при параллельном соединении оно уменьшается: подключенное новое сопротивление увеличивает общее сечение проводника, состоящее из суммы сечений проводников всех потребителей. А как известно, чем больше сечение проводника при постоянной его длине, тем меньше сопротивление.

Пренебрегая сопротивлением соединительных проводов, можно считать, что напряжение источника тока приложено к каждому потребителю параллельной цепи. Поэтому достоинством параллельного соединения является независимость работы каждого потребителя тока. Можно отключить любой потребитель, не прерывая прохождения тока по остальным. Изменив сопротивление одного из потребителей, изменим в его цепи ток. У остальных потребителей ток не изменится.

Рис. 7

Смешанное соединение в электрической цепи. Очень часто в электрических цепях встречается смешанное соединение. Смешанным соединением называют такое соединение, в котором имеется как последовательное, так и параллельное соединение потребителей электрического тока (рис. 7). Для определения сопротивления нескольких проводников, соединенных по смешанной схеме, находят сначала сопротивление параллельно или последовательно соединенных проводников, а затем заменяют их одним проводником с сопротивлением, равным найденному. Таким способом упрощают схему, приводя ее к одному проводнику, сопротивление которого равно общему сопротивлению сложной цепи.

Работа и мощность электрического тока. Электрический ток может производить работу. Способность тела производить работу называют энергией этого тела. Посредством электрических моторов ток приводит в движение электропоезда, станки. За счет энергии электрического тока совершается механическая работа. Если проводник, по которому проходит ток, нагревается, энергия тока превращается в теплоту. При различных проявлениях тока наблюдается превращение электрической энергии в другие виды энергии.

В замкнутой электрической цепи протекает ток, который представляет движение электрических зарядов. Для переноса зарядов в электрической цепи источник электрической энергии затрачивает определенное количество энергии или совершает работу, равную произведению напряжения цепи на перенесенное через цепь количество электричества.

Если по участку электрической цепи протекло Q кулонов электричества, а напряжение на нем равно V, то совершенная на данном участке цепи работа А будет равна:

А = QV дж.

При токе Ia в течение Т секунд через сечение проводника проходит IT = Q кулонов электричества. Следовательно, работа тока в при напряжении V в течение Т секунд будет равна:

A = IVT.

Работу тока принято оценивать по его мощности. Мощность тока численно равна работе, которую производит ток в 1 сек. Следовательно, мощность тока будет равна:

джоулей в 1 сек.

Единицей измерения мощности служит ватт (вт). Один ватт — мощность тока в 1 а при напряжении в 1 в. Следовательно, с увеличением тока и напряжения мощность увеличивается. Для определения мощности электрического тока необходимо напряжение в вольтах умножить на ток в амперах.

Наряду с ваттом для измерения мощности часто применяют киловатт (1 квт =1000 вт), гектоватт (1 гвт=100 вт), милливатт (1 мвт=0,001 вт) и микроватт (1 мквт= 0,000 001 вт).

Работу электрического тока можно определить, если его мощность умножить на время прохождения тока: мощность —это работа в 1 сек. За основную единицу работы принята ватт-секунда (вт•сек), т. е. работа тока мощностью 1 вт в течение 1 сек. Более крупными единицами являются ватт-час (1 вт•ч=3600 вт•сек), гектоватт-час (1 гвт•ч =100 вт•ч), киловатт-час (1 квт•ч= 1000 вт•ч).

Закон Ленца—Джоуля. Русский академик Ленц и английский физик Джоуль, независимо друг от друга, установили, что в процессе прохождения электрического тока по проводнику количество теплоты, выделяемое проводником, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени прохождения тока. Эту закономерность называют закомом Ленца — Джоуля и выражают формулой

Q = 0,24I2Rt,

де Q — количество теплоты в кал;

0,24 — коэффициент пропорциональности, обусловливающий, чтобы ток был выражен в а, напряжение в в, а сопротивление — в ом;

I — ток в а;

R — сопротивление проводника в ом;

t — время, в течение которого ток протекал по проводнику, в сек.

Электрическая дуга. Если сблизить концы двух проводников, присоединенных к источнику электрического тока, между ними образуется искра. Разведя концы, вместо искры получим электрическую дугу, создающую сильный и ослепительный свет. Если к концам проводников присоединить угольные стержни, между ними также возникнет электрическая дуга. Возникновение дуги объясняется следующим образом.

С повышением температуры угольных стержней увеличивается скорость движения электронов, находящихся в угле. При сильном нагреве скорость движения свободных электронов возрастает настолько, что при раздвижении углей электроны из стержней вылетают в межэлектродное пространство. В результате действия вылетевших электронов на нейтральные атомы и интенсивного излучения света нагретыми концами электродов воздух между электродами перестает быть электрически нейтральным, т. е. между концами раздвинутых электродов создается газовый промежуток, хорошо проводящий электрический ток, и возникает электрический разряд.

Способность тока создавать электрическую дугу с успехом используют при сварке. Заменив один из угольных электродов свариваемым изделием, получим электрическую дугу, горящую между этим изделием и вторым угольным электродом. Однако в настоящее время наибольшее применение получил способ сварки металлическим электродом. В этом случае вместо угольного электрода применяют металлический. Сварочная дуга горит между свариваемым изделием и металлическим электродом. После расплавления металлического электрода он заменяется новым.

Короткое замыкание. Аварийный режим работы электрической цепи, когда вследствие уменьшения ее сопротивления ток в ней резко увеличивается против нормального, называют коротким замыканием. Короткое замыкание получается, если в электрическую цепь включается проводник или прибор и т.п. с очень небольшим сопротивлением по сравнению с сопротивлением цепи. Вследствие небольшого сопротивления по цепи пойдет ток, намного превышающий тот, на который рассчитана цепь. Такой ток вызовет выделение большого количества тепла, что приведет к обугливанию и сгоранию изоляции проводов, расплавлению материала проводов, порче электроизмерительных приборов, оплавлению контактов выключателей, ножей рубильников и т.п. Может быть поврежден даже источник электрического тока. Поэтому (ввиду опасных разрушительных последствий короткого замыкания необходимо соблюдать определенные условия при монтаже и эксплуатации электрических установок.

Плавкие предохранители. Для того чтобы избежать внезапного и опасного увеличения тока в электрической цепи при коротком замыкании, цепь защищают плавкими предохранителями. Предохранитель представляет собой легкоплавкую проволоку, включенную в цепь последовательно. При увеличении тока сверх определенной величины проволочка предохранителя нагревается и плавится, электрическая цепь автоматически разрывается и ток в ней прекращается. Плавкие вставки для разных сечений защищаемых проводов и для разных потребителей энергии берутся различные. Плавкие предохранители могут выполнить свою задачу при условии, что они правильно выбраны.

Рис. 8

По своей конструкции предохранители делят на пробочные (рис. 8,а), пластинчатые (рис. 8,б) и трубчатые (рис. 8,в), В пробочных предохранителях плавкая проволока помещается внутри фарфоровой пробки и укрепляется в ее основании, к которому подведены провода размыкаемой цепи. В пластинчатых предохранителях плавкая вставка с помощью наконечников и винтов укреплена на изолирующем основании. Провода размыкаемой цепи подводят к винтам. В трубчатых предохранителях плавкая часть помещена внутри легко-съемных фарфоровых трубок.

В цепях с большим током и напряжением плавкие предохранители применяют редко. В этих случаях устраивают другую автоматическую защиту.

soedenimetall.ru

Куда течет ток или где же этот чертов катод? / Habr

Есть вещи, которые хочется, что называется «развидеть» — термин вполне устоявшийся и понятный.

— Евгений Гришковец, рассказывает про железнодорожников. (с) Спектакль «Одновременно»

А есть вещи которые, ну никак не получается запомнить. Это возникает от того, что новое понятие не может однозначно зацепиться за уже известные факты в сознании, никак не получается построить новую связь в семантической сети фактов.

Все знают, что у диода есть катод и анод. Все знают, как диод обозначается на электрической схеме. Но далеко не все могут правильно сказать, где же на схеме что.

Под спойлером картинка, посмотрев на которую, вы навсегда запомните, где у диода анод, а где катод. Должен предупредить, развидеть это не получится, так что тот, кто не уверен в себе, пусть не открывает.

Теперь, когда мы отпугнули слабых, продолжаем...
Да, вот так все просто. Буква К — это катод, буква А — это анод. Извините, теперь и вы это никогда не забудете.

Продолжим, и разберемся куда течет ток. Если приглядеться, обозначение диода представляет собой стрелку. Вот, не поверите — ток течет именно туда, куда показывает стрелка! Что логично, не правда ли? Дальше больше — ток течет "Аткуда" (от Анода) и "Куда" (к Катоду). В обозначениях транзисторов тоже есть стрелки, и они так же обозначают направление тока.


Ток — направленное движение заряженных частиц — это мы все знаем из школьной физики. Каких частиц? Да, любых заряженных! Это могут быть и электроны несущие отрицательный заряд и обделенные электронами частицы — атомы или молекулы, в растворах и плазме — ионы, в полупроводниках — «свободные электроны» или вообще «дырки», что бы это не значило. Так вот, во всем этом зоопарке проще всего разобраться так: ток течет от плюса к минусу, и все. Запомнить это очень просто: «плюс» — интуитивно — это там где чего-то «больше», больше в данном случае зарядов (еще раз — не важно каких!) и текут они в сторону «минуса», где их мало и ждут. Все остальные подробности, непринципиальны.

Ну, и последнее — батарейка. Обозначение тоже всем известно, две палочки подлинней потоньше и покороче потолще. Так вот покороче и потолще символизирует собой минус — эдакий «жирный минус» — как в школе, помните: «ставлю тебе четыре с жирным минусом». Я только так и запомнил, возможно, кто-то предложит вариант лучше.

Теперь, вы без труда ответите на вопрос, загорится ли лампочка в этой схеме:

Всех с 1 апреля! Улыбайтесь, господа. Улыбайтесь!

habr.com

Отправить ответ

avatar
  Подписаться  
Уведомление о